WO2013137519A1 - Integrated dual sensor - Google Patents

Integrated dual sensor Download PDF

Info

Publication number
WO2013137519A1
WO2013137519A1 PCT/KR2012/003858 KR2012003858W WO2013137519A1 WO 2013137519 A1 WO2013137519 A1 WO 2013137519A1 KR 2012003858 W KR2012003858 W KR 2012003858W WO 2013137519 A1 WO2013137519 A1 WO 2013137519A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
semiconductor substrate
light
sensor unit
wavelength
Prior art date
Application number
PCT/KR2012/003858
Other languages
French (fr)
Korean (ko)
Inventor
이병수
Original Assignee
(주) 지멤스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주) 지멤스 filed Critical (주) 지멤스
Publication of WO2013137519A1 publication Critical patent/WO2013137519A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/0022Radiation pyrometry, e.g. infrared or optical thermometry for sensing the radiation of moving bodies
    • G01J5/0025Living bodies
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/10Photometry, e.g. photographic exposure meter by comparison with reference light or electric value provisionally void
    • G01J1/12Photometry, e.g. photographic exposure meter by comparison with reference light or electric value provisionally void using wholly visual means
    • G01J1/14Photometry, e.g. photographic exposure meter by comparison with reference light or electric value provisionally void using wholly visual means using comparison with a surface of graded brightness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • G01J1/0488Optical or mechanical part supplementary adjustable parts with spectral filtering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/4204Photometry, e.g. photographic exposure meter using electric radiation detectors with determination of ambient light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/4228Photometry, e.g. photographic exposure meter using electric radiation detectors arrangements with two or more detectors, e.g. for sensitivity compensation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/30Measuring the intensity of spectral lines directly on the spectrum itself
    • G01J3/36Investigating two or more bands of a spectrum by separate detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/04Casings
    • G01J5/041Mountings in enclosures or in a particular environment
    • G01J5/045Sealings; Vacuum enclosures; Encapsulated packages; Wafer bonding structures; Getter arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0801Means for wavelength selection or discrimination
    • G01J5/0802Optical filters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • G01J5/12Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using thermoelectric elements, e.g. thermocouples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • G01J5/12Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using thermoelectric elements, e.g. thermocouples
    • G01J5/14Electrical features thereof
    • G01J5/16Arrangements with respect to the cold junction; Compensating influence of ambient temperature or other variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • G01J5/20Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using resistors, thermistors or semiconductors sensitive to radiation, e.g. photoconductive devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/60Radiation pyrometry, e.g. infrared or optical thermometry using determination of colour temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14618Containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14665Imagers using a photoconductor layer
    • H01L27/14669Infrared imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0203Containers; Encapsulations, e.g. encapsulation of photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/105Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PIN type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to electronic sensors, and more particularly, to an integrated sensor in which a pair of sensors are coupled to one substrate.
  • energy-efficient electronic products such as a luminaire or a monitor that flashes automatically according to the external brightness
  • These electronic products include an illumination sensor for detecting ambient brightness and an infrared sensor for detecting human heat.
  • the illuminance sensor detects the brightness of visible light of the external environment and controls the blinking of the lighting fixture or the brightness of the monitor accordingly, and the infrared sensor detects the infrared light emitted from an object emitting heat, such as a living body, You can control the brightness of the monitor.
  • the illuminance sensor and the infrared sensor are each composed of separate products, and thus there is a limit in miniaturization of electronic products.
  • the present invention has been made to solve various problems including the above problems, and an object thereof is to provide an integrated sensor which can be miniaturized.
  • these problems are exemplary, and the scope of the present invention is not limited thereby.
  • An integrated dual sensor according to one aspect of the present invention is provided.
  • a semiconductor substrate is provided which blocks a first light having a first wavelength from passing below and passes a second light having a second wavelength longer than the first wavelength.
  • the first sensor unit includes the semiconductor substrate and absorbs and detects at least a portion of the first light.
  • the second sensor unit is formed on one surface of the semiconductor substrate and senses the second light passing through the first sensor unit.
  • the first light includes visible light or near infrared light
  • the second light includes mid infrared light or far infrared light
  • the semiconductor substrate functions as an infrared pass filter
  • the first sensor part detects visible light. It functions as a type illuminance sensor
  • the second sensor unit may function as an infrared sensor.
  • the first sensor unit may include a photovoltaic sensor or a photoconductive sensor.
  • the first sensor unit In the integrated dual sensor, the first sensor unit, the first conductive semiconductor layer on one surface of the semiconductor substrate; And a second conductivity type semiconductor layer on the other surface of the semiconductor substrate.
  • the first conductive semiconductor layer may include a p-type doping layer
  • the second conductive semiconductor layer may include an n-type doping layer.
  • the first sensor unit comprises: a first electrode disposed on one surface of the semiconductor substrate to be electrically connected to the first conductive semiconductor layer; A through via extending from the second conductive semiconductor layer through the semiconductor substrate and extending onto one surface of the semiconductor substrate; And a second electrode disposed on one surface of the semiconductor substrate to be electrically connected to the through via.
  • the semiconductor substrate may include a groove recessed inwardly from one surface of the semiconductor substrate, and at least a portion of the second sensor unit may be spaced apart from the groove and thermally insulated from the semiconductor substrate. have.
  • the second sensor unit may include a light absorption layer disposed to face the groove.
  • the second sensor unit may include a thermopile sensor, a bolometer sensor, or a pyrometer sensor.
  • the integrated dual sensor may further include a read integrated circuit (ROIC) electrically connected to the first sensor unit and the second sensor unit.
  • ROIIC read integrated circuit
  • an integrated dual sensor is provided.
  • a semiconductor substrate is provided which blocks a first light having a first wavelength from passing below and passes a second light having a second wavelength longer than the first wavelength.
  • the first sensor unit includes the semiconductor substrate and is provided to absorb and detect at least a portion of the first light.
  • a sensor substrate is provided to be coupled below the semiconductor substrate.
  • the second sensor unit is mounted on the sensor substrate and provided to sense the second light passing through the first sensor unit.
  • Integrated dual sensor according to an embodiment of the present invention made as described above can be configured to integrate a sensor for detecting and blocking visible light and a sensor for detecting infrared rays on the substrate, thereby miniaturizing the product have.
  • FIG. 1 is a schematic cross-sectional view showing an integrated dual sensor according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view showing an integrated dual sensor according to another embodiment of the present invention.
  • FIG. 3 is a schematic cross-sectional view showing an integrated dual sensor according to another embodiment of the present invention.
  • FIG. 4 is a schematic cross-sectional view showing an integrated dual sensor according to another embodiment of the present invention.
  • FIG. 5 is a schematic cross-sectional view showing an integrated dual sensor according to another embodiment of the present invention.
  • FIG. 1 is a schematic cross-sectional view showing an integrated dual sensor according to an embodiment of the present invention.
  • the integrated dual sensor may include a first sensor unit 110 and a second sensor unit 120 integrally coupled to the semiconductor substrate 102.
  • the first sensor unit 110 and the second sensor unit 120 may separate and detect external light according to a wavelength.
  • the first sensor unit 110 senses a first light L1 having a first wavelength
  • the second sensor unit 120 has a second light L2 having a second wavelength longer than the first wavelength. ) Can be detected.
  • the semiconductor substrate 102 may block the first light L1 having the first wavelength so that the first light L1 does not pass to the lower portion thereof and pass the second light L2 having the second wavelength.
  • the first light L1 comprises visible light having a wavelength in the range of about 380 nm to 650 nm and / or near infrared light (NIR) in the range of about 780 nm to about 1400 nm
  • the second light L2. May comprise mid-infrared (MIR) having a wavelength in the range of about 1400 nm to 3500 nm and / or far-infrared (FIR) in the range of about 1400 nm to 14 um.
  • MIR mid-infrared
  • FIR far-infrared
  • the semiconductor substrate 102 can function as an infrared pass filter.
  • the semiconductor substrate 102 may include silicon, germanium or silicon-germanium.
  • the first sensor unit 110 may function as an illuminance sensor that absorbs at least a portion of the first light L1 and detects ambient light.
  • the first sensor unit 110 may include a solar sensor such as a photovoltaic sensor or a photoconductive sensor.
  • the first sensor unit 110 may simultaneously perform a sensor function of blocking the first light L1 and passing the second light L2 to detect the first light L1.
  • the first sensor unit 110 may include a semiconductor substrate 102, a first conductivity type semiconductor layer 106, and a second conductivity type semiconductor layer 104.
  • the semiconductor substrate 102 is an intrinsic semiconductor
  • the first conductivity type semiconductor layer 106 is provided on one surface of the semiconductor substrate 102
  • the second conductivity type semiconductor layer 104 is the semiconductor substrate 102. It may be disposed on the other side of the).
  • the first conductivity-type semiconductor layer 106 is a p-type doped layer formed by doping p-type impurities on one surface of the semiconductor substrate 102
  • the second conductivity-type semiconductor layer 104 is the other surface of the semiconductor substrate 102. It may be an n-type doping layer formed by doping the n-type impurities to.
  • the first sensor unit 110 may generate electromotive force by moving the photoelectrons generated by absorbing the first light L1.
  • the electromotive force may be transmitted to the outside through the first electrode 114 electrically connected to the first conductivity type semiconductor layer 106 and the second electrode 112 electrically connected to the second conductivity type semiconductor layer 104.
  • the first electrode 114 becomes a positive pole and the second electrode 112-can be a pole.
  • the first electrode 114 is directly connected to the first conductivity type semiconductor layer 106 on one surface of the semiconductor substrate 102, and the second electrode 112 is formed on the other surface of the semiconductor substrate 102.
  • the second conductive semiconductor layer 104 may be directly connected to the second conductive semiconductor layer 104.
  • the arrangement of the first and second electrodes 114 and 112 may be variously modified as described below.
  • the second sensor unit 120 is formed on one surface of the semiconductor substrate 102 to detect the second light L2 irradiated through the first sensor unit 110 from the other surface of the semiconductor substrate 102.
  • the second sensor unit 120 may function as an infrared sensor.
  • the second sensor unit 120 may include various infrared sensors, such as a thermopile sensor, a bolometer sensor, or a pyrometer sensor.
  • the thermopile sensor generates thermal energy as an electrical signal by the Seebeck effect
  • the bolometer sensor generates an electrical signal as a resistance change with temperature
  • the pyrometer sensor radiates with temperature due to a pyroelectric phenomenon. Energy can be generated as an electrical signal.
  • the semiconductor substrate 102 may include a groove 108 recessed inwardly from one surface thereof. At least a portion of the second sensor unit 120 may be disposed on the groove 108 to be thermally insulated from the semiconductor substrate 102. That is, infrared or heat is lost to the semiconductor substrate 102 by being disposed on the groove 108 so that the high temperature portion of the second sensor unit 120 that absorbs the second light L2 is not directly in contact with the semiconductor substrate 102. Can reduce the amount of
  • the second sensor unit 120 may include sensing members 124 and 126 on one surface of the semiconductor substrate 102.
  • the lower insulating layer 122 may be stacked on the semiconductor substrate 102, and the sensing members 124 and 126 may be stacked on the lower insulating layer 122 to be insulated from the semiconductor substrate 102.
  • the lower insulating layer 122 may include various insulators such as oxides, nitrides, and polyimides.
  • the light absorbing layer 130 may be disposed to face the groove 108 on the lower insulating layer 122 opposite to the sensing members 124 and 126.
  • the light absorption layer 130 may be formed of a black material having a high absorption rate with respect to the second light L2, for example, infrared light.
  • the light absorption layer 130 may include one or a stacked structure of a polymer, black gold, black carbon, carbon nano-tube, metal oxide film, and metal nitride film. have.
  • the sensing members 124 and 126 may include an n-type thermoelectric member and a p-type thermoelectric member coupled to each other.
  • the plurality of n-type thermoelectric members and the plurality of p-type thermoelectric members may be paired in series.
  • the n-type thermoelectric member includes bismuth cellulose (Bi 2 Te 3 ), lead telluride (PbTe), n-doped Si, n-doped Ge, and n-doped Silicon Germanium (n-doped) SiGe) may be included.
  • the center portion When an infrared ray is incident on a portion of the sensing members 124 and 126 through the light absorbing layer 130, for example, the center portion may be a relatively high temperature portion, and the end portion may be a relatively low temperature portion. Accordingly, electromotive force may be generated in the sensing members 124 and 126 by the Seebeck effect.
  • An end portion of the p-type thermoelectric member may be a + pole, and a central portion thereof may be a ⁇ pole, and an end portion of the n type thermoelectric member may be a ⁇ pole, and the center portion thereof may be a + pole.
  • the third electrode 132 connected to the end of the sensing member 124 may be a positive electrode.
  • the sensing member 126 may be an n-type thermoelectric member, and the fourth electrode 134 connected to the end of the sensing member 126 may be a -pole.
  • the second sensor unit 120 is a bolometer sensor or a pyrometer sensor
  • the material, number and arrangement of the sensing members 124 and 126 may be appropriately modified according to the purpose.
  • the integrated dual sensor described above may be used in various lighting recognition human body sensing devices such as an auto flasher or a brightness control monitor by combining the first sensor unit 110 and the second sensor unit 120. Accordingly, as the first sensor unit 110 and the second sensor unit 120 are integrally combined with the semiconductor substrate 102, the volume of the dual sensor can be greatly reduced, thereby miniaturizing the electronic product equipped with the dual sensor. Becomes possible. In addition, as the first sensor unit 110 and the second sensor unit 120 are integrally coupled, the signal processing may be shortened, thereby increasing the processing speed.
  • the first sensor unit 110 may detect illuminance, and the second sensor unit 120 may detect a movement of an object that emits heat.
  • the first electrical signal generated from the first sensor unit 110 may exceed a set reference, and thus the controller (not shown) may provide an off signal to the lighting device. .
  • the controller may provide an off signal to the lighting device.
  • the lighting device is not turned on even when the second electrical signal is provided to the controller.
  • the first electrical signal may not reach the set reference, and in this case, the controller controls the lighting device according to the second electrical signal.
  • the second electrical signal is not generated and thus the control unit provides an off signal to the lighting device, and thus the lighting device is not turned on.
  • a second electrical signal is generated from the second sensor unit 120 by the infrared rays generated from the living body so that the controller provides an on signal to the lighting device, and thus the lighting device is turned on.
  • FIG. 2 is a schematic cross-sectional view showing an integrated dual sensor according to another embodiment of the present invention.
  • the integrated dual sensor according to this embodiment corresponds to the addition of some configuration to the integrated dual sensor of FIG. 1, and thus duplicated description is omitted in the two embodiments.
  • a readout integrated circuit (ROIC) 150 may be coupled to one side of the semiconductor substrate 102.
  • the read integrated circuit 150 may serve as a controller for controlling the first sensor unit 110 and the second sensor unit 120. Accordingly, the first and second electrodes 114 and 112 of the first sensor unit 110 and the third and fourth electrodes 132 and 134 of the second sensor unit 120 are read integrated circuit 150. It may be electrically connected to the input and output unit of the).
  • FIG. 3 is a schematic cross-sectional view showing an integrated dual sensor according to another embodiment of the present invention.
  • the integrated dual sensor according to this embodiment corresponds to a modification or addition of some components in the integrated dual sensor of FIG. 1, and thus, redundant descriptions in the two embodiments are omitted.
  • the second electrode 112a may be disposed on one surface of the semiconductor substrate 102.
  • the through via 111 may extend from the second semiconductor layer 104 through the semiconductor substrate 102, and the second electrode 112a may be disposed on the through via 111. Accordingly, the second electrode 112a may be electrically connected to the second semiconductor layer 104 through the through via 111.
  • the through via 111 may be electrically insulated from the semiconductor substrate 102 by an insulating spacer (not shown).
  • the first conductivity-type semiconductor layer 106 is shown so as not to extend onto the semiconductor substrate 102 where the through vias 111 are disposed, but may be electrically insulated from each other by an insulating spacer, so that the first conductive semiconductor layer 106 is not shown in FIG. It may be stretched entirely onto the semiconductor substrate 102 as shown.
  • all of the first to fourth electrodes 114, 112a, 132, and 134 may be disposed in one direction, thereby facilitating connection with an external device.
  • FIG. 4 is a schematic cross-sectional view showing an integrated dual sensor according to another embodiment of the present invention.
  • the integrated dual sensor according to this embodiment corresponds to the addition of some configuration to the integrated dual sensor of FIG. 3, and thus redundant descriptions are omitted in the embodiments.
  • a read integrated circuit (ROIC) 150 may be coupled to a lower portion of the semiconductor substrate 102.
  • the read integrated circuit 150 may serve as a controller for controlling the first sensor unit 110 and the second sensor unit 120. Since all of the first to fourth electrodes 114, 112a, 132, and 134 are disposed on one surface of the semiconductor substrate 102, the first and fourth electrodes 114, 112a, 132, and 134 may be easily electrically connected to the input / output unit of the read integrated circuit 150. .
  • the semiconductor substrate 102 and the read integrated circuit 150 may be integrally bonded to each other via an insulating adhesive.
  • FIG. 5 is a schematic cross-sectional view showing an integrated dual sensor according to another embodiment of the present invention.
  • the dual sensor according to this embodiment is a modification or addition of some structure in the dual sensor according to the embodiments of FIGS. 1 to 4 described above, and duplicated description is omitted in these embodiments.
  • the sensor substrate 121 may be coupled to the lower portion of the semiconductor substrate 102.
  • the semiconductor substrate 102 and the sensor substrate 121 may be combined in various ways, for example, may be bonded through an adsorbent therebetween.
  • the sensor substrate 121 may include various materials such as a semiconductor substrate, a glass substrate, and a flexible substrate.
  • the second sensor unit 120 may be mounted on the sensor substrate 121.
  • a groove corresponding to the groove 108 of the semiconductor substrate 102 may be dug in the surface of the sensor substrate 121, and the second sensor unit 120 may be mounted on the groove. Accordingly, at least a part of the second sensor unit 120 may be disposed in an inner space formed by the groove 108 of the semiconductor substrate 102 and the groove of the sensor substrate 121.
  • the lower insulating layer 122 may be formed on the sensor substrate 121, and the sensing members 124 and 126 may be formed on the lower insulating layer 122. have.
  • the light absorption layer 130 may be formed on the lower insulating layer 122 to cover a part of the sensing members 124 and 126, for example, a central portion.
  • the capping semiconductor layer 102 is disposed on the sensor substrate 121 on which the second sensor unit 120 is mounted, and the first sensor unit 110 is formed on the semiconductor layer 102. By doing this, a dual sensor can be formed.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

An integrated dual sensor according to one aspect of the present invention comprises a semiconductor substrate which blocks a first light having a first wavelength from passing therebelow, and which allows a second light having a second wavelength that is longer than the first wavelength to pass therethrough. A first sensor unit comprises the semiconductor substrate and absorbs and senses at least a portion of the first light. A second sensor unit is formed on one surface of the semiconductor substrate and senses the second light which has passed through the first sensor unit.

Description

일체형 듀얼 센서Integrated dual sensor
본 발명은 전자 센서에 관한 것으로서, 특히 한 쌍의 센서가 하나의 기판에 결합된 일체형 센서에 관한 것이다.The present invention relates to electronic sensors, and more particularly, to an integrated sensor in which a pair of sensors are coupled to one substrate.
에너지 효율성 증가 및 절약을 위하여, 외부 밝기에 따라 자동 점멸되는 조명 기구나 모니터 등과 같은 에너지 효율성 전자 제품들이 사용되고 있다. 이러한 전자 제품들은 주변 밝기를 감지하는 조도 센서와 인체열을 감지하기 위한 적외선 센서를 포함한다. 조도 센서는 외부 환경의 가시광선의 밝기를 감지하여 그에 따라 조명 기구의 점멸 또는 모니터의 밝기 제어를 할 수 있고, 적외선 센서는 생체와 같이 열을 발산하는 물체에서 나오는 적외선을 감지하여 조명 기구의 점멸 또는 모니터의 밝기 제어를 할 수 있다.In order to increase and save energy, energy-efficient electronic products such as a luminaire or a monitor that flashes automatically according to the external brightness are used. These electronic products include an illumination sensor for detecting ambient brightness and an infrared sensor for detecting human heat. The illuminance sensor detects the brightness of visible light of the external environment and controls the blinking of the lighting fixture or the brightness of the monitor accordingly, and the infrared sensor detects the infrared light emitted from an object emitting heat, such as a living body, You can control the brightness of the monitor.
하지만, 이러한 조도 센서와 적외선 센서는 각각 별개의 제품으로 구성되어 있으며, 따라서 전자 제품의 소형화에 한계가 있다. However, the illuminance sensor and the infrared sensor are each composed of separate products, and thus there is a limit in miniaturization of electronic products.
본 발명은 상기와 같은 문제점을 포함하여 여러 문제점들을 해결하기 위한 것으로서, 소형화가 가능한 일체형 센서를 제공하는 것을 목적으로 한다. 그러나 이러한 과제는 예시적인 것으로, 이에 의해 본 발명의 범위가 한정되는 것은 아니다.The present invention has been made to solve various problems including the above problems, and an object thereof is to provide an integrated sensor which can be miniaturized. However, these problems are exemplary, and the scope of the present invention is not limited thereby.
본 발명의 일 관점에 따른 일체형 듀얼 센서가 제공된다. 제 1 파장을 갖는 제 1 광은 그 하부로 통과되지 않도록 차단하고 상기 제 1 파장에 비해서 긴 제 2 파장을 갖는 제 2 광은 통과시키는 반도체 기판이 제공된다. 제 1 센서부는 상기 반도체 기판을 포함하고, 상기 제 1 광의 적어도 일부를 흡수하여 감지한다. 제 2 센서부는 상기 반도체 기판의 일면 상에 형성되고, 상기 제 1 센서부를 통과한 상기 제 2 광을 감지한다.An integrated dual sensor according to one aspect of the present invention is provided. A semiconductor substrate is provided which blocks a first light having a first wavelength from passing below and passes a second light having a second wavelength longer than the first wavelength. The first sensor unit includes the semiconductor substrate and absorbs and detects at least a portion of the first light. The second sensor unit is formed on one surface of the semiconductor substrate and senses the second light passing through the first sensor unit.
상기 일체형 듀얼 센서에 있어서, 상기 제 1 광은 가시광선 또는 근적외선을 포함하고 상기 제 2 광은 중적외선 또는 원적외선을 포함하며, 상기 반도체 기판은 적외선 패스 필터로 기능하고 상기 제 1 센서부는 가시광선 감지형 조도센서로 기능하고, 상기 제 2 센서부는 적외선 감지형 인체센서로 기능할 수 있다.In the integrated dual sensor, the first light includes visible light or near infrared light, and the second light includes mid infrared light or far infrared light, the semiconductor substrate functions as an infrared pass filter, and the first sensor part detects visible light. It functions as a type illuminance sensor, and the second sensor unit may function as an infrared sensor.
상기 일체형 듀얼 센서에 있어서, 상기 제 1 센서부는 광전자 센서(photovoltaic sensor) 또는 광전도 센서(photoconductive sensor)를 포함할 수 있다.In the integrated dual sensor, the first sensor unit may include a photovoltaic sensor or a photoconductive sensor.
상기 일체형 듀얼 센서에 있어서, 상기 제 1 센서부는, 상기 반도체 기판의 일면 상의 제 1 도전형 반도체층; 및 상기 반도체 기판의 타면 상의 제 2 도전형 반도체층을 더 포함할 수 있다. 나아가, 상기 제 1 도전형 반도체층은 p형 도핑층을 포함하고, 상기 제 2 도전형 반도체층은 n형 도핑층을 포함할 수 있다.In the integrated dual sensor, the first sensor unit, the first conductive semiconductor layer on one surface of the semiconductor substrate; And a second conductivity type semiconductor layer on the other surface of the semiconductor substrate. Further, the first conductive semiconductor layer may include a p-type doping layer, and the second conductive semiconductor layer may include an n-type doping layer.
상기 일체형 듀얼 센서에 있어서, 상기 제 1 센서부는, 상기 제 1 도전형 반도체층에 전기적으로 연결되도록 상기 반도체 기판의 일면 상에 배치된 제 1 전극; 상기 제 2 도전형 반도체층으로부터 상기 반도체 기판을 관통하여 상기 반도체 기판의 일면 상으로 신장된 관통 비어; 및 상기 관통 비어에 전기적으로 연결되도록 상기 반도체 기판의 일면 상에 배치된 제 2 전극을 더 포함할 수 있다.The integrated dual sensor of claim 1, wherein the first sensor unit comprises: a first electrode disposed on one surface of the semiconductor substrate to be electrically connected to the first conductive semiconductor layer; A through via extending from the second conductive semiconductor layer through the semiconductor substrate and extending onto one surface of the semiconductor substrate; And a second electrode disposed on one surface of the semiconductor substrate to be electrically connected to the through via.
상기 일체형 듀얼 센서에 있어서, 상기 반도체 기판은 상기 반도체 기판의 일면 표면으로부터 내부로 파인 홈을 포함하고, 상기 제 2 센서부의 적어도 일부는 상기 홈 상에 이격 배치되어 상기 반도체 기판으로부터 열적으로 절연될 수 있다.In the integrated dual sensor, the semiconductor substrate may include a groove recessed inwardly from one surface of the semiconductor substrate, and at least a portion of the second sensor unit may be spaced apart from the groove and thermally insulated from the semiconductor substrate. have.
상기 일체형 듀얼 센서에 있어서, 상기 제 2 센서부는 상기 홈을 마주하도록 배치된 광흡수층을 포함할 수 있다.In the integrated dual sensor, the second sensor unit may include a light absorption layer disposed to face the groove.
상기 일체형 듀얼 센서에 있어서, 상기 제 2 센서부는 써모파일(thermopile) 센서, 볼로미터(bolometer) 센서 또는 파이로미터(pyrometer) 센서를 포함할 수 있다.In the integrated dual sensor, the second sensor unit may include a thermopile sensor, a bolometer sensor, or a pyrometer sensor.
상기 일체형 듀얼 센서는, 상기 제 1 센서부 및 상기 제 2 센서부에 전기적으로 연결된 판독집적회로(ROIC)를 더 포함할 수 있다.The integrated dual sensor may further include a read integrated circuit (ROIC) electrically connected to the first sensor unit and the second sensor unit.
본 발명의 다른 관점에 따른 일체형 듀얼 센서가 제공된다. 제 1 파장을 갖는 제 1 광은 그 하부로 통과되지 않도록 차단하고 상기 제 1 파장에 비해서 긴 제 2 파장을 갖는 제 2 광은 통과시키는 반도체 기판이 제공된다. 제 1 센서부는 상기 반도체 기판을 포함하고, 상기 제 1 광의 적어도 일부를 흡수하여 감지하도로 제공된다. 센서 기판은 상기 반도체 기판 아래에 결합되도록 제공된다. 제 2 센서부는 상기 센서 기판 상에 탑재되고, 상기 제 1 센서부를 통과한 상기 제 2 광을 감지하도록 제공된다.According to another aspect of the present invention, an integrated dual sensor is provided. A semiconductor substrate is provided which blocks a first light having a first wavelength from passing below and passes a second light having a second wavelength longer than the first wavelength. The first sensor unit includes the semiconductor substrate and is provided to absorb and detect at least a portion of the first light. A sensor substrate is provided to be coupled below the semiconductor substrate. The second sensor unit is mounted on the sensor substrate and provided to sense the second light passing through the first sensor unit.
상기한 바와 같이 이루어진 본 발명의 일 실시예에 따른 일체형 듀얼 센서는 가시광선을 감지하고 차단하는 센서와 적외선을 감지하는 센서를 기판 상에 일체로 구성할 수 있고, 이에 따라 제품의 소형화를 구현할 수 있다. 이러한 효과는 예시적으로 기재되었고, 이러한 효과에 의해 본 발명의 범위가 한정되는 것은 아니다.Integrated dual sensor according to an embodiment of the present invention made as described above can be configured to integrate a sensor for detecting and blocking visible light and a sensor for detecting infrared rays on the substrate, thereby miniaturizing the product have. These effects have been described by way of example, and the scope of the present invention is not limited by these effects.
도 1은 본 발명의 일 실시예에 따른 일체형 듀얼 센서를 보여주는 개략적인 단면도이다.1 is a schematic cross-sectional view showing an integrated dual sensor according to an embodiment of the present invention.
도 2는 본 발명의 다른 실시예에 따른 일체형 듀얼 센서를 보여주는 개략적인 단면도이다.2 is a schematic cross-sectional view showing an integrated dual sensor according to another embodiment of the present invention.
도 3은 본 발명의 또 다른 실시예에 따른 일체형 듀얼 센서를 보여주는 개략적인 단면도이다.3 is a schematic cross-sectional view showing an integrated dual sensor according to another embodiment of the present invention.
도 4는 본 발명의 또 다른 실시예에 따른 일체형 듀얼 센서를 보여주는 개략적인 단면도이다.4 is a schematic cross-sectional view showing an integrated dual sensor according to another embodiment of the present invention.
도 5는 본 발명의 또 다른 실시예에 따른 일체형 듀얼 센서를 보여주는 개략적인 단면도이다.5 is a schematic cross-sectional view showing an integrated dual sensor according to another embodiment of the present invention.
이하, 첨부된 도면들을 참조하여 본 발명의 실시예를 상세히 설명하면 다음과 같다. 그러나 본 발명은 이하에서 개시되는 실시예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있는 것으로, 이하의 실시예는 본 발명의 개시가 완전하도록 하며, 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다. 또한 설명의 편의를 위하여 도면에서는 구성 요소들이 그 크기가 과장 또는 축소될 수 있다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below, but can be implemented in various forms, and the following embodiments are intended to complete the disclosure of the present invention, the scope of the invention to those skilled in the art It is provided to inform you completely. In addition, the components may be exaggerated or reduced in size in the drawings for convenience of description.
도 1은 본 발명의 일 실시예에 따른 일체형 듀얼 센서를 보여주는 개략적인 단면도이다.1 is a schematic cross-sectional view showing an integrated dual sensor according to an embodiment of the present invention.
도 1을 참조하면, 일체형 듀얼 센서는 반도체 기판(102)에 일체형으로 결합된 제 1 센서부(110) 및 제 2 센서부(120)를 포함할 수 있다. 제 1 센서부(110) 및 제 2 센서부(120)는 외부 광을 파장에 따라서 분리하여 감지할 수 있다. 예를 들어, 제 1 센서부(110)는 제 1 파장을 갖는 제 1 광(L1)을 감지하고, 제 2 센서부(120)는 제 1 파장보다 긴 제 2 파장을 갖는 제 2 광(L2)을 감지할 수 있다.Referring to FIG. 1, the integrated dual sensor may include a first sensor unit 110 and a second sensor unit 120 integrally coupled to the semiconductor substrate 102. The first sensor unit 110 and the second sensor unit 120 may separate and detect external light according to a wavelength. For example, the first sensor unit 110 senses a first light L1 having a first wavelength, and the second sensor unit 120 has a second light L2 having a second wavelength longer than the first wavelength. ) Can be detected.
반도체 기판(102)은 제 1 파장을 갖는 제 1 광(L1)은 그 하부로 통과되지 않도록 차단하고 제 2 파장을 갖는 제 2 광(L2)은 통과시킬 수 있다. 예를 들어, 제 1 광(L1)은 약 380 nm 내지 650 nm 범위의 파장을 갖는 가시광선 및/또는 약 780 nm 내지 약 1400 nm 범위의 근적외선(NIR)을 포함하고, 제 2 광(L2)은 약 1400 nm 내지 3500 nm 범위의 파장을 갖는 중적외선(MIR) 및/또는 약 1400 nm 내지 14um 범위의 원적외선(FIR)을 포함할 수 있다. 이러한 의미에서, 반도체 기판(102)은 적외선 패스 필터로 기능할 수 있다. 예를 들어, 반도체 기판(102)은 실리콘, 게르마늄 또는 실리콘-게르마늄을 포함할 수 있다.The semiconductor substrate 102 may block the first light L1 having the first wavelength so that the first light L1 does not pass to the lower portion thereof and pass the second light L2 having the second wavelength. For example, the first light L1 comprises visible light having a wavelength in the range of about 380 nm to 650 nm and / or near infrared light (NIR) in the range of about 780 nm to about 1400 nm, and the second light L2. May comprise mid-infrared (MIR) having a wavelength in the range of about 1400 nm to 3500 nm and / or far-infrared (FIR) in the range of about 1400 nm to 14 um. In this sense, the semiconductor substrate 102 can function as an infrared pass filter. For example, the semiconductor substrate 102 may include silicon, germanium or silicon-germanium.
제 1 센서부(110)는 제 1 광(L1)의 적어도 일부를 흡수하여 주변 조명을 감지하는 조도센서로 기능할 수 있다. 예를 들어, 제 1 센서부(110)는 광전자 센서(photovoltaic sensor) 또는 광전도 센서(photoconductive sensor)와 같은 광센서(solar sensor)를 포함할 수 있다. 제 1 센서부(110)는 제 1 광(L1)을 차단하고 제 2 광(L2)을 통과시키는 필터 기능을 하면서 제 1 광(L1)을 감지하는 센서 기능을 동시에 수행할 수 있다.The first sensor unit 110 may function as an illuminance sensor that absorbs at least a portion of the first light L1 and detects ambient light. For example, the first sensor unit 110 may include a solar sensor such as a photovoltaic sensor or a photoconductive sensor. The first sensor unit 110 may simultaneously perform a sensor function of blocking the first light L1 and passing the second light L2 to detect the first light L1.
제 1 센서부(110)는 반도체 기판(102), 제 1 도전형 반도체층(106) 및 제 2 도전형 반도체층(104)을 포함할 수 있다. 예를 들어, 반도체 기판(102)은 진성 반도체이고, 제 1 도전형 반도체층(106)은 반도체 기판(102)의 일면 상에 제공되고, 제 2 도전형 반도체층(104)은 반도체 기판(102)의 타면 상에 배치될 수 있다. 예컨대, 제 1 도전형 반도체층(106)은 반도체 기판(102)의 일면에 p형 불순물을 도핑하여 형성된 p형 도핑층이고, 제 2 도전형 반도체층(104)은 반도체 기판(102)의 타면에 n형 불순물을 도핑하여 형성된 n형 도핑층일 수 있다.The first sensor unit 110 may include a semiconductor substrate 102, a first conductivity type semiconductor layer 106, and a second conductivity type semiconductor layer 104. For example, the semiconductor substrate 102 is an intrinsic semiconductor, the first conductivity type semiconductor layer 106 is provided on one surface of the semiconductor substrate 102, and the second conductivity type semiconductor layer 104 is the semiconductor substrate 102. It may be disposed on the other side of the). For example, the first conductivity-type semiconductor layer 106 is a p-type doped layer formed by doping p-type impurities on one surface of the semiconductor substrate 102, and the second conductivity-type semiconductor layer 104 is the other surface of the semiconductor substrate 102. It may be an n-type doping layer formed by doping the n-type impurities to.
제 1 센서부(110)는 제 1 광(L1)을 흡수하여 발생된 광전자를 이동시켜 기전력을 발생시킬 수 있다. 이러한 기전력은 제 1 도전형 반도체층(106)에 전기적으로 연결된 제 1 전극(114) 및 제 2 도전형 반도체층(104)에 전기적으로 연결된 제 2 전극(112)을 통해서 외부로 전달될 수 있다. 예를 들어, 제 1 도전형 반도체층(106)이 p형 도핑층이고 제 2 도전형 반도체층(104)이 n형 도핑층인 경우, 제 1 전극(114)이 + 극이 되고 제 2 전극(112)이 - 극이 될 수 있다.The first sensor unit 110 may generate electromotive force by moving the photoelectrons generated by absorbing the first light L1. The electromotive force may be transmitted to the outside through the first electrode 114 electrically connected to the first conductivity type semiconductor layer 106 and the second electrode 112 electrically connected to the second conductivity type semiconductor layer 104. . For example, when the first conductivity-type semiconductor layer 106 is a p-type doped layer and the second conductivity-type semiconductor layer 104 is an n-type doped layer, the first electrode 114 becomes a positive pole and the second electrode 112-can be a pole.
이 실시예에서, 제 1 전극(114)은 반도체 기판(102)의 일면 상의 제 1 도전형 반도체층(106)에 직접 연결되고, 제 2 전극(112)은 반도체 기판(102)의 타면 상의 제 2 도전형 반도체층(104)에 직접 연결될 수 있다. 이러한 제 1 및 제 2 전극들(114, 112)의 배치는 후술하는 바와 같이 다양하게 변형될 수 있다.In this embodiment, the first electrode 114 is directly connected to the first conductivity type semiconductor layer 106 on one surface of the semiconductor substrate 102, and the second electrode 112 is formed on the other surface of the semiconductor substrate 102. The second conductive semiconductor layer 104 may be directly connected to the second conductive semiconductor layer 104. The arrangement of the first and second electrodes 114 and 112 may be variously modified as described below.
제 2 센서부(120)는 반도체 기판(102)의 일면 상에 형성되어, 반도체 기판(102)의 타면으로부터 제 1 센서부(110)를 통과하여 조사된 제 2 광(L2)을 감지할 수 있다. 예를 들어, 제 2 센서부(120)는 적외선 감지형 인체센서로 기능할 수 있다. 제 2 센서부(120)는 다양한 적외선 센서, 예컨대 써모파일(thermopile) 센서, 볼로미터(bolometer) 센서 또는 파이로미터(pyrometer) 센서를 포함할 수 있다. 써모파일 센서는 제벡(seebeck) 효과에 의하여 열에너지를 전기적 신호로 생성하고, 볼로미터 센서는 온도에 따른 저항 변화를 전기적 신호로 생성하고, 파이로미터 센서는 초전(pyroelectric) 현상에 의하여 온도에 따른 복사에너지를 전기적 신호로 생성할 수 있다.The second sensor unit 120 is formed on one surface of the semiconductor substrate 102 to detect the second light L2 irradiated through the first sensor unit 110 from the other surface of the semiconductor substrate 102. have. For example, the second sensor unit 120 may function as an infrared sensor. The second sensor unit 120 may include various infrared sensors, such as a thermopile sensor, a bolometer sensor, or a pyrometer sensor. The thermopile sensor generates thermal energy as an electrical signal by the Seebeck effect, the bolometer sensor generates an electrical signal as a resistance change with temperature, and the pyrometer sensor radiates with temperature due to a pyroelectric phenomenon. Energy can be generated as an electrical signal.
제 2 센서부(120)의 열적 절연을 위하여, 반도체 기판(102)은 그 일면 표면으로부터 내부로 파인 홈(108)을 포함할 수 있다. 제 2 센서부(120)의 적어도 일부는 홈(108) 상에 이격되게 배치되어, 반도체 기판(102)으로부터 열적으로 절연될 수 있다. 즉, 제 2 광(L2)을 흡수하는 제 2 센서부(120)의 고온부가 반도체 기판(102)과 직접 접촉되지 않도록 홈(108) 상에 배치됨으로써 적외선 또는 열이 반도체 기판(102)으로 손실되는 것을 줄일 수 있다.In order to thermally insulate the second sensor unit 120, the semiconductor substrate 102 may include a groove 108 recessed inwardly from one surface thereof. At least a portion of the second sensor unit 120 may be disposed on the groove 108 to be thermally insulated from the semiconductor substrate 102. That is, infrared or heat is lost to the semiconductor substrate 102 by being disposed on the groove 108 so that the high temperature portion of the second sensor unit 120 that absorbs the second light L2 is not directly in contact with the semiconductor substrate 102. Can reduce the amount of
예를 들어, 제 2 센서부(120)는 반도체 기판(102)의 일면 상의 감지부재들(124, 126)을 포함할 수 있다. 선택적으로, 하부 절연층(122)이 반도체 기판(102) 상에 적층되고, 이러한 감지부재들(124, 126)은 하부 절연층(122) 상에 적층되어, 반도체 기판(102)으로부터 절연될 수 있다. 하부 절연층(122)은 산화물, 질화물, 폴리이미드와 같은 다양한 절연물을 포함할 수 있다.For example, the second sensor unit 120 may include sensing members 124 and 126 on one surface of the semiconductor substrate 102. Optionally, the lower insulating layer 122 may be stacked on the semiconductor substrate 102, and the sensing members 124 and 126 may be stacked on the lower insulating layer 122 to be insulated from the semiconductor substrate 102. have. The lower insulating layer 122 may include various insulators such as oxides, nitrides, and polyimides.
광흡수층(130)은 감지부재들(124, 126)반대편 하부 절연층(122) 상에 홈(108)을 마주하도록 배치될 수 있다. 광흡수층(130)은 제 2 광(L2), 예컨대 적외선에 대한 흡수율이 높은 흑색 재질로 구성될 수 있다. 예컨대, 광흡수층(130)은 폴리머, 블랙 골드(black gold), 블랙 카본(black carbon), 카본나노튜브(carbon nano-tube), 금속 산화막, 금속 질화막의 하나 또는 이들의 적층 구조를 포함할 수 있다.The light absorbing layer 130 may be disposed to face the groove 108 on the lower insulating layer 122 opposite to the sensing members 124 and 126. The light absorption layer 130 may be formed of a black material having a high absorption rate with respect to the second light L2, for example, infrared light. For example, the light absorption layer 130 may include one or a stacked structure of a polymer, black gold, black carbon, carbon nano-tube, metal oxide film, and metal nitride film. have.
제 2 센서부(120)가 써모파일 센서인 경우, 감지부재들(124, 126)은 서로 결합된 n형 열전부재(n-type thermoelectric member)와 p형 열전부재를 포함할 수 있다. 신호 증폭을 위하여, 복수의 n형 열전부재들과 복수의 p형 열전부재들은 쌍을 이루어 순차로 직렬 연결될 수 있다. 예를 들어, p형 열전부재는 안티모니텔루라이드(Sb2Te3), 비스무스 도핑 안티모니텔루라이드 (Bix2-xSb2-xTe3, x=0~1), p-도핑 실리콘(p-doped Si), p-도핑 게르마늄(p-doped Ge) 및 p-도핑 실리콘게르마늄(p-doped SiGe) 중 적어도 어느 하나를 포함할 수 있다. n형 열전부재는 비스무스텔루라이드(Bi2Te3), 리드텔루라이드(PbTe), n 도핑 실리콘(n-doped Si), n 도핑 게르마늄(n-doped Ge) 및 n 도핑 실리콘게르마늄(n-doped SiGe) 중 적어도 어느 하나를 포함할 수 있다.When the second sensor unit 120 is a thermopile sensor, the sensing members 124 and 126 may include an n-type thermoelectric member and a p-type thermoelectric member coupled to each other. For signal amplification, the plurality of n-type thermoelectric members and the plurality of p-type thermoelectric members may be paired in series. For example, the p-type thermoelectric member may include antimony telluride (Sb 2 Te 3 ), bismuth doped antimony telluride (Bi x2-x Sb 2-x Te 3 , x = 0 to 1), and p-doped silicon ( p-doped Si), p-doped germanium (p-doped Ge) and p-doped silicon germanium (p-doped SiGe) may include at least one. The n-type thermoelectric member includes bismuth cellulose (Bi 2 Te 3 ), lead telluride (PbTe), n-doped Si, n-doped Ge, and n-doped Silicon Germanium (n-doped) SiGe) may be included.
광흡수층(130)을 통해서 감지부재들(124, 126)의 일부, 예컨대 중심부에 적외선이 입사되면 중심부가 상대적으로 고온부가 되고, 단부가 상대적으로 저온부가 될 수 있다. 이에 따라, 제벡(seebeck) 효과에 의해서, 감지부재들(124, 126) 내에 기전력이 발생될 수 있다. p형 열전부재의 단부가 +극, 그 중심부가 -극이 되고, n형 열전부재의 단부가 -극, 그 중심부가 +극이 될 수 있다. 예를 들어, 감지부재(124)가 p형 열전부재인 경우, 감지부재(124)의 단부에 연결된 제 3 전극(132)은 +극이 될 수 있다. 이 경우, 감지부재(126)는 n형 열전부재가 되고, 감지부재(126)의 단부에 연결된 제 4 전극(134)은 -극이 될 수 있다.When an infrared ray is incident on a portion of the sensing members 124 and 126 through the light absorbing layer 130, for example, the center portion may be a relatively high temperature portion, and the end portion may be a relatively low temperature portion. Accordingly, electromotive force may be generated in the sensing members 124 and 126 by the Seebeck effect. An end portion of the p-type thermoelectric member may be a + pole, and a central portion thereof may be a − pole, and an end portion of the n type thermoelectric member may be a − pole, and the center portion thereof may be a + pole. For example, when the sensing member 124 is a p-type thermoelectric member, the third electrode 132 connected to the end of the sensing member 124 may be a positive electrode. In this case, the sensing member 126 may be an n-type thermoelectric member, and the fourth electrode 134 connected to the end of the sensing member 126 may be a -pole.
한편, 제 2 센서부(120)가 볼로미터 센서 또는 파이로미터 센서인 경우, 감지부재들(124, 126)의 물질, 수 및 배치는 그 용도에 따라서 적절하게 변형될 수 있다.On the other hand, when the second sensor unit 120 is a bolometer sensor or a pyrometer sensor, the material, number and arrangement of the sensing members 124 and 126 may be appropriately modified according to the purpose.
전술한 일체형 듀얼 센서는 제 1 센서부(110)와 제 2 센서부(120)를 결합함으로써 다양한 조명인식형 인체감지소자, 예컨대 자동 점멸식 조명 기구 또는 밝기 제어식 모니터 등에 이용될 수 있다. 이에 따르면, 제 1 센서부(110)와 제 2 센서부(120)가 반도체 기판(102)과 일체형으로 결합됨에 따라서, 듀얼 센서의 부피를 크게 줄일 수 있어서 이러한 듀얼 센서를 탑재한 전자 제품의 소형화가 가능해진다. 부가적으로, 제 1 센서부(110)와 제 2 센서부(120)가 일체형으로 결합됨에 따라서 신호 처리가 짧아져 처리 속도가 빨라질 수도 있다.The integrated dual sensor described above may be used in various lighting recognition human body sensing devices such as an auto flasher or a brightness control monitor by combining the first sensor unit 110 and the second sensor unit 120. Accordingly, as the first sensor unit 110 and the second sensor unit 120 are integrally combined with the semiconductor substrate 102, the volume of the dual sensor can be greatly reduced, thereby miniaturizing the electronic product equipped with the dual sensor. Becomes possible. In addition, as the first sensor unit 110 and the second sensor unit 120 are integrally coupled, the signal processing may be shortened, thereby increasing the processing speed.
이하에서는 이러한 일체형 듀얼 센서를 조명 장치의 자동 점멸을 위하여 사용되는 경우를 예시적으로 설명하기로 한다. Hereinafter, a case in which the integrated dual sensor is used to automatically blink a lighting device will be described.
제 1 센서부(110)는 조도를 감지할 수 있고, 제 2 센서부(120)는 열을 발산하는 물체의 움직임을 감지할 수 있다. 낮과 같이 밝은 환경에서는 제 1 센서부(110)로부터 발생된 제 1 전기적 신호가 설정된 기준을 초과할 수 있고, 이에 따라 제어부(미도시)는 조명 장치에 오프(off) 신호를 제공할 수 있다. 이 경우에 제 2 센서부(120)로부터 발생된 제 2 전기적 신호의 크기는 고려되지 않으므로, 제 2 전기적 신호가 제어부에 제공되는 경우에도 조명 장치는 켜지지 않는다. The first sensor unit 110 may detect illuminance, and the second sensor unit 120 may detect a movement of an object that emits heat. In a bright environment, such as in the daytime, the first electrical signal generated from the first sensor unit 110 may exceed a set reference, and thus the controller (not shown) may provide an off signal to the lighting device. . In this case, since the magnitude of the second electrical signal generated from the second sensor unit 120 is not considered, the lighting device is not turned on even when the second electrical signal is provided to the controller.
밤과 같이 어두운 환경에서는 제 1 전기적 신호가 설정된 기준에 도달하지 않을 수 있고, 이 경우 제어부는 제 2 전기적 신호에 따라서 조명 장치를 제어한다. 예를 들어, 주위에 생체가 없어 적외선이 발생하지 않는 경우에는, 제 2 전기적 신호가 생성되지 않고 따라서 제어부는 조명 장치에 오프(off) 신호를 제공하고, 이에 따라 조명 장치는 켜지지 않는다. 반면, 주위에 생체가 있는 경우, 생체로부터 발생한 적외선에 의하여 제 2 센서부(120)로부터 제 2 전기적 신호가 발생하여 제어부는 조명 장치에 온(on) 신호를 제공하고, 이에 따라 조명 장치는 켜진다.In a dark environment such as at night, the first electrical signal may not reach the set reference, and in this case, the controller controls the lighting device according to the second electrical signal. For example, when no living body is present and no infrared rays are generated, the second electrical signal is not generated and thus the control unit provides an off signal to the lighting device, and thus the lighting device is not turned on. On the other hand, when there is a living body around, a second electrical signal is generated from the second sensor unit 120 by the infrared rays generated from the living body so that the controller provides an on signal to the lighting device, and thus the lighting device is turned on. .
도 2는 본 발명의 다른 실시예에 따른 일체형 듀얼 센서를 보여주는 개략적인 단면도이다. 이 실시예에 따른 일체형 듀얼 센서는 도 1의 일체형 듀얼 센서에 일부 구성을 부가한 것에 해당되고, 따라서 두 실시예들에서 중복된 설명은 생략된다.2 is a schematic cross-sectional view showing an integrated dual sensor according to another embodiment of the present invention. The integrated dual sensor according to this embodiment corresponds to the addition of some configuration to the integrated dual sensor of FIG. 1, and thus duplicated description is omitted in the two embodiments.
도 2를 참조하면, 반도체 기판(102)의 일측에 판독집적회로(readout integrated circuit, ROIC, 150)가 결합될 수 있다. 판독집적회로(150)는 제 1 센서부(110) 및 제 2 센서부(120)를 제어하는 제어부의 역할을 할 수 있다. 이에 따라, 제 1 센서부(110)의 제 1 및 제 2 전극들(114, 112)과 제 2 센서부(120)의 제 3 및 제 4 전극들(132, 134)은 판독집적회로(150)의 입출력부와 전기적으로 연결될 수 있다.Referring to FIG. 2, a readout integrated circuit (ROIC) 150 may be coupled to one side of the semiconductor substrate 102. The read integrated circuit 150 may serve as a controller for controlling the first sensor unit 110 and the second sensor unit 120. Accordingly, the first and second electrodes 114 and 112 of the first sensor unit 110 and the third and fourth electrodes 132 and 134 of the second sensor unit 120 are read integrated circuit 150. It may be electrically connected to the input and output unit of the).
도 3은 본 발명의 또 다른 실시예에 따른 일체형 듀얼 센서를 보여주는 개략적인 단면도이다. 이 실시예에 따른 일체형 듀얼 센서는 도 1의 일체형 듀얼 센서에서 일부 구성을 변형 또는 부가한 것에 해당되고, 따라서 두 실시예들에서 중복된 설명은 생략된다.3 is a schematic cross-sectional view showing an integrated dual sensor according to another embodiment of the present invention. The integrated dual sensor according to this embodiment corresponds to a modification or addition of some components in the integrated dual sensor of FIG. 1, and thus, redundant descriptions in the two embodiments are omitted.
도 3을 참조하면, 도 1의 제 2 전극(112)과 다르게, 제 2 전극(112a)은 반도체 기판(102)의 일면 상에 배치될 수 있다. 예를 들어, 관통 비어(111)가 제 2 반도체층(104)으로부터 반도체 기판(102)을 관통하여 신장되고, 제 2 전극(112a)은 관통 비어(111) 상에 배치될 수 있다. 이에 따르면, 제 2 전극(112a)은 관통 비어(111)를 통해서 제 2 반도체층(104)에 전기적으로 연결될 수 있다. Referring to FIG. 3, unlike the second electrode 112 of FIG. 1, the second electrode 112a may be disposed on one surface of the semiconductor substrate 102. For example, the through via 111 may extend from the second semiconductor layer 104 through the semiconductor substrate 102, and the second electrode 112a may be disposed on the through via 111. Accordingly, the second electrode 112a may be electrically connected to the second semiconductor layer 104 through the through via 111.
관통비어(111)는 절연 스페이서(미도시)에 의하여 반도체 기판(102)과 전기적으로 절연될 수 있다. 이 실시예에서, 제 1 도전형 반도체층(106)은 관통비어(111)가 배치되는 반도체 기판(102) 상으로 신장되지 않도록 도시되었으나, 절연 스페이서에 의하여 서로 전기적으로 절연될 수 있으므로 도 1에 도시된 바와 같이 반도체 기판(102) 상으로 전체적으로 신장될 수도 있다. 이러한 구조에 따르면, 제 1 내지 제 4 전극들(114,112a, 132, 134)을 모두 한 방향에 배치할 수 있어서, 외부 장치와 접속이 수월해질 수 있다.The through via 111 may be electrically insulated from the semiconductor substrate 102 by an insulating spacer (not shown). In this embodiment, the first conductivity-type semiconductor layer 106 is shown so as not to extend onto the semiconductor substrate 102 where the through vias 111 are disposed, but may be electrically insulated from each other by an insulating spacer, so that the first conductive semiconductor layer 106 is not shown in FIG. It may be stretched entirely onto the semiconductor substrate 102 as shown. According to this structure, all of the first to fourth electrodes 114, 112a, 132, and 134 may be disposed in one direction, thereby facilitating connection with an external device.
도 4는 본 발명의 또 다른 실시예에 따른 일체형 듀얼 센서를 보여주는 개략적인 단면도이다. 이 실시예에 따른 일체형 듀얼 센서는 도 3의 일체형 듀얼 센서에 일부 구성을 부가한 것에 해당되고, 따라서 실시예들에서 중복된 설명은 생략된다.4 is a schematic cross-sectional view showing an integrated dual sensor according to another embodiment of the present invention. The integrated dual sensor according to this embodiment corresponds to the addition of some configuration to the integrated dual sensor of FIG. 3, and thus redundant descriptions are omitted in the embodiments.
도 4를 참조하면, 반도체 기판(102)의 하부 상에 판독집적회로(ROIC, 150)가 결합될 수 있다. 판독집적회로(150)는 제 1 센서부(110) 및 제 2 센서부(120)를 제어하는 제어부의 역할을 할 수 있다. 제 1 내지 제 4 전극들(114, 112a, 132, 134)이 모두 반도체 기판(102)의 일면 상에 배치되어 있기 때문에, 이들과 판독집적회로(150)의 입출력부가 용이하게 전기적으로 연결될 수 있다. 선택적으로, 반도체 기판(102)과 판독집적회로(150) 사이에 절연성 접착제를 개재하여 둘 사이를 일체로 결합시킬 수도 있다.Referring to FIG. 4, a read integrated circuit (ROIC) 150 may be coupled to a lower portion of the semiconductor substrate 102. The read integrated circuit 150 may serve as a controller for controlling the first sensor unit 110 and the second sensor unit 120. Since all of the first to fourth electrodes 114, 112a, 132, and 134 are disposed on one surface of the semiconductor substrate 102, the first and fourth electrodes 114, 112a, 132, and 134 may be easily electrically connected to the input / output unit of the read integrated circuit 150. . Alternatively, the semiconductor substrate 102 and the read integrated circuit 150 may be integrally bonded to each other via an insulating adhesive.
도 5는 본 발명의 또 다른 실시예에 따른 일체형 듀얼 센서를 보여주는 개략적인 단면도이다. 이 실시예에 따른 듀얼 센서는 전술한 도 1 내지도 4의 실시예들에 따른 듀얼 센서에서 일부 구조를 변형 또는 부가한 것이고, 이들 실시예들에서 중복된 설명은 생략된다.5 is a schematic cross-sectional view showing an integrated dual sensor according to another embodiment of the present invention. The dual sensor according to this embodiment is a modification or addition of some structure in the dual sensor according to the embodiments of FIGS. 1 to 4 described above, and duplicated description is omitted in these embodiments.
도 5를 참조하면, 센서 기판(121)이 반도체 기판(102) 하부에 결합될 수 있다. 반도체 기판(102)과 센서 기판(121)은 다양한 방식으로 결합될 수 있고, 예컨대 그 사이에 흡착제를 개재하여 접합될 수도 있다. 예를 들어, 센서 기판(121)은 반도체 기판, 유리 기판, 플렉서블 기판 등 다양한 물질을 포함할 수 있다.Referring to FIG. 5, the sensor substrate 121 may be coupled to the lower portion of the semiconductor substrate 102. The semiconductor substrate 102 and the sensor substrate 121 may be combined in various ways, for example, may be bonded through an adsorbent therebetween. For example, the sensor substrate 121 may include various materials such as a semiconductor substrate, a glass substrate, and a flexible substrate.
제 2 센서부(120)는 이러한 센서 기판(121) 상에 탑재될 수 있다. 예를 들어, 센서 기판(121)의 표면에는 반도체 기판(102)의 홈(108)에 대응되는 홈이 파여 있고, 이 홈 상에 제 2 센서부(120)가 탑재될 수 있다. 이에 따라, 제 2 센서부(120)의 적어도 일부는 반도체 기판(102)의 홈(108)과 센서 기판(121)의 홈이 만드는 내부 공간 내에 배치될 수 있다.The second sensor unit 120 may be mounted on the sensor substrate 121. For example, a groove corresponding to the groove 108 of the semiconductor substrate 102 may be dug in the surface of the sensor substrate 121, and the second sensor unit 120 may be mounted on the groove. Accordingly, at least a part of the second sensor unit 120 may be disposed in an inner space formed by the groove 108 of the semiconductor substrate 102 and the groove of the sensor substrate 121.
이 실시예의 제 2 센서부(120)에 있어서, 하부 절연층(122)은 센서 기판(121) 상에 형성되고, 감지부재들(124, 126)은 하부 절연층(122) 상에 형성될 수 있다. 나아가, 광흡수층(130)은 감지부재들(124, 126)의 일부, 예컨대 중심부를 덮도록 하부 절연층(122) 상에 형성될 수 있다. In the second sensor unit 120 of this embodiment, the lower insulating layer 122 may be formed on the sensor substrate 121, and the sensing members 124 and 126 may be formed on the lower insulating layer 122. have. In addition, the light absorption layer 130 may be formed on the lower insulating layer 122 to cover a part of the sensing members 124 and 126, for example, a central portion.
이 실시예에 따르면, 제 2 센서부(120)가 탑재된 센서 기판(121) 상에 캡핑용 반도체층(102)을 배치하고, 이 반도체층(102)에 제 1 센서부(110)를 형성함으로써 듀얼 센서를 형성할 수 있다.According to this embodiment, the capping semiconductor layer 102 is disposed on the sensor substrate 121 on which the second sensor unit 120 is mounted, and the first sensor unit 110 is formed on the semiconductor layer 102. By doing this, a dual sensor can be formed.
본 발명은 도면에 도시된 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 당해 기술분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 다른 실시예가 가능하다는 점을 이해할 것이다. 따라서 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의하여 정해져야 할 것이다.Although the present invention has been described with reference to the embodiments shown in the drawings, this is merely exemplary, and those skilled in the art will understand that various modifications and equivalent other embodiments are possible. Therefore, the true technical protection scope of the present invention will be defined by the technical spirit of the appended claims.

Claims (11)

  1. 제 1 파장을 갖는 제 1 광은 그 하부로 통과되지 않도록 차단하고 상기 제 1 파장에 비해서 긴 제 2 파장을 갖는 제 2 광은 통과시키는 반도체 기판;A semiconductor substrate which blocks the first light having the first wavelength from passing below and passes the second light having the second wavelength longer than the first wavelength;
    상기 반도체 기판을 포함하고, 상기 제 1 광의 적어도 일부를 흡수하여 감지하는 제 1 센서부; 및A first sensor unit including the semiconductor substrate and absorbing and detecting at least a portion of the first light; And
    상기 반도체 기판의 일면 상에 형성되고, 상기 제 1 센서부를 통과한 상기 제 2 광을 감지하는 제 2 센서부를 포함하는, 일체형 듀얼 센서.And a second sensor unit formed on one surface of the semiconductor substrate and configured to sense the second light passing through the first sensor unit.
  2. 제 1 항에 있어서, 상기 제 1 광은 가시광선 또는 근적외선을 포함하고 상기 제 2 광은 중적외선 또는 원적외선을 포함하며,The method of claim 1, wherein the first light comprises visible light or near infrared light and the second light comprises mid-infrared light or far infrared light,
    상기 반도체 기판은 적외선 패스 필터로 기능하고 상기 제 1 센서부는 가시광선 감지형 조도센서로 기능하고, 상기 제 2 센서부는 적외선 감지형 인체센서로 기능하는, 일체형 듀얼 센서.And the semiconductor substrate functions as an infrared pass filter, the first sensor part functions as a visible light sensing type illumination sensor, and the second sensor part functions as an infrared sensing type human body sensor.
  3. 제 1 항에 있어서, 상기 제 1 센서부는 광전자 센서(photovoltaic sensor) 또는 광전도 센서(photoconductive sensor)를 포함하는, 일체형 듀얼 센서.The integrated dual sensor of claim 1, wherein the first sensor unit comprises a photovoltaic sensor or a photoconductive sensor.
  4. 제 3 항에 있어서, 상기 제 1 센서부는,The method of claim 3, wherein the first sensor unit,
    상기 반도체 기판의 일면 상의 제 1 도전형 반도체층; 및A first conductivity type semiconductor layer on one surface of the semiconductor substrate; And
    상기 반도체 기판의 타면 상의 제 2 도전형 반도체층을 더 포함하는, 일체형 듀얼 센서.And a second conductivity type semiconductor layer on the other surface of the semiconductor substrate.
  5. 제 4 항에 있어서, 상기 제 1 도전형 반도체층은 p형 도핑층을 포함하고, 상기 제 2 도전형 반도체층은 n형 도핑층을 포함하는, 일체형 듀얼 센서.The integrated dual sensor of claim 4, wherein the first conductive semiconductor layer comprises a p-type doped layer and the second conductive semiconductor layer comprises an n-type doped layer.
  6. 제 4 항에 있어서, 상기 제 1 센서부는,The method of claim 4, wherein the first sensor unit,
    상기 제 1 도전형 반도체층에 전기적으로 연결되도록 상기 반도체 기판의 일면 상에 배치된 제 1 전극;A first electrode disposed on one surface of the semiconductor substrate to be electrically connected to the first conductive semiconductor layer;
    상기 제 2 도전형 반도체층으로부터 상기 반도체 기판을 관통하여 상기 반도체 기판의 일면 상으로 신장된 관통 비어; 및A through via extending from the second conductive semiconductor layer through the semiconductor substrate and extending onto one surface of the semiconductor substrate; And
    상기 관통 비어에 전기적으로 연결되도록 상기 반도체 기판의 일면 상에 배치된 제 2 전극을 포함하는, 일체형 듀얼 센서.And a second electrode disposed on one surface of the semiconductor substrate to be electrically connected to the through via.
  7. 제 1 항에 있어서, 상기 반도체 기판은 상기 반도체 기판의 일면 표면으로부터 내부로 파인 홈을 포함하고,The semiconductor substrate of claim 1, wherein the semiconductor substrate includes grooves recessed inwardly from one surface of the semiconductor substrate.
    상기 제 2 센서부의 적어도 일부는 상기 홈 상에 이격 배치되어 상기 반도체 기판으로부터 열적으로 절연된, 일체형 듀얼 센서.At least a portion of the second sensor unit is spaced apart on the groove and thermally insulated from the semiconductor substrate.
  8. 제 7 항에 있어서, 상기 제 2 센서부는 상기 홈을 마주하도록 배치된 광흡수층을 포함하는, 일체형 듀얼 센서.The integrated dual sensor of claim 7, wherein the second sensor unit comprises a light absorption layer disposed to face the groove.
  9. 제 1 항에 있어서, 상기 제 2 센서부는 써모파일(thermopile) 센서, 볼로미터(bolometer) 센서 또는 파이로미터(pyrometer) 센서를 포함하는, 일체형 듀얼 센서.The integrated dual sensor of claim 1, wherein the second sensor unit comprises a thermopile sensor, a bolometer sensor, or a pyrometer sensor.
  10. 제 1 항 내지 제 9 항의 어느 한 항에 있어서,The method according to any one of claims 1 to 9,
    상기 제 1 센서부 및 상기 제 2 센서부에 전기적으로 연결된 판독집적회로(ROIC)를 더 포함하는, 일체형 듀얼 센서.The integrated dual sensor further comprises a read integrated circuit (ROIC) electrically connected to the first sensor unit and the second sensor unit.
  11. 제 1 파장을 갖는 제 1 광은 그 하부로 통과되지 않도록 차단하고 상기 제 1 파장에 비해서 긴 제 2 파장을 갖는 제 2 광은 통과시키는 반도체 기판;A semiconductor substrate which blocks the first light having the first wavelength from passing below and passes the second light having the second wavelength longer than the first wavelength;
    상기 반도체 기판을 포함하고, 상기 제 1 광의 적어도 일부를 흡수하여 감지하는 제 1 센서부;A first sensor unit including the semiconductor substrate to absorb and detect at least a portion of the first light;
    상기 반도체 기판 아래에 결합되는 센서 기판; 및A sensor substrate coupled under the semiconductor substrate; And
    상기 센서 기판 상에 탑재되고, 상기 제 1 센서부를 통과한 상기 제 2 광을 감지하는 제 2 센서부를 포함하는, 일체형 듀얼 센서.And a second sensor unit mounted on the sensor substrate and sensing the second light passing through the first sensor unit.
PCT/KR2012/003858 2012-03-14 2012-05-16 Integrated dual sensor WO2013137519A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020120026138A KR101336916B1 (en) 2012-03-14 2012-03-14 Integrated dual sensor
KR10-2012-0026138 2012-03-14

Publications (1)

Publication Number Publication Date
WO2013137519A1 true WO2013137519A1 (en) 2013-09-19

Family

ID=49161396

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/003858 WO2013137519A1 (en) 2012-03-14 2012-05-16 Integrated dual sensor

Country Status (2)

Country Link
KR (1) KR101336916B1 (en)
WO (1) WO2013137519A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4053900A1 (en) * 2021-03-05 2022-09-07 Isorg Hybrid sensor
WO2022184409A1 (en) * 2021-03-05 2022-09-09 Isorg Hybrid sensor
FR3120472A1 (en) * 2021-03-05 2022-09-09 Isorg Hybrid sensor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005539218A (en) * 2002-09-16 2005-12-22 コミサリア、ア、レネルジ、アトミク Electromagnetic radiation detection device having an integrated housing with two overlapping detectors
JP2008157789A (en) * 2006-12-25 2008-07-10 Matsushita Electric Works Ltd Light detecting device, lighting system using the same and luminaire
JP2011014839A (en) * 2009-07-06 2011-01-20 Panasonic Electric Works Co Ltd Optical semiconductor device
JP2011127915A (en) * 2009-12-15 2011-06-30 Murata Mfg Co Ltd Human body detector and display device
KR20120019248A (en) * 2010-08-25 2012-03-06 삼성전자주식회사 Sensor array substrate, display device comprising the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005539218A (en) * 2002-09-16 2005-12-22 コミサリア、ア、レネルジ、アトミク Electromagnetic radiation detection device having an integrated housing with two overlapping detectors
JP2008157789A (en) * 2006-12-25 2008-07-10 Matsushita Electric Works Ltd Light detecting device, lighting system using the same and luminaire
JP2011014839A (en) * 2009-07-06 2011-01-20 Panasonic Electric Works Co Ltd Optical semiconductor device
JP2011127915A (en) * 2009-12-15 2011-06-30 Murata Mfg Co Ltd Human body detector and display device
KR20120019248A (en) * 2010-08-25 2012-03-06 삼성전자주식회사 Sensor array substrate, display device comprising the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4053900A1 (en) * 2021-03-05 2022-09-07 Isorg Hybrid sensor
WO2022184409A1 (en) * 2021-03-05 2022-09-09 Isorg Hybrid sensor
FR3120472A1 (en) * 2021-03-05 2022-09-09 Isorg Hybrid sensor

Also Published As

Publication number Publication date
KR20130104548A (en) 2013-09-25
KR101336916B1 (en) 2013-12-04

Similar Documents

Publication Publication Date Title
JP4677044B2 (en) Dual band imaging device having a visible or SWIR detector combined with an uncooled LWIR detector
US7205545B2 (en) Electromagnetic radiation detection device with integrated housing comprising two superposed detectors
CN109768114A (en) It is a kind of based on graphene-heterojunction semiconductor position sensitive photodetector
WO2013137519A1 (en) Integrated dual sensor
TW200905284A (en) A photo detector and a display panel having the same
CN104247018B (en) Sensitive device
KR20150017249A (en) Image sensor and electronic device including the same
US20070290868A1 (en) Infrared Detector
KR102054312B1 (en) sensor for detecting infrared of human body and electric device having the same
WO2013122292A1 (en) Integrated sensor module
CN207947288U (en) Infrared detecting pixel structure and infrared detector
JP6466668B2 (en) Infrared sensor device
JPH0356831A (en) Cooling type infrared detection device
JP4740022B2 (en) Optical sensor and object detection method
JP5917233B2 (en) Received light intensity calculation device and position detection device
WO2014097528A1 (en) Optical sensor
WO2010035624A1 (en) Solid-state imaging element
JP5290505B2 (en) Manufacturing method of optical sensor
JP2013210322A (en) Light reception intensity computing device and position detecting device
KR101180592B1 (en) Integrated Visible and Long Wavelength Infrared Image Detectors
JPS6382326A (en) Element for ultraviolet ray sensor
WO2018066930A1 (en) Integrated gas sensor structure and infrared light emitting module
US20190086261A1 (en) Device For Securing An Infrared Radiation Detector From Unwanted Infrared Radiation And Heat
WO2019050233A1 (en) Oxygen-rich vanadium oxide electromagnetic wave sensor and system using same
KR102086893B1 (en) One chip image sensor manufacturing method for simultaneously sensing visible ray and near infrared ray

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12871153

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 04.03.2015)

122 Ep: pct application non-entry in european phase

Ref document number: 12871153

Country of ref document: EP

Kind code of ref document: A1