WO2013137403A1 - Organic led element, light-transmitting substrate, and manufacturing method for light-transmitting substrate - Google Patents

Organic led element, light-transmitting substrate, and manufacturing method for light-transmitting substrate Download PDF

Info

Publication number
WO2013137403A1
WO2013137403A1 PCT/JP2013/057250 JP2013057250W WO2013137403A1 WO 2013137403 A1 WO2013137403 A1 WO 2013137403A1 JP 2013057250 W JP2013057250 W JP 2013057250W WO 2013137403 A1 WO2013137403 A1 WO 2013137403A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
electrode
repair material
scattering
led element
Prior art date
Application number
PCT/JP2013/057250
Other languages
French (fr)
Japanese (ja)
Inventor
奈央 石橋
渋谷 幸一
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Publication of WO2013137403A1 publication Critical patent/WO2013137403A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/854Arrangements for extracting light from the devices comprising scattering means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/341Short-circuit prevention
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/861Repairing

Definitions

  • the present invention relates to an organic LED element, a translucent substrate, and a method for producing the translucent substrate.
  • Organic LED (Light Emitting Diode) elements are widely used for displays, backlights, lighting applications, and the like.
  • a general organic LED element has a first electrode (anode) placed on a transparent substrate, a second electrode (cathode), and an organic light emitting layer placed between these electrodes.
  • a voltage is applied between the electrodes, holes and electrons are injected from each electrode into the organic light emitting layer.
  • the holes and electrons are recombined in the organic light emitting layer, binding energy is generated, and the organic light emitting material in the organic light emitting layer is excited by this binding energy. Since light is emitted when the excited light emitting material returns to the ground state, a light emitting (LED) element can be obtained by utilizing this.
  • a transparent thin film such as ITO (Indium Tin Oxide) is used for the first electrode, that is, the anode, and a metal thin film such as aluminum and silver is used for the second electrode, that is, the cathode.
  • ITO Indium Tin Oxide
  • Patent Document 1 discloses an organic LED element in which a scattering layer is installed between an ITO electrode and a transparent substrate.
  • a defect such as a foreign substance or a recess on the surface of the scattering layer after installation.
  • the foreign material may reach a size of about 500 ⁇ m, for example.
  • the diameter and depth of the recess may each reach about 50 ⁇ m.
  • each layer such as an electrode and an organic light emitting layer constituting the organic LED element.
  • the film-forming substance is prevented from reaching the surface of the scattering layer in the subsequent film-forming process.
  • the two electrodes to be separated from each other through the light emitting layer are short-circuited to each other.
  • desired characteristics may not be obtained or light emission may not be obtained in the finally obtained organic LED element.
  • the present invention has been made in view of such problems, and in the present invention, even if a defect exists on the surface of the scattering layer or the protective layer, the film is formed on the scattering layer or the protective layer thereafter. It aims at providing the organic LED element which can suppress the short circuit between both electrodes made. Moreover, it aims at providing the method of manufacturing the translucent board
  • An organic LED element having a second electrode formed on An organic LED element is provided in which a repair material is disposed in a portion where the first electrode and the organic light emitting layer are not in contact with each other.
  • the first electrode is formed of a continuous layer covering the repair material, and an organic LED element is provided.
  • the organic LED element according to the present invention may include a protective layer on the scattering layer.
  • the repair material is disposed in a defective portion on the surface of the scattering layer or the protective layer,
  • the defect may be a foreign matter and / or a recess.
  • the repair material may include a resin, glass, ceramic, and / or metal.
  • the first electrode may have a two-layer structure of an electrode layer and an additional conductive layer.
  • the scattering layer may include a base material made of glass and a plurality of scattering materials dispersed in the base material.
  • a translucent substrate having a transparent substrate, a scattering layer formed on the transparent substrate, and a first electrode formed on the scattering layer, A translucent substrate comprising a repair material formed on the first electrode so as not to expose the scattering layer is provided.
  • a translucent substrate having a transparent substrate, a scattering layer formed on the transparent substrate, a protective layer formed on the scattering layer, and a first electrode formed on the protective layer.
  • a translucent substrate comprising a repair material formed on the first electrode so as not to expose the protective layer is provided.
  • the first electrode may be formed of a continuous layer covering the repair material.
  • a method of manufacturing a translucent substrate having a transparent substrate, a scattering layer, and a first electrode (1a) forming the scattering layer on the transparent substrate; (1b) forming the first electrode on the scattering layer; (1c) forming a repair material on the first electrode so that the scattering layer is not exposed; Is provided.
  • a method for producing a translucent substrate having a transparent substrate, a scattering layer, a protective layer, and a first electrode (2a) forming the scattering layer on the transparent substrate; (2b) forming the protective layer on the scattering layer; (2c) forming the first electrode on the protective layer; (2d) forming a repair material on the first electrode so that the protective layer is not exposed; Is provided.
  • the repair material is disposed on a defective portion of the surface of the scattering layer or the protective layer,
  • the defect may be a foreign matter and / or a recess.
  • the repair material may include a resin, glass, ceramic, and / or metal.
  • the first electrode may have a two-layer structure of an electrode layer and an additional conductive layer.
  • an organic material that can suppress a short circuit between the two electrodes formed on the scattering layer or the protective layer is then obtained.
  • An LED element can be provided.
  • substrate can be provided.
  • FIG. 1 is a schematic cross-sectional view of an organic LED element according to a first embodiment of the present invention. It is the figure which showed typically an example of the form of repair material when the defect like a foreign material exists in the surface of a scattering layer. It is the figure which showed typically an example of the form of repair material when a defect like a recessed part exists in the surface of a scattering layer.
  • FIG. 5 is a schematic cross-sectional view of an organic LED device according to a second embodiment of the present invention.
  • FIG. 5 is a schematic cross-sectional view of an organic LED element according to a third embodiment of the present invention. It is a typical expanded sectional view of the vicinity of repair material when the defect like a foreign material exists in the surface of a scattering layer. It is a typical expanded sectional view of the vicinity of repair material in case a defect like a recessed part exists in the surface of a scattering layer.
  • FIG. 6 is a schematic cross-sectional view of an organic LED element according to a fourth embodiment of the present invention. It is a typical expanded sectional view of the vicinity of repair material when the defect like a foreign material exists in the surface of a protective layer.
  • FIG. 6 is a schematic cross-sectional view of an organic LED element according to a fifth embodiment of the present invention. It is a typical expanded sectional view of the vicinity of repair material when the defect like a foreign material exists in the surface of a scattering layer. It is a typical expanded sectional view of the vicinity of repair material in case a defect like a recessed part exists in the surface of a scattering layer.
  • FIG. 6 is a schematic cross-sectional view of an organic LED element according to a sixth embodiment of the present invention.
  • Example 2 it is the figure which showed typically the optical microscope image of the organic EL element sample in a light emission state. It is the figure which showed typically the form of the defect selected in Example 3.
  • FIG. 33 It is the figure which showed the measurement result of the uneven
  • FIG. 1 shows a simplified cross-sectional view of a conventional organic LED element.
  • a conventional organic LED element 1 includes a glass substrate 10, a scattering layer 20, a transparent electrode (anode) 40, an organic light emitting layer 50, and a second electrode (cathode) 60. It is configured by stacking in order.
  • the lower surface of the organic LED element 1 (that is, the exposed surface of the glass substrate 10) is the light extraction surface.
  • the scattering layer 20 is formed, for example, by baking a paste containing a glass powder having a high refractive index.
  • the surface of the scattering layer 20 after film formation may have defects (one or two or more) such as foreign matters and recesses due to film forming raw materials and / or manufacturing processes.
  • the foreign material may reach a size of about 500 ⁇ m, for example.
  • the diameter and depth of the recess may each reach about 50 ⁇ m.
  • FIG. 2 schematically shows changes in the layer structure when the transparent electrode 40, the organic light emitting layer 50, and the second electrode 60 are sequentially formed in a state where defects such as foreign matters exist on the surface of the scattering layer 20. It is the figure shown in.
  • the foreign material 21 exists on the surface 29 of the scattering layer 20.
  • the foreign material 21 has a first side surface 25 and a second side surface 26.
  • the first side surface 25 is formed so that the particle size of the foreign material 21 decreases from the upper side to the lower side.
  • the second side surface 26 is formed so that the particle size of the foreign material 21 decreases from the upper side to the lower side.
  • the film forming material when the film forming material is deposited on the scattering layer by sputtering or vapor deposition in order to form the transparent electrode 40, the film forming material is formed of the foreign material 21 as shown in FIG. It is deposited on the upper portion to form the layer portion 41a, and is deposited on the upper portion of the surface 29 of the scattering layer 20 where the foreign material 21 is not present, thereby forming the layer portions 41b and 41c.
  • the film-forming substance is hardly deposited on the region S1 of the surface 29 of the scattering layer 20 due to the presence of the first side surface 25 of the foreign material 21.
  • the layer portion 41b is formed in a form that does not completely cover the region S1 of the surface 29 of the scattering layer 20, as shown in FIG.
  • the film-forming substance is less likely to be deposited in the region S ⁇ b> 2 of the surface 29 of the scattering layer 20 due to the presence of the second side surface 26 of the foreign material 21. Therefore, the layer portion 41c is formed in a form that does not completely cover the region S2 of the surface 29 of the scattering layer 20, as shown in FIG.
  • the film-forming substance is deposited on the transparent electrode 40 in order to form the organic light emitting layer 50
  • the film-forming substance is applied to the layer portion 41a of the transparent electrode 40 as shown in FIG. , 41b, and 41c.
  • the layer portions 51a, 51b, and 51c of the organic light emitting layer 50 are formed.
  • the layer portions 51b and 51c are hardly formed above the regions S1 and S2 on the surface 29 of the scattering layer 20.
  • the layer portion 51a of the organic light emitting layer 50 tends to be formed in a form that completely covers the layer portion 41a of the transparent electrode 40 and extends to the side portion of the layer portion 41a. Since the layer portion 51a is shaded when depositing the film forming material of the organic light emitting layer 50, the formation region of the layer portions 51b and 51c is narrower than the layer portions 41b and 41c of the transparent electrode 40. It becomes.
  • the film forming material is formed on the organic light emitting layer 50 as shown in FIG. Deposited on top of each of the layer portions 51a, 51b, and 51c. As a result, the layer portions 61a, 61b, and 61c of the second electrode 60 are formed.
  • the layer portions 61b and 61c are difficult to be formed above the regions S1 and S2 on the surface 29 of the scattering layer 20.
  • the layer portion 61a of the second electrode 60 tends to be formed in a form that completely covers the layer portion 51a of the organic light emitting layer 50 and extends to the side of the layer portion 51a.
  • this layer part 61a becomes a shadow when depositing the film-forming substance of the second electrode 60, the formation area of the layer parts 61b and 61c is compared with the layer parts 51b and 51c of the organic light emitting layer 50. Narrower.
  • the layer portion 41b of the transparent electrode 40 and the layer portion 61b of the second electrode 60 are in contact with each other at the position indicated by a circle A in FIG.
  • the relationship between the layer portion 41c of the transparent electrode 40 and the layer portion 61c of the second electrode 60 is the same, and the layer portion 41a of the transparent electrode 40 and the layer of the second electrode 60 The same applies to the relationship with the portion 61a).
  • the presence of the foreign matter 21 on the scattering layer 20 may worsen the surroundings of each layer in the subsequent film formation process of the transparent electrode 40, the organic light emitting layer 50, and the second electrode 60. Moreover, when this influence becomes remarkable, the problem that two electrodes 40 and 60 will short-circuit may arise. Furthermore, when such a short circuit occurs, desired characteristics cannot be obtained in the finally obtained organic LED element 1.
  • FIG. 3 schematically shows a change in the layer structure when the transparent electrode 40, the organic light emitting layer 50, and the second electrode 60 are sequentially formed in a state where a defect such as a recess exists on the surface of the scattering layer 20. It is the figure shown in.
  • a recess 31 is present on the surface 29 of the scattering layer 20.
  • the recess 31 has a side portion 35 and a bottom portion 36 such that the angles ⁇ and ⁇ (see FIG. 3A) formed by the surface 29 of the scattering layer 20 and the tangent line of the opening of the recess 31 are acute angles.
  • the film-forming substance is deposited on the bottom 36 of the recess 31 as shown in FIG. It is deposited to form the layer portion 42a, and is deposited on the portion of the surface 29 of the scattering layer 20 where the concave portion 31 is not present to form the layer portions 42b and 42c.
  • the film-forming substance is less likely to be deposited in the regions S3 and S4 that are behind the surface 29 of the scattering layer 20 when the concave portion 31 is viewed from above. Therefore, as shown in FIG. 3B, the layer portions 42a to 42c are formed in a form that does not completely cover the regions S3 and S4 of the recess 31. That is, the transparent electrode 40 is formed as a discontinuous layer.
  • the film forming material is applied to the layer portion 42a of the transparent electrode 40 as shown in FIG. , 42b, and 42c. As a result, the layer portions 52a, 52b, and 52c of the organic light emitting layer 50 are formed.
  • the layer portions 52a, 52b, and 52c are less likely to be formed in the regions S3 and S4 of the recess 31 that are shaded by the surface 29 of the scattering layer 20. Therefore, the organic light emitting layer 50 is formed as a discontinuous layer.
  • the film forming material is formed on the organic light emitting layer 50 as shown in FIG. Deposited on top of each of the layer portions 52a, 52b, and 52c. As a result, the layer portions 62a, 62b, and 62c of the second electrode 60 are formed.
  • the layer portions 62a, 62b and 62c are hardly formed in the regions S3 and S4 of the concave portion 31 which are shaded by the surface 29 of the scattering layer 20. Therefore, the second electrode 60 is formed as a discontinuous layer.
  • the layer portion 42b (or 42c) of the transparent electrode 40 and the layer portion 62a of the second electrode 60 are in contact with each other at a position indicated by a circle C in FIG. It will be clear that the risk of doing so increases.
  • the recess 31 has a side portion 35 in which the angles ⁇ and ⁇ formed by the surface 29 of the scattering layer 20 and the tangent line of the opening of the recess 31 are both acute angles.
  • this is only an example, and it will be apparent that the same problem can occur on the side having the angle ⁇ , for example, when only the angle ⁇ is an acute angle.
  • some organic LED elements have a configuration in which a protective layer is further provided between the scattering layer 20 and the transparent electrode 40.
  • FIG. 4 shows a schematic cross-sectional view of an example of the organic LED element according to the first embodiment of the present invention.
  • the organic LED element 100 includes a transparent substrate 110, a scattering layer 120, a first electrode (anode) 140, an organic light emitting layer 150, a second electrode ( Cathode) 160 is laminated in this order.
  • an additional conductive layer may be further disposed on the first electrode 140.
  • a functional sputtered film may be further disposed immediately below the first electrode 140.
  • a high refractive index film (with a wavelength of 430 nm to 650 nm and a refractive index of 2.2 or more) is preferable because it has a function as an auxiliary layer for improving light extraction efficiency.
  • membrane of other refractive indexes since it has a function as a layer which protects a scattering layer etc. from a process which is easy to receive damage, such as ITO etching, it is preferable.
  • the transparent substrate 110 has a role of supporting each layer constituting the organic LED element.
  • the scattering layer 120 includes a glass base material 121 having a first refractive index, and a plurality of scattering materials 124 having a second refractive index different from the base material 121 and dispersed in the base material 121. Consists of.
  • the thickness of the scattering layer 220 is, for example, in the range of 5 ⁇ m to 50 ⁇ m.
  • the first electrode 140 is made of a transparent metal oxide thin film such as ITO (Indium Tin Oxide), and has a thickness of about 50 nm to 1.0 ⁇ m.
  • the second electrode 160 is made of a metal such as aluminum or silver.
  • the organic light emitting layer 150 is usually composed of a plurality of layers such as an electron transport layer, an electron injection layer, a hole transport layer, and a hole injection layer in addition to the light emitting layer.
  • the lower surface of the organic LED element 100 (that is, the exposed surface of the transparent substrate 110) is the light extraction surface 190.
  • the scattering layer 120 has a role of effectively scattering the light generated from the organic light emitting layer 150 and reducing the amount of light totally reflected in the organic LED element 100. Therefore, in the organic LED element 100 having the configuration of FIG. 4, the amount of light emitted from the light extraction surface 190 can be improved.
  • the repair material 170 is installed between the scattering layer 120 and the first electrode 140.
  • the repair material 170 has a first electrode 140 to a second electrode 160 that are subsequently formed on the scattering layer 120 even when a defect such as a foreign substance and / or a recess exists on the scattering layer 120. It functions as a member that suppresses deterioration of the attached state of each layer.
  • repair material 170 The role of the repair material 170 will be described in more detail with reference to FIG.
  • FIG. 5 schematically shows an example of the form of the repair material 170 when a defect such as a foreign substance exists on the surface of the scattering layer 120.
  • the foreign material 21 having the form shown in FIG. 2 is present on the surface 129 of the scattering layer 120. For this reason, regions S1 and S2 that are shaded by the first and second side surfaces 25 and 26 of the foreign material 21 exist on the surface 129 of the scattering layer 120.
  • the repair material 170 is disposed on the surface 129 of the scattering layer 120 so as to cover the foreign material 21 and to be in contact with the regions S1 and S2 of the surface 129 of the scattering layer 120.
  • Such a repair material 170 can mitigate the influence due to the presence of the foreign material 21. That is, when the first electrode 140 is formed after the repair material 170 is installed, the first electrode 140 is not an intermittent configuration having the three layer portions 41a to 41c as shown in FIG. It can be formed as a continuous layer as shown in FIG. Accordingly, the organic light emitting layer 150 to the second electrode 160 formed thereafter are also formed in a continuous form on the first electrode 140.
  • the problem of the contact between the respective layers, particularly the short circuit between the first and second electrodes 140 and 160, which may occur due to the presence of the foreign matter 21 as described above, is prevented. It becomes possible to suppress significantly.
  • FIG. 6 schematically shows an example of the form of the repair material 170 when a defect such as a recess exists on the surface of the scattering layer 120.
  • the surface 129 of the scattering layer 120 has the concave portion 31 having the form shown in FIG. 3 described above. In the recess 31, there are regions S 3 and S 4 which are shaded by the surface 129 of the scattering layer 120.
  • the repair material 170 is disposed so as to cover the recess 31.
  • Such a repair material 170 can mitigate the influence of the presence of the recess 31. That is, when the first electrode 140 is formed after the repair material 170 is installed, the first electrode 140 is not an intermittent configuration having the three layer portions 42a to 42c as shown in FIG. It can be formed as a continuous layer as shown in FIG. Accordingly, the organic light emitting layer 150 to the second electrode 160 formed thereafter are also formed in a continuous form on the first electrode 140.
  • FIG. 7 is a schematic cross-sectional view of an organic LED element according to the second embodiment of the present invention.
  • the organic LED element 200 according to the second embodiment basically has the same configuration as the organic LED element 100 according to the first embodiment described above. Therefore, in FIG. 7, the same reference numerals as those in FIG.
  • the organic LED element 200 according to the second embodiment includes a protective layer 230 between the scattering layer 220 and the first electrode 240. Therefore, the repair material 270 is disposed so as to be in contact with the protective layer 230 instead of the scattering layer 220.
  • the protective layer 230 is installed as a barrier layer of the scattering layer 220.
  • the protective layer 230 has a role of suppressing the scattering layer from being damaged, deteriorated, or removed, for example, in a process such as an etching process of the first electrode 240.
  • the material of the protective layer 230 is not particularly limited, but the surface of the protective layer 230 may have defects similar to the defects present on the surface of the scattering layer. Therefore, also in this case, the presence of defects may cause the problem of the contact between the layers as described above, particularly the problem of the short circuit between the first and second electrodes 240 and 260.
  • the repair material 270 is disposed on the defective portion of the protective layer 230.
  • the repair material 270 is formed in a form similar to the form shown in FIGS. 5 and 6 described above.
  • the repair material 270 significantly suppresses the risk of short-circuiting of the first and second electrodes 240 and 260 that may occur due to the presence of defects (foreign matter 21 and / or recess 31). It becomes possible.
  • a functional sputtered film may be further disposed immediately below the first electrode 240.
  • a high refractive index film (with a wavelength of 430 nm to 650 nm and a refractive index of 2.2 or more) is preferable because it has a function as an auxiliary layer for improving light extraction efficiency.
  • membrane of other refractive indexes since it has a function as a layer which protects a scattering layer etc. from a process which is easy to receive damage, such as ITO etching, it is preferable.
  • the film formation process of the first electrodes 140 and 240 is performed after the repair materials 170 and 270 are installed. Further, when the first electrodes 140 and 240 are formed, the transparent substrates 110 and 210 may be exposed to a high temperature environment (for example, up to 300 ° C.). For this reason, the material of the repair materials 170 and 270 is limited to a material that does not deteriorate due to the film formation process of the first electrodes 140 and 240.
  • FIG. 8 is a schematic cross-sectional view of an organic LED device according to a third embodiment of the present invention.
  • the organic LED element 300 according to the third embodiment basically has the same configuration as the organic LED element 100 according to the first embodiment. Therefore, in FIG. 8, the same reference numerals as those in FIG. 4 are given the reference numerals obtained by adding 200 to the reference numerals in FIG.
  • the organic LED element 300 according to the third embodiment is different in the installation position of the repair material 370 from the organic LED element 100 according to the first embodiment. That is, the repair material 370 is disposed so as to cover a part of the first electrode 340 in addition to the scattering layer 320.
  • an additional conductive layer may be disposed immediately below the organic light emitting layer 350, that is, immediately above the repair material 370 and the first electrode 340.
  • FIGS. 9 and 10 schematically show enlarged sectional views of the vicinity of the repair material 370 in the case where the defect is the foreign material 21 and the concave portion 31, respectively. Note that the second electrode 360 is not shown in these drawings for the sake of clarity.
  • the foreign material 21 is present on the surface of the scattering layer 320. Therefore, when the first electrode 340 is formed after the formation of the scattering layer 320 and before the repair material 370 is installed, the first electrode 340 includes the layer portions 341a to 341c as described above. Formed as a thick layer.
  • the repair material 370 is installed so as to cover the foreign material 21. More precisely, the repair material 370 is in contact with the exposed surface (regions S1, S2) of the scattering layer 320, on the top and sides of the layer portion 341a of the first electrode, and on the foreign matter 21 side of the layer portions 341b and 341c. It is installed so as to cover the end.
  • the organic light emitting layer 350 is continuously formed on the first electrode 340 and the repair material 370 due to the presence of the repair material 370. Therefore, the risk that the second electrode 360 installed thereafter is short-circuited with the first electrode 340 is significantly avoided.
  • the concave portion 31 exists on the surface of the scattering layer 320. Therefore, when the first electrode 340 is formed after the formation of the scattering layer 320 and before the repair material 370 is installed, the first electrode 340 includes the layer portions 342a to 342c as described above. Formed as a layer.
  • the repair material 370 is installed so as to cover the recess 31. More precisely, the repair material 370 is in contact with the exposed surface (regions S3, S4) of the scattering layer 320, on the upper and side portions of the layer portion 342a of the first electrode, and on the concave portion 31 side of the layer portions 342b and 342c. It is installed so as to cover the end.
  • the organic light emitting layer 350 is continuously formed on the first electrode 340 and the repair material 370 due to the presence of the repair material 370. Therefore, the risk that the second electrode 360 installed thereafter is short-circuited with the first electrode 340 is significantly avoided.
  • the effect of the present invention can be obtained that suppresses a short circuit between the electrodes 340 and 360.
  • FIG. 11 is a schematic cross-sectional view of an organic LED element according to a fourth embodiment of the present invention.
  • the organic LED element 400 according to the fourth embodiment basically has the same configuration as the organic LED element 200 according to the second embodiment described above. Therefore, in FIG. 11, members similar to those in FIG. 7 are given reference numerals obtained by adding 200 to the reference numerals in FIG. 7.
  • the organic LED element 400 according to the fourth embodiment is different in the installation position of the repair material 470 from the organic LED element 200 according to the second embodiment. That is, the repair material 470 is disposed so as to cover the exposed portion of the protective layer 430 and a part of the first electrode 440 instead of the scattering layer 420.
  • the foreign material 21 exists on the surface of the protective layer 430. Therefore, when the first electrode 440 is formed after the protective layer 430 is formed and before the repair material 470 is installed, the first electrode 440 includes the layer portions 441a to 441c as described above. Formed as a thick layer.
  • the repair material 470 is installed so as to cover the foreign material 21. More precisely, the repair material 470 is in contact with the exposed surface (regions S5, S6) of the protective layer 430, on the top and sides of the layer portion 441a of the first electrode, and on the foreign substance 21 side of the layer portions 441b and 441c. It is installed so as to cover the end.
  • the organic light emitting layer 450 is continuously formed on the first electrode 440 (and the repair material 470) due to the presence of the repair material 470. Therefore, the risk that the second electrode 460 installed thereafter is short-circuited with the first electrode 440 is significantly avoided.
  • the recess 31 is present on the surface of the protective layer 430. Therefore, when the first electrode 440 is formed after the protective layer 430 is formed and before the repair material 470 is installed, the first electrode 440 includes the layer portions 442a to 442c as described above. Formed as a layer.
  • the repair material 470 is installed so as to cover the recess 31. More precisely, the repair material 470 is in contact with the exposed surface (regions S7, S8) of the protective layer 430, on the upper and side portions of the layer portion 442a of the first electrode, and on the concave portion 31 side of the layer portions 442b and 442c. It is installed so as to cover the end.
  • the organic light emitting layer 450 is continuously formed on the first electrode 440 (and the repair material 470) due to the presence of the repair material 470. Therefore, the risk that the second electrode 460 installed thereafter is short-circuited with the first electrode 440 is significantly avoided.
  • FIG. 14 is a schematic cross-sectional view of an organic LED element according to a fifth embodiment of the present invention.
  • the organic LED element 500 according to the fifth embodiment basically has the same configuration as the organic LED element 300 according to the third embodiment described above. Accordingly, in FIG. 14, members similar to those in FIG. 8 are given reference numerals obtained by adding 200 to the reference numerals in FIG. 8.
  • an additional conductive layer 580 is further provided on the first electrode 540.
  • the additional conductive layer 580 is provided in contact with the first electrode 540 at the position where the first electrode 540 is present.
  • the repair material 570 is disposed so as to cover a part of the additional conductive layer 580 in addition to the scattering layer 520 and a part of the first electrode 540.
  • the additional conductive layer 580 has a role of reducing the resistance of the first electrode 540.
  • the configuration shown in FIG. 14 can be easily obtained by performing the installation process of the repair material 570 after the film formation process of the first electrode 540 and the additional conductive layer 580.
  • 15 and 16 schematically show enlarged sectional views of the vicinity of the repair material 570 when the defect is the foreign material 21 and the concave portion 31, respectively. Note that the second electrode 560 is not shown in these drawings for the sake of clarity.
  • the foreign matter 21 exists on the surface of the scattering layer 520. Therefore, when the first electrode 540 and the additional conductive layer 580 are formed after the scattering layer 520 is formed and before the repair material 570 is installed, as shown in FIG. 15, the first electrode 540 has a layer portion 541a. Formed as an intermittent layer with ⁇ 541c. Similarly, the additional conductive layer 580 is formed as an intermittent layer having layer portions 581a-581c.
  • the repair material 570 is installed so as to cover the foreign material 21. More precisely, the repair material 570 is in contact with the exposed surface (regions S1, S2) of the scattering layer 520, on the top and sides of the layer portion 581a of the additional conductive layer 580, and on the foreign material 21 side of the layer portions 581b and 581c. It is installed so as to cover the end and the end on the foreign substance 21 side of the layer portions 541b and 541c of the first electrode 540.
  • the organic light emitting layer 550 is continuously formed on the additional conductive layer 580 and the repair material 570 due to the presence of the repair material 570. Therefore, the risk that the second electrode 560 to be installed thereafter is short-circuited with the additional conductive layer 580 and the first electrode 540 is significantly avoided.
  • the concave portion 31 exists on the surface of the scattering layer 520. Therefore, when the first electrode 540 and the additional conductive layer 580 are formed after the scattering layer 520 is formed and before the repair material 570 is installed, the first electrode 540 includes the layer portions 542a to 542c as described above. Having an intermittent layer. Similarly, additional conductive layer 580 is formed as an intermittent layer having layer portions 582a-582c.
  • the repair material 570 is installed so as to cover the recess 31. More precisely, the repair material 570 is in contact with the exposed surface (regions S3, S4) of the scattering layer 520, on the top and sides of the layer portion 582a of the additional conductive layer 580, and on the recess 31 side of the layer portions 582b and 582c. It is installed so as to cover the end portion and the end portion on the concave portion 31 side of the layer portions 542b and 542c of the first electrode 540.
  • the organic light emitting layer 550 is continuously formed on the additional conductive layer 580 and the repair material 570 due to the presence of the repair material 570. Therefore, the risk that the second electrode 360 to be subsequently installed is short-circuited with the additional conductive layer 580 and the first electrode 540 is significantly avoided.
  • FIG. 17 is a schematic cross-sectional view of an organic LED element according to a sixth embodiment of the present invention.
  • the organic LED element 600 according to the sixth embodiment basically has the same configuration as the organic LED element 500 according to the fifth embodiment. Therefore, in FIG. 17, the same reference numerals as those in FIG.
  • the organic LED element 600 according to the sixth embodiment includes a protective layer 630 between the scattering layer 620 and the first electrode 640. Therefore, the repair material 670 is disposed so as to be in contact with the exposed portion of the protective layer 630 instead of the scattering layer 620. More precisely, the repair material 670 is disposed so as to cover the exposed portion of the protective layer 630 and a part of the first electrode 640 and a part of the additional conductive layer 680.
  • the foreign material 21 is present on the surface of the protective layer 630. Accordingly, when the first electrode 640 and the additional conductive layer 680 are formed after the formation of the protective layer 630 and before the repair material 670 is installed, as shown in FIG. 18, the first electrode 640 has a layer portion 641a. Formed as an intermittent layer having ⁇ 641c. Similarly, the additional conductive layer 680 is formed as an intermittent layer having layer portions 681a to 681c.
  • the repair material 670 is installed so as to cover the foreign material 21. More precisely, the repair material 670 is in contact with the exposed surface (regions S5, S6) of the protective layer 630, on the top and sides of the layer portion 681a of the additional conductive layer 680, and on the foreign matter 21 side of the layer portions 681b and 681c. It is installed so as to cover the end portion and the end portion on the foreign matter 21 side of the layer portions 641b and 641c of the first electrode 640.
  • the organic light emitting layer 650 is continuously formed on the additional conductive layer 680 and the repair material 670 due to the presence of the repair material 670. Therefore, the risk that the second electrode 660 installed thereafter is short-circuited with the additional conductive layer 680 and the first electrode 640 is significantly avoided.
  • the recess 31 is present on the surface of the protective layer 630. Therefore, when the first electrode 640 and the additional conductive layer 680 are formed after the protective layer 630 is formed and before the repair material 670 is installed, the first electrode 640 includes the layer portions 642a to 642c as described above. Having an intermittent layer. Similarly, additional conductive layer 680 is formed as an intermittent layer having layer portions 682a-682c.
  • the repair material 670 is installed so as to cover the recess 31. More precisely, the repair material 670 is in contact with the exposed surface (regions S7, S8) of the scattering layer 620, on the top and sides of the layer portion 682a of the additional conductive layer 680, and on the recess 31 side of the layer portions 682b and 682c. It is installed so as to cover the end portion and the end portion on the concave portion 31 side of the layer portions 642b and 642c of the first electrode 640.
  • the organic light emitting layer 650 is continuously formed on the additional conductive layer 680 and the repair material 670 due to the presence of the repair material 670. Therefore, the risk that the second electrode 660 installed thereafter is short-circuited with the additional conductive layer 680 and the first electrode 640 is significantly avoided.
  • the resistance of the first electrodes 540 and 640 is reduced due to the presence of the additional conductive layers 580 and 680.
  • the first electrodes 540 and 640 and the additional conductive layers 580 and 680 can be continuously formed. The efficiency of the film forming process is improved.
  • the first electrodes 340 to 640 are formed before the repair materials 370 to 670 are installed. Therefore, in the organic LED elements 300 to 600, unlike the organic LED elements 100 and 200 according to the first embodiment and the second embodiment, the material of the repair material 370 to 670 is not particularly limited and is relatively heat resistant. Even if it is a material inferior in property, there exists an advantage that it can be used. However, in the organic LED elements 300 to 600, since the first electrodes 340 to 640 and the organic light emitting layers 350 to 650 are not in direct contact with each other in the repair material 370 to 670, the repair material 370 to 670 is turned on. It ’s difficult.
  • repair material 670 As long as the repair material 670 covers defects on the surface of the scattering layer or the protective layer, and the layer formed after the repair material 670 can be formed into a continuous form, the mode is not limited. Therefore, any material such as an organic material, an inorganic material, and a metal material may be used for the repair material 670. As the repair material 670, any one of a conductive material / insulating material and a transparent material / opaque material can be used. In the case of the organic LED elements 100 and 200 according to the first embodiment and the second embodiment, the repair material 670 does not deteriorate even when exposed to plasma or high temperature when the first electrode 140 is formed. It needs to be a material.
  • the installation method of the repair material 670 is not particularly limited.
  • the repair material 670 may be installed by, for example, an “application needle method” or an “ejecting method” as described in detail below.
  • the transparent substrate 610 is made of a material having high visible light transmittance.
  • the transparent substrate 610 may be a glass substrate or a plastic substrate, for example.
  • the material of the glass substrate includes inorganic glass such as alkali glass, non-alkali glass or quartz glass.
  • the plastic substrate material include polyester, polycarbonate, polyether, polysulfone, polyethersulfone, polyvinyl alcohol, and fluorine-containing polymers such as polyvinylidene fluoride and polyvinyl fluoride.
  • the thickness of the transparent substrate 610 is not particularly limited, but may be in the range of 0.1 mm to 2.0 mm, for example. Considering strength and weight, the thickness of the transparent substrate 610 is preferably 0.5 mm to 1.4 mm.
  • the scattering layer 620 includes a base material 621 and a plurality of scattering materials 624 dispersed in the base material 621.
  • the base material 621 has a first refractive index
  • the scattering material 624 has a second refractive index different from that of the base material.
  • the abundance of the scattering material 624 in the scattering layer 620 decreases from the inside of the scattering layer 620 toward the outside.
  • the base material 621 is made of glass, and an inorganic glass such as soda lime glass, borosilicate glass, alkali-free glass, and quartz glass is used as the glass material.
  • an inorganic glass such as soda lime glass, borosilicate glass, alkali-free glass, and quartz glass is used as the glass material.
  • the scattering material 624 includes, for example, bubbles, precipitated crystals, material particles different from the base material, phase separation glass, and the like.
  • a phase-separated glass refers to a glass composed of two or more types of glass phases.
  • the refractive index of the base material 621 is preferably close to that of the organic layer or ITO in order to realize high-efficiency light extraction, and the difference in refractive index from the scattering material 624 is preferably large.
  • one or more components of P 2 O 5 , SiO 2 , B 2 O 3 , GeO 2 , and TeO 2 are selected as the network former.
  • high refractive index components TiO 2 , Nb 2 O 5 , WO 3 , Bi 2 O 3 , La 2 O 3 , Gd 2 O 3 , Y 2 O 3 , ZrO 2 , ZnO, BaO, PbO, and Sb 2
  • alkali oxides, alkaline earth oxides, fluorides, and the like may be added within a range that does not affect the refractive index.
  • examples of the glass system constituting the base material 621 include B 2 O 3 —ZnO—La 2 O 3 system, P 2 O 5 —B 2 O 3 —R ′ 2 O—R ′′ O—TiO 2 —. Nb 2 O 5 —WO 3 —Bi 2 O 3 system, TeO 2 —ZnO system, B 2 O 3 —Bi 2 O 3 system, SiO 2 —Bi 2 O 3 system, SiO 2 —ZnO system, B 2 O 3 -ZnO-based, P 2 O 5 -ZnO-based, etc.
  • R ′ represents an alkali metal element
  • R ′′ represents an alkaline-earth metal element.
  • the above material system is only an example, and if it is the structure which satisfy
  • the color of light emission can be changed by adding a colorant to the base material 621.
  • a colorant for example, transition metal oxides, rare earth metal oxides, metal colloids, and the like can be used alone or in combination.
  • the scattering layer 620 may be a single layer or a plurality of layers.
  • the material of the protective layer 630 is not particularly limited. However, the protective layer 630 is selected from a material that is resistant to chemicals used when etching the first electrode 640 (and the additional conductive layer 680 if necessary).
  • the protective layer 630 may be made of ceramics such as titanium oxide, niobium oxide, zirconium oxide, and tantalum oxide.
  • the protective layer 630 is made of a transparent material.
  • the film thickness of the protective layer 630 is not particularly limited.
  • the film thickness of the protective layer 630 may be, for example, in the range of 100 nm to 500 ⁇ m.
  • the method for forming the protective layer 630 is not particularly limited.
  • the protective layer 630 may be formed by, for example, a dry process such as a sputtering method or a wet coating method using, for example, a sol-gel solution.
  • a relatively thick film can be formed relatively easily by repeating the treatment.
  • the first electrode 640 is required to have a translucency of 80% or more in order to extract light generated in the organic light emitting layer 650 to the outside. Also, a high work function is required to inject many holes.
  • the first electrode 640 includes, for example, ITO, SnO 2 , ZnO, IZO (Indium Zinc Oxide), AZO (ZnO—Al 2 O 3 : zinc oxide doped with aluminum), GZO (ZnO—Ga 2 O). 3 : zinc oxide doped with gallium), Nb-doped TiO 2 , and Ta-doped TiO 2 .
  • the first electrode 640 may be a stacked film in which a base layer is added to the above-described material.
  • the base material include SiO 2 , ZrO 2 , TiO 2 , TiZrO 2 , and Ta 2 O.
  • a material such as 5 is used.
  • the thickness of the first electrode 640 is preferably 100 nm or more.
  • the refractive index of the first electrode 640 is in the range of 1.9 to 2.2.
  • the refractive index of the first electrode 640 can be decreased by increasing the carrier concentration.
  • Commercially available ITO contains 10 wt% SnO 2 as standard, but the refractive index of ITO can be lowered by further increasing the Sn concentration.
  • the carrier concentration increases, but the mobility and transmittance decrease. Therefore, it is necessary to determine the Sn amount in consideration of the overall balance.
  • the refractive index of the first electrode 640 is preferably determined in consideration of the refractive index of the base material 621 constituting the scattering layer 620 and the refractive index of the second electrode 660. In consideration of waveguide calculation, the reflectance of the second electrode 660, and the like, the difference in refractive index between the first electrode 640 and the base material 621 is preferably 0.2 or less.
  • the additional conductive layer 680 serves as an auxiliary conductor that reduces the resistance of the first electrode 640.
  • the additional conductive layer 680 is not an essential member, and is installed as necessary.
  • a multilayer film made of Cr, a MoNb alloy, Al, or the like is used.
  • the additional conductive layer 680 is often disposed at the same position or part of the first electrode 640 so as to be in contact with the first electrode 640.
  • the additional conductive layer may be arranged at a location different from the first electrode.
  • the additional conductive layer is different from the first electrodes 340 and 440 and is continuous. It becomes composition.
  • the organic light emitting layer 650 is a layer having a light emitting function, and is generally composed of a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer. However, it is obvious to those skilled in the art that the organic light emitting layer 650 does not necessarily have all of the other layers as long as it has a light emitting layer. In general, the refractive index of the organic light emitting layer 650 is in the range of 1.7 to 1.8.
  • the hole injection layer preferably has a small difference in ionization potential in order to lower the hole injection barrier from the first electrode 640.
  • the charge injection efficiency from the electrode to the hole injection layer is increased, the drive voltage of the organic LED element 600 is decreased, and the charge injection efficiency is increased.
  • the material of the hole injection layer a high molecular material or a low molecular material is used.
  • polymer materials polyethylene dioxythiophene (PEDOT: PSS) doped with polystyrene sulfonic acid (PSS) is often used, and among low molecular materials, phthalocyanine-based copper phthalocyanine (CuPc) is widely used.
  • the hole transport layer serves to transport holes injected from the hole injection layer to the light emitting layer.
  • Examples of the hole transport layer include triphenylamine derivatives, N, N′-bis (1-naphthyl) -N, N′-diphenyl-1,1′-biphenyl-4,4′-diamine (NPD), N , N′-Diphenyl-N, N′-bis [N-phenyl-N- (2-naphthyl) -4′-aminobiphenyl-4-yl] -1,1′-biphenyl-4,4′-diamine ( NPTE), 1,1′-bis [(di-4-tolylamino) phenyl] cyclohexane (HTM2), and N, N′-diphenyl-N, N′-bis (3-methylphenyl) -1,1′- Diphenyl-4,4′-diamine (TPD) or the like is used.
  • NPD triphenylamine derivatives
  • the thickness of the hole transport layer is, for example, in the range of 10 nm to 150 nm.
  • the light emitting layer has a role of providing a field where the injected electrons and holes are recombined.
  • the organic light emitting material a low molecular weight or high molecular weight material is used.
  • Examples of the light emitting layer include tris (8-quinolinolato) aluminum complex (Alq3), bis (8-hydroxy) quinaldine aluminum phenoxide (Alq′2OPh), bis (8-hydroxy) quinaldine aluminum-2,5- Dimethylphenoxide (BAlq), mono (2,2,6,6-tetramethyl-3,5-heptanedionate) lithium complex (Liq), mono (8-quinolinolato) sodium complex (Naq), mono (2, 2,6,6-tetramethyl-3,5-heptanedionate) lithium complex, mono (2,2,6,6-tetramethyl-3,5-heptanedionate) sodium complex and bis (8-quinolinolate) Metal complexes of quinoline derivatives such as calcium complexes (Caq2), tetraphenylbutadiene, pheny Quinacridone (QD), anthracene, perylene, as well as fluorescent substance such as coronene.
  • a quinolinolate complex may be used, and in particular, an aluminum complex having 8-quinolinol and a derivative thereof as a ligand may be used.
  • the electron transport layer serves to transport electrons injected from the electrode.
  • the electron transport layer include quinolinol aluminum complex (Alq3), oxadiazole derivatives (for example, 2,5-bis (1-naphthyl) -1,3,4-oxadiazole (END), and 2- ( 4-t-butylphenyl) -5- (4-biphenyl))-1,3,4-oxadiazole (PBD) etc.), triazole derivatives, bathophenanthroline derivatives, silole derivatives and the like.
  • the electron injection layer is configured, for example, by providing a layer doped with an alkali metal such as lithium (Li) or cesium (Cs) at the interface with the second electrode 660.
  • the second electrode 660 a metal having a small work function or an alloy thereof is used.
  • the second electrode 660 may be, for example, an alkali metal, an alkaline earth metal, a metal belonging to Group 3 of the periodic table, or the like.
  • aluminum (Al), magnesium (Mg), silver (Ag), or an alloy thereof is used.
  • a laminated electrode in which aluminum (Al) is deposited on a thin film of aluminum (Al), magnesium silver (MgAg), lithium fluoride (LiF), or lithium oxide (Li 2 O) may be used. good.
  • a laminated film of calcium (Ca) or barium (Ba) and aluminum (Al) may be used.
  • first manufacturing method Manufacturing method of organic LED element by 1st Example
  • FIG. 20 shows an example of a schematic flow diagram when manufacturing the organic LED element 100 according to the first embodiment.
  • the first manufacturing method is: (1a) forming a scattering layer on the transparent substrate, the scattering layer having a defect on a surface (step S110); (1b) A step of installing a repair material on a defect portion on the surface of the scattering layer, wherein the repair material covers the defect in a state where it is in contact with a portion shadowed by the defect of the scattering layer. Arranged in step (step S120), (1c) A step of installing a first electrode on the scattering layer and the repair material, wherein the first electrode is formed of a continuous layer covering the repair material (step S130). )When, (1d) installing an organic light emitting layer on the first electrode (step S140); (1e) installing a second electrode on the organic light emitting layer (step S150); Have
  • the expression “the part of the scattering layer that is shaded by the defect” means that when no repair material is installed, the film-forming substance adheres when the first electrode is formed due to the presence of the defect. It should be noted that this means the part of the scattering layer that is not formed and where the first electrode is not formed.
  • the defect has the form of the foreign substance 21 as shown in FIG. 5 and the first electrode is formed vertically downward from above the scattering layer 120, “the shadow is hidden by the defect of the scattering layer.
  • the “parts” correspond to the regions S1 and S2 on the surface of the scattering layer 120 as shown in FIG.
  • the defect has the form of the concave portion 31 as shown in FIG. 6 and the first electrode is formed in the vertical direction downward from the upper side of the scattering layer 120, “the above-mentioned of the scattering layer”
  • the “parts shaded by the defects” correspond to the regions S3 and S4 on the side surface (also the side portion 35 of the recess 31) of the scattering layer 120 as shown in FIG.
  • a transparent substrate is prepared. As described above, a glass substrate or a plastic substrate is usually used as the transparent substrate.
  • a scattering layer in which scattering substances are dispersed in a glass base material is formed on the transparent substrate.
  • the method for forming the scattering layer is not particularly limited, but here, a method for forming the scattering layer by the “frit paste method” will be particularly described. However, it will be apparent to those skilled in the art that the scattering layer may be formed by other methods.
  • frit paste method a paste containing a glass material called a frit paste is prepared (preparation process), this frit paste is applied to the surface of the substrate to be installed, patterned (pattern formation process), and the frit paste is then baked.
  • This is a method of forming a desired glass film on the surface of the substrate to be installed by performing (firing process).
  • the glass powder is composed of a material that finally forms the base material of the scattering layer.
  • the composition of the glass powder is not particularly limited as long as the desired scattering characteristics can be obtained and it can be frit pasted and fired.
  • the composition of the glass powder is, for example, 20-30 mol% of P 2 O 5 , 3-14 mol% of B 2 O 3 , 10-20 mol% of Bi 2 O 3 , 3-15 mol% of TiO 2 , Nb 2 O 5 10 to 20 mol%, WO 3 to 5 to 15 mol%, the total amount of Li 2 O, Na 2 O and K 2 O is 10 to 20 mol%, and the total amount of the above components is 90 mol% or more. May be.
  • the particle size of the glass powder is, for example, in the range of 1 ⁇ m to 100 ⁇ m.
  • a predetermined amount of filler may be added to the glass powder.
  • the filler for example, particles such as zircon, silica, or alumina are used, and the particle size is usually in the range of 0.1 ⁇ m to 20 ⁇ m.
  • the resin examples include ethyl cellulose, nitrocellulose, acrylic resin, vinyl acetate, butyral resin, melamine resin, alkyd resin, and rosin resin.
  • a butyral resin, a melamine resin, an alkyd resin, and a rosin resin are added, the strength of the frit paste coating film is improved.
  • the solvent has a role of dissolving the resin and adjusting the viscosity.
  • the solvent include ether solvents (butyl carbitol (BC), butyl carbitol acetate (BCA), dipropylene glycol butyl ether, tripropylene glycol butyl ether, butyl cellosolve), alcohol solvents ( ⁇ -terpineol, pine oil) Ester solvents (2,2,4-trimethyl-1,3-pentanediol monoisobutyrate), phthalic acid ester solvents (DBP (dibutyl phthalate), DMP (dimethyl phthalate), DOP (dioctyl phthalate)) is there.
  • BC butyl carbitol
  • BCA butyl carbitol acetate
  • dipropylene glycol butyl ether tripropylene glycol butyl ether
  • butyl cellosolve butyl cellosolve
  • alcohol solvents ⁇ -ter
  • DBP dibutyl phthalate
  • DMP dimethyl phthalate
  • DOP dioctyl phthalate
  • a surfactant may be added to the frit paste to adjust the viscosity and promote frit dispersion.
  • you may use a silane coupling agent for surface modification.
  • these raw materials are mixed to prepare a frit paste in which glass raw materials are uniformly dispersed.
  • the frit paste prepared by the above-described method is applied on a transparent substrate and patterned.
  • the application method and the patterning method are not particularly limited.
  • a frit paste may be pattern-printed on a transparent substrate using a screen printer.
  • a doctor blade printing method or a die coat printing method may be used.
  • the frit paste film is baked. Usually, firing is performed in two steps. In the first step, the resin in the frit paste film is decomposed and disappeared, and in the second step, the glass powder is softened and sintered.
  • the first step is performed by maintaining the frit paste film in a temperature range of 200 ° C. to 400 ° C. in an air atmosphere.
  • the processing temperature varies depending on the resin material contained in the frit paste.
  • the treatment temperature may be about 350 ° C. to 400 ° C.
  • the resin is nitrocellulose
  • the treatment temperature may be about 200 ° C. to 300 ° C.
  • the processing time is usually about 30 minutes to 1 hour.
  • the second step is performed by maintaining the frit paste film in the temperature range of the softening temperature ⁇ 30 ° C. of the contained glass powder in an air atmosphere.
  • the processing temperature is, for example, in the range of 450 ° C. to 600 ° C.
  • the processing time is not particularly limited, but is, for example, 30 minutes to 1 hour.
  • the glass powder is softened and sintered to form a base material for the scattering layer.
  • the scattering material uniformly dispersed in the base material can be obtained by the scattering material encapsulated in the frit paste film, for example, due to the bubbles present therein.
  • a transparent substrate having a scattering layer on the surface is formed.
  • the thickness of the finally obtained scattering layer may be in the range of 5 ⁇ m to 50 ⁇ m.
  • Step S120 Next, a repair material is placed at a required position on the surface of the scattering layer obtained in the above process, that is, at a defective portion.
  • the defect position on the surface of the scattering layer can be easily grasped by using a conventional general defect inspection method.
  • the repair material installation method is not particularly limited.
  • the repair material is present on the surface of the scattering layer by, for example, a method using an application needle (hereinafter referred to as “application needle method”) or a method using an ejection nozzle (hereinafter referred to as “jet method”). It may be installed in a defective part.
  • FIG. 21 schematically shows a state in which a repair material is placed on a defective portion existing on the surface of the scattering layer by a coating needle method.
  • the application needle 910 is first prepared. As shown in FIG. 21A, the application needle 910 has a main body 911, a tapered portion 912, and a tip 913.
  • the diameter of the tip 913 is not particularly limited, but is, for example, in the range of 30 ⁇ m to 100 ⁇ m.
  • Such an application needle 910 is used, for example, when repairing a defect in a color filter of a liquid crystal display element.
  • the liquid 916 may be a paste.
  • the application needle 910 is immersed in the liquid 916.
  • the tip 913 of the application needle 910 is brought into contact with a defective portion (not shown) of the surface 129 of the scattering layer 120. Thereafter, when the application needle 910 is lifted from the surface 129 of the scattering layer 120, as shown in FIG. 21 (e), the liquid 923 attached to the application needle 910 moves to a defective portion of the scattering layer 120, and the portion A raw material liquid 925 of a repair material is disposed in
  • the raw material liquid 925 is dried and further heated, whereby the raw material liquid 925 is fired.
  • the temperature of the baking treatment varies depending on the material contained in the raw material liquid 925, but is about 100 ° C. to 600 ° C., for example.
  • the firing process of the raw material liquid 925 may be performed by placing the entire transparent substrate in a high temperature furnace. Furthermore, only the portion of the raw material liquid 925 may be locally heated using an infrared heating device, a laser, or the like.
  • the repair material can be installed on the defect portion existing on the surface of the scattering layer.
  • the principle of such a coating needle method is used for, for example, a liquid crystal TFT / color filter correction device (RAGNAS series) manufactured by Lasertec Corporation.
  • RAGNAS series liquid crystal TFT / color filter correction device manufactured by Lasertec Corporation.
  • the tube member 950 has a nozzle portion 952 at the tip.
  • a center needle 954 is mounted inside the tube member 950 so as to be coaxial with the center axis C of the tube member 950.
  • the inside of the pipe member 950 is filled with a liquid 956 containing a repair material.
  • the liquid 956 may be in a paste form, for example.
  • the tube member 950 is disposed above a defect (not shown) on the surface 129 of the scattering layer 120.
  • repair material can be formed at the same position by drying and firing the droplet 958 in the same manner as the “coating needle method”.
  • repair material installation method is merely an example. That is, the repair material may be placed on a defect portion existing on the surface of the scattering layer by a contact method other than the “coating needle method” or a non-contact method other than the “spout method”.
  • Step S130 Next, a 1st electrode (anode) is installed on the scattering layer which has a repair material obtained at the said process.
  • the formation method of the first electrode is not particularly limited, and the first electrode may be formed by a film formation method such as a sputtering method, a vapor deposition method, and a vapor phase film formation method.
  • the material of the first electrode may be ITO or the like.
  • the thickness of the first electrode is not particularly limited, and the thickness of the first electrode may be, for example, in the range of 50 nm to 1.0 ⁇ m.
  • a repair material is installed in the defective portion of the scattering layer. For this reason, the first electrode is formed in a continuous form covering the scattering layer and the repair material.
  • an additional conductive layer may be provided on the first electrode before the subsequent step S140. Thereby, the resistance of the first electrode can be reduced.
  • an organic light emitting layer is installed so as to cover the first electrode.
  • the installation method of the organic light emitting layer is not particularly limited, and for example, a vapor deposition method and / or a coating method may be used.
  • the first electrode is formed in a continuous form covering the scattering layer and the repair material. For this reason, the organic light emitting layer in contact with the first electrode is also formed in a continuous form.
  • a second electrode is placed on the organic light emitting layer.
  • the method for installing the second electrode is not particularly limited, and for example, a vapor deposition method, a sputtering method, a vapor deposition method, or the like may be used.
  • the organic LED element 100 as shown in FIG. 4 is manufactured.
  • the first electrode and the organic light emitting layer are formed in a continuous form. For this reason, in the step of forming the second electrode, the first electrode is not exposed in the installation region of the second electrode. As a result, the risk that the second electrode installed in step S150 is short-circuited with the first electrode is significantly suppressed.
  • Second manufacturing method a method for manufacturing the organic LED element 200 according to the second embodiment shown in FIG. 7 (hereinafter referred to as “second manufacturing method”) will be described with reference to FIG.
  • FIG. 23 shows an example of a schematic flow chart when manufacturing the organic LED element 200 according to the second embodiment.
  • the second manufacturing method is (2a) forming a scattering layer on the transparent substrate (step S210); (2b) forming a protective layer on the scattering layer, the protective layer having a defect on the surface (step S220); (2c) A step of installing a repair material on a defect portion on the surface of the protective layer, the repair material covering the defect in a state in which the repair material is in contact with a portion shadowed by the defect of the protective layer. (Step S230) arranged in (2d) A step of installing a first electrode on the protective layer and the repair material, wherein the first electrode is formed of a continuous layer covering the repair material (Step S240). )When, (2e) installing an organic light emitting layer on the first electrode (step S250); (2f) installing a second electrode on the organic light emitting layer (step S260); Have
  • the expression “part of the protective layer that is shaded by the defect” means that when no repair material is installed, the film-forming substance adheres when the first electrode is formed due to the presence of the defect. It should be noted that this means the part of the protective layer where the first electrode is not formed.
  • the defect when the defect has the form of the foreign substance 21 as shown in FIG. 12 and the first electrode is formed vertically downward from the upper side of the protective layer 430, “the above-described defect of the protective layer causes shadows.
  • the “parts” correspond to the regions S5 and S6 on the surface of the protective layer 430 as shown in FIG.
  • the defect when the defect has a form of the concave portion 31 as shown in FIG. 13 and the first electrode is formed vertically downward from the upper side of the protective layer 430, “the above-mentioned of the protective layer”
  • the “parts shaded by the defects” correspond to the regions S7 and S8 on the side surface (also the side part 35 of the recess 31) of the protective layer 430 as shown in FIG.
  • steps other than step S220 in (2b) and step S230 in (2c) are the same as the corresponding steps described in the first manufacturing method. Therefore, only step S220 and step S230 will be described here.
  • Step S220 In the second manufacturing method, a protective layer is provided on the scattering layer.
  • the method for forming the protective layer is not particularly limited.
  • the protective layer can be formed relatively easily, for example, by wet-coating the protective layer material on the surface of the scattering layer and then immobilizing it as a film.
  • the protective layer may be formed by applying a sol-gel solution containing a raw material to be the protective layer to the surface of the scattering layer, and then drying and heat-treating it.
  • the protective layer may be formed by a dry process such as sputtering.
  • the protective layer is selected from materials that are resistant to chemical substances used when the first electrode is etched.
  • Step S230 Next, a repair material is placed at a required position on the surface of the protective layer obtained in the above process, that is, at a defect existing position.
  • the coating needle method or the ejection method described in the first manufacturing method described above may be used.
  • the first electrode is placed on top of the protective layer and the repair material by step S240 similar to step S130 of the first manufacturing method. If necessary, an additional conductive layer is further formed.
  • the organic LED element 200 according to the second embodiment is manufactured through steps S250 to S260.
  • FIG. 24 shows an example of a schematic flow chart when manufacturing the organic LED element 300 according to the third embodiment.
  • the third manufacturing method is (3a) a step of forming a scattering layer on the transparent substrate, the scattering layer having a defect on the surface (step S310); (3b) installing a first electrode on the scattering layer, The first electrode is cut at the position of the defect and is composed of at least two layers including a first layer portion and a second layer portion; The first layer portion is disposed at the position of the defect, and the second layer portion is disposed at a position different from the defect (step S320); (3c) installing a repair material on a defect portion on the surface of the scattering layer, The repair material is arranged so as to cover the defect in a state in contact with a portion shadowed by the defect of the scattering layer, The repair material covers the first layer portion of the first electrode and the end of the second layer portion on the side close to the defect (step S330); (3d) installing an organic light emitting layer on top of the first electrode and repair material (step S340); (3e) installing a second electrode on the organic light emitting layer (
  • step S310 of (3a) and step S350 of (3e) are the same as the corresponding steps described in the first manufacturing method. Therefore, only the steps other than these will be described here.
  • Step S320 In the third manufacturing method, after the scattering layer 320 is formed, the first electrode 340 is installed before the repair material 370 is installed.
  • the first electrode 340 is formed discontinuously on the surface of the scattering layer 320 having defects, for example, in the manner shown in FIG. 9 or FIG.
  • Step S330 Next, a repair material 370 is installed on the defective portion of the scattering layer 320.
  • the repair material 370 is in contact with the regions S1 and S2 of the scattering layer 320 as shown in FIG. 9, and furthermore, the layer portion 341a of the first electrode 340. Are formed so as to cover the ends of the layer portions 341b and 341c of the first electrode 340 on the foreign substance 21 side.
  • the repair material 370 is in contact with the regions S3 and S4 of the scattering layer 320 as shown in FIG. 10, and further, the layer portion 342a of the first electrode 340. Is formed so as to cover the end portions of the layer portions 342b and 342c of the first electrode 340 on the concave portion 31 side.
  • repair material 370 having such an aspect can be formed relatively easily by, for example, the above-described coating needle method or jetting method.
  • an additional conductive layer may be installed after the repair material 370 is installed and before step S340.
  • Step S340 Next, the organic light emitting layer 350 is disposed on the first electrode 340 and the repair material 370.
  • the organic light emitting layer 350 is continuously formed on the first electrode 340 and the repair material 370 so as to cover the first electrode 340 due to the presence of the repair material 370. Therefore, the risk that the second electrode 360 installed thereafter is short-circuited with the first electrode 340 is significantly avoided.
  • FIG. 25 shows an example of a schematic flow chart when manufacturing the organic LED element 400 according to the fourth embodiment.
  • the fourth manufacturing method is (4a) forming a scattering layer on the transparent substrate (step S410); (4b) installing a protective layer on the scattering layer, the protective layer having a defect on the surface (step S420); (4c) installing a first electrode on the protective layer, The first electrode is cut at the position of the defect and is composed of at least two layers including a first layer portion and a second layer portion; The first layer portion is disposed at the position of the defect, and the second layer portion is disposed at a position different from the defect (step S430); (4d) installing a repair material on a defective portion of the surface of the protective layer, The repair material is arranged so as to cover the defect in a state where it is in contact with a portion shadowed by the defect of the protective layer, The repair material covers the first layer portion of the first electrode and the end of the second layer portion close to the defect (step S440); (4e) installing an organic light emitting layer on top of the first electrode and the repair material (step S450); (4f) installing
  • step S410 in (4a), step S420 in (4b), and step S460 in (4f) are the same as the corresponding steps described in the second manufacturing method. Accordingly, only steps S430 to S450 will be described here.
  • Step S430 In the fourth manufacturing method, after the protective layer 430 is formed, the first electrode 440 is installed before the repair material 470 is installed.
  • the first electrode 440 is discontinuously formed on the surface of the protective layer 430 having defects, for example, in the manner shown in FIG. 12 or FIG.
  • Step S440 Next, the repair material 470 is installed on the defective portion of the protective layer 430.
  • the repair material 470 is in contact with the regions S5 and S6 of the protective layer 430 and further, the layer portion 441a of the first electrode 440 as shown in FIG. Are formed so as to cover the ends of the layer portions 441b and 441c of the first electrode 440 on the foreign substance 21 side.
  • the repair material 470 is in contact with the regions S7 and S8 of the protective layer 430 and further, the layer portion 442a of the first electrode 440 as shown in FIG. Are formed so as to cover the end portions of the layer portions 442b and 442c of the first electrode 440 on the concave portion 31 side.
  • repair material 470 of such an aspect can be formed comparatively easily by the above-mentioned coating needle method or the ejection method, for example.
  • an additional conductive layer may be installed after the repair material 470 is installed and before step S450.
  • Step S450 an organic light emitting layer 450 is disposed on the first electrode 440 and the repair material 470.
  • the organic light emitting layer 450 is continuously formed on the first electrode 440 and the repair material 470 so as to cover the first electrode 440 due to the presence of the repair material 470. Therefore, the risk that the second electrode 460 installed thereafter is short-circuited with the first electrode 440 is significantly avoided.
  • FIG. 26 shows an example of a schematic flow diagram when manufacturing the organic LED element 500 according to the fifth embodiment.
  • the fifth manufacturing method is (5a) forming a scattering layer on the transparent substrate, the scattering layer having a defect on a surface (step S510); (5b) installing the first electrode on the scattering layer, The first electrode is cut at the position of the defect and is composed of at least two layers including a first layer portion and a second layer portion; The first layer portion is disposed at the position of the defect, and the second layer portion is disposed at a position different from the defect (step S520); (5c) installing an additional conductive layer on the first electrode, The additional conductive layer is composed of at least two layers including a third layer portion and a fourth layer portion, which are cut at the position of the defect, The third layer portion is disposed on the first layer portion of the first electrode, and the fourth layer portion is disposed on the second layer portion of the first electrode.
  • Step S530 installing a repair material on a defect portion on the surface of the scattering layer,
  • the repair material is arranged so as to cover the defect in a state in contact with a portion shadowed by the defect of the scattering layer,
  • the repair material includes the third layer portion of the additional conductive layer, the end of the fourth layer portion of the additional conductive layer on the side close to the defect, and the second layer of the first electrode. Covering the end of the part close to the defect (step S540); (5e) installing an organic light emitting layer on top of the additional conductive layer and repair material (step S550); (5f) installing a second electrode on the organic light emitting layer (step S560); Have
  • step S510 of (5a), step S520 of (5b), and step S560 of (5f) are the same as the corresponding steps described in the third manufacturing method described above. Therefore, only the steps other than these will be described here.
  • Step S530 In the fifth manufacturing method, after forming the first electrode 540 and before installing the repair material 570, an additional conductive layer 580 is further installed.
  • the structure of the defect portion of the scattering layer 520 becomes a form as shown in FIG. 15 or FIG.
  • the first electrode 540 is formed in a discontinuous form having the layer portions 541a to 541c on the surface of the scattering layer 520.
  • the additional conductive layer 580 is formed in a discontinuous form having layer portions 581a to 581c on the surface of the first electrode 540.
  • the first electrode 540 is formed in a discontinuous form having layer portions 542 a to 542 c on the surface of the scattering layer 520.
  • the additional conductive layer 580 is formed in a discontinuous form having layer portions 582a to 582c on the surface of the first electrode 540.
  • Step S540 Next, the repair material 570 is installed on the defective portion of the scattering layer 520.
  • the repair material 570 is in contact with the regions S1 and S2 of the scattering layer 520 and the layer portions 541b and 541c of the first electrode 540 as shown in FIG. Is formed so as to cover the end of the additional conductive layer 580 and the upper and side portions of the layer portion 581a of the additional conductive layer 580, and to cover the end of the additional conductive layer 580 on the foreign matter 21 side of the layer portions 581b and 581c.
  • the repair material 570 is in contact with the regions S3 and S4 of the scattering layer 520 and the layer portions 542b and 542c of the first electrode 540 as shown in FIG. Is formed so as to cover the end portion of the additional conductive layer 580, the upper portion and the side portion of the layer portion 582a of the additional conductive layer 580, and the end portions of the layer portions 582b and 582c of the additional conductive layer 580 on the concave portion 31 side.
  • repair material 570 of such an aspect can be formed comparatively easily by the above-mentioned application needle method or the ejection method, for example.
  • Step S550 Next, the organic light emitting layer 550 is disposed on the additional conductive layer 580 and the repair material 570.
  • the organic light emitting layer 550 is continuously formed on the additional conductive layer 580 and the repair material 570 so as to cover the additional conductive layer 580 due to the presence of the repair material 570. Therefore, the risk that the second electrode 560 to be installed thereafter is short-circuited with the additional conductive layer 580 and the first electrode 540 is significantly avoided.
  • FIG. 27 shows an example of a schematic flow chart when manufacturing the organic LED element 600 according to the sixth embodiment.
  • the sixth manufacturing method is (6a) forming a scattering layer on the transparent substrate (step S610); (6b) installing a protective layer on the scattering layer, the protective layer having a defect on the surface (step S620); (6c) installing the first electrode on the protective layer, The first electrode is cut at the position of the defect and is composed of at least two layers including a first layer portion and a second layer portion; The first layer portion is disposed at the position of the defect, and the second layer portion is disposed at a position different from the defect (step S630); (6d) installing an additional conductive layer on the first electrode, The additional conductive layer is composed of at least two layers including a third layer portion and a fourth layer portion, which are cut at the position of the defect, The third layer portion is disposed on the first layer portion of the first electrode, and the fourth layer portion is disposed on the second layer portion of the first electrode.
  • Step S640 (6e) installing a repair material on a defective portion of the surface of the protective layer,
  • the repair material is arranged so as to cover the defect in a state where it is in contact with a portion shadowed by the defect of the protective layer,
  • the repair material includes the third layer portion of the additional conductive layer, the end of the fourth layer portion of the additional conductive layer on the side close to the defect, and the second layer of the first electrode. Covering the end of the portion close to the defect (step S650); (6f) installing an organic light emitting layer on top of the additional conductive layer and the repair material (step S660); (6g) installing a second electrode on the organic light emitting layer (step S670); Have
  • step S610 in (6a), step S620 in (6b), step S630 in (6c), and step S670 in (6g) correspond to those described in the above-described fourth manufacturing method. It is the same as the step. Therefore, only the steps other than these will be described here.
  • Step S640 In the sixth manufacturing method, after forming the first electrode 640 and before installing the repair material 670, an additional conductive layer 680 is further installed.
  • the structure of the defective portion of the protective layer 630 becomes as shown in FIG. 18 or FIG.
  • the first electrode 640 is formed in a discontinuous form having the layer portions 641a to 641c on the surface of the protective layer 630.
  • the additional conductive layer 680 is formed in a discontinuous form having layer portions 681a to 681c on the surface of the first electrode 640.
  • the first electrode 640 is formed in a discontinuous form having layer portions 642 a to 642 c on the surface of the protective layer 630.
  • the additional conductive layer 680 is formed in a discontinuous form having layer portions 682a to 682c on the surface of the first electrode 640.
  • Step S650 Next, the repair material 670 is installed on the defective portion of the protective layer 630.
  • the repair material 670 is in contact with the regions S5 and S6 of the protective layer 630 and the layer portions 641b and 641c of the first electrode 640 as shown in FIG. Is formed so as to cover the end portion of the additional conductive layer 680 and the upper and side portions of the layer portion 681a of the additional conductive layer 680 and to cover the end portions of the layer portions 681b and 681c of the additional conductive layer 680 on the foreign matter 21 side.
  • the repair material 670 is in contact with the regions S7 and S8 of the protective layer 630 and the layer portions 642b and 642c of the first electrode 640 as shown in FIG. Is formed so as to cover the end portion of the additional conductive layer 680 and the upper and side portions of the layer portion 682a of the additional conductive layer 680 and cover the end portions of the layer portions 682b and 682c of the additional conductive layer 680 on the concave portion 31 side.
  • repair material 670 having such an aspect can be formed relatively easily by, for example, the above-described coating needle method or jetting method.
  • Step S660 Next, the organic light emitting layer 650 is disposed on the additional conductive layer 680 and the repair material 670.
  • the organic light emitting layer 650 is continuously formed on the additional conductive layer 680 and the repair material 670 so as to cover the additional conductive layer 680 due to the presence of the repair material 670. Therefore, the risk that the second electrode 660 installed thereafter is short-circuited with the additional conductive layer 680 and the first electrode 640 is significantly avoided.
  • the laminate before forming the organic light emitting layer and the second electrode that is, the transparent substrate, the scattering layer, the protective layer (if necessary), the repair material, and the first electrode (and if necessary,
  • the laminated body having the additional conductive layer is particularly referred to as a “translucent substrate”.
  • the specifications of the organic light emitting layer, the second electrode, and the like vary depending on the application application of the finally obtained organic LED element. Therefore, it is necessary to keep in mind that this “translucent substrate” is usually distributed in the market as an intermediate product in this state, and the subsequent steps are often omitted. There is.
  • Example 1 The organic LED element sample was produced with the following method, and the characteristic was evaluated.
  • the organic LED element sample was configured as shown in FIG.
  • first glass substrate a glass substrate made of soda lime (hereinafter referred to as “first glass substrate”) was prepared as a transparent substrate, and a scattering layer was placed on one surface of the first glass substrate.
  • the scattering layer was formed by the following procedure.
  • glass raw material powder was prepared. Table 1 shows the composition of the raw material powder. Next, this raw material powder was melted at 1150 ° C. using an electric furnace and then roll-cast to obtain glass flakes.
  • the glass transition temperature and the thermal expansion coefficient of the glass flakes were measured by a thermal expansion method (temperature increase rate: 5 ° C./min) using a thermal analyzer (TD5000SA: manufactured by Bruker). As a result, the glass transition temperature of the glass flakes was 478 ° C., and the thermal expansion coefficient was 71 ⁇ 10 ⁇ 7 / ° C. (average value of 50 ° C. to 300 ° C.). Further, the refractive index nd of this glass flake at the d-line (587.56 nm) was measured using a refractometer (trade name: KRP-2, manufactured by Kalnew Optical Industry Co., Ltd.). As a result, the refractive index nd was 1.84.
  • a glass paste was prepared by the following method, and a scattering layer was formed using the glass paste.
  • glass flakes were pulverized with a zirconia planetary mill for 2 hours and then sieved to collect powder having an average particle size d50 (particle size of 50% integrated value) of 1 ⁇ m to 3 ⁇ m.
  • glass paste A 72.4 g of the collected glass powder was kneaded with 27.6 g of an organic vehicle (about 10% by mass of ethyl cellulose dissolved in ⁇ -terpineol or the like) to prepare a glass paste (glass paste A). Further, 15 vol% of substantially spherical SiO 2 particles having an average particle diameter of about 3 ⁇ m were added to the glass paste A to prepare another glass paste (glass paste B).
  • glass paste B was printed on the first glass substrate using a screen printer.
  • Glass paste B was printed in a substantially circular shape having a diameter of about 10 mm. This glass paste B was dried at 140 ° C. for 10 minutes to form a first layer.
  • the glass paste A was printed on the first layer formed on the first glass substrate. The glass paste A was substantially the same shape as the first layer, and was printed so that it was just laminated on top of the first layer. Then, it dried at 140 degreeC for 10 minute (s), and formed the 2nd layer.
  • the temperature of the first glass substrate was raised to 450 ° C. in 45 minutes and held at 450 ° C. for 30 minutes, so that the organic vehicle resin contained in the first and second layers was decomposed and disappeared. Thereafter, the temperature was raised to 595 ° C. in 15 minutes and held at 595 ° C. for 40 minutes to soften the glass frit. Thereafter, the temperature was lowered to room temperature over 3 hours.
  • the film thickness of the entire scattering layer was 35 ⁇ m.
  • a sol-gel solution composed of tetra-n-butoxytitanium, 3- (glycidyloxy) propyltrimethoxysilane, trimethoxymethoxysilane, 1-butanol, toluene, and acetylacetone was used.
  • this sol-gel solution was coated on the entire surface of the first glass substrate on which the scattering layer was formed.
  • the glass substrate was kept at 120 ° C. for about 5 to 10 minutes and dried.
  • the protective layer was formed by maintaining at 475 ° C. for about 1 hour to evaporate, decompose, and / or burn off the solvent in the sol-gel layer and oxidize and bond the organometallic compound in the sol-gel layer.
  • an ITO layer was formed on the surface of the first glass substrate on which the scattering layer and the protective layer were formed by DC magnetron sputtering.
  • the thickness of the ITO layer was 150 nm.
  • a mask was used so that a desired pattern was obtained.
  • FIG. 28 shows a schematic top view of the first glass substrate after the ITO layer is formed.
  • a circular scattering layer 1120 and a substantially “L” -shaped ITO layer 1140 are formed on the surface of the first glass substrate 1110.
  • One end of the ITO layer 1140 is disposed at the central portion of the scattering layer 1120.
  • a protective layer is actually provided on the entire surface of the first glass substrate 1100 so as to cover the scattering layer 1120.
  • the repair material was installed in the defective part of the ITO layer by the following method.
  • an optical microscope observation of the ITO layer surface was performed to detect a portion where the ITO was cut due to a defect present on the surface of the protective layer of the first glass substrate.
  • a portion where the ITO layer is cut by a plurality of foreign matters protruding from the surface of the protective layer, and a portion where the ITO layer is cut by a plurality of recesses having openings on the surface of the protective layer was detected.
  • the detected defect portion was marked and the defect position was recorded.
  • the maximum width of the foreign material was, for example, 50 ⁇ m. Moreover, the diameter of the opening part of a recessed part was 10 micrometers, for example.
  • Transparent polyimide silicone resin was used as the repair material.
  • the above-mentioned application needle method was used for application
  • the repair material was applied so as to have a circular shape with a diameter of about 120 ⁇ m centered on the substantially central portion of the defect.
  • the repair material was applied to the defective part, it was heated at 200 ° C. for 30 minutes using an oven to cure the repair material.
  • the organic LED element was produced in the following procedures using the 1st glass substrate by which repair material was installed in the defective part.
  • the glass substrate was ultrasonically cleaned using pure water and IPA, and then the surface was cleaned by irradiating the first glass substrate with ultraviolet rays using an excimer UV generator.
  • an organic light emitting layer and a second electrode were formed on the first glass substrate 1100 using a vacuum deposition apparatus.
  • an ⁇ -NPD (N, N′-diphenyl-N, N′-bis (l-naphthyl) -l, l′ biphenyl-4,4 ′′ diamine) layer having a thickness of 100 nm is used as a hole transport layer.
  • an Alq3 (tris8-hydroxyquinoline aluminum) layer having a thickness of 60 nm was formed as a light-emitting layer (and an electron transport layer).
  • the ⁇ -NPD layer and Alq3 layer were formed into a circular pattern having a diameter of 12 mm using a mask.
  • a LiF layer having a thickness of 0.5 nm was formed as an electron injection layer. Further, an Al layer having a thickness of 80 nm was formed as the second electrode.
  • the LiF layer and the Al layer were substantially “L” -shaped, and were formed so as to have a shape in which an additional region of 2 mm in length ⁇ 2 mm in width was installed at one end.
  • FIG. 29 schematically shows a top view of the produced organic LED element sample 1000.
  • the protective layer is not shown for clarity.
  • the Alq3 layer 1150 has a circular shape that is slightly larger than the previously formed scattering layer 1120, and is formed to cover the entire scattering layer 1120.
  • an ⁇ -NPD layer having the same shape as the Alq3 layer 1150 is provided immediately below the Alq3 layer 1150.
  • the Al layer 1160 is formed such that an additional region 1162 disposed at one end of the “L” shape is disposed at the center of the scattering layer 1120.
  • a LiF layer having the same shape as the Al layer 1160 is provided immediately below the Al layer 1160.
  • Such an organic LED element sample 1000 when viewed from above, near the center of the scattering layer 1120, the tip of the ITO layer 1140, the center of the ⁇ -NPD layer and the Alq3 layer 1150, and the LiF layer and the Al layer 1160.
  • the additional region 1162 overlaps, and this portion functions as the light emitting region 1190 of the organic LED element sample 1000. Therefore, the dimension of the light emitting region 1190 is 2 mm long ⁇ 2 mm wide.
  • the organic LED element sample 1000 may be deteriorated. Therefore, the organic LED element sample 1000 was sealed with nitrogen by the following method.
  • a glass substrate (PD200: manufactured by Asahi Glass Co., Ltd.) (hereinafter referred to as “second glass substrate”) having a recess near the center was prepared.
  • the concave portion was formed by sandblasting the central portion of the second glass substrate.
  • the recess has a sufficiently large depth and width so that the second glass substrate does not come into contact with each element except for the first glass substrate 1110 of the organic LED element sample 1000.
  • a water catching material containing CaO was attached to the concave portion of the second glass substrate.
  • the photosensitive epoxy resin was apply
  • the second glass substrate was placed on top of the organic LED element sample 1000 so that the recess faces each element of the organic LED element sample 1000, and a sealing process was performed.
  • the photosensitive epoxy resin of the second glass substrate was irradiated with ultraviolet rays to cure the resin.
  • the organic LED element sample 1000 and the 2nd glass substrate were bonded together.
  • the sealing process was implemented in the glove box made into nitrogen atmosphere. For this reason, each element of the organic LED element sample 1000 was nitrogen-sealed.
  • the light emission test was performed by applying a voltage of 6 V between both electrodes (that is, the ITO layer 1140 and the Al layer 1160) of the organic LED element sample 1000.
  • FIG. 30 and 31 show reflection images when the light emitting region 1190 of the organic LED element sample 1000 is observed from the first glass substrate 1100 side using an optical microscope.
  • FIG. 30 shows a state before voltage application
  • FIG. 31 shows a state after voltage application.
  • two portions indicated by an arrow A correspond to a defective portion where a repair material is installed.
  • FIG. 31 shows that in the light emitting region 1190 of the produced organic LED element sample, appropriate light emission (green light emission) is obtained except for the place where the repair material is installed.
  • appropriate light emission green light emission
  • the light emission state was stable, and constant light emission was obtained during voltage application.
  • Example 2 As described above, in the case of the configuration shown in FIGS. 4 and 7, when the organic EL element emits light, light can be obtained from the entire surface including the portion where the repair material is provided. For this reason, in the case of the structure shown in FIG. 4 and FIG. 7, it is thought that the advantage that a repair material becomes difficult to visually recognize is acquired.
  • an organic EL element was prepared according to the following procedure, and the appearance of the light emitting state was observed.
  • a glass substrate having a scattering layer and a protective layer formed thereon was prepared in the same manner as in Example 1 described above.
  • a repair material was installed on the protective layer.
  • an application needle method as shown in FIG. 21 was adopted.
  • repair material polyimide varnish (C-5420: manufactured by Mitsubishi Gas Chemical) was used.
  • the repair material was applied in a substantially circular shape with a diameter of 110 ⁇ m and a film thickness of 1.2 ⁇ m.
  • Example 2 since the purpose is to confirm the visibility of light emission in the portion where the repair material is installed, the repair material is not necessarily applied to the defective portion.
  • polyimide material Since polyimide material has relatively good heat resistance, it has a feature that deterioration is small even when an ITO layer is formed under high temperature conditions. In addition, since the polyimide material has a low coefficient of thermal expansion and is close to ITO, there is little risk of occurrence of defects such as stress-induced cracks after the formation of the ITO layer. Therefore, the polyimide material is suitable as a repair material.
  • the entire glass substrate was heated at 140 ° C. for about 10 minutes using an oven to cure the repair material.
  • an ITO layer was formed on the protective layer so as to cover the portion where the repair material was disposed. Furthermore, an organic light emitting layer and a second electrode were formed on the ITO layer. Thereafter, nitrogen sealing was performed to complete an organic EL element sample.
  • a voltage of about 5 V was applied between both electrodes of the obtained organic EL element sample, and the light emission state was observed.
  • FIG. 32 schematically shows an observation result (illustration of an optical microscope image) of an organic EL element sample in a light emitting state.
  • the location indicated by the arrow corresponds to the area where the repair material is installed.
  • this figure is an observation result at the time of focusing on the surface on the opposite side to the surface which formed each layer of the glass substrate in the organic EL element sample.
  • Example 3 Next, the following evaluation was performed in order to confirm that a continuous film can be formed on top of the protective layer (and the repair material) by disposing a repair material on the defects present on the surface of the protective layer.
  • a glass substrate having a scattering layer and a protective layer formed thereon was prepared by the same method as in Example 1 described above.
  • the location where the defect exists on the surface of the protective layer was searched by microscopic observation, and the location of the found defect was grasped.
  • the defect which consists of a foreign material with a major axis of about 50 micrometers was selected as shown in FIG.
  • the foreign matter itself has a sharp uneven shape, and the periphery of the foreign matter is a dent.
  • an organic EL element is formed by depositing each layer on this defect, it is considered that there is a high possibility that the coverage of the film is lowered and the first electrode and the second electrode are short-circuited.
  • a repair material was installed on this defect by a coating needle method as shown in FIG.
  • a polyimide varnish (C-5420: manufactured by Mitsubishi Gas Chemical) was used as a repair material.
  • the repair material was applied in a substantially circular shape having a diameter of 102 ⁇ m and a film thickness of 1.6 ⁇ m.
  • FIG. 35 shows the measurement results of the cross-sectional irregularities in the defective portion after the repair material is applied. From FIG. 35, it can be seen that a smooth state is obtained on the surface of the protective layer by covering the defect with the repair material.
  • the present invention can be applied to an organic LED element used for a light emitting device or the like.

Abstract

Provided is an organic LED element having the following: a light-transmitting substrate; a scattering layer formed on the light-transmitting substrate; a first electrode formed on the scattering layer; an organic light-emitting layer formed on the first electrode; and a second electrode formed on the organic light-emitting layer. The organic LED element is characterized in that a repair material is disposed at a portion where the first electrode and the organic light-emitting layer do not come into contact with each other.

Description

有機LED素子、透光性基板、および透光性基板の製造方法Organic LED element, translucent substrate, and manufacturing method of translucent substrate
 本発明は、有機LED素子、透光性基板、および透光性基板の製造方法に関する。 The present invention relates to an organic LED element, a translucent substrate, and a method for producing the translucent substrate.
 有機LED(Light Emitting Diode)素子は、ディスプレイ、バックライト、および照明用途等に広く用いられている。 Organic LED (Light Emitting Diode) elements are widely used for displays, backlights, lighting applications, and the like.
 一般的な有機LED素子は、透明基板上に設置された第1の電極(陽極)と、第2の電極(陰極)と、これらの電極間に設置された有機発光層とを有する。電極間に電圧を印加すると、それぞれの電極から、有機発光層にホールおよび電子が注入される。このホールと電子が有機発光層内で再結合された際に、結合エネルギーが生じ、この結合エネルギーによって有機発光層中の有機発光材料が励起される。励起した発光材料が基底状態に戻る際に発光が生じるため、これを利用することにより、発光(LED)素子が得られる。 A general organic LED element has a first electrode (anode) placed on a transparent substrate, a second electrode (cathode), and an organic light emitting layer placed between these electrodes. When a voltage is applied between the electrodes, holes and electrons are injected from each electrode into the organic light emitting layer. When the holes and electrons are recombined in the organic light emitting layer, binding energy is generated, and the organic light emitting material in the organic light emitting layer is excited by this binding energy. Since light is emitted when the excited light emitting material returns to the ground state, a light emitting (LED) element can be obtained by utilizing this.
 通常、第1の電極、すなわち陽極には、ITO(Indium Tin Oxide)のような透明薄膜が使用され、第2の電極、すなわち陰極には、アルミニウムおよび銀等の金属薄膜が使用される。 Usually, a transparent thin film such as ITO (Indium Tin Oxide) is used for the first electrode, that is, the anode, and a metal thin film such as aluminum and silver is used for the second electrode, that is, the cathode.
 最近では、ITO電極と透明基板の間に、散乱物質を有する散乱層を設置することが提案されている(例えば特許文献1)。このような構成では、有機層で生じた発光の一部は、散乱層中の散乱物質によって散乱されるため、ITO電極や透明基板内に閉じ込められる光の量(全反射の光量)が少なくなり、有機LED素子の光取り出し効率を高めることができることが開示されている。 Recently, it has been proposed to install a scattering layer having a scattering material between the ITO electrode and the transparent substrate (for example, Patent Document 1). In such a configuration, since a part of the light emission generated in the organic layer is scattered by the scattering material in the scattering layer, the amount of light confined in the ITO electrode or the transparent substrate (total reflection light amount) is reduced. It is disclosed that the light extraction efficiency of the organic LED element can be increased.
国際公開第2009/060916号International Publication No. 2009/060916
 前述のように、特許文献1には、ITO電極と透明基板の間に散乱層が設置された有機LED素子が示されている。 As described above, Patent Document 1 discloses an organic LED element in which a scattering layer is installed between an ITO electrode and a transparent substrate.
 しかしながら、一般に、設置後の散乱層の表面には、異物や凹部のような欠陥が存在する場合がある。異物は、例えば、約500μmもの寸法に達する場合がある。同様に、凹部の直径および深さは、それぞれ、約50μmに達する場合がある。 However, generally, there may be a defect such as a foreign substance or a recess on the surface of the scattering layer after installation. The foreign material may reach a size of about 500 μm, for example. Similarly, the diameter and depth of the recess may each reach about 50 μm.
 このような欠陥が存在すると、その後の有機LED素子を構成する電極および有機発光層などの各層の成膜工程において、各層の付きまわりが悪くなるおそれがある。特に、存在する欠陥の形状によっては、後続の成膜工程において、成膜用物質が散乱層の表面に到達することが妨害されてしまう。この場合、発光層を介して離間されるべき2つの電極が相互に短絡してしまうという問題が生じ得る。また、そのような場合、最終的に得られる有機LED素子に、所望の特性が得られなくなったり、発光が得られなくなったりする可能性がある。 When such a defect exists, there is a possibility that the surroundings of each layer may be deteriorated in a film forming process of each layer such as an electrode and an organic light emitting layer constituting the organic LED element. In particular, depending on the shape of the existing defect, the film-forming substance is prevented from reaching the surface of the scattering layer in the subsequent film-forming process. In this case, there may be a problem that the two electrodes to be separated from each other through the light emitting layer are short-circuited to each other. In such a case, there is a possibility that desired characteristics may not be obtained or light emission may not be obtained in the finally obtained organic LED element.
 なお、一部の有機LED素子においては、散乱層の上部に、さらに保護層を有する構成のものが存在するが、この構成の場合も、同様の問題が生じ得る。すなわち、設置後の保護層の表面に、異物や凹部のような欠陥が存在すると、その後の成膜工程において、各層の付きまわりが悪くなり、2つの電極が相互に短絡してしまう危険性がある。 In addition, in some organic LED elements, the thing of the structure which has a protective layer further exists on the upper part of a scattering layer, but the same problem may arise also in this structure. That is, if there is a defect such as a foreign substance or a recess on the surface of the protective layer after installation, there is a risk that the contact of each layer will worsen in the subsequent film forming process and the two electrodes will short-circuit each other. is there.
 本発明は、このような問題に鑑みなされたものであり、本発明では、散乱層または保護層の表面に欠陥が存在する場合であっても、その後、散乱層または保護層の上部に成膜される両電極間の短絡を抑制することが可能な、有機LED素子を提供することを目的とする。また、そのような有機LED素子に使用され得る透光性基板、およびそのような透光性基板を製造する方法を提供することを目的とする。 The present invention has been made in view of such problems, and in the present invention, even if a defect exists on the surface of the scattering layer or the protective layer, the film is formed on the scattering layer or the protective layer thereafter. It aims at providing the organic LED element which can suppress the short circuit between both electrodes made. Moreover, it aims at providing the method of manufacturing the translucent board | substrate which can be used for such an organic LED element, and such a translucent board | substrate.
 本発明では、
 透明基板と、該透明基板上に形成された散乱層と、該散乱層上に形成された第1の電極と、該第1の電極上に形成された有機発光層と、該有機発光層上に形成された第2の電極とを有する有機LED素子であって、
 前記第1の電極と前記有機発光層とが接触していない部分には、リペア材料が配置されていることを特徴とする有機LED素子が提供される。
In the present invention,
A transparent substrate, a scattering layer formed on the transparent substrate, a first electrode formed on the scattering layer, an organic light emitting layer formed on the first electrode, and the organic light emitting layer An organic LED element having a second electrode formed on
An organic LED element is provided in which a repair material is disposed in a portion where the first electrode and the organic light emitting layer are not in contact with each other.
 また、本発明では、
 透明基板と、該透明基板上に形成された散乱層と、該散乱層上に形成された第1の電極と、該第1の電極上に形成された有機発光層と、該有機発光層上に形成された第2の電極とを有する有機LED素子であって、
 前記散乱層の表面には、欠陥が存在し、
 該欠陥の部分には、リペア材料が存在し、該リペア材料は、前記散乱層の前記欠陥によって陰となる部分と接触した状態で、前記欠陥を覆うように配置され、
 前記第1の電極は、前記リペア材料を覆う連続的な層で構成されることを特徴とする有機LED素子が提供される。
In the present invention,
A transparent substrate, a scattering layer formed on the transparent substrate, a first electrode formed on the scattering layer, an organic light emitting layer formed on the first electrode, and the organic light emitting layer An organic LED element having a second electrode formed on
There are defects on the surface of the scattering layer,
A repair material is present in the portion of the defect, and the repair material is disposed so as to cover the defect in a state of being in contact with a portion shadowed by the defect of the scattering layer,
The first electrode is formed of a continuous layer covering the repair material, and an organic LED element is provided.
 ここで、本発明による有機LED素子は、前記散乱層上に保護層を備えても良い。 Here, the organic LED element according to the present invention may include a protective layer on the scattering layer.
 また、本発明による有機LED素子において、前記リペア材料は、前記散乱層または前記保護層の表面の欠陥部分に配置されており、
 前記欠陥は、異物および/または凹部であっても良い。
Moreover, in the organic LED element according to the present invention, the repair material is disposed in a defective portion on the surface of the scattering layer or the protective layer,
The defect may be a foreign matter and / or a recess.
 また、本発明による有機LED素子において、前記リペア材料は、樹脂、ガラス、セラミック、および/または金属を有しても良い。 In the organic LED element according to the present invention, the repair material may include a resin, glass, ceramic, and / or metal.
 また、本発明による有機LED素子において、前記第1の電極は、電極層および追加導電層の2層構造となっていても良い。 In the organic LED element according to the present invention, the first electrode may have a two-layer structure of an electrode layer and an additional conductive layer.
 また、本発明による有機LED素子において、前記散乱層は、ガラスからなるベース材と、該ベース材中に分散された複数の散乱物質とを有しても良い。 Moreover, in the organic LED element according to the present invention, the scattering layer may include a base material made of glass and a plurality of scattering materials dispersed in the base material.
 さらに、本発明では、
 透明基板と、該透明基板上に形成された散乱層と、該散乱層上に形成された第1の電極とを有する透光性基板であって、
 前記第1の電極上に、前記散乱層が露出されないように形成されるリペア材料を備えたことを特徴とする透光性基板が提供される。
Furthermore, in the present invention,
A translucent substrate having a transparent substrate, a scattering layer formed on the transparent substrate, and a first electrode formed on the scattering layer,
A translucent substrate comprising a repair material formed on the first electrode so as not to expose the scattering layer is provided.
 さらに、本発明では、
 透明基板と、該透明基板上に形成された散乱層と、該散乱層上に形成された保護層と、該保護層上に形成された第1の電極とを有する透光性基板であって、
 前記第1の電極上に、前記保護層が露出されないように形成されるリペア材料を備えたことを特徴とする透光性基板が提供される。
Furthermore, in the present invention,
A translucent substrate having a transparent substrate, a scattering layer formed on the transparent substrate, a protective layer formed on the scattering layer, and a first electrode formed on the protective layer. ,
A translucent substrate comprising a repair material formed on the first electrode so as not to expose the protective layer is provided.
 ここで、本発明による透光性基板において、前記第1の電極は、前記リペア材料を覆う連続的な層で構成されても良い。 Here, in the translucent substrate according to the present invention, the first electrode may be formed of a continuous layer covering the repair material.
 さらに、本発明では、
 透明基板と、散乱層と、第1の電極とを有する透光性基板を製造する方法であって、
(1a)前記透明基板上に前記散乱層を形成するステップと、
(1b)前記散乱層上に前記第1の電極を形成するステップと、
(1c)前記第1の電極上であって、前記散乱層が露出されないようにリペア材料を形成するステップと、
 を有する方法が提供される。
Furthermore, in the present invention,
A method of manufacturing a translucent substrate having a transparent substrate, a scattering layer, and a first electrode,
(1a) forming the scattering layer on the transparent substrate;
(1b) forming the first electrode on the scattering layer;
(1c) forming a repair material on the first electrode so that the scattering layer is not exposed;
Is provided.
 さらに、本発明では、
 透明基板と、散乱層と、保護層と、第1の電極とを有する透光性基板を製造する方法であって、
(2a)前記透明基板上に前記散乱層を形成するステップと、
(2b)前記散乱層上に前記保護層を形成するステップと、
(2c)前記保護層上に前記第1の電極を形成するステップと、
(2d)前記第1の電極上であって、前記保護層が露出されないようにリペア材料を形成するステップと、
 を有する方法が提供される。
Furthermore, in the present invention,
A method for producing a translucent substrate having a transparent substrate, a scattering layer, a protective layer, and a first electrode,
(2a) forming the scattering layer on the transparent substrate;
(2b) forming the protective layer on the scattering layer;
(2c) forming the first electrode on the protective layer;
(2d) forming a repair material on the first electrode so that the protective layer is not exposed;
Is provided.
 ここで、本発明による方法において、
 前記リペア材料は、前記散乱層または前記保護層の表面の欠陥部分に配置されており、
 前記欠陥は、異物および/または凹部であっても良い。
Here, in the method according to the invention,
The repair material is disposed on a defective portion of the surface of the scattering layer or the protective layer,
The defect may be a foreign matter and / or a recess.
 また、本発明による方法において、前記リペア材料は、樹脂、ガラス、セラミック、および/または金属を有しても良い。 In the method according to the present invention, the repair material may include a resin, glass, ceramic, and / or metal.
 また、本発明による方法において、前記第1の電極は、電極層および追加導電層の2層構造を有しても良い。 In the method according to the present invention, the first electrode may have a two-layer structure of an electrode layer and an additional conductive layer.
 本発明では、散乱層または保護層の表面に欠陥が存在する場合であっても、その後、散乱層または保護層の上部に成膜される両電極間の短絡を抑制することが可能な、有機LED素子を提供することができる。また、本発明では、そのような有機LED素子に使用され得る透光性基板、およびそのような透光性基板を製造する方法を提供することができる。 In the present invention, even when there is a defect on the surface of the scattering layer or the protective layer, an organic material that can suppress a short circuit between the two electrodes formed on the scattering layer or the protective layer is then obtained. An LED element can be provided. Moreover, in this invention, the translucent board | substrate which can be used for such an organic LED element, and the method of manufacturing such a translucent board | substrate can be provided.
従来の有機LED素子の概略的な断面図である。It is a schematic sectional drawing of the conventional organic LED element. 従来の有機LED素子を構成する際の問題点を説明するための模式図である。It is a schematic diagram for demonstrating the problem at the time of comprising the conventional organic LED element. 従来の有機LED素子を構成する際の問題点を説明するための模式図である。It is a schematic diagram for demonstrating the problem at the time of comprising the conventional organic LED element. 本発明の第1実施例による有機LED素子の概略的な断面図である。1 is a schematic cross-sectional view of an organic LED element according to a first embodiment of the present invention. 散乱層の表面に異物のような欠陥が存在する場合の、リペア材料の形態の一例を模式的に示した図である。It is the figure which showed typically an example of the form of repair material when the defect like a foreign material exists in the surface of a scattering layer. 散乱層の表面に凹部のような欠陥が存在する場合の、リペア材料の形態の一例を模式的に示した図である。It is the figure which showed typically an example of the form of repair material when a defect like a recessed part exists in the surface of a scattering layer. 本発明の第2実施例による有機LED素子の概略的な断面図である。FIG. 5 is a schematic cross-sectional view of an organic LED device according to a second embodiment of the present invention. 本発明の第3実施例による有機LED素子の概略的な断面図である。FIG. 5 is a schematic cross-sectional view of an organic LED element according to a third embodiment of the present invention. 散乱層の表面に異物のような欠陥が存在する場合の、リペア材料の近傍の模式的な拡大断面図である。It is a typical expanded sectional view of the vicinity of repair material when the defect like a foreign material exists in the surface of a scattering layer. 散乱層の表面に凹部のような欠陥が存在する場合の、リペア材料の近傍の模式的な拡大断面図である。It is a typical expanded sectional view of the vicinity of repair material in case a defect like a recessed part exists in the surface of a scattering layer. 本発明の第4実施例による有機LED素子の概略的な断面図である。FIG. 6 is a schematic cross-sectional view of an organic LED element according to a fourth embodiment of the present invention. 保護層の表面に異物のような欠陥が存在する場合の、リペア材料の近傍の模式的な拡大断面図である。It is a typical expanded sectional view of the vicinity of repair material when the defect like a foreign material exists in the surface of a protective layer. 保護層の表面に凹部のような欠陥が存在する場合の、リペア材料の近傍の模式的な拡大断面図である。It is a typical expanded sectional view of the vicinity of repair material in case a defect like a recessed part exists in the surface of a protective layer. 本発明の第5実施例による有機LED素子の概略的な断面図である。FIG. 6 is a schematic cross-sectional view of an organic LED element according to a fifth embodiment of the present invention. 散乱層の表面に異物のような欠陥が存在する場合の、リペア材料の近傍の模式的な拡大断面図である。It is a typical expanded sectional view of the vicinity of repair material when the defect like a foreign material exists in the surface of a scattering layer. 散乱層の表面に凹部のような欠陥が存在する場合の、リペア材料の近傍の模式的な拡大断面図である。It is a typical expanded sectional view of the vicinity of repair material in case a defect like a recessed part exists in the surface of a scattering layer. 本発明の第6実施例による有機LED素子の概略的な断面図である。FIG. 6 is a schematic cross-sectional view of an organic LED element according to a sixth embodiment of the present invention. 保護層の表面に異物のような欠陥が存在する場合の、リペア材料の近傍の模式的な拡大断面図である。It is a typical expanded sectional view of the vicinity of repair material when the defect like a foreign material exists in the surface of a protective layer. 保護層の表面に凹部のような欠陥が存在する場合の、リペア材料の近傍の模式的な拡大断面図である。It is a typical expanded sectional view of the vicinity of repair material in case a defect like a recessed part exists in the surface of a protective layer. 第1実施例による有機LED素子を製造する際のフローの一例を概略的に示した図である。It is the figure which showed schematically an example of the flow at the time of manufacturing the organic LED element by 1st Example. 塗布針法により、散乱層の表面の欠陥部分にリペア材料を設置する際の様子を模式的に示した図である。It is the figure which showed typically the mode at the time of installing repair material in the defect part of the surface of a scattering layer by the apply | coating needle method. 噴出法により、散乱層の表面の欠陥部分にリペア材料を設置する際の様子を模式的に示した図である。It is the figure which showed typically the mode at the time of installing repair material in the defect part of the surface of a scattering layer by the ejection method. 第2実施例による有機LED素子を製造する際のフローの一例を概略的に示した図である。It is the figure which showed schematically an example of the flow at the time of manufacturing the organic LED element by 2nd Example. 第3実施例による有機LED素子を製造する際のフローの一例を概略的に示した図である。It is the figure which showed schematically an example of the flow at the time of manufacturing the organic LED element by 3rd Example. 第4実施例による有機LED素子を製造する際のフローの一例を概略的に示した図である。It is the figure which showed schematically an example of the flow at the time of manufacturing the organic LED element by 4th Example. 第5実施例による有機LED素子を製造する際のフローの一例を概略的に示した図である。It is the figure which showed schematically an example of the flow at the time of manufacturing the organic LED element by 5th Example. 第6実施例による有機LED素子を製造する際のフローの一例を概略的に示した図である。It is the figure which showed schematically an example of the flow at the time of manufacturing the organic LED element by 6th Example. ITO層を形成した後の、第1のガラス基板の模式的な上面図を示した図である。It is the figure which showed the typical top view of the 1st glass substrate after forming an ITO layer. 有機LED素子サンプルの上面図を概略的に示した図である。It is the figure which showed the upper side figure of the organic LED element sample roughly. 有機LED素子サンプルの発光領域を、第1のガラス基板側から観察した際の反射像(電圧印加前)を示した図である。It is the figure which showed the reflected image (before voltage application) at the time of observing the light emission area | region of an organic LED element sample from the 1st glass substrate side. 有機LED素子サンプルの発光領域を、第1のガラス基板側から観察した際の反射像(電圧印加中)の状態を示した図である。It is the figure which showed the state of the reflected image (during voltage application) at the time of observing the light emission area | region of an organic LED element sample from the 1st glass substrate side. 実施例2において、発光状態にある有機EL素子サンプルの光学顕微鏡像を模式的に示した図である。In Example 2, it is the figure which showed typically the optical microscope image of the organic EL element sample in a light emission state. 実施例3において選定した欠陥の形態を模式的に示した図である。It is the figure which showed typically the form of the defect selected in Example 3. FIG. 共焦点顕微鏡により得られた、図33に示した欠陥の領域の断面凹凸形状の測定結果を示した図である。It is the figure which showed the measurement result of the uneven | corrugated shape of a cross section of the area | region of the defect shown in FIG. 33 obtained by the confocal microscope. 共焦点顕微鏡により得られた、リペア材料を塗布した後の欠陥部分の断面凹凸形状の測定結果を示した図である。It is the figure which showed the measurement result of the cross-sectional uneven | corrugated shape of the defect part after apply | coating a repair material obtained with the confocal microscope.
 以下、図面を参照して、本発明について詳しく説明する。 Hereinafter, the present invention will be described in detail with reference to the drawings.
 (従来の有機LED素子)
 まず、本発明の特徴をより良く理解するため、図1を用いて、特許文献1に記載された、従来の有機LED素子の構成について簡単に説明する。図1には、従来の有機LED素子の簡略的な断面図を示す。
(Conventional organic LED element)
First, in order to better understand the characteristics of the present invention, the configuration of a conventional organic LED element described in Patent Document 1 will be briefly described with reference to FIG. FIG. 1 shows a simplified cross-sectional view of a conventional organic LED element.
 図1に示すように、従来の有機LED素子1は、ガラス基板10と、散乱層20と、透明電極(陽極)40と、有機発光層50と、第2の電極(陰極)60とをこの順に積層することにより構成される。なお、図1の例では、有機LED素子1の下側の表面(すなわちガラス基板10の露出面)が光取り出し面となる。 As shown in FIG. 1, a conventional organic LED element 1 includes a glass substrate 10, a scattering layer 20, a transparent electrode (anode) 40, an organic light emitting layer 50, and a second electrode (cathode) 60. It is configured by stacking in order. In the example of FIG. 1, the lower surface of the organic LED element 1 (that is, the exposed surface of the glass substrate 10) is the light extraction surface.
 このような有機LED素子1において、有機発光層50で生じた発光は、散乱層20で有効に散乱される。このため、このような有機LED素子1の構成では、散乱層20を有さない構造に比べて、有機LED素子1の光取り出し面からの光の取り出し効率を高めることができる。 In such an organic LED element 1, light emitted from the organic light emitting layer 50 is effectively scattered by the scattering layer 20. For this reason, in the structure of such an organic LED element 1, compared with the structure which does not have the scattering layer 20, the extraction efficiency of the light from the light extraction surface of the organic LED element 1 can be improved.
 ここで、散乱層20は、例えば、高屈折率のガラス粉末を含むペーストを焼成処理することにより形成される。 Here, the scattering layer 20 is formed, for example, by baking a paste containing a glass powder having a high refractive index.
 しかしながら、一般に、成膜後の散乱層20の表面には、成膜原料および/または製造工程に起因した、異物や凹部のような(1または2以上の)欠陥が存在する場合がある。異物は、例えば、約500μmもの寸法に達する場合がある。同様に、凹部の直径および深さは、それぞれ、約50μmに達する場合がある。 However, generally, the surface of the scattering layer 20 after film formation may have defects (one or two or more) such as foreign matters and recesses due to film forming raw materials and / or manufacturing processes. The foreign material may reach a size of about 500 μm, for example. Similarly, the diameter and depth of the recess may each reach about 50 μm.
 散乱層20の表面に、このような欠陥が存在すると、その後の透明電極40、有機発光層50、および第2の電極60の成膜工程において、各層の付きまわりが悪くなるおそれがある。特に、存在する欠陥の形状によっては、後続の成膜工程において、成膜用物質が散乱層20の表面に到達することが妨害されてしまう。この場合、有機発光層50を介して離間されるべき2つの電極40、60が相互に短絡してしまうという問題が生じ得る。また、そのような場合、最終的に得られる有機LED素子1に、所望の特性が得られなくなったり、発光が得られなくなったりする可能性がある。 When such a defect is present on the surface of the scattering layer 20, there is a possibility that the surroundings of each layer may be deteriorated in the film forming process of the transparent electrode 40, the organic light emitting layer 50, and the second electrode 60. In particular, depending on the shape of the existing defect, the film-forming substance is prevented from reaching the surface of the scattering layer 20 in the subsequent film-forming process. In this case, the problem that the two electrodes 40 and 60 which should be spaced apart via the organic light emitting layer 50 will mutually short-circuit may arise. Moreover, in such a case, there is a possibility that desired characteristics may not be obtained or light emission may not be obtained in the finally obtained organic LED element 1.
 図2は、散乱層20の表面に異物のような欠陥が存在する状態で、透明電極40、有機発光層50、および第2の電極60を順次成膜したときの層構造の変化を模式的に示した図である。 FIG. 2 schematically shows changes in the layer structure when the transparent electrode 40, the organic light emitting layer 50, and the second electrode 60 are sequentially formed in a state where defects such as foreign matters exist on the surface of the scattering layer 20. It is the figure shown in.
 図2(a)に示すように、散乱層20の表面29には、異物21が存在する。異物21は、第1の側面25および第2の側面26を有する。第1の側面25は、上側から下側に向かって、異物21の粒径が減少するように形成されている。同様に、第2の側面26は、上側から下側に向かって、異物21の粒径が減少するように形成されている。 As shown in FIG. 2A, the foreign material 21 exists on the surface 29 of the scattering layer 20. The foreign material 21 has a first side surface 25 and a second side surface 26. The first side surface 25 is formed so that the particle size of the foreign material 21 decreases from the upper side to the lower side. Similarly, the second side surface 26 is formed so that the particle size of the foreign material 21 decreases from the upper side to the lower side.
 この状態で、透明電極40を成膜するため、成膜物質を散乱層上にスパッタ法や蒸着法で堆積させた場合、図2(b)に示すように、成膜物質は、異物21の上部に堆積して、層部分41aを形成するとともに、異物21の存在しない散乱層20の表面29の上部に堆積して、層部分41bおよび41cを形成する。 In this state, when the film forming material is deposited on the scattering layer by sputtering or vapor deposition in order to form the transparent electrode 40, the film forming material is formed of the foreign material 21 as shown in FIG. It is deposited on the upper portion to form the layer portion 41a, and is deposited on the upper portion of the surface 29 of the scattering layer 20 where the foreign material 21 is not present, thereby forming the layer portions 41b and 41c.
 ここで、成膜物質は、異物21の第1の側面25の存在により、散乱層20の表面29の領域S1には、堆積されにくくなる。このため、層部分41bは、図2(b)に示すように、散乱層20の表面29の領域S1を完全には覆わない形態で形成される。同様に、成膜物質は、異物21の第2の側面26の存在により、散乱層20の表面29の領域S2には、堆積されにくくなる。このため、層部分41cは、図2(b)に示すように、散乱層20の表面29の領域S2を完全には覆わない形態で形成される。 Here, the film-forming substance is hardly deposited on the region S1 of the surface 29 of the scattering layer 20 due to the presence of the first side surface 25 of the foreign material 21. For this reason, the layer portion 41b is formed in a form that does not completely cover the region S1 of the surface 29 of the scattering layer 20, as shown in FIG. Similarly, the film-forming substance is less likely to be deposited in the region S <b> 2 of the surface 29 of the scattering layer 20 due to the presence of the second side surface 26 of the foreign material 21. Therefore, the layer portion 41c is formed in a form that does not completely cover the region S2 of the surface 29 of the scattering layer 20, as shown in FIG.
 次に、有機発光層50を成膜するため、成膜物質を透明電極40の上部に堆積させた場合、図2(c)に示すように、成膜物質は、透明電極40の層部分41a、41b、および41cのそれぞれの上部に堆積される。その結果、有機発光層50の層部分51a、51b、および51cが形成される。 Next, when the film-forming substance is deposited on the transparent electrode 40 in order to form the organic light emitting layer 50, the film-forming substance is applied to the layer portion 41a of the transparent electrode 40 as shown in FIG. , 41b, and 41c. As a result, the layer portions 51a, 51b, and 51c of the organic light emitting layer 50 are formed.
 なお、この場合も、異物21のため、層部分51bおよび51cは、散乱層20の表面29の領域S1およびS2の上方には、形成されにくくなる。特に、有機発光層50の層部分51aは、透明電極40の層部分41aを完全に覆い、層部分41aの側部にも延在するような形態で形成される傾向にある。そしてこの層部分51aが、有機発光層50の成膜物質を堆積させる際に陰となるため、層部分51bおよび51cの形成領域は、透明電極40の層部分41b、41cに比べて、より狭小化される。 In this case as well, because of the foreign matter 21, the layer portions 51b and 51c are hardly formed above the regions S1 and S2 on the surface 29 of the scattering layer 20. In particular, the layer portion 51a of the organic light emitting layer 50 tends to be formed in a form that completely covers the layer portion 41a of the transparent electrode 40 and extends to the side portion of the layer portion 41a. Since the layer portion 51a is shaded when depositing the film forming material of the organic light emitting layer 50, the formation region of the layer portions 51b and 51c is narrower than the layer portions 41b and 41c of the transparent electrode 40. It becomes.
 次に、第2の電極60を成膜するため、成膜物質を有機発光層50の上部に堆積させた場合、図2(d)に示すように、成膜物質は、有機発光層50の層部分51a、51b、および51cのそれぞれの上部に堆積される。その結果、第2の電極60の層部分61a、61b、および61cが形成される。 Next, when a film forming material is deposited on the organic light emitting layer 50 in order to form the second electrode 60, the film forming material is formed on the organic light emitting layer 50 as shown in FIG. Deposited on top of each of the layer portions 51a, 51b, and 51c. As a result, the layer portions 61a, 61b, and 61c of the second electrode 60 are formed.
 この場合も、異物21のため、層部分61bおよび61cは、散乱層20の表面29の領域S1およびS2の上方には、形成されにくくなる。特に、第2の電極60の層部分61aは、有機発光層50の層部分51aを完全に覆い、層部分51aの側部にも延在するような形態で形成される傾向にある。そしてこの層部分61aが、第2の電極60の成膜物質を堆積させる際に陰となるため、層部分61bおよび61cの形成領域は、有機発光層50の層部分51b、51cに比べて、より狭小化される。 Also in this case, because of the foreign matter 21, the layer portions 61b and 61c are difficult to be formed above the regions S1 and S2 on the surface 29 of the scattering layer 20. In particular, the layer portion 61a of the second electrode 60 tends to be formed in a form that completely covers the layer portion 51a of the organic light emitting layer 50 and extends to the side of the layer portion 51a. And since this layer part 61a becomes a shadow when depositing the film-forming substance of the second electrode 60, the formation area of the layer parts 61b and 61c is compared with the layer parts 51b and 51c of the organic light emitting layer 50. Narrower.
 このような成膜工程を経て得られる層構造の場合、図2(d)の丸印Aに示す箇所において、透明電極40の層部分41bと、第2の電極60の層部分61bとが接触する危険性が高くなる(透明電極40の層部分41cと、第2の電極60の層部分61cとの関係も同様であり、さらに透明電極40の層部分41aと、第2の電極60の層部分61aとの関係も同様である)。 In the case of a layer structure obtained through such a film forming process, the layer portion 41b of the transparent electrode 40 and the layer portion 61b of the second electrode 60 are in contact with each other at the position indicated by a circle A in FIG. The relationship between the layer portion 41c of the transparent electrode 40 and the layer portion 61c of the second electrode 60 is the same, and the layer portion 41a of the transparent electrode 40 and the layer of the second electrode 60 The same applies to the relationship with the portion 61a).
 このように、散乱層20上の異物21の存在は、その後の透明電極40、有機発光層50、および第2の電極60の成膜工程において、各層の付きまわりを悪化させるおそれがある。また、この影響が顕著になると、2つの電極40、60同士が短絡してしまうという問題が生じ得る。さらに、このような短絡が生じた場合、最終的に得られる有機LED素子1に、所望の特性が得られなくなってしまう。 Thus, the presence of the foreign matter 21 on the scattering layer 20 may worsen the surroundings of each layer in the subsequent film formation process of the transparent electrode 40, the organic light emitting layer 50, and the second electrode 60. Moreover, when this influence becomes remarkable, the problem that two electrodes 40 and 60 will short-circuit may arise. Furthermore, when such a short circuit occurs, desired characteristics cannot be obtained in the finally obtained organic LED element 1.
 以上の記載では、欠陥の一例として、図2に示すような第1の側面25および第2の側面26を有する異物21を仮定して、想定される問題を説明した。しかしながら、散乱層20の表面29に、他の形状の異物が存在する場合も、同様の問題が生じ得ることは、当業者には明らかであろう。 In the above description, as an example of the defect, the assumed problem has been described assuming the foreign material 21 having the first side surface 25 and the second side surface 26 as shown in FIG. However, it will be apparent to those skilled in the art that similar problems can occur when foreign particles of other shapes are present on the surface 29 of the scattering layer 20.
 例えば、異物の2つの側面25、26のうち、一方の側面(例えば側面25)のみが、以降の成膜物質を堆積させる際に陰となるような形状を有する場合(例えば、異物が平行四辺形状の断面を有する場合など)、異物の側面25の直下の散乱層20の領域S1の近傍において、同様の問題が生じ得ることは明らかであろう。 For example, when only one side surface (for example, the side surface 25) of the two side surfaces 25 and 26 of the foreign material has a shape that becomes a shadow when depositing a subsequent film-forming material (for example, the foreign material has parallel four sides) It will be clear that a similar problem can occur in the vicinity of the region S1 of the scattering layer 20 just below the side surface 25 of the foreign object, such as when having a cross section of shape.
 また、散乱層20の表面に存在する欠陥が凹部のような形態を有する場合も、図3に示すように、同様の問題が生じ得る。 Also, when a defect present on the surface of the scattering layer 20 has a shape such as a recess, the same problem can occur as shown in FIG.
 図3は、散乱層20の表面に凹部のような欠陥が存在する状態で、透明電極40、有機発光層50、および第2の電極60を順次成膜したときの層構造の変化を模式的に示した図である。 FIG. 3 schematically shows a change in the layer structure when the transparent electrode 40, the organic light emitting layer 50, and the second electrode 60 are sequentially formed in a state where a defect such as a recess exists on the surface of the scattering layer 20. It is the figure shown in.
 この例では、図3(a)に示すように、散乱層20の表面29には、凹部31が存在する。凹部31は、散乱層20の表面29と、凹部31の開口部の接線のなす角θおよびφ(図3(a)参照)が鋭角となるような側部35および底部36を有する。 In this example, as shown in FIG. 3A, a recess 31 is present on the surface 29 of the scattering layer 20. The recess 31 has a side portion 35 and a bottom portion 36 such that the angles θ and φ (see FIG. 3A) formed by the surface 29 of the scattering layer 20 and the tangent line of the opening of the recess 31 are acute angles.
 散乱層20が表面29にこのような凹部31を有する状態で、透明電極40の成膜処理を行った場合、図3(b)に示すように、成膜物質は、凹部31の底部36に堆積して、層部分42aを形成するとともに、散乱層20の表面29の凹部31が存在しない部分に堆積して、層部分42bおよび42cを形成する。 When the transparent electrode 40 is formed in a state where the scattering layer 20 has such a recess 31 on the surface 29, the film-forming substance is deposited on the bottom 36 of the recess 31 as shown in FIG. It is deposited to form the layer portion 42a, and is deposited on the portion of the surface 29 of the scattering layer 20 where the concave portion 31 is not present to form the layer portions 42b and 42c.
 ここで、成膜物質は、凹部31の側部35の形状の影響により、凹部31を上部から見たとき散乱層20の表面29の陰となる領域S3およびS4には、堆積されにくくなる。このため、図3(b)に示すように、層部分42a~42cは、凹部31の領域S3およびS4を完全には覆わない形態で形成される。すなわち、透明電極40は、不連続な層として形成される。 Here, due to the influence of the shape of the side portion 35 of the concave portion 31, the film-forming substance is less likely to be deposited in the regions S3 and S4 that are behind the surface 29 of the scattering layer 20 when the concave portion 31 is viewed from above. Therefore, as shown in FIG. 3B, the layer portions 42a to 42c are formed in a form that does not completely cover the regions S3 and S4 of the recess 31. That is, the transparent electrode 40 is formed as a discontinuous layer.
 次に、有機発光層50を成膜するため、成膜物質を透明電極40の上部に堆積させた場合、図3(c)に示すように、成膜物質は、透明電極40の層部分42a、42b、および42cのそれぞれの上部に堆積される。その結果、有機発光層50の層部分52a、52b、および52cが形成される。 Next, when a film forming material is deposited on the transparent electrode 40 in order to form the organic light emitting layer 50, the film forming material is applied to the layer portion 42a of the transparent electrode 40 as shown in FIG. , 42b, and 42c. As a result, the layer portions 52a, 52b, and 52c of the organic light emitting layer 50 are formed.
 なお、この場合も、層部分52a、52bおよび52cは、散乱層20の表面29により陰となる凹部31の領域S3およびS4には、形成されにくくなる。従って、有機発光層50は、不連続な層として形成される。 In this case as well, the layer portions 52a, 52b, and 52c are less likely to be formed in the regions S3 and S4 of the recess 31 that are shaded by the surface 29 of the scattering layer 20. Therefore, the organic light emitting layer 50 is formed as a discontinuous layer.
 次に、第2の電極60を成膜するため、成膜物質を有機発光層50の上部に堆積させた場合、図3(d)に示すように、成膜物質は、有機発光層50の層部分52a、52b、および52cのそれぞれの上部に堆積される。その結果、第2の電極60の層部分62a、62b、および62cが形成される。 Next, when a film forming material is deposited on the organic light emitting layer 50 in order to form the second electrode 60, the film forming material is formed on the organic light emitting layer 50 as shown in FIG. Deposited on top of each of the layer portions 52a, 52b, and 52c. As a result, the layer portions 62a, 62b, and 62c of the second electrode 60 are formed.
 この場合も、層部分62a、62bおよび62cは、散乱層20の表面29により陰となる凹部31の領域S3およびS4には、形成されにくくなる。従って、第2の電極60は、不連続な層として形成される。 Also in this case, the layer portions 62a, 62b and 62c are hardly formed in the regions S3 and S4 of the concave portion 31 which are shaded by the surface 29 of the scattering layer 20. Therefore, the second electrode 60 is formed as a discontinuous layer.
 このような層構成の場合も、例えば、図3(d)の丸印Cに示す箇所において、透明電極40の層部分42b(または42c)と、第2の電極60の層部分62aとが接触する危険性が高くなってしまうことは明らかであろう。 Also in the case of such a layer configuration, for example, the layer portion 42b (or 42c) of the transparent electrode 40 and the layer portion 62a of the second electrode 60 are in contact with each other at a position indicated by a circle C in FIG. It will be clear that the risk of doing so increases.
 なお、図3の例では、凹部31は、散乱層20の表面29と、凹部31の開口部の接線のなす角θおよびφが、いずれも鋭角となるような側部35を有する。しかしながら、これは一例であって、例えば、角θのみが鋭角となっている場合も、角θを有する側部の側で、同様の問題が生じ得ることは明らかであろう。 In the example of FIG. 3, the recess 31 has a side portion 35 in which the angles θ and φ formed by the surface 29 of the scattering layer 20 and the tangent line of the opening of the recess 31 are both acute angles. However, this is only an example, and it will be apparent that the same problem can occur on the side having the angle θ, for example, when only the angle θ is an acute angle.
 また、図1には示されていないが、一部の有機LED素子には、散乱層20と透明電極40の間に、さらに保護層を有する構成のものが存在する。 Although not shown in FIG. 1, some organic LED elements have a configuration in which a protective layer is further provided between the scattering layer 20 and the transparent electrode 40.
 そのような有機LED素子の場合も、同様の問題が生じ得る。すなわち、設置後の保護層の表面に、異物や凹部のような欠陥が存在すると、その後の成膜工程において、各層の付きまわりが悪くなり、2つの電極が相互に短絡してしまう危険性がある。 In the case of such an organic LED element, the same problem may occur. That is, if there is a defect such as a foreign substance or a recess on the surface of the protective layer after installation, there is a risk that the contact of each layer will worsen in the subsequent film forming process and the two electrodes will short-circuit each other. is there.
 このように、従来の有機LED素子では、散乱層または保護層の表面に存在する欠陥によって、その後成膜される2つの電極が相互に短絡してしまうという問題がある。 As described above, in the conventional organic LED element, there is a problem that two electrodes formed thereafter are short-circuited to each other due to defects existing on the surface of the scattering layer or the protective layer.
 (本発明の第1実施例による有機LED素子)
 次に、図4を参照して、本発明の第1実施例による有機LED素子の構成の一例について説明する。図4には、本発明の第1実施例による有機LED素子の一例の概略的な断面図を示す。
(Organic LED device according to the first embodiment of the present invention)
Next, an example of the configuration of the organic LED element according to the first embodiment of the present invention will be described with reference to FIG. FIG. 4 shows a schematic cross-sectional view of an example of the organic LED element according to the first embodiment of the present invention.
 図4に示すように、この第1実施例による有機LED素子100は、透明基板110と、散乱層120と、第1の電極(陽極)140と、有機発光層150と、第2の電極(陰極)160とを、この順に積層することにより構成される。 As shown in FIG. 4, the organic LED element 100 according to the first embodiment includes a transparent substrate 110, a scattering layer 120, a first electrode (anode) 140, an organic light emitting layer 150, a second electrode ( Cathode) 160 is laminated in this order.
 なお、図には示されていないが、第1の電極140の上部には、さらに追加導電層が配置されても良い。
また、第1の電極140の直下には、さらに機能性スパッタ膜が配置されても良い。機能性スパッタ膜は、例えば、高屈折率膜(波長430nm~650nmの範囲で、2.2以上の屈折率)であれば光取り出し効率を改善するための補助層としての機能を有するので好ましい。また、他の屈折率の膜であっても散乱層等をITOエッチング等のダメージを受けやすい工程から保護する層としての機能を有するので好ましい。
Although not shown in the drawing, an additional conductive layer may be further disposed on the first electrode 140.
Further, a functional sputtered film may be further disposed immediately below the first electrode 140. As the functional sputtered film, for example, a high refractive index film (with a wavelength of 430 nm to 650 nm and a refractive index of 2.2 or more) is preferable because it has a function as an auxiliary layer for improving light extraction efficiency. Moreover, even if it is a film | membrane of other refractive indexes, since it has a function as a layer which protects a scattering layer etc. from a process which is easy to receive damage, such as ITO etching, it is preferable.
 透明基板110は、有機LED素子を構成する各層を支持する役割を有する。 The transparent substrate 110 has a role of supporting each layer constituting the organic LED element.
 散乱層120は、第1の屈折率を有するガラス製のベース材121と、該ベース材121中に分散された、該ベース材121とは異なる第2の屈折率を有する複数の散乱物質124とで構成される。散乱層220の厚さは、例えば5μm~50μmの範囲である。 The scattering layer 120 includes a glass base material 121 having a first refractive index, and a plurality of scattering materials 124 having a second refractive index different from the base material 121 and dispersed in the base material 121. Consists of. The thickness of the scattering layer 220 is, for example, in the range of 5 μm to 50 μm.
 第1の電極140は、例えばITO(インジウムスズ酸化物)のような透明金属酸化物薄膜で構成され、厚さは、50nm~1.0μm程度である。一方、第2の電極160は、例えばアルミニウムや銀のような金属で構成される。 The first electrode 140 is made of a transparent metal oxide thin film such as ITO (Indium Tin Oxide), and has a thickness of about 50 nm to 1.0 μm. On the other hand, the second electrode 160 is made of a metal such as aluminum or silver.
 有機発光層150は、通常の場合、発光層の他、電子輸送層、電子注入層、ホール輸送層、およびホール注入層など、複数の層で構成される。 The organic light emitting layer 150 is usually composed of a plurality of layers such as an electron transport layer, an electron injection layer, a hole transport layer, and a hole injection layer in addition to the light emitting layer.
 図4の例では、有機LED素子100の下側の表面(すなわち透明基板110の露出面)が光取り出し面190となる。 In the example of FIG. 4, the lower surface of the organic LED element 100 (that is, the exposed surface of the transparent substrate 110) is the light extraction surface 190.
 散乱層120は、有機発光層150から生じる光を効果的に散乱させ、有機LED素子100内で全反射される光の量を低減する役割を有する。従って、図4の構成の有機LED素子100では、光取り出し面190から出射される光量を向上させることができる。 The scattering layer 120 has a role of effectively scattering the light generated from the organic light emitting layer 150 and reducing the amount of light totally reflected in the organic LED element 100. Therefore, in the organic LED element 100 having the configuration of FIG. 4, the amount of light emitted from the light extraction surface 190 can be improved.
 ここで、本発明の第1実施例による有機LED素子100では、散乱層120と第1の電極140の間に、リペア材料170が設置されている。 Here, in the organic LED element 100 according to the first embodiment of the present invention, the repair material 170 is installed between the scattering layer 120 and the first electrode 140.
 このリペア材料170は、散乱層120上に、異物および/または凹部のような欠陥が存在する場合であっても、その後散乱層120上に形成される第1の電極140~第2の電極160の各層の付きまわり状態を悪化させることを抑制する部材として機能する。 The repair material 170 has a first electrode 140 to a second electrode 160 that are subsequently formed on the scattering layer 120 even when a defect such as a foreign substance and / or a recess exists on the scattering layer 120. It functions as a member that suppresses deterioration of the attached state of each layer.
 図5を参照して、このリペア材料170の役割について、より詳しく説明する。 The role of the repair material 170 will be described in more detail with reference to FIG.
 図5には、散乱層120の表面に異物のような欠陥が存在する場合の、リペア材料170の形態の一例を模式的に示す。 FIG. 5 schematically shows an example of the form of the repair material 170 when a defect such as a foreign substance exists on the surface of the scattering layer 120.
 図5に示すように、散乱層120の表面129には、前述の図2に示した形態の異物21が存在している。このため、散乱層120の表面129には、異物21の第1および第2の側面25、26によって、陰となる領域S1およびS2が存在する。 As shown in FIG. 5, the foreign material 21 having the form shown in FIG. 2 is present on the surface 129 of the scattering layer 120. For this reason, regions S1 and S2 that are shaded by the first and second side surfaces 25 and 26 of the foreign material 21 exist on the surface 129 of the scattering layer 120.
 しかしながら、図5では、散乱層120の表面129の上部に、異物21を覆い、さらに、散乱層120の表面129の領域S1およびS2と接するようにして、リペア材料170が配置されている。 However, in FIG. 5, the repair material 170 is disposed on the surface 129 of the scattering layer 120 so as to cover the foreign material 21 and to be in contact with the regions S1 and S2 of the surface 129 of the scattering layer 120.
 このようなリペア材料170は、異物21の存在による影響を緩和することができる。
すなわち、リペア材料170を設置した後に、第1の電極140を形成した場合、第1の電極140は、図2に示したような3つの層部分41a~41cを有する断続的な構成ではなく、図4に示すような連続した層として形成することができる。従って、その後形成される有機発光層150~第2の電極160も、第1の電極140の上部に、連続的な形態で構成される。
Such a repair material 170 can mitigate the influence due to the presence of the foreign material 21.
That is, when the first electrode 140 is formed after the repair material 170 is installed, the first electrode 140 is not an intermittent configuration having the three layer portions 41a to 41c as shown in FIG. It can be formed as a continuous layer as shown in FIG. Accordingly, the organic light emitting layer 150 to the second electrode 160 formed thereafter are also formed in a continuous form on the first electrode 140.
 このため、第1実施例による有機LED素子100では、前述のような異物21の存在によって生じ得る、各層の付きまわりの問題、特に第1および第2の電極140、160の短絡の危険性を有意に抑制することが可能となる。 For this reason, in the organic LED element 100 according to the first embodiment, the problem of the contact between the respective layers, particularly the short circuit between the first and second electrodes 140 and 160, which may occur due to the presence of the foreign matter 21 as described above, is prevented. It becomes possible to suppress significantly.
 一方、図6には、散乱層120の表面に凹部のような欠陥が存在する場合の、リペア材料170の形態の一例を模式的に示す。 On the other hand, FIG. 6 schematically shows an example of the form of the repair material 170 when a defect such as a recess exists on the surface of the scattering layer 120.
 図6に示すように、散乱層120の表面129には、前述の図3に示した形態の凹部31が存在している。凹部31には、散乱層120の表面129によって陰となる領域S3およびS4が存在する。 As shown in FIG. 6, the surface 129 of the scattering layer 120 has the concave portion 31 having the form shown in FIG. 3 described above. In the recess 31, there are regions S 3 and S 4 which are shaded by the surface 129 of the scattering layer 120.
 ただし、図6の例では、凹部31を覆うようにして、リペア材料170が配置されている。 However, in the example of FIG. 6, the repair material 170 is disposed so as to cover the recess 31.
 このようなリペア材料170は、凹部31の存在による影響を緩和することができる。すなわち、リペア材料170を設置した後に、第1の電極140を形成した場合、第1の電極140は、図3に示したような3つの層部分42a~42cを有する断続的な構成ではなく、図4に示すような連続した層として形成することができる。従って、その後形成される有機発光層150~第2の電極160も、第1の電極140の上部に、連続的な形態で構成される。 Such a repair material 170 can mitigate the influence of the presence of the recess 31. That is, when the first electrode 140 is formed after the repair material 170 is installed, the first electrode 140 is not an intermittent configuration having the three layer portions 42a to 42c as shown in FIG. It can be formed as a continuous layer as shown in FIG. Accordingly, the organic light emitting layer 150 to the second electrode 160 formed thereafter are also formed in a continuous form on the first electrode 140.
 従って、この場合も、前述のような凹部31の存在によって生じ得る、各層の付きまわりの問題、特に第1および第2の電極140、160の短絡の危険性を有意に抑制することが可能となる。 Therefore, also in this case, it is possible to significantly suppress the problem of the contact between the layers, particularly the risk of short circuit between the first and second electrodes 140 and 160, which may occur due to the presence of the recess 31 as described above. Become.
 (本発明の第2実施例による有機LED素子)
 次に、図7を参照して、本発明の第2実施例による有機LED素子の構成について説明する。図7には、本発明の第2実施例による有機LED素子の概略的な断面図を示す。
(Organic LED device according to the second embodiment of the present invention)
Next, with reference to FIG. 7, the structure of the organic LED element by 2nd Example of this invention is demonstrated. FIG. 7 is a schematic cross-sectional view of an organic LED element according to the second embodiment of the present invention.
 図7に示すように、この第2実施例による有機LED素子200は、基本的に、前述の第1実施例による有機LED素子100と同様の構成を有する。従って、図7において、図4と同様の部材には、図4の参照符号に100を加えた参照符号が付されている。 As shown in FIG. 7, the organic LED element 200 according to the second embodiment basically has the same configuration as the organic LED element 100 according to the first embodiment described above. Therefore, in FIG. 7, the same reference numerals as those in FIG.
 ただし、第2実施例による有機LED素子200は、第1実施例による有機LED素子100とは異なり、散乱層220と第1の電極240の間に、保護層230を有する。従って、リペア材料270は、散乱層220ではなく、保護層230と接するようにして配置されている。 However, unlike the organic LED element 100 according to the first embodiment, the organic LED element 200 according to the second embodiment includes a protective layer 230 between the scattering layer 220 and the first electrode 240. Therefore, the repair material 270 is disposed so as to be in contact with the protective layer 230 instead of the scattering layer 220.
 一般に、保護層230は、散乱層220のバリア層として設置される。保護層230は、例えば、第1の電極240のエッチング処理等の工程において、散乱層が損傷したり、劣化したり、除去されたりすることを抑制する役割を有する。 Generally, the protective layer 230 is installed as a barrier layer of the scattering layer 220. The protective layer 230 has a role of suppressing the scattering layer from being damaged, deteriorated, or removed, for example, in a process such as an etching process of the first electrode 240.
 保護層230の材質は、特に限られないが、保護層230の表面にも、散乱層の表面に存在する欠陥と同様の欠陥が存在する場合がある。従って、この場合も、欠陥の存在により、前述のような各層の付きまわりの問題、特に第1および第2の電極240、260の間の短絡の問題が生じ得る。 The material of the protective layer 230 is not particularly limited, but the surface of the protective layer 230 may have defects similar to the defects present on the surface of the scattering layer. Therefore, also in this case, the presence of defects may cause the problem of the contact between the layers as described above, particularly the problem of the short circuit between the first and second electrodes 240 and 260.
 しかしながら、本発明の第2実施例による有機LED素子200では、保護層230の欠陥の部分に、リペア材料270が配置されている。リペア材料270は、前述の図5および図6に示した形態と同様の形態で形成される。 However, in the organic LED element 200 according to the second embodiment of the present invention, the repair material 270 is disposed on the defective portion of the protective layer 230. The repair material 270 is formed in a form similar to the form shown in FIGS. 5 and 6 described above.
 従って、有機LED素子200においても、リペア材料270により、欠陥(異物21および/または凹部31)の存在によって生じ得る、第1および第2の電極240、260の短絡の危険性を有意に抑制することが可能となる。
なお、図7には示されていないが、第1の電極240の直下には、さらに機能性スパッタ膜が配置されても良い。機能性スパッタ膜は、例えば、高屈折率膜(波長430nm~650nmの範囲で、2.2以上の屈折率)であれば光取り出し効率を改善するための補助層としての機能を有するので好ましい。また、他の屈折率の膜であっても散乱層等をITOエッチング等のダメージを受けやすい工程から保護する層としての機能を有するので好ましい。
Therefore, also in the organic LED element 200, the repair material 270 significantly suppresses the risk of short-circuiting of the first and second electrodes 240 and 260 that may occur due to the presence of defects (foreign matter 21 and / or recess 31). It becomes possible.
Although not shown in FIG. 7, a functional sputtered film may be further disposed immediately below the first electrode 240. As the functional sputtered film, for example, a high refractive index film (with a wavelength of 430 nm to 650 nm and a refractive index of 2.2 or more) is preferable because it has a function as an auxiliary layer for improving light extraction efficiency. Moreover, even if it is a film | membrane of other refractive indexes, since it has a function as a layer which protects a scattering layer etc. from a process which is easy to receive damage, such as ITO etching, it is preferable.
 なお、第1実施例および第2実施例による有機LED素子100、200のような構成を得る場合、リペア材料170、270の設置後に、第1の電極140、240の成膜処理が行われる。また、第1の電極140、240の成膜の際に、透明基板110、210は、高温(例えば~300℃)の環境等に晒される場合がある。このため、リペア材料170、270の材質は、第1の電極140、240の成膜処理によって劣化しない材料に限定される。しかしながら、有機LED素子100、200の構成では、以降に示す他の構成とは異なり、リペア材料170、270を透明な材料で構成した場合、リペア材料170、270部分を含む表面全体から、発光が得られるという利点がある。 In addition, when obtaining the configuration of the organic LED elements 100 and 200 according to the first and second embodiments, the film formation process of the first electrodes 140 and 240 is performed after the repair materials 170 and 270 are installed. Further, when the first electrodes 140 and 240 are formed, the transparent substrates 110 and 210 may be exposed to a high temperature environment (for example, up to 300 ° C.). For this reason, the material of the repair materials 170 and 270 is limited to a material that does not deteriorate due to the film formation process of the first electrodes 140 and 240. However, in the configuration of the organic LED elements 100 and 200, unlike the other configurations described below, when the repair material 170 or 270 is formed of a transparent material, light is emitted from the entire surface including the repair material 170 or 270 portion. There is an advantage that it can be obtained.
 (本発明の第3実施例による有機LED素子)
 次に、図8を参照して、本発明の第3実施例による有機LED素子の構成について説明する。図8には、本発明の第3実施例による有機LED素子の概略的な断面図を示す。
(Organic LED device according to the third embodiment of the present invention)
Next, with reference to FIG. 8, the structure of the organic LED element by 3rd Example of this invention is demonstrated. FIG. 8 is a schematic cross-sectional view of an organic LED device according to a third embodiment of the present invention.
 図8に示すように、この第3実施例による有機LED素子300は、基本的に、前述の第1実施例による有機LED素子100と同様の構成を有する。従って、図8において、図4と同様の部材には、図4の参照符号に200を加えた参照符号が付されている。 As shown in FIG. 8, the organic LED element 300 according to the third embodiment basically has the same configuration as the organic LED element 100 according to the first embodiment. Therefore, in FIG. 8, the same reference numerals as those in FIG. 4 are given the reference numerals obtained by adding 200 to the reference numerals in FIG.
 ただし、第3実施例による有機LED素子300は、第1実施例による有機LED素子100とは、リペア材料370の設置位置が異なっている。すなわち、リペア材料370は、散乱層320の他、第1の電極340の一部を覆うようにして配置される。 However, the organic LED element 300 according to the third embodiment is different in the installation position of the repair material 370 from the organic LED element 100 according to the first embodiment. That is, the repair material 370 is disposed so as to cover a part of the first electrode 340 in addition to the scattering layer 320.
 なお、このような構成は、リペア材料370の設置工程を、第1の電極340の成膜工程後に実施することにより、容易に得ることができる。 Note that such a configuration can be easily obtained by performing the installation process of the repair material 370 after the film formation process of the first electrode 340.
 なお、図8には示されていないが、有機発光層350の直下、すなわち、リペア材料370および第1の電極340の直上には、追加導電層が配置されても良い。 Although not shown in FIG. 8, an additional conductive layer may be disposed immediately below the organic light emitting layer 350, that is, immediately above the repair material 370 and the first electrode 340.
 図9および図10には、それぞれ、欠陥が異物21および凹部31である場合の、リペア材料370の近傍の拡大断面図を概略的に示す。なお、これらの図には、明確化のため、第2の電極360は、示されていない。 9 and 10 schematically show enlarged sectional views of the vicinity of the repair material 370 in the case where the defect is the foreign material 21 and the concave portion 31, respectively. Note that the second electrode 360 is not shown in these drawings for the sake of clarity.
 図9に示す例では、散乱層320の表面に、異物21が存在している。従って、散乱層320の形成後、リペア材料370を設置する前に、第1の電極340を形成した場合、第1の電極340は、前述のように、層部分341a~341cを有する、断続的な層として形成される。 In the example shown in FIG. 9, the foreign material 21 is present on the surface of the scattering layer 320. Therefore, when the first electrode 340 is formed after the formation of the scattering layer 320 and before the repair material 370 is installed, the first electrode 340 includes the layer portions 341a to 341c as described above. Formed as a thick layer.
 その後、図9に示すように、異物21を覆うようにしてリペア材料370が設置される。より正確には、リペア材料370は、散乱層320の露出表面(領域S1、S2)と接し、第1の電極の層部分341aの上部および側部と、層部分341bおよび341cの異物21側の端部とを覆うようにして設置される。 Thereafter, as shown in FIG. 9, the repair material 370 is installed so as to cover the foreign material 21. More precisely, the repair material 370 is in contact with the exposed surface (regions S1, S2) of the scattering layer 320, on the top and sides of the layer portion 341a of the first electrode, and on the foreign matter 21 side of the layer portions 341b and 341c. It is installed so as to cover the end.
 この場合、有機発光層350は、リペア材料370の存在のため、第1の電極340およびリペア材料370の上部に、連続的に形成されるようになる。従って、以降に設置される第2の電極360が第1の電極340と短絡する危険性は、有意に回避される。 In this case, the organic light emitting layer 350 is continuously formed on the first electrode 340 and the repair material 370 due to the presence of the repair material 370. Therefore, the risk that the second electrode 360 installed thereafter is short-circuited with the first electrode 340 is significantly avoided.
 一方、図10に示す例では、散乱層320の表面には、凹部31が存在している。従って、散乱層320の形成後、リペア材料370を設置する前に第1の電極340を形成した場合、第1の電極340は、前述のように、層部分342a~342cを有する、断続的な層として形成される。 On the other hand, in the example shown in FIG. 10, the concave portion 31 exists on the surface of the scattering layer 320. Therefore, when the first electrode 340 is formed after the formation of the scattering layer 320 and before the repair material 370 is installed, the first electrode 340 includes the layer portions 342a to 342c as described above. Formed as a layer.
 その後、図10に示すように、凹部31を覆うようにしてリペア材料370が設置される。より正確には、リペア材料370は、散乱層320の露出表面(領域S3、S4)と接し、第1の電極の層部分342aの上部および側部と、層部分342bおよび342cの凹部31側の端部とを覆うようにして設置される。 Thereafter, as shown in FIG. 10, the repair material 370 is installed so as to cover the recess 31. More precisely, the repair material 370 is in contact with the exposed surface (regions S3, S4) of the scattering layer 320, on the upper and side portions of the layer portion 342a of the first electrode, and on the concave portion 31 side of the layer portions 342b and 342c. It is installed so as to cover the end.
 この場合も、有機発光層350は、リペア材料370の存在のため、第1の電極340およびリペア材料370の上部に、連続的に形成されるようになる。従って、以降に設置される第2の電極360が第1の電極340と短絡する危険性は、有意に回避される。 Also in this case, the organic light emitting layer 350 is continuously formed on the first electrode 340 and the repair material 370 due to the presence of the repair material 370. Therefore, the risk that the second electrode 360 installed thereafter is short-circuited with the first electrode 340 is significantly avoided.
 このように、図8に示したような第3実施例による有機LED素子300の構造においても、両電極340、360間の短絡を抑制するという本発明の効果を得ることができる。 Thus, even in the structure of the organic LED element 300 according to the third embodiment as shown in FIG. 8, the effect of the present invention can be obtained that suppresses a short circuit between the electrodes 340 and 360.
 (本発明の第4実施例による有機LED素子)
 次に、図11を参照して、本発明の第4実施例による有機LED素子の構成について説明する。図11には、本発明の第4実施例による有機LED素子の概略的な断面図を示す。
(Organic LED device according to the fourth embodiment of the present invention)
Next, with reference to FIG. 11, the structure of the organic LED element by 4th Example of this invention is demonstrated. FIG. 11 is a schematic cross-sectional view of an organic LED element according to a fourth embodiment of the present invention.
 図11に示すように、この第4実施例による有機LED素子400は、基本的に、前述の第2実施例による有機LED素子200と同様の構成を有する。従って、図11において、図7と同様の部材には、図7の参照符号に200を加えた参照符号が付されている。 As shown in FIG. 11, the organic LED element 400 according to the fourth embodiment basically has the same configuration as the organic LED element 200 according to the second embodiment described above. Therefore, in FIG. 11, members similar to those in FIG. 7 are given reference numerals obtained by adding 200 to the reference numerals in FIG. 7.
 ただし、第4実施例による有機LED素子400は、第2実施例による有機LED素子200とは、リペア材料470の設置位置が異なっている。すなわち、リペア材料470は、散乱層420の代わりに、保護層430の露出部と、第1の電極440の一部とを覆うようにして配置される。 However, the organic LED element 400 according to the fourth embodiment is different in the installation position of the repair material 470 from the organic LED element 200 according to the second embodiment. That is, the repair material 470 is disposed so as to cover the exposed portion of the protective layer 430 and a part of the first electrode 440 instead of the scattering layer 420.
 なお、このような構成は、リペア材料470の設置工程を、第1の電極440の成膜工程後に実施することにより、容易に得ることができる。 Note that such a configuration can be easily obtained by performing the installation process of the repair material 470 after the film formation process of the first electrode 440.
 図12および図13には、それぞれ、欠陥が異物21および凹部31である場合の、リペア材料470の近傍の拡大断面図を概略的に示す。なお、これらの図には、明確化のため、第2の電極460は、示されていない。 12 and 13 schematically show enlarged sectional views of the vicinity of the repair material 470 in the case where the defect is the foreign material 21 and the concave portion 31, respectively. Note that the second electrode 460 is not shown in these drawings for the sake of clarity.
 図12に示す例では、保護層430の表面に、異物21が存在している。従って、保護層430の形成後、リペア材料470を設置する前に、第1の電極440を形成した場合、第1の電極440は、前述のように、層部分441a~441cを有する、断続的な層として形成される。 In the example shown in FIG. 12, the foreign material 21 exists on the surface of the protective layer 430. Therefore, when the first electrode 440 is formed after the protective layer 430 is formed and before the repair material 470 is installed, the first electrode 440 includes the layer portions 441a to 441c as described above. Formed as a thick layer.
 その後、図12に示すように、異物21を覆うようにしてリペア材料470が設置される。より正確には、リペア材料470は、保護層430の露出表面(領域S5、S6)と接し、第1の電極の層部分441aの上部および側部と、層部分441bおよび441cの異物21側の端部とを覆うようにして設置される。 Then, as shown in FIG. 12, the repair material 470 is installed so as to cover the foreign material 21. More precisely, the repair material 470 is in contact with the exposed surface (regions S5, S6) of the protective layer 430, on the top and sides of the layer portion 441a of the first electrode, and on the foreign substance 21 side of the layer portions 441b and 441c. It is installed so as to cover the end.
 この場合、有機発光層450は、リペア材料470の存在のため、第1の電極440(およびリペア材料470)の上部に、連続的に形成されるようになる。従って、以降に設置される第2の電極460が第1の電極440と短絡する危険性は、有意に回避される。 In this case, the organic light emitting layer 450 is continuously formed on the first electrode 440 (and the repair material 470) due to the presence of the repair material 470. Therefore, the risk that the second electrode 460 installed thereafter is short-circuited with the first electrode 440 is significantly avoided.
 一方、図13に示す例では、保護層430の表面には、凹部31が存在している。従って、保護層430の形成後、リペア材料470を設置する前に第1の電極440を形成した場合、第1の電極440は、前述のように、層部分442a~442cを有する、断続的な層として形成される。 On the other hand, in the example shown in FIG. 13, the recess 31 is present on the surface of the protective layer 430. Therefore, when the first electrode 440 is formed after the protective layer 430 is formed and before the repair material 470 is installed, the first electrode 440 includes the layer portions 442a to 442c as described above. Formed as a layer.
 その後、図13に示すように、凹部31を覆うようにしてリペア材料470が設置される。より正確には、リペア材料470は、保護層430の露出表面(領域S7、S8)と接し、第1の電極の層部分442aの上部および側部と、層部分442bおよび442cの凹部31側の端部とを覆うようにして設置される。 Thereafter, as shown in FIG. 13, the repair material 470 is installed so as to cover the recess 31. More precisely, the repair material 470 is in contact with the exposed surface (regions S7, S8) of the protective layer 430, on the upper and side portions of the layer portion 442a of the first electrode, and on the concave portion 31 side of the layer portions 442b and 442c. It is installed so as to cover the end.
 この場合も、有機発光層450は、リペア材料470の存在のため、第1の電極440(およびリペア材料470)の上部に、連続的に形成されるようになる。従って、以降に設置される第2の電極460が第1の電極440と短絡する危険性は、有意に回避される。 Also in this case, the organic light emitting layer 450 is continuously formed on the first electrode 440 (and the repair material 470) due to the presence of the repair material 470. Therefore, the risk that the second electrode 460 installed thereafter is short-circuited with the first electrode 440 is significantly avoided.
 このように、図11に示したような第4実施例による有機LED素子400の構造においても、両電極440、460間の短絡を抑制するという本発明の効果を得ることができる。 Thus, even in the structure of the organic LED element 400 according to the fourth embodiment as shown in FIG. 11, the effect of the present invention that suppresses a short circuit between the electrodes 440 and 460 can be obtained.
 (本発明の第5実施例による有機LED素子)
 次に、図14を参照して、本発明の第5実施例による有機LED素子の構成について説明する。図14には、本発明の第5実施例による有機LED素子の概略的な断面図を示す。
(Organic LED device according to the fifth embodiment of the present invention)
Next, with reference to FIG. 14, the structure of the organic LED element by 5th Example of this invention is demonstrated. FIG. 14 is a schematic cross-sectional view of an organic LED element according to a fifth embodiment of the present invention.
 図14に示すように、この第5実施例による有機LED素子500は、基本的に、前述の第3実施例による有機LED素子300と同様の構成を有する。従って、図14において、図8と同様の部材には、図8の参照符号に200を加えた参照符号が付されている。 As shown in FIG. 14, the organic LED element 500 according to the fifth embodiment basically has the same configuration as the organic LED element 300 according to the third embodiment described above. Accordingly, in FIG. 14, members similar to those in FIG. 8 are given reference numerals obtained by adding 200 to the reference numerals in FIG. 8.
 ただし、第5実施例による有機LED素子500では、第3実施例による有機LED素子300の構成とは異なり、第1の電極540の上部に、さらに追加導電層580が設置されている。追加導電層580は、第1の電極540の存在位置に、第1の電極540と接するようにして設置される。その結果、リペア材料570は、散乱層520、第1の電極540の一部に加えて、追加導電層580の一部を覆うようにして配置される。 However, in the organic LED element 500 according to the fifth embodiment, unlike the configuration of the organic LED element 300 according to the third embodiment, an additional conductive layer 580 is further provided on the first electrode 540. The additional conductive layer 580 is provided in contact with the first electrode 540 at the position where the first electrode 540 is present. As a result, the repair material 570 is disposed so as to cover a part of the additional conductive layer 580 in addition to the scattering layer 520 and a part of the first electrode 540.
 追加導電層580は、第1の電極540の抵抗を低減させる役割を有する。 The additional conductive layer 580 has a role of reducing the resistance of the first electrode 540.
 なお、図14のような構成は、第1の電極540および追加導電層580の成膜工程後に、リペア材料570の設置工程を実施することにより、容易に得ることができる。 Note that the configuration shown in FIG. 14 can be easily obtained by performing the installation process of the repair material 570 after the film formation process of the first electrode 540 and the additional conductive layer 580.
 図15および図16には、それぞれ、欠陥が異物21および凹部31である場合の、リペア材料570の近傍の拡大断面図を概略的に示す。なお、これらの図には、明確化のため、第2の電極560は、示されていない。 15 and 16 schematically show enlarged sectional views of the vicinity of the repair material 570 when the defect is the foreign material 21 and the concave portion 31, respectively. Note that the second electrode 560 is not shown in these drawings for the sake of clarity.
 図15に示す例では、散乱層520の表面に、異物21が存在している。従って、散乱層520の形成後、リペア材料570を設置する前に、第1の電極540および追加導電層580を形成した場合、図15に示すように、第1の電極540は、層部分541a~541cを有する、断続的な層として形成される。同様に、追加導電層580は、層部分581a~581cを有する、断続的な層として形成される。 In the example shown in FIG. 15, the foreign matter 21 exists on the surface of the scattering layer 520. Therefore, when the first electrode 540 and the additional conductive layer 580 are formed after the scattering layer 520 is formed and before the repair material 570 is installed, as shown in FIG. 15, the first electrode 540 has a layer portion 541a. Formed as an intermittent layer with ˜541c. Similarly, the additional conductive layer 580 is formed as an intermittent layer having layer portions 581a-581c.
 その後、図15に示すように、異物21を覆うようにしてリペア材料570が設置される。より正確には、リペア材料570は、散乱層520の露出表面(領域S1、S2)と接し、追加導電層580の層部分581aの上部および側部と、層部分581bおよび581cの異物21側の端部と、第1の電極540の層部分541b、541cの異物21側の端部とを覆うようにして設置される。 Thereafter, as shown in FIG. 15, the repair material 570 is installed so as to cover the foreign material 21. More precisely, the repair material 570 is in contact with the exposed surface (regions S1, S2) of the scattering layer 520, on the top and sides of the layer portion 581a of the additional conductive layer 580, and on the foreign material 21 side of the layer portions 581b and 581c. It is installed so as to cover the end and the end on the foreign substance 21 side of the layer portions 541b and 541c of the first electrode 540.
 この場合、有機発光層550は、リペア材料570の存在のため、追加導電層580およびリペア材料570の上部に、連続的に形成されるようになる。従って、以降に設置される第2の電極560が追加導電層580および第1の電極540と短絡する危険性は、有意に回避される。 In this case, the organic light emitting layer 550 is continuously formed on the additional conductive layer 580 and the repair material 570 due to the presence of the repair material 570. Therefore, the risk that the second electrode 560 to be installed thereafter is short-circuited with the additional conductive layer 580 and the first electrode 540 is significantly avoided.
 一方、図16に示す例では、散乱層520の表面には、凹部31が存在している。従って、散乱層520の形成後、リペア材料570を設置する前に第1の電極540および追加導電層580を形成した場合、第1の電極540は、前述のように、層部分542a~542cを有する、断続的な層として形成される。同様に、追加導電層580は、層部分582a~582cを有する、断続的な層として形成される。 On the other hand, in the example shown in FIG. 16, the concave portion 31 exists on the surface of the scattering layer 520. Therefore, when the first electrode 540 and the additional conductive layer 580 are formed after the scattering layer 520 is formed and before the repair material 570 is installed, the first electrode 540 includes the layer portions 542a to 542c as described above. Having an intermittent layer. Similarly, additional conductive layer 580 is formed as an intermittent layer having layer portions 582a-582c.
 その後、図16に示すように、凹部31を覆うようにしてリペア材料570が設置される。より正確には、リペア材料570は、散乱層520の露出表面(領域S3、S4)と接し、追加導電層580の層部分582aの上部および側部と、層部分582bおよび582cの凹部31側の端部と、第1の電極540の層部分542b、542cの凹部31側の端部とを覆うようにして設置される。 Thereafter, as shown in FIG. 16, the repair material 570 is installed so as to cover the recess 31. More precisely, the repair material 570 is in contact with the exposed surface (regions S3, S4) of the scattering layer 520, on the top and sides of the layer portion 582a of the additional conductive layer 580, and on the recess 31 side of the layer portions 582b and 582c. It is installed so as to cover the end portion and the end portion on the concave portion 31 side of the layer portions 542b and 542c of the first electrode 540.
 この場合も、有機発光層550は、リペア材料570の存在のため、追加導電層580およびリペア材料570の上部に、連続的に形成されるようになる。従って、以降に設置される第2の電極360が追加導電層580および第1の電極540と短絡する危険性は、有意に回避される。 Also in this case, the organic light emitting layer 550 is continuously formed on the additional conductive layer 580 and the repair material 570 due to the presence of the repair material 570. Therefore, the risk that the second electrode 360 to be subsequently installed is short-circuited with the additional conductive layer 580 and the first electrode 540 is significantly avoided.
 従って、第5実施例による有機LED素子500においても、第2の電極560が追加導電層580および第1の電極540と短絡する危険性が有意に回避されるという効果を得ることができる。 Therefore, also in the organic LED element 500 according to the fifth embodiment, it is possible to obtain an effect that the risk that the second electrode 560 is short-circuited with the additional conductive layer 580 and the first electrode 540 is significantly avoided.
 (本発明の第6実施例による有機LED素子)
 次に、図17を参照して、本発明の第6実施例による有機LED素子の構成について説明する。図17には、本発明の第6実施例による有機LED素子の概略的な断面図を示す。
(Organic LED device according to the sixth embodiment of the present invention)
Next, with reference to FIG. 17, the structure of the organic LED element by 6th Example of this invention is demonstrated. FIG. 17 is a schematic cross-sectional view of an organic LED element according to a sixth embodiment of the present invention.
 図17に示すように、この第6実施例による有機LED素子600は、基本的に、前述の第5実施例による有機LED素子500と同様の構成を有する。従って、図17において、図14と同様の部材には、図14の参照符号に100を加えた参照符号が付されている。 As shown in FIG. 17, the organic LED element 600 according to the sixth embodiment basically has the same configuration as the organic LED element 500 according to the fifth embodiment. Therefore, in FIG. 17, the same reference numerals as those in FIG.
 ただし、第6実施例による有機LED素子600は、第5実施例による有機LED素子500とは異なり、散乱層620と第1の電極640の間に、保護層630を有する。従って、リペア材料670は、散乱層620ではなく、保護層630の露出部と接するようにして配置されている。より正確には、リペア材料670は、保護層630の露出部と、第1の電極640の一部および追加導電層680の一部とを覆うようにして配置される。 However, unlike the organic LED element 500 according to the fifth embodiment, the organic LED element 600 according to the sixth embodiment includes a protective layer 630 between the scattering layer 620 and the first electrode 640. Therefore, the repair material 670 is disposed so as to be in contact with the exposed portion of the protective layer 630 instead of the scattering layer 620. More precisely, the repair material 670 is disposed so as to cover the exposed portion of the protective layer 630 and a part of the first electrode 640 and a part of the additional conductive layer 680.
 図18および図19には、それぞれ、欠陥が異物21および凹部31である場合の、リペア材料670の近傍の拡大断面図を概略的に示す。なお、これらの図には、明確化のため、第2の電極660は、示されていない。 18 and 19 schematically show enlarged cross-sectional views of the vicinity of the repair material 670 when the defect is the foreign material 21 and the concave portion 31, respectively. Note that the second electrode 660 is not shown in these drawings for the sake of clarity.
 図18に示す例では、保護層630の表面に、異物21が存在している。従って、保護層630の形成後、リペア材料670を設置する前に、第1の電極640および追加導電層680を形成した場合、図18に示すように、第1の電極640は、層部分641a~641cを有する、断続的な層として形成される。同様に、追加導電層680は、層部分681a~681cを有する、断続的な層として形成される。 In the example shown in FIG. 18, the foreign material 21 is present on the surface of the protective layer 630. Accordingly, when the first electrode 640 and the additional conductive layer 680 are formed after the formation of the protective layer 630 and before the repair material 670 is installed, as shown in FIG. 18, the first electrode 640 has a layer portion 641a. Formed as an intermittent layer having ˜641c. Similarly, the additional conductive layer 680 is formed as an intermittent layer having layer portions 681a to 681c.
 その後、図18に示すように、異物21を覆うようにしてリペア材料670が設置される。より正確には、リペア材料670は、保護層630の露出表面(領域S5、S6)と接し、追加導電層680の層部分681aの上部および側部と、層部分681bおよび681cの異物21側の端部と、第1の電極640の層部分641b、641cの異物21側の端部とを覆うようにして設置される。 Thereafter, as shown in FIG. 18, the repair material 670 is installed so as to cover the foreign material 21. More precisely, the repair material 670 is in contact with the exposed surface (regions S5, S6) of the protective layer 630, on the top and sides of the layer portion 681a of the additional conductive layer 680, and on the foreign matter 21 side of the layer portions 681b and 681c. It is installed so as to cover the end portion and the end portion on the foreign matter 21 side of the layer portions 641b and 641c of the first electrode 640.
 この場合、有機発光層650は、リペア材料670の存在のため、追加導電層680およびリペア材料670の上部に、連続的に形成されるようになる。従って、以降に設置される第2の電極660が追加導電層680および第1の電極640と短絡する危険性は、有意に回避される。 In this case, the organic light emitting layer 650 is continuously formed on the additional conductive layer 680 and the repair material 670 due to the presence of the repair material 670. Therefore, the risk that the second electrode 660 installed thereafter is short-circuited with the additional conductive layer 680 and the first electrode 640 is significantly avoided.
 一方、図19に示す例では、保護層630の表面には、凹部31が存在している。従って、保護層630の形成後、リペア材料670を設置する前に第1の電極640および追加導電層680を形成した場合、第1の電極640は、前述のように、層部分642a~642cを有する、断続的な層として形成される。同様に、追加導電層680は、層部分682a~682cを有する、断続的な層として形成される。 On the other hand, in the example shown in FIG. 19, the recess 31 is present on the surface of the protective layer 630. Therefore, when the first electrode 640 and the additional conductive layer 680 are formed after the protective layer 630 is formed and before the repair material 670 is installed, the first electrode 640 includes the layer portions 642a to 642c as described above. Having an intermittent layer. Similarly, additional conductive layer 680 is formed as an intermittent layer having layer portions 682a-682c.
 その後、図19に示すように、凹部31を覆うようにしてリペア材料670が設置される。より正確には、リペア材料670は、散乱層620の露出表面(領域S7、S8)と接し、追加導電層680の層部分682aの上部および側部と、層部分682bおよび682cの凹部31側の端部と、第1の電極640の層部分642b、642cの凹部31側の端部とを覆うようにして設置される。 Thereafter, as shown in FIG. 19, the repair material 670 is installed so as to cover the recess 31. More precisely, the repair material 670 is in contact with the exposed surface (regions S7, S8) of the scattering layer 620, on the top and sides of the layer portion 682a of the additional conductive layer 680, and on the recess 31 side of the layer portions 682b and 682c. It is installed so as to cover the end portion and the end portion on the concave portion 31 side of the layer portions 642b and 642c of the first electrode 640.
 この場合も、有機発光層650は、リペア材料670の存在のため、追加導電層680およびリペア材料670の上部に、連続的に形成されるようになる。従って、以降に設置される第2の電極660が追加導電層680および第1の電極640と短絡する危険性は、有意に回避される。 Also in this case, the organic light emitting layer 650 is continuously formed on the additional conductive layer 680 and the repair material 670 due to the presence of the repair material 670. Therefore, the risk that the second electrode 660 installed thereafter is short-circuited with the additional conductive layer 680 and the first electrode 640 is significantly avoided.
 従って、第6実施例による有機LED素子600においても、第2の電極660が追加導電層680および第1の電極640と短絡する危険性が有意に回避されるという効果を得ることができる。 Therefore, also in the organic LED element 600 according to the sixth embodiment, it is possible to obtain an effect that the risk that the second electrode 660 is short-circuited with the additional conductive layer 680 and the first electrode 640 is significantly avoided.
 なお、第5実施例および第6実施例による有機LED素子500、600のような構成では、追加導電層580、680の存在により、第1の電極540、640の抵抗が低下する。 In the configuration of the organic LED elements 500 and 600 according to the fifth and sixth examples, the resistance of the first electrodes 540 and 640 is reduced due to the presence of the additional conductive layers 580 and 680.
 また、第5実施例および第6実施例による有機LED素子500、600のような構成では、第1の電極540、640と追加導電層580、680の成膜を連続的に行うことができるため、成膜処理の効率が向上する。 In the configuration of the organic LED elements 500 and 600 according to the fifth and sixth embodiments, the first electrodes 540 and 640 and the additional conductive layers 580 and 680 can be continuously formed. The efficiency of the film forming process is improved.
 また、第3実施例~第6実施例による有機LED素子300~600のような構成では、リペア材料370~670の設置前に、第1の電極340~640の成膜処理が行われる。このため、有機LED素子300~600では、第1実施例および第2実施例による有機LED素子100、200の場合とは異なり、リペア材料370~670の材質は、特に限定されず、比較的耐熱性に劣る材料であっても、使用することができるという利点がある。ただし、有機LED素子300~600では、リペア材料370~670部分において、第1の電極340~640と有機発光層350~650とが直接接触していないため、リペア材料370~670部分を点灯させることは難しい。 In the configuration of the organic LED elements 300 to 600 according to the third to sixth embodiments, the first electrodes 340 to 640 are formed before the repair materials 370 to 670 are installed. Therefore, in the organic LED elements 300 to 600, unlike the organic LED elements 100 and 200 according to the first embodiment and the second embodiment, the material of the repair material 370 to 670 is not particularly limited and is relatively heat resistant. Even if it is a material inferior in property, there exists an advantage that it can be used. However, in the organic LED elements 300 to 600, since the first electrodes 340 to 640 and the organic light emitting layers 350 to 650 are not in direct contact with each other in the repair material 370 to 670, the repair material 370 to 670 is turned on. It ’s difficult.
 (各部材の仕様について)
 次に、本発明の第6実施例による有機LED素子600を構成する各部材の詳細について説明する。なお、本発明の第1実施例~第5実施例による有機LED素子100~500を構成する各部材に対しても、以下の記載を適用することができることは、当業者には明らかであろう。
(Specifications of each member)
Next, details of each member constituting the organic LED element 600 according to the sixth embodiment of the present invention will be described. It should be apparent to those skilled in the art that the following description can be applied to each member constituting the organic LED elements 100 to 500 according to the first to fifth embodiments of the present invention. .
 (リペア材料670)
 リペア材料670は、散乱層または保護層の表面の欠陥を覆い、リペア材料670の設置後に成膜される層を連続的な形態にすることができる限り、その態様は限られない。従って、リペア材料670には、有機材料、無機材料、および金属材料など、いかなる材料が使用されても良い。リペア材料670には、導電性材料/絶縁材料、透明材料/不透明材料のいずれも使用することができる。なお、第1実施例および第2実施例による有機LED素子100、200の場合には、リペア材料670は第1の電極140の成膜時にプラズマや高温に晒される場合にも劣化することのない材料にする必要がある。
(Repair material 670)
As long as the repair material 670 covers defects on the surface of the scattering layer or the protective layer, and the layer formed after the repair material 670 can be formed into a continuous form, the mode is not limited. Therefore, any material such as an organic material, an inorganic material, and a metal material may be used for the repair material 670. As the repair material 670, any one of a conductive material / insulating material and a transparent material / opaque material can be used. In the case of the organic LED elements 100 and 200 according to the first embodiment and the second embodiment, the repair material 670 does not deteriorate even when exposed to plasma or high temperature when the first electrode 140 is formed. It needs to be a material.
 また、リペア材料670の設置方法は、特に限られない。リペア材料670は、例えば、以降に詳しく説明するような、「塗布針法」または「噴出法」によって設置されても良い。 Moreover, the installation method of the repair material 670 is not particularly limited. The repair material 670 may be installed by, for example, an “application needle method” or an “ejecting method” as described in detail below.
 (透明基板610)
 透明基板610は、可視光に対する透過率が高い材料で構成される。透明基板610は、例えば、ガラス基板またはプラスチック基板であっても良い。
(Transparent substrate 610)
The transparent substrate 610 is made of a material having high visible light transmittance. The transparent substrate 610 may be a glass substrate or a plastic substrate, for example.
 ガラス基板の材料としては、アルカリガラス、無アルカリガラスまたは石英ガラスなどの無機ガラスが挙げられる。また、プラスチック基板の材料としては、ポリエステル、ポリカーボネート、ポリエーテル、ポリスルホン、ポリエーテルスルホン、ポリビニルアルコールならびにポリフッ化ビニリデンおよびポリフッ化ビニルなどのフッ素含有ポリマーが挙げられる。 The material of the glass substrate includes inorganic glass such as alkali glass, non-alkali glass or quartz glass. Examples of the plastic substrate material include polyester, polycarbonate, polyether, polysulfone, polyethersulfone, polyvinyl alcohol, and fluorine-containing polymers such as polyvinylidene fluoride and polyvinyl fluoride.
 透明基板610の厚さは、特に限られないが、例えば、0.1mm~2.0mmの範囲であっても良い。強度および重量を考慮すると、透明基板610の厚さは、0.5mm~1.4mmであることが好ましい。 The thickness of the transparent substrate 610 is not particularly limited, but may be in the range of 0.1 mm to 2.0 mm, for example. Considering strength and weight, the thickness of the transparent substrate 610 is preferably 0.5 mm to 1.4 mm.
 (散乱層620)
 散乱層620は、ベース材621と、該ベース材621中に分散された複数の散乱物質624とを有する。ベース材621は、第1の屈折率を有し、散乱物質624は、ベース材とは異なる第2の屈折率を有する。
(Scattering layer 620)
The scattering layer 620 includes a base material 621 and a plurality of scattering materials 624 dispersed in the base material 621. The base material 621 has a first refractive index, and the scattering material 624 has a second refractive index different from that of the base material.
 散乱層620中の散乱物質624の存在量は、散乱層620の内部から外側に向かって小さくなっていることが好ましい。 It is preferable that the abundance of the scattering material 624 in the scattering layer 620 decreases from the inside of the scattering layer 620 toward the outside.
 ベース材621は、ガラスで構成され、ガラスの材料としては、ソーダライムガラス、ホウケイ酸塩ガラス、無アルカリガラス、および石英ガラスなどの無機ガラスが使用される。 The base material 621 is made of glass, and an inorganic glass such as soda lime glass, borosilicate glass, alkali-free glass, and quartz glass is used as the glass material.
 散乱物質624は、例えば、気泡、析出結晶、ベース材とは異なる材料粒子、分相ガラス等で構成される。分相ガラスとは、2種類以上のガラス相により構成されるガラスをいう。 The scattering material 624 includes, for example, bubbles, precipitated crystals, material particles different from the base material, phase separation glass, and the like. A phase-separated glass refers to a glass composed of two or more types of glass phases.
 ベース材621の屈折率は、高効率の光取り出しを実現するためには有機層やITOと近い方が良く、且つ、散乱物質624との屈折率の差は、大きい方が良い。このためには、ベース材621として高屈折率ガラスを使用し、散乱物質624として気泡を使用することが好ましい。 The refractive index of the base material 621 is preferably close to that of the organic layer or ITO in order to realize high-efficiency light extraction, and the difference in refractive index from the scattering material 624 is preferably large. For this purpose, it is preferable to use a high refractive index glass as the base material 621 and use bubbles as the scattering material 624.
 ベース材621用の高屈折率のガラスのため、ネットワークフォーマとして、P、SiO、B、GeO、およびTeOのうちの一種類または二種類以上の成分を選定し、高屈折率成分として、TiO、Nb、WO、Bi、La、Gd、Y、ZrO、ZnO、BaO、PbO、およびSbのうちの一種類または二種類以上の成分を選定しても良い。さらに、ガラスの特性を調整するため、アルカリ酸化物、アルカリ土類酸化物、フッ化物などを、屈折率に影響を及ぼさない範囲で、添加しても良い。 Because of the high refractive index glass for the base material 621, one or more components of P 2 O 5 , SiO 2 , B 2 O 3 , GeO 2 , and TeO 2 are selected as the network former. As high refractive index components, TiO 2 , Nb 2 O 5 , WO 3 , Bi 2 O 3 , La 2 O 3 , Gd 2 O 3 , Y 2 O 3 , ZrO 2 , ZnO, BaO, PbO, and Sb 2 One or more components of O 3 may be selected. Furthermore, in order to adjust the characteristics of the glass, alkali oxides, alkaline earth oxides, fluorides, and the like may be added within a range that does not affect the refractive index.
 従って、ベース材621を構成するガラス系としては、例えば、B-ZnO-La系、P-B-R’O-R”O-TiO-Nb-WO-Bi系、TeO-ZnO系、B-Bi系、SiO-Bi系、SiO-ZnO系、B-ZnO系、P-ZnO系などが挙げられる。ここで、R’はアルカリ金属元素、R”はアルカリ土類金属元素を示す。なお、以上の材料系は、一例に過ぎず、上記条件を満たすような構成であれば、使用材料は、特に限られない。 Accordingly, examples of the glass system constituting the base material 621 include B 2 O 3 —ZnO—La 2 O 3 system, P 2 O 5 —B 2 O 3 —R ′ 2 O—R ″ O—TiO 2 —. Nb 2 O 5 —WO 3 —Bi 2 O 3 system, TeO 2 —ZnO system, B 2 O 3 —Bi 2 O 3 system, SiO 2 —Bi 2 O 3 system, SiO 2 —ZnO system, B 2 O 3 -ZnO-based, P 2 O 5 -ZnO-based, etc. Here, R ′ represents an alkali metal element, and R ″ represents an alkaline-earth metal element. In addition, the above material system is only an example, and if it is the structure which satisfy | fills the said conditions, the material to be used will not be restricted especially.
 ベース材621に、着色剤を添加することにより、発光の色味を変化させることもできる。着色剤としては、遷移金属酸化物、希土類金属酸化物、および金属コロイドなどを、単独でまたは組み合わせて使うことができる。 The color of light emission can be changed by adding a colorant to the base material 621. As the colorant, transition metal oxides, rare earth metal oxides, metal colloids, and the like can be used alone or in combination.
 なお、散乱層620は、単層であっても、複数の層で形成されても良い。 The scattering layer 620 may be a single layer or a plurality of layers.
 (保護層630)
 保護層630の材質は、特に限られない。ただし、保護層630は、第1の電極640(および必要な場合、追加導電層680)をエッチング処理する際に使用される化学物質に対して、耐性のある材料から選定される。保護層630は、例えば、酸化チタン、酸化ニオブ、酸化ジルコニウム、および酸化タンタルのようなセラミックスで構成されても良い。
(Protective layer 630)
The material of the protective layer 630 is not particularly limited. However, the protective layer 630 is selected from a material that is resistant to chemicals used when etching the first electrode 640 (and the additional conductive layer 680 if necessary). The protective layer 630 may be made of ceramics such as titanium oxide, niobium oxide, zirconium oxide, and tantalum oxide.
 なお、透明基板610の側を光取り出し面690とする場合、保護層630は、透明な材料で構成される。 When the transparent substrate 610 side is the light extraction surface 690, the protective layer 630 is made of a transparent material.
 保護層630の膜厚は、特に限られない。保護層630の膜厚は、例えば、100nm~500μmの範囲であっても良い。 The film thickness of the protective layer 630 is not particularly limited. The film thickness of the protective layer 630 may be, for example, in the range of 100 nm to 500 μm.
 保護層630の成膜方法は、特に限られない。保護層630は、例えば、スパッタリング法のようなドライプロセス、または例えば、ゾルゲル液等を利用した、湿式コーティング法により形成しても良い。特に、保護層630を湿式コーティング法で形成する場合、処理を繰り返すことにより、比較的厚い膜を比較的容易に形成することができる。 The method for forming the protective layer 630 is not particularly limited. The protective layer 630 may be formed by, for example, a dry process such as a sputtering method or a wet coating method using, for example, a sol-gel solution. In particular, when the protective layer 630 is formed by a wet coating method, a relatively thick film can be formed relatively easily by repeating the treatment.
 (第1の電極640)
 第1の電極640には、有機発光層650で生じた光を外部に取り出すため、80%以上の透光性が要求される。また、多くの正孔を注入するため、仕事関数が高いことが要求される。
(First electrode 640)
The first electrode 640 is required to have a translucency of 80% or more in order to extract light generated in the organic light emitting layer 650 to the outside. Also, a high work function is required to inject many holes.
 第1の電極640には、例えば、ITO、SnO、ZnO、IZO(Indium Zinc Oxide)、AZO(ZnO-Al:アルミニウムがドーピングされた亜鉛酸化物)、GZO(ZnO-Ga:ガリウムがドーピングされた亜鉛酸化物)、NbドープTiO、およびTaドープTiOなどの材料が用いられる。 The first electrode 640 includes, for example, ITO, SnO 2 , ZnO, IZO (Indium Zinc Oxide), AZO (ZnO—Al 2 O 3 : zinc oxide doped with aluminum), GZO (ZnO—Ga 2 O). 3 : zinc oxide doped with gallium), Nb-doped TiO 2 , and Ta-doped TiO 2 .
 さらに、第1の電極640には、前述の材料に下地層を追加した積層膜を用いても良く、下地の材料としては、例えば、SiO、ZrO、TiO、TiZrO、Taなどの材料が用いられる。 Furthermore, the first electrode 640 may be a stacked film in which a base layer is added to the above-described material. Examples of the base material include SiO 2 , ZrO 2 , TiO 2 , TiZrO 2 , and Ta 2 O. A material such as 5 is used.
 第1の電極640の厚さは、100nm以上であることが好ましい。 The thickness of the first electrode 640 is preferably 100 nm or more.
 第1の電極640の屈折率は、1.9~2.2の範囲である。例えば、第1の電極640としてITOを使用した場合、キャリア濃度を増加させることにより、第1の電極640の屈折率を低下させることができる。市販のITOでは、SnOが10wt%含まれるものが標準となっているが、Sn濃度をさらに増加させることにより、ITOの屈折率を下げることができる。ただし、Sn濃度の増加により、キャリア濃度は増加するが、移動度および透過率は、低下する。従って、全体のバランスを考慮して、Sn量を決める必要がある。 The refractive index of the first electrode 640 is in the range of 1.9 to 2.2. For example, when ITO is used for the first electrode 640, the refractive index of the first electrode 640 can be decreased by increasing the carrier concentration. Commercially available ITO contains 10 wt% SnO 2 as standard, but the refractive index of ITO can be lowered by further increasing the Sn concentration. However, as the Sn concentration increases, the carrier concentration increases, but the mobility and transmittance decrease. Therefore, it is necessary to determine the Sn amount in consideration of the overall balance.
 また、第1の電極640の屈折率は、散乱層620を構成するベース材621の屈折率や第2の電極660の屈折率を考慮して、決定することが好ましい。導波路計算や第2の電極660の反射率等を考慮すると、第1の電極640とベース材621の屈折率の差は、0.2以下であることが好ましい。 Further, the refractive index of the first electrode 640 is preferably determined in consideration of the refractive index of the base material 621 constituting the scattering layer 620 and the refractive index of the second electrode 660. In consideration of waveguide calculation, the reflectance of the second electrode 660, and the like, the difference in refractive index between the first electrode 640 and the base material 621 is preferably 0.2 or less.
 (追加導電層680)
 追加導電層680は、第1の電極640の抵抗を低下させる補助導体としての役割を有する。ただし、追加導電層680は、必須の部材ではなく、必要に応じて設置される。一般的にはCr、およびMoNb合金やAl等からなる多層膜が用いられる。
(Additional conductive layer 680)
The additional conductive layer 680 serves as an auxiliary conductor that reduces the resistance of the first electrode 640. However, the additional conductive layer 680 is not an essential member, and is installed as necessary. In general, a multilayer film made of Cr, a MoNb alloy, Al, or the like is used.
 なお、追加導電層680は、第1の電極640と同一の箇所または一部に、第1の電極640と接触するようにして配置される場合が多い。ただし、追加導電層は、第1の電極とは別の場所に配置されても良い。例えば、前述の第3実施例および第4実施例において、リペア材料370、470の設置後に追加導電層を形成した場合、追加導電層は、第1の電極340、440とは異なり、連続的な構成となる。 Note that the additional conductive layer 680 is often disposed at the same position or part of the first electrode 640 so as to be in contact with the first electrode 640. However, the additional conductive layer may be arranged at a location different from the first electrode. For example, in the third embodiment and the fourth embodiment described above, when the additional conductive layer is formed after the repair materials 370 and 470 are installed, the additional conductive layer is different from the first electrodes 340 and 440 and is continuous. It becomes composition.
 (有機発光層650)
 有機発光層650は、発光機能を有する層であり、通常の場合、ホール注入層と、ホール輸送層と、発光層と、電子輸送層と、電子注入層とにより構成される。ただし、有機発光層650は、発光層を有していれば、必ずしも他の層の全てを有する必要はないことは、当業者には明らかである。なお、通常の場合、有機発光層650の屈折率は、1.7~1.8の範囲である。
(Organic light emitting layer 650)
The organic light emitting layer 650 is a layer having a light emitting function, and is generally composed of a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer. However, it is obvious to those skilled in the art that the organic light emitting layer 650 does not necessarily have all of the other layers as long as it has a light emitting layer. In general, the refractive index of the organic light emitting layer 650 is in the range of 1.7 to 1.8.
 ホール注入層は、第1の電極640からのホール注入の障壁を低くするため、イオン化ポテンシャルの差が小さいものが好ましい。電極からホール注入層への電荷の注入効率が高まると、有機LED素子600の駆動電圧が下がり、電荷の注入効率が高まる。 The hole injection layer preferably has a small difference in ionization potential in order to lower the hole injection barrier from the first electrode 640. When the charge injection efficiency from the electrode to the hole injection layer is increased, the drive voltage of the organic LED element 600 is decreased, and the charge injection efficiency is increased.
 ホール注入層の材料としては、高分子材料または低分子材料が使用される。高分子材料の中では、ポリスチレンスルフォン酸(PSS)がドープされたポリエチレンジオキシチオフェン(PEDOT:PSS)が良く使用され、低分子材料の中では、フタロシアニン系の銅フタロシアニン(CuPc)が広く用いられる。
 ホール輸送層は、前述のホール注入層から注入されたホールを発光層に輸送する役割をする。ホール輸送層には、例えば、トリフェニルアミン誘導体、N,N’-ビス(1-ナフチル)-N,N’-ジフェニル-1,1’-ビフェニル-4,4’-ジアミン(NPD)、N,N’-ジフェニル-N,N’-ビス[N-フェニル-N-(2-ナフチル)-4’-アミノビフェニル-4-イル] -1,1’-ビフェニル-4,4’-ジアミン(NPTE)、1,1’-ビス[(ジ-4-トリルアミノ)フェニル]シクロヘキサン(HTM2)、およびN,N’-ジフェニル-N,N’-ビス(3-メチルフェニル)-1,1’-ジフェニル-4,4’-ジアミン(TPD)などが用いられる。
As the material of the hole injection layer, a high molecular material or a low molecular material is used. Among polymer materials, polyethylene dioxythiophene (PEDOT: PSS) doped with polystyrene sulfonic acid (PSS) is often used, and among low molecular materials, phthalocyanine-based copper phthalocyanine (CuPc) is widely used. .
The hole transport layer serves to transport holes injected from the hole injection layer to the light emitting layer. Examples of the hole transport layer include triphenylamine derivatives, N, N′-bis (1-naphthyl) -N, N′-diphenyl-1,1′-biphenyl-4,4′-diamine (NPD), N , N′-Diphenyl-N, N′-bis [N-phenyl-N- (2-naphthyl) -4′-aminobiphenyl-4-yl] -1,1′-biphenyl-4,4′-diamine ( NPTE), 1,1′-bis [(di-4-tolylamino) phenyl] cyclohexane (HTM2), and N, N′-diphenyl-N, N′-bis (3-methylphenyl) -1,1′- Diphenyl-4,4′-diamine (TPD) or the like is used.
 ホール輸送層の厚さは、例えば10nm~150nmの範囲である。ホール輸送層の厚さが薄いほど、有機LED素子を低電圧化できるが、電極間短絡の問題から、通常は、10nm~150nmの範囲である。
 発光層は、注入された電子とホールが再結合する場を提供する役割を有する。有機発光材料としては、低分子系または高分子系のものが使用される。
The thickness of the hole transport layer is, for example, in the range of 10 nm to 150 nm. The thinner the hole transport layer is, the lower the voltage of the organic LED element is. However, due to the problem of short circuit between electrodes, it is usually in the range of 10 nm to 150 nm.
The light emitting layer has a role of providing a field where the injected electrons and holes are recombined. As the organic light emitting material, a low molecular weight or high molecular weight material is used.
 発光層には、例えば、トリス(8-キノリノラート)アルミニウム錯体(Alq3)、ビス(8-ヒドロキシ)キナルジンアルミニウムフェノキサイド(Alq’2OPh)、ビス(8-ヒドロキシ)キナルジンアルミニウム-2,5-ジメチルフェノキサイド(BAlq)、モノ(2,2,6,6-テトラメチル-3,5-ヘプタンジオナート)リチウム錯体(Liq)、モノ(8-キノリノラート)ナトリウム錯体(Naq)、モノ(2,2,6,6-テトラメチル-3,5-ヘプタンジオナート)リチウム錯体、モノ(2,2,6,6-テトラメチル-3,5-ヘプタンジオナート)ナトリウム錯体およびビス(8-キノリノラート)カルシウム錯体(Caq2)などのキノリン誘導体の金属錯体、テトラフェニルブタジエン、フェニルキナクドリン(QD)、アントラセン、ペリレン、並びにコロネンなどの蛍光性物質が挙げられる。 Examples of the light emitting layer include tris (8-quinolinolato) aluminum complex (Alq3), bis (8-hydroxy) quinaldine aluminum phenoxide (Alq′2OPh), bis (8-hydroxy) quinaldine aluminum-2,5- Dimethylphenoxide (BAlq), mono (2,2,6,6-tetramethyl-3,5-heptanedionate) lithium complex (Liq), mono (8-quinolinolato) sodium complex (Naq), mono (2, 2,6,6-tetramethyl-3,5-heptanedionate) lithium complex, mono (2,2,6,6-tetramethyl-3,5-heptanedionate) sodium complex and bis (8-quinolinolate) Metal complexes of quinoline derivatives such as calcium complexes (Caq2), tetraphenylbutadiene, pheny Quinacridone (QD), anthracene, perylene, as well as fluorescent substance such as coronene.
 ホスト材料としては、キノリノラート錯体を使用しても良く、特に、8-キノリノールおよびその誘導体を配位子としたアルミニウム錯体が使用されても良い。
 電子輸送層は、電極から注入された電子を輸送する役割をする。電子輸送層には、例えば、キノリノールアルミニウム錯体(Alq3)、オキサジアゾール誘導体(例えば、2,5-ビス(1-ナフチル)-1,3,4-オキサジアゾール(END)、および2-(4-t-ブチルフェニル) -5-(4-ビフェニル))-1,3,4-オキサジアゾール(PBD)など)、トリアゾール誘導体、バソフェナントロリン誘導体、およびシロール誘導体などが用いられる。
 電子注入層は、例えば、第2の電極660との界面に、リチウム(Li)、セシウム(Cs)等のアルカリ金属をドープした層を設けることにより構成される。
As the host material, a quinolinolate complex may be used, and in particular, an aluminum complex having 8-quinolinol and a derivative thereof as a ligand may be used.
The electron transport layer serves to transport electrons injected from the electrode. Examples of the electron transport layer include quinolinol aluminum complex (Alq3), oxadiazole derivatives (for example, 2,5-bis (1-naphthyl) -1,3,4-oxadiazole (END), and 2- ( 4-t-butylphenyl) -5- (4-biphenyl))-1,3,4-oxadiazole (PBD) etc.), triazole derivatives, bathophenanthroline derivatives, silole derivatives and the like.
The electron injection layer is configured, for example, by providing a layer doped with an alkali metal such as lithium (Li) or cesium (Cs) at the interface with the second electrode 660.
 (第2の電極660)
 第2の電極660には、仕事関数の小さな金属またはその合金が用いられる。第2の電極660は、例えば、アルカリ金属、アルカリ土類金属、および周期表第3属の金属などであっても良い。第2の電極660には、例えば、アルミニウム(Al)、マグネシウム(Mg)、銀(Ag)、またはこれらの合金などが用いられる。
(Second electrode 660)
For the second electrode 660, a metal having a small work function or an alloy thereof is used. The second electrode 660 may be, for example, an alkali metal, an alkaline earth metal, a metal belonging to Group 3 of the periodic table, or the like. For the second electrode 660, for example, aluminum (Al), magnesium (Mg), silver (Ag), or an alloy thereof is used.
 また、アルミニウム(Al)、マグネシウム銀(MgAg)の共蒸着膜、フッ化リチウム(LiF)または酸化リチウム(LiO)の薄膜上に、アルミニウム(Al)を蒸着した積層電極が用いられても良い。さらに、カルシウム(Ca)またはバリウム(Ba)と、アルミニウム(Al)との積層膜が用いられても良い。 Also, a laminated electrode in which aluminum (Al) is deposited on a thin film of aluminum (Al), magnesium silver (MgAg), lithium fluoride (LiF), or lithium oxide (Li 2 O) may be used. good. Furthermore, a laminated film of calcium (Ca) or barium (Ba) and aluminum (Al) may be used.
 (本発明による有機LED素子の製造方法)
 次に、前述の図4、図7、図8、図11、図14、および図17のような構成を有する有機LED素子の製造方法の一例について説明する。
(Method for producing organic LED element according to the present invention)
Next, an example of a method for manufacturing an organic LED element having the configuration as shown in FIGS. 4, 7, 8, 11, 14, and 17 will be described.
 (第1実施例による有機LED素子の製造方法)
 まず、図20を参照して、前述の図4に示した第1実施例による有機LED素子100の製造方法(以下、「第1の製造方法」と称する)の一例について説明する。
(Manufacturing method of organic LED element by 1st Example)
First, an example of a method for manufacturing the organic LED element 100 according to the first embodiment shown in FIG. 4 (hereinafter referred to as “first manufacturing method”) will be described with reference to FIG.
 図20には、第1実施例による有機LED素子100を製造する際の、概略的なフロー図の一例を示す。 FIG. 20 shows an example of a schematic flow diagram when manufacturing the organic LED element 100 according to the first embodiment.
 図20に示すように、第1の製造方法は、
(1a)透明基板上に散乱層を形成するステップであって、前記散乱層は、表面に欠陥を有するステップ(ステップS110)と、
(1b)前記散乱層の表面の欠陥部分に、リペア材料を設置するステップであって、前記リペア材料は、前記散乱層の前記欠陥によって陰となる部分と接触した状態で、前記欠陥を覆うように配置されるステップ(ステップS120)と、
(1c)前記散乱層および前記リペア材料の上に、第1の電極を設置するステップであって、前記第1の電極は、前記リペア材料を覆う連続的な層で構成されるステップ(ステップS130)と、
(1d)前記第1の電極上に、有機発光層を設置するステップ(ステップS140)と、
(1e)前記有機発光層上に、第2の電極を設置するステップ(ステップS150)と、
 を有する。
As shown in FIG. 20, the first manufacturing method is:
(1a) forming a scattering layer on the transparent substrate, the scattering layer having a defect on a surface (step S110);
(1b) A step of installing a repair material on a defect portion on the surface of the scattering layer, wherein the repair material covers the defect in a state where it is in contact with a portion shadowed by the defect of the scattering layer. Arranged in step (step S120),
(1c) A step of installing a first electrode on the scattering layer and the repair material, wherein the first electrode is formed of a continuous layer covering the repair material (step S130). )When,
(1d) installing an organic light emitting layer on the first electrode (step S140);
(1e) installing a second electrode on the organic light emitting layer (step S150);
Have
 ここで、「前記散乱層の前記欠陥によって陰となる部分」という表現は、リペア材料を設置しなかった場合、欠陥の存在により、第1の電極の成膜の際に、成膜物質が付着されず、第1の電極が形成されない散乱層の部分を意味することに留意する必要がある。 Here, the expression “the part of the scattering layer that is shaded by the defect” means that when no repair material is installed, the film-forming substance adheres when the first electrode is formed due to the presence of the defect. It should be noted that this means the part of the scattering layer that is not formed and where the first electrode is not formed.
 例えば、欠陥が図5に示すような異物21の形態を有し、第1の電極が、散乱層120の上方から鉛直方向下向きに成膜される場合、「前記散乱層の前記欠陥によって陰となる部分」は、図5に示すような散乱層120の表面の領域S1およびS2に相当する。また、例えば、欠陥が図6に示すような凹部31の形態の形態を有し、第1の電極が、散乱層120の上方から鉛直方向下向きに成膜される場合、「前記散乱層の前記欠陥によって陰となる部分」は、図6に示すような散乱層120の側面(凹部31の側部35でもある)の領域S3およびS4に相当する。 For example, when the defect has the form of the foreign substance 21 as shown in FIG. 5 and the first electrode is formed vertically downward from above the scattering layer 120, “the shadow is hidden by the defect of the scattering layer. The “parts” correspond to the regions S1 and S2 on the surface of the scattering layer 120 as shown in FIG. Further, for example, when the defect has the form of the concave portion 31 as shown in FIG. 6 and the first electrode is formed in the vertical direction downward from the upper side of the scattering layer 120, “the above-mentioned of the scattering layer” The “parts shaded by the defects” correspond to the regions S3 and S4 on the side surface (also the side portion 35 of the recess 31) of the scattering layer 120 as shown in FIG.
 以下、各ステップについて詳しく説明する。 Hereinafter, each step will be described in detail.
 (ステップS110)
 まず、透明基板が準備される。前述のように、通常、透明基板には、ガラス基板やプラスチック基板が用いられる。
(Step S110)
First, a transparent substrate is prepared. As described above, a glass substrate or a plastic substrate is usually used as the transparent substrate.
 次に、透明基板上に、ガラス製のベース材中に散乱物質が分散された散乱層が形成される。散乱層の形成方法は、特に限られないが、ここでは、特に、「フリットペースト法」により、散乱層を形成する方法について説明する。ただし、その他の方法で散乱層を形成しても良いことは、当業者には明らかである。 Next, a scattering layer in which scattering substances are dispersed in a glass base material is formed on the transparent substrate. The method for forming the scattering layer is not particularly limited, but here, a method for forming the scattering layer by the “frit paste method” will be particularly described. However, it will be apparent to those skilled in the art that the scattering layer may be formed by other methods.
 フリットペースト法とは、フリットペーストと呼ばれるガラス材料を含むペーストを調製し(調製工程)、このフリットペーストを被設置基板の表面に塗布して、パターン化し(パターン形成工程)、さらにフリットペーストを焼成すること(焼成工程)により、被設置基板の表面に、所望のガラス製の膜を形成する方法である。以下、各工程について簡単に説明する。 In the frit paste method, a paste containing a glass material called a frit paste is prepared (preparation process), this frit paste is applied to the surface of the substrate to be installed, patterned (pattern formation process), and the frit paste is then baked. This is a method of forming a desired glass film on the surface of the substrate to be installed by performing (firing process). Hereinafter, each process will be briefly described.
 (調製工程)
 まず、ガラス粉末、樹脂、および溶剤等を含むフリットペーストが調製される。
(Preparation process)
First, a frit paste containing glass powder, resin, solvent and the like is prepared.
 ガラス粉末は、最終的に散乱層のベース材を形成する材料で構成される。ガラス粉末の組成は、所望の散乱特性が得られ、フリットペースト化して焼成することが可能なものであれば特に限られない。ガラス粉末の組成は、例えば、Pを20~30mol%、Bを3~14mol%、Biを10~20mol%、TiOを3~15mol%、Nbを10~20mol%、WOを5~15mol%含み、LiOとNaOとKOの総量が10~20mol%であり、以上の成分の総量が、90mol%以上のものであっても良い。ガラス粉末の粒径は、例えば、1μm~100μmの範囲である。 The glass powder is composed of a material that finally forms the base material of the scattering layer. The composition of the glass powder is not particularly limited as long as the desired scattering characteristics can be obtained and it can be frit pasted and fired. The composition of the glass powder is, for example, 20-30 mol% of P 2 O 5 , 3-14 mol% of B 2 O 3 , 10-20 mol% of Bi 2 O 3 , 3-15 mol% of TiO 2 , Nb 2 O 5 10 to 20 mol%, WO 3 to 5 to 15 mol%, the total amount of Li 2 O, Na 2 O and K 2 O is 10 to 20 mol%, and the total amount of the above components is 90 mol% or more. May be. The particle size of the glass powder is, for example, in the range of 1 μm to 100 μm.
 なお、最終的に得られる散乱層の散乱性を制御するため、ガラス粉末には、所定量のフィラーを添加しても良い。フィラーには、例えば、ジルコン、シリカ、またはアルミナなどの粒子が使用され、粒径は、通常、0.1μm~20μmの範囲である。 In addition, in order to control the scattering property of the finally obtained scattering layer, a predetermined amount of filler may be added to the glass powder. As the filler, for example, particles such as zircon, silica, or alumina are used, and the particle size is usually in the range of 0.1 μm to 20 μm.
 樹脂には、例えば、エチルセルロース、ニトロセルロース、アクリル樹脂、酢酸ビニル、ブチラール樹脂、メラミン樹脂、アルキッド樹脂、およびロジン樹脂などが用いられる。なお、ブチラール樹脂、メラミン樹脂、アルキッド樹脂、およびロジン樹脂を添加すると、フリットペースト塗布膜の強度が向上する。 Examples of the resin include ethyl cellulose, nitrocellulose, acrylic resin, vinyl acetate, butyral resin, melamine resin, alkyd resin, and rosin resin. In addition, when a butyral resin, a melamine resin, an alkyd resin, and a rosin resin are added, the strength of the frit paste coating film is improved.
 溶剤は、樹脂を溶解し、粘度を調整する役割を有する。溶剤には、例えば、エーテル系溶剤(ブチルカルビトール(BC)、ブチルカルビトールアセテート(BCA)、ジプロピレングリコールブチルエーテル、トリプロピレングリコールブチルエーテル、酢酸ブチルセロソルブ)、アルコール系溶剤(α-テルピネオール、パインオイル)、エステル系溶剤(2,2,4-トリメチル-1,3-ペンタンジオールモノイソブチレート)、フタル酸エステル系溶剤(DBP(ジブチルフタレート)、DMP(ジメチルフタレート)、DOP(ジオクチルフタレート))がある。主に用いられているのは、α-テルピネオールや2,2,4-トリメチル-1,3-ペンタンジオールモノイソブチレート)である。なお、DBP(ジブチルフタレート)、DMP(ジメチルフタレート)、DOP(ジオクチルフタレート)は、可塑剤としても機能する。 The solvent has a role of dissolving the resin and adjusting the viscosity. Examples of the solvent include ether solvents (butyl carbitol (BC), butyl carbitol acetate (BCA), dipropylene glycol butyl ether, tripropylene glycol butyl ether, butyl cellosolve), alcohol solvents (α-terpineol, pine oil) Ester solvents (2,2,4-trimethyl-1,3-pentanediol monoisobutyrate), phthalic acid ester solvents (DBP (dibutyl phthalate), DMP (dimethyl phthalate), DOP (dioctyl phthalate)) is there. Mainly used are α-terpineol and 2,2,4-trimethyl-1,3-pentanediol monoisobutyrate). DBP (dibutyl phthalate), DMP (dimethyl phthalate), and DOP (dioctyl phthalate) also function as a plasticizer.
 その他、フリットペーストには、粘度の調整やフリット分散促進のため、界面活性剤を添加しても良い。また、表面改質のため、シランカップリング剤を使用しても良い。 In addition, a surfactant may be added to the frit paste to adjust the viscosity and promote frit dispersion. Moreover, you may use a silane coupling agent for surface modification.
 次に、これらの原料を混合し、ガラス原料が均一に分散されたフリットペーストを調製する。 Next, these raw materials are mixed to prepare a frit paste in which glass raw materials are uniformly dispersed.
 (パターン形成工程)
 次に、前述の方法で調製したフリットペーストを、透明基板上に塗布し、パターン化する。塗布の方法およびパターン化の方法は、特に限られない。例えば、スクリーン印刷機を用いて、透明基板上にフリットペーストをパターン印刷しても良い。あるいは、ドクターブレード印刷法またはダイコート印刷法を利用しても良い。
(Pattern formation process)
Next, the frit paste prepared by the above-described method is applied on a transparent substrate and patterned. The application method and the patterning method are not particularly limited. For example, a frit paste may be pattern-printed on a transparent substrate using a screen printer. Alternatively, a doctor blade printing method or a die coat printing method may be used.
 その後、フリットペースト膜は、乾燥される。 After that, the frit paste film is dried.
 (焼成工程)
 次に、フリットペースト膜が焼成される。通常、焼成は、2段階のステップで行われる。第1のステップでは、フリットペースト膜中の樹脂が分解、消失され、第2のステップでは、ガラス粉末が軟化、焼結される。
(Baking process)
Next, the frit paste film is baked. Usually, firing is performed in two steps. In the first step, the resin in the frit paste film is decomposed and disappeared, and in the second step, the glass powder is softened and sintered.
 第1のステップは、大気雰囲気下で、フリットペースト膜を200℃~400℃の温度範囲に保持することにより行われる。ただし、処理温度は、フリットペーストに含まれる樹脂の材料によって変化する。例えば、樹脂がエチルセルロースの場合は、処理温度は、350℃~400℃程度であり、樹脂がニトロセルロースの場合は、処理温度は、200℃~300℃程度であっても良い。なお処理時間は、通常、30分から1時間程度である。 The first step is performed by maintaining the frit paste film in a temperature range of 200 ° C. to 400 ° C. in an air atmosphere. However, the processing temperature varies depending on the resin material contained in the frit paste. For example, when the resin is ethyl cellulose, the treatment temperature may be about 350 ° C. to 400 ° C., and when the resin is nitrocellulose, the treatment temperature may be about 200 ° C. to 300 ° C. The processing time is usually about 30 minutes to 1 hour.
 第2のステップは、大気雰囲気下で、フリットペースト膜を、含まれるガラス粉末の軟化温度±30℃の温度範囲に保持することにより行われる。処理温度は、例えば、450℃~600℃の範囲である。また、処理時間は、特に限られないが、例えば、30分~1時間である。 The second step is performed by maintaining the frit paste film in the temperature range of the softening temperature ± 30 ° C. of the contained glass powder in an air atmosphere. The processing temperature is, for example, in the range of 450 ° C. to 600 ° C. Further, the processing time is not particularly limited, but is, for example, 30 minutes to 1 hour.
 第2のステップ後に、ガラス粉末が軟化、焼結して、散乱層のベース材が形成される。また、フリットペースト膜中に内包させた散乱物質によって、例えば内在する気泡などによって、ベース材中に均一に分散された散乱物質が得られる。 After the second step, the glass powder is softened and sintered to form a base material for the scattering layer. Further, the scattering material uniformly dispersed in the base material can be obtained by the scattering material encapsulated in the frit paste film, for example, due to the bubbles present therein.
 その後、透明基板を冷却することにより、表面に散乱層を有する透明基板が形成される。 Thereafter, by cooling the transparent substrate, a transparent substrate having a scattering layer on the surface is formed.
 最終的に得られる散乱層の厚さは、5μm~50μmの範囲であっても良い。 The thickness of the finally obtained scattering layer may be in the range of 5 μm to 50 μm.
 (ステップS120)
 次に、前記工程で得られた散乱層の表面の必要な位置、すなわち欠陥部分に、リペア材料が設置される。なお、散乱層の表面上の欠陥位置は、従来の一般的な欠陥検査方法を用いることにより、容易に把握することができる。
(Step S120)
Next, a repair material is placed at a required position on the surface of the scattering layer obtained in the above process, that is, at a defective portion. The defect position on the surface of the scattering layer can be easily grasped by using a conventional general defect inspection method.
 リペア材料の設置方法は、特に限られない。リペア材料は、例えば、塗布針を用いた方法(以下、「塗布針法」と称する)、または噴出ノズルを用いた方法(以下、「噴出法」と称する)等により、散乱層の表面に存在する欠陥部分に設置されても良い。 設置 The repair material installation method is not particularly limited. The repair material is present on the surface of the scattering layer by, for example, a method using an application needle (hereinafter referred to as “application needle method”) or a method using an ejection nozzle (hereinafter referred to as “jet method”). It may be installed in a defective part.
 以下、図面を参照して、それぞれの方法について説明する。 Hereinafter, each method will be described with reference to the drawings.
 (塗布針法)
 図21には、塗布針法により、散乱層の表面に存在する欠陥部分にリペア材料を設置する際の様子を模式的に示す。
(Applying needle method)
FIG. 21 schematically shows a state in which a repair material is placed on a defective portion existing on the surface of the scattering layer by a coating needle method.
 この方法の場合、最初に塗布針910が準備される。塗布針910は、図21(a)に示すように、本体911、テーパー部912および先端913を有する。先端913の直径は、特に限られないが、例えば、30μm~100μmの範囲である。 In the case of this method, the application needle 910 is first prepared. As shown in FIG. 21A, the application needle 910 has a main body 911, a tapered portion 912, and a tip 913. The diameter of the tip 913 is not particularly limited, but is, for example, in the range of 30 μm to 100 μm.
 このような塗布針910は、例えば、液晶表示素子のカラーフィルタの欠陥補修の際等に利用されている。 Such an application needle 910 is used, for example, when repairing a defect in a color filter of a liquid crystal display element.
 次に、リペア材料の原料を含む液体916を含む容器920が準備される。液体916は、ペースト状であっても良い。 Next, a container 920 containing a liquid 916 containing a repair material is prepared. The liquid 916 may be a paste.
 次に、図21(b)に示すように、塗布針910が液体916中に浸漬される。 Next, as shown in FIG. 21 (b), the application needle 910 is immersed in the liquid 916.
 その後、塗布針910が容器920から引き上げられると、図23(c)に示すように、少なくとも塗布針910のテーパー部912~先端913にわたって、液体923が付着する。 Thereafter, when the application needle 910 is pulled up from the container 920, the liquid 923 adheres at least over the tapered portion 912 to the tip 913 of the application needle 910, as shown in FIG.
 次に、図21(d)に示すように、塗布針910の先端913が、散乱層120の表面129の欠陥部分(図示されていない)に接触される。その後、塗布針910を散乱層120の表面129から引き上げると、図21(e)に示すように、塗布針910に付着していた液体923は、散乱層120の欠陥部分に移動し、当該部分にリペア材料の原料液体925が配置される。 Next, as shown in FIG. 21 (d), the tip 913 of the application needle 910 is brought into contact with a defective portion (not shown) of the surface 129 of the scattering layer 120. Thereafter, when the application needle 910 is lifted from the surface 129 of the scattering layer 120, as shown in FIG. 21 (e), the liquid 923 attached to the application needle 910 moves to a defective portion of the scattering layer 120, and the portion A raw material liquid 925 of a repair material is disposed in
 その後、この原料液体925を乾燥させ、さらに加熱することにより、原料液体925を焼成処理する。焼成処理の温度は、原料液体925に含まれる材料によって変化するが、例えば、100℃~600℃程度である。 Thereafter, the raw material liquid 925 is dried and further heated, whereby the raw material liquid 925 is fired. The temperature of the baking treatment varies depending on the material contained in the raw material liquid 925, but is about 100 ° C. to 600 ° C., for example.
 なお、通常の場合、原料液体925の焼成処理は、透明基板全体を高温炉に配置することにより行われても良い。さらに、赤外線加熱装置やレーザー等を用いて、原料液体925の部分のみを局部的に加熱しても良い。 In a normal case, the firing process of the raw material liquid 925 may be performed by placing the entire transparent substrate in a high temperature furnace. Furthermore, only the portion of the raw material liquid 925 may be locally heated using an infrared heating device, a laser, or the like.
 このような工程により、散乱層の表面に存在する欠陥部分に、リペア材料を設置することができる。 By such a process, the repair material can be installed on the defect portion existing on the surface of the scattering layer.
 このような塗布針法の原理は、例えば、レーザーテック株式会社製の液晶用TFT・カラーフィルタ修正装置(RAGNASシリーズ)等に用いられている。 The principle of such a coating needle method is used for, for example, a liquid crystal TFT / color filter correction device (RAGNAS series) manufactured by Lasertec Corporation.
 (噴出法)
 次に、噴出法により、散乱層の表面に存在する欠陥部分にリペア材料を設置する方法について説明する。この方法の場合、中空構造の管部材950が準備される。
(Spout method)
Next, a method for installing a repair material on a defective portion existing on the surface of the scattering layer by the ejection method will be described. In the case of this method, a tube member 950 having a hollow structure is prepared.
 図22(a)に示すように、管部材950は、先端にノズル部952を有する。管部材950の内部には、管部材950の中心軸Cと同軸に、中心針954が装着されている。また、管部材950の内部には、リペア材料の原料を含む液体956が充填される。液体956は、例えばペースト状であっても良い。 As shown in FIG. 22A, the tube member 950 has a nozzle portion 952 at the tip. A center needle 954 is mounted inside the tube member 950 so as to be coaxial with the center axis C of the tube member 950. Further, the inside of the pipe member 950 is filled with a liquid 956 containing a repair material. The liquid 956 may be in a paste form, for example.
 次に、図22(b)に示すように、管部材950は、散乱層120の表面129の欠陥(図示されていない)の上方に配置される。 Next, as shown in FIG. 22 (b), the tube member 950 is disposed above a defect (not shown) on the surface 129 of the scattering layer 120.
 この状態で、中心針954を管部材950のノズル部952から突出させると、中心針954の移動に伴って、中心針954の先端に、液体956の液滴957が形成される。また、図22(c)に示すように、この液滴957は、ノズル部952から噴出された際の勢いおよび自重により、散乱層120の表面129の欠陥部分に滴下される。これにより、散乱層120の表面129の欠陥部分に、液滴958を設置することができる。 In this state, when the center needle 954 is protruded from the nozzle portion 952 of the tube member 950, a droplet 957 of the liquid 956 is formed at the tip of the center needle 954 as the center needle 954 moves. Further, as shown in FIG. 22C, the droplet 957 is dropped on the defective portion of the surface 129 of the scattering layer 120 due to the momentum and its own weight when ejected from the nozzle portion 952. Thereby, the droplet 958 can be placed on the defective portion of the surface 129 of the scattering layer 120.
 その後、「塗布針法」と同様の方法で、液滴958を乾燥、焼成させることにより、同位置に、リペア材料を形成することができる。 Thereafter, the repair material can be formed at the same position by drying and firing the droplet 958 in the same manner as the “coating needle method”.
 なお、以上のリペア材料の設置方法は、単なる一例に過ぎないことに留意する必要がある。すなわち、リペア材料は、「塗布針法」以外の接触式の方法により、あるいは「噴出法」以外の非接触式の方法により、散乱層の表面に存在する欠陥部分に設置されても良い。 It should be noted that the above repair material installation method is merely an example. That is, the repair material may be placed on a defect portion existing on the surface of the scattering layer by a contact method other than the “coating needle method” or a non-contact method other than the “spout method”.
 (ステップS130)
 次に、前記工程で得られた、リペア材料を有する散乱層上に、第1の電極(陽極)が設置される。
(Step S130)
Next, a 1st electrode (anode) is installed on the scattering layer which has a repair material obtained at the said process.
 第1の電極の形成方法は、特に限られず、第1の電極は、例えば、スパッタ法、蒸着法、および気相成膜法等の成膜法で形成されても良い。 The formation method of the first electrode is not particularly limited, and the first electrode may be formed by a film formation method such as a sputtering method, a vapor deposition method, and a vapor phase film formation method.
 前述のように、第1の電極の材料は、ITO等であっても良い。また、第1の電極の厚さは、特に限られず、第1の電極の厚さは、例えば50nm~1.0μmの範囲であっても良い。 As described above, the material of the first electrode may be ITO or the like. Further, the thickness of the first electrode is not particularly limited, and the thickness of the first electrode may be, for example, in the range of 50 nm to 1.0 μm.
 第1実施例による有機LED素子の製造方法では、散乱層の欠陥部分に、リペア材料が設置されている。このため、第1の電極は、散乱層およびリペア材料を覆う、連続的な形態で形成される。 In the method of manufacturing the organic LED element according to the first embodiment, a repair material is installed in the defective portion of the scattering layer. For this reason, the first electrode is formed in a continuous form covering the scattering layer and the repair material.
 なお、前述のように、以降のステップS140の前に、第1の電極の上部に追加導電層を設置しても良い。これにより、第1の電極の抵抗を低下させることができる。 As described above, an additional conductive layer may be provided on the first electrode before the subsequent step S140. Thereby, the resistance of the first electrode can be reduced.
 (ステップS140)
 次に、第1の電極を覆うように、有機発光層が設置される。有機発光層の設置方法は、特に限られず、例えば、蒸着法および/または塗布法を使用しても良い。
(Step S140)
Next, an organic light emitting layer is installed so as to cover the first electrode. The installation method of the organic light emitting layer is not particularly limited, and for example, a vapor deposition method and / or a coating method may be used.
 前述のように、第1の電極は、散乱層およびリペア材料を覆う、連続的な形態で形成されている。このため、第1の電極と接する有機発光層も、連続的な形態で形成される。 As described above, the first electrode is formed in a continuous form covering the scattering layer and the repair material. For this reason, the organic light emitting layer in contact with the first electrode is also formed in a continuous form.
 (ステップS150)
 次に、有機発光層上に第2の電極が設置される。第2の電極の設置方法は、特に限られず、例えば、蒸着法、スパッタ法、気相成膜法等を使用しても良い。
(Step S150)
Next, a second electrode is placed on the organic light emitting layer. The method for installing the second electrode is not particularly limited, and for example, a vapor deposition method, a sputtering method, a vapor deposition method, or the like may be used.
 以上の工程により、図4に示したような有機LED素子100が製造される。 Through the above steps, the organic LED element 100 as shown in FIG. 4 is manufactured.
 ここで、前述のように、第1の電極および有機発光層は、連続的な形態で形成されている。このため、第2の電極を形成する段階では、第2の電極の設置領域において、第1の電極は、露出されていない。その結果、ステップS150で設置される第2の電極が第1の電極と短絡する危険性は、有意に抑制される。 Here, as described above, the first electrode and the organic light emitting layer are formed in a continuous form. For this reason, in the step of forming the second electrode, the first electrode is not exposed in the installation region of the second electrode. As a result, the risk that the second electrode installed in step S150 is short-circuited with the first electrode is significantly suppressed.
 (第2実施例による有機LED素子の製造方法)
 次に、図23を参照して、前述の図7に示した第2実施例による有機LED素子200の製造方法(以下、「第2の製造方法」と称する)の一例について説明する。
(Manufacturing method of organic LED element by 2nd Example)
Next, an example of a method for manufacturing the organic LED element 200 according to the second embodiment shown in FIG. 7 (hereinafter referred to as “second manufacturing method”) will be described with reference to FIG.
 図23には、第2実施例による有機LED素子200を製造する際の、概略的なフロー図の一例を示す。 FIG. 23 shows an example of a schematic flow chart when manufacturing the organic LED element 200 according to the second embodiment.
 図23に示すように、第2の製造方法は、
(2a)透明基板上に散乱層を形成するステップ(ステップS210)と、
(2b)前記散乱層上に保護層を形成するステップであって、前記保護層は、表面に欠陥を有するステップ(ステップS220)と、
(2c)前記保護層の表面の欠陥部分に、リペア材料を設置するステップであって、前記リペア材料は、前記保護層の前記欠陥によって陰となる部分と接触した状態で、前記欠陥を覆うように配置されるステップ(ステップS230)と、
(2d)前記保護層および前記リペア材料の上に、第1の電極を設置するステップであって、前記第1の電極は、前記リペア材料を覆う連続的な層で構成されるステップ(ステップS240)と、
(2e)前記第1の電極上に、有機発光層を設置するステップ(ステップS250)と、
(2f)前記有機発光層上に、第2の電極を設置するステップ(ステップS260)と、
 を有する。
As shown in FIG. 23, the second manufacturing method is
(2a) forming a scattering layer on the transparent substrate (step S210);
(2b) forming a protective layer on the scattering layer, the protective layer having a defect on the surface (step S220);
(2c) A step of installing a repair material on a defect portion on the surface of the protective layer, the repair material covering the defect in a state in which the repair material is in contact with a portion shadowed by the defect of the protective layer. (Step S230) arranged in
(2d) A step of installing a first electrode on the protective layer and the repair material, wherein the first electrode is formed of a continuous layer covering the repair material (Step S240). )When,
(2e) installing an organic light emitting layer on the first electrode (step S250);
(2f) installing a second electrode on the organic light emitting layer (step S260);
Have
 ここで、「前記保護層の前記欠陥によって陰となる部分」という表現は、リペア材料を設置しなかった場合、欠陥の存在により、第1の電極の成膜の際に、成膜物質が付着されず、第1の電極が形成されない保護層の部分を意味することに留意する必要がある。 Here, the expression “part of the protective layer that is shaded by the defect” means that when no repair material is installed, the film-forming substance adheres when the first electrode is formed due to the presence of the defect. It should be noted that this means the part of the protective layer where the first electrode is not formed.
 例えば、欠陥が図12に示すような異物21の形態を有し、第1の電極が、保護層430の上方から鉛直方向下向きに成膜される場合、「前記保護層の前記欠陥によって陰となる部分」は、図12に示すような保護層430の表面の領域S5およびS6に相当する。また、例えば、欠陥が図13に示すような凹部31の形態の形態を有し、第1の電極が、保護層430の上方から鉛直方向下向きに成膜される場合、「前記保護層の前記欠陥によって陰となる部分」は、図13に示すような保護層430の側面(凹部31の側部35でもある)の領域S7およびS8に相当する。 For example, when the defect has the form of the foreign substance 21 as shown in FIG. 12 and the first electrode is formed vertically downward from the upper side of the protective layer 430, “the above-described defect of the protective layer causes shadows. The “parts” correspond to the regions S5 and S6 on the surface of the protective layer 430 as shown in FIG. Further, for example, when the defect has a form of the concave portion 31 as shown in FIG. 13 and the first electrode is formed vertically downward from the upper side of the protective layer 430, “the above-mentioned of the protective layer” The “parts shaded by the defects” correspond to the regions S7 and S8 on the side surface (also the side part 35 of the recess 31) of the protective layer 430 as shown in FIG.
 なお、上記ステップのうち、(2b)のステップS220、および(2c)のステップS230以外のステップは、前述の第1の製造方法に記載の対応するステップと同様である。従って、ここでは、ステップS220およびステップS230についてのみ、説明する。 Of the above steps, steps other than step S220 in (2b) and step S230 in (2c) are the same as the corresponding steps described in the first manufacturing method. Therefore, only step S220 and step S230 will be described here.
 (ステップS220)
 第2の製造方法では、散乱層の上に、保護層が設置される。
(Step S220)
In the second manufacturing method, a protective layer is provided on the scattering layer.
 保護層の形成方法は、特に限られない。 The method for forming the protective layer is not particularly limited.
 保護層は、例えば、散乱層の表面に、保護層用の原料を湿式コーティングした後、これを膜として固定化させることにより、比較的容易に形成することができる。例えば、保護層は、保護層となる原料を含むゾルゲル液を、散乱層の表面に塗布した後、これを乾燥および熱処理することにより形成しても良い。 The protective layer can be formed relatively easily, for example, by wet-coating the protective layer material on the surface of the scattering layer and then immobilizing it as a film. For example, the protective layer may be formed by applying a sol-gel solution containing a raw material to be the protective layer to the surface of the scattering layer, and then drying and heat-treating it.
 あるいは、保護層は、例えば、スパッタリング法のようなドライプロセスにより形成しても良い。 Alternatively, the protective layer may be formed by a dry process such as sputtering.
 なお、保護層は、第1の電極をエッチング処理する際に使用される化学物質に対して、耐性のある材料から選定される。 The protective layer is selected from materials that are resistant to chemical substances used when the first electrode is etched.
 (ステップS230)
 次に、前記工程で得られた保護層の表面の必要な位置、すなわち欠陥存在位置に、リペア材料が設置される。
(Step S230)
Next, a repair material is placed at a required position on the surface of the protective layer obtained in the above process, that is, at a defect existing position.
 リペア材料の設置方法としては、例えば、前述の第1の製造方法において説明したような、塗布針法または噴出法等を使用しても良い。 As the method for installing the repair material, for example, the coating needle method or the ejection method described in the first manufacturing method described above may be used.
 その後、第1の製造方法のステップS130と同様のステップS240により、保護層およびリペア材料の上部に、第1の電極が設置される。また、必要な場合、さらに追加導電層が成膜される。 Thereafter, the first electrode is placed on top of the protective layer and the repair material by step S240 similar to step S130 of the first manufacturing method. If necessary, an additional conductive layer is further formed.
 その後、ステップS250~ステップS260を経て、第2実施例に係る有機LED素子200が製造される。 Thereafter, the organic LED element 200 according to the second embodiment is manufactured through steps S250 to S260.
 (第3実施例による有機LED素子の製造方法)
 次に、図24を参照して、前述の図8に示した第3実施例による有機LED素子300の製造方法(以下、「第3の製造方法」と称する)の一例について説明する。
(Manufacturing method of organic LED element by 3rd Example)
Next, an example of a method for manufacturing the organic LED element 300 according to the third embodiment shown in FIG. 8 (hereinafter referred to as “third manufacturing method”) will be described with reference to FIG.
 図24には、第3実施例による有機LED素子300を製造する際の、概略的なフロー図の一例を示す。 FIG. 24 shows an example of a schematic flow chart when manufacturing the organic LED element 300 according to the third embodiment.
 図24に示すように、第3の製造方法は、
(3a)透明基板上に散乱層を形成するステップであって、前記散乱層は、表面に欠陥を有するステップ(ステップS310)と、
(3b)前記散乱層上に、第1の電極を設置するステップであって、
 前記第1の電極は、前記欠陥の位置で切断され、第1の層部分および第2の層部分を含む少なくとも2つの層で構成され、
 前記第1の層部分は、前記欠陥の位置に配置され、前記第2の層部分は、前記欠陥とは異なる位置に配置されるステップ(ステップS320)と、
(3c)前記散乱層の表面の欠陥部分に、リペア材料を設置するステップであって、
 前記リペア材料は、前記散乱層の前記欠陥によって陰となる部分と接触した状態で、前記欠陥を覆うように配置され、
 前記リペア材料は、前記第1の電極の前記第1の層部分、および前記第2の層部分の前記欠陥に近い側の端部を覆うステップ(ステップS330)と、
(3d)前記第1の電極およびリペア材料の上部に、有機発光層を設置するステップ(ステップS340)と、
(3e)前記有機発光層上に、第2の電極を設置するステップ(ステップS350)と、
 を有する。
As shown in FIG. 24, the third manufacturing method is
(3a) a step of forming a scattering layer on the transparent substrate, the scattering layer having a defect on the surface (step S310);
(3b) installing a first electrode on the scattering layer,
The first electrode is cut at the position of the defect and is composed of at least two layers including a first layer portion and a second layer portion;
The first layer portion is disposed at the position of the defect, and the second layer portion is disposed at a position different from the defect (step S320);
(3c) installing a repair material on a defect portion on the surface of the scattering layer,
The repair material is arranged so as to cover the defect in a state in contact with a portion shadowed by the defect of the scattering layer,
The repair material covers the first layer portion of the first electrode and the end of the second layer portion on the side close to the defect (step S330);
(3d) installing an organic light emitting layer on top of the first electrode and repair material (step S340);
(3e) installing a second electrode on the organic light emitting layer (step S350);
Have
 ここで、上記ステップのうち、(3a)のステップS310、および(3e)のステップS350は、前述の第1の製造方法に記載の対応するステップと同様である。従って、ここでは、これら以外のステップついてのみ、説明する。 Of the above steps, step S310 of (3a) and step S350 of (3e) are the same as the corresponding steps described in the first manufacturing method. Therefore, only the steps other than these will be described here.
 (ステップS320)
 第3の製造方法では、散乱層320を形成した後、リペア材料370を設置する前に、第1の電極340が設置される。
(Step S320)
In the third manufacturing method, after the scattering layer 320 is formed, the first electrode 340 is installed before the repair material 370 is installed.
 この工程により、第1の電極340は、欠陥を有する散乱層320の表面に、例えば、前述の図9または図10に示すような態様で、不連続に形成される。 By this step, the first electrode 340 is formed discontinuously on the surface of the scattering layer 320 having defects, for example, in the manner shown in FIG. 9 or FIG.
 (ステップS330)
 次に、散乱層320の欠陥部分に、リペア材料370が設置される。
(Step S330)
Next, a repair material 370 is installed on the defective portion of the scattering layer 320.
 ここで、散乱層320の表面に異物21が存在する場合、リペア材料370は、図9に示すように、散乱層320の領域S1およびS2と接し、さらに、第1の電極340の層部分341aの上部および側部を覆い、第1の電極340の層部分341b、341cの異物21側の端部を覆うように形成される。 Here, when the foreign material 21 is present on the surface of the scattering layer 320, the repair material 370 is in contact with the regions S1 and S2 of the scattering layer 320 as shown in FIG. 9, and furthermore, the layer portion 341a of the first electrode 340. Are formed so as to cover the ends of the layer portions 341b and 341c of the first electrode 340 on the foreign substance 21 side.
 同様に、散乱層320の表面に凹部31が存在する場合、リペア材料370は、図10に示すように、散乱層320の領域S3およびS4と接し、さらに、第1の電極340の層部分342aの上部および側部を覆い、第1の電極340の層部分342b、342cの凹部31側の端部を覆うように形成される。 Similarly, when the concave portion 31 is present on the surface of the scattering layer 320, the repair material 370 is in contact with the regions S3 and S4 of the scattering layer 320 as shown in FIG. 10, and further, the layer portion 342a of the first electrode 340. Is formed so as to cover the end portions of the layer portions 342b and 342c of the first electrode 340 on the concave portion 31 side.
 なお、このような態様のリペア材料370は、例えば、前述の塗布針法または噴出法により、比較的容易に形成することができる。 It should be noted that the repair material 370 having such an aspect can be formed relatively easily by, for example, the above-described coating needle method or jetting method.
 なお、必要な場合、リペア材料370の設置後、ステップS340の前に、追加導電層を設置しても良い。 If necessary, an additional conductive layer may be installed after the repair material 370 is installed and before step S340.
 (ステップS340)
 次に、前記第1の電極340およびリペア材料370の上部に、有機発光層350が設置される。
(Step S340)
Next, the organic light emitting layer 350 is disposed on the first electrode 340 and the repair material 370.
 有機発光層350は、リペア材料370の存在により、第1の電極340およびリペア材料370の上部に、第1の電極340を覆うように連続的に形成される。従って、以降に設置される第2の電極360が第1の電極340と短絡する危険性は、有意に回避される。 The organic light emitting layer 350 is continuously formed on the first electrode 340 and the repair material 370 so as to cover the first electrode 340 due to the presence of the repair material 370. Therefore, the risk that the second electrode 360 installed thereafter is short-circuited with the first electrode 340 is significantly avoided.
 (第4実施例による有機LED素子の製造方法)
 次に、図25を参照して、前述の図11に示した第4実施例による有機LED素子400の製造方法(以下、「第4の製造方法」と称する)の一例について説明する。
(Manufacturing method of organic LED element by 4th Example)
Next, an example of a method for manufacturing the organic LED element 400 according to the fourth embodiment shown in FIG. 11 (hereinafter referred to as “fourth manufacturing method”) will be described with reference to FIG.
 図25には、第4実施例による有機LED素子400を製造する際の、概略的なフロー図の一例を示す。 FIG. 25 shows an example of a schematic flow chart when manufacturing the organic LED element 400 according to the fourth embodiment.
 図25に示すように、第4の製造方法は、
(4a)透明基板上に散乱層を形成するステップ(ステップS410)と、
(4b)前記散乱層上に、保護層を設置するステップであって、前記保護層は、表面に欠陥を有するステップ(ステップS420)と、
(4c)前記保護層上に、第1の電極を設置するステップであって、
 前記第1の電極は、前記欠陥の位置で切断され、第1の層部分および第2の層部分を含む少なくとも2つの層で構成され、
 前記第1の層部分は、前記欠陥の位置に配置され、前記第2の層部分は、前記欠陥とは異なる位置に配置されるステップ(ステップS430)と、
(4d)前記保護層の表面の欠陥部分に、リペア材料を設置するステップであって、
 前記リペア材料は、前記保護層の前記欠陥によって陰となる部分と接触した状態で、前記欠陥を覆うように配置され、
 前記リペア材料は、前記第1の電極の前記第1の層部分、および前記第2の層部分の前記欠陥に近い側の端部を覆うステップ(ステップS440)と、
(4e)前記第1の電極およびリペア材料の上部に、有機発光層を設置するステップ(ステップS450)と、
(4f)前記有機発光層上に、第2の電極を設置するステップ(ステップS460)と、
 を有する。
As shown in FIG. 25, the fourth manufacturing method is
(4a) forming a scattering layer on the transparent substrate (step S410);
(4b) installing a protective layer on the scattering layer, the protective layer having a defect on the surface (step S420);
(4c) installing a first electrode on the protective layer,
The first electrode is cut at the position of the defect and is composed of at least two layers including a first layer portion and a second layer portion;
The first layer portion is disposed at the position of the defect, and the second layer portion is disposed at a position different from the defect (step S430);
(4d) installing a repair material on a defective portion of the surface of the protective layer,
The repair material is arranged so as to cover the defect in a state where it is in contact with a portion shadowed by the defect of the protective layer,
The repair material covers the first layer portion of the first electrode and the end of the second layer portion close to the defect (step S440);
(4e) installing an organic light emitting layer on top of the first electrode and the repair material (step S450);
(4f) installing a second electrode on the organic light emitting layer (step S460);
Have
 ここで、上記ステップのうち、(4a)のステップS410、(4b)のステップS420、および(4f)のステップS460は、前述の第2の製造方法に記載の対応するステップと同様である。従って、ここでは、ステップS430~ステップS450についてのみ、説明する。 Here, among the above steps, step S410 in (4a), step S420 in (4b), and step S460 in (4f) are the same as the corresponding steps described in the second manufacturing method. Accordingly, only steps S430 to S450 will be described here.
 (ステップS430)
 第4の製造方法では、保護層430を形成した後、リペア材料470を設置する前に、第1の電極440が設置される。
(Step S430)
In the fourth manufacturing method, after the protective layer 430 is formed, the first electrode 440 is installed before the repair material 470 is installed.
 この工程により、第1の電極440は、欠陥を有する保護層430の表面に、例えば、前述の図12または図13に示すような態様で、不連続に形成される。 By this step, the first electrode 440 is discontinuously formed on the surface of the protective layer 430 having defects, for example, in the manner shown in FIG. 12 or FIG.
 (ステップS440)
 次に、保護層430の欠陥部分に、リペア材料470が設置される。
(Step S440)
Next, the repair material 470 is installed on the defective portion of the protective layer 430.
 ここで、保護層430の表面に異物21が存在する場合、リペア材料470は、図12に示すように、保護層430の領域S5およびS6と接し、さらに、第1の電極440の層部分441aの上部および側部を覆い、第1の電極440の層部分441b、441cの異物21側の端部を覆うように形成される。 Here, when the foreign material 21 is present on the surface of the protective layer 430, the repair material 470 is in contact with the regions S5 and S6 of the protective layer 430 and further, the layer portion 441a of the first electrode 440 as shown in FIG. Are formed so as to cover the ends of the layer portions 441b and 441c of the first electrode 440 on the foreign substance 21 side.
 同様に、保護層430の表面に凹部31が存在する場合、リペア材料470は、図13に示すように、保護層430の領域S7およびS8と接し、さらに、第1の電極440の層部分442aの上部および側部を覆い、第1の電極440の層部分442b、442cの凹部31側の端部を覆うように形成される。 Similarly, when the recess 31 is present on the surface of the protective layer 430, the repair material 470 is in contact with the regions S7 and S8 of the protective layer 430 and further, the layer portion 442a of the first electrode 440 as shown in FIG. Are formed so as to cover the end portions of the layer portions 442b and 442c of the first electrode 440 on the concave portion 31 side.
 なお、このような態様のリペア材料470は、例えば、前述の塗布針法または噴出法により、比較的容易に形成することができる。 In addition, the repair material 470 of such an aspect can be formed comparatively easily by the above-mentioned coating needle method or the ejection method, for example.
 なお、必要な場合、リペア材料470の設置後、ステップS450の前に、追加導電層を設置しても良い。 If necessary, an additional conductive layer may be installed after the repair material 470 is installed and before step S450.
 (ステップS450)
 次に、前記第1の電極440およびリペア材料470の上部に、有機発光層450が設置される。
(Step S450)
Next, an organic light emitting layer 450 is disposed on the first electrode 440 and the repair material 470.
 有機発光層450は、リペア材料470の存在により、第1の電極440およびリペア材料470の上部に、第1の電極440を覆うように連続的に形成される。従って、以降に設置される第2の電極460が第1の電極440と短絡する危険性は、有意に回避される。 The organic light emitting layer 450 is continuously formed on the first electrode 440 and the repair material 470 so as to cover the first electrode 440 due to the presence of the repair material 470. Therefore, the risk that the second electrode 460 installed thereafter is short-circuited with the first electrode 440 is significantly avoided.
 (第5実施例による有機LED素子の製造方法)
 次に、図26を参照して、前述の図14に示した第5実施例による有機LED素子500の製造方法(以下、「第5の製造方法」と称する)の一例について説明する。
(Manufacturing method of organic LED element by 5th Example)
Next, an example of a method for manufacturing the organic LED element 500 according to the fifth embodiment shown in FIG. 14 (hereinafter referred to as “fifth manufacturing method”) will be described with reference to FIG.
 図26には、第5実施例による有機LED素子500を製造する際の、概略的なフロー図の一例を示す。 FIG. 26 shows an example of a schematic flow diagram when manufacturing the organic LED element 500 according to the fifth embodiment.
 図26に示すように、第5の製造方法は、
(5a)透明基板上に散乱層を形成するステップであって、前記散乱層は、表面に欠陥を有するステップ(ステップS510)と、
(5b)前記散乱層上に、第1の電極を設置するステップであって、
 前記第1の電極は、前記欠陥の位置で切断され、第1の層部分および第2の層部分を含む少なくとも2つの層で構成され、
 前記第1の層部分は、前記欠陥の位置に配置され、前記第2の層部分は、前記欠陥とは異なる位置に配置されるステップ(ステップS520)と、
(5c)前記第1の電極上に、追加導電層を設置するステップであって、
 前記追加導電層は、前記欠陥の位置で切断され、第3の層部分および第4の層部分を含む少なくとも2つの層で構成され、
 前記第3の層部分は、前記第1の電極の第1の層部分上に配置され、前記第4の層部分は、前記第1の電極の第2の層部分上に配置されるステップ(ステップS530)と、
(5d)前記散乱層の表面の欠陥部分に、リペア材料を設置するステップであって、
 前記リペア材料は、前記散乱層の前記欠陥によって陰となる部分と接触した状態で、前記欠陥を覆うように配置され、
 前記リペア材料は、前記追加導電層の前記第3の層部分、前記追加導電層の前記第4の層部分の前記欠陥に近い側の端部、および前記第1の電極の前記第2の層部分の前記欠陥に近い側の端部を覆うステップ(ステップS540)と、
(5e)前記追加導電層およびリペア材料の上部に、有機発光層を設置するステップ(ステップS550)と、
(5f)前記有機発光層上に、第2の電極を設置するステップ(ステップS560)と、
 を有する。
As shown in FIG. 26, the fifth manufacturing method is
(5a) forming a scattering layer on the transparent substrate, the scattering layer having a defect on a surface (step S510);
(5b) installing the first electrode on the scattering layer,
The first electrode is cut at the position of the defect and is composed of at least two layers including a first layer portion and a second layer portion;
The first layer portion is disposed at the position of the defect, and the second layer portion is disposed at a position different from the defect (step S520);
(5c) installing an additional conductive layer on the first electrode,
The additional conductive layer is composed of at least two layers including a third layer portion and a fourth layer portion, which are cut at the position of the defect,
The third layer portion is disposed on the first layer portion of the first electrode, and the fourth layer portion is disposed on the second layer portion of the first electrode. Step S530),
(5d) installing a repair material on a defect portion on the surface of the scattering layer,
The repair material is arranged so as to cover the defect in a state in contact with a portion shadowed by the defect of the scattering layer,
The repair material includes the third layer portion of the additional conductive layer, the end of the fourth layer portion of the additional conductive layer on the side close to the defect, and the second layer of the first electrode. Covering the end of the part close to the defect (step S540);
(5e) installing an organic light emitting layer on top of the additional conductive layer and repair material (step S550);
(5f) installing a second electrode on the organic light emitting layer (step S560);
Have
 ここで、上記ステップのうち、(5a)のステップS510、(5b)のステップS520、および(5f)のステップS560は、前述の第3の製造方法に記載の対応するステップと同様である。従って、ここでは、これら以外のステップついてのみ、説明する。 Here, among the above steps, step S510 of (5a), step S520 of (5b), and step S560 of (5f) are the same as the corresponding steps described in the third manufacturing method described above. Therefore, only the steps other than these will be described here.
 (ステップS530)
 第5の製造方法では、第1の電極540を形成した後、リペア材料570を設置する前に、さらに追加導電層580が設置される。
(Step S530)
In the fifth manufacturing method, after forming the first electrode 540 and before installing the repair material 570, an additional conductive layer 580 is further installed.
 この工程により、散乱層520の欠陥部分の構造は、図15または図16に示したような形態となる。 By this step, the structure of the defect portion of the scattering layer 520 becomes a form as shown in FIG. 15 or FIG.
 すなわち、欠陥が異物21の場合、第1の電極540は、散乱層520の表面に、層部分541a~541cを有する、不連続な形態で形成される。また、追加導電層580は、第1の電極540の表面に、層部分581a~581cを有する、不連続な形態で形成される。 That is, when the defect is the foreign material 21, the first electrode 540 is formed in a discontinuous form having the layer portions 541a to 541c on the surface of the scattering layer 520. The additional conductive layer 580 is formed in a discontinuous form having layer portions 581a to 581c on the surface of the first electrode 540.
 同様に、欠陥が凹部31の場合、第1の電極540は、散乱層520の表面に、層部分542a~542cを有する、不連続な形態で形成される。また、追加導電層580は、第1の電極540の表面に、層部分582a~582cを有する、不連続な形態で形成される。 Similarly, when the defect is the recess 31, the first electrode 540 is formed in a discontinuous form having layer portions 542 a to 542 c on the surface of the scattering layer 520. The additional conductive layer 580 is formed in a discontinuous form having layer portions 582a to 582c on the surface of the first electrode 540.
 (ステップS540)
 次に、散乱層520の欠陥部分に、リペア材料570が設置される。
(Step S540)
Next, the repair material 570 is installed on the defective portion of the scattering layer 520.
 ここで、散乱層520の表面に異物21が存在する場合、リペア材料570は、図15に示すように、散乱層520の領域S1およびS2と接し、第1の電極540の層部分541b、541cの異物21側の端部を覆うとともに、追加導電層580の層部分581aの上部および側部を覆い、追加導電層580の層部分581b、581cの異物21側の端部を覆うように形成される。 Here, when the foreign material 21 exists on the surface of the scattering layer 520, the repair material 570 is in contact with the regions S1 and S2 of the scattering layer 520 and the layer portions 541b and 541c of the first electrode 540 as shown in FIG. Is formed so as to cover the end of the additional conductive layer 580 and the upper and side portions of the layer portion 581a of the additional conductive layer 580, and to cover the end of the additional conductive layer 580 on the foreign matter 21 side of the layer portions 581b and 581c. The
 同様に、散乱層520の表面に凹部31が存在する場合、リペア材料570は、図16に示すように、散乱層520の領域S3およびS4と接し、第1の電極540の層部分542b、542cの凹部31側の端部を覆うとともに、追加導電層580の層部分582aの上部および側部を覆い、追加導電層580の層部分582b、582cの凹部31側の端部を覆うように形成される。 Similarly, when the recess 31 is present on the surface of the scattering layer 520, the repair material 570 is in contact with the regions S3 and S4 of the scattering layer 520 and the layer portions 542b and 542c of the first electrode 540 as shown in FIG. Is formed so as to cover the end portion of the additional conductive layer 580, the upper portion and the side portion of the layer portion 582a of the additional conductive layer 580, and the end portions of the layer portions 582b and 582c of the additional conductive layer 580 on the concave portion 31 side. The
 なお、このような態様のリペア材料570は、例えば、前述の塗布針法または噴出法により、比較的容易に形成することができる。 In addition, the repair material 570 of such an aspect can be formed comparatively easily by the above-mentioned application needle method or the ejection method, for example.
 (ステップS550)
 次に、追加導電層580およびリペア材料570の上部に、有機発光層550が設置される。
(Step S550)
Next, the organic light emitting layer 550 is disposed on the additional conductive layer 580 and the repair material 570.
 有機発光層550は、リペア材料570の存在により、追加導電層580およびリペア材料570の上部に、追加導電層580を覆うように連続的に形成される。従って、以降に設置される第2の電極560が追加導電層580および第1の電極540と短絡する危険性は、有意に回避される。 The organic light emitting layer 550 is continuously formed on the additional conductive layer 580 and the repair material 570 so as to cover the additional conductive layer 580 due to the presence of the repair material 570. Therefore, the risk that the second electrode 560 to be installed thereafter is short-circuited with the additional conductive layer 580 and the first electrode 540 is significantly avoided.
 (第6実施例による有機LED素子の製造方法)
 次に、図27を参照して、前述の図17に示した第6実施例による有機LED素子600の製造方法(以下、「第6の製造方法」と称する)の一例について説明する。
(Manufacturing method of organic LED element by 6th Example)
Next, an example of a method for manufacturing the organic LED element 600 according to the sixth embodiment shown in FIG. 17 (hereinafter referred to as “sixth manufacturing method”) will be described with reference to FIG.
 図27には、第6実施例による有機LED素子600を製造する際の、概略的なフロー図の一例を示す。 FIG. 27 shows an example of a schematic flow chart when manufacturing the organic LED element 600 according to the sixth embodiment.
 図27に示すように、第6の製造方法は、
(6a)透明基板上に散乱層を形成するステップ(ステップS610)と、
(6b)前記散乱層上に、保護層を設置するステップであって、前記保護層は、表面に欠陥を有するステップ(ステップS620)と、
(6c)前記保護層上に、第1の電極を設置するステップであって、
 前記第1の電極は、前記欠陥の位置で切断され、第1の層部分および第2の層部分を含む少なくとも2つの層で構成され、
 前記第1の層部分は、前記欠陥の位置に配置され、前記第2の層部分は、前記欠陥とは異なる位置に配置されるステップ(ステップS630)と、
(6d)前記第1の電極上に、追加導電層を設置するステップであって、
 前記追加導電層は、前記欠陥の位置で切断され、第3の層部分および第4の層部分を含む少なくとも2つの層で構成され、
 前記第3の層部分は、前記第1の電極の第1の層部分上に配置され、前記第4の層部分は、前記第1の電極の第2の層部分上に配置されるステップ(ステップS640)と、
(6e)前記保護層の表面の欠陥部分に、リペア材料を設置するステップであって、
 前記リペア材料は、前記保護層の前記欠陥によって陰となる部分と接触した状態で、前記欠陥を覆うように配置され、
 前記リペア材料は、前記追加導電層の前記第3の層部分、前記追加導電層の前記第4の層部分の前記欠陥に近い側の端部、および前記第1の電極の前記第2の層部分の前記欠陥に近い側の端部を覆うステップ(ステップS650)と、
(6f)前記追加導電層およびリペア材料の上部に、有機発光層を設置するステップ(ステップS660)と、
(6g)前記有機発光層上に、第2の電極を設置するステップ(ステップS670)と、
 を有する。
As shown in FIG. 27, the sixth manufacturing method is
(6a) forming a scattering layer on the transparent substrate (step S610);
(6b) installing a protective layer on the scattering layer, the protective layer having a defect on the surface (step S620);
(6c) installing the first electrode on the protective layer,
The first electrode is cut at the position of the defect and is composed of at least two layers including a first layer portion and a second layer portion;
The first layer portion is disposed at the position of the defect, and the second layer portion is disposed at a position different from the defect (step S630);
(6d) installing an additional conductive layer on the first electrode,
The additional conductive layer is composed of at least two layers including a third layer portion and a fourth layer portion, which are cut at the position of the defect,
The third layer portion is disposed on the first layer portion of the first electrode, and the fourth layer portion is disposed on the second layer portion of the first electrode. Step S640),
(6e) installing a repair material on a defective portion of the surface of the protective layer,
The repair material is arranged so as to cover the defect in a state where it is in contact with a portion shadowed by the defect of the protective layer,
The repair material includes the third layer portion of the additional conductive layer, the end of the fourth layer portion of the additional conductive layer on the side close to the defect, and the second layer of the first electrode. Covering the end of the portion close to the defect (step S650);
(6f) installing an organic light emitting layer on top of the additional conductive layer and the repair material (step S660);
(6g) installing a second electrode on the organic light emitting layer (step S670);
Have
 ここで、上記ステップのうち、(6a)のステップS610、(6b)のステップS620、(6c)のステップS630、および(6g)のステップS670は、前述の第4の製造方法に記載の対応するステップと同様である。従って、ここでは、これら以外のステップついてのみ、説明する。 Here, among the above steps, step S610 in (6a), step S620 in (6b), step S630 in (6c), and step S670 in (6g) correspond to those described in the above-described fourth manufacturing method. It is the same as the step. Therefore, only the steps other than these will be described here.
 (ステップS640)
 第6の製造方法では、第1の電極640を形成した後、リペア材料670を設置する前に、さらに追加導電層680が設置される。
(Step S640)
In the sixth manufacturing method, after forming the first electrode 640 and before installing the repair material 670, an additional conductive layer 680 is further installed.
 この工程により、保護層630の欠陥部分の構造は、図18または図19に示したような形態となる。 By this step, the structure of the defective portion of the protective layer 630 becomes as shown in FIG. 18 or FIG.
 すなわち、欠陥が異物21の場合、第1の電極640は、保護層630の表面に、層部分641a~641cを有する、不連続な形態で形成される。また、追加導電層680は、第1の電極640の表面に、層部分681a~681cを有する、不連続な形態で形成される。 That is, when the defect is the foreign material 21, the first electrode 640 is formed in a discontinuous form having the layer portions 641a to 641c on the surface of the protective layer 630. The additional conductive layer 680 is formed in a discontinuous form having layer portions 681a to 681c on the surface of the first electrode 640.
 同様に、欠陥が凹部31の場合、第1の電極640は、保護層630の表面に、層部分642a~642cを有する、不連続な形態で形成される。また、追加導電層680は、第1の電極640の表面に、層部分682a~682cを有する、不連続な形態で形成される。 Similarly, when the defect is the recess 31, the first electrode 640 is formed in a discontinuous form having layer portions 642 a to 642 c on the surface of the protective layer 630. The additional conductive layer 680 is formed in a discontinuous form having layer portions 682a to 682c on the surface of the first electrode 640.
 (ステップS650)
 次に、保護層630の欠陥部分に、リペア材料670が設置される。
(Step S650)
Next, the repair material 670 is installed on the defective portion of the protective layer 630.
 ここで、保護層630の表面に異物21が存在する場合、リペア材料670は、図18に示すように、保護層630の領域S5およびS6と接し、第1の電極640の層部分641b、641cの異物21側の端部を覆うとともに、追加導電層680の層部分681aの上部および側部を覆い、追加導電層680の層部分681b、681cの異物21側の端部を覆うように形成される。 Here, when the foreign material 21 is present on the surface of the protective layer 630, the repair material 670 is in contact with the regions S5 and S6 of the protective layer 630 and the layer portions 641b and 641c of the first electrode 640 as shown in FIG. Is formed so as to cover the end portion of the additional conductive layer 680 and the upper and side portions of the layer portion 681a of the additional conductive layer 680 and to cover the end portions of the layer portions 681b and 681c of the additional conductive layer 680 on the foreign matter 21 side. The
 同様に、保護層630の表面に凹部31が存在する場合、リペア材料670は、図19に示すように、保護層630の領域S7およびS8と接し、第1の電極640の層部分642b、642cの凹部31側の端部を覆うとともに、追加導電層680の層部分682aの上部および側部を覆い、追加導電層680の層部分682b、682cの凹部31側の端部を覆うように形成される。 Similarly, when the recess 31 is present on the surface of the protective layer 630, the repair material 670 is in contact with the regions S7 and S8 of the protective layer 630 and the layer portions 642b and 642c of the first electrode 640 as shown in FIG. Is formed so as to cover the end portion of the additional conductive layer 680 and the upper and side portions of the layer portion 682a of the additional conductive layer 680 and cover the end portions of the layer portions 682b and 682c of the additional conductive layer 680 on the concave portion 31 side. The
 なお、このような態様のリペア材料670は、例えば、前述の塗布針法または噴出法により、比較的容易に形成することができる。 It should be noted that the repair material 670 having such an aspect can be formed relatively easily by, for example, the above-described coating needle method or jetting method.
 (ステップS660)
 次に、追加導電層680およびリペア材料670の上部に、有機発光層650が設置される。
(Step S660)
Next, the organic light emitting layer 650 is disposed on the additional conductive layer 680 and the repair material 670.
 有機発光層650は、リペア材料670の存在により、追加導電層680およびリペア材料670の上部に、追加導電層680を覆うように連続的に形成される。従って、以降に設置される第2の電極660が追加導電層680および第1の電極640と短絡する危険性は、有意に回避される。 The organic light emitting layer 650 is continuously formed on the additional conductive layer 680 and the repair material 670 so as to cover the additional conductive layer 680 due to the presence of the repair material 670. Therefore, the risk that the second electrode 660 installed thereafter is short-circuited with the additional conductive layer 680 and the first electrode 640 is significantly avoided.
 なお、本願では、有機発光層および第2の電極を形成する前の積層体、すなわち透明基板、散乱層、保護層(必要な場合)、リペア材料、および第1の電極(および必要な場合、追加導電層)を有する積層体を、特に、「透光性基板」と称することにする。有機発光層、および第2の電極等の仕様は、最終的に得られる有機LED素子の適用用途によって、様々に変化する。従って、慣用的には、この「透光性基板」は、この状態のまま、中間製品として市場に流通される場合も多く、これ以降の工程が省略される場合も多々あることに留意する必要がある。 In the present application, the laminate before forming the organic light emitting layer and the second electrode, that is, the transparent substrate, the scattering layer, the protective layer (if necessary), the repair material, and the first electrode (and if necessary, The laminated body having the additional conductive layer is particularly referred to as a “translucent substrate”. The specifications of the organic light emitting layer, the second electrode, and the like vary depending on the application application of the finally obtained organic LED element. Therefore, it is necessary to keep in mind that this “translucent substrate” is usually distributed in the market as an intermediate product in this state, and the subsequent steps are often omitted. There is.
 次に、本発明の実施例について説明する。 Next, examples of the present invention will be described.
 (実施例1)
 以下の方法で有機LED素子サンプルを作製し、その特性を評価した。なお、有機LED素子サンプルの構成は、前述の図11に示すような構成とした。
(Example 1)
The organic LED element sample was produced with the following method, and the characteristic was evaluated. The organic LED element sample was configured as shown in FIG.
 (散乱層の形成)
 まず、透明基板として、ソーダライム製のガラス基板(以下、「第1のガラス基板」と称する)を準備し、この第1のガラス基板の一方の表面に、散乱層を設置した。
(Formation of scattering layer)
First, a glass substrate made of soda lime (hereinafter referred to as “first glass substrate”) was prepared as a transparent substrate, and a scattering layer was placed on one surface of the first glass substrate.
 散乱層は、以下の手順で形成した。 The scattering layer was formed by the following procedure.
 まず、ガラス原料粉末を調合した。表1には、原料粉末の組成を示す。次に、電気炉を用いて、この原料粉末を1150℃で溶解した後、ロールキャストしてガラスのフレークを得た。 First, glass raw material powder was prepared. Table 1 shows the composition of the raw material powder. Next, this raw material powder was melted at 1150 ° C. using an electric furnace and then roll-cast to obtain glass flakes.
Figure JPOXMLDOC01-appb-T000001
 熱分析装置(TD5000SA:Bruker社製)による熱膨張法(昇温速度5℃/分)により、このガラスフレークのガラス転移温度および熱膨張係数を測定した。その結果、ガラスフレークのガラス転移温度は、478℃であり、熱膨張係数は、71×10-7/℃(50℃~300℃の平均値)であった。また、屈折率計(カルニュー光学工業社製、商品名:KRP-2)を用いて、このガラスフレークのd線(587.56nm)での屈折率ndを測定した。その結果、屈折率ndは、1.84であった。
Figure JPOXMLDOC01-appb-T000001
The glass transition temperature and the thermal expansion coefficient of the glass flakes were measured by a thermal expansion method (temperature increase rate: 5 ° C./min) using a thermal analyzer (TD5000SA: manufactured by Bruker). As a result, the glass transition temperature of the glass flakes was 478 ° C., and the thermal expansion coefficient was 71 × 10 −7 / ° C. (average value of 50 ° C. to 300 ° C.). Further, the refractive index nd of this glass flake at the d-line (587.56 nm) was measured using a refractometer (trade name: KRP-2, manufactured by Kalnew Optical Industry Co., Ltd.). As a result, the refractive index nd was 1.84.
 次に、以下の方法で、ガラスペーストを調製し、これを用いて散乱層を成膜した。 Next, a glass paste was prepared by the following method, and a scattering layer was formed using the glass paste.
 まず、ガラスフレークをジルコニア製の遊星ミルで2時間粉砕した後、ふるいにかけて、平均粒径d50(積算値50%の粒度)が1μm~3μmでの粉末を採取した。 First, glass flakes were pulverized with a zirconia planetary mill for 2 hours and then sieved to collect powder having an average particle size d50 (particle size of 50% integrated value) of 1 μm to 3 μm.
 次に、採取されたガラス粉末72.4gを有機ビヒクル(α-テルピネオール等にエチルセルロースを10質量%程度溶解したもの)27.6gと混錬して、ガラスペースト(ガラスペーストA)を調製した。また、ガラスペーストAに、平均粒径3μm程度の略球形SiO粒子を15vol%添加し、別のガラスペースト(ガラスペーストB)を調製した。 Next, 72.4 g of the collected glass powder was kneaded with 27.6 g of an organic vehicle (about 10% by mass of ethyl cellulose dissolved in α-terpineol or the like) to prepare a glass paste (glass paste A). Further, 15 vol% of substantially spherical SiO 2 particles having an average particle diameter of about 3 μm were added to the glass paste A to prepare another glass paste (glass paste B).
 次に、スクリーン印刷機を用いて、第1のガラス基板上にガラスペーストBを印刷した。ガラスペーストBは、直径が約10mmの略円形状に印刷された。このガラスペーストBを、140℃で10分間乾燥し、第1の層を形成した。次に、今度はガラスペーストAを、第1のガラス基板上に形成された第1の層上に印刷した。ガラスペーストAは、第1の層とほぼ同形状であり、丁度、第1の層の上部に積層されるようにして印刷された。その後、140℃で10分間乾燥を行い、第2の層を形成した。 Next, glass paste B was printed on the first glass substrate using a screen printer. Glass paste B was printed in a substantially circular shape having a diameter of about 10 mm. This glass paste B was dried at 140 ° C. for 10 minutes to form a first layer. Next, the glass paste A was printed on the first layer formed on the first glass substrate. The glass paste A was substantially the same shape as the first layer, and was printed so that it was just laminated on top of the first layer. Then, it dried at 140 degreeC for 10 minute (s), and formed the 2nd layer.
 次に、第1のガラス基板を450℃まで45分で昇温し、450℃で30分間保持し、第1および第2の層に含まれる有機ビヒクルの樹脂を分解、消失させた。その後、595℃まで15分で昇温し、595℃で40分間保持し、ガラスフリットを軟化させた。その後、室温まで3時間かけて降温した。 Next, the temperature of the first glass substrate was raised to 450 ° C. in 45 minutes and held at 450 ° C. for 30 minutes, so that the organic vehicle resin contained in the first and second layers was decomposed and disappeared. Thereafter, the temperature was raised to 595 ° C. in 15 minutes and held at 595 ° C. for 40 minutes to soften the glass frit. Thereafter, the temperature was lowered to room temperature over 3 hours.
 これにより、第1のガラス基板上に、2層構造の散乱層を形成した。散乱層全体の膜厚は、35μmであった。 Thereby, a scattering layer having a two-layer structure was formed on the first glass substrate. The film thickness of the entire scattering layer was 35 μm.
 (保護層の形成)
 次に、前述の方法で形成された散乱層の上に、保護層を形成した。
(Formation of protective layer)
Next, a protective layer was formed on the scattering layer formed by the above-described method.
 保護層の材料として、テトラnブトキシチタン、3-(グリシジロキシ)プロピルトリメトキシシラン、トリメトキシメトキシシラン、1-ブタノール、トルエン、およびアセチルアセトンからなるゾルゲル液を用いた。 As a material for the protective layer, a sol-gel solution composed of tetra-n-butoxytitanium, 3- (glycidyloxy) propyltrimethoxysilane, trimethoxymethoxysilane, 1-butanol, toluene, and acetylacetone was used.
 スピンコーターを用いて、このゾルゲル液を、上部に散乱層が形成された第1のガラス基板の表面全体にコーティングした。次に、ガラス基板を120℃で5分~10分程度保持して乾燥させた。さらに、475℃で1時間程度保持し、ゾルゲル層中の溶媒を蒸発、分解、および/または焼失させるとともに、ゾルゲル層中の有機金属化合物を酸化および結合させて、保護層を形成した。 Using a spin coater, this sol-gel solution was coated on the entire surface of the first glass substrate on which the scattering layer was formed. Next, the glass substrate was kept at 120 ° C. for about 5 to 10 minutes and dried. Further, the protective layer was formed by maintaining at 475 ° C. for about 1 hour to evaporate, decompose, and / or burn off the solvent in the sol-gel layer and oxidize and bond the organometallic compound in the sol-gel layer.
 (透明電極の形成)
 まず、第1の電極として、DCマグネトロンスパッタ法により、第1のガラス基板の散乱層および保護層が形成されている表面に、ITO層を成膜した。ITO層の膜厚は、150nmとした。ITO層の成膜の際には、所望のパターンが得られるように、マスクを使用した。
(Formation of transparent electrode)
First, as a first electrode, an ITO layer was formed on the surface of the first glass substrate on which the scattering layer and the protective layer were formed by DC magnetron sputtering. The thickness of the ITO layer was 150 nm. When forming the ITO layer, a mask was used so that a desired pattern was obtained.
 図28には、ITO層を形成した後の、第1のガラス基板の模式的な上面図を示す。 FIG. 28 shows a schematic top view of the first glass substrate after the ITO layer is formed.
 図28に示すように、第1のガラス基板1110の表面には、円形状の散乱層1120、および略「L」字状のITO層1140が形成されている。ITO層1140の一方の先端は、散乱層1120の中央部分に配置されている。なお、明確化のため、図28には示されていないが、実際には、第1のガラス基板1100の全面には、散乱層1120を覆うようにして、保護層が設置されている。 As shown in FIG. 28, a circular scattering layer 1120 and a substantially “L” -shaped ITO layer 1140 are formed on the surface of the first glass substrate 1110. One end of the ITO layer 1140 is disposed at the central portion of the scattering layer 1120. Although not shown in FIG. 28 for clarification, a protective layer is actually provided on the entire surface of the first glass substrate 1100 so as to cover the scattering layer 1120.
 (リペア材料の設置)
 次に、以下の方法で、ITO層の欠陥部分にリペア材料を設置した。
(Installation of repair materials)
Next, the repair material was installed in the defective part of the ITO layer by the following method.
 まず、第1のガラス基板の保護層表面に存在する欠陥によりITOが切断されている部分を検出するため、ITO層表面の光学顕微鏡観察を行った。その結果、ITO層の表面には、保護層表面から突出した複数の異物によりITO層が切断されている部分、および保護層表面に開口部をもつ複数の凹部によりITO層が切断されている部分が検出された。検出された欠陥部分に印を付けて、欠陥位置を記録した。 First, an optical microscope observation of the ITO layer surface was performed to detect a portion where the ITO was cut due to a defect present on the surface of the protective layer of the first glass substrate. As a result, on the surface of the ITO layer, a portion where the ITO layer is cut by a plurality of foreign matters protruding from the surface of the protective layer, and a portion where the ITO layer is cut by a plurality of recesses having openings on the surface of the protective layer Was detected. The detected defect portion was marked and the defect position was recorded.
 異物の最大幅は、例えば、50μmであった。また、凹部の開口部の直径は、例えば、10μmであった。 The maximum width of the foreign material was, for example, 50 μm. Moreover, the diameter of the opening part of a recessed part was 10 micrometers, for example.
 次に、前述の塗布針法により、検出された欠陥位置にリペア材料を塗布した。 Next, a repair material was applied to the detected defect position by the above-described application needle method.
 リペア材料には、透明なポリイミドシリコーン樹脂を使用した。また、リペア材料の塗布には、前述の塗布針法を使用した。リペア材料は、欠陥のほぼ中央部分を中心として、直径約120μmの円形になるように塗布した。 透明 Transparent polyimide silicone resin was used as the repair material. Moreover, the above-mentioned application needle method was used for application | coating of repair material. The repair material was applied so as to have a circular shape with a diameter of about 120 μm centered on the substantially central portion of the defect.
 欠陥部分にリペア材料を塗布した後、オーブンを用いて200℃で30分間ほど加熱し、リペア材料を硬化させた。 After the repair material was applied to the defective part, it was heated at 200 ° C. for 30 minutes using an oven to cure the repair material.
 (有機LED素子の作製)
 次に、欠陥部分にリペア材料が設置された第1のガラス基板を用いて、以下の手順で有機LED素子を作製した。
(Production of organic LED elements)
Next, the organic LED element was produced in the following procedures using the 1st glass substrate by which repair material was installed in the defective part.
 まず、純水およびIPAを用いてガラス基板の超音波洗浄を行った後、エキシマUV発生装置を用いて、第1のガラス基板に紫外線を照射し、表面を清浄化した。 First, the glass substrate was ultrasonically cleaned using pure water and IPA, and then the surface was cleaned by irradiating the first glass substrate with ultraviolet rays using an excimer UV generator.
 次に、真空蒸着装置を用いて、第1のガラス基板1100上に、有機発光層および第2の電極を形成した。 Next, an organic light emitting layer and a second electrode were formed on the first glass substrate 1100 using a vacuum deposition apparatus.
 まず、正孔輸送層として、厚さが100nmのα-NPD(N,N’-diphenyl-N,N’-bis(l-naphthyl)-l,l’biphenyl-4,4’’diamine)層を成膜し、さらに、発光層(および電子輸送層)として、厚さが60nmのAlq3(tris8-hydroxyquinoline aluminum)層を成膜した。α-NPD層およびAlq3層は、マスクを用いて、直径12mmの円形パターンとなるように成膜した。 First, an α-NPD (N, N′-diphenyl-N, N′-bis (l-naphthyl) -l, l′ biphenyl-4,4 ″ diamine) layer having a thickness of 100 nm is used as a hole transport layer. Further, an Alq3 (tris8-hydroxyquinoline aluminum) layer having a thickness of 60 nm was formed as a light-emitting layer (and an electron transport layer). The α-NPD layer and Alq3 layer were formed into a circular pattern having a diameter of 12 mm using a mask.
 次に、電子注入層として、厚さが0.5nmのLiF層を成膜した。さらに、第2の電極として、厚さが80nmのAl層を成膜した。LiF層およびAl層は、略「L」字状であって、一方の先端には、縦2mm×横2mmの追加領域が設置された形状を有するように成膜した。 Next, a LiF layer having a thickness of 0.5 nm was formed as an electron injection layer. Further, an Al layer having a thickness of 80 nm was formed as the second electrode. The LiF layer and the Al layer were substantially “L” -shaped, and were formed so as to have a shape in which an additional region of 2 mm in length × 2 mm in width was installed at one end.
 これにより、有機LED素子サンプルが作製された。 Thereby, an organic LED element sample was produced.
 図29には、作製された有機LED素子サンプル1000の上面図を概略的に示す。なお、図29においても、明確化のため保護層は示されていないことに留意する必要がある。 FIG. 29 schematically shows a top view of the produced organic LED element sample 1000. In FIG. 29, it should be noted that the protective layer is not shown for clarity.
 図29に示すように、Alq3層1150は、先に成膜された散乱層1120よりも一回り大きな円形状であって、散乱層1120の全体を覆うように成膜される。なお、図29からは視認できないが、Alq3層1150の直下には、Alq3層1150と同形状のα-NPD層が設置されている。 As shown in FIG. 29, the Alq3 layer 1150 has a circular shape that is slightly larger than the previously formed scattering layer 1120, and is formed to cover the entire scattering layer 1120. Although not visible from FIG. 29, an α-NPD layer having the same shape as the Alq3 layer 1150 is provided immediately below the Alq3 layer 1150.
 一方、Al層1160は、「L」字の一方の先端に設置された追加領域1162が、散乱層1120の中心に配置されるように形成される。なお、図29からは視認できないが、Al層1160の直下には、Al層1160と同形状のLiF層が設置されている。 On the other hand, the Al layer 1160 is formed such that an additional region 1162 disposed at one end of the “L” shape is disposed at the center of the scattering layer 1120. Although not visible from FIG. 29, a LiF layer having the same shape as the Al layer 1160 is provided immediately below the Al layer 1160.
 このような有機LED素子サンプル1000は、上面から見たとき、散乱層1120の中心近傍では、ITO層1140の先端と、α-NPD層およびAlq3層1150の中心と、LiF層およびAl層1160の追加領域1162とが重なり合っており、この部分が有機LED素子サンプル1000の発光領域1190として機能する。従って、発光領域1190の寸法は、縦2mm×横2mmである。 Such an organic LED element sample 1000, when viewed from above, near the center of the scattering layer 1120, the tip of the ITO layer 1140, the center of the α-NPD layer and the Alq3 layer 1150, and the LiF layer and the Al layer 1160. The additional region 1162 overlaps, and this portion functions as the light emitting region 1190 of the organic LED element sample 1000. Therefore, the dimension of the light emitting region 1190 is 2 mm long × 2 mm wide.
 なお、この状態のままでは、有機LED素子サンプル1000が劣化するおそれがある。そのため、以下の方法により、有機LED素子サンプル1000を窒素封入した。 In this state, the organic LED element sample 1000 may be deteriorated. Therefore, the organic LED element sample 1000 was sealed with nitrogen by the following method.
 まず、中央部近傍に凹部を有するガラス基板(PD200:旭硝子株式会社製)(以下、「第2のガラス基板」と称する)を準備した。なお、凹部は、第2のガラス基板の中央部分をサンドブラスト処理することにより形成した。なお、凹部は、第2のガラス基板が、有機LED素子サンプル1000の第1のガラス基板1110を除く各素子と接触しないよう、十分に大きな深さおよび幅を有する。 First, a glass substrate (PD200: manufactured by Asahi Glass Co., Ltd.) (hereinafter referred to as “second glass substrate”) having a recess near the center was prepared. The concave portion was formed by sandblasting the central portion of the second glass substrate. The recess has a sufficiently large depth and width so that the second glass substrate does not come into contact with each element except for the first glass substrate 1110 of the organic LED element sample 1000.
 次に、第2のガラス基板の凹部に、CaOを含有した捕水材を貼り付けた。また、第2のガラス基板の凹部の外周に沿って、シール材として感光性エポキシ樹脂を塗布した。この状態で、第2のガラス基板を、凹部が有機LED素子サンプル1000の各素子と対面するようにして、有機LED素子サンプル1000の上部に配置し、密封処理を行った。 Next, a water catching material containing CaO was attached to the concave portion of the second glass substrate. Moreover, the photosensitive epoxy resin was apply | coated as a sealing material along the outer periphery of the recessed part of a 2nd glass substrate. In this state, the second glass substrate was placed on top of the organic LED element sample 1000 so that the recess faces each element of the organic LED element sample 1000, and a sealing process was performed.
 密封処理の際には、第2のガラス基板の感光性エポキシ樹脂に紫外線を照射し、樹脂を硬化させた。これにより、有機LED素子サンプル1000と第2のガラス基板が貼り合わされた。なお、密封処理は、窒素雰囲気にしたグローブボックス内で実施した。このため、有機LED素子サンプル1000の各素子は、窒素封止された。 During the sealing process, the photosensitive epoxy resin of the second glass substrate was irradiated with ultraviolet rays to cure the resin. Thereby, the organic LED element sample 1000 and the 2nd glass substrate were bonded together. In addition, the sealing process was implemented in the glove box made into nitrogen atmosphere. For this reason, each element of the organic LED element sample 1000 was nitrogen-sealed.
 (評価)
 次に、窒素封止された有機LED素子サンプル1000を用いて、発光試験を実施した。
(Evaluation)
Next, the light emission test was implemented using the organic LED element sample 1000 sealed with nitrogen.
 発光試験は、有機LED素子サンプル1000の両電極(すなわち、ITO層1140およびAl層1160)間に、6Vの電圧を印加することにより行った。 The light emission test was performed by applying a voltage of 6 V between both electrodes (that is, the ITO layer 1140 and the Al layer 1160) of the organic LED element sample 1000.
 図30および図31には、光学顕微鏡を用いて、有機LED素子サンプル1000の発光領域1190を、第1のガラス基板1100側から観察した際の反射像を示す。図30は、電圧印加前の状態を示したものであり、図31は、電圧印加後の状態を示したものである。 30 and 31 show reflection images when the light emitting region 1190 of the organic LED element sample 1000 is observed from the first glass substrate 1100 side using an optical microscope. FIG. 30 shows a state before voltage application, and FIG. 31 shows a state after voltage application.
 図30および図31において、矢印Aで示す2箇所の部分は、リペア材料が設置された欠陥部分に相当する。 30 and 31, two portions indicated by an arrow A correspond to a defective portion where a repair material is installed.
 図31から、作製した有機LED素子サンプルの発光領域1190において、リペア材料を設置した箇所を除き、適正な発光(緑発光)が得られていることがわかる。なお15分間、有機LED素子サンプル1000の両電極に電圧を印加し続けたが、発光の状態は、安定しており、電圧印加中、一定の発光が得られた。 FIG. 31 shows that in the light emitting region 1190 of the produced organic LED element sample, appropriate light emission (green light emission) is obtained except for the place where the repair material is installed. In addition, although voltage was continuously applied to both electrodes of the organic LED element sample 1000 for 15 minutes, the light emission state was stable, and constant light emission was obtained during voltage application.
 一般に、有機LED素子において2電極間が短絡している場合、電圧印加直後には、短絡箇所に局部的な大電流が流れ、短絡箇所の輝度が高くなり、その後直ぐ、短絡箇所がダークスポットと呼ばれる非点灯部分となり、さらにはダークスポットの大きさが時間経過とともに拡大していくことがある。また、短絡部が大きい場合には、有機LED素子が全く点灯しないこともある。 In general, when two electrodes are short-circuited in an organic LED element, immediately after voltage application, a local large current flows through the short-circuited portion, the brightness of the short-circuited portion increases, and immediately after that, the short-circuited portion becomes a dark spot. It becomes a non-lighting part called, and the size of the dark spot may expand over time. Moreover, when a short circuit part is large, an organic LED element may not light at all.
 しかしながら、本実験では、少なくとも測定期間中、有機LED素子1000では安定した発光が得られていた。さらに、素子に電圧を印加しながら電流を測定したところ、有機LED素子1000と欠陥がなくリペアもしていない有機LED素子とで測定値に差がないことが分かった。なお、もし短絡が生じていれば電流値は大きくなるはずである。これらの結果より、有機LED素子サンプル1000では、電極間の短絡は生じていないことが確認された。 However, in this experiment, stable light emission was obtained with the organic LED element 1000 at least during the measurement period. Furthermore, when the current was measured while applying a voltage to the element, it was found that there was no difference in measured values between the organic LED element 1000 and an organic LED element that had no defects and was not repaired. If a short circuit occurs, the current value should be large. From these results, in the organic LED element sample 1000, it was confirmed that the short circuit between electrodes did not arise.
 なお、発光領域1190のうちリペア材料を設置した部分では、発光は生じない。しかしながら、リペア材料は、120μm程度の直径しかない上、発光領域1190では、散乱層1120によって光が散乱するため、リペア材料による非発光部分は、有機LED素子サンプル1000から数10cm離れただけで、ほとんど認識されなくなった。 In addition, light emission does not occur in the portion where the repair material is installed in the light emitting region 1190. However, since the repair material has only a diameter of about 120 μm and light is scattered by the scattering layer 1120 in the light emitting region 1190, the non-light emitting portion due to the repair material is only several tens of centimeters away from the organic LED element sample 1000 Almost no longer recognized.
 このように、本発明による方法により、散乱層または保護層の表面に欠陥が存在する場合であっても、その後、散乱層または保護層の上部に成膜される両電極間に短絡の生じにくい有機LED素子を作製することができることが確認された。 As described above, according to the method of the present invention, even when a defect exists on the surface of the scattering layer or the protective layer, a short circuit is unlikely to occur between the electrodes formed on the scattering layer or the protective layer. It was confirmed that an organic LED element can be produced.
 (実施例2)
 前述のように、図4および図7に示す構成の場合、有機EL素子を発光させた際に、リペア材料を設置した部分を含む表面全体から発光が得られる。このため、図4および図7に示す構成の場合、リペア材料が視認されにくくなるという利点が得られると考えられる。
(Example 2)
As described above, in the case of the configuration shown in FIGS. 4 and 7, when the organic EL element emits light, light can be obtained from the entire surface including the portion where the repair material is provided. For this reason, in the case of the structure shown in FIG. 4 and FIG. 7, it is thought that the advantage that a repair material becomes difficult to visually recognize is acquired.
 このことを確認するため、以下の手順で有機EL素子を作製し、発光状態の外観観察を行った。 In order to confirm this, an organic EL element was prepared according to the following procedure, and the appearance of the light emitting state was observed.
 まず、前述の実施例1と同様の方法で、上部に散乱層および保護層が形成されたガラス基板を準備した。 First, a glass substrate having a scattering layer and a protective layer formed thereon was prepared in the same manner as in Example 1 described above.
 次に、保護層上にリペア材料を設置した。リペア材料の設置方法としては、図21に示すような塗布針法を採用した。 Next, a repair material was installed on the protective layer. As an installation method of the repair material, an application needle method as shown in FIG. 21 was adopted.
 リペア材料には、ポリイミドワニス(C-5420:三菱ガス化学製)を使用した。リペア材料は、直径110μm、膜厚1.2μmの略円形になるように塗布した。 As the repair material, polyimide varnish (C-5420: manufactured by Mitsubishi Gas Chemical) was used. The repair material was applied in a substantially circular shape with a diameter of 110 μm and a film thickness of 1.2 μm.
 なお、実施例2では、リペア材料を設置した部分の発光の視認性を確認することが目的であるため、リペア材料は、必ずしも欠陥部分に塗布しているわけではない。 In Example 2, since the purpose is to confirm the visibility of light emission in the portion where the repair material is installed, the repair material is not necessarily applied to the defective portion.
 ポリイミド材料は、比較的良好な耐熱性を有するため、高温条件下でITO層の成膜を行っても劣化が少ないという特徴を有する。また、ポリイミド材料は、熱膨張係数が低く、ITOと近いため、ITO層の成膜後に応力起因のクラック等の不具合が発生する危険性も少ない。従って、ポリイミド材料は、リペア材料として好適である。 Since polyimide material has relatively good heat resistance, it has a feature that deterioration is small even when an ITO layer is formed under high temperature conditions. In addition, since the polyimide material has a low coefficient of thermal expansion and is close to ITO, there is little risk of occurrence of defects such as stress-induced cracks after the formation of the ITO layer. Therefore, the polyimide material is suitable as a repair material.
 リペア材料を塗布した後、オーブンを用いて、ガラス基板全体を140℃で約10分間加熱し、リペア材料を硬化させた。 After applying the repair material, the entire glass substrate was heated at 140 ° C. for about 10 minutes using an oven to cure the repair material.
 次に、リペア材料が配置された部分を覆うようにして、保護層の上部にITO層を成膜した。さらに、ITO層の上に、有機発光層および第2の電極を形成した。その後、窒素封入を行い、有機EL素子サンプルを完成させた。これらの処理の方法、およびマスク形状等の条件は、前述の実施例1の場合と同様である。 Next, an ITO layer was formed on the protective layer so as to cover the portion where the repair material was disposed. Furthermore, an organic light emitting layer and a second electrode were formed on the ITO layer. Thereafter, nitrogen sealing was performed to complete an organic EL element sample. These processing methods and conditions such as the mask shape are the same as those in the first embodiment.
 得られた有機EL素子サンプルの両電極間に、約5Vの電圧を印加し、発光状態を観察した。 A voltage of about 5 V was applied between both electrodes of the obtained organic EL element sample, and the light emission state was observed.
 図32には、発光状態にある有機EL素子サンプルの観察結果(光学顕微鏡像のイラスト)を模式的に示す。図において、矢印の示す箇所が、リペア材料を設置した領域に相当する。なお、この図は、有機EL素子サンプルにおいて、ガラス基板の各層を成膜した表面とは反対側の表面に焦点を合わせた場合の観察結果である。 FIG. 32 schematically shows an observation result (illustration of an optical microscope image) of an organic EL element sample in a light emitting state. In the figure, the location indicated by the arrow corresponds to the area where the repair material is installed. In addition, this figure is an observation result at the time of focusing on the surface on the opposite side to the surface which formed each layer of the glass substrate in the organic EL element sample.
 この図から、視野全体は、一様な明るさとなっており、リペア材料を設置した部分を視認することは難しいことがわかる。 From this figure, it can be seen that the entire field of view has uniform brightness, and it is difficult to visually recognize the part where the repair material is installed.
 なお、有機EL素子サンプルにおいて、有機発光層の発光面に焦点を合わせて同様の観察を実施したところ、リペア材料を設置した領域は、周辺部分よりは幾分暗い状態ではあるものの、良好な発光が得られていることが確認された。 In addition, in the organic EL element sample, when the same observation was performed focusing on the light emitting surface of the organic light emitting layer, the region where the repair material was installed was slightly darker than the peripheral part, but good light emission was achieved. It was confirmed that
 このように、図4および図7のような構成の場合、有機EL素子を発光させた際に、表面全体から発光が得られ、リペア材料が視認されにくいことが確認された。 Thus, in the case of the configuration as shown in FIGS. 4 and 7, it was confirmed that when the organic EL element was caused to emit light, light was obtained from the entire surface, and the repair material was difficult to visually recognize.
 (実施例3)
 次に、保護層の表面に存在する欠陥上にリペア材料を配置することにより、保護層(およびリペア材料)の上部に連続した膜を成膜できることを確認するため、以下の評価を行った。
(Example 3)
Next, the following evaluation was performed in order to confirm that a continuous film can be formed on top of the protective layer (and the repair material) by disposing a repair material on the defects present on the surface of the protective layer.
 まず、前述の実施例1と同様の方法により、上部に散乱層および保護層が形成されたガラス基板を準備した。 First, a glass substrate having a scattering layer and a protective layer formed thereon was prepared by the same method as in Example 1 described above.
 次に、顕微鏡観察により、保護層の表面に欠陥が存在する箇所を探し、見つかった欠陥の存在位置を把握した。本評価では、このうち、図33に示すような、長径約50μmの異物からなる欠陥を選定した。 Next, the location where the defect exists on the surface of the protective layer was searched by microscopic observation, and the location of the found defect was grasped. In this evaluation, among these, the defect which consists of a foreign material with a major axis of about 50 micrometers was selected as shown in FIG.
 共焦点顕微鏡を用いて、この欠陥の三次元像を取得した。また、図33中に点線で示した領域の断面凹凸形状を測定した。 A three-dimensional image of this defect was obtained using a confocal microscope. Moreover, the uneven | corrugated shape of the cross section of the area | region shown with the dotted line in FIG.
 測定結果を図34に示す。 The measurement results are shown in FIG.
 この結果から、異物自体は、鋭い凹凸形状を呈しており、異物周辺は、凹みになっていることがわかる。この欠陥上に各層を成膜して有機EL素子を形成した場合、膜の付きまわりが低下し、第1の電極と第2の電極が短絡してしまう可能性が高いと考えられる。 From this result, it can be seen that the foreign matter itself has a sharp uneven shape, and the periphery of the foreign matter is a dent. When an organic EL element is formed by depositing each layer on this defect, it is considered that there is a high possibility that the coverage of the film is lowered and the first electrode and the second electrode are short-circuited.
 次に、この欠陥の上に、図21に示すような塗布針法により、リペア材料を設置した。リペア材料には、ポリイミドワニス(C-5420:三菱ガス化学製)を使用した。リペア材料は、直径102μm、膜厚1.6μmの略円形になるように塗布した。 Next, a repair material was installed on this defect by a coating needle method as shown in FIG. A polyimide varnish (C-5420: manufactured by Mitsubishi Gas Chemical) was used as a repair material. The repair material was applied in a substantially circular shape having a diameter of 102 μm and a film thickness of 1.6 μm.
 図35には、リペア材料を塗布した後の欠陥部分における断面凹凸形状の測定結果を示す。この図35から、欠陥がリペア材料によって覆われたことにより、保護層の表面には、平滑な状態が得られていることがわかる。 FIG. 35 shows the measurement results of the cross-sectional irregularities in the defective portion after the repair material is applied. From FIG. 35, it can be seen that a smooth state is obtained on the surface of the protective layer by covering the defect with the repair material.
 このような平滑な状態の保護層の上にITO層以下、各層を成膜した場合、第1の電極(ITO層)と第2の電極の間の短絡が有意に抑制されることは明らかであろう。 It is clear that short-circuiting between the first electrode (ITO layer) and the second electrode is significantly suppressed when each layer below the ITO layer is formed on such a smooth protective layer. I will.
 本発明は、発光デバイス等に使用される有機LED素子に適用することができる。 The present invention can be applied to an organic LED element used for a light emitting device or the like.
 本願は、2012年3月14日に出願した日本国特許出願2012-057961号に基づく優先権を主張するものであり、同日本国出願の全内容を本願の参照として援用する。 This application claims priority based on Japanese Patent Application No. 2012-057961 filed on March 14, 2012, the entire contents of which are incorporated herein by reference.
 1    従来の有機LED素子
 10   ガラス基板
 20   散乱層
 21   異物
 25   第1の側面
 26   第2の側面
 29   散乱層の表面
 31   凹部
 35   側部
 36   底部
 40   透明電極(陽極)
 41a~41c 層部分
 42a~42c 層部分
 50   有機発光層
 51a~51c 層部分
 52a~52c 層部分
 60   第2の電極(陰極)
 61a~61c 層部分
 62a~62c 層部分
 100  第1実施例による有機LED素子
 110  透明基板
 120  散乱層
 121  ベース材
 124  散乱物質
 129  散乱層の表面
 140  第1の電極(陽極)
 150  有機発光層
 160  第2の電極(陰極)
 170  リペア材料
 190  光取り出し面
 200  第2実施例による有機LED素子
 210  透明基板
 220  散乱層
 221  ベース材
 224  散乱物質
 230  保護層
 240  第1の電極
 250  有機発光層
 260  第2の電極
 270  リペア材料
 290  光取り出し面
 300  第3実施例による有機LED素子
 310  透明基板
 320  散乱層
 321  ベース材
 324  散乱物質
 340  第1の電極
 341a~341c 層部分
 342a~342c 層部分
 350  有機発光層
 360  第2の電極
 370  リペア材料
 390  光取り出し面
 400  第4実施例による有機LED素子
 410  透明基板
 420  散乱層
 421  ベース材
 424  散乱物質
 430  保護層
 440  第1の電極
 441a~441c 層部分
 442a~442c 層部分
 450  有機発光層
 460  第2の電極
 470  リペア材料
 490  光取り出し面
 500  第5実施例による有機LED素子
 510  透明基板
 520  散乱層
 521  ベース材
 524  散乱物質
 540  第1の電極
 541a~541c 層部分
 542a~542c 層部分
 550  有機発光層
 560  第2の電極
 570  リペア材料
 580  追加導電層
 581a~581c 層部分
 582a~582c 層部分
 590  光取り出し面
 600  第6実施例による有機LED素子
 610  透明基板
 620  散乱層
 621  ベース材
 624  散乱物質
 630  保護層
 640  第1の電極
 641a~641c 層部分
 642a~642c 層部分
 650  有機発光層
 660  第2の電極
 670  リペア材料
 680  追加導電層
 681a~681c 層部分
 682a~682c 層部分
 690  光取り出し面
 910  塗布針
 911  本体
 912  テーパー部
 913  先端
 916、923 液体
 920  容器
 925  原料液体
 950  管部材
 952  ノズル部
 954  中心針
 956  液体
 957、958 液滴
 1000 有機LED素子サンプル
 1100 第1のガラス基板
 1120 散乱層
 1140 ITO層
 1150 有機発光層
 1160 Al層
 1162 追加領域
 1190 発光部
DESCRIPTION OF SYMBOLS 1 Conventional organic LED element 10 Glass substrate 20 Scattering layer 21 Foreign material 25 1st side surface 26 2nd side surface 29 Surface of scattering layer 31 Recessed part 35 Side part 36 Bottom part 40 Transparent electrode (anode)
41a to 41c Layer portion 42a to 42c Layer portion 50 Organic light emitting layer 51a to 51c Layer portion 52a to 52c Layer portion 60 Second electrode (cathode)
61a to 61c Layer portion 62a to 62c Layer portion 100 Organic LED device according to first embodiment 110 Transparent substrate 120 Scattering layer 121 Base material 124 Scattering substance 129 Surface of scattering layer 140 First electrode (anode)
150 Organic light emitting layer 160 Second electrode (cathode)
170 Repair Material 190 Light Extraction Surface 200 Organic LED Element According to Second Example 210 Transparent Substrate 220 Scattering Layer 221 Base Material 224 Scattering Material 230 Protective Layer 240 First Electrode 250 Organic Light-Emitting Layer 260 Second Electrode 270 Repair Material 290 Light Extraction surface 300 Organic LED element according to third embodiment 310 Transparent substrate 320 Scattering layer 321 Base material 324 Scattering substance 340 First electrode 341a to 341c Layer portion 342a to 342c Layer portion 350 Organic light emitting layer 360 Second electrode 370 Repair material 390 Light extraction surface 400 Organic LED element according to fourth embodiment 410 Transparent substrate 420 Scattering layer 421 Base material 424 Scattering substance 430 Protective layer 440 First electrode 441a to 441c Layer portion 442a to 442c Layer portion Minute 450 Organic light emitting layer 460 Second electrode 470 Repair material 490 Light extraction surface 500 Organic LED element according to the fifth example 510 Transparent substrate 520 Scattering layer 521 Base material 524 Scattering substance 540 First electrode 541a to 541c Layer portion 542a to 542c layer portion 550 organic light emitting layer 560 second electrode 570 repair material 580 additional conductive layer 581a to 581c layer portion 582a to 582c layer portion 590 light extraction surface 600 organic LED element 610 transparent substrate 620 scattering layer 621 base according to the sixth embodiment Material 624 Scattering substance 630 Protective layer 640 First electrode 641a to 641c Layer portion 642a to 642c Layer portion 650 Organic light emitting layer 660 Second electrode 670 Repair material 680 Additional conductive layer 681a to 681c Layer portion 682a to 682c Layer portion 690 Light extraction surface 910 Application needle 911 Main body 912 Tapered portion 913 Tip 916, 923 Liquid 920 Container 925 Raw material liquid 950 Tube member 952 Nozzle portion 954 Central needle 956 Liquid 957, 958 Droplet 1000 Organic LED element sample 1 First glass substrate 1120 Scattering layer 1140 ITO layer 1150 Organic light emitting layer 1160 Al layer 1162 Additional region 1190 Light emitting part

Claims (15)

  1.  透明基板と、該透明基板上に形成された散乱層と、該散乱層上に形成された第1の電極と、該第1の電極上に形成された有機発光層と、該有機発光層上に形成された第2の電極とを有する有機LED素子であって、
     前記第1の電極と前記有機発光層とが接触していない部分には、リペア材料が配置されていることを特徴とする有機LED素子。
    A transparent substrate, a scattering layer formed on the transparent substrate, a first electrode formed on the scattering layer, an organic light emitting layer formed on the first electrode, and the organic light emitting layer An organic LED element having a second electrode formed on
    An organic LED element, wherein a repair material is disposed in a portion where the first electrode and the organic light emitting layer are not in contact with each other.
  2.  透明基板と、該透明基板上に形成された散乱層と、該散乱層上に形成された第1の電極と、該第1の電極上に形成された有機発光層と、該有機発光層上に形成された第2の電極とを有する有機LED素子であって、
     前記散乱層の表面には、欠陥が存在し、
     該欠陥の部分には、リペア材料が存在し、該リペア材料は、前記散乱層の前記欠陥によって陰となる部分と接触した状態で、前記欠陥を覆うように配置され、
     前記第1の電極は、前記リペア材料を覆う連続的な層で構成されることを特徴とする有機LED素子。
    A transparent substrate, a scattering layer formed on the transparent substrate, a first electrode formed on the scattering layer, an organic light emitting layer formed on the first electrode, and the organic light emitting layer An organic LED element having a second electrode formed on
    There are defects on the surface of the scattering layer,
    A repair material is present in the portion of the defect, and the repair material is disposed so as to cover the defect in a state of being in contact with a portion shadowed by the defect of the scattering layer,
    The organic LED element, wherein the first electrode is formed of a continuous layer covering the repair material.
  3.  前記散乱層上に保護層を備えたことを特徴とする請求項1または2に記載の有機LED素子。 3. The organic LED element according to claim 1, further comprising a protective layer on the scattering layer.
  4.  前記リペア材料は、前記散乱層または前記保護層の表面の欠陥部分に配置されており、
     前記欠陥は、異物および/または凹部であることを特徴とする請求項1乃至3のいずれか一つに記載の有機LED素子。
    The repair material is disposed on a defective portion of the surface of the scattering layer or the protective layer,
    The organic LED element according to any one of claims 1 to 3, wherein the defect is a foreign matter and / or a concave portion.
  5.  前記リペア材料は、樹脂、ガラス、セラミック、および/または金属を有することを特徴とする請求項1乃至4のいずれか一つに記載の有機LED素子。 The organic LED element according to any one of claims 1 to 4, wherein the repair material includes resin, glass, ceramic, and / or metal.
  6.  前記第1の電極は、電極層および追加導電層の2層構造となっていることを特徴とする請求項1乃至5のいずれか一つに記載の有機LED素子。 The organic LED element according to any one of claims 1 to 5, wherein the first electrode has a two-layer structure of an electrode layer and an additional conductive layer.
  7.  前記散乱層は、ガラスからなるベース材と、該ベース材中に分散された複数の散乱物質とを有することを特徴とする請求項1乃至6のいずれか一つに記載の有機LED素子。 The organic LED element according to any one of claims 1 to 6, wherein the scattering layer includes a base material made of glass and a plurality of scattering materials dispersed in the base material.
  8.  透明基板と、該透明基板上に形成された散乱層と、該散乱層上に形成された第1の電極とを有する透光性基板であって、
     前記第1の電極上に、前記散乱層が露出されないように形成されるリペア材料を備えたことを特徴とする透光性基板。
    A translucent substrate having a transparent substrate, a scattering layer formed on the transparent substrate, and a first electrode formed on the scattering layer,
    A translucent substrate comprising a repair material formed on the first electrode so that the scattering layer is not exposed.
  9.  透明基板と、該透明基板上に形成された散乱層と、該散乱層上に形成された保護層と、該保護層上に形成された第1の電極とを有する透光性基板であって、
     前記第1の電極上に、前記保護層が露出されないように形成されるリペア材料を備えたことを特徴とする透光性基板。
    A translucent substrate having a transparent substrate, a scattering layer formed on the transparent substrate, a protective layer formed on the scattering layer, and a first electrode formed on the protective layer. ,
    A translucent substrate comprising a repair material formed on the first electrode so that the protective layer is not exposed.
  10.  前記第1の電極は、前記リペア材料を覆う連続的な層で構成されることを特徴とする請求項8または9に記載の透光性基板。 The translucent substrate according to claim 8 or 9, wherein the first electrode is formed of a continuous layer covering the repair material.
  11.  透明基板と、散乱層と、第1の電極とを有する透光性基板を製造する方法であって、
    (1a)前記透明基板上に前記散乱層を形成するステップと、
    (1b)前記散乱層上に前記第1の電極を形成するステップと、
    (1c)前記第1の電極上であって、前記散乱層が露出されないようにリペア材料を形成するステップと、
     を有する方法。
    A method of manufacturing a translucent substrate having a transparent substrate, a scattering layer, and a first electrode,
    (1a) forming the scattering layer on the transparent substrate;
    (1b) forming the first electrode on the scattering layer;
    (1c) forming a repair material on the first electrode so that the scattering layer is not exposed;
    Having a method.
  12.  透明基板と、散乱層と、保護層と、第1の電極とを有する透光性基板を製造する方法であって、
    (2a)前記透明基板上に前記散乱層を形成するステップと、
    (2b)前記散乱層上に前記保護層を形成するステップと、
    (2c)前記保護層上に前記第1の電極を形成するステップと、
    (2d)前記第1の電極上であって、前記保護層が露出されないようにリペア材料を形成するステップと、
     を有する方法。
    A method for producing a translucent substrate having a transparent substrate, a scattering layer, a protective layer, and a first electrode,
    (2a) forming the scattering layer on the transparent substrate;
    (2b) forming the protective layer on the scattering layer;
    (2c) forming the first electrode on the protective layer;
    (2d) forming a repair material on the first electrode so that the protective layer is not exposed;
    Having a method.
  13.  前記リペア材料は、前記散乱層または前記保護層の表面の欠陥部分に配置されており、
     前記欠陥は、異物および/または凹部であることを特徴とする請求項11または12のいずれか一つに記載の方法。
    The repair material is disposed on a defective portion of the surface of the scattering layer or the protective layer,
    The method according to claim 11, wherein the defect is a foreign object and / or a recess.
  14.  前記リペア材料は、樹脂、ガラス、セラミック、および/または金属を有することを特徴とする請求項11乃至13のいずれか一つに記載の方法。 14. The method according to claim 11, wherein the repair material includes resin, glass, ceramic, and / or metal.
  15.  前記第1の電極は、電極層および追加導電層の2層構造を有することを特徴とする請求項11乃至14のいずれか一つに記載の方法。 The method according to claim 11, wherein the first electrode has a two-layer structure of an electrode layer and an additional conductive layer.
PCT/JP2013/057250 2012-03-14 2013-03-14 Organic led element, light-transmitting substrate, and manufacturing method for light-transmitting substrate WO2013137403A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-057961 2012-03-14
JP2012057961A JP2015109136A (en) 2012-03-14 2012-03-14 Organic led element, translucent substrate and translucent substrate manufacturing method

Publications (1)

Publication Number Publication Date
WO2013137403A1 true WO2013137403A1 (en) 2013-09-19

Family

ID=49161306

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/057250 WO2013137403A1 (en) 2012-03-14 2013-03-14 Organic led element, light-transmitting substrate, and manufacturing method for light-transmitting substrate

Country Status (2)

Country Link
JP (1) JP2015109136A (en)
WO (1) WO2013137403A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016079957A1 (en) * 2014-11-17 2016-05-26 株式会社Joled Method for manufacturing organic electroluminescence element, and organic electroluminescence element
KR20190006508A (en) * 2016-05-10 2019-01-18 가부시키가이샤 스미카 분세키 센터 Method and method for inspection and use of organic electronic devices
TWI655800B (en) * 2018-01-04 2019-04-01 帆宣系統科技股份有限公司 Polyimide film repair method for organic light emitting diode

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101808715B1 (en) * 2015-09-23 2017-12-14 엘지디스플레이 주식회사 Organic light emitting display device
CN109166980B (en) * 2018-08-10 2020-05-19 云谷(固安)科技有限公司 Display panel, display module and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH118070A (en) * 1997-06-17 1999-01-12 Casio Comput Co Ltd Display device
JPH1154286A (en) * 1997-07-29 1999-02-26 Pioneer Electron Corp Luminescent display and manufacture thereof
JP2005134562A (en) * 2003-10-29 2005-05-26 Sharp Corp Display device and its manufacturing method
WO2011046190A1 (en) * 2009-10-15 2011-04-21 旭硝子株式会社 Organic led element, glass frit for diffusion layer for use in organic led element, and method for production of diffusion layer for use in organic led element
JP2011108369A (en) * 2009-11-12 2011-06-02 Hitachi High-Technologies Corp Method of manufacturing organic electroluminescent display device, method of mending organic electroluminescent display device, and needle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH118070A (en) * 1997-06-17 1999-01-12 Casio Comput Co Ltd Display device
JPH1154286A (en) * 1997-07-29 1999-02-26 Pioneer Electron Corp Luminescent display and manufacture thereof
JP2005134562A (en) * 2003-10-29 2005-05-26 Sharp Corp Display device and its manufacturing method
WO2011046190A1 (en) * 2009-10-15 2011-04-21 旭硝子株式会社 Organic led element, glass frit for diffusion layer for use in organic led element, and method for production of diffusion layer for use in organic led element
JP2011108369A (en) * 2009-11-12 2011-06-02 Hitachi High-Technologies Corp Method of manufacturing organic electroluminescent display device, method of mending organic electroluminescent display device, and needle

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016079957A1 (en) * 2014-11-17 2016-05-26 株式会社Joled Method for manufacturing organic electroluminescence element, and organic electroluminescence element
JPWO2016079957A1 (en) * 2014-11-17 2017-07-13 株式会社Joled Method for manufacturing organic electroluminescent element and organic electroluminescent element
KR20190006508A (en) * 2016-05-10 2019-01-18 가부시키가이샤 스미카 분세키 센터 Method and method for inspection and use of organic electronic devices
JPWO2017195816A1 (en) * 2016-05-10 2019-03-07 株式会社住化分析センター Inspection method and analysis method of organic electronic device, and use thereof
KR102307522B1 (en) * 2016-05-10 2021-09-29 가부시키가이샤 스미카 분세키 센터 Inspection methods and analysis methods for organic electronic devices, and their use
TWI655800B (en) * 2018-01-04 2019-04-01 帆宣系統科技股份有限公司 Polyimide film repair method for organic light emitting diode

Also Published As

Publication number Publication date
JP2015109136A (en) 2015-06-11

Similar Documents

Publication Publication Date Title
JP5742838B2 (en) Organic LED element, translucent substrate, and manufacturing method of organic LED element
US8729593B2 (en) Substrate with wavy surface to control specular visibility for electronic device and electronic device using same
US8018140B2 (en) Translucent substrate, process for producing the same, organic LED element and process for producing the same
JP5998124B2 (en) Organic LED element, translucent substrate, and manufacturing method of translucent substrate
KR20100101076A (en) Light transmitting substrate, method for manufacturing light transmitting substrate, organic led element and method for manufacturing organic led element
WO2012057043A1 (en) Organic el device, translucent substrate, and method for manufacturing organic el device
WO2013137403A1 (en) Organic led element, light-transmitting substrate, and manufacturing method for light-transmitting substrate
JP6582981B2 (en) Translucent substrate, organic LED element, and method for producing translucent substrate
WO2013054820A1 (en) Glass for use in scattering layer of organic led element, multilayer substrate for use in organic led element and method for producing said multilayer substrate, and organic led element and method for producing same
JP6056765B2 (en) Laminated substrate for organic LED element and organic LED element
US20140048790A1 (en) Organic el element, translucent substrate and method of manufacturing organic led element
JP2017528399A (en) Transparent diffusive OLED substrate and method for producing the substrate
JP2010171349A (en) Display panel substrate, manufacturing method therefor, display panel using the same, and manufacturing method therefor
JP2013229186A (en) Organic led element, translucent substrate, and translucent substrate manufacturing method
WO2014112414A1 (en) Method for producing translucent substrate, translucent substrate, and organic led element
JP2014120384A (en) Method for manufacturing organic led element and organic led element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13760571

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13760571

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP