WO2013137428A1 - Fuel cell system - Google Patents

Fuel cell system Download PDF

Info

Publication number
WO2013137428A1
WO2013137428A1 PCT/JP2013/057384 JP2013057384W WO2013137428A1 WO 2013137428 A1 WO2013137428 A1 WO 2013137428A1 JP 2013057384 W JP2013057384 W JP 2013057384W WO 2013137428 A1 WO2013137428 A1 WO 2013137428A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
pressure
anode
cell system
gas
Prior art date
Application number
PCT/JP2013/057384
Other languages
French (fr)
Japanese (ja)
Inventor
晋 前嶋
市川 靖
池添 圭吾
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Publication of WO2013137428A1 publication Critical patent/WO2013137428A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04761Pressure; Flow of fuel cell exhausts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • This invention relates to a fuel cell system.
  • JP2010-123501A discloses a fuel cell system in which the pressure of the anode gas pulsates by repeatedly supplying / stopping the high-pressure anode gas.
  • the first pressure fluctuation pattern in which the pressure fluctuation is performed with the first pressure width ⁇ P1 and the second pressure fluctuation pattern in which the pressure fluctuation is performed with the second pressure width ⁇ P2 are periodically changed. Is done.
  • JP2010-123501A the width of pulsation is increased due to drainage, but the present inventors have found that the pressure increase rate of pulsation affects drainage.
  • an object of the present invention is to provide a fuel cell system capable of draining liquid water generated in the power generation amount region of the anode of the fuel cell by a method different from JP2010-123501A.
  • One aspect of a fuel cell system is to supply a fuel gas to an anode and an oxidant gas to a cathode to generate power according to a load, and to supply the fuel gas to the fuel cell.
  • the fuel cell system is provided with a pressure regulating valve provided in the supply passage and a purge valve provided in the discharge passage for discharging the anode off gas containing impurities from the fuel cell.
  • the fuel cell stack includes a pulsation operation control unit that pulsates the fuel gas pressure of the fuel cell stack and controls the pressure adjustment valve so as to achieve a predetermined pressure increase speed, and the pulsation operation control unit includes a power generation amount of the fuel cell.
  • the predetermined pressure increase rate is increased when the wet state is high as compared to when the wet state is low.
  • FIG. 1 is a diagram showing an outline of a first embodiment of a fuel cell system according to the present invention.
  • FIG. 2A is an external perspective view illustrating a fuel cell stack.
  • FIG. 2B is an exploded view showing the structure of the power generation cell of the fuel cell stack.
  • FIG. 3A is a schematic diagram for explaining the reaction of the electrolyte membrane in the fuel cell stack.
  • FIG. 3B is a schematic diagram for explaining the reaction of the electrolyte membrane in the fuel cell stack.
  • FIG. 4 is a control flowchart executed by the controller of the first embodiment of the fuel cell system.
  • FIG. 5 is a correlation diagram between the wetness of the fuel cell stack and the pressure increase rate.
  • FIG. 6 is a correlation diagram between the anode gas supply flow rate and the pressure increase rate.
  • FIG. 5 is a correlation diagram between the wetness of the fuel cell stack and the pressure increase rate.
  • FIG. 6 is a correlation diagram between the anode gas supply flow rate and the pressure increase rate
  • FIG. 7 is a timing chart for explaining the operation when the control flowchart of the first embodiment is executed.
  • FIG. 8A is a timing chart when changing the upper limit pressure or the lower limit pressure during the drainage operation.
  • FIG. 8B is a timing chart when changing the upper limit pressure or the lower limit pressure during the drainage operation.
  • FIG. 9 is a diagram for explaining the operation of the purge valve of the second embodiment of the fuel cell system according to the present invention.
  • FIG. 10 is a diagram for explaining the variation of the fuel gas pressure in the third embodiment of the fuel cell system according to the present invention.
  • FIG. 11 is a diagram for explaining the fluctuation of the fuel gas pressure in the fourth embodiment of the fuel cell system according to the present invention.
  • FIG. 12 is a correlation diagram between the wetness of the fuel cell stack and the pressure increase rate.
  • FIG. 13 is a diagram for explaining the operation of the purge valve.
  • FIG. 1 is a diagram showing an outline of a first embodiment of a fuel cell system according to the present invention.
  • the fuel cell system includes a fuel cell stack 100, a hydrogen tank 200, a pressure adjustment valve 300, a buffer tank 400, a purge valve 500, and a controller 600.
  • the fuel cell stack 100 is supplied with reaction gas (anode gas H 2 , cathode gas O 2 ) to generate power. Details will be described later.
  • the hydrogen tank 200 is a high-pressure gas tank that stores the anode gas H 2 in a high-pressure state.
  • the hydrogen tank 200 is provided in the uppermost stream of the anode line.
  • the pressure adjustment valve 300 is provided downstream of the hydrogen tank 200.
  • the pressure adjustment valve 300 adjusts the pressure of the anode gas H 2 that is newly supplied from the hydrogen tank 200 to the anode line.
  • the pressure of the anode gas H 2 is adjusted by the opening degree of the pressure adjustment valve 300.
  • the buffer tank 400 is provided downstream of the fuel cell stack 100.
  • the buffer tank 400 stores the anode gas H 2 discharged from the fuel cell stack 100.
  • the purge valve 500 is provided downstream of the buffer tank 400. When the purge valve 500 is opened, the anode gas H 2 is purged from the buffer tank 400.
  • the controller 600 controls the operation of the pressure regulating valve 300 and the purge valve 500 based on signals from the pressure sensor 71 provided in the anode line and the current / voltage sensor 72 provided in the fuel cell stack 100. Specific control contents will be described later.
  • FIG. 2A is an external perspective view illustrating a fuel cell stack.
  • FIG. 2B is an exploded view showing the structure of the power generation cell of the fuel cell stack.
  • the fuel cell stack 100 includes a plurality of stacked power generation cells 10, a current collecting plate 20, an insulating plate 30, an end plate 40, and four tension rods 50.
  • the power generation cell 10 is a unit power generation cell of a fuel cell. Each power generation cell 10 generates an electromotive voltage of about 1 volt (V). Details of the configuration of each power generation cell 10 will be described later.
  • the current collecting plate 20 is disposed outside each of the stacked power generation cells 10.
  • the current collecting plate 20 is formed of a gas impermeable conductive member, for example, dense carbon.
  • the current collecting plate 20 includes a positive electrode terminal 211 and a negative electrode terminal 212.
  • the fuel cell stack 100 takes out and outputs electrons e ⁇ generated in each power generation cell 10 by the positive electrode terminal 211 and the negative electrode terminal 212.
  • the insulating plates 30 are respectively arranged outside the current collecting plate 20.
  • the insulating plate 30 is formed of an insulating member such as rubber.
  • the end plate 40 is disposed outside the insulating plate 30.
  • the end plate 40 is made of a rigid metal material such as steel.
  • One end plate 40 (the left front end plate 40 in FIG. 2A) has an anode supply port 41a, an anode discharge port 41b, a cathode supply port 42a, a cathode discharge port 42b, and a cooling water supply port 43a.
  • a cooling water discharge port 43b is provided.
  • the anode supply port 41a, the cooling water supply port 43a, and the cathode discharge port 42b are provided on the right side in the drawing. Further, the cathode supply port 42a, the cooling water discharge port 43b and the anode discharge port 41b are provided on the left side in the drawing.
  • the tension rods 50 are arranged near the four corners of the end plate 40, respectively.
  • the fuel cell stack 100 has a hole (not shown) penetrating therethrough.
  • the tension rod 50 is inserted through the through hole.
  • the tension rod 50 is formed of a rigid metal material such as steel.
  • the tension rod 50 is insulated on the surface in order to prevent an electrical short circuit between the power generation cells 10.
  • a nut (not shown because it is in the back) is screwed into the tension rod 50. The tension rod 50 and the nut tighten the fuel cell stack 100 in the stacking direction.
  • a method of supplying hydrogen as the anode gas to the anode supply port 41a for example, a method of directly supplying hydrogen gas from a hydrogen storage device or a hydrogen-containing gas reformed by reforming a fuel containing hydrogen is supplied.
  • the hydrogen storage device include a high-pressure gas tank, a liquefied hydrogen tank, and a hydrogen storage alloy tank.
  • the fuel containing hydrogen include natural gas, methanol, and gasoline. In FIG. 1, a high pressure gas tank is used. Air is generally used as the cathode gas supplied to the cathode supply port 42a.
  • an anode separator (anode bipolar plate) 12a and a cathode separator (cathode bipolar plate) 12b are disposed on both surfaces of a membrane electrode assembly (MEA) 11. Is the structure.
  • MEA 11 has electrode catalyst layers 112 formed on both surfaces of an electrolyte membrane 111 made of an ion exchange membrane.
  • a gas diffusion layer (gas diffusion layer: GDL) 113 is formed on the electrode catalyst layer 112.
  • the electrode catalyst layer 112 is formed of carbon black particles carrying platinum, for example.
  • the GDL 113 is formed of a member having sufficient gas diffusibility and conductivity, for example, carbon fiber.
  • the anode gas supplied from the anode supply port 41a flows through this GDL 113a, reacts with the anode electrode catalyst layer 112 (112a), and is discharged from the anode discharge port 41b.
  • the cathode gas supplied from the cathode supply port 42a flows through this GDL 113b, reacts with the cathode electrode catalyst layer 112 (112b), and is discharged from the cathode discharge port 42b.
  • the anode separator 12a is stacked on one side of the MEA 11 (back side in FIG. 2B) via the GDL 113a and the seal 14a.
  • the cathode separator 12b is overlaid on one side (the surface in FIG. 2B) of the MEA 11 via the GDL 113b and the seal 14b.
  • the seal 14 (14a, 14b) is a rubber-like elastic material such as silicone rubber, ethylene-propylene rubber (EPDM), or fluorine rubber.
  • the anode separator 12a and the cathode separator 12b are formed by press-molding a metal separator base such as stainless steel so that a reaction gas channel is formed on one surface and alternately arranged with the reaction gas channel on the opposite surface. A cooling water flow path is formed. As shown in FIG. 2B, the anode separator 12a and the cathode separator 12b are overlapped to form a cooling water flow path.
  • the MEA 11, the anode separator 12a, and the cathode separator 12b are formed with holes 41a, 41b, 42a, 42b, 43a, 43b, respectively, which are stacked to form an anode supply port (anode supply manifold) 41a, an anode discharge port.
  • Anode discharge manifold 41b, cathode supply port (cathode supply manifold) 42a, cathode discharge port (cathode discharge manifold) 42b, cooling water supply port (cooling water supply manifold) 43a and cooling water discharge port (cooling water discharge manifold) 43b Is formed.
  • 3A and 3B are schematic diagrams for explaining the reaction of the electrolyte membrane in the fuel cell stack.
  • the fuel cell stack 100 is supplied with the reaction gas (cathode gas O 2 , anode gas H 2 ) to generate power.
  • the fuel cell stack 100 is configured by stacking hundreds of membrane electrode assemblies (MEA) in which a cathode electrode catalyst layer and an anode electrode catalyst layer are formed on both surfaces of an electrolyte membrane. One of them is shown in FIG. 3A.
  • the cathode gas is supplied to the MEA (cathode in) and discharged from the diagonal side (cathode out), while the anode gas is supplied (anode in) and discharged from the diagonal side (anode out).
  • MEA membrane electrode assemblies
  • each membrane electrode assembly (MEA) the following reaction proceeds in the cathode electrode catalyst layer and the anode electrode catalyst layer according to the load to generate power.
  • the electrolyte membrane In order to generate power efficiently by the above reaction, the electrolyte membrane needs to be in an appropriate wet state. If there is too much water in the electrolyte membrane, excess water overflows into the reaction gas flow path and the gas flow is hindered. In such a case, the above reaction is not promoted. Therefore, power is efficiently generated when the electrolyte membrane is in a moderately wet state.
  • FIG. 4 is a control flowchart executed by the controller of the first embodiment of the fuel cell system.
  • the controller repeatedly executes this flowchart every minute time (for example, 10 milliseconds).
  • step S1 the controller determines whether or not the drainage operation is in progress.
  • the drainage operation is executed in step S3 described later. If the determination result is negative, the controller proceeds to step S2, and if the determination result is positive, the controller proceeds to step S4.
  • step S2 the controller determines whether or not drainage operation is necessary. Specifically, the voltage of the power generation cell is detected, and if the voltage is smaller than the threshold value, it may be determined that the drainage operation is necessary. For example, if the wetness of the electrolyte membrane is larger than the reference value, it may be determined that the drainage operation is necessary.
  • the wetness of the electrolyte membrane varies depending on the impedance (internal resistance) of the electrolyte membrane. That is, the lower the wetness of the electrolyte membrane (the less dry the electrolyte membrane is, the more dry it is), the greater the impedance.
  • the greater the wetness of the electrolyte membrane (the more moisture in the electrolyte membrane, the more wet it is), the lower the impedance. Therefore, using this characteristic, for example, the generated current of the fuel cell stack is changed with a sine wave of 1 kHz, for example, and the change in voltage is observed. Then, the impedance is obtained by dividing the AC voltage amplitude of 1 kHz by the AC current amplitude. Based on this impedance, the wetness of the electrolyte membrane can be obtained. If the determination result is affirmative, the controller proceeds to step S3, and if the determination result is negative, the controller proceeds to step S6.
  • step S3 the controller sets the drain operation. Specifically, for example, a map as shown in FIG. 5 is prepared in advance through experiments or the like. Then, the wetness of the electrolyte membrane is applied to the map, and the pressure increase rate when the fuel gas pressure is supplied in a pulsating manner is set larger than that during normal operation. Note that the pressure increase rate correlates with the supply flow rate as shown in FIG. Therefore, in order to increase the pressure increase speed, it is only necessary to increase the supply flow rate by increasing the opening of the pressure regulating valve 300.
  • step S4 the controller determines whether or not drainage operation is unnecessary. Specifically, for example, if the wetness of the electrolyte membrane is smaller than the reference value, it may be determined that the drainage operation is necessary.
  • the reference value may be the same as or different from the reference value for determining that the drainage operation is necessary. If the determination result is positive, the controller proceeds to step S5, and if the determination result is negative, the controller proceeds to step S6.
  • step S5 the controller sets normal operation. Specifically, for example, the wetness of the electrolyte membrane is applied to a map as shown in FIG. 5, and the pressure increase rate when the fuel gas pressure is supplied in a pulsating manner is set smaller than that in the drainage operation.
  • step S6 the controller determines whether or not the pressure is currently increasing. If the determination result is affirmative, the controller proceeds to step S7, and if the determination result is negative, the controller proceeds to step S9.
  • step S7 the controller determines whether or not the current pressure is smaller than the target upper limit pressure. If the determination result is negative, the controller temporarily exits the process. If the determination result is positive, the controller proceeds to step S8.
  • step S8 the controller stops supplying the reaction gas.
  • step S9 the controller determines whether or not the current pressure is greater than the target lower limit pressure. If the determination result is negative, the controller temporarily exits the process, and if the determination result is positive, the controller proceeds to step S10.
  • step S10 the controller starts supplying the reaction gas.
  • steps S7 ⁇ S8 are processed. As a result, as shown in FIG. 7, the anode pressure starts to decrease.
  • steps S1 ⁇ S2 ⁇ S6 ⁇ S9 are repeated. Even while the supply of the anode gas is stopped, the anode gas is consumed by the power generation reaction, so that the anode pressure continues to decrease as shown in FIG.
  • steps S9 ⁇ S10 are processed. As a result, as shown in FIG. 7, the anode pressure starts to increase.
  • steps S1 ⁇ S2 ⁇ S3 are processed to set the pressure increasing speed for drainage operation. Then, after the next cycle, the processes of steps S 1 ⁇ S 4 ⁇ S 6 ⁇ S 7 are repeated. As a result, the anode pressure rises as shown in FIG.
  • steps S7 ⁇ S8 are processed. As a result, as shown in FIG. 7, the anode pressure starts to decrease.
  • steps S1 ⁇ S4 ⁇ S6 ⁇ S9 are repeated. Even while the supply of the anode gas is stopped, the anode gas is consumed by the power generation reaction, so that the anode pressure continues to decrease as shown in FIG.
  • steps S9 ⁇ S10 are processed. As a result, as shown in FIG. 7, the anode pressure starts to increase.
  • steps S1 ⁇ S4 ⁇ S5 are processed to set the boosting speed for normal operation.
  • steps S1, S2, S6, and S7 are repeated. As a result, the anode pressure rises as shown in FIG.
  • the pressure increase rate when the fuel gas pressure is supplied in pulsation is the normal operation. Is set larger than As the pressure increase rate increases, the flow rate of the anode gas flowing through the anode supply manifold increases rapidly, and the liquid water remaining in the anode flow path is discharged. This secures the hydrogen partial pressure and stabilizes the power generation performance. Further, it is possible to prevent deterioration caused by the lack of fuel in the cell. Further, when the cell voltage is restored, the boosting speed is restored to the original value. This also secures the hydrogen partial pressure in the cell and stabilizes the power generation performance.
  • control of the pressure regulating valve described in the present embodiment may be the following control.
  • the upper limit pressure and the lower limit pressure set according to the fuel cell supply load (current) are read from the map. Both the upper limit pressure and the lower limit pressure increase as the load increases. At the same time, the differential pressure between the upper limit pressure and the lower limit pressure increases as the load increases.
  • Such a map increases the anode pressure on the high load side rather than the low load, and increases the pulsation width at the high load as compared with the pulsation width at the low load.
  • the pulsation control unit performs pressure feedback control by the pressure regulating valve with reference to the value of the pressure sensor provided at the anode inlet of the fuel cell stack with the upper limit pressure as the target value.
  • the pulsation control unit When the actual pressure is close to the target pressure by feedback control, the pulsation control unit performs feedback control again with the lower limit pressure as the target pressure.
  • the pressure increase speed may be set such that the pressure increase speed increases as the wet state of the power generation amount region (electrolyte membrane) of the fuel cell increases.
  • the target pressure of the pressure increase speed corresponding to the wet state may be set.
  • the gain of feedback control may be set so that the target pressure is switched stepwise from the lower limit pressure to the upper limit pressure while the actual pressure increase rate of the anode pressure becomes a speed corresponding to the wet state.
  • the lower limit pressure may be lowered as the pressure increase rate is increased. Since the pressure is increased from the place where the lower limit pressure is low, the gas flow rate tends to be high even if the pressure increase rate is the same. Therefore, if it does in this way, the drainage performance of the liquid water which remained in the anode channel will further improve.
  • the upper limit pressure may be increased as the pressure increase rate is increased. In this way, since the pressure further increases, the gas flow rate tends to increase even if the pressure increase rate is the same. Therefore, even if it does in this way, the discharge performance of the liquid water which remained in the anode flow path improves.
  • FIG. 9 is a diagram for explaining the operation of the purge valve of the second embodiment of the fuel cell system according to the present invention.
  • the pressure increase speed when the fuel gas pressure is supplied in a pulsating manner is set large.
  • the valve opening time of the purge valve 500 is lengthened in addition to the control of the first embodiment.
  • the opening time of the purge valve 500 when the opening time of the purge valve 500 is increased, the flow rate of the anode gas is further increased, so that the liquid water remaining in the anode channel is more easily discharged.
  • the control of the purge valve 500 is also executed in accordance with the control of the first embodiment as described above, the pressure increase speed is not increased as compared with the first embodiment, and may be the same as that in the normal operation. However, even if the pressure increase rate is the same as that in the normal operation, the flow rate of the anode gas is higher than that in the normal operation, so that the discharge performance of the liquid water remaining in the anode channel is improved.
  • FIG. 10 is a diagram for explaining the variation of the fuel gas pressure in the third embodiment of the fuel cell system according to the present invention.
  • the drainage operation is necessary when the voltage of the power generation cell becomes smaller than the threshold value.
  • the drainage operation is executed every three cycles.
  • FIG. 11 is a diagram for explaining the fluctuation of the fuel gas pressure in the fourth embodiment of the fuel cell system according to the present invention.
  • the timing of the drainage operation is determined in a shorter period than the time when the drainage operation is necessary.
  • the time when the drainage operation is necessary comes in three cycles.
  • the drainage time may be determined by two cycles shorter than the three cycles, or the drainage time may be determined by one cycle (that is, continuous cycle).
  • the pressure increase rate when the fuel gas pressure is supplied in a pulsating manner is set to be binary larger or smaller depending on whether or not the drainage operation is necessary.
  • it is not limited to such a method.
  • a map as shown in FIG. 12 may be used to set the pressure increase rate according to the stack wetness.
  • the opening time of the purge valve 500 is increased in addition to the control of the first embodiment.
  • the valve closing time of the purge valve 500 may be shortened as shown in FIG. Even if it does in this way, the same effect can be acquired.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

This fuel cell system is provided with: a fuel cell which supplies a fuel gas to an anode, supplies an oxidant gas to a cathode and generates power corresponding to a load; a pressure regulating valve disposed in the supply passage for supplying fuel gas to said fuel cell; and a purge valve provided in the discharge channel for discharging the anode off-gas containing impurities from the fuel cell. This fuel cell system is provided with a pulse operation control unit which controls the pressure regulating valve so as to pulse the fuel gas pressure of the fuel cell stack and such that the fuel gas pressure assumes a prescribed pressure increase speed. Compared with when the moisture state of the power generation region in the fuel cell is low, the pulse operation control unit increases the aforementioned prescribed pressure increase speed when said moisture state is high.

Description

燃料電池システムFuel cell system
 この発明は、燃料電池システムに関する。 This invention relates to a fuel cell system.
 JP2010-123501Aは、高圧のアノードガスの供給/停止が繰り返されてアノードガスの圧力が脈動する燃料電池システムを開示する。そして、JP2010-123501Aでは、第1の圧力幅ΔP1で圧力変動を行う第1の圧力変動パターンと、第2の圧力幅ΔP2で圧力変動を行う第2の圧力変動パターンと、が周期的に変更される。 JP2010-123501A discloses a fuel cell system in which the pressure of the anode gas pulsates by repeatedly supplying / stopping the high-pressure anode gas. In JP2010-123501A, the first pressure fluctuation pattern in which the pressure fluctuation is performed with the first pressure width ΔP1 and the second pressure fluctuation pattern in which the pressure fluctuation is performed with the second pressure width ΔP2 are periodically changed. Is done.
 JP2010-123501Aでは、排水のために脈動の幅を大きくするのだが、本件発明者らは、脈動の昇圧速度が排水性に影響を与えることを知見した。 In JP2010-123501A, the width of pulsation is increased due to drainage, but the present inventors have found that the pressure increase rate of pulsation affects drainage.
 そこで、本発明の目的は、JP2010-123501Aとは異なる手法で、燃料電池のアノードの発電量域に発生する液水を排水できる燃料電池システムを提供することである。 Therefore, an object of the present invention is to provide a fuel cell system capable of draining liquid water generated in the power generation amount region of the anode of the fuel cell by a method different from JP2010-123501A.
 本発明による燃料電池システムのひとつの態様は、アノードに燃料ガスを供給し、カソードに酸化剤ガスを供給して、負荷に応じて発電する燃料電池と、当該燃料電池へ燃料ガスを供給するための供給通路に設けられた圧力調整弁と、当該燃料電池からの不純物を含むアノードオフガスを排出するための排出流路に設けられたパージ弁とを備えた燃料電池システムである。そして、前記燃料電池スタックの燃料ガス圧力を脈動させると共に、所定の昇圧速度となるように前記圧力調整弁を制御する脈動運転制御部を備え、前記脈動運転制御部は、前記燃料電池の発電量域の湿潤状態が低いときに比して、湿潤状態が高いときは前記所定の昇圧速度を高くする。 One aspect of a fuel cell system according to the present invention is to supply a fuel gas to an anode and an oxidant gas to a cathode to generate power according to a load, and to supply the fuel gas to the fuel cell. The fuel cell system is provided with a pressure regulating valve provided in the supply passage and a purge valve provided in the discharge passage for discharging the anode off gas containing impurities from the fuel cell. The fuel cell stack includes a pulsation operation control unit that pulsates the fuel gas pressure of the fuel cell stack and controls the pressure adjustment valve so as to achieve a predetermined pressure increase speed, and the pulsation operation control unit includes a power generation amount of the fuel cell. The predetermined pressure increase rate is increased when the wet state is high as compared to when the wet state is low.
 本発明の実施形態、本発明の利点については、添付された図面を参照しながら以下に詳細に説明する。 Embodiments of the present invention and advantages of the present invention will be described in detail below with reference to the accompanying drawings.
図1は、本発明による燃料電池システムの第1実施形態の概要を示す図である。FIG. 1 is a diagram showing an outline of a first embodiment of a fuel cell system according to the present invention. 図2Aは、燃料電池スタックを説明する外観斜視図である。FIG. 2A is an external perspective view illustrating a fuel cell stack. 図2Bは、燃料電池スタックの発電セルの構造を示す分解図である。FIG. 2B is an exploded view showing the structure of the power generation cell of the fuel cell stack. 図3Aは、燃料電池スタックにおける電解質膜の反応を説明する模式図である。FIG. 3A is a schematic diagram for explaining the reaction of the electrolyte membrane in the fuel cell stack. 図3Bは、燃料電池スタックにおける電解質膜の反応を説明する模式図である。FIG. 3B is a schematic diagram for explaining the reaction of the electrolyte membrane in the fuel cell stack. 図4は、燃料電池システムの第1実施形態のコントローラーが実行する制御フローチャートである。FIG. 4 is a control flowchart executed by the controller of the first embodiment of the fuel cell system. 図5は、燃料電池スタックの湿潤度と昇圧速度との相関図である。FIG. 5 is a correlation diagram between the wetness of the fuel cell stack and the pressure increase rate. 図6は、アノードガスの供給流量と昇圧速度との相関図である。FIG. 6 is a correlation diagram between the anode gas supply flow rate and the pressure increase rate. 図7は、第1実施形態の制御フローチャートが実行されたときの作動を説明するタイミングチャートである。FIG. 7 is a timing chart for explaining the operation when the control flowchart of the first embodiment is executed. 図8Aは、排水運転中に上限圧又は下限圧を変更する場合のタイミングチャートである。FIG. 8A is a timing chart when changing the upper limit pressure or the lower limit pressure during the drainage operation. 図8Bは、排水運転中に上限圧又は下限圧を変更する場合のタイミングチャートである。FIG. 8B is a timing chart when changing the upper limit pressure or the lower limit pressure during the drainage operation. 図9は、本発明による燃料電池システムの第2実施形態のパージ弁の作動を説明する図である。FIG. 9 is a diagram for explaining the operation of the purge valve of the second embodiment of the fuel cell system according to the present invention. 図10は、本発明による燃料電池システムの第3実施形態の燃料ガス圧力の変動を説明する図である。FIG. 10 is a diagram for explaining the variation of the fuel gas pressure in the third embodiment of the fuel cell system according to the present invention. 図11は、本発明による燃料電池システムの第4実施形態の燃料ガス圧力の変動を説明する図である。FIG. 11 is a diagram for explaining the fluctuation of the fuel gas pressure in the fourth embodiment of the fuel cell system according to the present invention. 図12は、燃料電池スタックの湿潤度と昇圧速度との相関図である。FIG. 12 is a correlation diagram between the wetness of the fuel cell stack and the pressure increase rate. 図13は、パージ弁の作動を説明する図である。FIG. 13 is a diagram for explaining the operation of the purge valve.
(第1実施形態)
 図1は、本発明による燃料電池システムの第1実施形態の概要を示す図である。
(First embodiment)
FIG. 1 is a diagram showing an outline of a first embodiment of a fuel cell system according to the present invention.
 燃料電池システムは、燃料電池スタック100と、水素タンク200と、圧力調整弁300と、バッファータンク400と、パージ弁500と、コントローラー600と、を含む。 The fuel cell system includes a fuel cell stack 100, a hydrogen tank 200, a pressure adjustment valve 300, a buffer tank 400, a purge valve 500, and a controller 600.
 燃料電池スタック100は、反応ガス(アノードガスH2、カソードガスO2)が供給されて発電する。詳細は後述される。 The fuel cell stack 100 is supplied with reaction gas (anode gas H 2 , cathode gas O 2 ) to generate power. Details will be described later.
 水素タンク200は、アノードガスH2を高圧状態で貯蔵する高圧ガスタンクである。水素タンク200は、アノードラインの最上流に設けられる。 The hydrogen tank 200 is a high-pressure gas tank that stores the anode gas H 2 in a high-pressure state. The hydrogen tank 200 is provided in the uppermost stream of the anode line.
 圧力調整弁300は、水素タンク200の下流に設けられる。圧力調整弁300は、水素タンク200から新たにアノードラインに供給するアノードガスH2の圧力を調整する。アノードガスH2の圧力は、圧力調整弁300の開度によって調整される。 The pressure adjustment valve 300 is provided downstream of the hydrogen tank 200. The pressure adjustment valve 300 adjusts the pressure of the anode gas H 2 that is newly supplied from the hydrogen tank 200 to the anode line. The pressure of the anode gas H 2 is adjusted by the opening degree of the pressure adjustment valve 300.
 バッファータンク400は、燃料電池スタック100の下流に設けられる。バッファータンク400は、燃料電池スタック100から排出されたアノードガスH2を蓄える。 The buffer tank 400 is provided downstream of the fuel cell stack 100. The buffer tank 400 stores the anode gas H 2 discharged from the fuel cell stack 100.
 パージ弁500は、バッファータンク400の下流に設けられる。パージ弁500が開くと、アノードガスH2がバッファータンク400からパージされる。 The purge valve 500 is provided downstream of the buffer tank 400. When the purge valve 500 is opened, the anode gas H 2 is purged from the buffer tank 400.
 コントローラー600は、アノードラインに設けられた圧力センサー71や燃料電池スタック100に設けられた電流電圧センサー72などの信号に基づいて圧力調整弁300やパージ弁500の作動を制御する。具体的な制御内容は後述される。 The controller 600 controls the operation of the pressure regulating valve 300 and the purge valve 500 based on signals from the pressure sensor 71 provided in the anode line and the current / voltage sensor 72 provided in the fuel cell stack 100. Specific control contents will be described later.
 図2Aは、燃料電池スタックを説明する外観斜視図である。図2Bは、燃料電池スタックの発電セルの構造を示す分解図である。 FIG. 2A is an external perspective view illustrating a fuel cell stack. FIG. 2B is an exploded view showing the structure of the power generation cell of the fuel cell stack.
 図2Aに示されるように、燃料電池スタック100は、積層された複数の発電セル10と、集電プレート20と、絶縁プレート30と、エンドプレート40と、4本のテンションロッド50とを備える。 As shown in FIG. 2A, the fuel cell stack 100 includes a plurality of stacked power generation cells 10, a current collecting plate 20, an insulating plate 30, an end plate 40, and four tension rods 50.
 発電セル10は、燃料電池の単位発電セルである。各発電セル10は、1ボルト(V)程度の起電圧を生じる。各発電セル10の構成の詳細については後述される。 The power generation cell 10 is a unit power generation cell of a fuel cell. Each power generation cell 10 generates an electromotive voltage of about 1 volt (V). Details of the configuration of each power generation cell 10 will be described later.
 集電プレート20は、積層された複数の発電セル10の外側にそれぞれ配置される。集電プレート20は、ガス不透過性の導電性部材、たとえば緻密質カーボンで形成される。集電プレート20は、正極端子211及び負極端子212を備える。燃料電池スタック100は、正極端子211及び負極端子212によって、各発電セル10で生じた電子e-が取り出されて出力する。 The current collecting plate 20 is disposed outside each of the stacked power generation cells 10. The current collecting plate 20 is formed of a gas impermeable conductive member, for example, dense carbon. The current collecting plate 20 includes a positive electrode terminal 211 and a negative electrode terminal 212. The fuel cell stack 100 takes out and outputs electrons e generated in each power generation cell 10 by the positive electrode terminal 211 and the negative electrode terminal 212.
 絶縁プレート30は、集電プレート20の外側にそれぞれ配置される。絶縁プレート30は、絶縁性の部材、たとえばゴムなどで形成される。 The insulating plates 30 are respectively arranged outside the current collecting plate 20. The insulating plate 30 is formed of an insulating member such as rubber.
 エンドプレート40は、絶縁プレート30の外側にそれぞれ配置される。エンドプレート40は、剛性のある金属材料、たとえば鋼などで形成される。 The end plate 40 is disposed outside the insulating plate 30. The end plate 40 is made of a rigid metal material such as steel.
 一方のエンドプレート40(図2Aでは、左手前のエンドプレート40)には、アノード供給口41aと、アノード排出口41bと、カソード供給口42aと、カソード排出口42bと、冷却水供給口43aと、冷却水排出口43bとが設けられている。本実施形態では、アノード供給口41a、冷却水供給口43a及びカソード排出口42bは図中右側に設けられている。またカソード供給口42a、冷却水排出口43b及びアノード排出口41bは図中左側に設けられている。 One end plate 40 (the left front end plate 40 in FIG. 2A) has an anode supply port 41a, an anode discharge port 41b, a cathode supply port 42a, a cathode discharge port 42b, and a cooling water supply port 43a. A cooling water discharge port 43b is provided. In the present embodiment, the anode supply port 41a, the cooling water supply port 43a, and the cathode discharge port 42b are provided on the right side in the drawing. Further, the cathode supply port 42a, the cooling water discharge port 43b and the anode discharge port 41b are provided on the left side in the drawing.
 テンションロッド50は、エンドプレート40の四隅付近にそれぞれ配置される。燃料電池スタック100は内部に貫通した孔(不図示)が形成されている。この貫通孔にテンションロッド50が挿通される。テンションロッド50は、剛性のある金属材料、たとえば鋼などで形成される。テンションロッド50は、発電セル10同士の電気短絡を防止するため、表面には絶縁処理されている。このテンションロッド50にナット(奥にあるため図示されない)が螺合する。テンションロッド50とナットとが燃料電池スタック100を積層方向に締め付ける。 The tension rods 50 are arranged near the four corners of the end plate 40, respectively. The fuel cell stack 100 has a hole (not shown) penetrating therethrough. The tension rod 50 is inserted through the through hole. The tension rod 50 is formed of a rigid metal material such as steel. The tension rod 50 is insulated on the surface in order to prevent an electrical short circuit between the power generation cells 10. A nut (not shown because it is in the back) is screwed into the tension rod 50. The tension rod 50 and the nut tighten the fuel cell stack 100 in the stacking direction.
 アノード供給口41aにアノードガスとしての水素を供給する方法としては、例えば水素ガスを水素貯蔵装置から直接供給する方法、又は水素を含有する燃料を改質して改質した水素含有ガスを供給する方法などがある。なお、水素貯蔵装置としては、高圧ガスタンク、液化水素タンク、水素吸蔵合金タンクなどがある。水素を含有する燃料としては、天然ガス、メタノール、ガソリンなどがある。図1では、高圧ガスタンクが使用される。また、カソード供給口42aに供給するカソードガスとしては、一般的に空気が利用される。 As a method of supplying hydrogen as the anode gas to the anode supply port 41a, for example, a method of directly supplying hydrogen gas from a hydrogen storage device or a hydrogen-containing gas reformed by reforming a fuel containing hydrogen is supplied. There are methods. Examples of the hydrogen storage device include a high-pressure gas tank, a liquefied hydrogen tank, and a hydrogen storage alloy tank. Examples of the fuel containing hydrogen include natural gas, methanol, and gasoline. In FIG. 1, a high pressure gas tank is used. Air is generally used as the cathode gas supplied to the cathode supply port 42a.
 図2Bに示されるように、発電セル10は、膜電極接合体(Membrane Electrode Assembly;MEA)11の両面に、アノードセパレーター(アノードバイポーラープレート)12a及びカソードセパレーター(カソードバイポーラープレート)12bが配置される構造である。 As shown in FIG. 2B, in the power generation cell 10, an anode separator (anode bipolar plate) 12a and a cathode separator (cathode bipolar plate) 12b are disposed on both surfaces of a membrane electrode assembly (MEA) 11. Is the structure.
 MEA11は、イオン交換膜からなる電解質膜111の両面に電極触媒層112が形成される。この電極触媒層112の上にガス拡散層(Gas Diffusion Layer;GDL)113が形成される。 MEA 11 has electrode catalyst layers 112 formed on both surfaces of an electrolyte membrane 111 made of an ion exchange membrane. A gas diffusion layer (gas diffusion layer: GDL) 113 is formed on the electrode catalyst layer 112.
 電極触媒層112は、たとえば白金が担持されたカーボンブラック粒子で形成される。 The electrode catalyst layer 112 is formed of carbon black particles carrying platinum, for example.
 GDL113は、十分なガス拡散性及び導電性を有する部材、たとえばカーボン繊維で形成される。 The GDL 113 is formed of a member having sufficient gas diffusibility and conductivity, for example, carbon fiber.
 アノード供給口41aから供給されたアノードガスは、このGDL113aを流れてアノード電極触媒層112(112a)と反応し、アノード排出口41bから排出される。 The anode gas supplied from the anode supply port 41a flows through this GDL 113a, reacts with the anode electrode catalyst layer 112 (112a), and is discharged from the anode discharge port 41b.
 カソード供給口42aから供給されたカソードガスは、このGDL113bを流れてカソード電極触媒層112(112b)と反応し、カソード排出口42bから排出される。 The cathode gas supplied from the cathode supply port 42a flows through this GDL 113b, reacts with the cathode electrode catalyst layer 112 (112b), and is discharged from the cathode discharge port 42b.
 アノードセパレーター12aは、GDL113a及びシール14aを介してMEA11の片面(図2Bの裏面)に重ねられる。カソードセパレーター12bは、GDL113b及びシール14bを介してMEA11の片面(図2Bの表面)に重ねられる。シール14(14a,14b)は、たとえばシリコーンゴム、エチレンプロピレンゴム(ethylene propylene diene monomer;EPDM)、フッ素ゴムなどのゴム状弾性材である。アノードセパレーター12a及びカソードセパレーター12bは、たとえばステンレスなどの金属製のセパレーター基体がプレス成型されて、一方の面に反応ガス流路が形成され、その反対面に反応ガス流路と交互に並ぶように冷却水流路が形成される。図2Bに示すようにアノードセパレーター12a及びカソードセパレーター12bが重ねられて、冷却水流路が形成される。 The anode separator 12a is stacked on one side of the MEA 11 (back side in FIG. 2B) via the GDL 113a and the seal 14a. The cathode separator 12b is overlaid on one side (the surface in FIG. 2B) of the MEA 11 via the GDL 113b and the seal 14b. The seal 14 (14a, 14b) is a rubber-like elastic material such as silicone rubber, ethylene-propylene rubber (EPDM), or fluorine rubber. The anode separator 12a and the cathode separator 12b are formed by press-molding a metal separator base such as stainless steel so that a reaction gas channel is formed on one surface and alternately arranged with the reaction gas channel on the opposite surface. A cooling water flow path is formed. As shown in FIG. 2B, the anode separator 12a and the cathode separator 12b are overlapped to form a cooling water flow path.
 MEA11、アノードセパレーター12a及びカソードセパレーター12bには、それぞれ孔41a,41b,42a,42b,43a,43bが形成されており、これらが重ねられて、アノード供給口(アノード供給マニホールド)41a、アノード排出口(アノード排出マニホールド)41b、カソード供給口(カソード供給マニホールド)42a、カソード排出口(カソード排出マニホールド)42b、冷却水供給口(冷却水供給マニホールド)43a及び冷却水排出口(冷却水排出マニホールド)43bが形成される。 The MEA 11, the anode separator 12a, and the cathode separator 12b are formed with holes 41a, 41b, 42a, 42b, 43a, 43b, respectively, which are stacked to form an anode supply port (anode supply manifold) 41a, an anode discharge port. (Anode discharge manifold) 41b, cathode supply port (cathode supply manifold) 42a, cathode discharge port (cathode discharge manifold) 42b, cooling water supply port (cooling water supply manifold) 43a and cooling water discharge port (cooling water discharge manifold) 43b Is formed.
 図3A及び図3Bは、燃料電池スタックにおける電解質膜の反応を説明する模式図である。 3A and 3B are schematic diagrams for explaining the reaction of the electrolyte membrane in the fuel cell stack.
 上述のように、燃料電池スタック100は、反応ガス(カソードガスO2、アノードガスH2)が供給されて発電する。燃料電池スタック100は、電解質膜の両面にカソード電極触媒層及びアノード電極触媒層が形成された膜電極接合体(Membrane Electrode Assembly;MEA)が数百枚積層されて構成される。そのうちの1枚のMEAが図3Aに示される。ここではMEAにカソードガスが供給されて(カソードイン)、対角側から排出されながら(カソードアウト)、アノードガスが供給されて(アノードイン)、対角側から排出される(アノードアウト)、という例が示されている。 As described above, the fuel cell stack 100 is supplied with the reaction gas (cathode gas O 2 , anode gas H 2 ) to generate power. The fuel cell stack 100 is configured by stacking hundreds of membrane electrode assemblies (MEA) in which a cathode electrode catalyst layer and an anode electrode catalyst layer are formed on both surfaces of an electrolyte membrane. One of them is shown in FIG. 3A. Here, the cathode gas is supplied to the MEA (cathode in) and discharged from the diagonal side (cathode out), while the anode gas is supplied (anode in) and discharged from the diagonal side (anode out). An example is shown.
 各膜電極接合体(MEA)は、カソード電極触媒層及びアノード電極触媒層において以下の反応が、負荷に応じて進行して発電する。 In each membrane electrode assembly (MEA), the following reaction proceeds in the cathode electrode catalyst layer and the anode electrode catalyst layer according to the load to generate power.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 図3Bに示すように、反応ガス(カソードガスO2)がカソード流路を流れるにつれて上式(1-1)の反応が進行し、水蒸気が生成される。するとカソード流路の下流側では相対湿度が高くなる。この結果、カソード側とアノード側との相対湿度差が大きくなる。この相対湿度差をドライビングフォースとして、水が逆拡散しアノード上流側が加湿される。この水分がさらにMEAからアノード流路に蒸発してアノード流路を流れる反応ガス(アノードガスH2)を加湿する。そしてアノード下流側に運ばれてアノード下流のMEAを加湿する。 As shown in FIG. 3B, as the reaction gas (cathode gas O 2 ) flows through the cathode flow path, the reaction of the above equation (1-1) proceeds and water vapor is generated. Then, the relative humidity increases on the downstream side of the cathode channel. As a result, the relative humidity difference between the cathode side and the anode side increases. With this relative humidity difference as the driving force, water is back-diffused and the anode upstream side is humidified. This moisture further evaporates from the MEA to the anode channel, and humidifies the reaction gas (anode gas H 2 ) flowing through the anode channel. Then, it is transported downstream of the anode and humidifies the MEA downstream of the anode.
 上記反応によって効率よく発電するには、電解質膜が適度な湿潤状態であることが必要である。電解質膜中の水分が多すぎれば、余剰の水分が反応ガス流路に溢れてしまって、ガスの流れが阻害される。このような場合には上記反応が促進されない。したがって電解質膜が適度な湿潤状態であることで、効率よく発電される。 In order to generate power efficiently by the above reaction, the electrolyte membrane needs to be in an appropriate wet state. If there is too much water in the electrolyte membrane, excess water overflows into the reaction gas flow path and the gas flow is hindered. In such a case, the above reaction is not promoted. Therefore, power is efficiently generated when the electrolyte membrane is in a moderately wet state.
 そこで発明者らは、以下のように制御することに想到した。 Therefore, the inventors came up with the following control.
 図4は、燃料電池システムの第1実施形態のコントローラーが実行する制御フローチャートである。なおコントローラーは、微小時間(たとえば10ミリ秒)ごとにこのフローチャートを繰り返し実行する。 FIG. 4 is a control flowchart executed by the controller of the first embodiment of the fuel cell system. The controller repeatedly executes this flowchart every minute time (for example, 10 milliseconds).
 ステップS1においてコントローラーは、排水運転中であるか否かを判定する。なお排水運転は、後述のステップS3で実行される。コントローラーは、判定結果が否であればステップS2へ処理を移行し、判定結果が肯であればステップS4へ処理を移行する。 In step S1, the controller determines whether or not the drainage operation is in progress. The drainage operation is executed in step S3 described later. If the determination result is negative, the controller proceeds to step S2, and if the determination result is positive, the controller proceeds to step S4.
 ステップS2においてコントローラーは、排水運転が必要であるか否かを判定する。具体的には、発電セルの電圧を検出して、その電圧が閾値よりも小さければ、排水運転が必要であると判定すればよい。また、たとえば電解質膜の湿潤度が基準値よりも大きければ排水運転が必要であると判定してもよい。電解質膜の湿潤度は、電解質膜のインピーダンス(内部抵抗)によって変化する。すなわち電解質膜の湿潤度が小さいほど(電解質膜中の水分が少なく乾き気味であるほど)、インピーダンスは大きくなる。電解質膜の湿潤度が大きいほど(電解質膜中の水分が多く濡れ気味であるほど)、インピーダンスは小さくなる。そこで、この特性を利用して、たとえば燃料電池スタックの発電電流を例えば1kHzの正弦波で変動させて電圧の変動を見る。そして1kHzの交流電圧振幅を交流電流振幅で除算することでインピーダンスを求める。そしてこのインピーダンスに基づいて電解質膜の湿潤度を得ることができる。コントローラーは、判定結果が肯であればステップS3へ処理を移行し、判定結果が否であればステップS6へ処理を移行する。 In step S2, the controller determines whether or not drainage operation is necessary. Specifically, the voltage of the power generation cell is detected, and if the voltage is smaller than the threshold value, it may be determined that the drainage operation is necessary. For example, if the wetness of the electrolyte membrane is larger than the reference value, it may be determined that the drainage operation is necessary. The wetness of the electrolyte membrane varies depending on the impedance (internal resistance) of the electrolyte membrane. That is, the lower the wetness of the electrolyte membrane (the less dry the electrolyte membrane is, the more dry it is), the greater the impedance. The greater the wetness of the electrolyte membrane (the more moisture in the electrolyte membrane, the more wet it is), the lower the impedance. Therefore, using this characteristic, for example, the generated current of the fuel cell stack is changed with a sine wave of 1 kHz, for example, and the change in voltage is observed. Then, the impedance is obtained by dividing the AC voltage amplitude of 1 kHz by the AC current amplitude. Based on this impedance, the wetness of the electrolyte membrane can be obtained. If the determination result is affirmative, the controller proceeds to step S3, and if the determination result is negative, the controller proceeds to step S6.
 ステップS3においてコントローラーは、排水運転を設定する。具体的にはたとえば図5に示されるようなマップを予め実験等を通じて用意しておく。そしてそのマップに電解質膜の湿潤度を適用して、燃料ガス圧力を脈動供給するときの昇圧速度を、通常運転するときに比べて、大きく設定する。なお昇圧速度は、図6に示されるように、供給流量と相関がある。そこで昇圧速度を上げるには、圧力調整弁300の開度を大きくして供給流量を増やせばよい。 In step S3, the controller sets the drain operation. Specifically, for example, a map as shown in FIG. 5 is prepared in advance through experiments or the like. Then, the wetness of the electrolyte membrane is applied to the map, and the pressure increase rate when the fuel gas pressure is supplied in a pulsating manner is set larger than that during normal operation. Note that the pressure increase rate correlates with the supply flow rate as shown in FIG. Therefore, in order to increase the pressure increase speed, it is only necessary to increase the supply flow rate by increasing the opening of the pressure regulating valve 300.
 ステップS4においてコントローラーは、排水運転が不要であるか否かを判定する。具体的には、たとえば電解質膜の湿潤度が基準値よりも小さければ排水運転が必要であると判定すればよい。なおこの基準値は、排水運転が必要であることを判定する基準値と同じであっても異なってもよい。コントローラーは、判定結果が肯であればステップS5へ処理を移行し、判定結果が否であればステップS6へ処理を移行する。 In step S4, the controller determines whether or not drainage operation is unnecessary. Specifically, for example, if the wetness of the electrolyte membrane is smaller than the reference value, it may be determined that the drainage operation is necessary. The reference value may be the same as or different from the reference value for determining that the drainage operation is necessary. If the determination result is positive, the controller proceeds to step S5, and if the determination result is negative, the controller proceeds to step S6.
 ステップS5においてコントローラーは、通常運転を設定する。具体的にはたとえば図5に示されるようなマップに電解質膜の湿潤度を適用して、燃料ガス圧力を脈動供給するときの昇圧速度を、排水運転するときに比べて、小さく設定する。 In step S5, the controller sets normal operation. Specifically, for example, the wetness of the electrolyte membrane is applied to a map as shown in FIG. 5, and the pressure increase rate when the fuel gas pressure is supplied in a pulsating manner is set smaller than that in the drainage operation.
 ステップS6においてコントローラーは、現在圧力が上昇中であるか否かを判定する。コントローラーは、判定結果が肯であればステップS7へ処理を移行し、判定結果が否であればステップS9へ処理を移行する。 In step S6, the controller determines whether or not the pressure is currently increasing. If the determination result is affirmative, the controller proceeds to step S7, and if the determination result is negative, the controller proceeds to step S9.
 ステップS7においてコントローラーは、現在の圧力が目標上限圧力よりも小であるか否かを判定する。コントローラーは、判定結果が否であれば一旦処理を抜け、判定結果が肯であればステップS8へ処理を移行する。 In step S7, the controller determines whether or not the current pressure is smaller than the target upper limit pressure. If the determination result is negative, the controller temporarily exits the process. If the determination result is positive, the controller proceeds to step S8.
 ステップS8においてコントローラーは、反応ガスの供給を停止する。 In step S8, the controller stops supplying the reaction gas.
 ステップS9においてコントローラーは、現在の圧力が目標下限圧力よりも大であるか否かを判定する。コントローラーは、判定結果が否であれば一旦処理を抜け、判定結果が肯であればステップS10へ処理を移行する。 In step S9, the controller determines whether or not the current pressure is greater than the target lower limit pressure. If the determination result is negative, the controller temporarily exits the process, and if the determination result is positive, the controller proceeds to step S10.
 ステップS10においてコントローラーは、反応ガスの供給を開始する。 In step S10, the controller starts supplying the reaction gas.
 図7は、第1実施形態の制御フローチャートが実行されたときの作動を説明するタイミングチャートである。 FIG. 7 is a timing chart for explaining the operation when the control flowchart of the first embodiment is executed.
 なお上述のフローチャートとの対応が分かりやすくするために、フローチャートのステップ番号にSを付して併記する。 In addition, in order to make it easy to understand the correspondence with the above flowchart, S is added to the step number of the flowchart.
 以上の制御フローチャートが実行されて以下のように作動する。 The above control flowchart is executed and operates as follows.
 図7では、時刻t14の以前はセル電圧が閾値よりも大きく排水運転が不要である。そこでまず時刻t11までは、ステップS1→S2→S6→S7の処理が繰り返される。この結果、図7に示されるように、アノード圧が上昇する。 In FIG. 7, before time t14, the cell voltage is greater than the threshold value, and drainage operation is not required. Therefore, until time t11, the process of steps S1, S2, S6, and S7 is repeated. As a result, the anode pressure rises as shown in FIG.
 時刻t11でアノード圧が目標上限圧力に達したら、ステップS7→S8が処理される。この結果、図7に示されるように、アノード圧が下降に転じる。 When the anode pressure reaches the target upper limit pressure at time t11, steps S7 → S8 are processed. As a result, as shown in FIG. 7, the anode pressure starts to decrease.
 時刻t11以後は、ステップS1→S2→S6→S9の処理が繰り返される。アノードガスの供給が停止されている間も、発電反応でアノードガスが消費されるので、図7に示されるように、アノード圧が下降し続ける。 After time t11, steps S1 → S2 → S6 → S9 are repeated. Even while the supply of the anode gas is stopped, the anode gas is consumed by the power generation reaction, so that the anode pressure continues to decrease as shown in FIG.
 時刻t12でアノード圧が目標下限圧力に達したら、ステップS9→S10が処理される。この結果、図7に示されるように、アノード圧が上昇に転じる。 When the anode pressure reaches the target lower limit pressure at time t12, steps S9 → S10 are processed. As a result, as shown in FIG. 7, the anode pressure starts to increase.
 同様の制御が時刻t14まで繰り返される。 The same control is repeated until time t14.
 時刻t14でセル電圧が閾値よりも小さくなって排水運転が必要になる。そこで、ステップS1→S2→S3が処理されて排水運転用の昇圧速度が設定される。そして次サイクル以降は、ステップS1→S4→S6→S7の処理が繰り返される。この結果、図7に示されるように、アノード圧が上昇する。 At time t14, the cell voltage becomes lower than the threshold value and drainage operation is required. Therefore, steps S1 → S2 → S3 are processed to set the pressure increasing speed for drainage operation. Then, after the next cycle, the processes of steps S 1 → S 4 → S 6 → S 7 are repeated. As a result, the anode pressure rises as shown in FIG.
 時刻t15でアノード圧が目標上限圧力に達したら、ステップS7→S8が処理される。この結果、図7に示されるように、アノード圧が下降に転じる。 When the anode pressure reaches the target upper limit pressure at time t15, steps S7 → S8 are processed. As a result, as shown in FIG. 7, the anode pressure starts to decrease.
 時刻t15以後は、ステップS1→S4→S6→S9の処理が繰り返される。アノードガスの供給が停止されている間も、発電反応でアノードガスが消費されるので、図7に示されるように、アノード圧が下降し続ける。 After time t15, steps S1 → S4 → S6 → S9 are repeated. Even while the supply of the anode gas is stopped, the anode gas is consumed by the power generation reaction, so that the anode pressure continues to decrease as shown in FIG.
 時刻t16でアノード圧が目標下限圧力に達したら、ステップS9→S10が処理される。この結果、図7に示されるように、アノード圧が上昇に転じる。 When the anode pressure reaches the target lower limit pressure at time t16, steps S9 → S10 are processed. As a result, as shown in FIG. 7, the anode pressure starts to increase.
 同様の制御が時刻t17まで繰り返される。 The same control is repeated until time t17.
 時刻t17でセル電圧が閾値よりも大きくなって排水運転が不要になる。そこで、ステップS1→S4→S5が処理されて通常運転用の昇圧速度が設定される。そして次サイクル以降は、ステップS1→S2→S6→S7の処理が繰り返される。この結果、図7に示されるように、アノード圧が上昇する。 At time t17, the cell voltage becomes higher than the threshold value, and drainage operation is not necessary. Therefore, steps S1 → S4 → S5 are processed to set the boosting speed for normal operation. After the next cycle, the processes of steps S1, S2, S6, and S7 are repeated. As a result, the anode pressure rises as shown in FIG.
 上述のように、本実施形態では、発電セルの電圧が閾値よりも小さくなって排水運転が必要であると判定されたときには、燃料ガス圧力を脈動供給するときの昇圧速度が、通常運転するときに比べて、大きく設定される。昇圧速度が大きくなると、アノード供給マニホールドを流れるアノードガスの流速が急激に速くなり、アノード流路に残留した液水が排出されることとなる。これによって水素分圧が確保され発電性能が安定する。またセル内に燃料が欠乏することで生ずる劣化も防止できる。またセル電圧が回復したら、昇圧速度が元に戻されるので、これによってもセル内の水素分圧が確保され発電性能が安定する。 As described above, in the present embodiment, when it is determined that the drainage operation is necessary because the voltage of the power generation cell is smaller than the threshold value, the pressure increase rate when the fuel gas pressure is supplied in pulsation is the normal operation. Is set larger than As the pressure increase rate increases, the flow rate of the anode gas flowing through the anode supply manifold increases rapidly, and the liquid water remaining in the anode flow path is discharged. This secures the hydrogen partial pressure and stabilizes the power generation performance. Further, it is possible to prevent deterioration caused by the lack of fuel in the cell. Further, when the cell voltage is restored, the boosting speed is restored to the original value. This also secures the hydrogen partial pressure in the cell and stabilizes the power generation performance.
 また本実施形態では、セル電圧に基づいて排水運転が必要か否かを判定するので、正確に判定できる。 In this embodiment, since it is determined whether or not the drainage operation is necessary based on the cell voltage, it can be accurately determined.
 また、本実施形態で説明した調圧弁の制御を以下の通りの制御としても良い。 Further, the control of the pressure regulating valve described in the present embodiment may be the following control.
 燃料電池の供給負荷(電流)に応じて設定される上限圧力と下限圧力をマップから読み出す。上限圧力と下限圧力は、いずれも負荷が大きいほど、大きくなる。それと共に、負荷が大きくなるほど上限圧力と下限圧力との差圧も大きくなる。 The upper limit pressure and the lower limit pressure set according to the fuel cell supply load (current) are read from the map. Both the upper limit pressure and the lower limit pressure increase as the load increases. At the same time, the differential pressure between the upper limit pressure and the lower limit pressure increases as the load increases.
 このようなマップにより、低負荷よりも高負荷側のアノード圧力が高くなると共に、低負荷での脈動幅に比して、高負荷での脈動幅が大きくなる。 Such a map increases the anode pressure on the high load side rather than the low load, and increases the pulsation width at the high load as compared with the pulsation width at the low load.
 そして、脈動制御部は、昇圧させる場合は、上限圧力を目標値として、燃料電池スタックのアノード入口に設けられる圧力センサの値を参照して、調圧弁による圧力フィードバック制御を行う。 Then, when increasing the pressure, the pulsation control unit performs pressure feedback control by the pressure regulating valve with reference to the value of the pressure sensor provided at the anode inlet of the fuel cell stack with the upper limit pressure as the target value.
 フィードバック制御により実圧力が目標圧力付近になると、脈動制御部は下限圧力を目標圧力として、再びフィードバック制御を行う。 When the actual pressure is close to the target pressure by feedback control, the pulsation control unit performs feedback control again with the lower limit pressure as the target pressure.
 この制御を繰り返すことで、調圧弁による上下限圧力での脈動運転を行う。 繰 り 返 す By repeating this control, pulsation operation is performed at the upper and lower limit pressure by the pressure regulating valve.
 そして、特に昇圧速度については、燃料電池の発電量域(電解質膜)の湿潤状態が高いほど、昇圧速度が高くなるように設定しても良い。 In particular, the pressure increase speed may be set such that the pressure increase speed increases as the wet state of the power generation amount region (electrolyte membrane) of the fuel cell increases.
 具体的には、上記フィードバック制御において、下限圧力から上限圧力へと目標圧力を切り替える際に、湿潤状態に応じた昇圧速度の目標圧力を設定しても良い。また、下限圧力から上限圧力へと目標圧力をステップ的に切り替える一方、実際のアノード圧力の昇圧速度が湿潤状態に応じた速度となるように、フィードバック制御のゲインを設定しても良い。 Specifically, in the above feedback control, when the target pressure is switched from the lower limit pressure to the upper limit pressure, the target pressure of the pressure increase speed corresponding to the wet state may be set. Further, the gain of feedback control may be set so that the target pressure is switched stepwise from the lower limit pressure to the upper limit pressure while the actual pressure increase rate of the anode pressure becomes a speed corresponding to the wet state.
 なお図8Aに示されるように、昇圧速度を上げるのにあわせて下限圧を下げてもよい。下限圧が低いところから昇圧するので、昇圧速度が同じでも、ガスの流速は速くなりやすい。したがって、このようにすればアノード流路に残留した液水の排出性能がさらに向上する。 As shown in FIG. 8A, the lower limit pressure may be lowered as the pressure increase rate is increased. Since the pressure is increased from the place where the lower limit pressure is low, the gas flow rate tends to be high even if the pressure increase rate is the same. Therefore, if it does in this way, the drainage performance of the liquid water which remained in the anode channel will further improve.
 また図8Bに示されるように、昇圧速度を上げるのにあわせて上限圧を上げてもよい。このようにすれば、圧力がさらに上がるので、昇圧速度が同じでも、ガスの流速は速くなりやすい。したがって、このようにしてもアノード流路に残留した液水の排出性能が向上する。 Also, as shown in FIG. 8B, the upper limit pressure may be increased as the pressure increase rate is increased. In this way, since the pressure further increases, the gas flow rate tends to increase even if the pressure increase rate is the same. Therefore, even if it does in this way, the discharge performance of the liquid water which remained in the anode flow path improves.
 (第2実施形態)
 図9は、本発明による燃料電池システムの第2実施形態のパージ弁の作動を説明する図である。
(Second Embodiment)
FIG. 9 is a diagram for explaining the operation of the purge valve of the second embodiment of the fuel cell system according to the present invention.
 第1実施形態では、排水運転が必要であると判定されたときには、燃料ガス圧力を脈動供給するときの昇圧速度が大きく設定された。 In the first embodiment, when it is determined that the drainage operation is necessary, the pressure increase speed when the fuel gas pressure is supplied in a pulsating manner is set large.
 これに対して本実施形態では、排水運転が必要であると判定されたときには、第1実施形態の制御に加えてパージ弁500の開弁時間を長くする。 In contrast, in this embodiment, when it is determined that the drainage operation is necessary, the valve opening time of the purge valve 500 is lengthened in addition to the control of the first embodiment.
 このようにパージ弁500の開弁時間が長くなれば、アノードガスの流速がさらに速くなるので、アノード流路に残留した液水が一層排出されやすくなる。なおこのように第1実施形態の制御にあわせてパージ弁500の制御も実行すると、第1実施形態に比較して、昇圧速度は大きくならず通常運転時と同じであることもあり得る。しかしながら、昇圧速度が通常運転と同じでも、通常運転よりもアノードガスの流速が速くなるので、アノード流路に残留した液水の排出性能が向上するのである。 As described above, when the opening time of the purge valve 500 is increased, the flow rate of the anode gas is further increased, so that the liquid water remaining in the anode channel is more easily discharged. If the control of the purge valve 500 is also executed in accordance with the control of the first embodiment as described above, the pressure increase speed is not increased as compared with the first embodiment, and may be the same as that in the normal operation. However, even if the pressure increase rate is the same as that in the normal operation, the flow rate of the anode gas is higher than that in the normal operation, so that the discharge performance of the liquid water remaining in the anode channel is improved.
 (第3実施形態)
 図10は、本発明による燃料電池システムの第3実施形態の燃料ガス圧力の変動を説明する図である。
(Third embodiment)
FIG. 10 is a diagram for explaining the variation of the fuel gas pressure in the third embodiment of the fuel cell system according to the present invention.
 第1実施形態では、発電セルの電圧が閾値よりも小さくなったときに、排水運転が必要であると判定された。 In the first embodiment, it is determined that the drainage operation is necessary when the voltage of the power generation cell becomes smaller than the threshold value.
 これに対して本実施形態では、一定サイクルごとに排水運転が必要であると判定される。図10では、3サイクルごとに排水運転を実行する。 On the other hand, in this embodiment, it is determined that the drainage operation is necessary for every predetermined cycle. In FIG. 10, the drainage operation is executed every three cycles.
 このようにすれば、セル電圧を測定することが不要であるので、簡易に実施することができる。 In this way, since it is not necessary to measure the cell voltage, it can be carried out easily.
 (第4実施形態)
 図11は、本発明による燃料電池システムの第4実施形態の燃料ガス圧力の変動を説明する図である。
(Fourth embodiment)
FIG. 11 is a diagram for explaining the fluctuation of the fuel gas pressure in the fourth embodiment of the fuel cell system according to the present invention.
 第3実施形態では、一定サイクルごとに排水運転が必要であると判定された。 In the third embodiment, it is determined that the drainage operation is necessary every certain cycle.
 これに対して本実施形態では、排水運転が必要になる時期よりも短い期間で、排水運転の時期を判定する。図11では、排水運転が必要になる時期が3サイクルで到来する。そして図11では、その3サイクルよりも短い2サイクルで排水時期を判定することもあれば、1サイクル(すなわち連続サイクル)で排水時期を判定することもある。 In contrast, in the present embodiment, the timing of the drainage operation is determined in a shorter period than the time when the drainage operation is necessary. In FIG. 11, the time when the drainage operation is necessary comes in three cycles. In FIG. 11, the drainage time may be determined by two cycles shorter than the three cycles, or the drainage time may be determined by one cycle (that is, continuous cycle).
 このようにしても、セル電圧を測定することが不要であるので、簡易に実施することができる。 Even in this case, since it is not necessary to measure the cell voltage, it can be easily carried out.
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。 The embodiment of the present invention has been described above. However, the above embodiment only shows a part of application examples of the present invention, and the technical scope of the present invention is limited to the specific configuration of the above embodiment. Absent.
 たとえば、第1実施形態では、排水運転が必要か否かによって、燃料ガス圧力を脈動供給するときの昇圧速度を二値的に大きく又は小さく設定する。しかしながらこのような手法には限定されない。たとえば図5に代えて、図12に示されるようなマップを用いて、スタック湿潤度に応じて昇圧速度を設定してもよい。 For example, in the first embodiment, the pressure increase rate when the fuel gas pressure is supplied in a pulsating manner is set to be binary larger or smaller depending on whether or not the drainage operation is necessary. However, it is not limited to such a method. For example, instead of FIG. 5, a map as shown in FIG. 12 may be used to set the pressure increase rate according to the stack wetness.
 また第2実施形態では、排水運転が必要であると判定されたときには、第1実施形態の制御に加えてパージ弁500の開弁時間を長くした。しかしながらこのような手法には限定されない。たとえば図9に代えて、図13に示されるようにパージ弁500の閉弁時間を短くしてもよい。このようにしても、同様の効果を得ることができる。 In the second embodiment, when it is determined that the drainage operation is necessary, the opening time of the purge valve 500 is increased in addition to the control of the first embodiment. However, it is not limited to such a method. For example, instead of FIG. 9, the valve closing time of the purge valve 500 may be shortened as shown in FIG. Even if it does in this way, the same effect can be acquired.
 また上記実施形態は、適宜組み合わせ可能である。 Further, the above embodiments can be appropriately combined.
 本願は、2012年3月15日に日本国特許庁に出願された特願2012-59261に基づく優先権を主張し、これらの出願の全ての内容は参照によって本明細書に組み込まれる。 This application claims priority based on Japanese Patent Application No. 2012-59261 filed with the Japan Patent Office on March 15, 2012, the entire contents of which are incorporated herein by reference.

Claims (6)

  1.  アノードに燃料ガスを供給し、カソードに酸化剤ガスを供給して、負荷に応じて発電する燃料電池と、当該燃料電池へ燃料ガスを供給するための供給通路に設けられた圧力調整弁と、当該燃料電池からの不純物を含むアノードオフガスを排出するための排出流路に設けられたパージ弁とを備えた燃料電池システムにおいて、
     前記燃料電池スタックの燃料ガス圧力を脈動させると共に、所定の昇圧速度となるように前記圧力調整弁を制御する脈動運転制御部を備え、
     前記脈動運転制御部は、前記燃料電池の発電量域の湿潤状態が低いときに比して、湿潤状態が高いときは前記所定の昇圧速度を高くする、
    燃料電池システム。
    A fuel cell that supplies fuel gas to the anode and oxidant gas to the cathode to generate electric power according to a load; and a pressure regulating valve provided in a supply passage for supplying the fuel gas to the fuel cell; In a fuel cell system comprising a purge valve provided in a discharge channel for discharging anode offgas containing impurities from the fuel cell,
    A pulsation operation control unit that pulsates the fuel gas pressure of the fuel cell stack and controls the pressure adjustment valve so as to achieve a predetermined pressure increase speed,
    The pulsation operation control unit increases the predetermined pressure increase speed when the wet state is high, as compared to when the wet state of the power generation amount region of the fuel cell is low.
    Fuel cell system.
  2.  請求項1に記載の燃料電池システムにおいて、
     燃料電池の発電領域内のアノードガス圧力を検出するアノードガス圧力検知部を備え、
     前記脈動運転制御部は、脈動の上限圧力と下限圧力とを設定すると共に、昇圧時は脈動の目標圧力を当該下限圧力から当該上限圧力を目標圧力に切り替え、当該目標圧力と実際のアノードガス圧力値に基づいて前記圧力調整弁をフィードバック制御するものであり、
     前記昇圧速度は、切り替える際の目標圧力を徐々に上限圧力にする、若しくは、フィードバック制御のゲインによって設定される、
    燃料電池システム。
    The fuel cell system according to claim 1, wherein
    An anode gas pressure detector for detecting the anode gas pressure in the power generation region of the fuel cell;
    The pulsation operation control unit sets an upper limit pressure and a lower limit pressure for pulsation, and at the time of pressure increase, switches the target pressure for pulsation from the lower limit pressure to the target pressure to the target pressure and the actual anode gas pressure. Feedback control of the pressure regulating valve based on the value,
    The pressure increase speed is gradually set to the upper limit pressure as the target pressure at the time of switching, or is set by the gain of feedback control,
    Fuel cell system.
  3.  請求項2に記載の燃料電池システムにおいて、
     燃料電池電解質膜の抵抗を検知する内部抵抗検知部を備え、
     前記脈動運転制御部は、湿潤状態を判定するため内部抵抗が所定値以下のとき、前記所定の昇圧速度を高くする、
    燃料電池システム。
    The fuel cell system according to claim 2, wherein
    It has an internal resistance detector that detects the resistance of the fuel cell electrolyte membrane,
    The pulsation operation control unit increases the predetermined pressure increase rate when the internal resistance is equal to or lower than a predetermined value in order to determine a wet state.
    Fuel cell system.
  4.  請求項3に記載の燃料電池システムにおいて、
     前記内部抵抗が所定値以下のとき、前記所定の昇圧速度を高くすると共に、前記パージ弁の開度を内部抵抗が所定値以下のときに設定される開度よりも大きくするパージ調整部をさらに含む、
    燃料電池システム。
    The fuel cell system according to claim 3, wherein
    A purge adjusting unit that increases the predetermined pressure increase rate when the internal resistance is less than or equal to a predetermined value and makes the opening of the purge valve larger than the opening set when the internal resistance is less than or equal to a predetermined value; Including,
    Fuel cell system.
  5.  請求項1から請求項4までのいずれか1項に記載の燃料電池システムにおいて、
     前記脈動運転制御部は、セル電圧が所定値以下のとき、前記所定の昇圧速度を高くする、
    燃料電池システム。
    In the fuel cell system according to any one of claims 1 to 4,
    The pulsation operation control unit increases the predetermined boosting speed when the cell voltage is a predetermined value or less.
    Fuel cell system.
  6.  請求項1から請求項4までのいずれか1項に記載の燃料電池システムにおいて、
     前記脈動運転制御部は、所定周期ごとに前記所定の昇圧速度を高くする、
    燃料電池システム。
    In the fuel cell system according to any one of claims 1 to 4,
    The pulsation operation control unit increases the predetermined pressure increase rate every predetermined cycle.
    Fuel cell system.
PCT/JP2013/057384 2012-03-15 2013-03-15 Fuel cell system WO2013137428A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-059261 2012-03-15
JP2012059261A JP2015109137A (en) 2012-03-15 2012-03-15 Fuel cell system

Publications (1)

Publication Number Publication Date
WO2013137428A1 true WO2013137428A1 (en) 2013-09-19

Family

ID=49161324

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/057384 WO2013137428A1 (en) 2012-03-15 2013-03-15 Fuel cell system

Country Status (2)

Country Link
JP (1) JP2015109137A (en)
WO (1) WO2013137428A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016035465A1 (en) * 2014-09-03 2016-03-10 トヨタ自動車株式会社 Fuel cell system and control method therefor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170324101A1 (en) * 2016-05-04 2017-11-09 GM Global Technology Operations LLC Proactive anode flooding remediation

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001335301A (en) * 2000-03-22 2001-12-04 Toyota Motor Corp Hydrogen producing system
JP2006236843A (en) * 2005-02-25 2006-09-07 Toyota Motor Corp Dissolution of flooding in fuel cell system
JP2010129354A (en) * 2008-11-27 2010-06-10 Nissan Motor Co Ltd Fuel cell system
JP2010277837A (en) * 2009-05-28 2010-12-09 Nissan Motor Co Ltd Fuel cell device
WO2011004780A1 (en) * 2009-07-07 2011-01-13 日産自動車株式会社 Operation control device and operation control method for fuel battery power plant

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001335301A (en) * 2000-03-22 2001-12-04 Toyota Motor Corp Hydrogen producing system
JP2006236843A (en) * 2005-02-25 2006-09-07 Toyota Motor Corp Dissolution of flooding in fuel cell system
JP2010129354A (en) * 2008-11-27 2010-06-10 Nissan Motor Co Ltd Fuel cell system
JP2010277837A (en) * 2009-05-28 2010-12-09 Nissan Motor Co Ltd Fuel cell device
WO2011004780A1 (en) * 2009-07-07 2011-01-13 日産自動車株式会社 Operation control device and operation control method for fuel battery power plant

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016035465A1 (en) * 2014-09-03 2016-03-10 トヨタ自動車株式会社 Fuel cell system and control method therefor
JP2016054056A (en) * 2014-09-03 2016-04-14 トヨタ自動車株式会社 Fuel cell system and control method for the same

Also Published As

Publication number Publication date
JP2015109137A (en) 2015-06-11

Similar Documents

Publication Publication Date Title
US9147896B2 (en) Fuel cell system comprising an anode pressure controller
JP6149475B2 (en) Fuel cell system
JP5129479B2 (en) Method of operating a fuel cell having a closed reactant supply system
JP6133365B2 (en) Operation method of fuel cell system
US20160322657A1 (en) Fuel cell system and control method
JP5737395B2 (en) Fuel cell system
JP2014059969A (en) Fuel cell system and control method thereof
US20150333349A1 (en) Fuel cell system and power generation performance recovery method of a fuel cell in a fuel cell system
JPWO2013129553A1 (en) FUEL CELL SYSTEM AND CONTROL METHOD FOR FUEL CELL SYSTEM
JP2007280892A (en) Fuel cell system
WO2013137428A1 (en) Fuel cell system
EP2827419B1 (en) Fuel cell system
JP5947152B2 (en) Operation method of fuel cell
JP2011258396A (en) Fuel cell system
WO2013080814A1 (en) Fuel-cell system
JP2013069673A (en) Method for activating fuel cell stack
JP2014003011A (en) Method for operating fuel cell
JP2014241260A (en) Fuel cell system
JP5591315B2 (en) Operation method of fuel cell
JP5509728B2 (en) Fuel cell system
JP2008305702A (en) Fuel cell system
JP2007095385A (en) Fuel cell system and wet state adjustment method of fuel cell
JP2008078030A (en) Fuel cell device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13761562

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13761562

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP