WO2013137322A1 - Waste water treatment method - Google Patents

Waste water treatment method Download PDF

Info

Publication number
WO2013137322A1
WO2013137322A1 PCT/JP2013/057018 JP2013057018W WO2013137322A1 WO 2013137322 A1 WO2013137322 A1 WO 2013137322A1 JP 2013057018 W JP2013057018 W JP 2013057018W WO 2013137322 A1 WO2013137322 A1 WO 2013137322A1
Authority
WO
WIPO (PCT)
Prior art keywords
anaerobic
wastewater
treatment method
treatment step
waste water
Prior art date
Application number
PCT/JP2013/057018
Other languages
French (fr)
Japanese (ja)
Inventor
李玉友
中手一郎
Original Assignee
株式会社ダイセル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ダイセル filed Critical 株式会社ダイセル
Priority to JP2014504962A priority Critical patent/JP6029649B2/en
Priority to CN201380008250.3A priority patent/CN104105671A/en
Publication of WO2013137322A1 publication Critical patent/WO2013137322A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • C02F3/345Biological treatment of water, waste water, or sewage characterised by the microorganisms used for biological oxidation or reduction of sulfur compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/28Anaerobic digestion processes
    • C02F3/2846Anaerobic digestion processes using upflow anaerobic sludge blanket [UASB] reactors
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/101Sulfur compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Definitions

  • the present invention relates to a wastewater treatment method. More specifically, the present invention relates to anaerobic treatment of wastewater containing a high concentration of sulfate.
  • an upflow anaerobic sludge bed that stores sludge (granule), which is agglomerated by anaerobic microorganisms mainly composed of methane bacteria, in the tank and supplies treatment liquid from the bottom of the tank.
  • An upflow anaerobic biological treatment apparatus using UASB: Upflow Anaerobic Sludge Bed
  • an expanded sludge bed EVSB: Expanded Granular Sludge Bed
  • This technology temporarily stores the processing liquid inside the processing tank in the storage tank using the gas pressure of the generated biogas by switching the valve, and after reducing the gas pressure in the processing tank, The processing liquid in the processing tank is agitated by the stored liquid by returning the stored liquid in the storage tank to the processing tank (see Patent Document 1).
  • an object of the present invention is to provide a wastewater treatment method capable of reducing the generation of hydrogen sulfide and treating industrial wastewater containing both high-concentration COD and sulfate.
  • the present invention Including an anaerobic treatment step of treating wastewater using anaerobic organisms under anaerobic conditions, and
  • the waste water in the anaerobic treatment step contains sulfuric acid or sulfate, organic acid and alcohol
  • a wastewater treatment method is provided, wherein the weight ratio of the organic acid to the alcohol is 1/99 to 99/1 (the former / the latter).
  • the total amount of organic acid and alcohol is preferably 0.1 to 10% by weight with respect to the whole waste water in the anaerobic treatment step.
  • the organic acid is preferably a carboxylic acid.
  • the alcohol is preferably methanol or ethanol.
  • the chemical oxygen demand of the waste water in the anaerobic treatment step is 900 to 100,000 mg / L.
  • the ratio between the chemical oxygen demand (mg / L) and the SO 4 2 ⁇ concentration (mg / L) is 0.2 to 10 (the former / the latter). preferable.
  • a gas containing hydrogen sulfide is generated, and in the anaerobic treatment step or after the anaerobic treatment step, the gas containing hydrogen sulfide and the oxygen concentration are 0.5% by volume to 2%. It is preferable to contact an oxygen-containing gas that is 0.0 vol%.
  • the anaerobic organism can form an anaerobic bacterial conglomerate in the anaerobic treatment step.
  • the anaerobic organism can generate methane gas in the anaerobic treatment step.
  • the anaerobic organism is preferably one or more bacteria selected from Halothiobacillus neapolitanus and Thioalkalimicrobium sibiricum.
  • an aerobic treatment process for treating wastewater under aerobic conditions.
  • a sludge solubilization step of solubilizing the sludge generated in the anaerobic treatment step to obtain a sludge solubilized solution it is preferable to further include a sludge solubilization step of solubilizing the sludge generated in the anaerobic treatment step to obtain a sludge solubilized solution.
  • waste water treatment method of the present invention generation of hydrogen sulfide can be reduced, and industrial wastewater containing both high-concentration COD and sulfate can be treated, so both high-concentration COD and sulfate are contained. There is an effect that the treatment efficiency of industrial wastewater is remarkably improved.
  • the wastewater treatment method of the present invention is Including an anaerobic treatment step of treating wastewater using anaerobic organisms under anaerobic conditions, and
  • the waste water in the anaerobic treatment step contains sulfuric acid or sulfate, organic acid and alcohol,
  • the weight ratio of the organic acid to the alcohol may be 1/99 to 99/1 (the former / the latter), and is not particularly limited.
  • the weight ratio of the organic acid to the alcohol is preferably 1/50 to 50/1 (the former / the latter), and 1/25 to 10 / 1 (the former / the latter) is more preferable, and 1/1 to 1/5 (the former / the latter) is more preferable.
  • the total amount of the organic acid and the alcohol is preferably 0.1 to 10% by weight with respect to the entire waste water in the anaerobic treatment step. More preferably, it is 1 to 5% by weight, and further preferably 0.2 to 2% by weight.
  • the organic acid is preferably a carboxylic acid, such as a carboxylic acid having 1 to 5 carbon atoms such as formic acid, acetic acid, propionic acid, trifluoroacetic acid, etc.
  • a carboxylic acid having 1 to 5 carbon atoms such as formic acid, acetic acid, propionic acid, trifluoroacetic acid, etc.
  • Preferred are organic acids having 1 to 3 carbon atoms, and particularly preferred is acetic acid.
  • These carboxylic acids can be used alone or in combination of two or more.
  • the alcohol is preferably an aliphatic alcohol having about 1 to 10 carbon atoms such as methanol, ethanol, 1-propanol, 1-butanol, etc., particularly methanol and ethanol. preferable.
  • the said alcohol can be used individually or in mixture of 2 or more types.
  • the chemical oxygen demand of the wastewater in the anaerobic treatment step is preferably 900 to 100,000 mg / L, more preferably 1000 to 100,000 mg / L, and 1000 to 20000 mg / L. More preferably it is.
  • the chemical oxygen demand may be described as “COD” or “CODcr”.
  • the ratio of chemical oxygen demand (mg / L) and SO 4 2 ⁇ concentration (mg / L) is preferably 0.2 to 10 (the former / the latter), It is more preferably 0.2 to 2000, and further preferably 1 to 10.
  • the ratio between the chemical oxygen demand (mg / L) and the SO 4 2 ⁇ concentration (mg / L) may be described as “COD / SO 4 2 ⁇ ” or “COD / S”.
  • a gas containing hydrogen sulfide is generated in the anaerobic treatment step, and the gas containing hydrogen sulfide and oxygen are added in the anaerobic treatment step or after the anaerobic treatment step. It is preferable to contact an oxygen-containing gas having a concentration of 0.5% to 2.0% by volume. Thereby, even when COD / SO 4 2 ⁇ is lower, there is an effect that the anaerobic treatment of the waste water becomes possible.
  • the oxygen-containing gas is not particularly limited, but it is preferable to use air.
  • the wastewater treatment method of the present invention further includes an aerobic treatment step of treating wastewater under aerobic conditions in addition to the anaerobic treatment step.
  • an aerobic treatment step of treating wastewater under aerobic conditions in addition to the anaerobic treatment step.
  • the wastewater treatment method of the present invention preferably further includes a sludge solubilization step of solubilizing sludge generated in the anaerobic treatment step and the like to obtain a sludge solubilized liquid in addition to the anaerobic treatment step.
  • a sludge solubilization step of solubilizing sludge generated in the anaerobic treatment step and the like to obtain a sludge solubilized liquid in addition to the anaerobic treatment step.
  • At least one of the organic acid and the alcohol in the wastewater in the anaerobic treatment step is added to the wastewater before the anaerobic treatment step. Is preferred.
  • sulfuric acid or sulfate may be added to the waste water.
  • caustic soda sodium hydroxide
  • sodium hydroxide sodium hydroxide
  • phosphoric acid may be added to the waste water.
  • waste water it is preferable to use industrial wastewater, and it is more preferable to use industrial wastewater such as papermaking, chemical industry, fishery processing, and leather.
  • the anaerobic organism may be one that can form an anaerobic bacterial conglomerate (granule) in the anaerobic treatment step. preferable.
  • anaerobic organism it is preferable to use one or more bacteria selected from Halothiobacillus neapolitanus and Thioalkalimicrobium sibiricum. In particular, it is desirable to use a mixture of a plurality of bacteria.
  • other sulfur-oxidizing bacteria such as Sulfurimonas denitrifiacans can coexist, and preferred anaerobic organisms include SRB (sulfate such as Desulfovibrio fructosovorans, Desulfovibrio sp., Thermodesulfovibrio yellowstonii).
  • HAB H 2 -producing acetogenic bacteria
  • Clostridium sporogenes Clostridium sp., Syntrophobacter fumaroxidans
  • MPB methane-
  • Methanobacterium sp. producing bacteria methane producing bacteria
  • the anaerobic treatment step includes a UASB (Upflow Anaerobic Sludge Blanket) type methane fermentation tank (hereinafter sometimes referred to as “UASB tank”) or EGSB (Expanded Granule Sludge Bed; developed granular sludge). It is preferably carried out in a floor-type methane fermentation tank (hereinafter sometimes referred to as “EGSB tank”).
  • UASB tank Upflow Anaerobic Sludge Blanket type methane fermentation tank
  • EGSB Extragranule Sludge Bed
  • EGSB tank floor-type methane fermentation tank
  • UASB tank includes a trade name “Biotan” (manufactured by Sumitomo Heavy Industries, Ltd.), and an example of an EGSB tank includes a trade name “Biobed” (manufactured by Sumitomo Heavy Industries, Ltd.).
  • the following experiment was conducted using an apparatus as shown in FIG. Specifically, the effective volume of the UASB reaction tank 1 was 6 L, and the inside of the tank was maintained at a medium temperature (35 ⁇ 0.5 ° C.) with hot water circulating to the water jacket 4. The generated biogas was measured with a gas meter 3.
  • the artificial wastewater used contains 1000 mg / L acetic acid, 1000 mg / L ethanol and sulfate (R1: 3000 mg / L, R2: 150 mg / L).
  • the substrate tank 6 the substrate is stirred by a stirrer, and the substrate is supplied to the UASB reaction tank 1 through a pump.
  • HRT was shortened in 5 steps from 48h to 4h, and a high concentration (R1) and low concentration (R2) sulfate-containing ethanol drainage control experiment was conducted. went. Specifically, in stage I (0-29 days), HRT is 48 h, in stage II (30-48 days), HRT is 24 h, in stage III (49-75 days), HRT is 12 h, and stage VI ( 76-92 days), the HRT was 6 h, and in stage VI (93-100 days), the HRT was 4 h.
  • SS Suspended Solid, that is, the amount of suspended matter in the wastewater
  • VSS Volatile Suspended Solid, that is, the amount of organic substance in the wastewater
  • TS Total Solid
  • TVSS Total VSS, and so on.
  • the following bacteria were alive in the sludge.
  • Desulfovibrio fructosovorans Desulfovibrio sp., Thermodesulfovibrio yellowstonii (above, SRB), Clostridium sporogenes, Clostridium sp., Syntrophobacter fumaroxidans (above, HAB), Methanobacterium sp., ConiMP, coniiMP Further, the bacteria in the sludge formed agglomerates (granule) and retained the agglomerates even after the test of the wastewater treatment performance evaluation described later.
  • the nutrient salts added to the substrate are shown in Table 2 below.
  • Figure 2 (Horizontal axis: days, vertical axis is pH, OLR (volumetric load) (gCOD / L / d), Gas Production (L / L / d), COD removal rate (COD removal) Rate) (%), Gas Compositon (gas composition) (%)) and Fig.
  • Fig. 4 (Horizontal axis: Organic loading rate (gCOD / L / d), vertical axis represents COD removal rate (%), Sulfate removal rate (sulfide removal rate) %), Gas Production Rate (gas production rate) (L / L / d)) shows the influence of COD volumetric load on the gas production rate, COD removal rate and sulfate removal rate in R1. As the COD volumetric load increased, the gas production rate increased linearly. The COD removal rate tended to decrease slightly as the volumetric load in the reaction vessel was increased. The maximum removal rate of sulfate was 43.5% (volume load average 2.88 g-COD / L / d). At higher loads, the sulfate removal rate was about 35%.
  • FIG. 5 (horizontal axis: HRT is 48, 24, 12 hrs in order from the left, vertical axis is COD conversion rate (%), S conversion rate (%) in order from the top) is the COD during the treatment of wastewater containing high concentration sulfate. The mass balance of S is shown.
  • the conversion rates from inflow COD to methane gas and sulfide (hydrogen sulfide gas and sulfide in water) were about 50.8% and 27.3%, respectively.
  • the conversion rates from sulfate in artificial wastewater to hydrogen sulfide gas and sulfide in water were about 3.9% and 36.4%, respectively, and the dissolution rate in water was large.
  • R1 and R2 inflow COD to methane gas were about 47.5% and 86.9%, respectively.
  • R2 was used for methane production and the COD ratio was significantly higher than R1.
  • the conversion from inflow COD to sulfide was only 1.6%.
  • FIG. 7 is a comparison diagram of sulfate mass balance of R1 and R2 in HRT12h.
  • the sulfate reduction rate of R2 was about 62.9%.
  • the conversion rates to hydrogen sulfide gas and sulfide in water were about 45.9% and 16.9%, respectively, and a sulfate reduction rate higher than R1 was achieved.
  • FIG. 8 (horizontal axis: HRT is 12, 6, 4 hrs in order from left, vertical axis is COD conversion rate (%), S conversion rate (%) in order from left) Balance was calculated.
  • the conversion rates from inflow COD to methane gas and sulfide (hydrogen sulfide gas and sulfide in water) were about 50.8% and 27.3%, respectively.
  • the conversion rates from sulfate in artificial wastewater to hydrogen sulfide gas and sulfide in water were about 3.9% and 36.4%, respectively, and the dissolution rate in water was large.
  • wastewater treatment method of the present invention generation of hydrogen sulfide can be reduced, and industrial wastewater containing both high-concentration COD and sulfate can be treated, so that it is particularly useful as a wastewater treatment method for chemical industrial wastewater. It is.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Microbiology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

This waste water treatment method is characterized by involving an anaerobic treatment step for treating waste water using anaerobic organisms under anaerobic conditions, by the waste water in the anaerobic treatment step containing organic acid, alcohol and sulfuric acid or sulfates, and by the weight ratio of organic acid and alcohol being 1/99 to 99/1 (organic acid / alcohol). By means of this waste water treatment method, generation of hydrogen sulfide can be reduced, and industrial wastewater containing both high-concentration COD and sulfates can be treated.

Description

排水処理方法Wastewater treatment method
 本発明は、排水処理方法に関する。さらに詳細には、高濃度の硫酸塩を含む排水の嫌気性処理に関する。 The present invention relates to a wastewater treatment method. More specifically, the present invention relates to anaerobic treatment of wastewater containing a high concentration of sulfate.
 従来、排水処理方法としては、活性汚泥に代表されるような好気性処理を用いることが一般的に行われてきた。しかし、好気性処理の場合、工業廃水が高濃度のCODを含むような場合には適用できなかった。 Conventionally, as a wastewater treatment method, it has been generally performed to use an aerobic treatment represented by activated sludge. However, in the case of aerobic treatment, it could not be applied when industrial wastewater contains a high concentration of COD.
 そこで、嫌気性処理を用いて工業廃水を処理することも行われている。 Therefore, treatment of industrial wastewater using anaerobic treatment is also performed.
 具体的には、メタン菌を主体とする嫌気性微生物が自己凝集して微粒子化した汚泥(グラニュール)を槽内に貯留し、処理液を槽の底部から供給する上向流嫌気性汚泥床(UASB: Upflow Anaerobic Sludge Bed)や膨張汚泥床(EGSB: Expanded Granular Sludge Bed)を用いた上向流嫌気性生物処理装置が用いられている。この技術は、バルブの切り替え操作により、発生するバイオガスのガス圧を利用して処理槽内部の処理液を一時的に貯留タンクへと貯留し、処理槽内のガス圧を低下させてから、貯留タンク内の貯留液を処理槽へと返送することで貯留液による処理槽内の処理液攪拌を行うものである(特許文献1参照)。 Specifically, an upflow anaerobic sludge bed that stores sludge (granule), which is agglomerated by anaerobic microorganisms mainly composed of methane bacteria, in the tank and supplies treatment liquid from the bottom of the tank. An upflow anaerobic biological treatment apparatus using (UASB: Upflow Anaerobic Sludge Bed) or an expanded sludge bed (EGSB: Expanded Granular Sludge Bed) is used. This technology temporarily stores the processing liquid inside the processing tank in the storage tank using the gas pressure of the generated biogas by switching the valve, and after reducing the gas pressure in the processing tank, The processing liquid in the processing tank is agitated by the stored liquid by returning the stored liquid in the storage tank to the processing tank (see Patent Document 1).
特開2003-290796号公報JP 2003-290796 A
 しかしながら、工業廃水には高濃度のCODと硫酸塩をともに含む場合があり、このような場合には、嫌気(還元)性雰囲気下で、硫酸由来の有毒ガスである硫化水素が発生し、処理の妨げとなるという問題があった。 However, industrial wastewater sometimes contains both high-concentration COD and sulfate. In such a case, hydrogen sulfide, which is a toxic gas derived from sulfuric acid, is generated in an anaerobic (reducing) atmosphere. There was a problem that hindered.
 そのため、硫化水素の発生を低減でき、且つ、高濃度のCODと硫酸塩をともに含む工業廃水を処理することができる排水処理方法が求められている。 Therefore, there is a need for a wastewater treatment method that can reduce the generation of hydrogen sulfide and that can treat industrial wastewater containing both high-concentration COD and sulfate.
 従って、本発明の目的は、硫化水素の発生を低減でき、且つ、高濃度のCODと硫酸塩をともに含む工業廃水を処理することができる排水処理方法を提供することにある。 Therefore, an object of the present invention is to provide a wastewater treatment method capable of reducing the generation of hydrogen sulfide and treating industrial wastewater containing both high-concentration COD and sulfate.
 そこで、本発明者らが、前記課題を解決するために鋭意検討した結果、排水における、有機酸とアルコールとの重量比が一定範囲内である場合には、嫌気(還元)性雰囲気下でも、硫化水素の発生を低減でき、且つ、高濃度のCODと硫酸塩をともに含む工業廃水を処理することができることを見いだし、本発明は完成に至った。 Therefore, as a result of intensive investigations by the present inventors to solve the above problems, when the weight ratio of the organic acid and alcohol in the wastewater is within a certain range, even under an anaerobic (reducing) atmosphere, The inventors have found that the generation of hydrogen sulfide can be reduced and that industrial wastewater containing both high-concentration COD and sulfate can be treated, and the present invention has been completed.
 すなわち、本発明は、
 嫌気性条件下で嫌気性生物を用いて排水を処理する嫌気処理工程を含み、且つ、
 前記嫌気処理工程における排水が、硫酸又は硫酸塩、有機酸及びアルコールを含み、
 前記有機酸と前記アルコールとの重量比が1/99~99/1(前者/後者)であることを特徴とする、排水処理方法を提供する。
That is, the present invention
Including an anaerobic treatment step of treating wastewater using anaerobic organisms under anaerobic conditions, and
The waste water in the anaerobic treatment step contains sulfuric acid or sulfate, organic acid and alcohol,
A wastewater treatment method is provided, wherein the weight ratio of the organic acid to the alcohol is 1/99 to 99/1 (the former / the latter).
 また、前記嫌気処理工程における排水全体に対して、有機酸及びアルコールの総量が0.1~10重量%であることが好ましい。 Further, the total amount of organic acid and alcohol is preferably 0.1 to 10% by weight with respect to the whole waste water in the anaerobic treatment step.
 また、前記有機酸がカルボン酸であることが好ましい。 The organic acid is preferably a carboxylic acid.
 また、前記アルコールがメタノール又はエタノールであることが好ましい。 The alcohol is preferably methanol or ethanol.
 また、前記嫌気処理工程における排水の化学的酸素要求量が900~100000mg/Lであることが好ましい。 Further, it is preferable that the chemical oxygen demand of the waste water in the anaerobic treatment step is 900 to 100,000 mg / L.
 また、前記嫌気処理工程における排水において、化学的酸素要求量(mg/L)とSO4 2-濃度(mg/L)との比率が、0.2~10(前者/後者)であることが好ましい。 In the wastewater in the anaerobic treatment step, the ratio between the chemical oxygen demand (mg / L) and the SO 4 2− concentration (mg / L) is 0.2 to 10 (the former / the latter). preferable.
 また、前記嫌気処理工程において、硫化水素を含むガスが発生し、且つ、前記嫌気処理工程において、又は前記嫌気処理工程後に、前記硫化水素を含むガスと、酸素濃度が0.5体積%~2.0体積%である酸素含有ガスとを接触させることが好ましい。 In addition, in the anaerobic treatment step, a gas containing hydrogen sulfide is generated, and in the anaerobic treatment step or after the anaerobic treatment step, the gas containing hydrogen sulfide and the oxygen concentration are 0.5% by volume to 2%. It is preferable to contact an oxygen-containing gas that is 0.0 vol%.
 また、前記嫌気性生物が、前記嫌気処理工程において、嫌気性細菌集塊を形成することができることが好ましい。 In addition, it is preferable that the anaerobic organism can form an anaerobic bacterial conglomerate in the anaerobic treatment step.
 また、前記嫌気性生物が、前記嫌気処理工程において、メタンガスを生成することができることが好ましい。 Further, it is preferable that the anaerobic organism can generate methane gas in the anaerobic treatment step.
 また、前記嫌気性生物が、ハロチオバチルス・ネオポリタヌス(Halothiobacillus neapolitanus)及びチオアルカリミクロビウム・シビリクム(Thioalkalimicrobium sibiricum)から選択される1種以上の細菌であることが好ましい。 The anaerobic organism is preferably one or more bacteria selected from Halothiobacillus neapolitanus and Thioalkalimicrobium sibiricum.
 また、好気性条件下で排水を処理する好気処理工程をさらに含むことが好ましい。 In addition, it is preferable to further include an aerobic treatment process for treating wastewater under aerobic conditions.
 また、前記嫌気処理工程において生じた汚泥を可溶化して汚泥可溶化液を得る汚泥可溶化工程をさらに含むことが好ましい。 Moreover, it is preferable to further include a sludge solubilization step of solubilizing the sludge generated in the anaerobic treatment step to obtain a sludge solubilized solution.
 本発明の排水処理方法によれば、硫化水素の発生を低減でき、且つ、高濃度のCODと硫酸塩をともに含む工業廃水を処理することができるため、高濃度のCODと硫酸塩をともに含む工業廃水の処理効率が格段に向上するという効果を奏する。 According to the waste water treatment method of the present invention, generation of hydrogen sulfide can be reduced, and industrial wastewater containing both high-concentration COD and sulfate can be treated, so both high-concentration COD and sulfate are contained. There is an effect that the treatment efficiency of industrial wastewater is remarkably improved.
本発明の排水処理方法の一態様を示す概略図である。It is the schematic which shows the one aspect | mode of the waste water treatment method of this invention. 実施例におけるメタン発酵槽の経日変化を示すグラフである。It is a graph which shows the daily change of the methane fermenter in an Example. 実施例におけるメタン発酵槽の経日変化を示すグラフである。It is a graph which shows the daily change of the methane fermenter in an Example. 処理性能に及ぼすCOD容積負荷の影響を示すグラフである。It is a graph which shows the influence of the COD volumetric load which acts on processing performance. CODとS変換のマスバランスを示すグラフである。It is a graph which shows the mass balance of COD and S conversion. CODとS変換に及ぼすCOD/SO4 2-の影響を示すグラフである。Is a graph showing a COD / SO 4 2-Influence of the COD and S conversion. CODとS変換に及ぼすCOD/SO4 2-の影響を示すグラフである。Is a graph showing a COD / SO 4 2-Influence of the COD and S conversion. 流入CODとSから産物への転換率を示すグラフである。It is a graph which shows inflow COD and the conversion rate from S to a product. 実施例におけるエタノール分解の推定スキームを示す図である。It is a figure which shows the estimation scheme of ethanol decomposition | disassembly in an Example.
 本発明の排水処理方法は、
 嫌気性条件下で嫌気性生物を用いて排水を処理する嫌気処理工程を含み、且つ、
 前記嫌気処理工程における排水が、硫酸又は硫酸塩、有機酸及びアルコールを含み、
 前記有機酸と前記アルコールとの重量比が1/99~99/1(前者/後者)であればよく、特に制限されない。
The wastewater treatment method of the present invention is
Including an anaerobic treatment step of treating wastewater using anaerobic organisms under anaerobic conditions, and
The waste water in the anaerobic treatment step contains sulfuric acid or sulfate, organic acid and alcohol,
The weight ratio of the organic acid to the alcohol may be 1/99 to 99/1 (the former / the latter), and is not particularly limited.
 硫化水素を含むガスの発生をさらに抑制するという観点から、前記有機酸と前記アルコールとの重量比は、1/50~50/1(前者/後者)であることが好ましく、1/25~10/1(前者/後者)であることがより好ましく、1/1~1/5(前者/後者)であることがさらに好ましい。 From the viewpoint of further suppressing the generation of gas containing hydrogen sulfide, the weight ratio of the organic acid to the alcohol is preferably 1/50 to 50/1 (the former / the latter), and 1/25 to 10 / 1 (the former / the latter) is more preferable, and 1/1 to 1/5 (the former / the latter) is more preferable.
 硫化水素を含むガスの発生をさらに抑制するという観点から、前記嫌気処理工程における排水全体に対して、前記有機酸及び前記アルコールの総量は、0.1~10重量%であることが好ましく、0.1~5重量%であることがより好ましく、0.2~2重量%であることがさらに好ましい。 From the viewpoint of further suppressing the generation of gas containing hydrogen sulfide, the total amount of the organic acid and the alcohol is preferably 0.1 to 10% by weight with respect to the entire waste water in the anaerobic treatment step. More preferably, it is 1 to 5% by weight, and further preferably 0.2 to 2% by weight.
 硫化水素を含むガスの発生をさらに抑制するという観点から、前記有機酸がカルボン酸であることが好ましく、例えば、ギ酸、酢酸、プロピオン酸、トリフルオロ酢酸などの炭素数1~5のカルボン酸等が挙げられ、好ましくは炭素数1~3の有機酸であり、特に好ましくは酢酸である。これらのカルボン酸は単独で又は2種以上を組み合わせて使用できる。 From the viewpoint of further suppressing the generation of gas containing hydrogen sulfide, the organic acid is preferably a carboxylic acid, such as a carboxylic acid having 1 to 5 carbon atoms such as formic acid, acetic acid, propionic acid, trifluoroacetic acid, etc. Preferred are organic acids having 1 to 3 carbon atoms, and particularly preferred is acetic acid. These carboxylic acids can be used alone or in combination of two or more.
 硫化水素を含むガスの発生をさらに抑制するという観点から、前記アルコールが、メタノール、エタノール、1-プロパノール、1-ブタノールなどの炭素数1~10程度の脂肪族アルコールが好ましく、特にメタノール、エタノールが好ましい。前記アルコールは単独で又は2種以上を混合して使用することができる。 From the viewpoint of further suppressing the generation of gas containing hydrogen sulfide, the alcohol is preferably an aliphatic alcohol having about 1 to 10 carbon atoms such as methanol, ethanol, 1-propanol, 1-butanol, etc., particularly methanol and ethanol. preferable. The said alcohol can be used individually or in mixture of 2 or more types.
 前記嫌気処理工程における排水において、前記嫌気処理工程における排水の化学的酸素要求量が900~100000mg/Lであることが好ましく、1000~100000mg/Lであることがより好ましく、1000~20000mg/Lであることがさらに好ましい。なお、化学的酸素要求量は、「COD」「CODcr」と記載することがある。 In the wastewater in the anaerobic treatment step, the chemical oxygen demand of the wastewater in the anaerobic treatment step is preferably 900 to 100,000 mg / L, more preferably 1000 to 100,000 mg / L, and 1000 to 20000 mg / L. More preferably it is. The chemical oxygen demand may be described as “COD” or “CODcr”.
 前記嫌気処理工程における排水において、化学的酸素要求量(mg/L)とSO4 2-濃度(mg/L)との比率が、0.2~10(前者/後者)であることが好ましく、0.2~2000であることがより好ましく、1~10であることがさらに好ましい。なお、化学的酸素要求量(mg/L)とSO4 2-濃度(mg/L)との比率は、「COD/SO4 2-」「COD/S」と記載することがある。 In the wastewater in the anaerobic treatment step, the ratio of chemical oxygen demand (mg / L) and SO 4 2− concentration (mg / L) is preferably 0.2 to 10 (the former / the latter), It is more preferably 0.2 to 2000, and further preferably 1 to 10. The ratio between the chemical oxygen demand (mg / L) and the SO 4 2− concentration (mg / L) may be described as “COD / SO 4 2− ” or “COD / S”.
 硫化水素を効果的に除去する観点から、前記嫌気処理工程において、硫化水素を含むガスが発生し、且つ、前記嫌気処理工程において、又は前記嫌気処理工程後に、前記硫化水素を含むガスと、酸素濃度が0.5体積%~2.0体積%である酸素含有ガスとを接触させることが好ましい。これにより、COD/SO4 2-がさらに低い場合であっても、排水の嫌気処理が可能になるという効果を奏する。前記酸素含有ガスは、特に制限されないが、空気を用いることが好ましい。 From the viewpoint of effectively removing hydrogen sulfide, a gas containing hydrogen sulfide is generated in the anaerobic treatment step, and the gas containing hydrogen sulfide and oxygen are added in the anaerobic treatment step or after the anaerobic treatment step. It is preferable to contact an oxygen-containing gas having a concentration of 0.5% to 2.0% by volume. Thereby, even when COD / SO 4 2− is lower, there is an effect that the anaerobic treatment of the waste water becomes possible. The oxygen-containing gas is not particularly limited, but it is preferable to use air.
 本発明の排水処理方法は、前記嫌気処理工程に加え、好気性条件下で排水を処理する好気処理工程をさらに含むことが好ましい。前記好気処理工程をさらに含むことにより、単独処理では得られない高効率除去が可能になるという効果を奏する。 It is preferable that the wastewater treatment method of the present invention further includes an aerobic treatment step of treating wastewater under aerobic conditions in addition to the anaerobic treatment step. By further including the aerobic treatment step, there is an effect that high-efficiency removal that cannot be obtained by a single treatment becomes possible.
 本発明の排水処理方法は、前記嫌気処理工程に加え、前記嫌気処理工程等の工程において生じた汚泥を可溶化して汚泥可溶化液を得る汚泥可溶化工程をさらに含むことが好ましい。前記汚泥可溶化工程をさらに含むことにより、前記汚泥可溶化液を排水処理に供することで、ゼロエミッションが実現し、環境の負担が軽減されるという効果を奏する。 The wastewater treatment method of the present invention preferably further includes a sludge solubilization step of solubilizing sludge generated in the anaerobic treatment step and the like to obtain a sludge solubilized liquid in addition to the anaerobic treatment step. By further including the sludge solubilization step, the sludge solubilization liquid is subjected to wastewater treatment, thereby achieving zero emission and reducing the environmental burden.
 前記嫌気処理工程における排水中の前記有機酸と前記アルコールとの重量比とを好ましい範囲にするために、前記嫌気処理工程の前に、排水に前記有機酸及び前記アルコールの少なくとも一方を添加することが好ましい。 In order to make the weight ratio of the organic acid and the alcohol in the wastewater in the anaerobic treatment step a preferable range, at least one of the organic acid and the alcohol is added to the wastewater before the anaerobic treatment step. Is preferred.
 前記嫌気処理工程において、又は前記嫌気処理工程の前に、排水に硫酸又は硫酸塩を添加しても良い。 In the anaerobic treatment step or before the anaerobic treatment step, sulfuric acid or sulfate may be added to the waste water.
 前記嫌気処理工程において、又は前記嫌気処理工程の前に、排水に苛性ソーダ(水酸化ナトリウム)を添加しても良い。 In the anaerobic treatment step or before the anaerobic treatment step, caustic soda (sodium hydroxide) may be added to the waste water.
 前記嫌気処理工程において、又は前記嫌気処理工程の前に、排水にリン酸を添加しても良い。 In the anaerobic treatment step or before the anaerobic treatment step, phosphoric acid may be added to the waste water.
 前記排水としては、工業廃水を用いることが好ましく、製紙、化学工業、水産加工、皮革等の工業廃水を用いることがより好ましい。 As the waste water, it is preferable to use industrial wastewater, and it is more preferable to use industrial wastewater such as papermaking, chemical industry, fishery processing, and leather.
 UASB反応槽又はEGSB反応槽を用いる処理を容易にする観点から、前記嫌気性生物としては、前記嫌気処理工程において、嫌気性細菌集塊(グラニュール)を形成することができるものを用いることが好ましい。 From the viewpoint of facilitating treatment using a UASB reaction tank or an EGSB reaction tank, the anaerobic organism may be one that can form an anaerobic bacterial conglomerate (granule) in the anaerobic treatment step. preferable.
 UASB反応槽又はEGSB反応槽を用いる処理を容易にする観点から、前記嫌気性生物としては、前記嫌気処理工程において、メタンガスを生成することができるものを用いることが好ましい。この場合、生成したメタンガスを有効利用することにより、エネルギーコストを削減できるという効果を奏する。 From the viewpoint of facilitating treatment using a UASB reaction tank or an EGSB reaction tank, it is preferable to use an anaerobic organism that can generate methane gas in the anaerobic treatment step. In this case, there is an effect that the energy cost can be reduced by effectively using the generated methane gas.
 具体的には、前記嫌気性生物としては、ハロチオバチルス・ネオポリタヌス(Halothiobacillus neapolitanus)及びチオアルカリミクロビウム・シビリクム(Thioalkalimicrobium sibiricum)から選択される1種以上の細菌を用いることが好ましい。特に複数の細菌を混合して用いることが望ましい。更に、硫黄酸化細菌の他の細菌(例えばサルフリモナス・デニトリフィアカンス(Sulfurimonas denitrifiacans)を共存させることもできる。また、好ましい嫌気性生物として、Desulfovibrio fructosovorans, Desulfovibrio sp., Thermodesulfovibrio yellowstonii などのSRB(sulfate-reducing bacteria;硫酸塩還元菌), Clostridium sporogenes, Clostridium sp., Syntrophobacter fumaroxidans などのHAB(H2-producing acetogenic bacteria;水素産生酢酸生成菌), Methanobacterium sp., Methanosaeta concilii GP6 などのMPB(methane-producing bacteria;メタン生成菌)なども挙げられる。これらの嫌気性生物は1種又は2種以上用いることができる。 Specifically, as the anaerobic organism, it is preferable to use one or more bacteria selected from Halothiobacillus neapolitanus and Thioalkalimicrobium sibiricum. In particular, it is desirable to use a mixture of a plurality of bacteria. In addition, other sulfur-oxidizing bacteria such as Sulfurimonas denitrifiacans can coexist, and preferred anaerobic organisms include SRB (sulfate such as Desulfovibrio fructosovorans, Desulfovibrio sp., Thermodesulfovibrio yellowstonii). -reducing bacteria; HAB (H 2 -producing acetogenic bacteria) such as Clostridium sporogenes, Clostridium sp., Syntrophobacter fumaroxidans; MPB (methane-) such as Methanobacterium sp. producing bacteria (methane producing bacteria), etc. These anaerobic organisms can be used alone or in combination.
 前記嫌気処理工程は、UASB(Upflow Anaerobic Sludge Blanket;上向流嫌気性汚泥床)方式のメタン発酵槽(以下「UASB槽」と称することがある。)又はEGSB(Expanded Granule Sludge Bed;展開粒状汚泥床)方式のメタン発酵槽(以下「EGSB槽」と称することがある。)で行うことが好ましい。UASB槽又はEGSB槽を用いた場合、高負荷処理が可能になるという効果を奏する。UASB槽の例としては、商品名「バイオタン」(住友重機械工業社製)、EGSB槽の例としては、商品名「バイオベッド」(住友重機械工業社製)が挙げられる。 The anaerobic treatment step includes a UASB (Upflow Anaerobic Sludge Blanket) type methane fermentation tank (hereinafter sometimes referred to as “UASB tank”) or EGSB (Expanded Granule Sludge Bed; developed granular sludge). It is preferably carried out in a floor-type methane fermentation tank (hereinafter sometimes referred to as “EGSB tank”). When the UASB tank or the EGSB tank is used, there is an effect that high load processing is possible. An example of the UASB tank includes a trade name “Biotan” (manufactured by Sumitomo Heavy Industries, Ltd.), and an example of an EGSB tank includes a trade name “Biobed” (manufactured by Sumitomo Heavy Industries, Ltd.).
 以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例により何ら限定されるものではない。 Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to these examples.
 具体的には、酢酸とエタノールを含む人工廃水(排水)を用いて以下のような連続実験を行い、メタン生成と硫化水素生成に及ぼすCODと硫酸塩負荷の影響を検討した。また、メタン生成と硫酸塩還元の競合についても定量的に検討した。 Specifically, the following continuous experiments were conducted using artificial wastewater (drainage) containing acetic acid and ethanol to examine the effects of COD and sulfate loading on methane production and hydrogen sulfide production. The competition between methanogenesis and sulfate reduction was also examined quantitatively.
 図1で示したような装置を用いて以下の実験を行った。具体的には、UASB反応槽1の有効容積は6Lであり、槽内はウォータージャケット4へ循環する温水により中温(35±0.5℃)に維持した。発生したバイオガスはガスメーター3で測定した。用いた人工廃水は1000mg/Lの酢酸、1000mg/Lのエタノールおよび硫酸塩(R1:3000mg/L、R2:150mg/L)を含むものである。また、基質タンク6では基質を攪拌機により攪拌し、ポンプを通じて基質をUASB反応槽1に供給している。 The following experiment was conducted using an apparatus as shown in FIG. Specifically, the effective volume of the UASB reaction tank 1 was 6 L, and the inside of the tank was maintained at a medium temperature (35 ± 0.5 ° C.) with hot water circulating to the water jacket 4. The generated biogas was measured with a gas meter 3. The artificial wastewater used contains 1000 mg / L acetic acid, 1000 mg / L ethanol and sulfate (R1: 3000 mg / L, R2: 150 mg / L). In the substrate tank 6, the substrate is stirred by a stirrer, and the substrate is supplied to the UASB reaction tank 1 through a pump.
 二つのUASB反応器R1とR2を用いて、HRTを48hから4hまで5段階に分けて段階的に短縮し、高濃度(R1)と低濃度(R2)硫酸塩含有エタノール系排水の対照実験を行った。具体的には、段階I(0~29日)ではHRTを48hとし、段階II(30~48日)ではHRTを24hとし、段階III(49~75日)ではHRTを12hとし、段階VI(76~92日)ではHRTを6hとし、段階VI(93~100日)ではHRTを4hとした。 Using two UASB reactors R1 and R2, the HRT was shortened in 5 steps from 48h to 4h, and a high concentration (R1) and low concentration (R2) sulfate-containing ethanol drainage control experiment was conducted. went. Specifically, in stage I (0-29 days), HRT is 48 h, in stage II (30-48 days), HRT is 24 h, in stage III (49-75 days), HRT is 12 h, and stage VI ( 76-92 days), the HRT was 6 h, and in stage VI (93-100 days), the HRT was 4 h.
 また、人工排水に用いた植種汚泥については、以下の表1に示す。表1中、SSとは、Suspended Solid、すなわち、排水中の浮遊物質量を意味し、VSSとは、Volatile Suspended Solid、すなわち、排水中の有機性物質量を意味し、以下も同様である。また、表1中、TS は Total Solid、TVSS は Total VSS をそれぞれ意味し、以下も同様である。前記汚泥中には以下の細菌(嫌気性細菌)が生存していた。Desulfovibrio fructosovorans, Desulfovibrio sp., Thermodesulfovibrio yellowstonii(以上、SRB), Clostridium sporogenes, Clostridium sp., Syntrophobacter fumaroxidans(以上、HAB), Methanobacterium sp., Methanosaeta concilii GP6(以上、MPB)。また、前記汚泥中の細菌は集塊(グラニュール)を形成しており、後述の排水処理性能評価の試験後も集塊を保持していた。 The planted sludge used for artificial drainage is shown in Table 1 below. In Table 1, SS means Suspended Solid, that is, the amount of suspended matter in the wastewater, VSS means Volatile Suspended Solid, that is, the amount of organic substance in the wastewater, and so on. In Table 1, TS means Total Solid, TVSS means Total VSS, and so on. The following bacteria (anaerobic bacteria) were alive in the sludge. Desulfovibrio fructosovorans, Desulfovibrio sp., Thermodesulfovibrio yellowstonii (above, SRB), Clostridium sporogenes, Clostridium sp., Syntrophobacter fumaroxidans (above, HAB), Methanobacterium sp., ConiMP, coniiMP Further, the bacteria in the sludge formed agglomerates (granule) and retained the agglomerates even after the test of the wastewater treatment performance evaluation described later.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 また、基質に添加した栄養塩については、以下の表2に示す。 The nutrient salts added to the substrate are shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
[排水処理性能評価]
 高濃度硫酸塩含有排水(R1:COD/SO4 2-=1)の排水処理性能を下記図2~4に示した。図2(横軸:日数、縦軸は上から順にpH、OLR(容積負荷)(gCOD/L/d)、Gas Production(ガス生成速度)(L/L/d)、COD removal rate(COD除去率)(%)、Gas Compositon(ガス組成)(%))及び図3(横軸:日数、縦軸は上から順にSulfate Concentration(硫酸塩濃度)(mg/L)、Total Sulfide Concentration(全硫化物濃度)(mg/L)、Dissolved Sulfide(溶液中の硫化物濃度)(mg/L)、濃度(mg/L)、濃度(mg/L))にメタン発酵槽の経日変化を示すように、段階I(0~29日)は連続実験のスタートアップ期間である。実験段階II以降、HRTを短縮し反応器の容積負荷は1.4gから17.9g-COD/L/dまで上昇したに伴い、ガス生成速度は0.351/L/dから4.311/L/dまでに増加した。UASB反応槽のHRTは48h、24h、12hおよび6hの段階で、COD除去率は86.5%以上に維持し、反応槽の安定運転を達成した。HRT4hではCOD除去率は73.7%まで低下した。実験運転が安定した後、CH4含有率は71.5%以上の高濃度が得られた。H2Sの含有率は1.3~4.5%の範囲で推移した。
[Evaluation of wastewater treatment performance]
The wastewater treatment performance of wastewater containing high-concentration sulfate (R1: COD / SO 4 2− = 1) is shown in FIGS. 2 to 4 below. Figure 2 (Horizontal axis: days, vertical axis is pH, OLR (volumetric load) (gCOD / L / d), Gas Production (L / L / d), COD removal rate (COD removal) Rate) (%), Gas Compositon (gas composition) (%)) and Fig. 3 (horizontal axis: days, vertical axis: Sulfate Concentration (sulfate concentration) (mg / L), Total Sulfide Concentration (total sulfidation) (Concentration) (mg / L), Dissolved Sulfide (sulfide concentration in solution) (mg / L), concentration (mg / L), concentration (mg / L)) Phase I (0-29 days) is the start-up period for continuous experiments. From experimental phase II onwards, as the HRT was shortened and the reactor volumetric load increased from 1.4 g to 17.9 g-COD / L / d, the gas production rate increased from 0.351 / L / d to 4.3111 / Increased to L / d. The HRT of the UASB reactor was 48h, 24h, 12h, and 6h, and the COD removal rate was maintained at 86.5% or more to achieve stable operation of the reactor. In HRT4h, the COD removal rate decreased to 73.7%. After the experimental operation was stabilized, the CH 4 content was as high as 71.5% or higher. The content of H 2 S was in the range of 1.3 to 4.5%.
 図4(横軸:Organic Loading Rate(COD容積負荷)(gCOD/L/d)、縦軸は上から順にCOD removal rate(COD除去率)(%)、Sulfate removal rate(硫化物除去率)(%)、Gas Production Rate(ガス生成速度)(L/L/d))は、R1の中で、ガス生成速度、COD除去率及び硫酸塩除去率に及ぼすCOD容積負荷の影響を示している。COD容積負荷の増加に伴い、ガス生成速度は直線的に増加した。COD除去率は、反応槽内の容積負荷を増加するに伴い、除去率が若干低下する傾向が見られた。硫酸塩の除去率は最高43.5%(容積負荷平均2.88g-COD/L/d)が得られた。それ以上の負荷では、硫酸塩除去率は約35%であった。 Fig. 4 (Horizontal axis: Organic loading rate (gCOD / L / d), vertical axis represents COD removal rate (%), Sulfate removal rate (sulfide removal rate) %), Gas Production Rate (gas production rate) (L / L / d)) shows the influence of COD volumetric load on the gas production rate, COD removal rate and sulfate removal rate in R1. As the COD volumetric load increased, the gas production rate increased linearly. The COD removal rate tended to decrease slightly as the volumetric load in the reaction vessel was increased. The maximum removal rate of sulfate was 43.5% (volume load average 2.88 g-COD / L / d). At higher loads, the sulfate removal rate was about 35%.
 図5(横軸:HRTが左から順に48、24、12hrs、縦軸は上から順にCOD転換率(%)、S転換率(%))は、高濃度硫酸塩含有排水処理中のCODとSのマスバランスを示す。流入CODからメタンガスと硫化物(硫化水素ガスと水中硫化物)への転換率はそれぞれ、約50.8%と27.3%であった。また、人工廃水中の硫酸塩から硫化水素ガスと水中硫化物への転換率はそれぞれ、約3.9%と36.4%で、水中への溶解割合が大きかった。 FIG. 5 (horizontal axis: HRT is 48, 24, 12 hrs in order from the left, vertical axis is COD conversion rate (%), S conversion rate (%) in order from the top) is the COD during the treatment of wastewater containing high concentration sulfate. The mass balance of S is shown. The conversion rates from inflow COD to methane gas and sulfide (hydrogen sulfide gas and sulfide in water) were about 50.8% and 27.3%, respectively. The conversion rates from sulfate in artificial wastewater to hydrogen sulfide gas and sulfide in water were about 3.9% and 36.4%, respectively, and the dissolution rate in water was large.
[COD/SO4 2-の比率がメタン発酵に及ぼす影響の評価]
 COD/SO4 2-の比率がメタン発酵に及ぼす影響については、図6~8において示した。
[Evaluation of the effect of COD / SO 4 2- ratio on methane fermentation]
The influence of the COD / SO 4 2- ratio on methane fermentation is shown in FIGS.
 図6は、HRT12hにおける、R1(COD/SO4 2-=1)とR2(COD/SO4 2-=20)のCODパスバランスの比較図である。同じ条件で、R1とR2の流入CODからメタンガスへの転換率はそれぞれ、約47.5%と86.9%であった。R2はR1より、メタン生成に利用されCODの比率は大幅に高かった。同時に、R2の中に、流入CODから硫化物への転換率は僅かに1.6%であった。 FIG. 6 is a comparison diagram of the COD path balance of R1 (COD / SO 4 2− = 1) and R2 (COD / SO 4 2− = 20) in the HRT 12h. Under the same conditions, the conversion rates of R1 and R2 inflow COD to methane gas were about 47.5% and 86.9%, respectively. R2 was used for methane production and the COD ratio was significantly higher than R1. At the same time, in R2, the conversion from inflow COD to sulfide was only 1.6%.
 図7は、HRT12hにおける、R1とR2の硫酸塩マスバランスの比較図である。R2の硫酸塩還元率は約62.9%であった。中に、硫化水素ガスと水中硫化物への転換率はそれぞれ、約45.9%と16.9%で、R1より高い硫酸塩還元率を達成した。 FIG. 7 is a comparison diagram of sulfate mass balance of R1 and R2 in HRT12h. The sulfate reduction rate of R2 was about 62.9%. Among them, the conversion rates to hydrogen sulfide gas and sulfide in water were about 45.9% and 16.9%, respectively, and a sulfate reduction rate higher than R1 was achieved.
 図8(横軸:HRTが左から順に12、6、4hrs、縦軸は左から順にCOD転換率(%)、S転換率(%))は、HRT4~12hの条件におけるCODとSのマスバランスを算出した。流入CODからメタンガスと硫化物(硫化水素ガスと水中硫化物)への転換率はそれぞれ、約50.8%と27.3%であった。また、人工廃水中の硫酸塩から硫化水素ガスと水中硫化物への転換率はそれぞれ、約3.9%と36.4%で、水中への溶解割合が大きかった。 FIG. 8 (horizontal axis: HRT is 12, 6, 4 hrs in order from left, vertical axis is COD conversion rate (%), S conversion rate (%) in order from left) Balance was calculated. The conversion rates from inflow COD to methane gas and sulfide (hydrogen sulfide gas and sulfide in water) were about 50.8% and 27.3%, respectively. The conversion rates from sulfate in artificial wastewater to hydrogen sulfide gas and sulfide in water were about 3.9% and 36.4%, respectively, and the dissolution rate in water was large.
 以上の実験により、嫌気性処理による硫酸塩含有エタノール系排水の対照実験を行った結果、以下の知見が得られた。
(1)COD/SO4 2-の比率が1の場合、COD容積負荷と硫酸塩負荷は、それぞれ平均12.2g-COD/L/dと11.7g-SO4 2-/L/dの条件で、86.5%の高いCOD除去率が実現できた。流入CODの約27.3%、また流入硫酸塩の約40.3%が硫酸塩還元に利用された。
(2)COD/SO4 2-の比率が20の場合、流入CODからメタン生成および硫酸塩還元への利用割合はそれぞれ、86.9%および1.6%であった。また流入硫酸塩の約62.9%が硫酸塩還元に利用された。
As a result of the above experiment, the following knowledge was obtained as a result of a control experiment of sulfate-containing ethanol wastewater by anaerobic treatment.
(1) When the ratio of COD / SO 4 2- is 1, COD volumetric load and sulfate load are average 12.2 g-COD / L / d and 11.7 g-SO 4 2- / L / d, respectively. Under the conditions, a high COD removal rate of 86.5% could be realized. About 27.3% of the influent COD and about 40.3% of the influent sulfate were utilized for sulfate reduction.
(2) When the ratio of COD / SO 4 2- was 20, the utilization ratios from inflow COD to methane production and sulfate reduction were 86.9% and 1.6%, respectively. Also, about 62.9% of the influent sulfate was used for sulfate reduction.
 図9に、実施例[特に、前記R1(COD/SO4 2-=1)の場合]におけるエタノール分解の推定スキームを示す。 FIG. 9 shows an estimation scheme of ethanol decomposition in Examples [particularly, in the case of R1 (COD / SO 4 2− = 1)].
 本発明の排水処理方法によれば、硫化水素の発生を低減でき、且つ、高濃度のCODと硫酸塩をともに含む工業廃水を処理することができるため、特に化学工業廃水の排水処理方法として有用である。 According to the wastewater treatment method of the present invention, generation of hydrogen sulfide can be reduced, and industrial wastewater containing both high-concentration COD and sulfate can be treated, so that it is particularly useful as a wastewater treatment method for chemical industrial wastewater. It is.
  1 UASB反応槽
 11 廃液(排水)
 12 汚泥
  2 脱硫装置
  3 ガスメーター
  4 ウォータージャケット
  5 加熱装置
  6 基質タンク
1 UASB reaction tank 11 Waste liquid (drainage)
12 Sludge 2 Desulfurization device 3 Gas meter 4 Water jacket 5 Heating device 6 Substrate tank

Claims (13)

  1.  嫌気性条件下で嫌気性生物を用いて排水を処理する嫌気処理工程を含み、且つ、
     前記嫌気処理工程における排水が、硫酸又は硫酸塩、有機酸及びアルコールを含み、
     前記有機酸と前記アルコールとの重量比が1/99~99/1(前者/後者)であることを特徴とする、排水処理方法。
    Including an anaerobic treatment step of treating wastewater using anaerobic organisms under anaerobic conditions, and
    The waste water in the anaerobic treatment step contains sulfuric acid or sulfate, organic acid and alcohol,
    A wastewater treatment method, wherein the weight ratio of the organic acid to the alcohol is 1/99 to 99/1 (the former / the latter).
  2.  前記嫌気処理工程における排水全体に対して、
     有機酸及びアルコールの総量が0.1~10重量%である、請求項1記載の排水処理方法。
    For the whole drainage in the anaerobic treatment process,
    The waste water treatment method according to claim 1, wherein the total amount of the organic acid and the alcohol is 0.1 to 10% by weight.
  3.  前記有機酸がカルボン酸である、請求項1又は2記載の排水処理方法。 The wastewater treatment method according to claim 1 or 2, wherein the organic acid is a carboxylic acid.
  4.  前記アルコールがメタノール又はエタノールである、請求項1~3の何れか1項に記載の排水処理方法。 The wastewater treatment method according to any one of claims 1 to 3, wherein the alcohol is methanol or ethanol.
  5.  前記嫌気処理工程における排水の化学的酸素要求量が900~100000mg/Lである、請求項1~4の何れか1項に記載の排水処理方法。 The wastewater treatment method according to any one of claims 1 to 4, wherein a chemical oxygen demand of the wastewater in the anaerobic treatment step is 900 to 100,000 mg / L.
  6.  前記嫌気処理工程における排水において、
     化学的酸素要求量(mg/L)とSO4 2-濃度(mg/L)との比率が、0.2~10(前者/後者)である、請求項1~5の何れか1項に記載の排水処理方法。
    In drainage in the anaerobic treatment process,
    The ratio between the chemical oxygen demand (mg / L) and the SO 4 2- concentration (mg / L) is 0.2 to 10 (the former / the latter) according to any one of claims 1 to 5. The described waste water treatment method.
  7.  前記嫌気処理工程において、硫化水素を含むガスが発生し、且つ、
     前記嫌気処理工程において、又は前記嫌気処理工程後に、前記硫化水素を含むガスと、酸素濃度が0.5体積%~2.0体積%である酸素含有ガスとを接触させる、請求項1~6の何れか1項に記載の排水処理方法。
    In the anaerobic treatment step, a gas containing hydrogen sulfide is generated, and
    The gas containing hydrogen sulfide is brought into contact with an oxygen-containing gas having an oxygen concentration of 0.5% by volume to 2.0% by volume in the anaerobic treatment step or after the anaerobic treatment step. The wastewater treatment method according to any one of the above.
  8.  前記嫌気性生物が、前記嫌気処理工程において、嫌気性細菌集塊を形成することができる、請求項1~7の何れか1項に記載の排水処理方法。 The wastewater treatment method according to any one of claims 1 to 7, wherein the anaerobic organism can form an anaerobic bacterial conglomerate in the anaerobic treatment step.
  9.  前記嫌気性生物が、前記嫌気処理工程において、メタンガスを生成することができる、請求項1~8の何れか1項に記載の排水処理方法。 The wastewater treatment method according to any one of claims 1 to 8, wherein the anaerobic organism can produce methane gas in the anaerobic treatment step.
  10.  前記嫌気性生物が、ハロチオバチルス・ネオポリタヌス(Halothiobacillus neapolitanus)及びチオアルカリミクロビウム・シビリクム(Thioalkalimicrobium sibiricum)から選択される1種以上の細菌である、請求項8又は9記載の排水処理方法。 The wastewater treatment method according to claim 8 or 9, wherein the anaerobic organism is one or more bacteria selected from Halothiobacillus neapolitanus and Thioalkalimicrobium sibiricum.
  11.  前記嫌気処理工程において、UASB反応槽又はEGSB反応槽を用いる、請求項1~10の何れか1項に記載の排水処理方法。 The wastewater treatment method according to any one of claims 1 to 10, wherein a UASB reaction tank or an EGSB reaction tank is used in the anaerobic treatment step.
  12.  好気性条件下で排水を処理する好気処理工程をさらに含む、請求項1~11の何れか1項に記載の排水処理方法。 The wastewater treatment method according to any one of claims 1 to 11, further comprising an aerobic treatment step of treating the wastewater under aerobic conditions.
  13.  前記嫌気処理工程において生じた汚泥を可溶化して汚泥可溶化液を得る汚泥可溶化工程をさらに含む、請求項1~12の何れか1項に記載の排水処理方法。 The wastewater treatment method according to any one of claims 1 to 12, further comprising a sludge solubilization step of solubilizing sludge generated in the anaerobic treatment step to obtain a sludge solubilized solution.
PCT/JP2013/057018 2012-03-13 2013-03-13 Waste water treatment method WO2013137322A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014504962A JP6029649B2 (en) 2012-03-13 2013-03-13 Wastewater treatment method
CN201380008250.3A CN104105671A (en) 2012-03-13 2013-03-13 Waste water treatment method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-056504 2012-03-13
JP2012056504 2012-03-13

Publications (1)

Publication Number Publication Date
WO2013137322A1 true WO2013137322A1 (en) 2013-09-19

Family

ID=49161227

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/057018 WO2013137322A1 (en) 2012-03-13 2013-03-13 Waste water treatment method

Country Status (3)

Country Link
JP (1) JP6029649B2 (en)
CN (1) CN104105671A (en)
WO (1) WO2013137322A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112877232B (en) * 2020-12-21 2023-01-10 武汉水之国环保科技有限公司 Separated desulfurization vibrio and method for treating sewage by using same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59162997A (en) * 1983-03-09 1984-09-13 Kurita Water Ind Ltd Organic filthy water disposal
JPH01249198A (en) * 1988-03-30 1989-10-04 Akua Runesansu Gijutsu Kenkyu Kumiai Method for inhibiting reduction of sulfate in anaerobic treatment and substance hindering growth of sulfate reducing bacteria
JPH0679295A (en) * 1992-09-07 1994-03-22 Kurita Water Ind Ltd Treatment of organic waste water
JPH06315697A (en) * 1990-01-05 1994-11-15 Shell Internatl Res Maatschappij Bv Treatment of waste water stream
JPH11689A (en) * 1997-06-11 1999-01-06 Kurita Water Ind Ltd Treatment equipment for organic waste water
JP2005103375A (en) * 2003-09-29 2005-04-21 Fuji Electric Holdings Co Ltd Methane fermentation treatment method and apparatus
JP2006055769A (en) * 2004-08-20 2006-03-02 Ebara Corp Method and apparatus for anaerobic treatment of organic contaminant
JP2007289914A (en) * 2006-03-31 2007-11-08 Ebara Corp Treatment method and apparatus of organic waste by anaerobic microorganism
JP2009299048A (en) * 2008-05-13 2009-12-24 Nippon Sharyo Seizo Kaisha Ltd Method and apparatus for desulfurizing fuel gas

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2108982C1 (en) * 1992-05-26 1998-04-20 Паквес Б.В. Method for recovering sulphur compounds from water (alternatives) and method for cleaning sulphur-laden flue gases
EP1186571A1 (en) * 2000-09-12 2002-03-13 Gastec N.V. Process for the selective oxidation of hydrogen sulphide to elemental sulphur
CN1242934C (en) * 2003-10-23 2006-02-22 哈尔滨工业大学 Microorganism metabolism type regulate and control method, in sulphate waste water treatment

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59162997A (en) * 1983-03-09 1984-09-13 Kurita Water Ind Ltd Organic filthy water disposal
JPH01249198A (en) * 1988-03-30 1989-10-04 Akua Runesansu Gijutsu Kenkyu Kumiai Method for inhibiting reduction of sulfate in anaerobic treatment and substance hindering growth of sulfate reducing bacteria
JPH06315697A (en) * 1990-01-05 1994-11-15 Shell Internatl Res Maatschappij Bv Treatment of waste water stream
JPH0679295A (en) * 1992-09-07 1994-03-22 Kurita Water Ind Ltd Treatment of organic waste water
JPH11689A (en) * 1997-06-11 1999-01-06 Kurita Water Ind Ltd Treatment equipment for organic waste water
JP2005103375A (en) * 2003-09-29 2005-04-21 Fuji Electric Holdings Co Ltd Methane fermentation treatment method and apparatus
JP2006055769A (en) * 2004-08-20 2006-03-02 Ebara Corp Method and apparatus for anaerobic treatment of organic contaminant
JP2007289914A (en) * 2006-03-31 2007-11-08 Ebara Corp Treatment method and apparatus of organic waste by anaerobic microorganism
JP2009299048A (en) * 2008-05-13 2009-12-24 Nippon Sharyo Seizo Kaisha Ltd Method and apparatus for desulfurizing fuel gas

Also Published As

Publication number Publication date
JP6029649B2 (en) 2016-11-24
CN104105671A (en) 2014-10-15
JPWO2013137322A1 (en) 2015-08-03

Similar Documents

Publication Publication Date Title
Ye et al. Improving the stability and efficiency of anaerobic digestion of food waste using additives: a critical review
Wu et al. Integrated approach to sustain biogas production in anaerobic digestion of chicken manure under recycled utilization of liquid digestate: Dynamics of ammonium accumulation and mitigation control
Gadhe et al. Influence of nickel and hematite nanoparticle powder on the production of biohydrogen from complex distillery wastewater in batch fermentation
EP2248886B1 (en) Anaerobic digester
Ahn et al. The effect of calcium on the anaerobic digestion treating swine wastewater
Stams et al. Metabolic interactions in methanogenic and sulfate-reducing bioreactors
Wei et al. Performance and kinetic evaluation of a semi-continuously fed anaerobic digester treating food waste: effect of trace elements on the digester recovery and stability
Basri et al. Improved biogas production from palm oil mill effluent by a scaled-down anaerobic treatment process
Paritosh et al. Additives as a support structure for specific biochemical activity boosts in anaerobic digestion: a review
Kongjan et al. Anaerobic digestion of skim latex serum (SLS) for hydrogen and methane production using a two-stage process in a series of up-flow anaerobic sludge blanket (UASB) reactor
Lu et al. Enhanced production of short-chain fatty acids from waste activated sludge by addition of magnetite under suitable alkaline condition
Qu et al. Bio-hydrogen production by dark anaerobic fermentation of organic wastewater
Zhang et al. Comparing two enhancing methods for improving kitchen waste anaerobic digestion: Bentonite addition and autoclaved de-oiling pretreatment
Lopes et al. Low pH (6, 5 and 4) sulfate reduction during the acidification of sucrose under thermophilic (55 C) conditions
Shi et al. The efficiencies and capacities of carbon conversion in fruit and vegetable waste two-phase anaerobic digestion: ethanol-path vs. butyrate-path
Xiaolong et al. Effect of sodium ion concentration on hydrogen production from sucrose by anaerobic hydrogen-producing granular sludge
CN109231746A (en) A kind of method that iron electrode activation persulfate pretreating sludge optimization produces sour structure
Yang et al. Improved methane production and sulfate removal by anaerobic co-digestion corn stalk and levulinic acid wastewater pretreated by calcium hydroxide
Ülgüdür et al. High-rate anaerobic treatment of digestate using fixed film reactors
Kong et al. Carbon-neutral treatment of N, N-dimethylformamide-containing wastewater by up-flow anaerobic sludge blanket: CO2 reduction and bio-energy cleaner production
Hassanpourmoghadam et al. Effect of Fe3O4 nanoparticles on anaerobic digestion of municipal wastewater sludge
Zhao et al. Promotion of granular activated carbon on methanogenesis of readily acidogenic carbohydrate-rich waste at low inoculation ratio
CN107285583A (en) A kind of sludge treatment technique based on carbon source reuse
JP6029649B2 (en) Wastewater treatment method
CN109231443B (en) Industrial wastewater anaerobic desulfurization device and process based on magnetite reinforcement

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13762030

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014504962

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13762030

Country of ref document: EP

Kind code of ref document: A1