WO2013138575A1 - Deep ultraviolet light emitting diode - Google Patents

Deep ultraviolet light emitting diode Download PDF

Info

Publication number
WO2013138575A1
WO2013138575A1 PCT/US2013/031267 US2013031267W WO2013138575A1 WO 2013138575 A1 WO2013138575 A1 WO 2013138575A1 US 2013031267 W US2013031267 W US 2013031267W WO 2013138575 A1 WO2013138575 A1 WO 2013138575A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
generating structure
light generating
group iii
iii nitride
Prior art date
Application number
PCT/US2013/031267
Other languages
French (fr)
Inventor
Remigijus Gaska
Maxim S. Shatalov
Michael Shur
Alexander Dobrinsky
Original Assignee
Sensor Electronic Technology, Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sensor Electronic Technology, Inc filed Critical Sensor Electronic Technology, Inc
Publication of WO2013138575A1 publication Critical patent/WO2013138575A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of group III and group V of the periodic system
    • H01L33/32Materials of the light emitting region containing only elements of group III and group V of the periodic system containing nitrogen

Definitions

  • the disclosure relates generally to nitride-based heterostructures, and more
  • Emerging deep ultraviolet light emitting diodes cover the ultraviolet (UV) range down to 210 nanometers (nm), and provide output powers already sufficient for many applications. Additionally, these devices have high modulation frequencies, low noise, flexible form factor and spectral and space power distribution, high internal quantum efficiency, and a potential to achieve high wall plug efficiency. For example, photoluminescence (PL) studies and ray tracing calculations show that the achieved internal quantum efficiency for a 280 nm DUV LED may be quite high, e.g., between fifteen and seventy percent.
  • PL photoluminescence
  • a light emitting diode which includes an n-type contact layer and a light generating structure adjacent to the n-type contact layer.
  • the light generating structure includes a set of quantum wells.
  • the contact layer and light generating structure can be configured so that a difference between an energy of the n-type contact layer and an electron ground state energy of a quantum well is greater than an energy of a polar optical phonon in a material of the light generating structure.
  • the light generating structure can be configured so that its width is comparable to a mean free path for emission of a polar optical phonon by an electron injected into the light generating structure.
  • the diode can include a blocking layer, which is configured so that a difference between an energy of the blocking layer and the electron ground state energy of a quantum well is greater than the energy of the polar optical phonon in the material of the light generating structure.
  • the diode can include a composite contact, including an adhesion layer, which is at least partially transparent to light generated by the light generating structure and a reflecting metal layer configured to reflect at least a portion of the light generated by the light generating structure.
  • a first aspect of the invention provides a light emitting heterostructure comprising: an n-type contact layer; and a light generating structure having a first side adjacent to the n-type contact layer, the light generating structure including a set of quantum wells, wherein a difference between an energy of the n-type contact layer and an electron ground state energy of a quantum well in the set of quantum wells is greater than an energy of a polar optical phonon in a material of the light generating structure, and wherein a width of the light generating structure is comparable to a mean free path for emission of a polar optical phonon by an electron injected into the light generating structure; and a superlattice layer adjacent to an opposing side of the light generating structure.
  • a second aspect of the invention provides a light emitting heterostructure comprising: an n-type contact layer; and an ultraviolet light generating structure having a first side adjacent to the n-type contact layer, the light generating structure including a set of quantum wells, wherein a width of the light generating structure is comparable to a mean free path for emission of a polar optical phonon by an electron injected into the light generating structure; and a blocking layer located on a second side of the light generating structure opposite the first side and having a group III nitride composition, wherein a difference between an energy of the blocking layer and an electron ground state energy of a quantum well in the set of quantum wells is greater than an energy of a polar optical phonon in a material of the light generating structure.
  • a third aspect of the invention provides a light emitting device comprising: an n-type contact layer; a light generating structure having a first side adjacent to the n-type contact layer; a blocking layer located on an opposite side of the light generating structure as the n-type contact layer and having a group III nitride composition; and a composite contact located on an opposite side of the blocking layer as the light generating structure, the composite contact comprising: an adhesion layer, wherein the adhesion layer is at least partially transparent to light generated by the light generating structure; and a reflecting metal layer configured to reflect at least a portion of the light generated by the light generating structure.
  • Additional aspects of the invention provide methods of designing and/or fabricating the heterostructures and devices shown and described herein, as well as methods of designing and/or fabricating circuits including such devices, and the resulting circuits.
  • the illustrative aspects of the invention are designed to solve one or more of the problems herein described and/or one or more other problems not discussed.
  • FIG. 1 shows an illustrative band diagram of a deep UV light emitting heterostructure including an energy tub according to a previous solution.
  • FIG. 2 shows a band diagram of an illustrative light emitting heterostructure according to an embodiment.
  • FIG. 3 shows a band diagram for an illustrative light emitting heterostructure according to another embodiment.
  • FIG. 4 shows a band diagram for an illustrative light emitting heterostructure according to yet another embodiment.
  • FIG. 5 shows a band diagram for an illustrative light emitting heterostructure according to still another embodiment.
  • FIG. 6 shows an illustrative heterostructure for a light emitting diode according to an embodiment.
  • FIG. 7 shows reflection coefficients of different coatings for illustrative reflective contacts.
  • FIGS. 8A-8D show illustrative LED configurations with composite contacts according to embodiments.
  • FIG. 9 shows a chart comparing illustrative transmission spectra of conventional and transparent 340 nanometer DUV LEDs structures.
  • FIG. 10 shows a chart illustrating an illustrative performance improvement of a 340 nm DUV LED structure with a reflecting contact.
  • FIG. 11 shows an illustrative configuration for a flip chip LED according to an embodiment.
  • FIG. 12 shows a dependence of the absorption coefficient on the wavelength for various aluminum molar fractions (x) of an Al x Gai_ x N alloy according to an embodiment.
  • FIG. 13 shows an illustrative chart for selecting an aluminum content of an AlGaN alloy to maintain a target transparency for a corresponding emitted wavelength according to an embodiment.
  • FIG. 14 shows an illustrative flow diagram for fabricating a circuit according to an embodiment.
  • aspects of the invention provide a light emitting diode, which includes an n-type contact layer and a light generating structure adjacent to the n-type contact layer.
  • the light generating structure includes a set of quantum wells.
  • the contact layer and light generating structure can be configured so that a difference between an energy of the n-type contact layer and an electron ground state energy of a quantum well is greater than an energy of a polar optical phonon in a material of the light generating structure.
  • the light generating structure can be configured so that its width is comparable to a mean free path for emission of a polar optical phonon by an electron injected into the light generating structure.
  • the diode can include a blocking layer, which is configured so that a difference between an energy of the blocking layer and the electron ground state energy of a quantum well is greater than the energy of the polar optical phonon in the material of the light generating structure.
  • the diode can include a composite contact, including an adhesion layer, which is at least partially transparent to light generated by the light generating structure and a reflecting metal layer configured to reflect at least a portion of the light generated by the light generating structure.
  • the term “set” means one or more (i.e., at least one) and the phrase “any solution” means any now known or later developed solution.
  • the term "light” includes electromagnetic radiation of any wavelength, whether within the visible spectrum or outside of the visible spectrum.
  • FIG. 1 shows an illustrative band diagram of a deep UV light emitting heterostructure 2 including an energy tub 4 according to a previous solution.
  • a light generating multiple quantum well (MQW) structure 6 of the heterostructure 2 is confined to the energy tub 4.
  • MQW multiple quantum well
  • the inventors have found that such a band diagram can be difficult to implement for short wavelength structures, in which the Al molar fraction is very high, e.g., greater than fifty percent.
  • FIG. 2 shows a band diagram of an illustrative light emitting heterostructure 10 according to an embodiment.
  • the heterostructure 10 includes a light generating structure 12 and an at least partially transparent (e.g., semi-transparent or transparent) injector cladding layer 14 adjacent to the light generating structure 12.
  • the light generating structure 12 can include interlaced sets of barriers (higher energy in the band diagram) and quantum wells (lower energy in the band diagram). To this extent, each quantum well in the light generating structure 12 has one or more adjacent barriers and each barrier in the light generating structure 12 has one or more adjacent quantum wells.
  • an energy difference 16 (e.g., band offset) between an energy of an n-type contact layer 18 and an electron ground state energy level in a quantum well in the light generating structure 12 is slightly larger than the energy of a polar optical phonon, EO PT - PH O N O N , within a material of the light generating structure 12.
  • the energy difference 16 exceeds the energy of the polar optical phonon by approximately thermal energy, which is approximately twenty-six milli-electron Volts (meV) at room temperature.
  • a total width 13 of the light generating structure 12 can be selected to be comparable to a mean free path for emission of a polar optical phonon by an electron injected into the light generating structure 12.
  • the width 13 of the light generating structure 12 is configured to be slightly larger than the mean free path, e.g., exceeding the mean free path by less than approximately ten percent. In an embodiment, the width 13 of the light generating structure exceeds the mean free path by less than approximately five percent.
  • the width 13 of the light generating structure can exceed the mean free path for emission of the polar optical phonon by greater than ten percent.
  • the illustrative design of heterostructure 10 can achieve one or more of: enhanced transitions of the injected electrons into multiple quantum wells; confinement of the injected electrons in the quantum wells; and improved uniformity of the electron distribution between the multiple quantum wells.
  • the various layers of heterostructure 10 can be formed using any appropriate material compositions.
  • the layers 12, 14, 18 are formed using differing wide band gap semiconductor materials, such as differing group III nitride material compositions.
  • Illustrative group III nitride materials include AIN, GaN, InN, BN, AlGaN, AlInN, AIBN, AlGaInN, AlGaBN, AlInBN, and AlGalnBN with any molar fraction of group III elements.
  • the materials include any combination of: AIN, GaN, InN, and/or BN alloys.
  • cladding layer 14 comprises an at least partially transparent magnesium (Mg)-doped AlGaN/ AlGaN short period superlattice structure (SPSL).
  • the n-type contact layer 18 comprises a cladding layer formed of a short period superlattice, such as an AlGaN SPSL, which is at least partially transparent to radiation generated by the light generating structure 12.
  • FIG. 3 shows a band diagram for an illustrative light emitting heterostructure 20 according to another embodiment.
  • a blocking layer 22 is also included adjacent to the cladding layer 14.
  • the blocking layer 22 can comprise a group III nitride material having a graded or modulated aluminum composition along a width of the blocking layer 22.
  • the blocking layer 22 can comprise a superlattice structure, which can enable an improved materials quality in the heterostructure 20.
  • Blocking layer 22 can be configured as an electron blocking layer and/or as a cladding layer using any solution.
  • FIG. 4 shows a band diagram for an illustrative light emitting heterostructure 30 according to yet another embodiment.
  • a thickness 32 (as measured in the direction of travel for the electrons) of a first barrier 15 in the light generating structure 12 is selected to be sufficient to accelerate electrons injected into the light generating structure 12 from the n-type contact 18 to reach an energy of a polar optical phonon, E 0PT _ PH O N O N , with respect to the energy states in the quantum wells.
  • a thickness 34 of a remainder of the light generating structure 12 can be selected to be comparable to (e.g., slightly exceed) the mean free path for the emission of polar optical phonons by electrons.
  • FIG. 5 shows a band diagram for an illustrative light emitting heterostructure 40 according to still another embodiment.
  • an energy difference 44 e.g., band offset
  • an energy difference 44 between an energy of a p-type blocking layer 42 and an electron ground state energy in a quantum well within the light generating structure 12 is slightly larger than the energy of the polar optical phonon, EO PT - PH O N O N , in the material of the light generating structure 12.
  • the energy difference exceeds the energy of the polar optical phonon by approximately thermal energy.
  • Blocking layer 42 can be configured as an electron blocking layer and/or as a cladding layer using any solution.
  • FIG. 6 shows an illustrative heterostructure 50 for a light emitting diode (LED) according to an embodiment.
  • the heterostructure 50 can include a substrate 52, an n-type contact 54, a light generating structure 56, and a p-type contact 58.
  • the substrate 52 and n-type contact 54 are at least partially transparent to the light generated by the light generating structure 56, thereby enabling extraction of light generated by the light generating structure 56 out of the heterostructure 50 through the transparent substrate 52.
  • the heterostructure 50 can include a distributed semiconductor heterostructure Bragg reflector (DBR) structure 60 on an opposing side of the light generating structure 56 than a transparent side of the heterostructure 50 (e.g., the transparent substrate 52).
  • the DBR structure 60 can be configured to reflect additional light generated by the light generating structure 56 out of the transparent substrate 52 than would otherwise be provided.
  • the heterostructure 50 can include an electron blocking layer 61 located between the DBR structure 60 and the light generating structure 56, which can suppress residual electron overflow from the n-type contact 54 to the p-type contact 58 without capture into the light generating structure 56.
  • the electron blocking layer 61 can be configured to be at least partially transparent to the light generated by the light generating structure 56.
  • the various components of the heterostructure 50 can be formed from any suitable materials, such as group III nitride materials as described herein.
  • the n-type contact 54 is formed of a short period superlattice that is at least partially transparent to radiation generated by the light generating structure 56, which can provide a higher free hole
  • the n-type contact 54 (e.g., the short period superlattice) is formed of group III nitride materials.
  • additional layer(s) and/or structure(s) can be included in heterostructure 50.
  • the heterostructure 50 can include a reflective layer, a photonic crystal, a mirror, and/or the like. These layer(s) and/or structure(s) can be configured to direct light generated by the light generating structure 56 in a manner that increases an amount of light emitted from heterostructure 50 than would be emitted without the presence of the additional layer(s) and/or structures.
  • one or more additional layers can be located between any of the layers shown in FIG. 6.
  • a buffer layer and/or a second layer can be formed directly on the substrate 52, and the n-type contact 54 can be formed directly on the second layer.
  • a heterostructure can include a light generating structure 56 located between a DBR structure 60 and a refiector, such as a metal reflector.
  • the DBR structure 60 and the reflector e.g. a reflective contact
  • the refiector can be formed of any type of material, which is at least partially reflective of the light generated by the light generating structure 56.
  • the material of the reflector is selected according to its reflectivity of a range of ultraviolet light including a wavelength corresponding to the peak wavelength of ultraviolet light emitted by the light generating structure 56.
  • FIG. 7 shows reflection coefficients of different coatings for illustrative reflective contacts.
  • Illustrative reflective contacts can be formed from, among other things, aluminum, enhanced aluminum, aluminum silicon monoxide, aluminum magnesium fluoride, rhodium, enhanced rhodium, gold, and/or the like.
  • rhodium and enhanced rhodium provide good reflectivity within the ultraviolet range of wavelengths, particularly when compared to gold.
  • enhanced rhodium provides excellent reflectivity in the deep ultraviolet range of wavelengths (e.g., wavelengths below approximately 0.3 micrometers ( ⁇ ).
  • rhodium does not provide good ohmic contact to AlGaN materials.
  • a light emitting diode such as a deep ultraviolet light emitting diode, includes a composite reflecting contact.
  • FIG. 8A shows an illustrative configuration for an LED 62, which includes a composite contact 63 comprising a thin (e.g., 2-5 nanometers thick) layer 64 of a first metal adjacent to a layer 66 of rhodium and/or enhanced rhodium.
  • Layer 64 can be formed of any metal, which is at least partially transparent to light generated by a light emitting heterostructure 68 at the corresponding thickness of the layer 64 and which provides improved ohmic contact and/or adhesion of the thicker reflective layer 66 to the surface of the heterostructure 68, such as a heterostructure formed of group III nitride materials.
  • layer 64 is formed of nickel (Ni).
  • NiOx Nickel oxyhydroxide
  • Molybdenum (Mo) Molybdenum
  • Co Co
  • FIG. 8B shows an illustrative configuration for an LED 70 including a composite contact 72 formed of multiple layers of metals 74A-74F (e.g., a metallic superlattice), each of which can be at least partially transparent or reflective of light emitted by a corresponding light emitting heterostructure 76, such as a heterostructure formed of group-Ill nitride materials, of the LED 70.
  • each of the layers of metals 74A-74F is configured to be at least partially transparent to the light emitted by the light emitting heterostructure 76.
  • the layers of metals 74A-74F can include alternating thin (e.g., 2-5 nanometers thick) layers of two metals selected from: Ni, NiOx, Pd, Mo, Co, and/or the like, which can be oxidized in an 0 2 ambient.
  • Use of the multiple layers of metals 74A-74F can enable improved reflectivity/transparency and/or polarization control of the radiation reflected by/passing through the composite contact 72. While the composite contact 72 is shown including three repeating sets of two metals each, it is understood that the composite contact 72 can include any combination of two or more metals and any number of layers.
  • a composite contact can include graphene.
  • layer 64 of composite contact 63 (FIG. 8A) and/or a set of layers 74A-74F of composite contact 72 can be formed of graphene, which can be configured to be transparent to light generated by the corresponding heterostructure and very conductive.
  • Another layer, such as layer 66 of composite contact 63 and/or interlaced layers of composite contact 72 can comprise a thin layer of metal adjacent to the graphene, which can improve current spreading in the composite contact 63, 72.
  • the composite contact 63, 73 is at least partially transparent to the light generated by the heterostructure. It is understood that an LED can include one or more layers adjacent to a contact formed of graphene, which are configured to improve light extraction from the LED, e.g., via a textured surface.
  • a composite contact of the light emitting diode can include one or more non-uniform layers.
  • a non-uniform layer can comprise a varying thickness and/or be absent from certain regions.
  • FIG. 8C shows an illustrative configuration for an LED 80, which includes a composite contact 82 formed of a non-uniform transparent adhesion layer 84 and a reflective layer 86.
  • the non-uniform transparent adhesion layer 84 comprises nickel
  • the reflective layer 86 comprises enhanced rhodium
  • the light emitting heterostructure 88 comprises a group III nitride heterostructure, which emits ultraviolet radiation, such as deep ultraviolet radiation.
  • the ultraviolet radiation emitted by the light emitting heterostructure 88 will not be partially absorbed by the transparent adhesion layer 84 in the regions in which it is absent, thereby allowing for direct reflection of the ultraviolet radiation by the reflective layer 86.
  • the non-uniform distribution of the transparent adhesion layer 84 can result in a non-uniform current, which is mostly limited to the areas where the transparent adhesion layer 84 improves adhesion with the surface of the light emitting heterostructure 88. As a result, a current density in these regions is higher than that for a uniform adhesion layer, which can thereby enhance radiative recombination.
  • the configuration of the nonuniform transparent adhesion layer 84 can be configured to limit the current non-uniformity to a range that will not result in local overheating within the LED 80, which could result in reliability problems for the LED 80.
  • a non-uniform transparent adhesion layer 84 can comprise any type of distribution along the surface of a light emitting heterostructure 88.
  • FIG. 8D shows an illustrative configuration for an LED 90, which includes a composite contact 92 formed of a non-uniform transparent adhesion layer 94 and a reflective layer 96.
  • the nonuniform transparent adhesion layer 94 comprises nickel, while the reflective layer 96 comprises enhanced rhodium, and the light emitting heterostructure 88 comprises a group III nitride heterostructure, which emits ultraviolet radiation, such as deep ultraviolet radiation.
  • the transparent adhesion layer 94 is periodic, thereby forming a reflecting photonic crystal.
  • Sample transparent DUV LEDs were fabricated according to embodiments, along with conventional DUV LEDs for comparison.
  • the DUV LEDs were configured to emit radiation having a peak emission wavelength within or close to the deep ultraviolet range.
  • Each of the transparent DUV LEDs included a transparent Mg-doped AlGaN/AlGaN short period superlattice structure (SPSL) as a cladding layer, which replaced transparent graded p-type AlGaN cladding and p-type GaN contact layers of a typical LED.
  • SPSL superlattice structure
  • the DUV LED structures were grown on a sapphire substrate by a combination of metal-organic chemical vapor deposition (MOCVD) and migration enhanced MOCVD.
  • MOCVD metal-organic chemical vapor deposition
  • Each of the DUV LEDs included a thin p ++ -GaN contact layer to create a polarization induced high free hole concentration near the surface and to improve the p-type contact.
  • 300 Kelvin (K) e.g., room temperature
  • 77 K Hall measurements for the DUV LEDs were taken, and indicated free hole concentration of
  • Optical transmission measurements of the DUV LEDs indicated up to approximately eighty percent transmission at the peak LED emission wavelength for the respective DUV LEDs. Furthermore, the Al-based and Rh-based reflecting contacts provided more than sixty percent reflectivity within the deep ultraviolet range.
  • FIG. 9 shows a chart comparing illustrative transmission spectra of conventional and transparent 340 nanometer DUV LEDs structures.
  • V j of 340 nm DUV LEDs with conventional Ni/Au p-type contacts and absorbing and transparent p-type cladding layers was measured to be 5.2 Volts (V) and 6.1 V at 20 mA, respectively.
  • Use of a reflecting p-type contact resulted in an additional approximately 0.1-0.2 V increase of V/ due to the voltage drop across the contact barrier.
  • the voltage drop across SPSL caused an increase in V/from 5.3 V to 6.4 V.
  • the output power of transparent structure 330-340 nm emission LEDs with conventional and reflecting p-contacts were measured to be 0.83 mW and 0.91 mW at 20 mA, respectively.
  • FIG. 10 shows a chart illustrating an illustrative performance improvement of a 340 nm DUV LED structure with a reflecting contact.
  • FIG. 11 shows an illustrative configuration for a flip chip LED 100 according to an embodiment.
  • LED 100 can comprise a deep ultraviolet LED, which is configured to emit radiation in the deep ultraviolet range of wavelengths.
  • LED 100 can include a mount 102, which is attached to a device heterostructure 104 using a set of bonding pads 106 and a set of solder bumps 108.
  • the mount 102 is configured to provide protection for the heterostructure 104 from transient voltage surges, such as those caused by electrostatic discharge (ESD), an electric power surge, and/or the like.
  • the mount 102 is formed of a slightly conductive material, which provides a parallel leakage path for the device heterostructure 104.
  • the conductive material can comprise a semi- insulating silicon carbide (SiC), which can comprise any of various polytypes of SiC, such as 4H-SiC, 6H-SiC, 3C-SiC, high purity SiC, and/or the like.
  • SiC semi- insulating silicon carbide
  • the mount 102 can comprise other types of conductive materials and/or ESD protective
  • the device heterostructure 104 can include, for example, a reflecting contact 110, a transparent adhesion layer 112 (which can be uniform or non-uniform as described herein), a p-type contact 1 14, a blocking layer 116, a light generating structure 118, and a n-type contact 120.
  • a reflecting contact 110 can reflect light, such as ultraviolet light, emitted by the light generating structure 118 towards the n-type contact 120.
  • the n-type contact 120 can be at least partially transparent to the light, thereby emitting the light from the LED 100.
  • the n-type contact 120 can comprise a textured surface 122, which is configured to improve extraction of the light from the LED 100.
  • the various heterostructures shown and described herein can be implemented as part of various types of devices, such as a light emitting diode (LED), a superluminescent diode, a laser, and/or the like.
  • the device is configured to emit ultraviolet radiation during operation (e.g., an ultraviolet LED, an ultraviolet superluminescent LED, and/or the like).
  • the ultraviolet radiation comprises deep ultraviolet radiation, e.g., 210 nm to 365 nm.
  • a layer is at least partially transparent when the layer allows at least a portion of light in a corresponding range of radiation wavelengths to pass there through.
  • a layer can be configured to be at least partially transparent to a range of radiation wavelengths corresponding to a peak emission wavelength for the light (such as ultraviolet light or deep ultraviolet light) emitted by a light generating structure described herein (e.g., peak emission wavelength +/- five nanometers).
  • a layer is at least partially transparent to radiation if it allows more than approximately 0.001 percent of the radiation to pass there through.
  • an at least partially transparent layer is configured to allow more than approximately five percent of the radiation to pass there through.
  • a layer is at least partially reflective when the layer reflects at least a portion of the relevant light (e.g., light having wavelengths close to the peak emission of the light generating structure).
  • an at least partially reflective layer is configured to reflect more than approximately five percent of the radiation.
  • a structure described herein can include one or more layers having a composition selected such that the layer has a transparency of at least a target transparency to radiation, such as ultraviolet radiation, of a target set of wavelengths.
  • a layer can be a group III nitride-based layer, such as an electron blocking layer or a p-type contact layer described herein, which is composed of Al x Gai_ x N where the aluminum molar fraction (x) is sufficiently high in some domains of the layer to result in the layer being at least partially transparent to ultraviolet radiation.
  • the layer can comprise a superlattice layer located in an emitting device configured to emit radiation having a dominant wavelength in the ultraviolet spectrum, and the composition of at least one sub-layer in each period of the superlattice layer is configured to be at least partially transparent to ultraviolet radiation having a target wavelength corresponding to the ultraviolet radiation emitted by the emitting device.
  • An amount of transparency of a short period superlattice can be approximated by computing an averaged band gap of the SPSL, and deducing average absorption coefficients of the SPSL.
  • the absorption coefficients depend on an absorption edge of the semiconductor material, which for materials formed of an AlGaN alloy, is a function of the molar fractions of the Al x Gai_ x N semiconductor alloy.
  • the target transparency for the material is at least ten times more transparent than the least transparent layer of material in the structure (e.g., GaN for a group III nitride -based device).
  • an absorption coefficient of the semiconductor layer can be on the order of 10 4 inverse centimeters or lower.
  • a one micron thick semiconductor layer will allow approximately thirty-six percent of the ultraviolet radiation to pass there through.
  • FIG. 12 shows a dependence of the absorption coefficient on the wavelength for various aluminum molar fractions (x) of an Al x Gai_ x N alloy according to an embodiment.
  • the content of aluminum in an SPSL barrier layer can be chosen based on the corresponding target wavelength or range of wavelengths. For example, for a target wavelength of approximately 250 nanometers, the aluminum molar fraction can be
  • FIG. 13 shows an illustrative chart for selecting an aluminum content of an Al x Gai_ x N alloy to maintain a target transparency for a corresponding emitted wavelength, ⁇ , according to an embodiment.
  • a device can include one or more layers with lateral regions configured to facilitate the transmission of radiation through the layer and lateral regions configured to facilitate current flow through the layer.
  • the layer can be a short period superlattice, which includes barriers alternating with wells.
  • the barriers can include both transparent regions, which are configured to reduce an amount of radiation that is absorbed in the layer, and higher conductive regions, which are configured to keep the voltage drop across the layer within a desired range.
  • the term lateral means the plane of the layer that is substantially parallel with the surface of the layer adjacent to another layer of the device.
  • the lateral cross section of the layer can include a set of transparent regions, which correspond to those regions having a relatively high aluminum content, and a set of higher conductive regions, which correspond to those regions having a relatively low aluminum content.
  • the set of transparent regions can be configured to allow a significant amount of the radiation to pass through the layer, while the set of higher conductive regions can be configured to keep the voltage drop across the layer within a desired range (e.g., less than ten percent of a total voltage drop across the structure).
  • the set of transparent regions occupy at least ten percent of the lateral area of the layer, while the set of higher conductive regions occupy at least approximately two percent (five percent in a more specific embodiment) of the lateral area of the layer.
  • a band gap of the higher conductive regions is at least five percent smaller than the band gap of the transparent regions.
  • the transparent regions comprise a transmission coefficient for radiation of a target wavelength higher than approximately sixty percent (eighty percent in a still more particular embodiment), while the higher conductive regions have a resistance per unit area to vertical current flow that is smaller than approximately 10 ⁇ 2 ohm-cm 2 .
  • transmission coefficient means the ratio of an amount of radiation exiting the region to an amount of radiation entering the region.
  • the transparent and conductive regions can be formed using any solution.
  • a layer can be grown using migration-enhanced metalorganic chemical vapor deposition (MEMOCVD).
  • MEMOCVD migration-enhanced metalorganic chemical vapor deposition
  • inhomogeneities in the lateral direction of a molar fraction of one or more elements, such as aluminum, gallium, indium, boron, and/or the like, can be allowed in the layer.
  • such compositional inhomogeneities can vary by at least one percent.
  • the invention provides a method of designing and/or fabricating a circuit that includes one or more of the devices designed and fabricated as described herein.
  • FIG. 14 shows an illustrative flow diagram for fabricating a circuit 146 according to an embodiment.
  • a user can utilize a device design system 130 to generate a device design 132 using a method described herein.
  • the device design 132 can comprise program code, which can be used by a device fabrication system 134 to generate a set of physical devices 136 according to the features defined by the device design 132.
  • the device design 132 can be provided to a circuit design system 140 (e.g., as an available component for use in circuits), which a user can utilize to generate a circuit design 142 (e.g., by connecting one or more inputs and outputs to various devices included in a circuit).
  • the circuit design 142 can comprise program code that includes a device designed using a method described herein.
  • the circuit design 142 and/or one or more physical devices 136 can be provided to a circuit fabrication system 144, which can generate a physical circuit 146 according to the circuit design 142.
  • the physical circuit 146 can include one or more devices 136 designed using a method described herein.
  • the invention provides a device design system 130 for designing and/or a device fabrication system 134 for fabricating a semiconductor device 136 using a method described herein.
  • the system 130, 134 can comprise a general purpose computing device, which is programmed to implement a method of designing and/or fabricating the semiconductor device 136 as described herein.
  • an embodiment of the invention provides a circuit design system 140 for designing and/or a circuit fabrication system 144 for fabricating a circuit 146 that includes at least one device 136 designed and/or fabricated using a method described herein.
  • the system 140, 144 can comprise a general purpose computing device, which is programmed to implement a method of designing and/or fabricating the circuit 146 including at least one semiconductor device 136 as described herein.

Abstract

A light emitting diode is provided, which includes an n-type contact layer and a light generating structure adjacent to the n-type contact layer. The light generating structure includes a set of quantum wells. The contact layer and light generating structure can be configured so that a difference between an energy of the n-type contact layer and an electron ground state energy of a quantum well is greater than an energy of a polar optical phonon in a material of the light generating structure. Additionally, the light generating structure can be configured so that its width is comparable to a mean free path for emission of a polar optical phonon by an electron injected into the light generating structure.

Description

Deep Ultraviolet Light Emitting Diode
REFERENCE TO PRIOR APPLICATIONS
[0001] The current application claims the benefit of co-pending U.S. Provisional Application No. 61/610,671, which was filed on 14 March 2012, and which is hereby incorporated by reference. The current application also is a continuation-in-part of U.S. Utility Application No. 13/161,961, titled "Deep Ultraviolet Light Emitting Diode," which was filed on 16 June 2011, and which claims the benefit of co-pending U.S. Provisional Application No. 61/356,484, titled "Deep ultraviolet diode," which was filed on 18 June 2010, both of which are hereby
incorporated by reference.
TECHNICAL FIELD
[0002] The disclosure relates generally to nitride-based heterostructures, and more
particularly, to an improved ultraviolet light emitting nitride-based heterostructure.
BACKGROUND ART
[0003] Emerging deep ultraviolet light emitting diodes (DUV LEDs) cover the ultraviolet (UV) range down to 210 nanometers (nm), and provide output powers already sufficient for many applications. Additionally, these devices have high modulation frequencies, low noise, flexible form factor and spectral and space power distribution, high internal quantum efficiency, and a potential to achieve high wall plug efficiency. For example, photoluminescence (PL) studies and ray tracing calculations show that the achieved internal quantum efficiency for a 280 nm DUV LED may be quite high, e.g., between fifteen and seventy percent.
[0004] However, external quantum efficiency and wall plug efficiency of typical DUV LEDs is below three percent, with the highest efficiencies for 280 nm LEDs and lower efficiencies for LEDs emitting ultraviolet light having shorter wavelengths. Some reasons for the lower external and wall plug efficiencies include very low light extraction efficiency due to internal reflection from the sapphire substrate and sapphire/air interface, and strong absorption in the top low aluminum (Al)-content p-type aluminum gallium nitride (AlGaN) and p-type gallium nitride (GaN) layers. The efficiency of the LEDs is further reduced at higher currents and/or generated powers.
[0005] In UV LEDs emitting ultraviolet light having a shorter wavelength, the internal quantum efficiency also drops due to materials problems resulting from growth of AlGaN structures with high Al content. Such growth, among other things, is complicated by the low mobility of Al adatoms, which can result in inhomogeneous Al composition and lateral phase separation, as well as high density of threading dislocations and point defects.
SUMMARY OF THE INVENTION
[0006] Aspects of the invention provide a light emitting diode, which includes an n-type contact layer and a light generating structure adjacent to the n-type contact layer. The light generating structure includes a set of quantum wells. The contact layer and light generating structure can be configured so that a difference between an energy of the n-type contact layer and an electron ground state energy of a quantum well is greater than an energy of a polar optical phonon in a material of the light generating structure. Additionally, the light generating structure can be configured so that its width is comparable to a mean free path for emission of a polar optical phonon by an electron injected into the light generating structure. The diode can include a blocking layer, which is configured so that a difference between an energy of the blocking layer and the electron ground state energy of a quantum well is greater than the energy of the polar optical phonon in the material of the light generating structure. The diode can include a composite contact, including an adhesion layer, which is at least partially transparent to light generated by the light generating structure and a reflecting metal layer configured to reflect at least a portion of the light generated by the light generating structure.
[0007] A first aspect of the invention provides a light emitting heterostructure comprising: an n-type contact layer; and a light generating structure having a first side adjacent to the n-type contact layer, the light generating structure including a set of quantum wells, wherein a difference between an energy of the n-type contact layer and an electron ground state energy of a quantum well in the set of quantum wells is greater than an energy of a polar optical phonon in a material of the light generating structure, and wherein a width of the light generating structure is comparable to a mean free path for emission of a polar optical phonon by an electron injected into the light generating structure; and a superlattice layer adjacent to an opposing side of the light generating structure.
[0008] A second aspect of the invention provides a light emitting heterostructure comprising: an n-type contact layer; and an ultraviolet light generating structure having a first side adjacent to the n-type contact layer, the light generating structure including a set of quantum wells, wherein a width of the light generating structure is comparable to a mean free path for emission of a polar optical phonon by an electron injected into the light generating structure; and a blocking layer located on a second side of the light generating structure opposite the first side and having a group III nitride composition, wherein a difference between an energy of the blocking layer and an electron ground state energy of a quantum well in the set of quantum wells is greater than an energy of a polar optical phonon in a material of the light generating structure.
[0009] A third aspect of the invention provides a light emitting device comprising: an n-type contact layer; a light generating structure having a first side adjacent to the n-type contact layer; a blocking layer located on an opposite side of the light generating structure as the n-type contact layer and having a group III nitride composition; and a composite contact located on an opposite side of the blocking layer as the light generating structure, the composite contact comprising: an adhesion layer, wherein the adhesion layer is at least partially transparent to light generated by the light generating structure; and a reflecting metal layer configured to reflect at least a portion of the light generated by the light generating structure.
[0010] Additional aspects of the invention provide methods of designing and/or fabricating the heterostructures and devices shown and described herein, as well as methods of designing and/or fabricating circuits including such devices, and the resulting circuits. The illustrative aspects of the invention are designed to solve one or more of the problems herein described and/or one or more other problems not discussed.
BRIEF DESCRIPTION OF THE DRAWINGS
[0011] These and other features of the disclosure will be more readily understood from the following detailed description of the various aspects of the invention taken in conjunction with the accompanying drawings that depict various aspects of the invention.
[0012] FIG. 1 shows an illustrative band diagram of a deep UV light emitting heterostructure including an energy tub according to a previous solution.
[0013] FIG. 2 shows a band diagram of an illustrative light emitting heterostructure according to an embodiment.
[0014] FIG. 3 shows a band diagram for an illustrative light emitting heterostructure according to another embodiment.
[0015] FIG. 4 shows a band diagram for an illustrative light emitting heterostructure according to yet another embodiment.
[0016] FIG. 5 shows a band diagram for an illustrative light emitting heterostructure according to still another embodiment.
[0017] FIG. 6 shows an illustrative heterostructure for a light emitting diode according to an embodiment. [0018] FIG. 7 shows reflection coefficients of different coatings for illustrative reflective contacts.
[0019] FIGS. 8A-8D show illustrative LED configurations with composite contacts according to embodiments.
[0020] FIG. 9 shows a chart comparing illustrative transmission spectra of conventional and transparent 340 nanometer DUV LEDs structures.
[0021] FIG. 10 shows a chart illustrating an illustrative performance improvement of a 340 nm DUV LED structure with a reflecting contact.
[0022] FIG. 11 shows an illustrative configuration for a flip chip LED according to an embodiment.
[0023] FIG. 12 shows a dependence of the absorption coefficient on the wavelength for various aluminum molar fractions (x) of an AlxGai_xN alloy according to an embodiment.
[0024] FIG. 13 shows an illustrative chart for selecting an aluminum content of an AlGaN alloy to maintain a target transparency for a corresponding emitted wavelength according to an embodiment.
[0025] FIG. 14 shows an illustrative flow diagram for fabricating a circuit according to an embodiment.
[0026] It is noted that the drawings may not be to scale. The drawings are intended to depict only typical aspects of the invention, and therefore should not be considered as limiting the scope of the invention. In the drawings, like numbering represents like elements between the drawings.
DETAILED DESCRIPTION OF THE INVENTION
[0027] As indicated above, aspects of the invention provide a light emitting diode, which includes an n-type contact layer and a light generating structure adjacent to the n-type contact layer. The light generating structure includes a set of quantum wells. The contact layer and light generating structure can be configured so that a difference between an energy of the n-type contact layer and an electron ground state energy of a quantum well is greater than an energy of a polar optical phonon in a material of the light generating structure. Additionally, the light generating structure can be configured so that its width is comparable to a mean free path for emission of a polar optical phonon by an electron injected into the light generating structure. The diode can include a blocking layer, which is configured so that a difference between an energy of the blocking layer and the electron ground state energy of a quantum well is greater than the energy of the polar optical phonon in the material of the light generating structure. The diode can include a composite contact, including an adhesion layer, which is at least partially transparent to light generated by the light generating structure and a reflecting metal layer configured to reflect at least a portion of the light generated by the light generating structure. As used herein, unless otherwise noted, the term "set" means one or more (i.e., at least one) and the phrase "any solution" means any now known or later developed solution. Furthermore, as used herein, it is understood that the term "light" includes electromagnetic radiation of any wavelength, whether within the visible spectrum or outside of the visible spectrum.
[0028] Turning to the drawings, FIG. 1 shows an illustrative band diagram of a deep UV light emitting heterostructure 2 including an energy tub 4 according to a previous solution. In particular, a light generating multiple quantum well (MQW) structure 6 of the heterostructure 2 is confined to the energy tub 4. However, the inventors have found that such a band diagram can be difficult to implement for short wavelength structures, in which the Al molar fraction is very high, e.g., greater than fifty percent.
[0029] FIG. 2 shows a band diagram of an illustrative light emitting heterostructure 10 according to an embodiment. In this case, the heterostructure 10 includes a light generating structure 12 and an at least partially transparent (e.g., semi-transparent or transparent) injector cladding layer 14 adjacent to the light generating structure 12. As illustrated, the light generating structure 12 can include interlaced sets of barriers (higher energy in the band diagram) and quantum wells (lower energy in the band diagram). To this extent, each quantum well in the light generating structure 12 has one or more adjacent barriers and each barrier in the light generating structure 12 has one or more adjacent quantum wells. In heterostructure 10, an energy difference 16 (e.g., band offset) between an energy of an n-type contact layer 18 and an electron ground state energy level in a quantum well in the light generating structure 12 is slightly larger than the energy of a polar optical phonon, EOPT-PHONON, within a material of the light generating structure 12. In an embodiment, the energy difference 16 exceeds the energy of the polar optical phonon by approximately thermal energy, which is approximately twenty-six milli-electron Volts (meV) at room temperature.
[0030] Furthermore, a total width 13 of the light generating structure 12 can be selected to be comparable to a mean free path for emission of a polar optical phonon by an electron injected into the light generating structure 12. In an embodiment, the width 13 of the light generating structure 12 is configured to be slightly larger than the mean free path, e.g., exceeding the mean free path by less than approximately ten percent. In an embodiment, the width 13 of the light generating structure exceeds the mean free path by less than approximately five percent.
However, it is understood that in other embodiments, the width 13 of the light generating structure can exceed the mean free path for emission of the polar optical phonon by greater than ten percent. The illustrative design of heterostructure 10 can achieve one or more of: enhanced transitions of the injected electrons into multiple quantum wells; confinement of the injected electrons in the quantum wells; and improved uniformity of the electron distribution between the multiple quantum wells.
[0031] The various layers of heterostructure 10 can be formed using any appropriate material compositions. In an illustrative embodiment, the layers 12, 14, 18 are formed using differing wide band gap semiconductor materials, such as differing group III nitride material compositions. Group III nitride materials comprise one or more group III elements (e.g., boron (B), aluminum (Al), gallium (Ga), and indium (In)) and nitrogen (N), such that BwAlxGaYInzN, where 0 < W, X, Y, Z < 1 , and W+X+Y+Z = 1. Illustrative group III nitride materials include AIN, GaN, InN, BN, AlGaN, AlInN, AIBN, AlGaInN, AlGaBN, AlInBN, and AlGalnBN with any molar fraction of group III elements. In an embodiment, the materials include any combination of: AIN, GaN, InN, and/or BN alloys.
[0032] In an embodiment, cladding layer 14 comprises an at least partially transparent magnesium (Mg)-doped AlGaN/ AlGaN short period superlattice structure (SPSL). In another embodiment, the n-type contact layer 18 comprises a cladding layer formed of a short period superlattice, such as an AlGaN SPSL, which is at least partially transparent to radiation generated by the light generating structure 12.
[0033] FIG. 3 shows a band diagram for an illustrative light emitting heterostructure 20 according to another embodiment. In heterostructure 20, a blocking layer 22 is also included adjacent to the cladding layer 14. In an embodiment, the blocking layer 22 can comprise a group III nitride material having a graded or modulated aluminum composition along a width of the blocking layer 22. In another embodiment, the blocking layer 22 can comprise a superlattice structure, which can enable an improved materials quality in the heterostructure 20. Blocking layer 22 can be configured as an electron blocking layer and/or as a cladding layer using any solution.
[0034] FIG. 4 shows a band diagram for an illustrative light emitting heterostructure 30 according to yet another embodiment. In heterostructure 30, a thickness 32 (as measured in the direction of travel for the electrons) of a first barrier 15 in the light generating structure 12 is selected to be sufficient to accelerate electrons injected into the light generating structure 12 from the n-type contact 18 to reach an energy of a polar optical phonon, E0PT_PHONON, with respect to the energy states in the quantum wells. Furthermore, a thickness 34 of a remainder of the light generating structure 12 can be selected to be comparable to (e.g., slightly exceed) the mean free path for the emission of polar optical phonons by electrons.
[0035] FIG. 5 shows a band diagram for an illustrative light emitting heterostructure 40 according to still another embodiment. In heterostructure 40, an energy difference 44 (e.g., band offset) between an energy of a p-type blocking layer 42 and an electron ground state energy in a quantum well within the light generating structure 12 is slightly larger than the energy of the polar optical phonon, EOPT-PHONON, in the material of the light generating structure 12. In an embodiment, the energy difference exceeds the energy of the polar optical phonon by approximately thermal energy. Blocking layer 42 can be configured as an electron blocking layer and/or as a cladding layer using any solution.
[0036] FIG. 6 shows an illustrative heterostructure 50 for a light emitting diode (LED) according to an embodiment. As illustrated, the heterostructure 50 can include a substrate 52, an n-type contact 54, a light generating structure 56, and a p-type contact 58. In an embodiment, the substrate 52 and n-type contact 54 are at least partially transparent to the light generated by the light generating structure 56, thereby enabling extraction of light generated by the light generating structure 56 out of the heterostructure 50 through the transparent substrate 52.
Furthermore, the heterostructure 50 can include a distributed semiconductor heterostructure Bragg reflector (DBR) structure 60 on an opposing side of the light generating structure 56 than a transparent side of the heterostructure 50 (e.g., the transparent substrate 52). The DBR structure 60 can be configured to reflect additional light generated by the light generating structure 56 out of the transparent substrate 52 than would otherwise be provided. Additionally, the heterostructure 50 can include an electron blocking layer 61 located between the DBR structure 60 and the light generating structure 56, which can suppress residual electron overflow from the n-type contact 54 to the p-type contact 58 without capture into the light generating structure 56. The electron blocking layer 61 can be configured to be at least partially transparent to the light generated by the light generating structure 56.
[0037] The various components of the heterostructure 50 can be formed from any suitable materials, such as group III nitride materials as described herein. In an embodiment, the n-type contact 54 is formed of a short period superlattice that is at least partially transparent to radiation generated by the light generating structure 56, which can provide a higher free hole
concentration due to better dopant ionization, better crystal quality, and/or higher optical transmission to the emitted radiation. In a further embodiment, the n-type contact 54 (e.g., the short period superlattice) is formed of group III nitride materials.
[0038] It is understood that additional layer(s) and/or structure(s) can be included in heterostructure 50. For example, the heterostructure 50 can include a reflective layer, a photonic crystal, a mirror, and/or the like. These layer(s) and/or structure(s) can be configured to direct light generated by the light generating structure 56 in a manner that increases an amount of light emitted from heterostructure 50 than would be emitted without the presence of the additional layer(s) and/or structures. Similarly, one or more additional layers can be located between any of the layers shown in FIG. 6. For example, a buffer layer and/or a second layer can be formed directly on the substrate 52, and the n-type contact 54 can be formed directly on the second layer.
[0039] In an embodiment, a heterostructure can include a light generating structure 56 located between a DBR structure 60 and a refiector, such as a metal reflector. In this case, the DBR structure 60 and the reflector (e.g. a reflective contact) can establish resonant optical field distribution, which can enhance an efficiency of light extraction from the heterostructure. The refiector can be formed of any type of material, which is at least partially reflective of the light generated by the light generating structure 56. In an embodiment, the material of the reflector is selected according to its reflectivity of a range of ultraviolet light including a wavelength corresponding to the peak wavelength of ultraviolet light emitted by the light generating structure 56.
[0040] To this extent, FIG. 7 shows reflection coefficients of different coatings for illustrative reflective contacts. Illustrative reflective contacts can be formed from, among other things, aluminum, enhanced aluminum, aluminum silicon monoxide, aluminum magnesium fluoride, rhodium, enhanced rhodium, gold, and/or the like. As can be seen in FIG. 7, rhodium and enhanced rhodium provide good reflectivity within the ultraviolet range of wavelengths, particularly when compared to gold. In particular, enhanced rhodium provides excellent reflectivity in the deep ultraviolet range of wavelengths (e.g., wavelengths below approximately 0.3 micrometers (μηι). However, rhodium does not provide good ohmic contact to AlGaN materials.
[0041] In an embodiment, a light emitting diode, such as a deep ultraviolet light emitting diode, includes a composite reflecting contact. For example, FIG. 8A shows an illustrative configuration for an LED 62, which includes a composite contact 63 comprising a thin (e.g., 2-5 nanometers thick) layer 64 of a first metal adjacent to a layer 66 of rhodium and/or enhanced rhodium. Layer 64 can be formed of any metal, which is at least partially transparent to light generated by a light emitting heterostructure 68 at the corresponding thickness of the layer 64 and which provides improved ohmic contact and/or adhesion of the thicker reflective layer 66 to the surface of the heterostructure 68, such as a heterostructure formed of group III nitride materials. In an embodiment, layer 64 is formed of nickel (Ni). However, it is understood that layer 64 can be formed of any suitable material, including Nickel oxyhydroxide (NiOx), Palladium (Pd), Molybdenum (Mo), Cobalt (Co), and/or the like.
[0042] Various alternative composite contact configurations are possible. For example, FIG. 8B shows an illustrative configuration for an LED 70 including a composite contact 72 formed of multiple layers of metals 74A-74F (e.g., a metallic superlattice), each of which can be at least partially transparent or reflective of light emitted by a corresponding light emitting heterostructure 76, such as a heterostructure formed of group-Ill nitride materials, of the LED 70. In an embodiment, each of the layers of metals 74A-74F is configured to be at least partially transparent to the light emitted by the light emitting heterostructure 76. For example, the layers of metals 74A-74F can include alternating thin (e.g., 2-5 nanometers thick) layers of two metals selected from: Ni, NiOx, Pd, Mo, Co, and/or the like, which can be oxidized in an 02 ambient. Use of the multiple layers of metals 74A-74F can enable improved reflectivity/transparency and/or polarization control of the radiation reflected by/passing through the composite contact 72. While the composite contact 72 is shown including three repeating sets of two metals each, it is understood that the composite contact 72 can include any combination of two or more metals and any number of layers.
[0043] In another embodiment, a composite contact can include graphene. For example, layer 64 of composite contact 63 (FIG. 8A) and/or a set of layers 74A-74F of composite contact 72 can be formed of graphene, which can be configured to be transparent to light generated by the corresponding heterostructure and very conductive. Another layer, such as layer 66 of composite contact 63 and/or interlaced layers of composite contact 72, can comprise a thin layer of metal adjacent to the graphene, which can improve current spreading in the composite contact 63, 72. In a further embodiment, the composite contact 63, 73 is at least partially transparent to the light generated by the heterostructure. It is understood that an LED can include one or more layers adjacent to a contact formed of graphene, which are configured to improve light extraction from the LED, e.g., via a textured surface.
[0044] Furthermore, a composite contact of the light emitting diode can include one or more non-uniform layers. For example, a non-uniform layer can comprise a varying thickness and/or be absent from certain regions. FIG. 8C shows an illustrative configuration for an LED 80, which includes a composite contact 82 formed of a non-uniform transparent adhesion layer 84 and a reflective layer 86. In an embodiment, the non-uniform transparent adhesion layer 84 comprises nickel, the reflective layer 86 comprises enhanced rhodium, and the light emitting heterostructure 88 comprises a group III nitride heterostructure, which emits ultraviolet radiation, such as deep ultraviolet radiation. In this case, the ultraviolet radiation emitted by the light emitting heterostructure 88 will not be partially absorbed by the transparent adhesion layer 84 in the regions in which it is absent, thereby allowing for direct reflection of the ultraviolet radiation by the reflective layer 86.
[0045] Additionally, the non-uniform distribution of the transparent adhesion layer 84 can result in a non-uniform current, which is mostly limited to the areas where the transparent adhesion layer 84 improves adhesion with the surface of the light emitting heterostructure 88. As a result, a current density in these regions is higher than that for a uniform adhesion layer, which can thereby enhance radiative recombination. However, the configuration of the nonuniform transparent adhesion layer 84 can be configured to limit the current non-uniformity to a range that will not result in local overheating within the LED 80, which could result in reliability problems for the LED 80.
[0046] A non-uniform transparent adhesion layer 84 can comprise any type of distribution along the surface of a light emitting heterostructure 88. For example, FIG. 8D shows an illustrative configuration for an LED 90, which includes a composite contact 92 formed of a non-uniform transparent adhesion layer 94 and a reflective layer 96. In an embodiment, the nonuniform transparent adhesion layer 94 comprises nickel, while the reflective layer 96 comprises enhanced rhodium, and the light emitting heterostructure 88 comprises a group III nitride heterostructure, which emits ultraviolet radiation, such as deep ultraviolet radiation. In this case, the transparent adhesion layer 94 is periodic, thereby forming a reflecting photonic crystal. Formation of the reflecting photonic crystal can improve the light reflection of the composite contact 92, and therefore the corresponding light extraction of light from the LED 90. [0047] Sample transparent DUV LEDs were fabricated according to embodiments, along with conventional DUV LEDs for comparison. The DUV LEDs were configured to emit radiation having a peak emission wavelength within or close to the deep ultraviolet range. Each of the transparent DUV LEDs included a transparent Mg-doped AlGaN/AlGaN short period superlattice structure (SPSL) as a cladding layer, which replaced transparent graded p-type AlGaN cladding and p-type GaN contact layers of a typical LED. The DUV LED structures were grown on a sapphire substrate by a combination of metal-organic chemical vapor deposition (MOCVD) and migration enhanced MOCVD. Each of the DUV LEDs included a thin p++-GaN contact layer to create a polarization induced high free hole concentration near the surface and to improve the p-type contact. 300 Kelvin (K) (e.g., room temperature) and 77 K Hall measurements for the DUV LEDs were taken, and indicated free hole concentration of
17 3 17 3
9.8x10 cm" and 9.6x10 cm" , respectively, which is consistent with the formation of a 2- dimensional (2D) hole gas. The measured hole mobility increased from 7.6 cm2/Vs at 300 K to 1 1 cm2/Vs at 77 K.
[0048] Optical transmission measurements of the DUV LEDs indicated up to approximately eighty percent transmission at the peak LED emission wavelength for the respective DUV LEDs. Furthermore, the Al-based and Rh-based reflecting contacts provided more than sixty percent reflectivity within the deep ultraviolet range. FIG. 9 shows a chart comparing illustrative transmission spectra of conventional and transparent 340 nanometer DUV LEDs structures.
[0049] The forward voltage (Vj of 340 nm DUV LEDs with conventional Ni/Au p-type contacts and absorbing and transparent p-type cladding layers was measured to be 5.2 Volts (V) and 6.1 V at 20 mA, respectively. Use of a reflecting p-type contact resulted in an additional approximately 0.1-0.2 V increase of V/ due to the voltage drop across the contact barrier. For shorter emission wavelengths, the voltage drop across SPSL caused an increase in V/from 5.3 V to 6.4 V. The output power of transparent structure 330-340 nm emission LEDs with conventional and reflecting p-contacts were measured to be 0.83 mW and 0.91 mW at 20 mA, respectively. Devices from the reference wafer showed 0.36 mW at the same current. Testing of 310 nm DUV LEDs before packaging showed a similar increase in the DUV LED efficiency. To this extent, FIG. 10 shows a chart illustrating an illustrative performance improvement of a 340 nm DUV LED structure with a reflecting contact.
[0050] The heterostructure and/or contact designs described herein can be utilized in the formation of a device using a flip chip configuration. For example, FIG. 11 shows an illustrative configuration for a flip chip LED 100 according to an embodiment. In an embodiment, LED 100 can comprise a deep ultraviolet LED, which is configured to emit radiation in the deep ultraviolet range of wavelengths. LED 100 can include a mount 102, which is attached to a device heterostructure 104 using a set of bonding pads 106 and a set of solder bumps 108.
[0051] In an embodiment, the mount 102 is configured to provide protection for the heterostructure 104 from transient voltage surges, such as those caused by electrostatic discharge (ESD), an electric power surge, and/or the like. In a more particular embodiment, the mount 102 is formed of a slightly conductive material, which provides a parallel leakage path for the device heterostructure 104. For example, the conductive material can comprise a semi- insulating silicon carbide (SiC), which can comprise any of various polytypes of SiC, such as 4H-SiC, 6H-SiC, 3C-SiC, high purity SiC, and/or the like. However, it is understood that the mount 102 can comprise other types of conductive materials and/or ESD protective
configurations.
[0052] As illustrated, the device heterostructure 104 can include, for example, a reflecting contact 110, a transparent adhesion layer 112 (which can be uniform or non-uniform as described herein), a p-type contact 1 14, a blocking layer 116, a light generating structure 118, and a n-type contact 120. Each of the components of the heterostructure 104 can be fabricated as described herein. During operation of the LED 100, the reflecting contact 110 can reflect light, such as ultraviolet light, emitted by the light generating structure 118 towards the n-type contact 120. The n-type contact 120 can be at least partially transparent to the light, thereby emitting the light from the LED 100. In an embodiment, the n-type contact 120 can comprise a textured surface 122, which is configured to improve extraction of the light from the LED 100.
[0053] The various heterostructures shown and described herein can be implemented as part of various types of devices, such as a light emitting diode (LED), a superluminescent diode, a laser, and/or the like. In an embodiment, the device is configured to emit ultraviolet radiation during operation (e.g., an ultraviolet LED, an ultraviolet superluminescent LED, and/or the like). In a more particular embodiment, the ultraviolet radiation comprises deep ultraviolet radiation, e.g., 210 nm to 365 nm.
[0054] As used herein, a layer is at least partially transparent when the layer allows at least a portion of light in a corresponding range of radiation wavelengths to pass there through. For example, a layer can be configured to be at least partially transparent to a range of radiation wavelengths corresponding to a peak emission wavelength for the light (such as ultraviolet light or deep ultraviolet light) emitted by a light generating structure described herein (e.g., peak emission wavelength +/- five nanometers). As used herein, a layer is at least partially transparent to radiation if it allows more than approximately 0.001 percent of the radiation to pass there through. In a more particular embodiment, an at least partially transparent layer is configured to allow more than approximately five percent of the radiation to pass there through. Similarly, a layer is at least partially reflective when the layer reflects at least a portion of the relevant light (e.g., light having wavelengths close to the peak emission of the light generating structure). In an embodiment, an at least partially reflective layer is configured to reflect more than approximately five percent of the radiation. [0055] In an embodiment, a structure described herein can include one or more layers having a composition selected such that the layer has a transparency of at least a target transparency to radiation, such as ultraviolet radiation, of a target set of wavelengths. For example, a layer can be a group III nitride-based layer, such as an electron blocking layer or a p-type contact layer described herein, which is composed of AlxGai_xN where the aluminum molar fraction (x) is sufficiently high in some domains of the layer to result in the layer being at least partially transparent to ultraviolet radiation. In an embodiment, the layer can comprise a superlattice layer located in an emitting device configured to emit radiation having a dominant wavelength in the ultraviolet spectrum, and the composition of at least one sub-layer in each period of the superlattice layer is configured to be at least partially transparent to ultraviolet radiation having a target wavelength corresponding to the ultraviolet radiation emitted by the emitting device.
[0056] An amount of transparency of a short period superlattice (SPSL) can be approximated by computing an averaged band gap of the SPSL, and deducing average absorption coefficients of the SPSL. The absorption coefficients depend on an absorption edge of the semiconductor material, which for materials formed of an AlGaN alloy, is a function of the molar fractions of the AlxGai_xN semiconductor alloy.
[0057] In an embodiment, the target transparency for the material is at least ten times more transparent than the least transparent layer of material in the structure (e.g., GaN for a group III nitride -based device). In this case, an absorption coefficient of the semiconductor layer can be on the order of 104 inverse centimeters or lower. In this case, a one micron thick semiconductor layer will allow approximately thirty-six percent of the ultraviolet radiation to pass there through.
[0058] FIG. 12 shows a dependence of the absorption coefficient on the wavelength for various aluminum molar fractions (x) of an AlxGai_xN alloy according to an embodiment. In order to maintain an absorption coefficient of the semiconductor layer at orders of 104 inverse centimeters or lower, the content of aluminum in an SPSL barrier layer can be chosen based on the corresponding target wavelength or range of wavelengths. For example, for a target wavelength of approximately 250 nanometers, the aluminum molar fraction can be
approximately 0.7 or higher, whereas for a target wavelength of approximately 300 nanometers, the aluminum molar fraction can be as low as approximately 0.4. FIG. 13 shows an illustrative chart for selecting an aluminum content of an AlxGai_xN alloy to maintain a target transparency for a corresponding emitted wavelength, λ, according to an embodiment. In this case, the target transparency corresponds to an absorption coefficient of the semiconductor layer on the order of 104 inverse centimeters. Note that in FIG. 13, the dependence of x = χ(λ) is linear, with x = C-λ+Β, where C = -0.0048 [1/nm], and B = 1.83.
[0059] In an embodiment, a device can include one or more layers with lateral regions configured to facilitate the transmission of radiation through the layer and lateral regions configured to facilitate current flow through the layer. For example, the layer can be a short period superlattice, which includes barriers alternating with wells. In this case, the barriers can include both transparent regions, which are configured to reduce an amount of radiation that is absorbed in the layer, and higher conductive regions, which are configured to keep the voltage drop across the layer within a desired range. As used herein, the term lateral means the plane of the layer that is substantially parallel with the surface of the layer adjacent to another layer of the device. As described herein, the lateral cross section of the layer can include a set of transparent regions, which correspond to those regions having a relatively high aluminum content, and a set of higher conductive regions, which correspond to those regions having a relatively low aluminum content.
[0060] The set of transparent regions can be configured to allow a significant amount of the radiation to pass through the layer, while the set of higher conductive regions can be configured to keep the voltage drop across the layer within a desired range (e.g., less than ten percent of a total voltage drop across the structure). In an embodiment, the set of transparent regions occupy at least ten percent of the lateral area of the layer, while the set of higher conductive regions occupy at least approximately two percent (five percent in a more specific embodiment) of the lateral area of the layer. Furthermore, in an embodiment, a band gap of the higher conductive regions is at least five percent smaller than the band gap of the transparent regions. In a more particular embodiment, the transparent regions comprise a transmission coefficient for radiation of a target wavelength higher than approximately sixty percent (eighty percent in a still more particular embodiment), while the higher conductive regions have a resistance per unit area to vertical current flow that is smaller than approximately 10~2 ohm-cm2. As used herein, the term transmission coefficient means the ratio of an amount of radiation exiting the region to an amount of radiation entering the region.
[0061] The transparent and conductive regions can be formed using any solution. For example, a layer can be grown using migration-enhanced metalorganic chemical vapor deposition (MEMOCVD). During the growth, inhomogeneities in the lateral direction of a molar fraction of one or more elements, such as aluminum, gallium, indium, boron, and/or the like, can be allowed in the layer. In an embodiment, such compositional inhomogeneities can vary by at least one percent.
[0062] While shown and described herein as a method of designing and/or fabricating a structure and/or a corresponding semiconductor device including the structure, it is understood that aspects of the invention further provide various alternative embodiments. For example, in one embodiment, the invention provides a method of designing and/or fabricating a circuit that includes one or more of the devices designed and fabricated as described herein.
[0063] To this extent, FIG. 14 shows an illustrative flow diagram for fabricating a circuit 146 according to an embodiment. Initially, a user can utilize a device design system 130 to generate a device design 132 using a method described herein. The device design 132 can comprise program code, which can be used by a device fabrication system 134 to generate a set of physical devices 136 according to the features defined by the device design 132. Similarly, the device design 132 can be provided to a circuit design system 140 (e.g., as an available component for use in circuits), which a user can utilize to generate a circuit design 142 (e.g., by connecting one or more inputs and outputs to various devices included in a circuit). The circuit design 142 can comprise program code that includes a device designed using a method described herein. In any event, the circuit design 142 and/or one or more physical devices 136 can be provided to a circuit fabrication system 144, which can generate a physical circuit 146 according to the circuit design 142. The physical circuit 146 can include one or more devices 136 designed using a method described herein.
[0064] In another embodiment, the invention provides a device design system 130 for designing and/or a device fabrication system 134 for fabricating a semiconductor device 136 using a method described herein. In this case, the system 130, 134 can comprise a general purpose computing device, which is programmed to implement a method of designing and/or fabricating the semiconductor device 136 as described herein. Similarly, an embodiment of the invention provides a circuit design system 140 for designing and/or a circuit fabrication system 144 for fabricating a circuit 146 that includes at least one device 136 designed and/or fabricated using a method described herein. In this case, the system 140, 144 can comprise a general purpose computing device, which is programmed to implement a method of designing and/or fabricating the circuit 146 including at least one semiconductor device 136 as described herein.
[0065] The foregoing description of various aspects of the invention has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise form disclosed, and obviously, many modifications and variations are possible. Such modifications and variations that may be apparent to an individual in the art are included within the scope of the invention as defined by the accompanying claims.

Claims

CLAIMS What is claimed is:
1. A light emitting heterostructure comprising:
an n-type contact layer;
a light generating structure having a first side adjacent to the n-type contact layer, the light generating structure including a set of quantum wells, wherein a difference between an energy of the n-type contact layer and an electron ground state energy of a quantum well in the set of quantum wells is greater than an energy of a polar optical phonon in a material of the light generating structure, and wherein a width of the light generating structure is comparable to a mean free path for emission of a polar optical phonon by an electron injected into the light generating structure; and
a superlattice layer adjacent to an opposing side of the light generating structure, wherein the superlattice layer includes:
a first sub-layer having a first group III nitride composition, wherein the first group III nitride composition is selected such that the first sub-layer has a transparency of at least a target transparency to ultraviolet radiation of a target wavelength; and
a second sub-layer adjacent to the first sub-layer, the second sub-layer having a second group III nitride composition distinct from the first group III nitride composition.
2. The heterostructure of claim 1, wherein the first group III nitride composition includes aluminum, and wherein a molar fraction of aluminum in the first group III nitride composition is selected based on the target transparency to ultraviolet radiation of the target wavelength.
3. The heterostructure of claim 2, wherein the first group III nitride composition is an AlxGal - xN alloy.
4. The heterostructure of claim 3, wherein the first group III nitride composition includes an aluminum molar fraction x selected using the formula C-λ+Β, where C = -0.0048 nm-1, B = 1.83, and λ is the target wavelength of the ultraviolet radiation.
5. The heterostructure of claim 1, wherein a composition of the first sub-layer varies along lateral dimensions of the first sub-layer such that a lateral cross section of the first sub-layer includes:
a set of transparent regions, each transparent region having a transmission coefficient for the target wavelength greater than or equal to approximately sixty percent, wherein the set of transparent regions are at least ten percent of an area of the lateral cross section of the first sublayer; and
a set of higher conductive regions occupying a sufficient area of the area of the lateral cross section of the first sub-layer and having an average resistance per unit area to a vertical current flow resulting in a total voltage drop across the superlattice layer of less than ten percent of a total voltage drop across the structure.
6. The heterostructure of claim 5, wherein each of the set of higher conductive regions comprises a molar fraction of aluminum providing a band gap at least five percent smaller than a band gap of the set of transparent regions.
7. A light emitting heterostructure comprising:
an n-type contact layer; and an ultraviolet light generating structure having a first side adjacent to the n-type contact layer, the light generating structure including a set of quantum wells, wherein a width of the light generating structure is comparable to a mean free path for emission of a polar optical phonon by an electron injected into the light generating structure; and
a blocking layer located on a second side of the light generating structure opposite the first side and having a group III nitride composition, wherein a difference between an energy of the blocking layer and an electron ground state energy of a quantum well in the set of quantum wells is greater than an energy of a polar optical phonon in a material of the light generating structure, wherein the group III nitride composition is selected such that the blocking layer has a transparency of at least a target transparency to ultraviolet radiation of a target wavelength.
8. The heterostructure of claim 7, wherein the group III nitride composition includes aluminum, and wherein a molar fraction of aluminum in the group III nitride composition is selected based on the target transparency to the ultraviolet radiation generated by the ultraviolet light generating structure.
9. The heterostructure of claim 8, wherein the group III nitride composition is an AlxGal-xN alloy.
10. The heterostructure of claim 9, wherein the group III nitride composition includes an aluminum molar fraction x selected using the formula C-λ+Β, where C = -0.0048 nm-1, B = 1.83, and λ is the target wavelength of the ultraviolet radiation.
11. The heterostructure of claim 7, wherein a composition of the blocking layer varies along lateral dimensions of the blocking layer such that a lateral cross section of the blocking layer includes:
a set of transparent regions, each transparent region having a transmission coefficient for the target wavelength greater than or equal to approximately sixty percent, wherein the set of transparent regions are at least ten percent of an area of the lateral cross section of the blocking layer; and
a set of higher conductive regions occupying a sufficient area of the area of the lateral cross section of the blocking layer and having an average resistance per unit area to a vertical current flow resulting in a total voltage drop across the blocking layer of less than ten percent of a total voltage drop across the heterostructure.
12. The heterostructure of claim 11, wherein each of the set of higher conductive regions comprises a molar fraction of aluminum providing a band gap at least five percent smaller than a band gap of the set of transparent regions.
13. A light emitting device comprising:
an n-type contact layer;
a light generating structure having a first side adjacent to the n-type contact layer;
a blocking layer located on an opposite side of the light generating structure as the n-type contact layer and having a group III nitride composition, wherein the group III nitride composition is selected such that the blocking layer has a transparency of at least a target transparency to ultraviolet radiation of a target wavelength; and
a composite contact located on an opposite side of the blocking layer as the light generating structure, the composite contact comprising: an adhesion layer, wherein the adhesion layer is at least partially transparent to light generated by the light generating structure; and
a reflecting metal layer configured to reflect at least a portion of the light generated by the light generating structure.
14. The device of claim 13, wherein the group III nitride composition includes aluminum, and wherein a molar fraction of aluminum in the group III nitride composition is selected based on the target transparency to the ultraviolet radiation generated by the ultraviolet light generating structure.
15. The device of claim 14, wherein the group III nitride composition is an AlxGal-xN alloy, and wherein the group III nitride composition includes an aluminum molar fraction x selected using the formula C-λ+Β, where C = -0.0048 nm-1, B = 1.83, and λ is the target wavelength of the ultraviolet radiation.
16. The device of claim 13, wherein a composition of the blocking layer varies along lateral dimensions of the blocking layer such that a lateral cross section of the blocking layer includes: a set of transparent regions, each transparent region having a transmission coefficient for the target wavelength greater than or equal to approximately sixty percent, wherein the set of transparent regions are at least ten percent of an area of the lateral cross section of the blocking layer; and
a set of higher conductive regions occupying a sufficient area of the area of the lateral cross section of the blocking layer and having an average resistance per unit area to a vertical current flow resulting in a total voltage drop across the blocking layer of less than ten percent of a total voltage drop across the device.
17. The device of claim 16, wherein each of the set of higher conductive regions comprises a molar fraction of aluminum providing a band gap at least five percent smaller than a band gap of the set of transparent regions.
PCT/US2013/031267 2012-03-14 2013-03-14 Deep ultraviolet light emitting diode WO2013138575A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201261610671P 2012-03-14 2012-03-14
US61/610,671 2012-03-14

Publications (1)

Publication Number Publication Date
WO2013138575A1 true WO2013138575A1 (en) 2013-09-19

Family

ID=49161804

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2013/031267 WO2013138575A1 (en) 2012-03-14 2013-03-14 Deep ultraviolet light emitting diode

Country Status (1)

Country Link
WO (1) WO2013138575A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070181869A1 (en) * 2006-02-04 2007-08-09 Remigijus Gaska Heterostructure including light generating structure contained in potential well
US20090026440A1 (en) * 2005-05-26 2009-01-29 Takashi Kyono Nitride semiconductor light-emitting element
US20090127572A1 (en) * 2005-05-24 2009-05-21 Rohm Co., Ltd. Nitride Semiconductor Light Emitting Device
US20110266520A1 (en) * 2010-01-08 2011-11-03 Michael Shur Superlattice Structure
US20110309326A1 (en) * 2010-06-18 2011-12-22 Remigijus Gaska Deep ultraviolet light emitting diode

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090127572A1 (en) * 2005-05-24 2009-05-21 Rohm Co., Ltd. Nitride Semiconductor Light Emitting Device
US20090026440A1 (en) * 2005-05-26 2009-01-29 Takashi Kyono Nitride semiconductor light-emitting element
US20070181869A1 (en) * 2006-02-04 2007-08-09 Remigijus Gaska Heterostructure including light generating structure contained in potential well
US20110266520A1 (en) * 2010-01-08 2011-11-03 Michael Shur Superlattice Structure
US20110309326A1 (en) * 2010-06-18 2011-12-22 Remigijus Gaska Deep ultraviolet light emitting diode

Similar Documents

Publication Publication Date Title
US9437774B2 (en) Deep ultraviolet light emitting diode
EP2583316B1 (en) Uv light emitting heterostructure and light emitting diode
US10700237B2 (en) Ultraviolet light-emitting devices incorporating graded layers and compositional offsets
US10388828B2 (en) Light-emitting semiconductor chip
US10224456B2 (en) Deep ultraviolet light emitting diode
US20150207029A1 (en) Superlattice Structure
US20200350465A1 (en) Semiconductor Heterostructure with P-type Superlattice
WO2013138575A1 (en) Deep ultraviolet light emitting diode
US11784280B2 (en) Optoelectronic device with reduced optical loss

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13761657

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13761657

Country of ref document: EP

Kind code of ref document: A1