WO2013139106A1 - Method for determining hearing compensation gain of hearing-aid device - Google Patents

Method for determining hearing compensation gain of hearing-aid device Download PDF

Info

Publication number
WO2013139106A1
WO2013139106A1 PCT/CN2012/080147 CN2012080147W WO2013139106A1 WO 2013139106 A1 WO2013139106 A1 WO 2013139106A1 CN 2012080147 W CN2012080147 W CN 2012080147W WO 2013139106 A1 WO2013139106 A1 WO 2013139106A1
Authority
WO
WIPO (PCT)
Prior art keywords
hearing
frequency
compensation gain
ear
compensation
Prior art date
Application number
PCT/CN2012/080147
Other languages
French (fr)
Chinese (zh)
Inventor
陈章立
胡广书
Original Assignee
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学 filed Critical 清华大学
Publication of WO2013139106A1 publication Critical patent/WO2013139106A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/35Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception using translation techniques
    • H04R25/356Amplitude, e.g. amplitude shift or compression
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/70Adaptation of deaf aid to hearing loss, e.g. initial electronic fitting

Abstract

The present invention relates to a method for determining the hearing compensation gain of a hearing-aid device, comprising: testing the hearing of a person with hearing loss to determine the frequency CF at a position requiring gain compensation; based on a loudness perception model of normal hearing and injured hearing, calculating the compensation gain value IGohcdB (CF) of an ear outer hair cell injury; based on the loudness perception model, calculating the compensation gain value IGihcdB (CF) of an ear inner hair cell injury; adding the IGohcdB (CF) and the IGihcdB (CF) to obtain the compensation gain IGdB (CF) of the hearing loss person at the frequency CF. The present invention can be widely used in ancillary hearing devices such as hearing aids and the like.

Description

确定助听设备听力补偿增益的方法  Method for determining hearing compensation gain of hearing aids
技术领域 Technical field
本发明涉及一种确定助听设备参数的方法, 特别是关于一种基于耳外 毛细胞和内毛细胞损伤的确定助听设备听力补偿增益的方法。 背景技术  The present invention relates to a method of determining parameters of a hearing aid device, and more particularly to a method for determining hearing compensation gain of a hearing aid device based on damage to the outer ear hair cells and inner hair cells. Background technique
听力损失 (即耳聋) 患者可以通过佩戴助听设备进行声音放大处理以 恢复或部分恢复声音感知。 由于人耳的复杂性, 对于不同频率处不同程度 的听力损失, 在不同输入声音时要给予不同程度的放大补偿。 为了准确有 效的给出补偿增益, 人们根据相关研究经验和成果把各种听力损失情况在 各种输入声音条件下应该给予的合适补偿增益的公式称为助听验配公式。 现有的助听验配公式主要是基于听阈计算补偿增益, 但是听阈反映的听力 损失信息并不充分, 主要是因为听力损失是耳朵的外毛细胞损伤和内毛细 胞损伤共同作用的结果, 且外毛细胞损伤和内毛细胞损伤在听力损失的过 程中所起的作用也有所不同, 即: 外毛细胞损伤会造成听阈上升、 听觉频 率分辨率减弱和听觉非线性增益下降, 而内毛细胞损伤一般只会造成听阈 上升, 因此仅根据听阈计算补偿增益的结果不是很准确。  Hearing loss (ie, deafness) The patient can perform sound amplification by wearing a hearing aid device to restore or partially restore sound perception. Due to the complexity of the human ear, different degrees of hearing loss at different frequencies are compensated for different levels of input sound. In order to accurately and effectively give the compensation gain, the formula for the appropriate compensation gain that various hearing loss conditions should give under various input sound conditions based on relevant research experience and results is called the hearing aid fitting formula. The existing hearing aid fitting formula is mainly based on the hearing threshold to calculate the compensation gain, but the hearing loss information reflected by the hearing threshold is not sufficient, mainly because the hearing loss is the result of the joint action of the outer hair cell damage and the inner hair cell damage of the ear, and External hair cell damage and inner hair cell damage play different roles in the process of hearing loss, namely: outer hair cell damage causes rise in hearing threshold, decreased auditory frequency resolution, and decreased auditory nonlinear gain, while inner hair cells Damage generally only causes the hearing threshold to rise, so the result of calculating the compensation gain based only on the hearing threshold is not very accurate.
现有的听力补偿增益需要在助听设备中通过多通道压缩放大算法实 现, 现有的助听验配公式一般只给出 50 dB SPL (Sound Pressure Level) , 65 dB SPL和 85 dB SPL声强下的长时间平均言语频谱的补偿增益,然后通 过设置通道数目和通道交叉处频率,进而确定各通道的压缩阈值和压缩率, 以便多通道放大算法实现上述三个输入声强条件下的补偿, 并且按照上述 规律自动计算其它输入声强时的补偿,但是采用上述方法存在两个问题:1、 不能快速准确地选择最优的通道数目和通道交叉处频率; 2、其它不同于长 时间平均言语频谱的声音输入时计算得到的补偿增益与理想的补偿增益可 能会有偏差。 发明内容 The existing hearing compensation gain needs to be realized in the hearing aid device through the multi-channel compression amplification algorithm. The existing hearing aid fitting formula generally only gives 50 dB SPL (Sound Pressure Level), 65 dB SPL and 85 dB SPL sound intensity. The compensation gain of the long-term average speech spectrum is then determined by setting the number of channels and the frequency at the intersection of the channels, thereby determining the compression threshold and compression ratio of each channel, so that the multi-channel amplification algorithm can achieve the compensation under the above three input sound intensity conditions. And according to the above rules, the compensation of other input sound intensity is automatically calculated, but there are two problems in the above method: 1. The optimal number of channels and the frequency of channel intersection cannot be quickly and accurately selected; 2. Others are different from long-term average speech. The compensation gain calculated from the sound input of the spectrum may deviate from the ideal compensation gain. Summary of the invention
针对上述问题, 本发明的目的是提供一种能够快速、 准确确定助听设 备或具有助听功能的电子设备的听力补偿增益的方法。  In view of the above problems, an object of the present invention is to provide a method capable of quickly and accurately determining the hearing compensation gain of a hearing aid device or an electronic device having a hearing aid function.
根据本发明的一个方面, 提供一种确定助听设备的听力补偿增益的方 法, 包括以下步骤: 对听力损失者的听觉进行测试, 以确定需要进行增益 补偿处的频率 CF; 基于正常听觉和损伤听觉的响度感受模型, 计算耳外毛 细胞损伤的补偿增益值 IGohcdB(CF); 基于所述响度感受模型, 计算耳内 毛细胞损伤的补偿增益值 IGihcdB(CF); 将 IGohcdB(CF)与 IGihcdB(CF)相 加得到听力损失者在频率 CF处的补偿增益 IGdB(CF)。 According to an aspect of the invention, a method of determining a hearing compensation gain of a hearing aid device is provided, comprising the steps of: testing a hearing loss of a hearing loss person to determine a frequency CF at which gain compensation is required; based on normal hearing and impairment The auditory loudness perception model calculates the compensation gain value IGohcdB(CF) of the outer ear hair cell damage ; based on the loudness perception model, calculates the compensation gain value IGIhcdB(CF) of the ear hair cell damage; IGohcdB(CF) and IGIhcdB (CF) is added to obtain the compensation gain IGdB(CF) of the hearing loss at the frequency CF.
根据本发明的另一个方面, 提供一种确定助听设备的听力补偿增益的 方法, 包括以下步骤: 1 ) 对被测试者的听觉进行测试, 确定需要进行增 益补偿处的频率 CF; 2) 基于正常听觉和损伤听觉的响度感受模型, 针对 听觉损伤频率 CF处的耳外毛细胞的损伤值 HLohcdB(CF), 计算耳外毛细 胞损伤的补偿增益值 IGohcdB(CF); 3 ) 针对听觉损伤频率 CF处的耳内毛 细胞损伤值 HLihcdB(CF), 计算耳内毛细胞损伤的补偿增益值 IGihcdB(CF); 4) 当听力损伤频率 CF低于 1000 Hz时, 频率 CF处的补偿 增益要根据频率 CF进行相对应的衰减, 衰减值为 INTdB(CF); 当听力损 伤频率 CF大于等于 1000 Hz时,频率 CF处衰减值为 0; 5 )综合步骤 2)〜 4), 得到听力损失者在频率 CF处的补偿增益 IGdB(CF)为: According to another aspect of the present invention, a method for determining a hearing compensation gain of a hearing aid device is provided, comprising the steps of: 1) testing a hearing of a test subject to determine a frequency CF at which gain compensation is required; 2) based on The loudness perception model of normal auditory and impaired hearing, the damage value HLohcdB(CF) of the outer ear hair cells at the auditory damage frequency CF, and the compensation gain value IGohcdB(CF) of the outer ear hair cell damage ; 3) for the auditory damage frequency Intra-ear hair cell damage value HLihcdB(CF) at CF, the compensation gain value IGIhcdB(CF) for calculating hair cell damage in the ear; 4) When the hearing damage frequency CF is lower than 1000 Hz, the compensation gain at the frequency CF is based on The frequency CF is correspondingly attenuated, and the attenuation value is INTdB(CF); when the hearing impairment frequency CF is greater than or equal to 1000 Hz, the attenuation value at the frequency CF is 0; 5) the comprehensive steps 2) to 4), the hearing loss is obtained. The compensation gain IGdB(CF) at frequency CF is:
IGdB(CF) = IGohcdB(CF) + IGihcdB (CF) + INTdB(CF) 。 步骤 2) 中的耳外毛细胞损伤的补偿增益值 IGohcdB(CF)为: IGohcdB(CF) = m [GdBN ( CF) - GdBI (CF)] 式中, m是系数, m的计算公式为:
Figure imgf000004_0001
IGdB(CF) = IGohcdB(CF) + IGihcdB (CF) + INTdB(CF). The compensation gain value of the outer ear hair cell damage in step 2) is IGohcdB(CF): IGohcdB(CF) = m [GdBN (CF) - GdBI (CF)] where m is the coefficient and m is calculated as:
Figure imgf000004_0001
式中, -13dB 为设定的听觉主动增益的最小值, GdBI(CF)为损伤耳的主动 增益, GdBN(CF)为正常耳的主动增益。 Where -13dB is the minimum value of the set auditory active gain, GdBI(CF) is the active gain of the damaged ear, and GdBN(CF) is the active gain of the normal ear.
步骤 3 ) 中耳内毛细胞损伤的补偿增益值 IGihcdB(CF):  Step 3) Compensation gain value of hair cell damage in the middle ear IGihcdB(CF):
IGihcdB (CF) = 0.5 · max [HLihcdB (CF) , 40] 式中, max表示取 HLihcdB(CF)和 40二者中的最大值。 步骤 4) 中不同频率 CF处的补偿增益的衰减值分别为: 频率 CF为 125HZ对应的衰减值 INTdB(CF)为 -15dB, 频率 CF为 250HZ对应的衰减 值 INTdB(CF)为 -10 dB, 频率 CF为 500HZ对应的衰减值 INTdB(CF)为 -5 dB,频率 CF为 1000HZ对应的衰减值 INTdB(CF)为 0 dB,其它低于 1000HZ 频率处的其它频率 CF的衰减值 INTdB(CF)通过插值计算。 IGihcdB (CF) = 0.5 · max [HLihcdB (CF) , 40] where max represents the maximum value of both HLihcdB(CF) and 40. The attenuation values of the compensation gains at different frequencies CF in step 4) are: the frequency CF is 125HZ corresponding to the attenuation value INTdB(CF) is -15dB, and the frequency CF is 250HZ corresponding to the attenuation value INTdB(CF) is -10 dB, The frequency CF is 500HZ corresponding to the attenuation value INTdB(CF) is -5 dB, the frequency CF is 1000HZ corresponding to the attenuation value INTdB(CF) is 0 dB, and other attenuation values below the 1000HZ frequency CF is INTdB(CF) Calculated by interpolation.
根据本发明的又一个方面,提供一种具有助听功能的电子设备,包括: 数字信号处理器, 配置用于基于正常听觉和损伤听觉的响度感受模型, 计算听力损失者的耳外毛细胞损伤的补偿增益值 IGohcdB(CF), 其中, CF 是需要对听力损失者的听觉进行增益补偿处的中心频率; 基于所述响度感 受模型, 计算听力损失者的耳内毛细胞损伤的补偿增益值 IGihcdB(CF); 通过将 IGohcdB(CF)与 IGihcdB(CF)相加得到听力损失者在频率 CF处的补 偿增益 IGdB(CF); 利用所述补偿增益 IGdB(CF)获取补偿的声音信号; 以 及声音输出单元, 输出补偿的声音信号。 所述电子设备可以是助听器、 音 频播放器和移动电话中的任一种。 附图说明  According to still another aspect of the present invention, an electronic device having a hearing aid function is provided, comprising: a digital signal processor configured to calculate an ear hair cell damage of a hearing loss person based on a loudness perception model of normal hearing and damage hearing The compensation gain value IGohcdB(CF), where CF is the center frequency at which the hearing loss of the hearing loss person needs to be compensated; based on the loudness sensation model, the compensation gain value IGIhcdB of the ear hair cell damage of the hearing loss person is calculated. (CF); compensating gain IGdB(CF) at the frequency CF by adding IChohcd(CF) and IGehcdB(CF); obtaining a compensated sound signal using the compensation gain IGdB(CF); and sound The output unit outputs a compensated sound signal. The electronic device can be any of a hearing aid, an audio player, and a mobile phone. DRAWINGS
图 1是本发明的确定助听设备听力补偿增益的方法的实施例的流程框 图;  1 is a flow block diagram of an embodiment of a method of determining a hearing compensation gain of a hearing aid device of the present invention;
图 2 (a) 是在本发明的实施例中最大主动增益 GdBm(CF)和频率 CF 的函数关系图;  2(a) is a graph showing the relationship between the maximum active gain GdBm(CF) and the frequency CF in the embodiment of the present invention;
图 2 (b)是在本发明的实施例中的主动增益 GdB(CF)与被动激励响应 Figure 2 (b) is an active gain GdB (CF) and passive excitation response in an embodiment of the invention
EPFdB(CF)的函数关系图; a functional relationship diagram of E PF dB(CF);
图 3 (a) ~3 (d) 是本发明的实施例中的四种常见听力损失的听力图; 图 4 (a) ~4 (d) 是针对图 3 中四种常见听力损失, 采用本发明的实 施例的助听验配公式给出的补偿增益和与现有的 NAL-NL2验配公式的对 比示意图;  Figures 3 (a) ~ 3 (d) are the audiograms of four common hearing loss in the embodiment of the present invention; Figures 4 (a) ~ 4 (d) are for the four common hearing losses in Figure 3, using this A comparison of the compensation gain given by the hearing aid fitting formula of the embodiment of the invention and the existing NAL-NL2 fitting formula;
图 5 (a)〜图 5 (h)示出了当采用与长时间平均言语频谱具有相同频 谱的时域噪声作为输入时, 针对图 3中的两个典型的听力损失情况, 采用 本发明的实施例的助听验配公式及其算法实现的处理结果; 以及  5(a) to 5(h) show the use of the present invention for the two typical hearing loss scenarios of FIG. 3 when using time domain noise having the same spectrum as the long-term average speech spectrum as input. The hearing aid fitting formula of the embodiment and the processing result of the algorithm implementation;
如图 6 (a) 〜图 6 (h)示出根据本发明的实施例, 当采用一段实际语 音作为输入时, 针对与图 5中相同的听力损失情况, 经本发明的实施例的 助听验配公式及其算法实现的处理结果。 具体实施方式 6(a) to 6(h) illustrate, according to an embodiment of the present invention, when an actual voice is used as an input, the same hearing loss situation as in FIG. 5, according to an embodiment of the present invention The processing results of the hearing aid fitting formula and its algorithm implementation. detailed description
下面结合附图和实施例对本发明进行详细的描述。  The invention will now be described in detail in conjunction with the drawings and embodiments.
如图 1所示, 本发明基于耳外毛细胞和内毛细胞损伤的确定助听设备 听力补偿增益的方法的实施例包括以下步骤:  As shown in Fig. 1, an embodiment of the method for determining hearing compensation gain of a hearing aid device based on damage to the outer ear hair cells and inner hair cells of the present invention comprises the following steps:
1、对被测试者的听觉进行测试,确定听力损失者在哪些频率 CF( Center Frequency, 即中心频率) 处存在听力损失, 即确定需要进行增益补偿的频 率 CF。  1. Test the hearing of the testee to determine the hearing loss at which frequency (CF), where the hearing loss is present, that is, determine the frequency CF at which gain compensation is required.
对于听力损失者, 在佩戴助听器时, 医学上通常需要对其的耳朵听阈 进行检测, 检测的方法一般是选取某些常用的频率点对被测试者的耳朵进 行听觉诊断,常用的频率点为 125 Hz、 250 Hz、 500 Hz、 1000 Hz、 2000 Hz、 4000 Hz, 6000 Hz和 8000Hz,通过诊断确定各频率处被测试者所能接收到 的声音强度, 得到被测试者耳朵的听力图, 将被测试者耳朵的听力图与正 常耳的听力图进行比对, 确定被测试者是在哪个频率处 CF 的听力存在损 失, 则在此频率 CF处对其听力损失进行适当的补偿。  For hearing loss, when wearing a hearing aid, it is usually necessary to detect the ear hearing threshold of the patient. The detection method generally selects some commonly used frequency points to perform auditory diagnosis on the ear of the testee. The commonly used frequency point is 125. Hz, 250 Hz, 500 Hz, 1000 Hz, 2000 Hz, 4000 Hz, 6000 Hz and 8000 Hz. The sound intensity that can be received by the test subject at each frequency is determined by diagnosis, and the audiogram of the testee's ear is obtained. The audiogram of the tester's ear is compared with the normal ear's audiogram, and at which frequency the CF's hearing loss is determined, the hearing loss is appropriately compensated at this frequency CF.
2、基于最新研究得到的正常听觉和损伤听觉的响度感受模型,针对听 觉损伤频率 CF处的耳外毛细胞的损伤值 HLohcdB(CF), 计算听力正常耳 和听力损伤耳的听觉在此频率 CF处的主动增益之差, 即得到耳外毛细胞 损伤的补偿增益值 IGohcdB(CF)。  2. Based on the loudness perception model of normal auditory and impaired hearing obtained from the latest research, the damage value of the ear outer hair cells at the hearing impairment frequency CF is HLohcdB(CF), and the hearing of the hearing normal ear and the hearing impairment ear is calculated at this frequency CF. The difference in the positive gain at the point is the compensation gain value IGohcdB(CF) of the hair cell damage outside the ear.
如图 1所示, 假设自由声场条件下输入到被测试者耳朵的声音频谱为 X(f), 声音频谱 X(f)依次经过外耳和中耳滤波 OME(f)后, 到达耳朵耳蜗的 声音频谱为 Y(f):  As shown in Fig. 1, it is assumed that the sound spectrum input to the ear of the subject under the free sound field condition is X(f), and the sound spectrum X(f) passes through the outer ear and the middle ear to filter the OME(f), and then reaches the ear cochlea. The spectrum is Y(f):
Y(f) =X(f)OME(f) 式中, OME(f)是外耳和中耳频率响应的英文缩写。  Y(f) = X(f) OME(f) where OME(f) is the English abbreviation for the outer ear and middle ear frequency response.
耳蜗处的声音频谱 Y(f)经过听觉被动宽带滤波器 WPF(CF,f)后输出的被 动激励响应为 EThe passive excitation response of the sound spectrum Y(f) at the cochlea after passing through the auditory passive wideband filter W PF (CF,f) is E
Figure imgf000006_0001
Figure imgf000006_0001
式中, WPF(CF, f)是频率 f CF处的听觉被动滤波器的频率响应, WPF(CF,Where W PF (CF, f) is the frequency response of the auditory passive filter at frequency f CF , W PF (CF,
Ό为: ( fp_f 、 ( fp_f The trick is: ( fp_f , ( fp_f
WPF (CF, f≤CF) = 1 + -—— tL (CF) exp --—— tT (CFl W PF (CF, f≤CF) = 1 + -—— t L (CF) exp --—— t T (CFl
CF CF  CF CF
( f -TF 、  (f-TF,
WPF (CF, f > CF) = 1 +—— tD (CF) exp W PF (CF, f > CF) = 1 + - t D (CF) exp
CF CF (3 ) CF CF (3 )
CF CF
tL (CF) = -t L (CF) = -
L ) 0.108CF + 2.33 L ) 0.108CF + 2.33
tu (CF) = 15.6 tL(CF)和 tu(CF)是控制频率为 CF处的被动听觉滤波器形状的 根据 EPF(CF)可以计算频率为 CF处听力损伤耳的主动增益 GdB(CF) t u (CF) = 15.6 tL (CF) and TU (CF) is a passive control frequency is CF auditory filter shape at the E PF (CF) can be calculated according to the active gain GdB (CF CF frequency hearing loss ear at )
1 1
1 + exp [-0.05 (EPFdB (CF)— (100— GdBm(CF) 1 + exp [-0.05 (E PF dB (CF)—(100— GdBm(CF)
GdB(CF) = GdBm(CF)  GdB(CF) = GdBm(CF)
1 (4) 1 (4)
1 + exp [0.05(100 GdBm(CF))] 1 + exp [0.05(100 GdBm(CF))]
if EPFdB(CF) > 30, then GdB(CF) = GdB(CF)— 0.003 (EPFdB(CF)— 30)2 式中, EPFdB(CF) =101g(EPF(CF)), GdBm(CF)是频率为 CF处人耳的最 大主动增益值, 当 EPFdB(CF) = 0时, GdB(CF) = GdBm(CF)。 这里的公式 if E PF dB (CF)> 30, then GdB (CF) = GdB (CF) - 0.003 (E PF dB (CF) - 30) 2 where, E PF dB (CF) = 101g (E PF (CF) ), GdBm(CF) is the maximum active gain value of the human ear at frequency CF. When E PF dB(CF) = 0, GdB(CF) = GdBm(CF). Formula here
(4) 同时适用于正常耳和损伤耳的主动增益的计算。 对于正常耳, 用 GdBmN(CF)和 GdBN(CF)分别代替公式 (4) 中的 GdBm(CF)和 GdB(CF); 对于损伤耳,用 GdBml(CF)和 GdBI(CF)分别代替公式(4)中的 GdBm(CF) 和 GdB(CF)。 (4) Simultaneously apply to the calculation of the active gain of the normal ear and the damaged ear. For normal ears, replace GdBm(CF) and GdB(CF) in equation (4) with GdBmN(CF) and GdBN(CF) respectively; for the damaged ear, replace the formula with GdBml(CF) and GdBI(CF) respectively. GdBm(CF) and GdB(CF) in 4).
正常耳在频率 CF处的最大主动增益 GdBmN(CF)为:  The maximum active gain of the normal ear at the frequency CF is GdBmN(CF):
GdBmN(CF) = (5)  GdBmN(CF) = (5)
' 0.019CF+1.10  '0.019CF+1.10
可以将频率 CF为 125 Hz、 250 Hz, 500 Hz, 1000 Hz, 2000 Hz, 4000 The frequency CF can be 125 Hz, 250 Hz, 500 Hz, 1000 Hz, 2000 Hz, 4000
Hz和 8000 Hz分别代入式 (5) 中分别计算得到正常耳在不同频率处的最 大主动增益值 GdBmN(CF), 计算结果如图 2 (a) 所示。 图 2 (a) 中的横 坐标表示频率 CF, 单位为 Hz, 纵坐标表示最大主动增益 GdBm(CF), 单 位为 dB, 图中的圆圈表示频率 CF为 125Hz、 250 Hz, 500 Hz, 1000 Hz,Hz and 8000 Hz are respectively substituted into equation (5) to calculate the maximum active gain value GdBmN(CF) of the normal ear at different frequencies, and the calculation result is shown in Fig. 2 (a). The abscissa in Figure 2 (a) represents the frequency CF in Hz, and the ordinate represents the maximum active gain GdBm(CF) in dB. The circle in the figure indicates the frequency CF is 125Hz, 250 Hz, 500 Hz, 1000 Hz. ,
2000 Hz、 4000 Hz和 8000 Hz时按照公式(5)计算得到的最大主动增益值, 图中的实线是将各个频率连接起来的曲线。 当某一频率 CF处的耳外毛细胞损伤值为 HLohcdB(CF) 时,损伤耳的 最大主动增益 GdBml(CF)为: The maximum active gain value calculated according to equation (5) at 2000 Hz, 4000 Hz, and 8000 Hz. The solid line in the figure is the curve connecting the frequencies. When the outer ear hair cell damage value at a certain frequency CF is HLohcdB(CF), the maximum active gain GdBml(CF) of the damaged ear is:
GdBml(CF) = GdBmN (CF) - HLohcdB(CF) ( 6 ) 图 2 (b) 中的横坐标为被动激励响应 EPFdB(CF), 单位为 dB; 纵坐标 为主动增益 GdB(CF), 单位为 dB; 图中最上面的 4条粗实线对应正常耳的 主动增益, 命名为 GdBN(CF), 其中字母 N表示正常耳, 下面的细实线对 应听觉损伤耳的主动增益, 命名为 GdBI(CF), 其中字母 I表示损伤耳, 最 底下的虚线对应主动增益的最小值, 为 -13 dB。 如图 2 (b) 所示, 将公式 (5) 中的 GdBmN(CF)和公式 (6) 中的 GdBml(CF)分别替换公式 (4) 中 的 GdBm(CF)可以计算输入频谱为 X(f)时, 听力正常耳和听力损伤耳的听 觉主动增益 GdBN(CF)和 GdBI(CF), 因此得到助听验配公式针对外毛细胞 损伤的补偿增益 IGohcdB(CF): GdBml(CF) = GdBmN (CF) - HLohcdB(CF) ( 6 ) The abscissa in Figure 2 (b) is the passive excitation response E PF dB(CF) in dB; the ordinate is the active gain GdB(CF) The unit is dB; the top four thick solid lines in the figure correspond to the active gain of the normal ear, named GdBN(CF), where the letter N represents the normal ear, and the lower solid line corresponds to the active gain of the auditory ear, named It is GdBI(CF), where the letter I represents the damage ear, and the bottom line corresponds to the minimum value of the active gain, which is -13 dB. As shown in Figure 2 (b), the input spectrum is calculated as X by replacing GdBmN(CF) in equation (5) and GdBml(CF) in equation (6) with GdBm(CF) in equation (4), respectively. f), the auditory active gains of hearing-impaired ears and hearing-impaired ears, GdBN(CF) and GdBI(CF), thus obtaining the compensation gain IGohcdB(CF) of the hearing aid fitting formula for external hair cell damage:
IG。hcdB (CF) = m [GdBN ( CF) - GdBI ( CF)] ( 7 ) 式中, m是系数, m与损伤耳听觉主动增益 GdBI(CF)呈线性关系, 这一线性关系的斜率和截距随着正常耳听觉主动增益 GdBN(CF)的变化而 变化, m的计算公式为:  IG. hcdB (CF) = m [GdBN ( CF) - GdBI ( CF)] ( 7 ) where m is the coefficient and m is linear with the damage ear hearing gain GdBI(CF). The slope and intercept of this linear relationship The distance varies with the change of the normal ear hearing gain GdBN(CF), and the formula for calculating m is:
_「 0.5 0.5 · GdBN (CF) _" 0.5 0.5 · GdBN (CF)
GdBl(CF) + (8) m _ GdBN (CF) -(-13) GdBN (CF)- (-13) 式中, -13dB 为设定的正常耳和损伤耳听觉主动增益的最小值 (如图 2 (b) 图中的虚线所示)。  GdBl(CF) + (8) m _ GdBN (CF) -(-13) GdBN (CF)- (-13) where -13dB is the minimum value of the set normal ear and damage ear hearing gain (eg Figure 2 (b) shows the dotted line in the figure).
3、 针对听觉损伤频率 CF处的耳内毛细胞损伤值 HLihcdB(CF), 计算 耳内毛细胞损伤的补偿增益 IGihcdB(CF)为:  3. For the frequency of auditory damage, the in-hair hair cell damage value at CF is HLihcdB(CF), and the compensation gain of the hair cell damage in the ear is calculated. IGihcdB(CF) is:
IGihcdB (CF) = 0.5. HLihcdB (CF) ( 9 ) 式中, max表示取 HLihcdB(CF)和 40二者中的最大值, 因为当 HLihcdB(CF)大于等于 40 dB时,耳内毛细胞可能已经完全损伤, 因此不需 要进行更大的补偿。 耳内毛细胞损伤后其部分感音功能不会因为声音放大 而得到恢复, 没有必要让补偿增益等于损伤程度, 因此根据经验本发明中 在公式 (9) 中乘以一个 0.5的系数, 由于目前没有实验手段能够验证这个 系数的最佳值, 因此这个系数可能会根据具体损伤情况作进一步调整, 比 如调整为 0.4或 0.6。 IGihcdB (CF) = 0.5. HLihcdB (CF) ( 9 ) where max represents the maximum value of both HLihcdB(CF) and 40, because when HLihcdB(CF) is greater than or equal to 40 dB, the hair cells in the ear may It has been completely damaged, so no further compensation is required. After the hair cells in the ear are damaged, part of the sensory function is not recovered due to sound amplification. It is not necessary to make the compensation gain equal to the degree of damage. Therefore, according to the experience, the coefficient (0.5) is multiplied by a factor of 0.5 in the present invention. There is no experimental means to verify the optimal value of this coefficient, so this coefficient may be further adjusted according to the specific damage situation, Adjust to 0.4 or 0.6.
4、 当听力损伤频率 CF低于 1000 Hz时, 频率 CF的补偿增益要根据 频率 CF进行相对应的衰减, 以降低上行掩蔽效应 (掩蔽效应是心理声学 的经典效应, 即低频的声音很容易掩盖高频的声音, 从低频到高频称为"上 行"), 各频率 CF处衰减值为 IN 如表 1所示: 4. When the hearing impairment frequency CF is lower than 1000 Hz, the compensation gain of the frequency CF should be correspondingly attenuated according to the frequency CF to reduce the uplink masking effect (the masking effect is the classical effect of psychoacoustics, that is, the low frequency sound is easy to cover up) The high-frequency sound, called "upstream" from low frequency to high frequency, and the attenuation value of IN at each frequency CF are as shown in Table 1:
Figure imgf000009_0001
Figure imgf000009_0002
Figure imgf000009_0001
Figure imgf000009_0002
在其它频率处(如 200 Hz) 的衰减可以根据上述表 1通过插值计算得 到,当听力损伤频率 CF大于等于 1000 Hz时,频率 CF处衰减值 INTdB(CF) 为 0;  The attenuation at other frequencies (such as 200 Hz) can be calculated by interpolation according to Table 1 above. When the hearing impairment frequency CF is greater than or equal to 1000 Hz, the attenuation value INTdB(CF) at the frequency CF is 0;
5、 综合上面的计算步骤, 得到听力损失者在频率为 CF处的补偿增益 值 IGdB(CF)为:  5. Combine the above calculation steps to obtain the compensation gain value IGdB(CF) of the hearing loss at the frequency of CF:
IGdB(CF) = IG。hcdB (CF) + IGi cdB(CF) + INTdB (CF) ( 10) 上述补偿增益 IGdB(CF)为频率 CF处的值, 而输入频谱 X(f)为频率 f 处的值, 二者对应的频率 CF和 f可能不一样, 因此需要对 IGdB(CF)进行 插值得到频率 f处的值 IGdB(f), 再转变成为线性幅度: IG(f) = 10(ICMB(f)/1Q), 由此就可以得到损伤耳获得补偿增益后的输入 Xie(f), 如下面的公式所示: IGdB(CF) = IG. hcdB (CF) + IGi cdB(CF) + INTdB (CF) (10) The above compensation gain IGdB(CF) is the value at the frequency CF, and the input spectrum X(f) is the value at the frequency f, which corresponds to The frequencies CF and f may be different, so the IGdB(CF) needs to be interpolated to obtain the value IGdB(f) at the frequency f, and then converted to a linear amplitude: IG(f) = 10 (ICMB(f)/1Q) , by This gives the input X ie (f) of the damaged ear after obtaining the compensation gain, as shown in the following formula:
XIG (f)=X(f)-IG(f) ( ID 本发明的实施例的助听验配公式的算法实现过程包括以下步骤:X IG (f)=X(f)-IG(f) (ID) The algorithm implementation process of the hearing aid fitting formula of the embodiment of the present invention includes the following steps:
1 ) 将输入到被测试者耳朵的时域信号通过短时傅里叶变换分帧计算, 得到每一帧时域信号所对应的输入频谱 X(f), 由于实际应用中输入到被测 试者耳朵内的信号是时域信号, 而本发明的助听验配公式的输入信号是频 谱信号, 因此使用时需要进行时域信号和频域信号之间的转化。 1) The time domain signal input to the ear of the testee is calculated by short-time Fourier transform framing, and the input spectrum X(f) corresponding to the time domain signal of each frame is obtained, which is input to the testee due to the actual application. The signal in the ear is a time domain signal, and the input signal of the hearing aid fitting formula of the present invention is a spectrum signal, so that conversion between the time domain signal and the frequency domain signal is required in use.
2) 根据公式 (10) 计算每一帧频谱 X(f)应获得的补偿增益 IG(f)。 2) Calculate the compensation gain IG(f) that should be obtained for each frame spectrum X(f) according to equation (10).
3 )通过补偿增益 IG(f)得到损伤耳补偿增益的输入的频谱 Xie(f), 并将 得到的补偿增益频谱结合该帧处理前的相频响应进行逆傅里叶变换, 得到 时域信号。 3) obtaining the spectrum X ie (f) of the input of the damage compensation gain by compensating the gain IG(f), and performing the inverse Fourier transform on the obtained compensation gain spectrum combined with the phase frequency response before the frame processing to obtain the time domain signal.
4)将所有时域信号进行叠加处理后并输入到损伤耳中,使其听力损伤 得到补偿。  4) Superimpose all time domain signals and input them into the damaged ear to compensate for the hearing damage.
下面通过具体实施例进一步验证根据本发明的实施例确定助听设备听 力补偿增益的正确性, 具体验证过程如下: The following is further verified by a specific embodiment to determine a hearing aid device according to an embodiment of the present invention. The correctness of the force compensation gain, the specific verification process is as follows:
如图 3 (a) 〜图 3 (d)所示, 本发明的实施例列举了四种典型的听力 损失情况, 图 3 (a) 示出中度平坦型 MF的听力损失; 图 3 (b) 示出中度 缓升型 MG的听力损失; 图 3 (c) 示出中度陡升型 MS的听力损失; 图 3 As shown in Figures 3(a) to 3(d), the embodiment of the present invention cites four typical hearing loss conditions, and Figure 3(a) shows the hearing loss of a moderately flat MF; Figure 3 (b) Shows the hearing loss of the moderately ascending MG; Figure 3 (c) shows the hearing loss of the moderately steep MS;
(d) 示出重度平坦型 SF 的听力损失。 每一种听力损失分别包括听阈 HLdB(CF) (— θ— , 圆圈实线)、 耳外毛细胞损伤 HLohcdB(CF) (― & -, 方形虚线) 和耳内毛细胞损伤 HLihcdB(CF) ( -^ - , 三角形虚线)。 (d) shows the hearing loss of the severe flat SF. Each type of hearing loss includes the hearing threshold HLdB(CF) (— θ— , solid circles in the circle), HLohcdB(CF) (― & -, square dotted line), and HLihcdB (CF) in the ear. -^ - , triangle dotted line).
图 4 (a) ~4 (d) 是针对图 3 中四种常见听力损失, 采用本发明的实 施例的助听验配公式给出的补偿增益和与现有的 NAL-NL2验配公式的对 比示意图。 图中的横坐标为频率 f, 单位为 Hz, 纵坐标为补偿增益 IGdB Figures 4(a) to 4(d) are the compensation gains given by the hearing aid fitting formula of the embodiment of the present invention for the four common hearing losses in Figure 3 and the existing NAL-NL2 fitting formula. Compare the schematics. The abscissa in the figure is the frequency f, the unit is Hz, and the ordinate is the compensation gain IGdB.
(f),单位为 dB,其中的助听验配公式给出的补偿增益采用"—— "表示, 现有的 NAL-NL2验配公式给出的补偿增益采用" "表示。 图 4 (a) 是 MF 型听力损失在输入为长时间言语频谱时, 采用助听验配公式和 NAL-NL2验配公式给予的补偿增益对比示意图, 其中上、 中、 下三条曲线 分别对应的输入声强为 50 dB SPL、 65 dB SPL和 80 dB SPL时的情况; 图 4 (b) 是 MG型听力损失在输入为长时间言语频谱时, 采用助听验配公式 和 NAL-NL2验配公式给予的补偿增益对比示意图; 图 4 (c) 是 MS型听 力损失在输入为长时间言语频谱时, 采用助听验配公式和 NAL-NL2验配 公式给予的补偿增益对比示意图; 图 4 (d) 是 SF型听力损失在输入为长 时间言语频谱时, 采用助听验配公式和 NAL-NL2验配公式给予的补偿增 益对比示意图。 如图 4 (a) 〜图 4 (d) 所示, 本发明的实施例给出了在 50 dB SPL、 65 dB SPL和 80 dB SPL声强的长时间平均言语频谱输入时, 经过本发明的实施例的助听验配公式计算得到的增益补偿 (如图中的实线 所示, 从上到下依次对应 50 dB SPL、 65 dB SPL和 80 dB SPL输入声强时 的情况), 根据澳大利亚国家声学实验室 NAL-NL2公式计算得到的补偿增 益(如图中虚线所示,从上到下依次对应 50 dB SPL, 65 dB SPL禾卩 80 dB SPL 输入声强时的情况)。通过比较可以看出, 经过本发明的实施例的助听验配 公式计算得到的结果与 NAL-NL2公式计算得到的结果有相似的趋势, 由 于 NAL-NL2公式给出的补偿增益已经在临床上广泛应用并且证明了有效 性, 因此说明确定助听设备听力补偿增益是恰当的。 (f), the unit is dB, and the compensation gain given by the hearing aid formula is indicated by "-". The compensation gain given by the existing NAL-NL2 fitting formula is indicated by " ". Figure 4 (a) is a schematic diagram of the compensation gain of the MF-type hearing loss when the input is a long-term speech spectrum, using the hearing aid fitting formula and the NAL-NL2 fitting formula. The upper, middle and lower curves respectively correspond to The input sound intensity is 50 dB SPL, 65 dB SPL and 80 dB SPL; Figure 4 (b) is the MG type hearing loss. When the input is a long-term speech spectrum, the hearing aid fitting formula and the NAL-NL2 fitting are used. The comparison of the compensation gains given by the formula; Figure 4 (c) is a comparison of the compensation gains of the MS-type hearing loss using the hearing aid fitting formula and the NAL-NL2 fitting formula when the input is a long-term speech spectrum; d) is a schematic diagram of the compensation gain of the SF type hearing loss when the input is a long-term speech spectrum, using the hearing aid fitting formula and the NAL-NL2 fitting formula. As shown in Figures 4(a) to 4(d), embodiments of the present invention provide long-term average speech spectral input at 50 dB SPL, 65 dB SPL, and 80 dB SPL sound intensity, after the present invention. The gain compensation calculated by the hearing aid fitting formula of the embodiment (as shown by the solid line in the figure, corresponding to the 50 dB SPL, 65 dB SPL and 80 dB SPL input sound intensity from top to bottom), according to Australia The compensation gain calculated by the National Acoustics Laboratory NAL-NL2 formula (as indicated by the dotted line in the figure, corresponds to 50 dB SPL, 65 dB SPL and 80 dB SPL input sound intensity from top to bottom). As can be seen from the comparison, the results calculated by the hearing aid fitting formula of the embodiment of the present invention have a similar trend to the results calculated by the NAL-NL2 formula, since the compensation gain given by the NAL-NL2 formula is already clinically available. It is widely used and proven to be effective, so it is appropriate to determine the hearing compensation gain of hearing aids.
图 5示出根据本发明的实施例的处理结果。 图 5 (a) ~5 (c) 中横坐 标是时间 t, 单位是 s, 纵坐标表示声音幅度, 图 5 (d) ~5 (f) 中横坐标 是频率 f, 单位是 Hz, 纵坐标表示声音频谱, 单位是 dB SPL, 图 5 (g) ~5 (h) 的横坐标是频率 f, 单位是 Hz, 纵坐标表示补偿增益 IGdB(f), 单 位是 dB。 Figure 5 illustrates the results of processing in accordance with an embodiment of the present invention. Figure 5 (a) ~ 5 (c) The mark is time t, the unit is s, and the ordinate indicates the sound amplitude. In Figure 5 (d) ~5 (f), the abscissa is the frequency f, the unit is Hz, and the ordinate represents the sound spectrum, the unit is dB SPL, Figure 5 ( g) The abscissa of ~5 (h) is the frequency f, the unit is Hz, and the ordinate represents the compensation gain IGdB(f) in dB.
如图 5 (a) 〜图 5 (h)所示, 给出了与长时间平均言语频谱具有相同 频谱的时域噪声 (声强为 65 dB SPL) 作为输入时, 针对图 3中的两个典 型的听力损失情况 (MF和 MS ), 采用本发明的实施例的助听验配公式及 其算法实现的处理结果。图 5 (a)显示的是输入正常人耳的噪声时域波形, 它是一段时长为 2 s、声强为 65 dB SPL的未经过助听验配公式处理的稳态 噪声的时域波形示意图, 该噪声的频谱与长时间平均言语频谱相同。 图 5 As shown in Fig. 5(a) to Fig. 5(h), when the time domain noise (sound strength is 65 dB SPL) with the same spectrum as the long-term average speech spectrum is given as input, for the two in Fig. 3 Typical hearing loss conditions (MF and MS), the processing results achieved by the hearing aid fitting formula of the embodiment of the present invention and its algorithm. Figure 5 (a) shows the noise time domain waveform input to the normal human ear. It is a time-domain waveform diagram of steady-state noise processed by a non-hearing aid formula with a duration of 2 s and a sound intensity of 65 dB SPL. The spectrum of the noise is the same as the long-term average speech spectrum. Figure 5
(d)是该噪声的长时间频谱(即对整个噪声时域波形进行傅里叶变换, 区 别于短时傅里叶变换得到的各帧频谱, 但由于该噪声是稳态噪声, 各帧频 谱应该与长时间频谱相同),并且是未经过助听验配公式处理的稳态噪声的 频谱示意图。 图 5 (b) 显示的是针对 MF这种听力损失情况, 经过本发明 的实施例的算法处理后的输入损伤人耳的噪声时域波形, 即利用助听验配 公式对 MF 型听力损失给予补偿增益后得到的稳态噪声的时域波形示意 图。 图 5 (e) 是该噪声的长时间频谱, 并且是利用本发明的助听验配公式 对 MF型听力损失给予补偿增益后得到的稳态噪声的频谱示意图; 图 5 (c) 是针对 MS这种听力损失情况, 经过本发明的算法处理后的输入损伤人耳 的噪声时域波形, 即利用助听验配公式对 MS型听力损失给予补偿增益后 得到的稳态噪声的时域波形示意图。 图 5 (f) 是该噪声的长时间频谱, 并 且是利用助听验配公式对 MS型听力损失给予补偿增益后得到的稳态噪声 的频谱示意图。 图 5 (g) 示出图 5 (e) 和图 5 (d) 中的频谱之差, 图 5(d) is the long-term spectrum of the noise (that is, the Fourier transform of the entire noise time domain waveform, which is different from the frame spectrum obtained by the short-time Fourier transform, but since the noise is steady-state noise, each frame spectrum It should be the same as the long-term spectrum) and is a schematic diagram of the steady-state noise that has not been processed by the hearing aid formula. Fig. 5(b) shows the noise time domain waveform of the input damaged human ear after the algorithm of the embodiment of the present invention for the hearing loss situation of MF, that is, the MF type hearing loss is given by the hearing aid fitting formula. A time-domain waveform diagram of steady-state noise obtained after compensating for gain. Figure 5 (e) is a long-term spectrum of the noise, and is a spectrum diagram of steady-state noise obtained by using the hearing aid fitting formula of the present invention to give a compensation gain to the MF type hearing loss; Figure 5 (c) is for the MS The hearing loss situation, the noise time domain waveform of the human ear damaged by the input processed by the algorithm of the present invention, that is, the time domain waveform diagram of the steady state noise obtained by using the hearing aid fitting formula to compensate the MS type hearing loss . Figure 5 (f) is a long-term spectrum of the noise, and is a spectrum diagram of the steady-state noise obtained by using the hearing aid formula to compensate the MS type of hearing loss. Figure 5 (g) shows the difference between the spectra in Figure 5 (e) and Figure 5 (d), Figure 5
(g) 中的黑线表示图 5 (e) 频谱和图 5 (d) 频谱之差值, 该差值是算法 实现对 MF的补偿增益, 灰白线对应图 4 (a) 中的中间实线, 该灰白线给 出了直接利用图 5 (d)输入频谱和 MF听力损失情况由本发明的实施例的 验配公式计算得到的补偿增益, 可表示输入声强为 65 dB SPL时利用助听 验配公式对 MF给出的补偿增益。 图 5 (h)示出图 5 (f)和图 5 (d) 中的 频谱之差, 图中的黑线表示图 5 (f)频谱和图 5 (d)频谱之差值, 灰白线 给出了直接利用图 5 (d)输入频谱和 MS听力损失情况由本发明的实施例 的助听验配公式计算得到的补偿增益; 该灰白线对应图 4 (c) 中的中间实 线, 可表示输入声强为 65 dB SPL时利用助听验配公式对 MS给出的补偿 增益。 可以看出, 图 5 (g)和图 5 (h) 中的灰白线与黑线的主要部分是重 合在一起的, 由此证明了算法的正确性。 The black line in (g) represents the difference between the spectrum of Figure 5 (e) and the spectrum of Figure 5 (d). The difference is the compensation gain of the algorithm for MF. The gray line corresponds to the middle solid line in Figure 4 (a). The gray line gives the compensation gain calculated by the fitting formula of the embodiment of the present invention directly using the input spectrum and the MF hearing loss condition of FIG. 5(d), and can represent the use of the hearing aid when the input sound intensity is 65 dB SPL. The formula gives the compensation gain given to the MF. Figure 5 (h) shows the difference between the spectra in Figure 5 (f) and Figure 5 (d), the black line in the figure shows the difference between the spectrum of Figure 5 (f) and the spectrum of Figure 5 (d), the gray line gives The compensation gain calculated by the hearing aid fitting formula of the embodiment of the present invention directly using FIG. 5(d) input spectrum and MS hearing loss condition; the gray line corresponds to the intermediate real in FIG. 4(c) Line, which can represent the compensation gain given to the MS by the hearing aid fitting formula when the input sound intensity is 65 dB SPL. It can be seen that the gray and white lines in Fig. 5 (g) and Fig. 5 (h) are coincident with each other, which proves the correctness of the algorithm.
根据本发明的实施例, 如图 6 (a) 〜图 6 (h)所示, 给出了一段实际 语音 (声强为 65 dB SPL) 作为输入时, 针对与图 5中相同的听力损失情 况 (MF和 MS ), 经本发明的实施例的助听验配公式及其算法实现的处理 结果。 区别于图 5中的稳态噪声, 实际语音是时变信号, 即频谱随着时间 变化而变化。  According to an embodiment of the present invention, as shown in Figs. 6(a) to 6(h), when an actual speech (sound intensity 65 dB SPL) is given as an input, the same hearing loss as in Fig. 5 is given. (MF and MS), the processing results achieved by the hearing aid fitting formula and its algorithm of the embodiment of the present invention. Different from the steady-state noise in Figure 5, the actual speech is a time-varying signal, that is, the spectrum changes with time.
具体而言, 图 6 (a) ~6 (c) 中横坐标是时间 t, 单位是 s, 纵坐标是 声音幅度; 图 6 (d) ~6 (f) 中横坐标是频率 f, 单位是 Hz, 纵坐标是声 音频谱, 单位是 dB SPL; 图 6 (g) ~6 (h) 的横坐标是表示频率 f, 单位 是 Hz, 纵坐标表示补偿增益 IGdB(f), 单位是 dB。 图 6 (a)是一段时长为 2s、 声强为 65dB SPL的未经过验配公式处理的真实语音的时域波形示意 图; 图 6 (b) 是利用本发明的实施例的助听验配公式对 MF型听力损失给 予补偿增益后得到的语音的时域波形示意图; 图 6 (c) 是利用助听验配公 式对 MS型听力损失给予补偿增益后得到的语音的时域波形示意图; 图 6 (d) 是未经过助听验配公式处理的语音的频谱示意图; 图 6 (e) 是利用 助听验配公式对 MF 型听力损失给予补偿增益后得到的语音的频谱示意 图; 图 6 (f) 是利用助听验配公式对 MS型听力损失给予补偿增益后得到 的语音的频谱示意图; 图 6 (g) 中的黑线是图 6 (e) 和图 6 (d) 中的频 谱之差示意图, 该差值是算法实现对 MF的补偿增益, 灰白线是以图 6 (d) 的频谱为输入按照助听验配公式对 MF型听力损失计算得到的补偿增益; 图 6 (h) 中的黑线是图 6 (f) 和图 6 (d) 中的频谱之差, 该差值是算法 实现对 MF的补偿增益, 灰白线是以图 6 (d) 的频谱为输入按照助听验配 公式对 MS型听力损失计算得到的补偿增益。  Specifically, in Figure 6 (a) ~ 6 (c), the abscissa is time t, the unit is s, and the ordinate is the sound amplitude; in Figure 6 (d) ~ 6 (f), the abscissa is the frequency f, the unit is Hz, the ordinate is the sound spectrum, the unit is dB SPL; Figure 6 (g) ~6 (h) The abscissa is the frequency f, the unit is Hz, and the ordinate is the compensation gain IGdB(f), the unit is dB. Figure 6 (a) is a time-domain waveform diagram of real speech processed by a non-fitted formula with a duration of 2 s and a sound intensity of 65 dB SPL; Figure 6 (b) is a hearing aid fitting formula using an embodiment of the present invention Schematic diagram of the time domain waveform of the speech obtained by giving the compensation gain to the MF type hearing loss; Figure 6 (c) is a time-domain waveform diagram of the speech obtained by giving the compensation gain to the MS type hearing loss using the hearing aid fitting formula; (d) is a spectrum diagram of speech that has not been processed by the hearing aid formula; Figure 6 (e) is a schematic diagram of the spectrum of speech obtained by using the hearing aid fitting formula to compensate the MF type hearing loss; Figure 6 (f) Is a spectrum diagram of the speech obtained by using the hearing aid fitting formula to compensate the MS type hearing loss; the black line in Fig. 6 (g) is the difference between the spectra in Fig. 6 (e) and Fig. 6 (d) Schematic, the difference is the compensation gain of the MF implemented by the algorithm, and the gray line is the compensation gain calculated by the hearing aid fitting formula according to the spectrum of Fig. 6 (d) for the MF type hearing loss; Figure 6 (h) The black line is shown in Figure 6 (f) and Figure 6 (d) The difference in the spectrum, which is the compensation gain of the algorithm for the MF. The gray line is the compensation gain calculated for the MS type hearing loss according to the spectrum of Fig. 6(d). .
通过对比可以看出, 利用短时傅里叶变换进行算法实现, 得到的结果 与利用长时间傅里叶变换计算得到的补偿结果是一致的, 再次证明了本发 明的实施例的算法的正确性。  It can be seen from the comparison that the algorithm is implemented by the short-time Fourier transform, and the obtained result is consistent with the compensation result calculated by the long-time Fourier transform, which proves again the correctness of the algorithm of the embodiment of the present invention. .
本发明的实施例由于采取以上技术方案, 其具有以下优点: 1、 以现有 的正常听觉和损伤听觉的响度感受模型作基础, 根据听力损失者的耳外毛 细胞和内毛细胞损伤对听力损伤的不同特性给予相应的补偿, 并以耳外毛 细胞和内毛细胞的听力损伤为基础得出助听验配公式, 并得到最终的补偿 增益, 因此对于听力损失能够给予更加准确有效的补偿, 解决了现有助听 验配公式仅根据听阈进行补偿时所造成的补偿增益不够准确的问题。 2、在 计算不同频率处的耳外毛细胞损伤补偿增益的过程中已经包含了通道处理 和压缩放大处理过程, 此过程完全模拟生理过程, 从而对输入任意声音时 都可以在助听设备中更好地达到理想的补偿目标, 因此不需要按照现有的 多通道压缩放大算法就可以快速计算出听力损失者所需要的补偿增益。 本 发明可以广泛应用于助听设备的听力补偿增益的确定中。 The embodiment of the present invention has the following advantages due to the above technical solution: 1. Based on the existing normal hearing and damage auditory loudness feeling model, according to the hearing loss of the ear outer hair cells and inner hair cell damage to the hearing The different characteristics of the injury are compensated accordingly, and the hearing aid fitting formula is obtained based on the hearing damage of the outer ear hair cells and inner hair cells, and the final compensation gain is obtained, so that more accurate and effective compensation can be given for the hearing loss. , solved the existing hearing aid The compensation formula is based on the hearing threshold only when the compensation gain is not accurate enough. 2. In the process of calculating the compensation gain of the outer ear hair cell damage at different frequencies, the channel processing and the compression amplification process are included, and the process completely simulates the physiological process, so that the input of any sound can be more in the hearing aid device. The ideal compensation target is achieved well, so the compensation gain required by the hearing loss person can be quickly calculated without the existing multi-channel compression amplification algorithm. The present invention can be widely applied to the determination of the hearing compensation gain of a hearing aid device.
上述各实施例仅用于说明本发明, 其中本发明方法的实施步骤是可以 有所变化的, 凡是在本发明技术方案的基础上进行的等同变换和改进, 均 不应排除在本发明的保护范围之外。  The above embodiments are only used to illustrate the present invention, and the steps of the method of the present invention may be changed. Any equivalent transformation and improvement based on the technical solution of the present invention should not be excluded from the protection of the present invention. Outside the scope.

Claims

权 利 要 求 书 Claim
1、 一种确定助听设备的听力补偿增益的方法, 包括以下步骤: 1. A method of determining a hearing compensation gain of a hearing aid device, comprising the steps of:
1 )对听力损失者的听觉进行测试,以确定需要进行增益补偿处的频率 CF; 1) testing the hearing of the hearing loss person to determine the frequency CF at which the gain compensation is required;
2) 基于正常听觉和损伤听觉的响度感受模型, 计算耳外毛细胞损伤的补 偿增益值 IGohcdB(CF); 2) Calculating the compensation gain value of the outer ear hair cell damage based on the loudness perception model of normal hearing and impairment hearing IGohcdB(CF);
3 ) 基于所述响度感受模型, 计算耳内毛细胞损伤的补偿增益值 3) Calculating the compensation gain value of hair cell damage in the ear based on the loudness perception model
IGihcdB(CF); IGihcdB(CF);
4) 按以下公式得到听力损失者在频率 CF处的补偿增益 IGdB(CF)为: 4) The compensation gain of the hearing loss at the frequency CF is obtained by the following formula: IGdB(CF) is:
IGdB(CF)=IGohcdB(CF)+IGihcdB(CF) 。 IGdB(CF)=IGohcdB(CF)+IGihcdB(CF).
2、 如权利要求 1所述的方法, 其中, 步骤 2) 包括: 根据听觉损伤频率 CF处的耳外毛细胞的损伤值 HLohcdB(CF),计算损伤 耳的主动增益 GdBI(CF); 根据以下公式计算耳外毛细胞损伤的补偿增益值 IGohcdB(CF): 2. The method according to claim 1, wherein the step 2) comprises: calculating an active gain GdBI (CF) of the damaged ear according to the damage value HLohcdB(CF) of the outer ear hair cells at the auditory impairment frequency CF; The formula calculates the compensation gain value of the outer ear hair cell damage IGohcdB(CF) :
IGohcdB(CF) = m [GdBN ( CF) - GdBI ( CF)] 式中, m是系数, m的计算公式为: IGohcdB(CF) = m [GdBN ( CF) - GdBI ( CF)] where m is the coefficient and m is calculated as:
0.5 · GdBN (CF)  0.5 · GdBN (CF)
GdBl(CF) +  GdBl(CF) +
GdBN (CF) -(-13) GdBN (CF) -(-13)  GdBN (CF) -(-13) GdBN (CF) -(-13)
-13dB 为设定的听觉主动增益的最小值, GdBN(CF)为正常耳的主动增 -13dB is the minimum value of the set auditory active gain, and GdBN(CF) is the active increase of the normal ear.
3、 如权利要求 1所述的方法, 其中, 步骤 3 ) 包括: 3. The method of claim 1, wherein step 3) comprises:
根据听觉损伤频率 CF处的耳内毛细胞损伤值 HLihcdB(CF), 按以下公式 计算耳内毛细胞损伤的补偿增益值 IGihcdB(CF): According to the hearing damage frequency CF in the ear hair cell damage value HLihcdB (CF), calculate the compensation gain value of hair cell damage in the ear according to the following formula IGihcdB (CF):
Figure imgf000014_0001
Figure imgf000014_0001
式中, max表示取 HLihcdB(CF)和 40二者中的最大值。 In the formula, max represents the maximum value of both HLihcdB(CF) and 40.
4、 如权利要求 2所述的方法, 其中, 步骤 3 ) 包括: 4. The method of claim 2, wherein step 3) comprises:
根据听觉损伤频率 CF处的耳内毛细胞损伤值 HLihcdB(CF), 按以下公式 计算耳内毛细胞损伤 According to the hearing damage frequency CF in the ear hair cell damage value HLihcdB (CF), according to the following formula to calculate hair cell damage in the ear
Figure imgf000015_0001
Figure imgf000015_0001
式中, max表示取 HLihcdB(CF)和 40二者中的最大值。  In the formula, max represents the maximum value of both HLihcdB(CF) and 40.
5、 如权利要求 1所述的方法, 还包括步骤 5): 5. The method of claim 1 further comprising the step 5):
当听力损伤频率 CF低于 1000 Hz时, 频率 CF处的补偿增益要根据频率 CF进行相对应的衰减, 衰减值为 INTdB(CF), 按以下公式得到听力损失者在 频率 CF处的补偿增益 IGdB(CF)为:  When the hearing impairment frequency CF is lower than 1000 Hz, the compensation gain at the frequency CF is correspondingly attenuated according to the frequency CF, and the attenuation value is INTdB(CF). The compensation gain IGdB of the hearing loss at the frequency CF is obtained according to the following formula. (CF) is:
IGdB(CF) = IG。hcdB (CF) + IGihcdB (CF) + INTdB(CF)。  IGdB(CF) = IG. hcdB (CF) + IGihcdB (CF) + INTdB(CF).
6、 如权利要求 5所述的方法, 其中: 6. The method of claim 5, wherein:
步骤 5) 中不同频率 CF处的补偿增益的衰减值 INTdB(CF)分别为: 频率 CF为 125HZ对应的衰减值 INTdB(CF)为 -15dB, 频率 CF为 250HZ对应的衰 减值 INTdB(CF)为 -10 dB,频率 CF为 500HZ对应的衰减值 INTdB(CF)为 -5 dB, 频率 CF 大于或等于 1000HZ 对应的衰减值 INTdB(CF)为 0 dB, 其它低于 1000HZ频率处的其它频率 CF的衰减值 INTdB(CF)通过插值计算。  In step 5), the attenuation value of the compensation gain at different frequencies CF is INTdB(CF): the frequency CF is 125HZ corresponding to the attenuation value INTdB(CF) is -15dB, and the frequency CF is 250HZ corresponding to the attenuation value INTdB(CF) is -10 dB, the frequency CF is 500HZ corresponding to the attenuation value INTdB(CF) is -5 dB, the frequency CF is greater than or equal to 1000HZ, the corresponding attenuation value INTdB(CF) is 0 dB, and other frequencies below 1000HZ are CF. The attenuation value INTdB(CF) is calculated by interpolation.
7、 一种用于助听设备的信号处理方法, 包括: 7. A signal processing method for a hearing aid device, comprising:
将输入到听力损失者耳朵的时域信号通过短时傅里叶变换分帧计算, 得 到每一帧时域信号所对应的输入频谱 X(f);  The time domain signal input to the ear of the hearing loss person is calculated by short-time Fourier transform framing, and the input spectrum X(f) corresponding to the time domain signal of each frame is obtained;
根据权利要求 1或 5的方法计算每一帧频谱 X(f)应获得的补偿增益 IG(f); 利用补偿增益 IG(f)得到损伤耳补偿增益的输入的频谱 Xie(f); Calculating a compensation gain IG(f) to be obtained for each frame spectrum X(f) according to the method of claim 1 or 5; obtaining a spectrum X ie (f) of the input of the damage ear compensation gain using the compensation gain IG(f);
将得到的补偿增益频谱结合该帧处理前的相频响应进行逆傅里叶变换, 获得被补偿的时域信号; 以及  Performing an inverse Fourier transform on the obtained compensation gain spectrum in combination with the phase frequency response before the frame processing to obtain a compensated time domain signal;
将所有被补偿的时域信号进行叠加处理后输出。  All compensated time domain signals are superimposed and output.
8、 一种确定助听设备的听力补偿增益的设备, 包括: 对听力损失者的听觉进行测试, 以确定需要进行增益补偿处的频率 CF的 装置; 8. A device for determining a hearing compensation gain of a hearing aid device, comprising: Testing the hearing of the hearing loss person to determine the device at which the frequency CF at the gain compensation is required;
基于正常听觉和损伤听觉的响度感受模型, 计算耳外毛细胞损伤的补偿 增益值 IGohcdB(CF)的装置; 基于所述响度感受模型, 计算耳内毛细胞损伤的补偿增益值 IGihcdB(CF) 的装置; 以及  A device for calculating a compensation gain value IGohcdB(CF) of hair cells outside the ear based on a loudness and damage auditory model of normal ear and damage hearing; calculating a compensation gain value IGIhcdB(CF) of hair cell damage in the ear based on the loudness perception model Device;
按以下公式得到听力损失者在频率 CF处的补偿增益 IGdB(CF)的装置: IGdB(CF)=IGohcdB(CF)+IGihcdB(CF) 。  The device for obtaining the compensation gain of the hearing loss at the frequency CF IGdB(CF) according to the following formula: IGdB(CF)=IGohcdB(CF)+IGihcdB(CF).
9、 一种机器可读介质, 其中存储有可执行指令, 当所述可执行指令 被执行时, 使得机器执行以下步骤: 9. A machine readable medium having executable instructions stored thereon that, when executed, cause a machine to perform the following steps:
基于正常听觉和损伤听觉的响度感受模型, 计算听力损失者的耳外毛细 胞损伤的补偿增益值 IGohcdB(CF), 其中, CF是需要对听力损失者的听觉进 行增益补偿处的中心频率;  Based on the loudness perception model of normal hearing and impairment hearing, the compensation gain value IGohcdB(CF) of the ear damage of the ear of the hearing loss is calculated, wherein CF is the center frequency at which the hearing compensation of the hearing loss person is required;
基于所述响度感受模型, 计算听力损失者的耳内毛细胞损伤的补偿增益 值 IGihcdB(CF);  Calculating a compensation gain value IGihcdB(CF) of the ear hair cell damage of the hearing loss person based on the loudness feeling model;
按以下公式得到听力损失者在频率 CF处的补偿增益 IGdB(CF):  The compensation gain of the hearing loss at the frequency CF is obtained by the following formula: IGdB(CF):
IGdB(CF)=IGohcdB(CF)+IGihcdB(CF)  IGdB(CF)=IGohcdB(CF)+IGihcdB(CF)
利用所述补偿增益 IGdB(CF)获取补偿的声音信号。  The compensated sound signal is obtained using the compensation gain IGdB(CF).
10、 一种具有助听功能的电子设备, 包括: 10. An electronic device having a hearing aid function, comprising:
数字信号处理器, 配置用于基于正常听觉和损伤听觉的响度感受模型, 计算听力损失者的耳外毛细胞损伤的补偿增益值 IGohcdB(CF), 其中, CF是 需要对听力损失者的听觉进行增益补偿处的中心频率; 基于所述响度感受模 型, 计算听力损失者的耳内毛细胞损伤的补偿增益值 IGihcdB(CF); 按以下公 式得到听力损失者在频率 CF处的补偿增益 IGdB(CF):  A digital signal processor configured to calculate a compensation gain value IGohcdB(CF) of the ear damage of the ear of the hearing loss based on a loudness perception model of normal hearing and impairment hearing, wherein CF is required for hearing of the hearing loss person The center frequency at the gain compensation; based on the loudness sensation model, the compensation gain value IGIhcdB(CF) of the ear hair cell damage of the hearing loss person is calculated; the compensation gain IGdB (CF) of the hearing loss person at the frequency CF is obtained according to the following formula ):
IGdB(CF)=IGohcdB(CF)+IGihcdB(CF)  IGdB(CF)=IGohcdB(CF)+IGihcdB(CF)
利用所述补偿增益 IGdB(CF)获取补偿的声音信号; 以及  Acquiring a compensated sound signal using the compensation gain IGdB(CF);
声音输出单元, 输出补偿的声音信号。 12、 如权利要求 11所述的电子设备, 其中, 所述电子设备是助听器、 音 频播放器和移动电话中的任一种。 The sound output unit outputs a compensated sound signal. 12. The electronic device of claim 11, wherein the electronic device is any one of a hearing aid, an audio player, and a mobile phone.
PCT/CN2012/080147 2012-03-22 2012-08-15 Method for determining hearing compensation gain of hearing-aid device WO2013139106A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210078345.XA CN102625220B (en) 2012-03-22 2012-03-22 Method for determining hearing compensation gain of hearing-aid device
CN201210078345.X 2012-03-22

Publications (1)

Publication Number Publication Date
WO2013139106A1 true WO2013139106A1 (en) 2013-09-26

Family

ID=46564870

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/080147 WO2013139106A1 (en) 2012-03-22 2012-08-15 Method for determining hearing compensation gain of hearing-aid device

Country Status (2)

Country Link
CN (1) CN102625220B (en)
WO (1) WO2013139106A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9832562B2 (en) 2013-11-07 2017-11-28 Gn Hearing A/S Hearing aid with probabilistic hearing loss compensation
CN110719558A (en) * 2018-07-12 2020-01-21 深圳市智听科技有限公司 Hearing aid fitting method and device, computer equipment and storage medium
CN111050261A (en) * 2019-12-20 2020-04-21 深圳市易优斯科技有限公司 Hearing compensation method, device and computer readable storage medium

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102625220B (en) * 2012-03-22 2014-05-07 清华大学 Method for determining hearing compensation gain of hearing-aid device
KR102059341B1 (en) * 2013-04-02 2019-12-27 삼성전자주식회사 Apparatus and method for determing parameter using auditory model of person having hearing impairment
KR20220140002A (en) 2013-04-05 2022-10-17 돌비 레버러토리즈 라이쎈싱 코오포레이션 Companding apparatus and method to reduce quantization noise using advanced spectral extension
CN105811907B (en) * 2014-12-29 2018-07-31 宏碁股份有限公司 Audio-frequency processing method
CN106308812A (en) * 2015-07-08 2017-01-11 宣威科技股份有限公司 Portable hearing examination device
WO2017128856A1 (en) * 2016-01-27 2017-08-03 山东大学 Cochlear electrode arrangement, device, system and method for enhancing melody perception
CN106060746A (en) * 2016-08-18 2016-10-26 佛山博智医疗科技有限公司 Portable player with multichannel hearing compensation function
CN109429147B (en) * 2017-08-30 2021-01-05 美商富迪科技股份有限公司 Electronic device and control method thereof
DE102019213807A1 (en) 2019-09-11 2021-03-11 Sivantos Pte. Ltd. Method for operating a hearing aid and hearing aid
CN112383870B (en) * 2020-10-29 2022-03-18 惠州市锦好医疗科技股份有限公司 Adaptive hearing parameter fitting method and device
CN113411733B (en) * 2021-06-18 2023-04-07 南京工程学院 Parameter self-adjusting method for non-fitting hearing aid

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991015902A1 (en) * 1990-03-30 1991-10-17 Lott Thomas M Assistive listening device
CN1870135A (en) * 2005-05-24 2006-11-29 北京大学科技开发部 Digital deaf-aid frequency response compensation method based on mask curve
CN102625220A (en) * 2012-03-22 2012-08-01 清华大学 Method for determining hearing compensation gain of hearing-aid device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2452945C (en) * 2003-09-23 2016-05-10 Mcmaster University Binaural adaptive hearing system
DE602006014183D1 (en) * 2005-11-01 2010-06-17 Koninkl Philips Electronics Nv Method for adjusting a hearing device and corresponding hearing device system
EP2302951B1 (en) * 2009-09-24 2012-07-11 Oticon Medical A/S Method of determining a gain setting of a bone-anchored hearing aid

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991015902A1 (en) * 1990-03-30 1991-10-17 Lott Thomas M Assistive listening device
CN1870135A (en) * 2005-05-24 2006-11-29 北京大学科技开发部 Digital deaf-aid frequency response compensation method based on mask curve
CN102625220A (en) * 2012-03-22 2012-08-01 清华大学 Method for determining hearing compensation gain of hearing-aid device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9832562B2 (en) 2013-11-07 2017-11-28 Gn Hearing A/S Hearing aid with probabilistic hearing loss compensation
CN110719558A (en) * 2018-07-12 2020-01-21 深圳市智听科技有限公司 Hearing aid fitting method and device, computer equipment and storage medium
CN110719558B (en) * 2018-07-12 2021-07-09 深圳市智听科技有限公司 Hearing aid fitting method and device, computer equipment and storage medium
CN111050261A (en) * 2019-12-20 2020-04-21 深圳市易优斯科技有限公司 Hearing compensation method, device and computer readable storage medium

Also Published As

Publication number Publication date
CN102625220B (en) 2014-05-07
CN102625220A (en) 2012-08-01

Similar Documents

Publication Publication Date Title
WO2013139106A1 (en) Method for determining hearing compensation gain of hearing-aid device
US7483831B2 (en) Methods and apparatus for maximizing speech intelligibility in quiet or noisy backgrounds
Moore et al. Spectro-temporal characteristics of speech at high frequencies, and the potential for restoration of audibility to people with mild-to-moderate hearing loss
JP6454704B2 (en) Hearing aid with stochastic hearing loss compensation
EP3641343B1 (en) Method to enhance audio signal from an audio output device
JP3784734B2 (en) Acoustic processing apparatus, acoustic processing method, and program
Rankovic Prediction of speech reception for listeners with sensorineural hearing loss
Bockstael et al. Speech recognition in noise with active and passive hearing protectors: A comparative study
TWI623234B (en) Hearing aid and automatic multi-frequency filter gain control method thereof
Glista et al. Modified verification approaches for frequency lowering devices
Buchholz A real-time hearing-aid research platform (HARP): Realization, calibration, and evaluation
Popelka et al. Factors which affect measures of speech audibility with: Hearing aids
AU2017307401B2 (en) Method for selecting and adjusting in a customised manner a hearing aid
RU2544292C2 (en) Hearing aid
Patel et al. Compression Fitting of Hearing Aids and Implementation
Kuk et al. Hearing aid design and fitting solutions for persons with severe-to-profound losses
Hopkins et al. The effect of compression speed on intelligibility: simulated hearing-aid processing with and without original temporal fine structure information
Ho et al. Efficacy of a Smartphone Hearing Aid Simulator
KR102403996B1 (en) Channel area type of hearing aid, fitting method using channel area type, and digital hearing aid fitting thereof
US20230165722A1 (en) Audio device output energy control method for protecting hearing
US20220233104A1 (en) Hearing Evaluation Systems and Methods Implementing a Spectro-Temporally Modulated Audio Signal
Bernier et al. Signal characterization of occluded in-ear versus free-air voice pickup on human subjects
JP5224613B2 (en) Sound field correction system and sound field correction method
Chen et al. CHENFIT-AMP, a nonlinear fitting and amplification strategy for cochlear hearing loss
Chen et al. Research and Optimization of Multichannel Wide Dynamic Compression Algorithm in Hearing Aids

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12872257

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12872257

Country of ref document: EP

Kind code of ref document: A1