WO2013137058A1 - Λ/4 phase-shifted film and organic electroluminescent image display device - Google Patents

Λ/4 phase-shifted film and organic electroluminescent image display device Download PDF

Info

Publication number
WO2013137058A1
WO2013137058A1 PCT/JP2013/055949 JP2013055949W WO2013137058A1 WO 2013137058 A1 WO2013137058 A1 WO 2013137058A1 JP 2013055949 W JP2013055949 W JP 2013055949W WO 2013137058 A1 WO2013137058 A1 WO 2013137058A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
group
wavelength
acid
retardation
Prior art date
Application number
PCT/JP2013/055949
Other languages
French (fr)
Japanese (ja)
Inventor
理英子 れん
幸仁 中澤
範江 谷原
賢治 三島
翠 木暮
田代 耕二
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to KR1020147023048A priority Critical patent/KR101498440B1/en
Priority to JP2014504806A priority patent/JP5601433B2/en
Publication of WO2013137058A1 publication Critical patent/WO2013137058A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light

Definitions

  • the present invention relates to a ⁇ / 4 retardation film and an organic electroluminescence image display device including the same.
  • an organic electroluminescent element (hereinafter also referred to as an organic EL element) that emits light by providing a light emitting layer between opposed electrodes and applying a voltage to the electrode has been developed for flat illumination, light sources for optical fibers, and liquid crystal displays.
  • Research and development are actively conducted as various light sources such as backlights, backlights for liquid crystal projectors, display devices, and image display devices.
  • the organic EL element is an element that has attracted much attention in recent years because it exhibits excellent characteristics in terms of light emission efficiency, low voltage driving, light weight, and low cost, particularly in the above-mentioned fields of use.
  • An organic EL device injects electrons from the cathode and holes from the anode when voltage is applied, and recombines them in the light-emitting layer, thereby generating visible light emission corresponding to the light-emitting characteristics of the light-emitting layer. It is.
  • ITO indium tin oxide
  • a metal electrode is usually used for the cathode, but considering the electron injection efficiency, from the viewpoint of work function, mainly Mg, Mg / Ag, Mg / In, Al, Li / Al, etc.
  • the metal material is used.
  • These metal materials have high light reflectivity, and in addition to the function as an electrode (cathode), they also have a function of reflecting light emitted from the light emitting layer and increasing the amount of emitted light (light emission luminance). That is, the light emitted in the cathode direction is mirror-reflected on the surface of the metal material that is the cathode, and is extracted as emitted light from the transparent ITO electrode (anode).
  • the cathode since the cathode has a mirror-like structure having a strong light reflectivity, the reflection of external light becomes noticeable when no light is emitted.
  • the reflection of the room lighting during observation becomes intense, black color cannot be expressed in the bright place, and there is a problem that the bright room contrast is extremely low when used as a light source for a display device.
  • Patent Document 1 a method of using a circularly polarizing element for preventing reflection of external light from a mirror surface is disclosed (for example, see Patent Document 1).
  • the circularly polarizing element described in Patent Document 1 is formed by laminating an absorption linear polarizing plate and a quarter retardation film so that their optical axes intersect at 45 degrees or 135 degrees. Yes.
  • the quarter retardation film is formed of, for example, a single stretched film
  • the refractive index of the stretched film is different from wavelength to wavelength, and the retardation is relative to a certain wavelength.
  • the phase difference is shifted from the quarter wavelength at other wavelengths, and as a result, it does not function as a quarter retardation film.
  • a retardation film having a vertically aligned liquid crystal layer on a cellulose acylate film stretched obliquely has a ⁇ / 4 retardation in a wide wavelength range, and the retardation film is provided.
  • the organic EL display device is improved in color variation due to external light reflection.
  • the organic EL display device provided with the retardation film has a problem that bleeding occurs in an image and a high-definition image cannot be obtained.
  • the problem is that light that enters the retardation film from the light emitting layer is reflected at the interface between the retardation film and the adjacent layer, and is also diffusely reflected by the additives that are phase-separated in the retardation film, resulting in image blurring. It is estimated that this is the cause.
  • Patent Document 3 and Patent Document 4 disclose a retardation plate composed of a single layer having a reverse wavelength dispersion having a retardation value of ⁇ / 4 in the entire wavelength region by containing a compound having a specific structure. ing.
  • these disclosed methods have low actual retardation, and the layer thickness must be increased in order to realize the ⁇ / 4 phase difference.
  • Patent Document 5 discloses a retardation plate in which the retardation and reverse wavelength dispersion characteristics are further improved by containing a specific compound. However, since the retardation in the thickness direction is high, the retardation plate is viewed obliquely. Further, there is a problem that the phase difference deviates by more than ⁇ / 4 and the visibility deteriorates. In recent image display devices that require a large screen, the demand for oblique visibility is also very high, and the method described in Patent Document 5 is not sufficient, and the development of rapid improvement means is required. ing.
  • the present invention has been made in view of the above problems, and its solution is a high-performance phase difference, an excellent reverse wavelength dispersion characteristic in a thin film, and a wideband with a reduced phase difference in the thickness direction. It is to provide a ⁇ / 4 retardation film and an organic electroluminescence image display device comprising the same and excellent in image display performance (front and oblique visibility).
  • Ro (450) is an in-plane phase difference at a wavelength of 450 nm
  • Ro (550) is an in-plane phase difference at a wavelength of 550 nm
  • Ro (650) is an in-plane phase difference at a wavelength of 650 nm.
  • n y (410) is the refractive index in the fast axis direction at a wavelength of 410 nm
  • n y (400) is the refractive index in the fast axis direction at a wavelength of 400 nm.
  • n x (410) is a refractive index in the slow axis direction at a wavelength of 410nm
  • n x (400) is the refractive index in the slow axis direction at a wavelength of 400 nm. ] 2.
  • the film is produced through a stretching / shrinking process in which the film is stretched in the slow axis direction and contracted in the fast axis direction, and the ratio of the shrinkage ratio in the fast axis direction to the stretch ratio in the slow axis direction (shrinkage ratio / stretch ratio) is
  • It comprises a circularly polarizing plate having the ⁇ / 4 retardation film according to any one of items 1 to 4 and an organic electroluminescence element, and has a screen size of 20 inches or more.
  • Organic electroluminescence image display device comprises a circularly polarizing plate having the ⁇ / 4 retardation film according to any one of items 1 to 4 and an organic electroluminescence element, and has a screen size of 20 inches or more.
  • the refractive index n y (280) in the fast axis direction in the ultraviolet region 280 nm is set equal to or higher than the refractive index n x (280) in the slow axis direction. Accordingly, it was found that the inclination of the forward wavelength dispersion of the refractive index n y in the fast axis direction in a range of 400 ⁇ 700 nm in the visible light region becomes steep, it is effective in expressing the targeted effects of the present invention Is.
  • the main chain 1 of the matrix resin for example, a cellulose ester resin or the like
  • the low molecular weight having the side chain 5 used as an additive In the compound 3, the average direction 6 of the main chain 4 and the side chain 5 is oriented in the stretching direction 2.
  • the thickness direction retardation Rt becomes high.
  • the present inventors as shown in FIG. 1B, set the orientation of the compound 3 deviated from the main chain 1 of the matrix resin in the direction perpendicular to the stretching direction in the stretching step (
  • the direction of orientation of the main chain 4 of the compound 3 is rotated 8 by applying a contraction treatment for shrinking 7 in the direction of the phase advance axis), whereby the orientation direction of the main axis 4 of the compound 3 is changed to the orientation direction of the main chain 1 of the matrix resin.
  • the adjustment means which can be adjusted to is found.
  • the ratio between the draw ratio and the shrinkage ratio is an important factor, and a method in which the shrinkage ratio / stretch ratio is in the range of 0.05 to 0.70 is preferable.
  • the shrinkage ratio / stretch ratio is more preferably in the range of 0.10 to 0.30.
  • the main axis 4 of the compound 3 can be aligned with the main chain 1 of the matrix resin, and the side chain 5 of the compound 3 is also in the fast axis direction of the film.
  • the refractive index ny280 in the fast axis direction in the ultraviolet region 280 nm can be increased by incorporating a high refractive index molecule in the side chain 5 of this compound 3, and as a result, ny forward wavelength dispersion in the visible light region The slope of can be made steep.
  • the matrix resin is stretched obliquely while shrinking, for example, simultaneously controlling the slow axis of the cellulose acetate resin. Therefore, the effect of the present invention can be further expressed.
  • ⁇ / 4 retardation film of the present invention when the film thickness of the ⁇ / 4 retardation film is set within the range specified above, in particular, when the organic electroluminescence image display device is provided.
  • the display performance in color display can be further improved by thinning the film.
  • organic electroluminescence image display device comprising a circularly polarizing plate having the ⁇ / 4 retardation film of the present invention and an organic electroluminescence element, and having a screen size of 20 inches or more, An organic electroluminescence image display device excellent in image display performance such as front and oblique visibility can be realized.
  • a wide-band ⁇ / 4 retardation film having high retardation development, a thin film with reverse wavelength dispersion characteristics and a reduced retardation in the thickness direction, and image display performance It is possible to provide an organic electroluminescence image display device excellent in visibility in front and oblique directions.
  • Schematic explaining an example of the state of alignment between matrix resin and compound Schematic explaining an example of the method of the present invention for adjusting the orientation of the matrix resin and the compound by the contraction means
  • the schematic diagram explaining the shrinkage ratio in diagonal stretch Schematic which showed an example of the rail pattern of the diagonal stretcher applicable to the manufacturing method of (lambda) / 4 phase difference film of this invention
  • stretched diagonally, after paying out from a long film original fabric roll in an example of the manufacturing method which concerns on embodiment of this invention Schematic which shows the example of extending continuously diagonally, without winding up a long film original fabric in an example of the manufacturing method which concerns on embodiment of this invention.
  • the thickness direction retardation Rt (550) at a wavelength of 550 nm is 150 nm or less, and the wavelength dispersion characteristic of the in-plane retardation Ro is 0.72 ⁇ Ro (condition 1).
  • the in-plane refractive index is 1.000 ⁇ n.
  • Ro (450) is an in-plane phase difference at a wavelength of 450 nm
  • Ro (550) is an in-plane phase difference at a wavelength of 550 nm
  • Ro (650) is an in-plane phase difference at a wavelength of 650 nm
  • N y (280) is the refractive index in the fast axis direction at a wavelength of 280 nm
  • n x (280) is the refractive index in the slow axis direction at a wavelength of 280 nm.
  • n y (410) is the refractive index in the fast axis direction at a wavelength of 410 nm
  • n y (400) is the refractive index in the fast axis direction at a wavelength of 400 nm.
  • n x (410) is a refractive index in the slow axis direction at a wavelength of 410nm
  • n x (400) is the refractive index in the slow axis direction at a wavelength of 400 nm.
  • the means for realizing the range defined by the above conditions 1 to 3 is not particularly limited.
  • the stretching conditions for example, stretching temperature (° C.), stretch ratio ( %), Bending angle in oblique stretching (°), shrinkage rate (%), shrinkage rate / ratio of stretch ratio, etc.
  • film thickness or types and additions of optical performance modifiers represented by general formula (A)
  • Ro (450) / Ro (550), Ro (550) / Ro (650) which are chromatic dispersion characteristics, and an in-plane refractive index ratio n y (280) / n x in the ultraviolet region.
  • Each characteristic value of (280) and inverse wavelength dispersion ⁇ n y (400) / ⁇ n x (400) can be adjusted to a desired range.
  • is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
  • the ⁇ / 4 retardation film of the present invention refers to a film having a function of converting linearly polarized light having a specific wavelength into circularly polarized light or converting circularly polarized light into linearly polarized light.
  • the ⁇ / 4 retardation film has an in-plane retardation value Ro of about 1 ⁇ 4 with respect to a predetermined wavelength of light (usually in the visible light region).
  • Ro (550) measured at a wavelength of 550 nm is preferably in the range of 120 to 180 nm, more preferably in the range of 120 to 160 nm, and 130 to 150 nm. It is particularly preferable that it is within the range.
  • a retardation plate having a phase difference of approximately 1 ⁇ 4 of the wavelength in the visible light wavelength range ( A broadband ⁇ / 4 retardation film which is a film) is preferable.
  • a phase difference of approximately 1 ⁇ 4 in the wavelength range of visible light means an inverse wavelength dispersion characteristic having a larger phase difference value as the wavelength is longer in the wavelength range of 400 to 700 nm.
  • the in-plane retardation value Ro is represented by the following formula (i), and Ro (measured at a wavelength of 450 nm with respect to the in-plane retardation value Ro (550) measured at a wavelength of 550 nm).
  • 450) (Ro (450) / Ro (550)) is in the range of 0.72 to 0.96, but is in the range of 0.75 to 0.92. Preferably, it is in the range of 0.78 to 0.88.
  • the ratio of the in-plane retardation value Ro (550) measured at a wavelength of 550 nm to the in-plane retardation value Ro (650) measured at a wavelength of 650 nm (Ro (550) / Ro (650)) is 0.83 to Although it is within the range of 0.98, the balance with the Ro (450) / Ro (550) is important, and Ro (450) / Ro (550) is 0.72 to 0.96.
  • Ro (550) / Ro (650) is preferably in the range of 0.87 to 0.98, and Ro (450) / Ro (550) is in the range of 0.75 to 0.
  • Ro (550) / Ro (650) is preferably in the range of 0.88 to 0.96, and Ro (450) / Ro (550) is preferably 0.78 to 0.98. If it is in the range of 0.88, Ro (55 ) / Ro (650) is more preferably in the range of 0.90 to 0.94.
  • n x, n y and n z are, 23 ° C., respectively, were measured in an environment of 55% RH, the refractive index at a wavelength of 450 nm, 550 nm, or 650 nm, the surface of the n x the film a maximum refractive index of the inner (refractive index in a slow axis direction), n y is a refractive index in a direction perpendicular to the slow axis in the film plane, n z is the vertical thickness direction in the film plane Where d is the film thickness (nm).
  • the film thickness d is generally in the range of 20 to 100 ⁇ m, preferably in the range of 30 to 80 ⁇ m, and preferably in the range of 30 to 65 ⁇ m. It is particularly preferable from the viewpoint of further manifesting the effects of the invention.
  • the in-plane retardation value Ro can be calculated by measuring the birefringence at each wavelength in an environment of 23 ° C. and 55% RH using an Axoscan manufactured by Axometers. it can.
  • a circularly polarizing plate is obtained by laminating so that the angle between the slow axis of the ⁇ / 4 retardation film and the transmission axis of the polarizer described later is substantially 45 °.
  • substantially 45 ° means within a range of 40 to 50 °.
  • the angle between the in-plane slow axis of the ⁇ / 4 retardation film of the present invention and the transmission axis of the polarizer is more preferably in the range of 41 to 49 °, and in the range of 42 to 48 °. More preferably, it is more preferably in the range of 43 to 47 °, and most preferably in the range of 44 to 46 °.
  • optical performance modifier In the ⁇ / 4 retardation film of the present invention, a compound represented by the following general formula (A) is used as an optical performance modifier as one of means for achieving the above-mentioned conditions 1 to 3 defined in the present invention. Is preferred.
  • the refractive index nx in the slow axis direction can be increased, and the fast axis direction refractive index ny in the ultraviolet region can be increased to increase the fast axis.
  • the forward wavelength dispersion slope of the directional refractive index ny can be made steep.
  • L 1 and L 2 each independently represent a single bond or a divalent linking group.
  • R 1 , R 2 and R 3 each independently represent a substituent.
  • n represents an integer of 0 to 2.
  • Wa and Wb each represent a hydrogen atom or a substituent, (I) Wa and Wb may be bonded to each other to form a ring, and (II) at least one of Wa and Wb may have a ring structure Or (III) at least one of Wa and Wb may be an alkenyl group or an alkynyl group.
  • L 1 and L 2 each independently represent a single bond or a divalent linking group, and L 1 and L 2 are preferably O, COO, and OCO.
  • R 1 , R 2 and R 3 each independently represent a substituent.
  • substituent represented by R 1 , R 2 and R 3 include a halogen atom (eg, fluorine atom, chlorine atom, bromine atom, iodine atom), an alkyl group (eg, methyl group, ethyl group, n-propyl group, isopropyl group, tert-butyl group, n-octyl group, 2-ethylhexyl group, etc.), cycloalkyl group (for example, cyclohexyl group, cyclopentyl group, 4-n-dodecylcyclohexyl group, etc.), alkenyl group ( For example, vinyl group, allyl group, etc.), cycloalkenyl group (eg, 2-cyclopenten-1-yl, 2-cyclohexen-1-yl group, etc.), alkynyl group (eg, ethyl
  • R 1 and R 2 are preferably a substituted or unsubstituted benzene ring or a substituted or unsubstituted cyclohexane ring. More preferably, they are a benzene ring having a substituent and a cyclohexane ring having a substituent, and the benzene ring having a substituent at the 4-position is a compound of the general formula (A) in the slow axis direction of the ⁇ / 4 retardation film. This is particularly preferred from the viewpoint of orienting the main chain and increasing the slow axis direction refractive index nx.
  • R 3 is preferably a hydrogen atom, halogen atom, alkyl group, alkenyl group, aryl group, heterocyclic group, hydroxyl group, carboxyl group, alkoxy group, aryloxy group, acyloxy group, cyano group, amino group, More preferably, they are a hydrogen atom, a halogen atom, an alkyl group, a cyano group, and an alkoxy group.
  • Wa and Wb each independently represent a hydrogen atom or a substituent, and Wa and Wb may be bonded to each other to form a ring, or at least one of Wa and Wb may have a ring structure, or Wa and Wb At least one may be an alkenyl group or an alkynyl group.
  • substituent represented by Wa and Wb include halogen atoms (eg, fluorine atom, chlorine atom, bromine atom, iodine atom), alkyl groups (eg, methyl group, ethyl group, n-propyl group, Isopropyl group, tert-butyl group, n-octyl group, 2-ethylhexyl group, etc.), cycloalkyl group (for example, cyclohexyl group, cyclopentyl group, 4-n-dodecylcyclohexyl group, etc.), alkenyl group (for example, vinyl group, Allyl group), cycloalkenyl group (eg 2-cyclopenten-1-yl, 2-cyclohexen-1-yl group, etc.), alkynyl group (eg ethynyl group, propargyl group etc.), aryl group (eg phenyl group) ,
  • Wa and Wb are bonded to each other to form a ring, the following structures may be mentioned.
  • R 4 , R 5 and R 6 each represent a hydrogen atom or a substituent, and examples of the substituent include the same groups as the specific examples of the substituent represented by R 1 , R 2 and R 3 above. be able to.
  • Wa and Wb are a hydrogen atom and the other has a ring-setting group
  • the following structures are exemplified.
  • R ii and R iii may include the same groups as the specific examples of the substituents represented by R 1 , R 2 and R 3 , respectively.
  • a 1 and A 2 each independently represent O, S, NR X (R X represents a hydrogen atom or a substituent) or CO.
  • R X represents a hydrogen atom or a substituent
  • Examples of the substituent represented by R X has the same meaning as specific examples of substituents represented by the Wa and Wb.
  • R X is preferably a hydrogen atom, an alkyl group, an aryl group, or a heterocyclic group.
  • X is a nonmetallic atom belonging to Groups 14 to 16 after the third period, or a substituent containing a nonmetallic atom belonging to Groups 14 to 16 or a conjugated system after the third period.
  • the ⁇ / 4 retardation film is preferable for increasing the refractive index in the ultraviolet region of the refractive index ny in the fast axis direction.
  • X is preferably O, S, NRc, or C (Rd) Re.
  • Rc, Rd and Re each represent a substituent, and examples thereof include groups similar to the specific examples of the substituents represented by Wa and Wb.
  • L 1, L 2, R 1, R 2, R 3, and n is an L 1 in the general formula (A), respectively, L 2, R 1, R 2, R 3, and the n synonymous.
  • the synthesis of the compound represented by the general formula (A) can be performed by applying a known synthesis method. Specifically, synthesis may be performed with reference to the methods described in Journal of Chemical Crystallography (1997); 27 (9); 512-526), JP 2010-31223 A, JP 2008-107767 A, and the like. it can.
  • thermoplastic resin As the matrix resin, it is preferable to use a thermoplastic resin as the matrix resin, and it is more preferable that the main component is cellulose acylate.
  • the “main component” in the present invention means that 70% by mass or more of the thermoplastic resin component constituting the ⁇ / 4 retardation film is composed of cellulose acylate.
  • the average acyl group substitution degree is preferably in the range of 2.0 to 3.0, more preferably in the range of 2.2 to 2.8, and still more preferably. Is in the range of 2.4 to 2.7.
  • the average degree of acyl group substitution here means the average value of the number of esterified hydroxy groups (hydroxyl groups) out of the three hydroxy groups (hydroxyl groups) of each anhydroglucose constituting cellulose. It takes a value in the range of ⁇ 3.0.
  • the portion not substituted with an acyl group usually exists as a hydroxy group (hydroxyl group).
  • cellulose acylates can be synthesized by a known method.
  • the substitution degree of the acyl group is a value determined according to the method specified in ASTM-D817-96 (testing method for cellulose acylate, etc.).
  • the number average molecular weight (Mn) of the cellulose acylate according to the present invention is preferably in the range of 30,000 to 300,000 from the viewpoint of increasing the mechanical strength of the obtained ⁇ / 4 retardation film. Furthermore, those in the range of 50,000 to 200,000 are preferably used.
  • the ratio Mw / Mn of the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the cellulose acylate is preferably in the range of 1.4 to 3.0.
  • the weight average molecular weight Mw and the number average molecular weight Mn of cellulose acylate can be determined by measuring each using gel permeation chromatography (GPC).
  • Solvent Methylene chloride Column: Shodex K806, K805, K803G (Used by connecting three columns manufactured by Showa Denko KK) Column temperature: 25 ° C Sample concentration: 0.1% by mass Detector: RI Model 504 (GL Science Co., Ltd.) Pump: L6000 (manufactured by Hitachi, Ltd.) Flow rate: 1.0 ml / min Calibration curve: A standard polystyrene STK standard polystyrene (manufactured by Tosoh Co., Ltd.) and a calibration curve with 13 samples having a Mw in the range of 1,000,000 to 500 was used. Thirteen samples are used at approximately equal intervals.
  • thermoplastic resin other than cellulose acylate may be used.
  • thermoplastic resin refers to a resin that has the characteristics that it becomes soft when heated to the glass transition temperature or melting point and can be molded into the desired shape.
  • thermoplastic resin examples include polyethylene (PE), high density polyethylene (HDPE), medium density polyethylene (MDPE), low density polyethylene (LDPE), polypropylene (PP), polyvinyl chloride (PVC), and polyvinylidene chloride ( PVDC), polystyrene (PS), polyvinyl acetate (PVAc), Teflon (registered trademark) (polytetrafluoroethylene, PTFE), ABS resin (acrylonitrile butadiene styrene copolymer), AS resin (acrylonitrile styrene copolymer), Acrylic resin (PMMA) or the like can be used.
  • PE polyethylene
  • HDPE high density polyethylene
  • MDPE medium density polyethylene
  • LDPE low density polyethylene
  • PP polypropylene
  • PVDC polyvinyl chloride
  • PS polyvinyl acetate
  • Teflon registered trademark
  • ABS resin acrylonitrile butadiene styrene copolymer
  • PA polyamide
  • nylon polyacetal
  • PC polycarbonate
  • m-PPE modified polyphenylene ether
  • PBT polybutylene terephthalate
  • PET polyethylene terephthalate
  • GF-PET glass fiber reinforced polyethylene terephthalate
  • COP cyclic polyolefin
  • polyphenylene sulfide PPS
  • polytetrafluoroethylene PTFE
  • PSF polysulfone
  • PES polyethersulfone
  • amorphous Polyarylate liquid crystal polymer, polyetheretherketone (PEEK), thermoplastic polyimide (PI), polyamideimide (PAI) and the like can be used.
  • thermoplastic resin in accordance with the application of the present invention.
  • Organic solvents useful for preparing cellulose acylate solution or dope by dissolving cellulose acylate mainly include chlorinated organic solvents and non-chlorinated organic solvents.
  • Examples of the chlorinated organic solvent include methylene chloride (methylene chloride).
  • methylene chloride methylene chloride
  • non-chlorine organic solvents include methyl acetate, ethyl acetate, amyl acetate, acetone, tetrahydrofuran, 1,3-dioxolane, 1,4-dioxane, cyclohexanone, ethyl formate, 2,2,2-trifluoroethanol, 2,2,3,3-hexafluoro-1-propanol, 1,3-difluoro-2-propanol, 1,1,1,3,3,3-hexafluoro-2-methyl-2-propanol, 1, Examples include 1,1,3,3,3-hexafluoro-2-propanol, 2,2,3,3,3-pentafluoro-1-propanol, and nitroethane.
  • a dissolution method at normal temperature can be used, but a known dissolution method such as a high-temperature dissolution method, a cooling dissolution method, or a high-pressure dissolution method should be used. However, it is preferable from the viewpoint of reducing insoluble matter.
  • methylene chloride can be used, but methyl acetate, ethyl acetate, and acetone are preferably used, and among them, methyl acetate is particularly preferable.
  • an organic solvent having good solubility in the cellulose acylate is referred to as a good solvent, and has a main effect on dissolution, and an organic solvent used in a large amount among them is a main (organic) solvent or It is called the main (organic) solvent.
  • the dope used for forming the ⁇ / 4 retardation film of the present invention preferably contains an alcohol having 1 to 4 carbon atoms in the range of 1 to 40% by mass in addition to the organic solvent. .
  • These alcohols after casting the dope on a metal support, start to evaporate the organic solvent, and when the relative proportion of the alcohol component increases, the dope film (web) gels, making the web strong and supporting the metal It can act as a gelling solvent that makes it easy to peel off from the body.
  • the proportion of these alcohols is low, it also has a role of promoting dissolution of cellulose acylate, a non-chlorine organic solvent.
  • Examples of the alcohol having 1 to 4 carbon atoms include methanol, ethanol, n-propanol, iso-propanol, n-butanol, sec-butanol, and tert-butanol. Of these, it is preferable to use ethanol from the viewpoints of excellent dope stability, relatively low boiling point, and good drying properties. These alcohols are categorized as poor solvents because they are not soluble in cellulose acylate alone.
  • the concentration of cellulose acylate in the dope is preferably in the range of 15 to 30% by mass, and the dope viscosity can be adjusted in the range of 100 to 500 Pa ⁇ s to obtain excellent film surface quality. It is preferable from the viewpoint.
  • additives examples include plasticizers, ultraviolet absorbers, antioxidants, deterioration inhibitors, peeling aids, surfactants, dyes, and fine particles.
  • additives other than fine particles may be added when preparing the cellulose acylate solution, or may be added when preparing the fine particle dispersion. It is preferable to add a plasticizer, an antioxidant, an ultraviolet absorber, or the like that imparts heat and moisture resistance to the polarizing plate used in the image display device.
  • the ⁇ / 4 retardation film of the present invention preferably contains a plasticizer.
  • the ⁇ / 4 retardation film of the present invention preferably contains a polyester plasticizer having a number average molecular weight (Mn) in the range of 1000 to 10,000.
  • the specific structure of the polyester plasticizer is not particularly limited, and a polyester plasticizer having an aromatic ring or a cycloalkyl ring in the molecule can be used.
  • polyester plasticizer examples include a polyester plasticizer represented by the following general formula (a).
  • B represents a benzene monocarboxylic acid group or an aliphatic monocarboxylic acid group
  • G represents an alkylene glycol group having 2 to 12 carbon atoms, an aryl glycol group having 6 to 12 carbon atoms, or 4 carbon atoms.
  • A represents an alkylene dicarboxylic acid group having 4 to 12 carbon atoms or an aryl dicarboxylic acid group having 6 to 12 carbon atoms
  • n represents an integer of 1 or more.
  • the polyester plasticizer represented by the general formula (a) is obtained by the same reaction as a normal polyester plasticizer.
  • benzene monocarboxylic acid component of the polyester plasticizer examples include benzoic acid, paratertiary butylbenzoic acid, orthotoluic acid, metatoluic acid, p-toluic acid, dimethylbenzoic acid, ethylbenzoic acid, normal propylbenzoic acid, and aminobenzoic acid. , Acetoxybenzoic acid and the like, each of which can be used alone or as a mixture of two or more.
  • the aliphatic monocarboxylic acid component of the polyester plasticizer is preferably an aliphatic monocarboxylic acid having 3 or less carbon atoms, more preferably acetic acid, propionic acid or butanoic acid, and most preferably acetic acid.
  • the number of carbon atoms of the monocarboxylic acids used at both ends of the polycondensed ester is 3 or less, the heat loss of the compound does not increase, and no surface failure occurs.
  • a monocarboxylic acid having a cycloaliphatic having 3 to 8 carbon atoms is preferred, a monocarboxylic acid having a cycloaliphatic having 6 carbons is more preferred, and cyclohexanecarboxylic acid and 4-methyl-cyclohexanecarboxylic acid are most preferred.
  • the cycloaliphatic carbon number of the monocarboxylic acid used at both ends of the polycondensed ester is in the range of 3 to 8, the heat loss of the compound does not increase, and it is preferable in that a surface failure does not occur.
  • alkylene glycol component having 2 to 12 carbon atoms of the polyester plasticizer examples include ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,2-butanediol, and 1,3-butanediol.
  • an alkylene glycol having 2 to 12 carbon atoms is particularly preferable in terms of excellent compatibility with cellulose acylate, more preferably an alkylene glycol having 2 to 6 carbon atoms, and further preferably a carbon number. Is an alkylene glycol of 2 to 4.
  • Examples of the oxyalkylene glycol component having 4 to 12 carbon atoms of the polyester plasticizer include diethylene glycol, triethylene glycol, tetraethylene glycol, dipropylene glycol, and tripropylene glycol. It can be used alone or as a mixture of two or more.
  • alkylene dicarboxylic acid component having 4 to 12 carbon atoms of the polyester plasticizer examples include succinic acid, maleic acid, fumaric acid, glutaric acid, adipic acid, azelaic acid, sebacic acid, dodecanedicarboxylic acid, and the like. Each of these may be used alone or as a mixture of two or more.
  • examples of the arylene dicarboxylic acid component having 6 to 12 carbon atoms include phthalic acid, terephthalic acid, isophthalic acid, 1,5-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, and the like.
  • the number average molecular weight of the polyester plasticizer preferably used for the ⁇ / 4 retardation film of the present invention is in the range of 200 to 10,000, more preferably in the range of 300 to 3000.
  • the acid value of the polyester plasticizer is preferably 0.5 mgKOH / g or less, more preferably 0.3 mgKOH / g or less.
  • the hydroxy group value of the polyester plasticizer is preferably 25 mgKOH / g or less, more preferably 15 mgKOH / g or less.
  • an acid value means the milligram number of potassium hydroxide required in order to neutralize the acid (carboxyl group which exists in a sample) contained in 1g of samples. The acid value is measured according to JIS K0070.
  • plasticizers may be applied to the ⁇ / 4 retardation film of the present invention.
  • plasticizers examples include polyhydric alcohol ester plasticizers, glycolate plasticizers, phthalate ester plasticizers, citrate ester plasticizers, fatty acid ester plasticizers, and phosphate esters.
  • plasticizers examples include polyhydric alcohol ester plasticizers, glycolate plasticizers, phthalate ester plasticizers, citrate ester plasticizers, fatty acid ester plasticizers, and phosphate esters.
  • plasticizers examples include polyhydric alcohol ester plasticizers, glycolate plasticizers, phthalate ester plasticizers, citrate ester plasticizers, fatty acid ester plasticizers, and phosphate esters.
  • plasticizer examples include a plasticizer, a polycarboxylic acid ester plasticizer, and an acrylic plasticizer.
  • the ⁇ / 4 retardation film of the present invention includes cellulose having at least one pyranose structure or furanose structure in the range of 1 to 12, and all or part of the hydroxy groups of the structure are esterified. It is preferable to include an ester compound excluding the ester.
  • ester compounds excluding the cellulose ester having such a structure are collectively referred to as “sugar ester compounds”.
  • sugar ester compounds examples include the following, but the present invention is not limited to these.
  • Examples of the compound (saccharide) having a pyranose structure or furanose structure include glucose, galactose, mannose, fructose, xylose, or arabinose, lactose, sucrose, nystose, 1F-fructosylnystose, stachyose, maltitol, lactitol, lactulose , Cellobiose, maltose, cellotriose, maltotriose, raffinose, and kestose.
  • gentiobiose gentiotriose
  • gentiotetraose gentiotetraose
  • xylotriose galactosyl sucrose
  • sucrose kestose, nystose, 1F-fructosyl nystose, stachyose and the like are preferable, and sucrose is more preferable.
  • the monocarboxylic acid used for esterifying all or part of the hydroxy group of the compound (sugar) having the above-described pyranose structure or furanose structure when preparing the sugar ester compound is not particularly limited and is known. Aliphatic monocarboxylic acids, alicyclic monocarboxylic acids, aromatic monocarboxylic acids, and the like can be used. The carboxylic acid used may be one kind alone or a mixture of two or more kinds.
  • Preferred aliphatic monocarboxylic acids include acetic acid, propionic acid, butyric acid, isobutyric acid, valeric acid, caproic acid, enanthic acid, caprylic acid, pelargonic acid, capric acid, 2-ethyl-hexanecarboxylic acid, undecylic acid, lauric acid , Saturated fatty acids such as tridecylic acid, myristic acid, pentadecylic acid, palmitic acid, heptadecylic acid, stearic acid, nonadecanoic acid, arachidic acid, behenic acid, lignoceric acid, serotic acid, heptacosanoic acid, montanic acid, melicic acid, and laccelic acid; Examples thereof include unsaturated fatty acids such as undecylenic acid, oleic acid, sorbic acid, linoleic acid, linolenic acid, arachidonic acid and o
  • Examples of preferable alicyclic monocarboxylic acids include acetic acid, cyclopentanecarboxylic acid, cyclohexanecarboxylic acid, cyclooctanecarboxylic acid, and derivatives thereof.
  • aromatic monocarboxylic acids examples include aromatic monocarboxylic acids having an alkyl group or alkoxy group introduced into the benzene ring of benzoic acid such as benzoic acid and toluic acid, cinnamic acid, benzylic acid, biphenylcarboxylic acid, and naphthalene.
  • aromatic monocarboxylic acids having two or more benzene rings such as carboxylic acid and tetralincarboxylic acid, or derivatives thereof.
  • the sugar ester compound described above is based on 100% by mass of the ⁇ / 4 retardation film. It is preferably contained within the range of 1 to 30% by mass, and more preferably within the range of 5 to 30% by mass. Within this range, the above-described excellent effects are exhibited, and there is no bleed out and the like.
  • the ⁇ / 4 retardation film of the present invention or the protective film constituting the circularly polarizing plate described later preferably contains an ultraviolet absorber.
  • Examples of the ultraviolet absorber used include benzotriazole-based, 2-hydroxybenzophenone-based or salicylic acid phenyl ester-based ones.
  • 2- (5-methyl-2-hydroxyphenyl) benzotriazole, 2- [2-hydroxy-3,5-bis ( ⁇ , ⁇ -dimethylbenzyl) phenyl] -2H-benzotriazole, 2- (3 Triazoles such as 5-di-t-butyl-2-hydroxyphenyl) benzotriazole, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-octoxybenzophenone, 2,2'-dihydroxy-4-methoxybenzophenone And benzophenones.
  • UV absorbers with a molecular weight of 400 or more are less likely to volatilize at high boiling points and are difficult to disperse even during high temperature molding, so that light resistance is effectively improved with a relatively small amount of addition. Can do.
  • Examples of the ultraviolet absorber having a molecular weight of 400 or more include 2- [2-hydroxy-3,5-bis ( ⁇ , ⁇ -dimethylbenzyl) phenyl] -2-benzotriazole, 2,2-methylenebis [4- ( Benzotriazoles such as 1,1,3,3-tetrabutyl) -6- (2H-benzotriazol-2-yl) phenol], bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, Hindered amines such as bis (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate and further 2- (3,5-di-t-butyl-4-hydroxybenzyl) -2-n-butyl Bis (1,2,2,6,6-pentamethyl-4-piperidyl) malonate, 1- [2- [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionyloxy Cis] ethyl] -4- [3- (3
  • 2- [2-hydroxy-3,5-bis ( ⁇ , ⁇ -dimethylbenzyl) phenyl] -2-benzotriazole and 2,2-methylenebis [4- (1,1,3,3- Tetrabutyl) -6- (2H-benzotriazol-2-yl) phenol] is particularly preferred.
  • UV absorbers commercially available products may be used.
  • TINUBIN 109, TINUVIN 171, TINUVIN 234, TINUVIN 326, TINUVIN 327, TINUVIN 328, TINUVIN 928, etc. manufactured by BASF Japan Ltd. are absorbed.
  • An agent can be preferably used.
  • antioxidants can also be added to the ⁇ / 4 retardation film in order to improve the thermal decomposability and thermal colorability during molding.
  • an antistatic agent can be added to impart antistatic performance to the ⁇ / 4 retardation film.
  • ⁇ Phosphorus flame retardant For the ⁇ / 4 retardation film of the present invention, a flame retardant acrylic resin composition containing a phosphorus flame retardant may be used.
  • Phosphorus flame retardants applicable to the present invention include red phosphorus, triaryl phosphate ester, diaryl phosphate ester, monoaryl phosphate ester, aryl phosphonate compound, aryl phosphine oxide compound, condensed aryl phosphate ester, halogenated Examples thereof include one or a mixture of two or more selected from alkyl phosphates, halogen-containing condensed phosphates, halogen-containing condensed phosphonates, and halogen-containing phosphites.
  • triphenyl phosphate 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, phenylphosphonic acid, tris ( ⁇ -chloroethyl) phosphate, tris (dichloropropyl) Examples thereof include phosphate and tris (tribromoneopentyl) phosphate.
  • the ⁇ / 4 retardation film of the present invention has, for example, silicon dioxide, titanium dioxide, aluminum oxide, zirconium oxide, calcium carbonate, kaolin, talc, calcined calcium silicate, hydration from the viewpoint of improving handling properties. It is preferable to include a matting agent such as inorganic fine particles such as calcium silicate, aluminum silicate, magnesium silicate, and calcium phosphate, and a crosslinked polymer. Among these, silicon dioxide is preferably used because it can reduce the haze of the film.
  • the primary average particle diameter of the fine particles is preferably 20 nm or less, more preferably in the range of 5 to 16 nm, and particularly preferably in the range of 5 to 12 nm.
  • the ⁇ / 4 retardation film of the present invention can be formed according to a known method. Hereinafter, typical solution casting methods and melt casting methods will be described.
  • the ⁇ / 4 retardation film of the present invention can be produced by a solution casting method.
  • a cellulose acylate which is a thermoplastic resin and additives are dissolved in an organic solvent by heating to prepare a dope, and the prepared dope is placed on a belt-shaped or drum-shaped metal support.
  • Casting process for casting drying process for drying the cast dope as a web, peeling process for peeling the web from the metal support, stretching process for stretching or shrinking the peeled web, further drying process, winding of the finished film Manufactured through a removal process.
  • the concentration of cellulose acylate in the dope is preferably higher because the drying load after casting on a metal support can be reduced, but if the concentration of cellulose acylate is too high, the load during filtration increases. Filtration accuracy deteriorates.
  • the concentration that achieves both of these is preferably in the range of 10 to 35% by mass, and more preferably in the range of 15 to 25% by mass.
  • the metal support in the casting (casting) step preferably has a mirror-finished surface, and as the metal support, a stainless steel belt or a drum whose surface is plated with a casting is preferably used.
  • the cast width is preferably in the range of 1 to 4 m.
  • the surface temperature of the metal support in the casting step is appropriately selected and set within a range from ⁇ 50 ° C. to a temperature at which the solvent does not boil and foam. A higher temperature is preferable because the web can be dried faster, but if it is too high, the web may foam and flatness may deteriorate.
  • a preferable support temperature is appropriately determined within a range of 0 to 100 ° C., and a temperature range of 5 to 30 ° C. is more preferable.
  • the method for controlling the temperature of the metal support is not particularly limited, and there are a method of blowing warm air or cold air, and a method of bringing hot water into contact with the back side of the metal support. The method using hot water is preferable because the heat transfer is performed efficiently, and the time until the temperature of the metal support becomes constant is short.
  • the amount of residual solvent when peeling the web from the metal support is preferably set in the range of 10 to 150% by mass, more preferably 20%. It is in the range of ⁇ 40 mass% or 60 to 130 mass%, particularly preferably in the range of 20 to 30 mass% or 70 to 120 mass%.
  • the amount of residual solvent as used in the present invention is defined by the following formula.
  • Residual solvent amount (% by mass) ⁇ (MN) / N ⁇ ⁇ 100
  • M is the mass of a sample collected at any time during or after production of the web or film
  • N is the mass after heating M at 115 ° C. for 1 hour.
  • the web is peeled off from the metal support, and further dried, so that the residual solvent amount is preferably 1.0% by mass or less, more preferably 0 to 0.00.
  • the range is 01% by mass.
  • a roller drying method for example, a method in which webs are alternately passed through a number of upper and lower rollers and a method in which the web is dried while being conveyed by a tenter method is employed.
  • the in-plane retardation Ro550 measured at a wavelength of 550 nm is preferably in the range of 120 to 180 nm.
  • the retardation can be imparted by film stretching.
  • the ⁇ / 4 retardation film of the present invention may be referred to as a cellulose acylate film.
  • the stretching method For example, a method in which a difference in peripheral speed is applied to a plurality of rollers, and the rollers are stretched in the longitudinal direction using the difference in peripheral speed between the rollers, and both ends of the web are fixed with clips and pins, and the interval between the clips and pins is increased in the traveling direction. And a method of stretching in the vertical direction, a method of stretching in the horizontal direction and stretching in the horizontal direction, a method of stretching in the vertical and horizontal directions and stretching in both the vertical and horizontal directions, and the like. Of course, these methods may be used in combination.
  • the film may be stretched in the transverse direction, longitudinally, or in both directions with respect to the film forming direction, and when stretched in both directions, simultaneous stretching or sequential stretching may be used. May be.
  • driving the clip portion by a linear drive method is preferable from the viewpoint that smooth stretching can be performed and the risk of breakage and the like can be reduced.
  • the film is stretched in the direction in which the slow axis is to be generated and contracted in the vertical direction (fast axis direction), and the ratio of the shrinkage rate to the stretching ratio is controlled.
  • the principal axis direction of the compound represented by the general formula (A) suitably used in the present invention is matched with the principal axis direction (stretching direction) of the cellulose acylate. It is preferable to control the orientation direction of the main axis of the compound represented by the general formula (A).
  • the shrinkage ratio / stretch ratio 0.05.
  • the preferred embodiment is in the range of ⁇ 0.70, but the most preferred is in the range of 0.10 to 0.30.
  • the main axis of the compound represented by the general formula (A) is If it can be matched with the main chain of the matrix resin, the side chain of the compound represented by the general formula (A) is also oriented in the film fast axis direction, and the side chain contains a high refractive index molecule, the ultraviolet region it is possible to increase the refractive index of the fast axis direction in the 280 nm n y (280), can be a steep slope of the forward wavelength dispersion of n y in the visible light region.
  • a method of starting shrinkage after stretching within 30 to 70% of the total stretching step is preferable.
  • the stretching process usually involves stretching in the width direction (TD direction) and contracting in the transport direction (MD direction), but when contracting, it is easy to match the main chain direction when transported in an oblique direction. In addition, the phase difference effect is even greater.
  • the shrinkage rate is determined by the transport angle.
  • FIG. 2 is a schematic diagram for explaining the shrinkage ratio in oblique stretching.
  • 11 is a stretching direction (TD direction)
  • 13 is a transport direction (MD direction)
  • 14 is a slow axis.
  • the slow axis of the ⁇ / 4 retardation film is preferably within a range of 30 to 60 ° with respect to the transport direction.
  • the shrinkage ratio is preferably in the range of 10 to 50%.
  • the ⁇ / 4 retardation film of the present invention has an orientation angle of 45 ° ⁇ 2 ° with respect to the conveying direction, and can be bonded roll-to-roll with a polarizing film. Most preferred.
  • an obliquely stretched tenter as a method for imparting an oblique orientation to the cellulose acylate film to be stretched.
  • the orientation angle of the film can be set freely by changing the rail pattern in various ways, and the film orientation axis can be set to the left and right in the film width direction with high accuracy. It is preferable that the film stretching apparatus be capable of being oriented to the film and controlling the film thickness and retardation with high accuracy.
  • FIG. 3 is a schematic view showing an example of a rail pattern of an oblique stretching machine applicable to the production of the ⁇ / 4 retardation film of the present invention.
  • the figure shown here is an example, Comprising: This invention is not limited to this.
  • the feeding direction D1 of the long film original is different from the winding direction D2 of the stretched film after stretching, and forms a feeding angle ⁇ i.
  • the feeding angle ⁇ i can be arbitrarily set to a desired angle in the range of more than 0 ° and less than 90 °.
  • the long film original is gripped by the right and left grippers (tenters) at the entrance of the oblique stretching machine (position A in the figure), and travels as the grippers travel.
  • the left and right gripping tools are at the entrance of the oblique stretching machine (position A in the figure), and the left and right gripping tools Ci and Co facing the direction substantially perpendicular to the film traveling direction (feeding direction D1) are It runs on the asymmetric rails Ri and Ro, and releases the film gripped by the tenter at the position at the end of stretching (position B in the figure).
  • the gripping tools Ci and Co which are opposed to the film stretching direction D1 at the entrance of the oblique stretching machine (the gripping start position by the film gripping tool) A, are positioned at the end of the film stretching.
  • the straight line connecting the grippers Ci and Co is inclined by an angle ⁇ L with respect to a direction substantially perpendicular to the film winding direction D2.
  • the original film is stretched obliquely in the direction of ⁇ L.
  • substantially vertical indicates that it is within a range of 90 ⁇ 1 °.
  • This tenter is an apparatus that heats an original film of the film to an arbitrary temperature at which it can be stretched and stretches it obliquely.
  • This tenter includes a heating zone, a pair of rails on the left and right on which a gripping tool for transporting the film travels, and a number of gripping tools that travel on the rails. Both ends of the film sequentially supplied to the entrance portion of the tenter are gripped by a gripping tool, the film is guided into the heating zone, and the film is released from the gripping tool at the exit portion of the tenter. The film released from the gripping tool is wound around the core.
  • Each of the pair of rails has an endless continuous track, and the gripping tool which has released the grip of the film at the exit portion of the tenter travels outside and is sequentially returned to the entrance portion.
  • the rail pattern of the tenter has an asymmetric shape on the left and right, and the rail pattern can be adjusted manually or automatically according to the orientation angle ⁇ , stretch ratio, etc. given to the long stretched film to be manufactured. ing.
  • the position of each rail part and the rail connecting part can be freely set and the rail pattern can be arbitrarily changed.
  • the “ ⁇ ” part shown in FIG. 3 is an example of the connecting part.
  • the gripping tool of the tenter travels at a constant speed while maintaining a constant distance from the front and rear gripping tools.
  • the traveling speed of the gripping tool can be selected as appropriate, but is usually in the range of 1 to 100 m / min.
  • the difference between the traveling speeds of the pair of left and right grippers is usually 1% or less of the traveling speed, preferably 0.5% or less, more preferably 0.1% or less. This is because if there is a difference in the conveyance speed between the left and right of the film at the exit of the stretching process, wrinkles and deviations will occur at the exit of the stretching process, so the speed difference between the left and right gripping tools may be substantially the same speed. Desired. In general tenter devices, etc., there are speed irregularities that occur in the order of seconds or less depending on the period of the sprocket teeth that drive the chain, the frequency of the drive motor, etc. This does not correspond to the speed difference described in the embodiment of the invention.
  • a rail that regulates the trajectory of the gripping tool is often required to have a high bending rate, particularly in a portion where the film is transported obliquely.
  • the long film original is sequentially gripped by the right and left grippers at the entrance of the oblique stretching machine (position A in the drawing), and is conveyed along with the travel of the grippers.
  • the left and right gripping tools facing the direction substantially perpendicular to the film traveling direction D1 at the entrance of the oblique stretching machine (position A in the figure) run on a rail that is asymmetrical to the preheating zone and the stretching zone. Through a heating zone having a heat setting zone.
  • the preheating zone refers to a section where the distance between the gripping tools gripping both ends is kept constant at the heating zone entrance.
  • the stretching zone refers to the interval until the gap between the gripping tools that grips both ends starts to reach a predetermined interval.
  • the oblique stretching as described above is performed, but the stretching may be performed in the longitudinal direction or the transverse direction before and after the oblique stretching as necessary.
  • the orientation of the optical adjusting agent is rotated by shrinking the orientation of the compound represented by the compound)) in the direction perpendicular to the stretching direction (the fast axis direction), and the main axis of the optical adjusting agent compound is cellulose which is a matrix resin.
  • the refractive index ny280 in the fast axis direction in the ultraviolet region 280 nm can be increased, and the slope of the ny forward wavelength dispersion in the visible light region can be made steep.
  • the heat setting zone refers to the section in which the gripping tools at both ends run parallel to each other during the period when the spacing between the gripping tools after the stretching zone becomes constant again.
  • the heat setting zone After passing through the heat setting zone, it may pass through a section (cooling zone) where the temperature in the zone is set to the glass transition temperature Tg ° C. or lower of the thermoplastic resin constituting the film.
  • a rail pattern that narrows the gap between the opposing grippers in advance may be used.
  • the temperature of each zone is the glass transition temperature Tg of the thermoplastic resin
  • the temperature of the preheating zone is within the range of Tg to Tg + 30 ° C
  • the temperature of the stretching zone is within the range of Tg to Tg + 30 ° C
  • the temperature of the cooling zone is It is preferable to set within the range of Tg-30 to Tg ° C.
  • a temperature difference in the width direction may be applied in the stretching zone.
  • a method of adjusting the opening degree of the nozzle for sending warm air into the temperature-controlled room so as to make a difference in the width direction, or controlling the heating by arranging the heaters in the width direction is known. Can be used.
  • the length of the preheating zone, the stretching zone, the shrinking zone and the cooling zone can be appropriately selected.
  • the length of the preheating zone is usually within a range of 100 to 150% of the length of the stretching zone, and the length of the fixed zone Is usually set within a range of 50 to 100%.
  • the draw ratio R (W / W0) in the drawing step is preferably in the range of 1.3 to 3.0, more preferably in the range of 1.5 to 2.8. When the draw ratio is within this range, the thickness unevenness in the width direction is preferably reduced. In the stretching zone of the oblique stretching tenter, if the stretching temperature is made different in the width direction, the thickness unevenness in the width direction can be further improved.
  • W0 represents the width of the film before stretching
  • W represents the width of the film after stretching.
  • the stretching methods shown in FIGS. 4A to 4C, 5A and 5B can be exemplified.
  • FIGS. 4A to 4C are schematic views showing an example of the manufacturing method according to the embodiment of the present invention (an example in which the film is unwound from a long film roll and then obliquely stretched). It shows a pattern in which the original film is drawn out and obliquely stretched.
  • 5A and 5B are schematic views illustrating an example of a manufacturing method according to an embodiment of the present invention (an example in which a long film original fabric is continuously stretched obliquely without winding up). The pattern which performs a diagonal stretch process continuously, without winding up is shown.
  • a film feeding device 16 In each figure, a film feeding device 16, a transport direction changing device 17, a winding device 18, and a film forming device 19 are shown.
  • the film unwinding device 16 is slidable and pivotable so that the film can be fed at a predetermined angle with respect to the obliquely stretched tenter entrance, or the film unwinding device 16 is slidable and the transport direction is changed. It is preferable that the film can be sent out to the entrance of the obliquely stretched tenter by the device 17.
  • the film feeding device 16 and the conveyance direction changing device 17 By configuring the film feeding device 16 and the conveyance direction changing device 17 in such a configuration, the width of the entire manufacturing apparatus can be further reduced, and the film feeding position and angle can be finely controlled. This makes it possible to obtain a long stretched film with small variations in film thickness and optical characteristic values. Further, by making the film feeding device 16 and the conveyance direction changing device 17 movable, it is possible to effectively prevent the left and right clips from being caught in the film.
  • the take-up tension T (N / m) of the stretched film can be adjusted within a range of 100 N / m ⁇ T ⁇ 300 N / m, preferably 150 N / m ⁇ T ⁇ 250 N / m. preferable.
  • the ⁇ / 4 retardation film of the present invention may be formed by a melt film forming method.
  • a composition containing an additive such as a resin and a plasticizer is heated and melted to a temperature exhibiting fluidity, and then a melt containing a fluid thermoplastic resin is cast to form a film. Is the method.
  • the heating and melting molding method can be classified into a melt extrusion molding method, a press molding method, an inflation method, an injection molding method, a blow molding method, a stretch molding method, and the like.
  • the melt extrusion method is preferable from the viewpoint of mechanical strength and surface accuracy.
  • the plurality of raw materials used in the melt extrusion method are usually preferably kneaded and pelletized in advance.
  • a known method can be applied to pelletization, for example, dry cellulose acylate, plasticizer, and other additives are fed to an extruder with a feeder, and kneaded using a single or twin screw extruder, Pellets can be obtained by extrusion from a die into strands, water cooling or air cooling, and cutting.
  • the additives may be mixed before being supplied to the extruder, or may be supplied by individual feeders.
  • a small amount of additives such as fine particles and antioxidants are preferably mixed in advance in order to mix uniformly.
  • the extruder used for pelletization is preferably a method in which pelletization is possible and processing is performed at as low a temperature as possible so that the shearing force is suppressed and the resin does not deteriorate (for example, molecular weight reduction, coloring, gel formation, etc.).
  • a twin screw extruder it is preferable to rotate in the same direction using a deep groove type screw. From the uniformity of kneading, the meshing type is preferable.
  • Film formation is performed using the pellets obtained as described above.
  • the raw material powder can be put into a feeder as it is, supplied to an extruder, heated and melted, and then directly formed into a film without being pelletized.
  • the pellets are extruded using a single or twin screw type extruder and the melting temperature is within the range of 200 to 300 ° C.
  • the T die After removing foreign matter by filtering with a leaf disk type filter etc., the T die Then, the film is cast into a film, and the film is nipped with a cooling roller and an elastic touch roller, and solidified on the cooling roller.
  • the extrusion flow rate is preferably carried out stably by introducing a gear pump.
  • a stainless fiber sintered filter is preferably used as a filter used for removing foreign substances.
  • a stainless steel fiber sintered filter is a product in which a stainless steel fiber body is intricately intertwined and compressed, and the contact points are sintered and integrated. The accuracy can be adjusted.
  • Each additive such as plasticizer and fine particles may be mixed with the resin in advance, or may be kneaded in the middle of the extruder. In order to add uniformly, it is preferable to use a mixing apparatus such as a static mixer.
  • the film temperature on the elastic touch roller side when the film is nipped between the cooling roller and the elastic touch roller is preferably in the range of Tg to Tg + 110 ° C. of the film.
  • a known elastic touch roller can be used as an elastic touch roller having an elastic body on the surface for such purposes.
  • the elastic touch roller is also called a pinching rotary body, and a commercially available one can also be used.
  • the film obtained as described above is subjected to a stretching and shrinking treatment by the same stretching method as described in the solution casting method after passing through the step of contacting the cooling roller.
  • the stretching temperature is usually preferably in the temperature range of Tg to Tg + 60 ° C. of the resin constituting the film.
  • the end Before winding, the end may be slit and cut to the product width, and knurled (embossed) may be applied to both ends to prevent sticking or scratching during winding.
  • the knurling method can process a metal ring having an uneven pattern on its side surface by heating or pressing.
  • grip part of the clip of both ends of a film is cut out, and the cut waste material is reused.
  • the film thickness of the ⁇ / 4 retardation film of the present invention is not particularly limited, but can be used in the range of 10 to 250 ⁇ m, preferably in the range of 20 to 100 ⁇ m, more preferably 30 to 80 ⁇ m. And particularly preferably in the range of 30 to 65 ⁇ m.
  • the ⁇ / 4 retardation film of the present invention may have a width in the range of 1 to 4 m. Furthermore, those having a width of 1.4 to 4 m are preferably used, and particularly preferably 1.6 to 3 m. If it is 4 m or less as a width
  • the arithmetic average roughness Ra on the surface of the ⁇ / 4 retardation film of the present invention is generally in the range of 2.0 to 4.0 nm, preferably in the range of 2.5 to 3.5 nm.
  • the dimensional change rate (%) of the ⁇ / 4 retardation film of the present invention is preferably less than 0.5%. Preferably it is less than 3%.
  • defects failures in the film
  • the defects referred to here are those of the solvent in the drying step in film formation by the solution casting method. It refers to a void in a film (foaming defect) generated due to rapid evaporation, a foreign matter failure (foreign matter defect) in the film due to a foreign matter in the film-forming stock solution or a foreign matter mixed in the film.
  • a defect having a diameter of 5 ⁇ m or more is 1 piece / 10 cm square or less in the film plane. More preferably, it is 0.5 piece / 10 cm square or less, and particularly preferably 0.1 piece / 10 cm square or less.
  • the diameter of the above defect indicates the diameter when the defect is circular, and when the defect is not circular, the range of the defect is determined by observing with a microscope according to the following method, and the maximum diameter (diameter of circumscribed circle) is determined.
  • the defect range is measured by the size of the shadow when the defect is observed with the transmitted light of the differential interference microscope.
  • the defect is accompanied by a change in surface shape such as transfer of a roller scratch or an abrasion, the size is confirmed by observing the defect with reflected light of a differential interference microscope.
  • the film When the number of defects is larger than 1/10 cm square, for example, when the film is tensioned during processing in a later process, the film may be broken starting from the defects and productivity may be reduced. Moreover, when the diameter of a defect becomes 5 micrometers or more, it can confirm visually by polarizing plate observation etc., and when used as an optical member, a bright spot may arise.
  • the ⁇ / 4 retardation film of the present invention preferably has a breaking elongation of at least 10% or more in at least one direction (TD direction or MD direction) in the measurement based on JIS-K7127-1999, Preferably it is 20% or more.
  • the upper limit of the elongation at break is not particularly limited, but is practically about 250%. In order to increase the elongation at break, it is effective to suppress the occurrence of defects in the film due to foreign matter and foaming by the above method.
  • the ⁇ / 4 retardation film of the present invention preferably has a total light transmittance of 90% or more, more preferably 93% or more. Moreover, as a realistic upper limit, it is about 99%. In order to achieve excellent transparency expressed by such total light transmittance, it is necessary not to introduce an additive or copolymer component that absorbs visible light, or to remove foreign substances in the polymer by high-precision filtration. It is an effective means to reduce the diffusion and absorption of light inside the film.
  • the circularly polarizing plate according to the present invention is produced by cutting a long roll having a long protective film, a long polarizer and a long ⁇ / 4 retardation film of the present invention in this order, The long ⁇ / 4 retardation film satisfies the conditions defined in claim 1, and by applying the circularly polarizing plate according to the present invention to an organic EL image display device, An effect of shielding the specular reflection in the metal electrode of the organic EL light-emitting body is exhibited.
  • the ⁇ / 4 retardation film of the present invention is obliquely stretched so that the angle of the slow axis (that is, the orientation angle ⁇ ) is “substantially 45 °” with respect to the longitudinal direction
  • the direction of the maximum elastic modulus is also “substantially 45 °” with respect to the longitudinal direction.
  • the circularly polarizing plate tends to bend in an oblique direction.
  • the circularly polarizing plate according to the present invention preferably has a configuration in which the polarizer is sandwiched between the ⁇ / 4 retardation film of the present invention and a protective film, and a cured layer is laminated on the viewing side of the protective film.
  • the polarizer is sandwiched between the ⁇ / 4 retardation film of the present invention and a protective film, and a cured layer is laminated on the viewing side of the protective film.
  • the circularly polarizing plate according to the present invention has an ultraviolet absorption function in order to prevent deterioration due to ultraviolet rays.
  • the protective film on the viewing side has an ultraviolet absorbing function
  • both the polarizer and the organic EL element are preferable from the viewpoint of exhibiting the protective effect against ultraviolet rays, but the ⁇ / 4 retardation film on the light emitter side also has an ultraviolet absorbing function. It is preferable that deterioration of the organic EL element can be further suppressed.
  • the organic electroluminescence image display device of the present invention comprises a circularly polarizing plate having the ⁇ / 4 retardation film of the present invention and an organic electroluminescence element, and has a screen size of 20 inches or more.
  • FIG. 6 shows an example of the configuration of the organic EL image display device of the present invention, but the present invention is not limited to this.
  • the circularly polarizing plate C according to the present invention in which the polarizer 110 is sandwiched between the ⁇ / 4 retardation film 109 and the protective film 111 of the present invention is provided to constitute the organic EL image display device A.
  • a cured layer 112 is preferably laminated on the protective film 111.
  • the hardened layer 112 not only prevents scratches on the surface of the organic EL image display device A but also has an effect of preventing warpage due to the circularly polarizing plate. Further, an antireflection layer 113 may be provided on the cured layer.
  • the thickness of the organic EL element B itself is about 1 ⁇ m.
  • the organic EL image display apparatus A forms an element (organic EL element) which is a light emitting body in which a metal electrode 102, an organic functional layer unit 104, and a transparent electrode 105 are sequentially laminated on a transparent substrate 101.
  • the organic functional layer unit 104 is a laminate of various organic thin films, for example, a hole injection layer made of a triphenylamine derivative or the like and an organic light emitting layer made of a fluorescent organic solid such as anthracene.
  • Various combinations such as a laminate, or a laminate of an electron injection layer composed of such a light emitting layer and a perylene derivative, or a laminate of these hole injection layer, organic light emitting layer, and electron injection layer, etc. A configuration with this is known.
  • holes and electrons are injected into an organic light emitting layer by applying a voltage to a transparent electrode and a metal electrode, and energy generated by recombination of these holes and electrons is converted into phosphor or phosphorus.
  • the fluorescent substance When the photoluminescent substance is excited and the excited fluorescent substance or phosphorescent substance returns to the ground state, the fluorescent substance emits fluorescence or phosphorescence within the organic light emitting layer or at the interface of the organic light emitting layer.
  • the mechanism of recombination of holes and electrons in the middle is the same as that of ordinary diodes. As can be expected from this, current and emission intensity show strong nonlinearity with rectification against the applied voltage. .
  • the electrodes In order to extract light emitted from the organic light emitting layer in an organic EL image display device, it is a requirement that at least one of the electrodes must be transparent, and it is usually formed of a transparent conductor such as indium tin oxide (ITO).
  • ITO indium tin oxide
  • a transparent electrode is preferably used as the anode.
  • metal electrodes such as Mg—Ag and Al—Li are used.
  • the circularly polarizing plate having the ⁇ / 4 retardation film of the present invention is characterized by being applied to an EL image display device having a large screen having a screen size of 20 inches or more, that is, a diagonal distance of 50.8 cm or more.
  • the organic light emitting layer is formed of a very thin film having a thickness of about 10 nm. For this reason, the organic light emitting layer transmits light almost completely like the transparent electrode. As a result, light that is incident from the surface of the transparent substrate at the time of non-light emission, passes through the transparent electrode and the organic light emitting layer, and is reflected by the metal electrode is again emitted to the surface side of the transparent substrate.
  • the display surface of the organic EL image display device looks like a mirror surface.
  • an organic EL image display device including an organic EL element having a transparent electrode on the surface side of an organic functional layer unit that emits light by applying a voltage and a metal electrode on the back side of the organic functional layer unit, the surface of the transparent electrode While providing a polarizing plate on the side (viewing side), a retardation plate can be provided between the transparent electrode and the polarizing plate.
  • the retardation plate and the polarizing plate have a function of polarizing light incident from the outside and reflected by the metal electrode, there is an effect that the mirror surface of the metal electrode is not visually recognized by the polarization action.
  • the retardation plate is composed of the ⁇ / 4 retardation film of the present invention, and the angle formed by the polarization direction of the polarizing plate and the retardation plate is adjusted to ⁇ / 4.
  • the mirror surface of the metal electrode can be completely shielded.
  • the external light incident on the organic EL image display device transmits only the linearly polarized light component by the polarizing plate, and this linearly polarized light is generally elliptically polarized light by the phase difference plate, but in the present invention, the phase difference plate is
  • the ⁇ / 4 retardation film of the present invention is circularly polarized when the angle formed by the polarization direction of the polarizing plate and the ⁇ / 4 retardation film as the retardation plate is ⁇ / 4.
  • the transparent substrate, the transparent electrode and the organic functional layer are transmitted, reflected by the metal electrode, and again transmitted through the organic functional layer, the transparent electrode and the transparent substrate, and the ⁇ / 4 retardation film It becomes linearly polarized light again. And since this linearly polarized light is orthogonal to the polarization direction of a polarizing plate, it cannot permeate
  • Example 1 Production of ⁇ / 4 retardation film >> [Production of ⁇ / 4 Retardation Film 101: Comparative Example]
  • 500 parts of dehydrated cyclohexane were mixed with 1.2 parts of 1-hexene, 0.15 parts of dibutyl ether and 0.30 parts of triisobutylaluminum in a reactor at room temperature.
  • a soft polymer manufactured by Kuraray Co., Ltd .; Septon 2002
  • an antioxidant manufactured by BASF Japan Co., Ltd .; Irganox 1010
  • the ring-opened polymer hydrogenated product had a weight average molecular weight (Mw) of 31,000, a molecular weight distribution (Mw / Mn) of 2.5, a hydrogenation rate of 99.9%, and a Tg of 134 ° C.
  • the pellets of the hydrogenated ring-opening polymer prepared as described above were dried at 70 ° C. for 2 hours using a hot air dryer in which air was circulated to remove moisture.
  • the pellets were melt extruded using a short shaft extruder having a coat hanger type T die (manufactured by Mitsubishi Heavy Industries, Ltd .: screw diameter 90 mm, T die lip material is tungsten carbide, peel strength 44N from molten resin).
  • a cycloolefin polymer film having a thickness of 100 ⁇ m was produced by molding.
  • an unstretched film having a length of 1400 mm was obtained in a clean room of class 10,000 or less under molding conditions of a molten resin temperature of 240 ° C. and a T die temperature of 240 ° C.
  • the unstretched film was wound up on a roll.
  • the norbornene-based unstretched film obtained above is stretched according to the following conditions using the rail pattern of the oblique stretching apparatus shown in FIG. 3 to obtain a ⁇ / 4 retardation film 101 which is a stretched film. It was.
  • the angle ⁇ i formed by the film feeding direction and the winding direction was set to 49 degrees.
  • both ends of the unstretched film sent from the film feeding device were gripped by the first clip Ci (rail IN side) and the second clip Co (rail OUT side).
  • the unstretched film was gripped by moving the clip levers of the first clip and the second clip with the clip closer.
  • both ends of the film are simultaneously gripped by the first clip Ci and the second clip Co, and a line connecting the gripping positions at both ends is parallel to an axis parallel to the lateral direction of the film.
  • the gripped unstretched film is heated by passing through the preheating zone, the stretching zone, and the heat setting zone in the heating zone by the first clip and the second clip, and stretched in the width direction to stretch the stretched film.
  • the moving speed of the film during heating and stretching was 20 m / min.
  • the temperature of the preheating zone was 160 ° C
  • the temperature of the stretching zone was 140 ° C
  • the temperature of the heat setting zone was 120 ° C.
  • the stretching ratio of the film before and after stretching is 120%. (1.2 times), and the stretched film had a thickness of 60 ⁇ m and a width of 3080 mm.
  • the produced retardation film was shrunk by 25% in the longitudinal direction.
  • both ends of the obtained stretched film were subjected to trimming treatment to obtain a ⁇ / 4 retardation film 101 with a final film width of 2160 mm.
  • Fine particles (Aerosil R812, primary particle size: about 7 nm, manufactured by Nippon Aerosil Co., Ltd.) 11 parts by weight Ethanol 89 parts by weight The above is stirred and mixed with a dissolver for 50 minutes, and then dispersed using a Manton Gorin disperser to obtain a fine particle dispersion 1 was prepared.
  • Fine particle additive solution 1 50 parts by mass of methylene chloride was placed in the dissolution tank, and 50 parts by mass of the fine particle dispersion 1 prepared above was slowly added while sufficiently stirring the methylene chloride. Further, the particles were dispersed by an attritor so that the secondary particles had a predetermined particle size. This was filtered through Finemet NF manufactured by Nippon Seisen Co., Ltd. to prepare a fine particle additive solution 1.
  • the exemplified compound (221), the sugar ester compound (benzyl saccharose having an average substitution degree of 7.3) as the compound represented by the general formula (A) and the above preparation was added at the following ratio, sealed, and then dissolved with stirring to prepare a dope.
  • drying was completed while the drying zone was conveyed through a number of rollers.
  • the drying temperature was 130 ° C. and the transport tension was 100 N / m.
  • a roll-like ⁇ / 4 retardation film 102 having a dry film thickness of 60 ⁇ m was obtained. Note that the orientation angle of the ⁇ / 4 retardation film 102 was 0 °.
  • the film was stretched under the condition of an orientation angle of 60 ° to obtain a roll-like ⁇ / 4 retardation film 103 having a film thickness of 60 ⁇ m.
  • the refractive index n y (280), n x (280), ⁇ n y (400), ⁇ n x (400) using a spectral light source and an Abbe refractometer (1T), 23 °C, 55 % RH environment below, the average refractive index of the film sample in wavelength 280nm, 400nm, 410nm was measured.
  • orientation angle was also measured using an Axoscan manufactured by Axometrcs.
  • the film thickness was measured using a commercially available micrometer.
  • Table 1 shows the film characteristic values obtained as described above.
  • the ⁇ / 4 retardation films 101 to 114 produced above were bonded to one side of the polarizer using a completely saponified polyvinyl alcohol 5% aqueous solution as an adhesive. At that time, bonding was performed such that the transmission axis of the polarizer and the slow axis of the ⁇ / 4 retardation film were 45 degrees.
  • the following protective film 1 was similarly subjected to alkali saponification treatment and bonded to the other surface of the polarizer to produce circularly polarizing plates 101 to 114.
  • ester compound 1 251 g of 1,2-propylene glycol, 278 g of phthalic anhydride, 91 g of adipic acid, 610 g of benzoic acid, 0.191 g of tetraisopropyl titanate as an esterification catalyst, 2 L equipped with a thermometer, stirrer and slow cooling tube The mixture was charged into a four-necked flask and gradually heated with stirring until it reached 230 ° C. in a nitrogen stream. The ester compound 1 was obtained by carrying out a dehydration condensation reaction for 15 hours, and distilling off unreacted 1,2-propylene glycol under reduced pressure at 200 ° C. after completion of the reaction. The ester compound 1 obtained had an acid value of 0.10 mg KOH / g and a number average molecular weight of 450.
  • the belt casting apparatus was used to uniformly cast on a stainless steel band support.
  • the solvent was evaporated until the residual solvent amount reached 100%, and the stainless steel band support was peeled off.
  • Cellulose ester film web was evaporated at 35 ° C, slit to 1.65m width, 30% in TD direction (film width direction) with a tenter while applying heat at 160 ° C, draw ratio in MD direction was Stretched 1%.
  • the residual solvent amount at the start of stretching was 20%. After drying for 15 minutes while transporting the inside of a drying device at 120 ° C.
  • the protective film 1 was obtained.
  • the residual solvent amount of the protective film 1 was 0.2%, the film thickness was 40 ⁇ m, and the number of turns was 3900 m.
  • the orientation angle ⁇ of the protective film 1 was measured using an automatic birefringence meter KOBRA-21ADH manufactured by Oji Scientific Instruments, and as a result, it was in the range of 90 ° ⁇ 1 ° with respect to the film longitudinal direction.
  • organic EL image display devices 101 to 114 were produced by bonding to the viewing side of the organic EL cell.
  • the front position of the organic EL image display device (0 ° with respect to the surface normal) and the visibility from an oblique angle of 40 ° with respect to the surface normal are performed by 10 general monitors.
  • the black image visibility was evaluated according to the above criteria. In the present invention, it was judged practically acceptable if it was ⁇ or more.
  • Nine or more monitors determined that the displayed image was black ⁇ : Seven to eight monitors determined that the displayed image was black ⁇ : Five to six monitors , Determined that the displayed image is black ⁇ : The number of monitors determined that the displayed image is black is 4 or less (Visibility evaluation 2: BGR color image) In an environment of 23 ° C. and 55% RH, a BGR color chart image was displayed on the organic EL image display device under the condition that the illuminance at the position 5 cm higher than the outermost surface of the organic EL image display device was 1000 Lx.
  • the front position of the organic EL image display device (0 ° with respect to the surface normal) and visibility from an oblique angle of 40 ° with respect to the surface normal are performed by 10 general monitors,
  • the visibility of the BGR color image was evaluated according to the following criteria. In the present invention, it was judged practically acceptable if it was ⁇ or more.
  • A Nine or more monitors were determined to be good BGR color images. O: Seven to eight monitors were determined to be good BGR color images. ⁇ : Five to six monitors were good BGR colors. Table 2 shows the results obtained by the above. The number of monitors determined to be good BGR color images is 4 or less.
  • the organic EL image display device of the present invention including the circularly polarizing plate having the ⁇ / 4 retardation film of the present invention having each characteristic value defined in the present invention is It can be seen that the image display performance (visibility) of the displayed black image and BGR color image is superior to the comparative example.
  • Example 2 Production of ⁇ / 4 retardation film >> [Production of ⁇ / 4 retardation films 201 to 207]
  • the type and film thickness of the compound represented by the general formula (A) were similarly changed except that the configuration described in Table 3 was used.
  • / 4 Retardation films 201 to 207 were produced.
  • the organic EL image display device of the present invention comprising the circularly polarizing plate having the ⁇ / 4 retardation film of the present invention having the characteristic values defined in the present invention is It can be seen that the image display performance (visibility) of the black display and the BGR color image is superior to the comparative example.
  • the ⁇ / 4 retardation film of the present invention is a broadband ⁇ / 4 retardation film having a high retardation development property, a thin film, having reverse wavelength dispersion characteristics, and a reduced retardation in the thickness direction, and organic electroluminescence. It can be suitably used for an image display device.

Abstract

The present invention addresses the problem of providing: a λ/4 phase-shifted film with a broad zone in which phase differences are reduced in the thickness direction has a high capacity for expressing phase differences, and is provided with inverse wavelength dispersion characteristics in a thin film; and an organic electroluminescent image display device equipped with said λ/4 phase-shifted film, having excellent image display performance. This λ/4 phase-shifted film is characterized in that the phase difference (Rt) (550) in the thickness direction at a wavelength of 550 nm is 150 nm or less, as measured in an environment at 23°C and a relative humidity of 55%. The λ/4 phase-shifted film is further characterized in that: the wavelength dispersion characteristics of an in-plane phase difference (Ro) is within the ranges of 0.72 ≤ Ro(450)/Ro(550) ≤ 0.96 and 0.83 ≤ Ro(550)/Ro(650) ≤ 0.98 as a first condition; the in-plane refractive index is 1.000 ≤ ny(280)/nx(280) ≤ 3.500 as a second condition; and 1.05 ≤ Δny(400)/Δnx(400) ≤ 2.15 as a third condition.

Description

λ/4位相差フィルム及び有機エレクトロルミネッセンス画像表示装置λ / 4 retardation film and organic electroluminescence image display device
 本発明は、λ/4位相差フィルムと、それを具備した有機エレクトロルミネッセンス画像表示装置に関する。 The present invention relates to a λ / 4 retardation film and an organic electroluminescence image display device including the same.
 近年、対向する電極間に発光層を設け、当該電極に電圧を印加して発光を生じる有機エレクトロルミネッセンス素子(以下、有機EL素子ともいう。)が、平面型照明、光ファイバー用光源、液晶ディスプレイ用バックライト、液晶プロジェクタ用バックライト、ディスプレイ装置等の各種光源や、画像表示装置として盛んに研究、開発が進められている。有機EL素子は、特に、上記利用分野において、発光効率、低電圧駆動、軽量、低コストという点で優れた特性を発現するため、近年極めて注目を浴びている素子である。 In recent years, an organic electroluminescent element (hereinafter also referred to as an organic EL element) that emits light by providing a light emitting layer between opposed electrodes and applying a voltage to the electrode has been developed for flat illumination, light sources for optical fibers, and liquid crystal displays. Research and development are actively conducted as various light sources such as backlights, backlights for liquid crystal projectors, display devices, and image display devices. The organic EL element is an element that has attracted much attention in recent years because it exhibits excellent characteristics in terms of light emission efficiency, low voltage driving, light weight, and low cost, particularly in the above-mentioned fields of use.
 有機EL素子は、電圧の印加により、陰極から電子を、陽極から正孔を注入し、両者が発光層で再結合することにより、発光層の発光特性に対応した可視光線の発光を生じさせるものである。 An organic EL device injects electrons from the cathode and holes from the anode when voltage is applied, and recombines them in the light-emitting layer, thereby generating visible light emission corresponding to the light-emitting characteristics of the light-emitting layer. It is.
 陽極には、透明導電性材料の中でも、最も電気伝導度が高く、比較的仕事関数が大きく、高い正孔注入効率が得られるという点から、酸化インジウムスズ(以降、ITOと略記する。)が、主に使用されている。 Among the transparent conductive materials, indium tin oxide (hereinafter abbreviated as ITO) is used for the anode because it has the highest electrical conductivity, a relatively large work function, and high hole injection efficiency. , Mainly used.
 一方、陰極には、通常、金属電極が使用されるが、電子注入効率を考慮し、仕事関数の観点からは、主には、Mg、Mg/Ag、Mg/In、Al、Li/Al等の金属材料が使用される。 On the other hand, a metal electrode is usually used for the cathode, but considering the electron injection efficiency, from the viewpoint of work function, mainly Mg, Mg / Ag, Mg / In, Al, Li / Al, etc. The metal material is used.
 これらの金属材料は、光反射率が高く、電極(陰極)としての機能の他に、発光層で発光した光を反射し、出射光量(発光輝度)を高める機能も担っている。すなわち、陰極方向に発光した光は、陰極である金属材料表面で鏡面反射し、透明なITO電極(陽極)から出射光として取り出されることになる。 These metal materials have high light reflectivity, and in addition to the function as an electrode (cathode), they also have a function of reflecting light emitted from the light emitting layer and increasing the amount of emitted light (light emission luminance). That is, the light emitted in the cathode direction is mirror-reflected on the surface of the metal material that is the cathode, and is extracted as emitted light from the transparent ITO electrode (anode).
 しかしながら、このような構造を有する有機EL素子では、陰極が光反射性の強い鏡面構造となっているため、発光していない状態では外光反射が著しく目立つことになる。 However, in the organic EL element having such a structure, since the cathode has a mirror-like structure having a strong light reflectivity, the reflection of external light becomes noticeable when no light is emitted.
 即ち、観察時の室内照明の映り込みなどが激しくなり、明所では黒色が表現できなくなり、また、ディスプレイ装置用の光源として使用するには、明室コントラストが極端に低いという問題点を有する。 That is, the reflection of the room lighting during observation becomes intense, black color cannot be expressed in the bright place, and there is a problem that the bright room contrast is extremely low when used as a light source for a display device.
 これらの問題を改善するため、鏡面の外光反射防止に円偏光素子を使用する方法が開示されている(例えば、特許文献1参照。)。特許文献1に記載されている円偏光素子は、吸収型直線偏光板と、1/4位相差フィルムとを、それぞれの光軸が45度あるいは135度で交差するように積層して形成されている。 In order to improve these problems, a method of using a circularly polarizing element for preventing reflection of external light from a mirror surface is disclosed (for example, see Patent Document 1). The circularly polarizing element described in Patent Document 1 is formed by laminating an absorption linear polarizing plate and a quarter retardation film so that their optical axes intersect at 45 degrees or 135 degrees. Yes.
 ここで、1/4位相差フィルムを、例えば、1枚の延伸フィルムで形成した場合、この延伸フィルムの屈折率が、波長毎に異なる波長分散に起因して、その位相差はある波長に対しては丁度1/4波長となり得るが、他の波長ではその位相差が1/4波長からずれるため、結果として1/4位相差フィルムとして機能しないことになる。 Here, when the quarter retardation film is formed of, for example, a single stretched film, the refractive index of the stretched film is different from wavelength to wavelength, and the retardation is relative to a certain wavelength. Although it can be just a quarter wavelength, the phase difference is shifted from the quarter wavelength at other wavelengths, and as a result, it does not function as a quarter retardation film.
 すなわち、例えば、550nmの緑色の光に対して1/4位相差フィルムとして機能する場合、それより波長の長い赤色の光や、波長の短い青色の光の反射を完全に防止することが困難になり、特に、青色の光についての位相差のずれが大きく、反射色が、青色味がかったものとなってしまうという問題がある。 That is, for example, when functioning as a ¼ retardation film for green light of 550 nm, it is difficult to completely prevent reflection of red light having a longer wavelength or blue light having a shorter wavelength. In particular, there is a problem that the phase difference for blue light is large and the reflected color becomes bluish.
 可視光の全波長域に対して反射を防止するためには、全波長領域でλ/4の位相差値を有する逆波長分散性(長波長ほど位相差値が大きい)を備えていることが必要となる。 In order to prevent reflection in the entire wavelength region of visible light, it has reverse wavelength dispersibility having a phase difference value of λ / 4 in the entire wavelength region (the longer the wavelength, the larger the phase difference value). Necessary.
 特許文献2には、斜めに延伸したセルロースアシレートフィルム上に垂直配向液晶層を設けた位相差フィルムとすることにより、幅広い波長範囲でλ/4位相差を有し、該位相差フィルムを設けた有機EL表示装置が、外光反射による色味変動が改善されることが開示されている。 In Patent Document 2, a retardation film having a vertically aligned liquid crystal layer on a cellulose acylate film stretched obliquely has a λ / 4 retardation in a wide wavelength range, and the retardation film is provided. In addition, it is disclosed that the organic EL display device is improved in color variation due to external light reflection.
 しかしながら、特許文献2で開示されている方法では、位相差フィルムを作製した後、垂直配向液晶層を設けるため、工程が複雑であり、製造容易性の観点からは更なる改善が望まれていた。また、上記位相差フィルムを設けた有機EL表示装置は、画像に滲みが生じ、高精細な画像が得られないという問題を抱えている。この問題は、発光層から位相差フィルムに入った光が、位相差フィルムと隣接層との界面で反射され、更に位相差フィルム内で相分離した添加剤によっても乱反射され、画像の滲みが生じることが原因であると推定している。 However, in the method disclosed in Patent Document 2, since a vertical alignment liquid crystal layer is provided after producing a retardation film, the process is complicated, and further improvement is desired from the viewpoint of ease of manufacture. . Further, the organic EL display device provided with the retardation film has a problem that bleeding occurs in an image and a high-definition image cannot be obtained. The problem is that light that enters the retardation film from the light emitting layer is reflected at the interface between the retardation film and the adjacent layer, and is also diffusely reflected by the additives that are phase-separated in the retardation film, resulting in image blurring. It is estimated that this is the cause.
 特許文献3及び特許文献4には、特定の構造を有する化合物を含有することにより、全波長領域でλ/4の位相差値を有する逆波長分散性の単一層からなる位相差板が開示されている。しかしながら、これら開示されている方法では、実際の位相差発現性は低く、λ/4位相差を実現するためには層厚を厚くしなくてはならないため、経済性や画像表示装置の薄膜化の観点で問題を抱えており、更に、透過率の低下に伴い、光取出し効率が劣化するという問題点も有している。 Patent Document 3 and Patent Document 4 disclose a retardation plate composed of a single layer having a reverse wavelength dispersion having a retardation value of λ / 4 in the entire wavelength region by containing a compound having a specific structure. ing. However, these disclosed methods have low actual retardation, and the layer thickness must be increased in order to realize the λ / 4 phase difference. In addition, there is a problem that the light extraction efficiency deteriorates as the transmittance decreases.
 特許文献5には、特定の化合物を含有することにより、更に位相差と逆波長分散特性が改良された位相差板が開示されているが、厚さ方向における位相差が高いため、斜めから見た位相差がλ/4より大きく外れ、視認性が劣化するという問題がある。大型画面が要求される昨今の画像表示装置においては、斜め視認性への要求も非常に高まっており、特許文献5に記載の方法だけでは不充分であり、早急な改良手段の開発が求められている。 Patent Document 5 discloses a retardation plate in which the retardation and reverse wavelength dispersion characteristics are further improved by containing a specific compound. However, since the retardation in the thickness direction is high, the retardation plate is viewed obliquely. Further, there is a problem that the phase difference deviates by more than λ / 4 and the visibility deteriorates. In recent image display devices that require a large screen, the demand for oblique visibility is also very high, and the method described in Patent Document 5 is not sufficient, and the development of rapid improvement means is required. ing.
特開平8-321381号公報Japanese Patent Laid-Open No. 8-321381 国際特許第2009/25170号International Patent No. 2009/25170 特開2008-6602号公報JP 2008-6602 A 特開2011-75924号公報JP 2011-75924 A 特開2010-254949号公報JP 2010-254949 A
 本発明は、上記問題に鑑みてなされたものであり、その解決課題は、位相差発現性が高く、薄膜で優れた逆波長分散特性を備え、厚さ方向での位相差を低減した広帯域のλ/4位相差フィルムと、それを具備し、画像表示性能(正面及び斜めでの視認性)に優れた有機エレクトロルミネッセンス画像表示装置を提供することである。 The present invention has been made in view of the above problems, and its solution is a high-performance phase difference, an excellent reverse wavelength dispersion characteristic in a thin film, and a wideband with a reduced phase difference in the thickness direction. It is to provide a λ / 4 retardation film and an organic electroluminescence image display device comprising the same and excellent in image display performance (front and oblique visibility).
 本発明者は、上記問題に鑑み鋭意検討を進めた結果、上記課題は、下記の手段により達成することができることを見出し、本発明に至った次第である。 As a result of intensive studies in view of the above problems, the present inventor has found that the above-mentioned problems can be achieved by the following means, and as soon as the present invention has been achieved.
 1.23℃、相対湿度55%の環境下で測定した波長550nmにおける厚さ方向の位相差Rt(550)が150nm以下であり、23℃、相対湿度55%の環境下で測定した面内位相差Roの波長分散特性が下記条件1を満たし、かつ面内屈折率が下記条件2及び条件3を同時に満たすことを特徴とするλ/4位相差フィルム。 1. In-plane position measured in an environment of 23 ° C. and 55% relative humidity with a retardation Rt (550) in the thickness direction at a wavelength of 550 nm of 150 nm or less measured in an environment of 1.23 ° C. and 55% relative humidity. A λ / 4 retardation film, wherein the wavelength dispersion characteristic of the phase difference Ro satisfies the following condition 1 and the in-plane refractive index satisfies the following conditions 2 and 3 simultaneously.
 条件1
   0.72≦Ro(450)/Ro(550)≦0.96
 かつ
   0.83≦Ro(550)/Ro(650)≦0.98
〔式中、Ro(450)は波長450nmにおける面内位相差であり、Ro(550)は波長550nmにおける面内位相差であり、Ro(650)は波長650nmにおける面内位相差である。〕
 条件2
   1.000≦n(280)/n(280)≦3.500
〔式中、n(280)は波長280nmにおける進相軸方向の屈折率であり、n(280)は波長280nmにおける遅相軸方向の屈折率を表す。〕
 条件3
   1.05≦Δn(400)/Δn(400)≦2.15
〔式中、Δn(400)は、波長400nm近傍における進相軸方向の屈折率の傾きであり、Δn(400)=(n(410)-n(400))で表される。n(410)は波長410nmにおける進相軸方向の屈折率であり、n(400)は波長400nmにおける進相軸方向の屈折率である。上記Δn(400)は、波長400nm近傍における遅相軸方向の屈折率傾きであり、Δn(400)=(n(410)-n(400))で表される。n(410)は波長410nmにおける遅相軸方向の屈折率であり、n(400)は波長400nmにおける遅相軸方向の屈折率である。〕
 2.遅相軸方向に延伸し、進相軸方向に収縮する延伸収縮工程を経て作製され、該遅相軸方向の延伸倍率に対する該進相軸方向の収縮倍率の比率(収縮倍率/延伸倍率)が、0.05~0.70の範囲内であることを特徴とする第1項に記載のλ/4位相差フィルム。
Condition 1
0.72 ≦ Ro (450) / Ro (550) ≦ 0.96
And 0.83 ≦ Ro (550) / Ro (650) ≦ 0.98
[In the formula, Ro (450) is an in-plane phase difference at a wavelength of 450 nm, Ro (550) is an in-plane phase difference at a wavelength of 550 nm, and Ro (650) is an in-plane phase difference at a wavelength of 650 nm. ]
Condition 2
1.000 ≦ n y (280) / n x (280) ≦ 3.500
[Where n y (280) represents the refractive index in the fast axis direction at a wavelength of 280 nm, and n x (280) represents the refractive index in the slow axis direction at a wavelength of 280 nm. ]
Condition 3
1.05 ≦ Δn y (400) / Δn x (400) ≦ 2.15
Wherein, [Delta] n y (400) is the slope of the fast-axis refractive index at a wavelength of 400nm near represented by Δn y (400) = (n y (410) -n y (400)) . n y (410) is the refractive index in the fast axis direction at a wavelength of 410 nm, and n y (400) is the refractive index in the fast axis direction at a wavelength of 400 nm. Δn x (400) is a refractive index gradient in the slow axis direction in the vicinity of a wavelength of 400 nm, and is represented by Δn x (400) = (n x (410) −n x (400)). n x (410) is a refractive index in the slow axis direction at a wavelength of 410nm, n x (400) is the refractive index in the slow axis direction at a wavelength of 400 nm. ]
2. The film is produced through a stretching / shrinking process in which the film is stretched in the slow axis direction and contracted in the fast axis direction, and the ratio of the shrinkage ratio in the fast axis direction to the stretch ratio in the slow axis direction (shrinkage ratio / stretch ratio) is The λ / 4 retardation film as described in item 1 above, which falls within a range of 0.05 to 0.70.
 3.遅相軸方向が、搬送方向に対し30~60°の角度範囲内で配向していることを特徴とする第1項又は第2項に記載のλ/4位相差フィルム。 3. 3. The λ / 4 retardation film according to item 1 or 2, wherein the slow axis direction is oriented within an angle range of 30 to 60 ° with respect to the transport direction.
 4.膜厚が、30~80μmの範囲内であることを特徴とする第1項から第3項までのいずれか一項に記載のλ/4位相差フィルム。 4. 4. The λ / 4 retardation film according to any one of items 1 to 3, wherein the film thickness is in the range of 30 to 80 μm.
 5.第1項から第4項までのいずれか一項に記載のλ/4位相差フィルムを有する円偏光板と、有機エレクトロルミネッセンス素子とを具備し、画面サイズが20インチ以上であることを特徴とする有機エレクトロルミネッセンス画像表示装置。 5. It comprises a circularly polarizing plate having the λ / 4 retardation film according to any one of items 1 to 4 and an organic electroluminescence element, and has a screen size of 20 inches or more. Organic electroluminescence image display device.
 すなわち、本発明のλ/4位相差フィルムでは、紫外領域280nmにおける進相軸方向の屈折率n(280)を、遅相軸方向の屈折率n(280)と同等以上に設定することにより、可視光領域である400~700nmの範囲における進相軸方向の屈折率nの順波長分散の傾きが急峻になり、本発明の目的効果を発現させる上で有効であることを見出したものである。 That is, in the λ / 4 retardation film of the present invention, the refractive index n y (280) in the fast axis direction in the ultraviolet region 280 nm is set equal to or higher than the refractive index n x (280) in the slow axis direction. Accordingly, it was found that the inclination of the forward wavelength dispersion of the refractive index n y in the fast axis direction in a range of 400 ~ 700 nm in the visible light region becomes steep, it is effective in expressing the targeted effects of the present invention Is.
 本発明者らは、前述の特許文献3及び4に記載の発明において、十分な位相差を発現することができない理由としては、位相差フィルムを構成している化合物の主鎖方向が、マトリックス樹脂の主鎖方向と一致していないことに起因していると推定した。 In the inventions described in Patent Documents 3 and 4 described above, the reason why a sufficient retardation cannot be expressed is that the main chain direction of the compound constituting the retardation film is a matrix resin. It was presumed to be caused by the fact that it did not coincide with the main chain direction.
 図1Aに示すように、フィルムを延伸すると、マトリックス樹脂(例えば、セルロースエステル樹脂等)の主鎖1はほぼ延伸方向2に配向するのに対し、添加剤として用いる側鎖5を有する低分子の化合物3は、主鎖4と側鎖5の平均方向6が延伸方向2に配向してしまう。その結果、化合物3を構成する主鎖4及び側鎖5と、マトリックス樹脂の主鎖1及び側鎖とで配向方向にずれが生じるため、十分な位相差効果が発現しない。また、特許文献5で開示されているような側鎖を持たない配向性の高い化合物を併用すると、厚さ方向の位相差Rtが高くなってしまうことになる。 As shown in FIG. 1A, when the film is stretched, the main chain 1 of the matrix resin (for example, a cellulose ester resin or the like) is substantially oriented in the stretching direction 2, whereas the low molecular weight having the side chain 5 used as an additive. In the compound 3, the average direction 6 of the main chain 4 and the side chain 5 is oriented in the stretching direction 2. As a result, since the main chain 4 and the side chain 5 constituting the compound 3 and the main chain 1 and the side chain of the matrix resin are displaced in the orientation direction, a sufficient retardation effect is not exhibited. Further, when a highly oriented compound having no side chain as disclosed in Patent Document 5 is used in combination, the thickness direction retardation Rt becomes high.
 本発明者らは、上記問題に対し鋭意検討を行った結果、図1Bに示すように、マトリックス樹脂の主鎖1からずれた化合物3の配向を、延伸工程で、延伸方向と垂直な方向(進相軸方向)に収縮7させる収縮処理を施すことにより、化合物3の主鎖の配向する方向を回転8させることにより、化合物3の主軸4の配向方向をマトリックス樹脂の主鎖1の配向方向に合わせることができる調整手段を見出したものである。 As a result of intensive studies on the above problems, the present inventors, as shown in FIG. 1B, set the orientation of the compound 3 deviated from the main chain 1 of the matrix resin in the direction perpendicular to the stretching direction in the stretching step ( The direction of orientation of the main chain 4 of the compound 3 is rotated 8 by applying a contraction treatment for shrinking 7 in the direction of the phase advance axis), whereby the orientation direction of the main axis 4 of the compound 3 is changed to the orientation direction of the main chain 1 of the matrix resin. The adjustment means which can be adjusted to is found.
 この調整方法の具体的な手段の一つとしては、延伸倍率と収縮倍率の比率が重要な要素であり、収縮倍率/延伸倍率=0.05~0.70の範囲内とする方法が好ましい態様であるが、更に好ましくは収縮倍率/延伸倍率=0.10~0.30の範囲内である。 As a specific means of this adjustment method, the ratio between the draw ratio and the shrinkage ratio is an important factor, and a method in which the shrinkage ratio / stretch ratio is in the range of 0.05 to 0.70 is preferable. However, the shrinkage ratio / stretch ratio is more preferably in the range of 0.10 to 0.30.
 従って、請求項2で規定する条件によって、図1Aで示すように、化合物3の主軸4をマトリックス樹脂の主鎖1に合わせることができると共に、化合物3の側鎖5もフィルムの進相軸方向に配向し、この化合物3の側鎖5に高屈折率分子を組み入れることにより、紫外線領域280nmにおける進相軸方向の屈折率ny280を高めることができ、その結果、可視光領域のny順波長分散の傾きを急峻にすることができる。 Therefore, according to the conditions defined in claim 2, as shown in FIG. 1A, the main axis 4 of the compound 3 can be aligned with the main chain 1 of the matrix resin, and the side chain 5 of the compound 3 is also in the fast axis direction of the film. The refractive index ny280 in the fast axis direction in the ultraviolet region 280 nm can be increased by incorporating a high refractive index molecule in the side chain 5 of this compound 3, and as a result, ny forward wavelength dispersion in the visible light region The slope of can be made steep.
 但し、特許文献5に記載されているような側鎖を持たない化合物を含有した状態でフィルムの収縮操作を行っても、上記効果は発現しない。これは、側鎖を持たない化合物の配向がマトリックス樹脂の主鎖とずれてしまうためであると推定される。 However, even if the film is shrunk in a state containing a compound having no side chain as described in Patent Document 5, the above effect is not exhibited. This is presumed to be because the orientation of the compound having no side chain shifts from the main chain of the matrix resin.
 本発明のλ/4位相差フィルムでは、延伸及び収縮による化合物の配向をコントロールする際に、収縮させながらマトリックス樹脂を斜めに延伸させることにより、例えば、セルロースアセテート樹脂の遅相軸のコントロールも同時にできるため、本発明の効果を、より一層発現させることができる。 In the λ / 4 retardation film of the present invention, when controlling the orientation of the compound by stretching and shrinking, the matrix resin is stretched obliquely while shrinking, for example, simultaneously controlling the slow axis of the cellulose acetate resin. Therefore, the effect of the present invention can be further expressed.
 請求項4に係る本発明のλ/4位相差フィルムでは、λ/4位相差フィルムの膜厚を上記で規定する範囲内に設定することにより、特に、有機エレクトロルミネッセンス画像表示装置に具備した際、薄膜化によりカラー表示における表示性能をより高めることができる。 In the λ / 4 retardation film of the present invention according to claim 4, when the film thickness of the λ / 4 retardation film is set within the range specified above, in particular, when the organic electroluminescence image display device is provided. The display performance in color display can be further improved by thinning the film.
 請求項5に係る有機エレクトロルミネッセンス画像表示装置においては、本発明のλ/4位相差フィルムを有する円偏光板と、有機エレクトロルミネッセンス素子とを具備し、20インチ以上の画面サイズとすることにより、正面及び斜めでの視認性等の画像表示性能に優れた有機エレクトロルミネッセンス画像表示装置を実現することができる。 In the organic electroluminescence image display device according to claim 5, comprising a circularly polarizing plate having the λ / 4 retardation film of the present invention and an organic electroluminescence element, and having a screen size of 20 inches or more, An organic electroluminescence image display device excellent in image display performance such as front and oblique visibility can be realized.
 本発明の上記手段により、位相差発現性が高く、薄膜で逆波長分散特性を備え、厚さ方向の位相差を低減した広帯域のλ/4位相差フィルムと、それを具備した画像表示性能(正面及び斜めでの視認性)に優れた有機エレクトロルミネッセンス画像表示装置を提供することができる。 By the above means of the present invention, a wide-band λ / 4 retardation film having high retardation development, a thin film with reverse wavelength dispersion characteristics and a reduced retardation in the thickness direction, and image display performance ( It is possible to provide an organic electroluminescence image display device excellent in visibility in front and oblique directions.
マトリックス樹脂と化合物との配向の状態の一例(比較例)を説明する概略図Schematic explaining an example of the state of alignment between matrix resin and compound (comparative example) マトリックス樹脂と化合物との配向を収縮手段により調整する本発明の方法の一例を説明する概略図Schematic explaining an example of the method of the present invention for adjusting the orientation of the matrix resin and the compound by the contraction means 斜め延伸における収縮倍率を説明する模式図。The schematic diagram explaining the shrinkage ratio in diagonal stretch. 本発明のλ/4位相差フィルムの製造方法に適用可能な斜め延伸機のレールパターンの一例を示した概略図Schematic which showed an example of the rail pattern of the diagonal stretcher applicable to the manufacturing method of (lambda) / 4 phase difference film of this invention 本発明の実施形態に係る製造方法の一例で、長尺フィルム原反ロールから繰り出してから斜め延伸する例を示す概略図Schematic which shows the example of extending | stretching diagonally, after extending from a long film original fabric roll in an example of the manufacturing method which concerns on embodiment of this invention. 本発明の実施形態に係る製造方法の一例で、長尺フィルム原反ロールから繰り出してから斜め延伸する他の例を示す概略図Schematic which shows the other example extended | stretched diagonally, after paying out from a long film original fabric roll in an example of the manufacturing method which concerns on embodiment of this invention. 本発明の実施形態に係る製造方法の一例で、長尺フィルム原反ロールから繰り出してから斜め延伸する他の例を示す概略図Schematic which shows the other example extended | stretched diagonally, after paying out from a long film original fabric roll in an example of the manufacturing method which concerns on embodiment of this invention. 本発明の実施形態に係る製造方法の一例で、長尺フィルム原反を巻き取らずに連続的に斜め延伸する例を示す概略図Schematic which shows the example of extending continuously diagonally, without winding up a long film original fabric in an example of the manufacturing method which concerns on embodiment of this invention. 本発明の実施形態に係る製造方法の一例で、長尺フィルム原反を巻き取らずに連続的に斜め延伸する他の例を示す概略図Schematic which shows the other example extended continuously diagonally, without winding up a long film original fabric in an example of the manufacturing method which concerns on embodiment of this invention. 本発明の有機エレクトロルミネッセンス画像表示装置の構成の一例を示す概略断面図Schematic sectional view showing an example of the configuration of the organic electroluminescence image display device of the present invention
 本発明のλ/4位相差フィルムは、波長550nmにおける厚さ方向の位相差Rt(550)が150nm以下であり、面内位相差Roの波長分散特性が、条件1として0.72≦Ro(450)/Ro(550)≦0.96で、かつ0.83≦Ro(550)/Ro(650)≦0.98の範囲内であり、条件2として面内屈折率が1.000≦n(280)/n(280)≦3.500の範囲内であり、かつ条件3として、1.05≦Δn(400)/Δn(400)≦2.15の範囲内であることを特徴とすることにより、位相差発現性が高く、薄膜で逆波長分散特性を備え、厚さ方向の位相差を低減した広帯域のλ/4位相差フィルムを実現することができる。この特徴は、請求項1から請求項5までの請求項に係る発明に共通する技術的特徴である。 In the λ / 4 retardation film of the present invention, the thickness direction retardation Rt (550) at a wavelength of 550 nm is 150 nm or less, and the wavelength dispersion characteristic of the in-plane retardation Ro is 0.72 ≦ Ro (condition 1). 450) / Ro (550) ≦ 0.96 and 0.83 ≦ Ro (550) / Ro (650) ≦ 0.98. As condition 2, the in-plane refractive index is 1.000 ≦ n. y (280) / n x (280) ≦ 3.500, and as Condition 3, 1.05 ≦ Δn y (400) / Δn x (400) ≦ 2.15 Thus, it is possible to realize a broadband λ / 4 retardation film having high retardation development, a thin film with reverse wavelength dispersion characteristics, and a reduced retardation in the thickness direction. This feature is a technical feature common to the inventions according to claims 1 to 5.
 なお、上記Ro(450)は、波長450nmにおける面内位相差であり、Ro(550)は波長550nmにおける面内位相差であり、Ro(650)は波長650nmにおける面内位相差である。また、n(280)は波長280nmにおける進相軸方向の屈折率であり、n(280)は波長280nmにおける遅相軸方向の屈折率を表す。また、上記Δn(400)は、波長400nm近傍における進相軸方向の屈折率の傾きであり、Δn(400)=(n(410)-n(400))で表される。n(410)は波長410nmにおける進相軸方向の屈折率であり、n(400)は波長400nmにおける進相軸方向の屈折率である。上記Δn(400)は、波長400nm近傍における遅相軸方向の屈折率傾きであり、Δn(400)=(n(410)-n(400))で表される。n(410)は波長410nmにおける遅相軸方向の屈折率であり、n(400)は波長400nmにおける遅相軸方向の屈折率である。 Note that Ro (450) is an in-plane phase difference at a wavelength of 450 nm, Ro (550) is an in-plane phase difference at a wavelength of 550 nm, and Ro (650) is an in-plane phase difference at a wavelength of 650 nm. N y (280) is the refractive index in the fast axis direction at a wavelength of 280 nm, and n x (280) is the refractive index in the slow axis direction at a wavelength of 280 nm. Further, the [Delta] n y (400) is the slope of the fast-axis refractive index at a wavelength of 400nm near represented by Δn y (400) = (n y (410) -n y (400)). n y (410) is the refractive index in the fast axis direction at a wavelength of 410 nm, and n y (400) is the refractive index in the fast axis direction at a wavelength of 400 nm. Δn x (400) is a refractive index gradient in the slow axis direction in the vicinity of a wavelength of 400 nm, and is represented by Δn x (400) = (n x (410) −n x (400)). n x (410) is a refractive index in the slow axis direction at a wavelength of 410nm, n x (400) is the refractive index in the slow axis direction at a wavelength of 400 nm.
 本発明のλ/4位相差フィルムにおいて、上記条件1~条件3で規定する範囲を実現する手段としては、特に制限はないが、後述する延伸条件(例えば、延伸温度(℃)、延伸倍率(%)、斜め延伸における屈曲角度(°)、収縮率(%)、収縮率/延伸倍率の比率等)、フィルム膜厚、あるいは一般式(A)で表される光学性能調整剤の種類や添加量を、適宜調整することにより、波長分散特性であるRo(450)/Ro(550)、Ro(550)/Ro(650)、紫外領域における面内屈折率比n(280)/n(280)及び逆波長分散性Δn(400)/Δn(400)の各特性値を所望の範囲に調整することができる。 In the λ / 4 retardation film of the present invention, the means for realizing the range defined by the above conditions 1 to 3 is not particularly limited. However, the stretching conditions (for example, stretching temperature (° C.), stretch ratio ( %), Bending angle in oblique stretching (°), shrinkage rate (%), shrinkage rate / ratio of stretch ratio, etc.), film thickness, or types and additions of optical performance modifiers represented by general formula (A) By appropriately adjusting the amount, Ro (450) / Ro (550), Ro (550) / Ro (650), which are chromatic dispersion characteristics, and an in-plane refractive index ratio n y (280) / n x in the ultraviolet region. Each characteristic value of (280) and inverse wavelength dispersion Δn y (400) / Δn x (400) can be adjusted to a desired range.
 以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。なお、以下の説明において示す「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。 Hereinafter, the present invention, its components, and modes and modes for carrying out the present invention will be described in detail. In the following description, “˜” is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
 《λ/4位相差フィルム》
 本発明のλ/4位相差フィルムとは、ある特定の波長の直線偏光を円偏光に、又は、円偏光を直線偏光に変換する機能を有するフィルムをいう。λ/4位相差フィルムは、所定の光の波長(通常、可視光領域)に対して、フィルム層の面内の位相差値Roが約1/4である。
<< λ / 4 retardation film >>
The λ / 4 retardation film of the present invention refers to a film having a function of converting linearly polarized light having a specific wavelength into circularly polarized light or converting circularly polarized light into linearly polarized light. The λ / 4 retardation film has an in-plane retardation value Ro of about ¼ with respect to a predetermined wavelength of light (usually in the visible light region).
 本発明のλ/4位相差フィルムでは、波長550nmで測定したRo(550)が120~180nmの範囲内であることが好ましく、120~160nmの範囲内であることが更に好ましく、130~150nmの範囲内であることが特に好ましい。 In the λ / 4 retardation film of the present invention, Ro (550) measured at a wavelength of 550 nm is preferably in the range of 120 to 180 nm, more preferably in the range of 120 to 160 nm, and 130 to 150 nm. It is particularly preferable that it is within the range.
 本発明のλ/4位相差フィルムは、可視光の波長の範囲においてほぼ完全な円偏光を得るため、可視光の波長の範囲において、おおむね波長の1/4の位相差を有する位相差板(フィルム)である広帯域λ/4位相差フィルムであることが好ましい。 Since the λ / 4 retardation film of the present invention obtains almost perfect circularly polarized light in the visible light wavelength range, a retardation plate having a phase difference of approximately ¼ of the wavelength in the visible light wavelength range ( A broadband λ / 4 retardation film which is a film) is preferable.
 本発明でいう「可視光の波長の範囲においておおむね1/4の位相差」とは、波長400から700nmの領域において、長波長ほど位相差値が大きい逆波長分散特性であることを意味する。 In the present invention, “a phase difference of approximately ¼ in the wavelength range of visible light” means an inverse wavelength dispersion characteristic having a larger phase difference value as the wavelength is longer in the wavelength range of 400 to 700 nm.
 本発明のλ/4位相差フィルムにおいては、面内位相差値Roは下記式(i)で表され、波長550nmで測定した面内位相差値Ro(550)に対する波長450nmで測定したRo(450)の比(Ro(450)/Ro(550))が、0.72~0.96の範囲内であることを特徴とするが、0.75~0.92の範囲内であることが好ましく、0.78~0.88の範囲内であることがより好ましい。 In the λ / 4 retardation film of the present invention, the in-plane retardation value Ro is represented by the following formula (i), and Ro (measured at a wavelength of 450 nm with respect to the in-plane retardation value Ro (550) measured at a wavelength of 550 nm). 450) (Ro (450) / Ro (550)) is in the range of 0.72 to 0.96, but is in the range of 0.75 to 0.92. Preferably, it is in the range of 0.78 to 0.88.
 また、波長650nmで測定した面内位相差値Ro(650)に対する波長550nmで測定した面内リターデーション値Ro(550)の比(Ro(550)/Ro(650))は、0.83~0.98の範囲内であることを特徴とするが、前記Ro(450)/Ro(550)とのバランスが大切であり、Ro(450)/Ro(550)が0.72~0.96の範囲内にある場合には、Ro(550)/Ro(650)は0.87~0.98の範囲内であることが好ましく、Ro(450)/Ro(550)が0.75~0.92の範囲にある場合には、Ro(550)/Ro(650)は0.88~0.96の範囲内であることが好ましく、Ro(450)/Ro(550)が0.78~0.88の範囲である場合は、Ro(550)/Ro(650)は0.90~0.94の範囲内であることがより好ましい。 The ratio of the in-plane retardation value Ro (550) measured at a wavelength of 550 nm to the in-plane retardation value Ro (650) measured at a wavelength of 650 nm (Ro (550) / Ro (650)) is 0.83 to Although it is within the range of 0.98, the balance with the Ro (450) / Ro (550) is important, and Ro (450) / Ro (550) is 0.72 to 0.96. Ro (550) / Ro (650) is preferably in the range of 0.87 to 0.98, and Ro (450) / Ro (550) is in the range of 0.75 to 0. In the range of .92, Ro (550) / Ro (650) is preferably in the range of 0.88 to 0.96, and Ro (450) / Ro (550) is preferably 0.78 to 0.98. If it is in the range of 0.88, Ro (55 ) / Ro (650) is more preferably in the range of 0.90 to 0.94.
 式(i)
   Ro=(n-n)×d
   Rt=〔(n+n)/2-n〕×d
 上記式(i)において、n、n及びnは、それぞれ23℃、55%RHの環境下で測定した、波長450nm、550nm、又は650nmにおける屈折率であり、nはフィルムの面内の最大の屈折率(遅相軸方向の屈折率)であり、nはフィルム面内で遅相軸に直交する方向の屈折率であり、nはフィルム面内に垂直な厚さ方向の屈折率であり、dはフィルムの厚さ(nm)である。
Formula (i)
Ro = (n x −n y ) × d
Rt = [(n x + ny ) / 2−n z ] × d
In the above formula (i), n x, n y and n z are, 23 ° C., respectively, were measured in an environment of 55% RH, the refractive index at a wavelength of 450 nm, 550 nm, or 650 nm, the surface of the n x the film a maximum refractive index of the inner (refractive index in a slow axis direction), n y is a refractive index in a direction perpendicular to the slow axis in the film plane, n z is the vertical thickness direction in the film plane Where d is the film thickness (nm).
 面内位相差値Ro(550)を高める場合には、フィルム膜厚dを高めることが簡単な手段ではあるが、経済性、画像表示装置の厚さの増大、透過率低下による光取出し効率低下の観点から好ましくない。 In order to increase the in-plane retardation value Ro (550), it is a simple means to increase the film thickness d, but it is economical, the thickness of the image display device is increased, and the light extraction efficiency is decreased due to the decrease in transmittance. From the viewpoint of
 本発明のλ/4位相差フィルムにおいては、フィルム膜厚dは、おおむね20~100μmの範囲内であるが、30~80μmの範囲内が好ましく、30~65μmの範囲内であることが、本発明の効果をより発現できる観点から特に好ましい。 In the λ / 4 retardation film of the present invention, the film thickness d is generally in the range of 20 to 100 μm, preferably in the range of 30 to 80 μm, and preferably in the range of 30 to 65 μm. It is particularly preferable from the viewpoint of further manifesting the effects of the invention.
 本発明において、位相差値は、Axometrcs社製のAxoscanを用いて、23℃、55%RHの環境下で、各波長での複屈折率測定により各面内位相差値Roを算出することができる。 In the present invention, the in-plane retardation value Ro can be calculated by measuring the birefringence at each wavelength in an environment of 23 ° C. and 55% RH using an Axoscan manufactured by Axometers. it can.
 λ/4位相差フィルムの遅相軸と、後述する偏光子の透過軸との角度が実質的に45°になるように積層することにより、円偏光板が得られる。 A circularly polarizing plate is obtained by laminating so that the angle between the slow axis of the λ / 4 retardation film and the transmission axis of the polarizer described later is substantially 45 °.
 本発明でいう「実質的に45°」とは、40~50°の範囲内であることを意味する。本発明のλ/4位相差フィルムの面内の遅相軸と、偏光子の透過軸との角度は、更には41~49°の範囲内であることが好ましく、42~48°の範囲内であることがより好ましく、43~47°の範囲内であることが更に好ましく、44~46°の範囲内であることが最も好ましい。 In the present invention, “substantially 45 °” means within a range of 40 to 50 °. The angle between the in-plane slow axis of the λ / 4 retardation film of the present invention and the transmission axis of the polarizer is more preferably in the range of 41 to 49 °, and in the range of 42 to 48 °. More preferably, it is more preferably in the range of 43 to 47 °, and most preferably in the range of 44 to 46 °.
 〔光学性能調整剤〕
 本発明のλ/4位相差フィルムにおいて、本発明で規定する前記条件1~3を達成する手段の一つとして、光学性能調整剤として、下記一般式(A)で表される化合物を用いることが好ましい。
(Optical performance modifier)
In the λ / 4 retardation film of the present invention, a compound represented by the following general formula (A) is used as an optical performance modifier as one of means for achieving the above-mentioned conditions 1 to 3 defined in the present invention. Is preferred.
 下記一般式(A)で表される化合物を用いることにより、遅相軸方向の屈折率nxを高くすることができ、かつ紫外領域での進相軸方向屈折率nyを高めて、進相軸方向屈折率nyの順波長分散傾きを急峻にすることができる。 By using the compound represented by the following general formula (A), the refractive index nx in the slow axis direction can be increased, and the fast axis direction refractive index ny in the ultraviolet region can be increased to increase the fast axis. The forward wavelength dispersion slope of the directional refractive index ny can be made steep.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 上記一般式(A)において、L及びLは各々独立に単結合又は2価の連結基を表す。R、R及びRは各々独立に置換基を表す。nは0から2までの整数を表す。Wa及びWbはそれぞれ水素原子又は置換基を表し、(I)Wa及びWbが互いに結合して環を形成してもよく、(II)Wa及びWbの少なくとも一つが環構造を有してもよく、又は(III)Wa及びWbの少なくとも一つがアルケニル基又はアルキニル基であってもよい。 In the general formula (A), L 1 and L 2 each independently represent a single bond or a divalent linking group. R 1 , R 2 and R 3 each independently represent a substituent. n represents an integer of 0 to 2. Wa and Wb each represent a hydrogen atom or a substituent, (I) Wa and Wb may be bonded to each other to form a ring, and (II) at least one of Wa and Wb may have a ring structure Or (III) at least one of Wa and Wb may be an alkenyl group or an alkynyl group.
 上記一般式(A)において、L及びLは各々独立に単結合又は2価の連結基を表すが、L及びLとして、好ましくはO、COO、OCOである。 In the general formula (A), L 1 and L 2 each independently represent a single bond or a divalent linking group, and L 1 and L 2 are preferably O, COO, and OCO.
 R、R及びRは各々独立に置換基を表す。R、R及びRで表される置換基の具体例としては、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等)、アルキル基(例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、tert-ブチル基、n-オクチル基、2-エチルヘキシル基等)、シクロアルキル基(例えば、シクロヘキシル基、シクロペンチル基、4-n-ドデシルシクロヘキシル基等)、アルケニル基(例えば、ビニル基、アリル基等)、シクロアルケニル基(例えば、2-シクロペンテン-1-イル、2-シクロヘキセン-1-イル基等)、アルキニル基(例えば、エチニル基、プロパルギル基等)、アリール基(例えば、フェニル基、p-トリル基、ナフチル基等)、ヘテロ環基(例えば、2-フリル基、2-チエニル基、2-ピリミジニル基、2-ベンゾチアゾリル基等)、シアノ基、ヒドロキシ基、ニトロ基、カルボキシ基、アルコキシ基(例えば、メトキシ基、エトキシ基、イソプロポキシ基、tert-ブトキシ基、n-オクチルオキシ基、2-メトキシエトキシ基等)、アリールオキシ基(例えば、フェノキシ基、2-メチルフェノキシ基、4-tert-ブチルフェノキシ基、3-ニトロフェノキシ基、2-テトラデカノイルアミノフェノキシ基等)、アシルオキシ基(例えば、ホルミルオキシ基、アセチルオキシ基、ピバロイルオキシ基、ステアロイルオキシ基、ベンゾイルオキシ基、p-メトキシフェニルカルボニルオキシ基等)、アミノ基(例えば、アミノ基、メチルアミノ基、ジメチルアミノ基、アニリノ基、N-メチル-アニリノ基、ジフェニルアミノ基等)、アシルアミノ基(例えば、ホルミルアミノ基、アセチルアミノ基、ピバロイルアミノ基、ラウロイルアミノ基、ベンゾイルアミノ基等)、アルキル及びアリールスルホニルアミノ基(例えば、メチルスルホニルアミノ基、ブチルスルホニルアミノ基、フェニルスルホニルアミノ基、2,3,5-トリクロロフェニルスルホニルアミノ基、p-メチルフェニルスルホニルアミノ基等)、メルカプト基、アルキルチオ基(例えば、メチルチオ基、エチルチオ基、n-ヘキサデシルチオ基等)、アリールチオ基(例えば、フェニルチオ基、p-クロロフェニルチオ基、m-メトキシフェニルチオ基等)、スルファモイル基(例えば、N-エチルスルファモイル基、N-(3-ドデシルオキシプロピル)スルファモイル基、N,N-ジメチルスルファモイル基、N-アセチルスルファモイル基、N-ベンゾイルスルファモイル基、N-(N′-フェニルカルバモイル)スルファモイル基等)、スルホ基、アシル基(例えば、アセチル基、ピバロイルベンゾイル基等)、カルバモイル基(カルバモイル基、N-メチルカルバモイル基、N,N-ジメチルカルバモイル基、N,N-ジ-n-オクチルカルバモイル基、N-(メチルスルホニル)カルバモイル基等)が挙げられる。 R 1 , R 2 and R 3 each independently represent a substituent. Specific examples of the substituent represented by R 1 , R 2 and R 3 include a halogen atom (eg, fluorine atom, chlorine atom, bromine atom, iodine atom), an alkyl group (eg, methyl group, ethyl group, n-propyl group, isopropyl group, tert-butyl group, n-octyl group, 2-ethylhexyl group, etc.), cycloalkyl group (for example, cyclohexyl group, cyclopentyl group, 4-n-dodecylcyclohexyl group, etc.), alkenyl group ( For example, vinyl group, allyl group, etc.), cycloalkenyl group (eg, 2-cyclopenten-1-yl, 2-cyclohexen-1-yl group, etc.), alkynyl group (eg, ethynyl group, propargyl group, etc.), aryl group (Eg, phenyl group, p-tolyl group, naphthyl group, etc.), heterocyclic group (eg, 2-furyl group, 2-thienyl group, 2 -Pyrimidinyl group, 2-benzothiazolyl group, etc.), cyano group, hydroxy group, nitro group, carboxy group, alkoxy group (for example, methoxy group, ethoxy group, isopropoxy group, tert-butoxy group, n-octyloxy group, 2 -Methoxyethoxy group), aryloxy group (eg, phenoxy group, 2-methylphenoxy group, 4-tert-butylphenoxy group, 3-nitrophenoxy group, 2-tetradecanoylaminophenoxy group, etc.), acyloxy group ( For example, formyloxy group, acetyloxy group, pivaloyloxy group, stearoyloxy group, benzoyloxy group, p-methoxyphenylcarbonyloxy group, etc.), amino group (for example, amino group, methylamino group, dimethylamino group, anilino group, N-methyl-anilino group, diphe ), Acylamino groups (for example, formylamino group, acetylamino group, pivaloylamino group, lauroylamino group, benzoylamino group, etc.), alkyl and arylsulfonylamino groups (for example, methylsulfonylamino group, butylsulfonylamino group, Phenylsulfonylamino group, 2,3,5-trichlorophenylsulfonylamino group, p-methylphenylsulfonylamino group, etc.), mercapto group, alkylthio group (eg, methylthio group, ethylthio group, n-hexadecylthio group, etc.), arylthio group (Eg, phenylthio group, p-chlorophenylthio group, m-methoxyphenylthio group, etc.), sulfamoyl group (eg, N-ethylsulfamoyl group, N- (3-dodecyloxypropyl) sulfamoyl group, N, N Dimethylsulfamoyl group, N-acetylsulfamoyl group, N-benzoylsulfamoyl group, N- (N'-phenylcarbamoyl) sulfamoyl group, etc.), sulfo group, acyl group (for example, acetyl group, pivaloyl) Benzoyl group, etc.), carbamoyl group (carbamoyl group, N-methylcarbamoyl group, N, N-dimethylcarbamoyl group, N, N-di-n-octylcarbamoyl group, N- (methylsulfonyl) carbamoyl group, etc.) .
 R及びRとしては、好ましくは、置換もしくは無置換のベンゼン環、置換もしくは無置換のシクロヘキサン環である。より好ましくは置換基を有するベンゼン環、置換基を有するシクロヘキサン環であり、さらに4位に置換基を有するベンゼン環が、λ/4位相差フィルムの遅相軸方向に一般式(A)の化合物の主鎖を配向させて、遅相軸方向屈折率nxを高めることができる観点で、特に好ましい。 R 1 and R 2 are preferably a substituted or unsubstituted benzene ring or a substituted or unsubstituted cyclohexane ring. More preferably, they are a benzene ring having a substituent and a cyclohexane ring having a substituent, and the benzene ring having a substituent at the 4-position is a compound of the general formula (A) in the slow axis direction of the λ / 4 retardation film. This is particularly preferred from the viewpoint of orienting the main chain and increasing the slow axis direction refractive index nx.
 Rとして、好ましくは、水素原子、ハロゲン原子、アルキル基、アルケニル基、アリール基、ヘテロ環基、ヒドロキシル基、カルボキシル基、アルコキシ基、アリールオキシ基、アシルオキシ基、シアノ基、アミノ基であり、さらに好ましくは、水素原子、ハロゲン原子、アルキル基、シアノ基、アルコキシ基である。 R 3 is preferably a hydrogen atom, halogen atom, alkyl group, alkenyl group, aryl group, heterocyclic group, hydroxyl group, carboxyl group, alkoxy group, aryloxy group, acyloxy group, cyano group, amino group, More preferably, they are a hydrogen atom, a halogen atom, an alkyl group, a cyano group, and an alkoxy group.
 Wa及びWbは各々独立に水素原子又は置換基を表し、Wa及びWbが互いに結合して環を形成しても、Wa及びWbの少なくとも1つが環構造を有しても、又はWa及びWbの少なくとも1つがアルケニル基又はアルキニル基であってもよい。 Wa and Wb each independently represent a hydrogen atom or a substituent, and Wa and Wb may be bonded to each other to form a ring, or at least one of Wa and Wb may have a ring structure, or Wa and Wb At least one may be an alkenyl group or an alkynyl group.
 Wa及びWbで表される置換基の具体例としては、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等)、アルキル基(例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、tert-ブチル基、n-オクチル基、2-エチルヘキシル基等)、シクロアルキル基(例えば、シクロヘキシル基、シクロペンチル基、4-n-ドデシルシクロヘキシル基等)、アルケニル基(例えば、ビニル基、アリル基等)、シクロアルケニル基(例えば、2-シクロペンテン-1-イル、2-シクロヘキセン-1-イル基等)、アルキニル基(例えば、エチニル基、プロパルギル基等)、アリール基(例えば、フェニル基、p-トリル基、ナフチル基等)、ヘテロ環基(例えば、2-フリル基、2-チエニル基、2-ピリミジニル基、2-ベンゾチアゾリル基等)、シアノ基、ヒドロキシル基、ニトロ基、カルボキシル基、アルコキシ基(例えば、メトキシ基、エトキシ基、イソプロポキシ基、tert-ブトキシ基、n-オクチルオキシ基、2-メトキシエトキシ基等)、アリールオキシ基(例えば、フェノキシ基、2-メチルフェノキシ基、4-tert-ブチルフェノキシ基、3-ニトロフェノキシ基、2-テトラデカノイルアミノフェノキシ基等)、アシルオキシ基(例えば、ホルミルオキシ基、アセチルオキシ基、ピバロイルオキシ基、ステアロイルオキシ基、ベンゾイルオキシ基、p-メトキシフェニルカルボニルオキシ基等)、アミノ基(例えば、アミノ基、メチルアミノ基、ジメチルアミノ基、アニリノ基、N-メチル-アニリノ基、ジフェニルアミノ基等)、アシルアミノ基(例えば、ホルミルアミノ基、アセチルアミノ基、ピバロイルアミノ基、ラウロイルアミノ基、ベンゾイルアミノ基等)、アルキル及びアリールスルホニルアミノ基(例えば、メチルスルホニルアミノ基、ブチルスルホニルアミノ基、フェニルスルホニルアミノ基、2,3,5-トリクロロフェニルスルホニルアミノ基、p-メチルフェニルスルホニルアミノ基等)、メルカプト基、アルキルチオ基(例えば、メチルチオ基、エチルチオ基、n-ヘキサデシルチオ基等)、アリールチオ基(例えば、フェニルチオ基、p-クロロフェニルチオ基、m-メトキシフェニルチオ基等)、スルファモイル基(例えば、N-エチルスルファモイル基、N-(3-ドデシルオキシプロピル)スルファモイル基、N,N-ジメチルスルファモイル基、N-アセチルスルファモイル基、N-ベンゾイルスルファモイル基、N-(N′フェニルカルバモイル)スルファモイル基等)、スルホ基、アシル基(例えば、アセチル基ピバロイルベンゾイル基等)、カルバモイル基(例えば、カルバモイル基、N-メチルカルバモイル基、N,N-ジメチルカルバモイル基、N,N-ジ-n-オクチルカルバモイル基、N-(メチルスルホニル)カルバモイル基等)を挙げることができる。 Specific examples of the substituent represented by Wa and Wb include halogen atoms (eg, fluorine atom, chlorine atom, bromine atom, iodine atom), alkyl groups (eg, methyl group, ethyl group, n-propyl group, Isopropyl group, tert-butyl group, n-octyl group, 2-ethylhexyl group, etc.), cycloalkyl group (for example, cyclohexyl group, cyclopentyl group, 4-n-dodecylcyclohexyl group, etc.), alkenyl group (for example, vinyl group, Allyl group), cycloalkenyl group (eg 2-cyclopenten-1-yl, 2-cyclohexen-1-yl group, etc.), alkynyl group (eg ethynyl group, propargyl group etc.), aryl group (eg phenyl group) , P-tolyl group, naphthyl group, etc.), heterocyclic group (for example, 2-furyl group, 2-thienyl group, 2-pyryl group) Dinyl group, 2-benzothiazolyl group, etc.), cyano group, hydroxyl group, nitro group, carboxyl group, alkoxy group (for example, methoxy group, ethoxy group, isopropoxy group, tert-butoxy group, n-octyloxy group, 2- Methoxyethoxy group), aryloxy group (for example, phenoxy group, 2-methylphenoxy group, 4-tert-butylphenoxy group, 3-nitrophenoxy group, 2-tetradecanoylaminophenoxy group, etc.), acyloxy group (for example, , Formyloxy group, acetyloxy group, pivaloyloxy group, stearoyloxy group, benzoyloxy group, p-methoxyphenylcarbonyloxy group, etc.), amino group (for example, amino group, methylamino group, dimethylamino group, anilino group, N -Methyl-anilino group, diphenyl Amino group, etc.), acylamino group (eg, formylamino group, acetylamino group, pivaloylamino group, lauroylamino group, benzoylamino group, etc.), alkyl and arylsulfonylamino groups (eg, methylsulfonylamino group, butylsulfonylamino group, Phenylsulfonylamino group, 2,3,5-trichlorophenylsulfonylamino group, p-methylphenylsulfonylamino group, etc.), mercapto group, alkylthio group (eg, methylthio group, ethylthio group, n-hexadecylthio group, etc.), arylthio group (Eg, phenylthio group, p-chlorophenylthio group, m-methoxyphenylthio group, etc.), sulfamoyl group (eg, N-ethylsulfamoyl group, N- (3-dodecyloxypropyl) sulfamoyl group, N, N— The Methylsulfamoyl group, N-acetylsulfamoyl group, N-benzoylsulfamoyl group, N- (N′phenylcarbamoyl) sulfamoyl group, etc.), sulfo group, acyl group (for example, acetyl group pivaloylbenzoyl group) ), Carbamoyl groups (eg, carbamoyl group, N-methylcarbamoyl group, N, N-dimethylcarbamoyl group, N, N-di-n-octylcarbamoyl group, N- (methylsulfonyl) carbamoyl group, etc.) Can do.
 上記の置換基は、更に上記の基で置換されていてもよい。 The above substituents may be further substituted with the above groups.
 Wa及びWbが互いに結合して環を形成する場合、以下のような構造が挙げられる。 When Wa and Wb are bonded to each other to form a ring, the following structures may be mentioned.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 式中、R、R、Rはそれぞれ水素原子又は置換基を表し、置換基としては、上記R、R及びRで表される置換基の具体例と同様の基を挙げることができる。 In the formula, R 4 , R 5 and R 6 each represent a hydrogen atom or a substituent, and examples of the substituent include the same groups as the specific examples of the substituent represented by R 1 , R 2 and R 3 above. be able to.
 また、Wa及びWbのいずれか一方が水素原子で、他方が置環基を有する場合、以下のような構造が挙げられる。 In addition, when one of Wa and Wb is a hydrogen atom and the other has a ring-setting group, the following structures are exemplified.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 式中、Rii、Riiiは、それぞれ上記R、R及びRで表される置換基の具体例と同様の基を挙げることができる。 In the formula, R ii and R iii may include the same groups as the specific examples of the substituents represented by R 1 , R 2 and R 3 , respectively.
 一般式(A)において、Wa及びWbが互いに結合して環を形成する場合、好ましくは、含窒素5員環又は含硫黄5員環であり、例えば、下記一般式(1)で表される化合物を挙げることができる。 In the general formula (A), when Wa and Wb are bonded to each other to form a ring, it is preferably a nitrogen-containing 5-membered ring or a sulfur-containing 5-membered ring, for example, represented by the following general formula (1) A compound can be mentioned.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 上記一般式(1)において、A及びAは各々独立に、O、S、NR(Rは水素原子又は置換基を表す。)又はCOを表す。Rで表される置換基の例は、上記Wa及びWbで表される置換基の具体例と同義である。Rとして、好ましくは水素原子、アルキル基、アリール基、ヘテロ環基である。 In the general formula (1), A 1 and A 2 each independently represent O, S, NR X (R X represents a hydrogen atom or a substituent) or CO. Examples of the substituent represented by R X has the same meaning as specific examples of substituents represented by the Wa and Wb. R X is preferably a hydrogen atom, an alkyl group, an aryl group, or a heterocyclic group.
 上記一般式(1)において、Xは第3周期以降で第14~16族の非金属原子、又は、第3周期以降で第14~16族の非金属原子又は共役系を含む置換基であり、λ/4位相差フィルムの進相軸方向の屈折率nyの紫外領域における屈折率を高める上で好ましい。 In the general formula (1), X is a nonmetallic atom belonging to Groups 14 to 16 after the third period, or a substituent containing a nonmetallic atom belonging to Groups 14 to 16 or a conjugated system after the third period. The λ / 4 retardation film is preferable for increasing the refractive index in the ultraviolet region of the refractive index ny in the fast axis direction.
 Xとしては、O、S、NRc、C(Rd)Reが好ましい。ここでRc、Rd及びReは各々置換基を表し、例としては上記Wa及びWbで表される置換基の具体例と同様に基を挙げることができる。 X is preferably O, S, NRc, or C (Rd) Re. Here, Rc, Rd and Re each represent a substituent, and examples thereof include groups similar to the specific examples of the substituents represented by Wa and Wb.
 L、L、R、R、R、及びnは、それぞれ一般式(A)におけるL、L、R、R、R、及びnと同義である。 L 1, L 2, R 1, R 2, R 3, and n is an L 1 in the general formula (A), respectively, L 2, R 1, R 2, R 3, and the n synonymous.
 以下に、一般式(A)で表される化合物の具体例を示すが、本発明で用いることができる一般式(A)で表される化合物は、以下の具体例によって何ら限定されることはない。 Specific examples of the compound represented by the general formula (A) are shown below, but the compound represented by the general formula (A) that can be used in the present invention is not limited by the following specific examples. Absent.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
 なお、一般式(A)で表される化合物の合成は、既知の合成方法を適用して行うことができる。具体的には、Journal of Chemical Crystallography(1997);27(9); 512-526)、特開2010-31223号公報、特開2008-107767号公報等に記載の方法を参照に合成することができる。 In addition, the synthesis of the compound represented by the general formula (A) can be performed by applying a known synthesis method. Specifically, synthesis may be performed with reference to the methods described in Journal of Chemical Crystallography (1997); 27 (9); 512-526), JP 2010-31223 A, JP 2008-107767 A, and the like. it can.
 〔セルロースアシレート〕
 本発明のλ/4位相差フィルムは、マトリックス樹脂として、熱可塑性樹脂を用いることが好ましいが、更には、主たる成分がセルロースアシレートであることが好ましい。本発明でいう「主たる成分」とは、λ/4位相差フィルムを構成する熱可塑性樹脂成分の70質量%以上がセルロースアシレートで構成されていることをいう。
[Cellulose acylate]
In the λ / 4 retardation film of the present invention, it is preferable to use a thermoplastic resin as the matrix resin, and it is more preferable that the main component is cellulose acylate. The “main component” in the present invention means that 70% by mass or more of the thermoplastic resin component constituting the λ / 4 retardation film is composed of cellulose acylate.
 本発明に係るセルロースアシレートにおいては、平均アシル基置換度が2.0~3.0の範囲内であることが好ましく、より好ましくは2.2~2.8の範囲内であり、更に好ましくは2.4~2.7の範囲内である。ここでいう平均アシル基置換度とは、セルロースを構成する各無水グルコースが有する3個のヒドロキシ基(水酸基)のうち、エステル化されているヒドロキシ基(水酸基)の数の平均値で示し、0~3.0の範囲内の値をとる。 In the cellulose acylate according to the present invention, the average acyl group substitution degree is preferably in the range of 2.0 to 3.0, more preferably in the range of 2.2 to 2.8, and still more preferably. Is in the range of 2.4 to 2.7. The average degree of acyl group substitution here means the average value of the number of esterified hydroxy groups (hydroxyl groups) out of the three hydroxy groups (hydroxyl groups) of each anhydroglucose constituting cellulose. It takes a value in the range of ~ 3.0.
 セルロースアシレートの平均アシル基置換度が低い場合には、面内位相差Ro発現性は高いが、Ro波長分散特性はフラットに近くなり、逆に平均アシル基置換度が高い場合には、Ro発現性は低下する一方で、波長分散特性はより逆分散となる。 When the average acyl group substitution degree of cellulose acylate is low, the in-plane retardation Ro developability is high, but the Ro wavelength dispersion characteristic becomes almost flat, and conversely, when the average acyl group substitution degree is high, Ro While the expression is reduced, the wavelength dispersion characteristic is more reverse dispersion.
 本発明において、アシル基で置換されていない部分は、通常ヒドロキシ基(水酸基)として存在している。これらのセルロースアシレートは、公知の方法で合成することができる。 In the present invention, the portion not substituted with an acyl group usually exists as a hydroxy group (hydroxyl group). These cellulose acylates can be synthesized by a known method.
 なお、アシル基の置換度は、ASTM-D817-96(セルロースアシレート等の試験方法)に規定されている方法に従って求めた値である。 The substitution degree of the acyl group is a value determined according to the method specified in ASTM-D817-96 (testing method for cellulose acylate, etc.).
 本発明に係るセルロースアシレートの数平均分子量(Mn)は、30,000~300,000の範囲内のものが、得られるλ/4位相差フィルムの機械的強度が強くなる観点から好ましい。更には、50,000~200,000の範囲内のものが好ましく用いられる。 The number average molecular weight (Mn) of the cellulose acylate according to the present invention is preferably in the range of 30,000 to 300,000 from the viewpoint of increasing the mechanical strength of the obtained λ / 4 retardation film. Furthermore, those in the range of 50,000 to 200,000 are preferably used.
 セルロースアシレートの重量平均分子量(Mw)と数平均分子量(Mn)の比Mw/Mnの値は、1.4~3.0の範囲内であることが好ましい。 The ratio Mw / Mn of the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the cellulose acylate is preferably in the range of 1.4 to 3.0.
 セルロースアシレートの重量平均分子量Mw及び数平均分子量Mnは、それぞれゲルパーミエーションクロマトグラフィー(GPC)を用いて測定して、求めることができる。 The weight average molecular weight Mw and the number average molecular weight Mn of cellulose acylate can be determined by measuring each using gel permeation chromatography (GPC).
 具体的な測定条件の一例を、以下に示す。 An example of specific measurement conditions is shown below.
 溶媒:メチレンクロライド
 カラム:Shodex K806、K805、K803G(昭和電工(株)製のカラムを3本接続して使用した)
 カラム温度:25℃
 試料濃度:0.1質量%
 検出器:RI Model 504(GLサイエンス社製)
 ポンプ:L6000(日立製作所(株)製)
 流量:1.0ml/min
 校正曲線:標準ポリスチレンSTK standard ポリスチレン(東ソー(株)製)でMwが1000000~500の範囲にある13サンプルによる校正曲線を使用した。13サンプルは、ほぼ等間隔に用いる。
Solvent: Methylene chloride Column: Shodex K806, K805, K803G (Used by connecting three columns manufactured by Showa Denko KK)
Column temperature: 25 ° C
Sample concentration: 0.1% by mass
Detector: RI Model 504 (GL Science Co., Ltd.)
Pump: L6000 (manufactured by Hitachi, Ltd.)
Flow rate: 1.0 ml / min
Calibration curve: A standard polystyrene STK standard polystyrene (manufactured by Tosoh Co., Ltd.) and a calibration curve with 13 samples having a Mw in the range of 1,000,000 to 500 was used. Thirteen samples are used at approximately equal intervals.
 本発明のλ/4位相差フィルムには、セルロースアシレート以外の熱可塑性樹脂を用いてもよい。 For the λ / 4 retardation film of the present invention, a thermoplastic resin other than cellulose acylate may be used.
 本発明でいう「熱可塑性樹脂」とは、ガラス転移温度又は融点まで加熱することによって軟らかくなり、目的の形に成形できる特性を備えた樹脂のことをいう。 The term “thermoplastic resin” as used in the present invention refers to a resin that has the characteristics that it becomes soft when heated to the glass transition temperature or melting point and can be molded into the desired shape.
 熱可塑性樹脂としては、例えば、ポリエチレン(PE)、高密度ポリエチレン(HDPE)、中密度ポリエチレン(MDPE)、低密度ポリエチレン(LDPE)、ポリプロピレン(PP)、ポリ塩化ビニル(PVC)、ポリ塩化ビニリデン(PVDC)、ポリスチレン(PS)、ポリ酢酸ビニル(PVAc)、テフロン(登録商標)(ポリテトラフルオロエチレン、PTFE)、ABS樹脂(アクリロニトリルブタジエンスチレン共重合体)、AS樹脂(アクリロニトリルスチレン共重合体)、アクリル樹脂(PMMA)等を用いることができる。 Examples of the thermoplastic resin include polyethylene (PE), high density polyethylene (HDPE), medium density polyethylene (MDPE), low density polyethylene (LDPE), polypropylene (PP), polyvinyl chloride (PVC), and polyvinylidene chloride ( PVDC), polystyrene (PS), polyvinyl acetate (PVAc), Teflon (registered trademark) (polytetrafluoroethylene, PTFE), ABS resin (acrylonitrile butadiene styrene copolymer), AS resin (acrylonitrile styrene copolymer), Acrylic resin (PMMA) or the like can be used.
 また、強度や壊れにくさを特に要求される場合には、例えば、ポリアミド(PA)、ナイロン、ポリアセタール(POM)、ポリカーボネート(PC)、変性ポリフェニレンエーテル(m-PPE、変性PPE、PPO)、ポリブチレンテレフタレート(PBT)、ポリエチレンテレフタレート(PET)、グラスファイバー強化ポリエチレンテレフタレート(GF-PET)、環状ポリオレフィン(COP)等を用いることができる。 When strength and resistance to breakage are particularly required, for example, polyamide (PA), nylon, polyacetal (POM), polycarbonate (PC), modified polyphenylene ether (m-PPE, modified PPE, PPO), poly Butylene terephthalate (PBT), polyethylene terephthalate (PET), glass fiber reinforced polyethylene terephthalate (GF-PET), cyclic polyolefin (COP), and the like can be used.
 さらに、高い熱変形温度と長期使用できる耐久性が要求される場合には、ポリフェニレンスルファイド(PPS)、ポリテトラフロロエチレン(PTFE)、ポリスルホン(PSF)、ポリエーテルサルフォン(PES)、非晶ポリアリレート、液晶ポリマー、ポリエーテルエーテルケトン(PEEK)、熱可塑性ポリイミド(PI)、ポリアミドイミド(PAI)等を用いることができる。 Furthermore, when high heat distortion temperature and durability that can be used for a long time are required, polyphenylene sulfide (PPS), polytetrafluoroethylene (PTFE), polysulfone (PSF), polyethersulfone (PES), amorphous Polyarylate, liquid crystal polymer, polyetheretherketone (PEEK), thermoplastic polyimide (PI), polyamideimide (PAI) and the like can be used.
 なお、本発明の用途に沿って、熱可塑性樹脂の種類や分子量を組み合わせて、2種以上用いることも可能である。 In addition, it is also possible to use two or more types in combination of the types and molecular weights of the thermoplastic resin in accordance with the application of the present invention.
 〔λ/4位相差フィルムのその他の添加剤〕
 (有機溶媒)
 セルロースアシレートを溶解してセルロースアシレート溶液、あるいはドープを調製するのに有用な有機溶媒としては、主に、塩素系有機溶媒と非塩素系有機溶媒が挙げられる。
[Other Additives for λ / 4 Retardation Film]
(Organic solvent)
Organic solvents useful for preparing cellulose acylate solution or dope by dissolving cellulose acylate mainly include chlorinated organic solvents and non-chlorinated organic solvents.
 塩素系有機溶媒としては、メチレンクロライド(塩化メチレン)を挙げることができる。しかしながら、昨今の環境問題の視点から、非塩素系有機溶媒の適用が盛んに検討されている。非塩素系有機溶媒としては、例えば、酢酸メチル、酢酸エチル、酢酸アミル、アセトン、テトラヒドロフラン、1,3-ジオキソラン、1,4-ジオキサン、シクロヘキサノン、ギ酸エチル、2,2,2-トリフルオロエタノール、2,2,3,3-ヘキサフルオロ-1-プロパノール、1,3-ジフルオロ-2-プロパノール、1,1,1,3,3,3-ヘキサフルオロ-2-メチル-2-プロパノール、1,1,1,3,3,3-ヘキサフルオロ-2-プロパノール、2,2,3,3,3-ペンタフルオロ-1-プロパノール、ニトロエタン等を挙げることができる。 Examples of the chlorinated organic solvent include methylene chloride (methylene chloride). However, application of non-chlorine organic solvents has been actively studied from the viewpoint of recent environmental problems. Examples of the non-chlorine organic solvent include methyl acetate, ethyl acetate, amyl acetate, acetone, tetrahydrofuran, 1,3-dioxolane, 1,4-dioxane, cyclohexanone, ethyl formate, 2,2,2-trifluoroethanol, 2,2,3,3-hexafluoro-1-propanol, 1,3-difluoro-2-propanol, 1,1,1,3,3,3-hexafluoro-2-methyl-2-propanol, 1, Examples include 1,1,3,3,3-hexafluoro-2-propanol, 2,2,3,3,3-pentafluoro-1-propanol, and nitroethane.
 これらの有機溶媒を、セルロースアシレートに対して使用する場合には、常温での溶解方法も使用可能であるが、高温溶解方法、冷却溶解方法、高圧溶解方法等の公知の溶解方法を用いることが、不溶解物を少なくすることができる観点で好ましい。セルロースアシレートに対しては、メチレンクロライドを用いることもできるが、酢酸メチル、酢酸エチル、アセトンを用いることが好ましく、その中でも、特に酢酸メチルが好ましい。 When these organic solvents are used for cellulose acylate, a dissolution method at normal temperature can be used, but a known dissolution method such as a high-temperature dissolution method, a cooling dissolution method, or a high-pressure dissolution method should be used. However, it is preferable from the viewpoint of reducing insoluble matter. For the cellulose acylate, methylene chloride can be used, but methyl acetate, ethyl acetate, and acetone are preferably used, and among them, methyl acetate is particularly preferable.
 本発明において、上記セルロースアシレートに対して良好な溶解性を有する有機溶媒を良溶媒といい、また溶解に主たる効果を示し、その中で多量に使用する有機溶媒を、主(有機)溶媒又は主たる(有機)溶媒という。 In the present invention, an organic solvent having good solubility in the cellulose acylate is referred to as a good solvent, and has a main effect on dissolution, and an organic solvent used in a large amount among them is a main (organic) solvent or It is called the main (organic) solvent.
 本発明のλ/4位相差フィルムの製膜に用いられるドープには、上記有機溶媒の他に、1~40質量%の範囲内で、炭素原子数1~4のアルコールを含有させることが好ましい。これらのアルコールは、ドープを金属支持体上に流延した後、有機溶媒の蒸発が開始され、アルコール成分の相対比率が高くなると、ドープ膜(ウェブ)がゲル化し、ウェブを丈夫にし、金属支持体から剥離することを容易にするゲル化溶媒として作用させることができ、これらのアルコールの割合が低い時には、非塩素系有機溶媒のセルロースアシレートの溶解を促進する役割もある。 The dope used for forming the λ / 4 retardation film of the present invention preferably contains an alcohol having 1 to 4 carbon atoms in the range of 1 to 40% by mass in addition to the organic solvent. . These alcohols, after casting the dope on a metal support, start to evaporate the organic solvent, and when the relative proportion of the alcohol component increases, the dope film (web) gels, making the web strong and supporting the metal It can act as a gelling solvent that makes it easy to peel off from the body. When the proportion of these alcohols is low, it also has a role of promoting dissolution of cellulose acylate, a non-chlorine organic solvent.
 炭素原子数が1~4の範囲内にあるアルコールとしては、メタノール、エタノール、n-プロパノール、iso-プロパノール、n-ブタノール、sec-ブタノール、tert-ブタノールを挙げることができる。これらのうち、ドープの安定性に優れ、沸点も比較的低く、乾燥性もよいこと等の観点から、エタノールを用いることが好ましい。これらのアルコール類は、単独ではセルロースアシレートに対して溶解性を有していないので、貧溶媒として分類される。 Examples of the alcohol having 1 to 4 carbon atoms include methanol, ethanol, n-propanol, iso-propanol, n-butanol, sec-butanol, and tert-butanol. Of these, it is preferable to use ethanol from the viewpoints of excellent dope stability, relatively low boiling point, and good drying properties. These alcohols are categorized as poor solvents because they are not soluble in cellulose acylate alone.
 ドープ中のセルロースアシレートの濃度は15~30質量%の範囲内であることが好ましく、ドープ粘度は100~500Pa・sの範囲内に調整することが、優れたフィルム面品質を得ることができる観点から好ましい。 The concentration of cellulose acylate in the dope is preferably in the range of 15 to 30% by mass, and the dope viscosity can be adjusted in the range of 100 to 500 Pa · s to obtain excellent film surface quality. It is preferable from the viewpoint.
 ドープ中に添加することのできる添加剤としては、例えば、可塑剤、紫外線吸収剤、酸化防止剤、劣化防止剤、剥離助剤、界面活性剤、染料、微粒子等が挙げられる。本発明において、微粒子以外の添加剤については、セルロースアシレート溶液の調製時に添加してもよいし、微粒子分散液の調製時に添加してもよい。画像表示装置に使用する偏光板には耐熱耐湿性を付与する可塑剤、酸化防止剤や紫外線吸収剤等を添加することが好ましい。 Examples of additives that can be added to the dope include plasticizers, ultraviolet absorbers, antioxidants, deterioration inhibitors, peeling aids, surfactants, dyes, and fine particles. In the present invention, additives other than fine particles may be added when preparing the cellulose acylate solution, or may be added when preparing the fine particle dispersion. It is preferable to add a plasticizer, an antioxidant, an ultraviolet absorber, or the like that imparts heat and moisture resistance to the polarizing plate used in the image display device.
 (可塑剤)
 本発明のλ/4位相差フィルムにおいては、可塑剤を含有することが好ましい。特に、本発明のλ/4位相差フィルムは、数平均分子量(Mn)が1000~10000の範囲内にあるポリエステル系可塑剤を含有することが好ましい。
(Plasticizer)
The λ / 4 retardation film of the present invention preferably contains a plasticizer. In particular, the λ / 4 retardation film of the present invention preferably contains a polyester plasticizer having a number average molecular weight (Mn) in the range of 1000 to 10,000.
 ポリエステル系可塑剤の具体的な構造については、特に制限はなく、分子内に芳香環又はシクロアルキル環を有するポリエステル系可塑剤を用いることができる。 The specific structure of the polyester plasticizer is not particularly limited, and a polyester plasticizer having an aromatic ring or a cycloalkyl ring in the molecule can be used.
 ポリエステル系可塑剤としては、例えば、下記一般式(a)で表されるポリエステル系可塑剤が挙げられる。 Examples of the polyester plasticizer include a polyester plasticizer represented by the following general formula (a).
 一般式(a)
   B-(G-A)-G-B
 上記一般式(a)において、Bはベンゼンモノカルボン酸基又は脂肪族モノカルボン酸基を表し、Gは炭素数2~12のアルキレングリコール基、炭素数6~12のアリールグリコール基又は炭素数4~12のオキシアルキレングリコール基を表し、Aは炭素数4~12のアルキレンジカルボン酸基又は炭素数6~12のアリールジカルボン酸基を表し、nは1以上の整数を表す。
Formula (a)
B- (GA) n -GB
In the general formula (a), B represents a benzene monocarboxylic acid group or an aliphatic monocarboxylic acid group, and G represents an alkylene glycol group having 2 to 12 carbon atoms, an aryl glycol group having 6 to 12 carbon atoms, or 4 carbon atoms. Represents an oxyalkylene glycol group having ˜12, A represents an alkylene dicarboxylic acid group having 4 to 12 carbon atoms or an aryl dicarboxylic acid group having 6 to 12 carbon atoms, and n represents an integer of 1 or more.
 一般式(a)で表されるポリエステル系可塑剤は、通常のポリエステル系可塑剤と同様の反応により得られるものである。 The polyester plasticizer represented by the general formula (a) is obtained by the same reaction as a normal polyester plasticizer.
 ポリエステル系可塑剤のベンゼンモノカルボン酸成分としては、例えば、安息香酸、パラターシャリーブチル安息香酸、オルソトルイル酸、メタトルイル酸、パラトルイル酸、ジメチル安息香酸、エチル安息香酸、ノルマルプロピル安息香酸、アミノ安息香酸、アセトキシ安息香酸等が挙げられ、これらはそれぞれが1種単独で、又は2種以上の混合物として使用されうる。 Examples of the benzene monocarboxylic acid component of the polyester plasticizer include benzoic acid, paratertiary butylbenzoic acid, orthotoluic acid, metatoluic acid, p-toluic acid, dimethylbenzoic acid, ethylbenzoic acid, normal propylbenzoic acid, and aminobenzoic acid. , Acetoxybenzoic acid and the like, each of which can be used alone or as a mixture of two or more.
 また、ポリエステル系可塑剤の脂肪族モノカルボン酸成分としては、例えば、炭素数3以下の脂肪族モノカルボン酸が好ましく、酢酸、プロピオン酸、ブタン酸がより好ましく、酢酸が最も好ましい。重縮合エステルの両末端に使用するモノカルボン酸類の炭素数が3以下であると、化合物の加熱減量が大きくならず、面状故障が発生しない。 The aliphatic monocarboxylic acid component of the polyester plasticizer is preferably an aliphatic monocarboxylic acid having 3 or less carbon atoms, more preferably acetic acid, propionic acid or butanoic acid, and most preferably acetic acid. When the number of carbon atoms of the monocarboxylic acids used at both ends of the polycondensed ester is 3 or less, the heat loss of the compound does not increase, and no surface failure occurs.
 また、炭素数3以上8以下の環状脂肪族を有するモノカルボン酸が好ましく、炭素数6の環状脂肪族を有するモノカルボン酸がより好ましく、シクロヘキサンカルボン酸、4-メチル-シクロヘキサンカルボン酸が最も好ましい。重縮合エステルの両末端に使用するモノカルボン酸類の環状脂肪族の炭素数が3から8の範囲内であると、化合物の加熱減量が大きくならず、面状故障が発生しない点で好ましい。 Further, a monocarboxylic acid having a cycloaliphatic having 3 to 8 carbon atoms is preferred, a monocarboxylic acid having a cycloaliphatic having 6 carbons is more preferred, and cyclohexanecarboxylic acid and 4-methyl-cyclohexanecarboxylic acid are most preferred. . When the cycloaliphatic carbon number of the monocarboxylic acid used at both ends of the polycondensed ester is in the range of 3 to 8, the heat loss of the compound does not increase, and it is preferable in that a surface failure does not occur.
 ポリエステル系可塑剤の炭素数が2~12のアルキレングリコール成分としては、例えば、エチレングリコール、1,2-プロピレングリコール、1,3-プロピレングリコール、1,2-ブタンジオール、1,3-ブタンジオール、1,2-プロパンジオール、2-メチル-1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、2,2-ジメチル-1,3-プロパンジオール(ネオペンチルグリコール)、2,2-ジエチル-1,3-プロパンジオール(3,3-ジメチロールペンタン)、2-n-ブチル-2-エチル-1,3-プロパンジオール(3,3-ジメチロールヘプタン)、3-メチル-1,5-ペンタンジオール-1,6-ヘキサンジオール、2,2,4-トリメチル-1,3-ペンタンジオール、2-エチル-1,3-ヘキサンジオール、2-メチル-1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール、1,12-オクタデカンジオール等が挙げられ、これらはそれぞれが1種単独で、又は2種以上の混合物として使用することができる。中でも、特に、炭素数が2~12のアルキレングリコールが、セルロースアシレートとの相溶性に優れている点で好ましく、より好ましくは炭素数が2~6のアルキレングリコールであり、さらに好ましくは炭素数が2~4のアルキレングリコールである。 Examples of the alkylene glycol component having 2 to 12 carbon atoms of the polyester plasticizer include ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,2-butanediol, and 1,3-butanediol. 1,2-propanediol, 2-methyl-1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 2,2-dimethyl-1,3-propanediol (neopentyl glycol) 2,2-diethyl-1,3-propanediol (3,3-dimethylolpentane), 2-n-butyl-2-ethyl-1,3-propanediol (3,3-dimethylolheptane), 3 -Methyl-1,5-pentanediol-1,6-hexanediol, 2,2,4-trimethyl-1,3-pentanedio And 2-ethyl-1,3-hexanediol, 2-methyl-1,8-octanediol, 1,9-nonanediol, 1,10-decanediol, 1,12-octadecanediol, and the like. Can be used singly or as a mixture of two or more. Among these, an alkylene glycol having 2 to 12 carbon atoms is particularly preferable in terms of excellent compatibility with cellulose acylate, more preferably an alkylene glycol having 2 to 6 carbon atoms, and further preferably a carbon number. Is an alkylene glycol of 2 to 4.
 また、ポリエステル系可塑剤の炭素数が4~12のオキシアルキレングリコール成分としては、例えば、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ジプロピレングリコール、トリプロピレングリコール等が挙げられ、これらはそれぞれ1種単独で、又は2種以上の混合物として使用されうる。 Examples of the oxyalkylene glycol component having 4 to 12 carbon atoms of the polyester plasticizer include diethylene glycol, triethylene glycol, tetraethylene glycol, dipropylene glycol, and tripropylene glycol. It can be used alone or as a mixture of two or more.
 ポリエステル系可塑剤の炭素数が4~12のアルキレンジカルボン酸成分としては、例えば、コハク酸、マレイン酸、フマル酸、グルタル酸、アジピン酸、アゼライン酸、セバシン酸、ドデカンジカルボン酸等が挙げられ、これらはそれぞれ1種単独で、又は2種以上の混合物として使用されうる。さらに、炭素数が6~12のアリーレンジカルボン酸成分としては、例えば、フタル酸、テレフタル酸、イソフタル酸、1,5-ナフタレンジカルボン酸、1,4-ナフタレンジカルボン酸等が挙げられる。 Examples of the alkylene dicarboxylic acid component having 4 to 12 carbon atoms of the polyester plasticizer include succinic acid, maleic acid, fumaric acid, glutaric acid, adipic acid, azelaic acid, sebacic acid, dodecanedicarboxylic acid, and the like. Each of these may be used alone or as a mixture of two or more. Further, examples of the arylene dicarboxylic acid component having 6 to 12 carbon atoms include phthalic acid, terephthalic acid, isophthalic acid, 1,5-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, and the like.
 本発明のλ/4位相差フィルムに好ましく用いられるポリエステル系可塑剤は、その数平均分子量が200~10000の範囲内であり、より好ましくは300~3000の範囲内である。 The number average molecular weight of the polyester plasticizer preferably used for the λ / 4 retardation film of the present invention is in the range of 200 to 10,000, more preferably in the range of 300 to 3000.
 ポリエステル系可塑剤の酸価としては、好ましくは0.5mgKOH/g以下であり、より好ましくは0.3mgKOH/g以下である。また、ポリエステル系可塑剤のヒドロキシ基価は、好ましくは25mgKOH/g以下であり、より好ましくは15mgKOH/g以下である。なお、酸価とは、試料1g中に含まれる酸(試料中に存在するカルボキシル基)を中和するために必要な水酸化カリウムのミリグラム数をいう。酸価はJIS K0070に準拠して測定したものである。 The acid value of the polyester plasticizer is preferably 0.5 mgKOH / g or less, more preferably 0.3 mgKOH / g or less. The hydroxy group value of the polyester plasticizer is preferably 25 mgKOH / g or less, more preferably 15 mgKOH / g or less. In addition, an acid value means the milligram number of potassium hydroxide required in order to neutralize the acid (carboxyl group which exists in a sample) contained in 1g of samples. The acid value is measured according to JIS K0070.
 以上説明したポリエステル系可塑剤以外にも、従来公知の各種可塑剤を、本発明のλ/4位相差フィルムに適用してもよい。 In addition to the polyester plasticizer described above, various conventionally known plasticizers may be applied to the λ / 4 retardation film of the present invention.
 このような従来公知の可塑剤としては、例えば、多価アルコールエステル系可塑剤、グリコレート系可塑剤、フタル酸エステル系可塑剤、クエン酸エステル系可塑剤、脂肪酸エステル系可塑剤、リン酸エステル系可塑剤、多価カルボン酸エステル系可塑剤、アクリル系可塑剤等が挙げられる。 Examples of such conventionally known plasticizers include polyhydric alcohol ester plasticizers, glycolate plasticizers, phthalate ester plasticizers, citrate ester plasticizers, fatty acid ester plasticizers, and phosphate esters. Examples thereof include a plasticizer, a polycarboxylic acid ester plasticizer, and an acrylic plasticizer.
 (糖エステル化合物)
 本発明のλ/4位相差フィルムには、ピラノース構造又はフラノース構造の少なくとも1種を1~12個の範囲内で有し、その構造のヒドロキシ基のすべて又は一部がエステル化された、セルロースエステルを除くエステル化合物を含むことが好ましい。本発明においては、この様な構造を有するセルロースエステルを除くエステル化合物を総称して、「糖エステル化合物」と称する。
(Sugar ester compound)
The λ / 4 retardation film of the present invention includes cellulose having at least one pyranose structure or furanose structure in the range of 1 to 12, and all or part of the hydroxy groups of the structure are esterified. It is preferable to include an ester compound excluding the ester. In the present invention, ester compounds excluding the cellulose ester having such a structure are collectively referred to as “sugar ester compounds”.
 糖エステル化合物の例としては、以下のようなものを挙げることができるが、本発明ではこれらに限定されるものではない。 Examples of sugar ester compounds include the following, but the present invention is not limited to these.
 ピラノース構造又はフラノース構造を有する化合物(糖類)としては、例えば、グルコース、ガラクトース、マンノース、フルクトース、キシロース、あるいはアラビノース、ラクトース、スクロース、ニストース、1F-フラクトシルニストース、スタキオース、マルチトール、ラクチトール、ラクチュロース、セロビオース、マルトース、セロトリオース、マルトトリオース、ラフィノース、及びケストースが挙げられる。 Examples of the compound (saccharide) having a pyranose structure or furanose structure include glucose, galactose, mannose, fructose, xylose, or arabinose, lactose, sucrose, nystose, 1F-fructosylnystose, stachyose, maltitol, lactitol, lactulose , Cellobiose, maltose, cellotriose, maltotriose, raffinose, and kestose.
 このほか、ゲンチオビオース、ゲンチオトリオース、ゲンチオテトラオース、キシロトリオース、ガラクトシルスクロースなども挙げられる。 Other examples include gentiobiose, gentiotriose, gentiotetraose, xylotriose, and galactosyl sucrose.
 これらの化合物の中で、特に、ピラノース構造とフラノース構造の双方を有する化合物が好ましい。その例としては、スクロース、ケストース、ニストース、1F-フラクトシルニストース、スタキオースなどが好ましく、さらに好ましくは、スクロースである。 Among these compounds, compounds having both a pyranose structure and a furanose structure are particularly preferable. For example, sucrose, kestose, nystose, 1F-fructosyl nystose, stachyose and the like are preferable, and sucrose is more preferable.
 糖エステル化合物を調製する際に、上述したピラノース構造又はフラノース構造を有する化合物(糖)のヒドロキシ基のすべて又は一部をエステル化するのに用いられるモノカルボン酸としては、特に制限はなく、公知の脂肪族モノカルボン酸、脂環族モノカルボン酸、芳香族モノカルボン酸等が用いることができる。用いられるカルボン酸は1種単独でもよいし、2種以上の混合物であってもよい。 The monocarboxylic acid used for esterifying all or part of the hydroxy group of the compound (sugar) having the above-described pyranose structure or furanose structure when preparing the sugar ester compound is not particularly limited and is known. Aliphatic monocarboxylic acids, alicyclic monocarboxylic acids, aromatic monocarboxylic acids, and the like can be used. The carboxylic acid used may be one kind alone or a mixture of two or more kinds.
 好ましい脂肪族モノカルボン酸としては、酢酸、プロピオン酸、酪酸、イソ酪酸、吉草酸、カプロン酸、エナント酸、カプリル酸、ペラルゴン酸、カプリン酸、2-エチル-ヘキサンカルボン酸、ウンデシル酸、ラウリン酸、トリデシル酸、ミリスチン酸、ペンタデシル酸、パルミチン酸、ヘプタデシル酸、ステアリン酸、ノナデカン酸、アラキン酸、ベヘン酸、リグノセリン酸、セロチン酸、ヘプタコサン酸、モンタン酸、メリシン酸、ラクセル酸等の飽和脂肪酸;ウンデシレン酸、オレイン酸、ソルビン酸、リノール酸、リノレン酸、アラキドン酸、オクテン酸等の不飽和脂肪酸等が挙げられる。 Preferred aliphatic monocarboxylic acids include acetic acid, propionic acid, butyric acid, isobutyric acid, valeric acid, caproic acid, enanthic acid, caprylic acid, pelargonic acid, capric acid, 2-ethyl-hexanecarboxylic acid, undecylic acid, lauric acid , Saturated fatty acids such as tridecylic acid, myristic acid, pentadecylic acid, palmitic acid, heptadecylic acid, stearic acid, nonadecanoic acid, arachidic acid, behenic acid, lignoceric acid, serotic acid, heptacosanoic acid, montanic acid, melicic acid, and laccelic acid; Examples thereof include unsaturated fatty acids such as undecylenic acid, oleic acid, sorbic acid, linoleic acid, linolenic acid, arachidonic acid and octenoic acid.
 好ましい脂環族モノカルボン酸の例としては、酢酸、シクロペンタンカルボン酸、シクロヘキサンカルボン酸、シクロオクタンカルボン酸、又はそれらの誘導体が挙げられる。 Examples of preferable alicyclic monocarboxylic acids include acetic acid, cyclopentanecarboxylic acid, cyclohexanecarboxylic acid, cyclooctanecarboxylic acid, and derivatives thereof.
 好ましい芳香族モノカルボン酸の例としては、安息香酸、トルイル酸等の安息香酸のベンゼン環にアルキル基、アルコキシ基を導入した芳香族モノカルボン酸、ケイ皮酸、ベンジル酸、ビフェニルカルボン酸、ナフタリンカルボン酸、テトラリンカルボン酸等のベンゼン環を2個以上有する芳香族モノカルボン酸、又はそれらの誘導体が挙げられ、より具体的には、キシリル酸、ヘメリト酸、メシチレン酸、プレーニチル酸、γ-イソジュリル酸、ジュリル酸、メシト酸、α-イソジュリル酸、クミン酸、α-トルイル酸、ヒドロアトロパ酸、アトロパ酸、ヒドロケイ皮酸、サリチル酸、o-アニス酸、m-アニス酸、p-アニス酸、クレオソート酸、o-ホモサリチル酸、m-ホモサリチル酸、p-ホモサリチル酸、o-ピロカテク酸、β-レソルシル酸、バニリン酸、イソバニリン酸、ベラトルム酸、o-ベラトルム酸、没食子酸、アサロン酸、マンデル酸、ホモアニス酸、ホモバニリン酸、ホモベラトルム酸、o-ホモベラトルム酸、フタロン酸、p-クマル酸が挙げられるが、特に安息香酸が好ましい。 Examples of preferred aromatic monocarboxylic acids include aromatic monocarboxylic acids having an alkyl group or alkoxy group introduced into the benzene ring of benzoic acid such as benzoic acid and toluic acid, cinnamic acid, benzylic acid, biphenylcarboxylic acid, and naphthalene. Examples thereof include aromatic monocarboxylic acids having two or more benzene rings such as carboxylic acid and tetralincarboxylic acid, or derivatives thereof. More specifically, xylyl acid, hemelic acid, mesitylene acid, prenylic acid, γ-isodryl Acid, duryl acid, mesitoic acid, α-isoduric acid, cumic acid, α-toluic acid, hydroatropic acid, atropaic acid, hydrocinnamic acid, salicylic acid, o-anisic acid, m-anisic acid, p-anisic acid, creosote Acid, o-homosalicylic acid, m-homosalicylic acid, p-homosalicylic acid, o-pyrocatechuic acid, β Resorcylic acid, vanillic acid, isovanillic acid, veratromic acid, o-veratrumic acid, gallic acid, asaronic acid, mandelic acid, homoanisic acid, homovanillic acid, homoveratormic acid, o-homoveratormic acid, phthalonic acid, p-coumaric acid However, benzoic acid is particularly preferable.
 本発明のλ/4位相差フィルムにおいて、位相差値の変動を抑制して表示品位を安定化するという観点から、上述した糖エステル化合物は、λ/4位相差フィルム100質量%に対して、1~30質量%の範囲内で含まれることが好ましく、5~30質量%の範囲内で含まれることがより好ましい。この範囲内であれば、上記の優れた効果を呈するとともに、ブリードアウトなどもなく好ましい。 In the λ / 4 retardation film of the present invention, from the viewpoint of stabilizing the display quality by suppressing the fluctuation of the retardation value, the sugar ester compound described above is based on 100% by mass of the λ / 4 retardation film. It is preferably contained within the range of 1 to 30% by mass, and more preferably within the range of 5 to 30% by mass. Within this range, the above-described excellent effects are exhibited, and there is no bleed out and the like.
 (紫外線吸収剤)
 本発明のλ/4位相差フィルム、あるいは後述する円偏光板を構成する保護フィルムにおいては、紫外線吸収剤を含有することが好ましい。
(UV absorber)
The λ / 4 retardation film of the present invention or the protective film constituting the circularly polarizing plate described later preferably contains an ultraviolet absorber.
 用いられる紫外線吸収剤としては、例えば、ベンゾトリアゾール系、2-ヒドロキシベンゾフェノン系又はサリチル酸フェニルエステル系のもの等が挙げられる。例えば、2-(5-メチル-2-ヒドロキシフェニル)ベンゾトリアゾール、2-[2-ヒドロキシ-3,5-ビス(α,α-ジメチルベンジル)フェニル]-2H-ベンゾトリアゾール、2-(3,5-ジ-t-ブチル-2-ヒドロキシフェニル)ベンゾトリアゾール等のトリアゾール類、2-ヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-オクトキシベンゾフェノン、2,2′-ジヒドロキシ-4-メトキシベンゾフェノン等のベンゾフェノン類を例示することができる。 Examples of the ultraviolet absorber used include benzotriazole-based, 2-hydroxybenzophenone-based or salicylic acid phenyl ester-based ones. For example, 2- (5-methyl-2-hydroxyphenyl) benzotriazole, 2- [2-hydroxy-3,5-bis (α, α-dimethylbenzyl) phenyl] -2H-benzotriazole, 2- (3 Triazoles such as 5-di-t-butyl-2-hydroxyphenyl) benzotriazole, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-octoxybenzophenone, 2,2'-dihydroxy-4-methoxybenzophenone And benzophenones.
 なお、紫外線吸収剤のうちでも、分子量が400以上の紫外線吸収剤は、高沸点で揮発しにくく、高温成形時にも飛散しにくいため、比較的少量の添加で効果的に耐光性を改良することができる。 Of the UV absorbers, UV absorbers with a molecular weight of 400 or more are less likely to volatilize at high boiling points and are difficult to disperse even during high temperature molding, so that light resistance is effectively improved with a relatively small amount of addition. Can do.
 分子量が400以上の紫外線吸収剤としては、例えば、2-[2-ヒドロキシ-3,5-ビス(α,α-ジメチルベンジル)フェニル]-2-ベンゾトリアゾール、2,2-メチレンビス[4-(1,1,3,3-テトラブチル)-6-(2H-ベンゾトリアゾール-2-イル)フェノール]等のベンゾトリアゾール系、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケート等のヒンダードアミン系、更には2-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-2-n-ブチルマロン酸ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)、1-[2-[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ]エチル]-4-[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ]-2,2,6,6-テトラメチルピペリジン等の分子内にヒンダードフェノールとヒンダードアミンの構造を共に有するハイブリッド系のものが挙げられ、これらは単独で、あるいは2種以上を併用して使用することができる。これらのうちでも、2-[2-ヒドロキシ-3,5-ビス(α,α-ジメチルベンジル)フェニル]-2-ベンゾトリアゾールや2,2-メチレンビス[4-(1,1,3,3-テトラブチル)-6-(2H-ベンゾトリアゾール-2-イル)フェノール]が特に好ましい。 Examples of the ultraviolet absorber having a molecular weight of 400 or more include 2- [2-hydroxy-3,5-bis (α, α-dimethylbenzyl) phenyl] -2-benzotriazole, 2,2-methylenebis [4- ( Benzotriazoles such as 1,1,3,3-tetrabutyl) -6- (2H-benzotriazol-2-yl) phenol], bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, Hindered amines such as bis (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate and further 2- (3,5-di-t-butyl-4-hydroxybenzyl) -2-n-butyl Bis (1,2,2,6,6-pentamethyl-4-piperidyl) malonate, 1- [2- [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionyloxy Cis] ethyl] -4- [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionyloxy] -2,2,6,6-tetramethylpiperidine The hybrid type | system | group which has the structure of a hindered amine is mentioned, These can be used individually or in combination of 2 or more types. Among these, 2- [2-hydroxy-3,5-bis (α, α-dimethylbenzyl) phenyl] -2-benzotriazole and 2,2-methylenebis [4- (1,1,3,3- Tetrabutyl) -6- (2H-benzotriazol-2-yl) phenol] is particularly preferred.
 これらの紫外線吸収剤としては、市販品を用いてもよく、例えば、BASFジャパン社製のチヌビン109、チヌビン171、チヌビン234、チヌビン326、チヌビン327、チヌビン328、チヌビン928等のチヌビンシリーズの紫外線吸収剤を好ましく使用できる。 As these ultraviolet absorbers, commercially available products may be used. For example, TINUBIN 109, TINUVIN 171, TINUVIN 234, TINUVIN 326, TINUVIN 327, TINUVIN 328, TINUVIN 928, etc. manufactured by BASF Japan Ltd. are absorbed. An agent can be preferably used.
 (その他の添加剤)
 更に、λ/4位相差フィルムには、成形加工時の熱分解性や熱着色性を改良するために各種の酸化防止剤を添加することもできる。また、帯電防止剤を加えて、λ/4位相差フィルムに帯電防止性能を与えることも可能である。
(Other additives)
Furthermore, various antioxidants can also be added to the λ / 4 retardation film in order to improve the thermal decomposability and thermal colorability during molding. In addition, an antistatic agent can be added to impart antistatic performance to the λ / 4 retardation film.
 〈リン系難燃剤〉
 本発明のλ/4位相差フィルムには、リン系難燃剤を配合した難燃アクリル系樹脂組成物を用いても良い。
<Phosphorus flame retardant>
For the λ / 4 retardation film of the present invention, a flame retardant acrylic resin composition containing a phosphorus flame retardant may be used.
 本発明に適用可能なリン系難燃剤としては、赤リン、トリアリールリン酸エステル、ジアリールリン酸エステル、モノアリールリン酸エステル、アリールホスホン酸化合物、アリールホスフィンオキシド化合物、縮合アリールリン酸エステル、ハロゲン化アルキルリン酸エステル、含ハロゲン縮合リン酸エステル、含ハロゲン縮合ホスホン酸エステル、含ハロゲン亜リン酸エステル等から選ばれる1種、あるいは2種以上の混合物を挙げることができる。 Phosphorus flame retardants applicable to the present invention include red phosphorus, triaryl phosphate ester, diaryl phosphate ester, monoaryl phosphate ester, aryl phosphonate compound, aryl phosphine oxide compound, condensed aryl phosphate ester, halogenated Examples thereof include one or a mixture of two or more selected from alkyl phosphates, halogen-containing condensed phosphates, halogen-containing condensed phosphonates, and halogen-containing phosphites.
 具体的な例としては、トリフェニルホスフェート、9,10-ジヒドロ-9-オキサ-10-ホスファフェナンスレン-10-オキシド、フェニルホスホン酸、トリス(β-クロロエチル)ホスフェート、トリス(ジクロロプロピル)ホスフェート、トリス(トリブロモネオペンチル)ホスフェート等が挙げられる。 Specific examples include triphenyl phosphate, 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, phenylphosphonic acid, tris (β-chloroethyl) phosphate, tris (dichloropropyl) Examples thereof include phosphate and tris (tribromoneopentyl) phosphate.
 〈マット剤〉
 また、本発明のλ/4位相差フィルムには、取扱性を向上させる観点から、例えば、二酸化ケイ素、二酸化チタン、酸化アルミニウム、酸化ジルコニウム、炭酸カルシウム、カオリン、タルク、焼成ケイ酸カルシウム、水和ケイ酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウム、リン酸カルシウム等の無機微粒子や架橋高分子などのマット剤を含有させることが好ましい。中でも二酸化ケイ素がフィルムのヘイズを小さくできるので好ましく用いられる。
<Matting agent>
In addition, the λ / 4 retardation film of the present invention has, for example, silicon dioxide, titanium dioxide, aluminum oxide, zirconium oxide, calcium carbonate, kaolin, talc, calcined calcium silicate, hydration from the viewpoint of improving handling properties. It is preferable to include a matting agent such as inorganic fine particles such as calcium silicate, aluminum silicate, magnesium silicate, and calcium phosphate, and a crosslinked polymer. Among these, silicon dioxide is preferably used because it can reduce the haze of the film.
 微粒子の一次平均粒子径としては、20nm以下が好ましく、更に好ましくは、5~16nmの範囲内であり、特に好ましくは、5~12nmの範囲内である。 The primary average particle diameter of the fine particles is preferably 20 nm or less, more preferably in the range of 5 to 16 nm, and particularly preferably in the range of 5 to 12 nm.
 〔λ/4位相差フィルムの製膜方法〕
 本発明のλ/4位相差フィルムは、公知の方法に従って製膜することができる。以下、代表的な溶液流延法及び溶融流延法について説明する。
[Formation method of λ / 4 retardation film]
The λ / 4 retardation film of the present invention can be formed according to a known method. Hereinafter, typical solution casting methods and melt casting methods will be described.
 (溶液流延法)
 本発明のλ/4位相差フィルムは、溶液流延法によって製造することができる。溶液流延法では、熱可塑性樹脂であるセルロースアシレート及び添加剤等を、有機溶媒に加熱溶解させてドープを調製するドープ調製工程、調製したドープをベルト状もしくはドラム状の金属支持体上に流延する流延工程、流延したドープをウェブとして乾燥する乾燥工程、金属支持体からウェブを剥離する剥離工程、剥離したウェブを延伸又は収縮する延伸工程、更に乾燥工程、仕上がったフィルムの巻取り工程等を経て製造される。
(Solution casting method)
The λ / 4 retardation film of the present invention can be produced by a solution casting method. In the solution casting method, a cellulose acylate which is a thermoplastic resin and additives are dissolved in an organic solvent by heating to prepare a dope, and the prepared dope is placed on a belt-shaped or drum-shaped metal support. Casting process for casting, drying process for drying the cast dope as a web, peeling process for peeling the web from the metal support, stretching process for stretching or shrinking the peeled web, further drying process, winding of the finished film Manufactured through a removal process.
 ドープ中のセルロースアシレートの濃度は、濃度が高い方が金属支持体に流延した後の乾燥負荷は低減できて好ましいが、セルロースアシレートの濃度が高過ぎると濾過時の負荷が増大し、濾過精度が悪くなる。これらを両立する濃度としては、10~35質量%の範囲内が好ましく、更に好ましくは、15~25質量%の範囲内である。流延(キャスト)工程における金属支持体は、表面を鏡面仕上げしたものが好ましく、金属支持体としては、ステンレススティールベルト、又は鋳物で表面をメッキ仕上げしたドラムが好ましく用いられる。 The concentration of cellulose acylate in the dope is preferably higher because the drying load after casting on a metal support can be reduced, but if the concentration of cellulose acylate is too high, the load during filtration increases. Filtration accuracy deteriorates. The concentration that achieves both of these is preferably in the range of 10 to 35% by mass, and more preferably in the range of 15 to 25% by mass. The metal support in the casting (casting) step preferably has a mirror-finished surface, and as the metal support, a stainless steel belt or a drum whose surface is plated with a casting is preferably used.
 キャストの幅は1~4mの範囲とすることが好ましい。流延工程の金属支持体の表面温度は-50℃~溶媒が沸騰して発泡しない温度以下の範囲で適宜選択して設定される。温度が高い方がウェブの乾燥速度が速くできるので好ましいが、過度に高すぎるとウェブが発泡し、平面性が劣化する場合がある。 The cast width is preferably in the range of 1 to 4 m. The surface temperature of the metal support in the casting step is appropriately selected and set within a range from −50 ° C. to a temperature at which the solvent does not boil and foam. A higher temperature is preferable because the web can be dried faster, but if it is too high, the web may foam and flatness may deteriorate.
 好ましい支持体温度としては0~100℃の範囲内で適宜決定され、5~30℃の温度範囲が更に好ましい。又は、冷却することによってウェブをゲル化させて残留溶媒を多く含んだ状態でドラムから剥離することも好ましい方法である。金属支持体の温度を制御する方法は、特に制限されないが、温風又は冷風を吹きかける方法や、温水を金属支持体の裏側に接触させる方法がある。温水を用いる方法が、熱の伝達が効率的に行われるため、金属支持体の温度が一定になるまでの時間が短く好ましい。 A preferable support temperature is appropriately determined within a range of 0 to 100 ° C., and a temperature range of 5 to 30 ° C. is more preferable. Alternatively, it is also a preferable method that the web is gelled by cooling and peeled from the drum in a state containing a large amount of residual solvent. The method for controlling the temperature of the metal support is not particularly limited, and there are a method of blowing warm air or cold air, and a method of bringing hot water into contact with the back side of the metal support. The method using hot water is preferable because the heat transfer is performed efficiently, and the time until the temperature of the metal support becomes constant is short.
 温風を用いる場合は、溶媒の蒸発潜熱によるウェブの温度低下を考慮して、溶媒の沸点以上の温風を使用しつつ、発泡も防ぎながら目的の温度よりも高い温度の風を使う場合がある。 When using warm air, considering the temperature drop of the web due to the latent heat of vaporization of the solvent, while using warm air above the boiling point of the solvent, there is a case where wind at a temperature higher than the target temperature is used while preventing foaming. is there.
 特に、流延から剥離するまでの間で支持体の温度及び乾燥風の温度を変更し、効率的に乾燥を行うことが好ましい。 In particular, it is preferable to efficiently dry by changing the temperature of the support and the temperature of the drying air during the period from casting to peeling.
 λ/4位相差フィルムが良好な平面性を示すためには、金属支持体からウェブを剥離する際の残留溶媒量は10~150質量%の範囲内で設定することが好ましく、更に好ましくは20~40質量%又は60~130質量%の範囲内であり、特に好ましくは、20~30質量%又は70~120質量%の範囲内である。 In order for the λ / 4 retardation film to exhibit good flatness, the amount of residual solvent when peeling the web from the metal support is preferably set in the range of 10 to 150% by mass, more preferably 20%. It is in the range of ˜40 mass% or 60 to 130 mass%, particularly preferably in the range of 20 to 30 mass% or 70 to 120 mass%.
 本発明でいう残留溶媒量は、下記式で定義される。 The amount of residual solvent as used in the present invention is defined by the following formula.
   残留溶媒量(質量%)={(M-N)/N}×100
 式中、Mはウェブ又はフィルムを製造中又は製造後の任意の時点で採取した試料の質量で、NはMを115℃で1時間の加熱した後の質量である。
Residual solvent amount (% by mass) = {(MN) / N} × 100
In the formula, M is the mass of a sample collected at any time during or after production of the web or film, and N is the mass after heating M at 115 ° C. for 1 hour.
 また、λ/4位相差フィルムの乾燥工程においては、ウェブを金属支持体より剥離し、更に乾燥し、残留溶媒量を1.0質量%以下にすることが好ましく、更に好ましくは0~0.01質量%の範囲である。 Further, in the drying step of the λ / 4 retardation film, the web is peeled off from the metal support, and further dried, so that the residual solvent amount is preferably 1.0% by mass or less, more preferably 0 to 0.00. The range is 01% by mass.
 フィルム乾燥工程では、一般にローラー乾燥方式、例えば、上下に配置した多数のローラーにウェブを交互に通し乾燥させる方式や、テンター方式でウェブを搬送させながら乾燥する方式が採られる。 In the film drying process, a roller drying method, for example, a method in which webs are alternately passed through a number of upper and lower rollers and a method in which the web is dried while being conveyed by a tenter method is employed.
 〈延伸工程〉
 本発明のλ/4位相差フィルムは、波長550nmで測定した面内方向の位相差Ro550が120~180nmの範囲が好ましいが、該位相差はフィルム延伸によって付与することが出来る。以下、本発明のλ/4位相差フィルムを、セルロースアシレートフィルムという場合がある。
<Extension process>
In the λ / 4 retardation film of the present invention, the in-plane retardation Ro550 measured at a wavelength of 550 nm is preferably in the range of 120 to 180 nm. The retardation can be imparted by film stretching. Hereinafter, the λ / 4 retardation film of the present invention may be referred to as a cellulose acylate film.
 延伸する方法には特に限定はない。例えば、複数のローラーに周速差をつけ、その間でローラー周速差を利用して縦方向に延伸する方法、ウェブの両端をクリップやピンで固定し、クリップやピンの間隔を進行方向に広げて縦方向に延伸する方法、同様に横方向に広げて横方向に延伸する方法、あるいは縦横同時に広げて縦横両方向に延伸する方法などが挙げられる。もちろんこれらの方法は、組み合わせて用いてもよい。すなわち、製膜方向に対して横方向に延伸しても、縦方向に延伸しても、両方向に延伸してもよく、さらに両方向に延伸する場合は同時延伸であっても、逐次延伸であってもよい。なお、いわゆるテンター法の場合、リニアドライブ方式でクリップ部分を駆動すると滑らかな延伸が行うことができ、破断等の危険性が減少することができる観点から好ましい。 There is no particular limitation on the stretching method. For example, a method in which a difference in peripheral speed is applied to a plurality of rollers, and the rollers are stretched in the longitudinal direction using the difference in peripheral speed between the rollers, and both ends of the web are fixed with clips and pins, and the interval between the clips and pins is increased in the traveling direction. And a method of stretching in the vertical direction, a method of stretching in the horizontal direction and stretching in the horizontal direction, a method of stretching in the vertical and horizontal directions and stretching in both the vertical and horizontal directions, and the like. Of course, these methods may be used in combination. That is, the film may be stretched in the transverse direction, longitudinally, or in both directions with respect to the film forming direction, and when stretched in both directions, simultaneous stretching or sequential stretching may be used. May be. In the case of the so-called tenter method, driving the clip portion by a linear drive method is preferable from the viewpoint that smooth stretching can be performed and the risk of breakage and the like can be reduced.
 本発明のλ/4位相差フィルムにおいては、特に、遅相軸を発生させたい方向に延伸し、垂直方向(進相軸方向)には収縮させ、その延伸倍率に対する収縮率の比率をコントロールすることにより、前記図1Bで説明したように、本発明で好適に用いられる一般式(A)で表される化合物の主軸方向と、セルロースアシレートの主軸方向(延伸方向)とを一致させるように、一般式(A)で表される化合物の主軸の配向方向を制御することが好ましい方法である。 In the λ / 4 retardation film of the present invention, in particular, the film is stretched in the direction in which the slow axis is to be generated and contracted in the vertical direction (fast axis direction), and the ratio of the shrinkage rate to the stretching ratio is controlled. Thus, as explained in FIG. 1B, the principal axis direction of the compound represented by the general formula (A) suitably used in the present invention is matched with the principal axis direction (stretching direction) of the cellulose acylate. It is preferable to control the orientation direction of the main axis of the compound represented by the general formula (A).
 すなわち、遅相軸方向(幅手方向)への延伸倍率と、遅相軸方向とは垂直の方向(進相軸方向)への収縮倍率の比率としては、収縮倍率/延伸倍率=0.05~0.70の範囲とすることが好ましい態様であるが、最も好ましいのは0.10~0.30の範囲内であり、この範囲において、一般式(A)で表される化合物の主軸をマトリックス樹脂の主鎖に合わせることができると共に、一般式(A)で表される化合物の側鎖もフィルム進相軸方向に配向し、側鎖に高屈折率分子を含有させれば、紫外線領域280nmにおける進相軸方向の屈折率n(280)を高めることが可能となり、可視光領域のnの順波長分散の傾きを急峻にすることができる。 That is, as the ratio of the draw ratio in the slow axis direction (width direction) and the shrinkage ratio in the direction perpendicular to the slow axis direction (fast axis direction), the shrinkage ratio / stretch ratio = 0.05. The preferred embodiment is in the range of ˜0.70, but the most preferred is in the range of 0.10 to 0.30. In this range, the main axis of the compound represented by the general formula (A) is If it can be matched with the main chain of the matrix resin, the side chain of the compound represented by the general formula (A) is also oriented in the film fast axis direction, and the side chain contains a high refractive index molecule, the ultraviolet region it is possible to increase the refractive index of the fast axis direction in the 280 nm n y (280), can be a steep slope of the forward wavelength dispersion of n y in the visible light region.
 本発明に係る延伸工程においては、全延伸工程の30~70%の範囲内で延伸した後に、収縮を開始する方法が好ましい。 In the stretching step according to the present invention, a method of starting shrinkage after stretching within 30 to 70% of the total stretching step is preferable.
 延伸工程としては、通常、幅手方向(TD方向)に延伸し、搬送方向(MD方向)に収縮する場合が多いが、収縮させる際、斜め方向に搬送させると主鎖方向を合せ易くなるため、位相差発現効果はさらに大きい。収縮率は搬送させる角度によって決まる。 The stretching process usually involves stretching in the width direction (TD direction) and contracting in the transport direction (MD direction), but when contracting, it is easy to match the main chain direction when transported in an oblique direction. In addition, the phase difference effect is even greater. The shrinkage rate is determined by the transport angle.
 図2は、斜め延伸における収縮倍率を説明する模式図である。 FIG. 2 is a schematic diagram for explaining the shrinkage ratio in oblique stretching.
 図2において、セルロースアシレートフィルムFを斜め延伸12する際に、搬送方向である長軸Mが、斜め屈曲することでMに収縮する。このとき、収縮率(%)は、
   収縮率(%)=(M-M)/M×100
 で表される。
In FIG. 2, when the cellulose acylate film F is obliquely stretched 12, the major axis M 1, which is the transport direction, contracts to M 2 by being obliquely bent. At this time, the shrinkage rate (%) is
Shrinkage rate (%) = (M 1 −M 2 ) / M 1 × 100
It is represented by
 屈曲角度をθとすると、
   M=M×sin(π-θ)
 となり、よって、
   収縮率(%)=(1-sin(π-θ))×100
 で表される。
If the bending angle is θ,
M 2 = M 1 × sin (π−θ)
And therefore
Shrinkage rate (%) = (1−sin (π−θ)) × 100
It is represented by
 図2において、11は延伸方向(TD方向)であり、13は搬送方向(MD方向)であり、14は遅相軸である。 In FIG. 2, 11 is a stretching direction (TD direction), 13 is a transport direction (MD direction), and 14 is a slow axis.
 一般式(A)で表される化合物等の配向をコントロール方法としては、λ/4位相差フィルムの遅相軸が搬送方向に対して30~60°の範囲内であることが好ましく、その際の収縮率としては、10~50%の範囲内であることが好ましい。 As a method of controlling the orientation of the compound represented by the general formula (A), the slow axis of the λ / 4 retardation film is preferably within a range of 30 to 60 ° with respect to the transport direction. The shrinkage ratio is preferably in the range of 10 to 50%.
 円偏光板の生産性を考慮すると、本発明のλ/4位相差フィルムは、搬送方向に対する配向角が45°±2°であることが、偏光フィルムとのロールツーロールでの貼合が可能となり最も好ましい。 In consideration of the productivity of the circularly polarizing plate, the λ / 4 retardation film of the present invention has an orientation angle of 45 ° ± 2 ° with respect to the conveying direction, and can be bonded roll-to-roll with a polarizing film. Most preferred.
 (斜め延伸テンターによる延伸)
 次いで、45°の方向に延伸する斜め延伸方法について、更に説明する。
(Stretching with an oblique stretching tenter)
Next, the oblique stretching method of stretching in the 45 ° direction will be further described.
 本発明のλ/4位相差フィルムの製造方法において、延伸にするセルロースアシレートフィルムに斜め方向の配向を付与する方法として、斜め延伸テンターを用いることが好ましい。 In the method for producing a λ / 4 retardation film of the present invention, it is preferable to use an obliquely stretched tenter as a method for imparting an oblique orientation to the cellulose acylate film to be stretched.
 本発明に適用可能な斜め延伸テンターとしては、レールパターンを多様に変化させることにより、フィルムの配向角を自在に設定でき、さらに、フィルムの配向軸をフィルム幅方向に渡って左右均等に高精度に配向させることができ、かつ、高精度でフィルム厚さやリターデーションを制御できるフィルム延伸装置であることが好ましい。 As an obliquely stretched tenter that can be applied to the present invention, the orientation angle of the film can be set freely by changing the rail pattern in various ways, and the film orientation axis can be set to the left and right in the film width direction with high accuracy. It is preferable that the film stretching apparatus be capable of being oriented to the film and controlling the film thickness and retardation with high accuracy.
 図3は、本発明のλ/4位相差フィルムの製造に適用可能な斜め延伸機のレールパターンの一例を示した概略図である。なお、ここで示す図は一例であって、本発明はこれに限定されるものではない。 FIG. 3 is a schematic view showing an example of a rail pattern of an oblique stretching machine applicable to the production of the λ / 4 retardation film of the present invention. In addition, the figure shown here is an example, Comprising: This invention is not limited to this.
 一般的に、斜め延伸装置においては、長尺のフィルム原反の繰り出し方向D1は、延伸後の延伸フィルムの巻取り方向D2と異なっており、繰り出し角度θiを成している。 Generally, in the oblique stretching apparatus, the feeding direction D1 of the long film original is different from the winding direction D2 of the stretched film after stretching, and forms a feeding angle θi.
 繰り出し角度θiは0°を超え90°未満の範囲で、所望の角度に任意に設定することができる。 The feeding angle θi can be arbitrarily set to a desired angle in the range of more than 0 ° and less than 90 °.
 長尺のフィルム原反は、斜め延伸機入口(図中Aの位置)において、その両端を左右の把持具(テンター)によって把持され、把持具の走行に伴い走行される。左右の把持具は、斜め延伸機入口(図中Aの位置)で、フィルムの進行方向(繰り出し方向D1)に対して略垂直な方向に相対している左右の把持具Ci及びCoは、左右非対称なレールRi及びRo上を走行し、延伸終了時の位置(図中Bの位置)で、テンターで把持したフィルムを解放する。 The long film original is gripped by the right and left grippers (tenters) at the entrance of the oblique stretching machine (position A in the figure), and travels as the grippers travel. The left and right gripping tools are at the entrance of the oblique stretching machine (position A in the figure), and the left and right gripping tools Ci and Co facing the direction substantially perpendicular to the film traveling direction (feeding direction D1) are It runs on the asymmetric rails Ri and Ro, and releases the film gripped by the tenter at the position at the end of stretching (position B in the figure).
 このとき、斜め延伸機入口(図中Aの位置)で相対していた左右の把持具は、左右非対称なレールRi及びRo上を走行するにつれて、Ri側を走行する把持具Ciは、Ro側を走行する把持具Coに対して進行する位置関係となる。 At this time, as the left and right gripping tools opposed at the entrance of the oblique stretching machine (position A in the figure) travel on the asymmetrical rails Ri and Ro, the gripping tool Ci traveling on the Ri side becomes the Ro side. The positional relationship is advancing with respect to the gripping tool Co traveling.
 すなわち、斜め延伸機入口(フィルムの把持具による把持開始位置)Aで、フィルムの繰り出し方向D1に対して略垂直な方向に相対していた把持具Ci及びCoが、フィルムの延伸終了時の位置Bにある状態で、該把持具Ci及びCoを結んだ直線がフィルムの巻取り方向D2に対して略垂直な方向に対して角度θLだけ傾斜している。 That is, the gripping tools Ci and Co, which are opposed to the film stretching direction D1 at the entrance of the oblique stretching machine (the gripping start position by the film gripping tool) A, are positioned at the end of the film stretching. In the state of B, the straight line connecting the grippers Ci and Co is inclined by an angle θL with respect to a direction substantially perpendicular to the film winding direction D2.
 以上の方法に従って、フィルム原反は、θLの方向に斜め延伸される。ここで略垂直とは、90±1°の範囲内にあることを示す。 According to the above method, the original film is stretched obliquely in the direction of θL. Here, “substantially vertical” indicates that it is within a range of 90 ± 1 °.
 更に詳しく説明すると、本発明のλ/4位相差フィルムを製造する方法においては、上記説明した斜め延伸が可能なテンターを用いて、斜め延伸を行うことが好ましい。 More specifically, in the method for producing a λ / 4 retardation film of the present invention, it is preferable to perform oblique stretching using the above-described tenter capable of oblique stretching.
 このテンターは、フィルム原反を延伸可能な任意の温度に加熱し、斜め延伸する装置である。このテンターは、加熱ゾーンと、フィルムを搬送するための把持具が走行する左右で一対のレールと、該レール上を走行する多数の把持具とを備えている。テンターの入口部に順次供給されるフィルムの両端を、把持具で把持し、加熱ゾーン内にフィルムを導き、テンターの出口部で把持具からフィルムを開放する。把持具から開放されたフィルムは巻芯に巻き取られる。一対のレールは、それぞれ無端状の連続軌道を有し、テンターの出口部でフィルムの把持を開放した把持具は、外側を走行して順次入口部に戻されるようになっている。 This tenter is an apparatus that heats an original film of the film to an arbitrary temperature at which it can be stretched and stretches it obliquely. This tenter includes a heating zone, a pair of rails on the left and right on which a gripping tool for transporting the film travels, and a number of gripping tools that travel on the rails. Both ends of the film sequentially supplied to the entrance portion of the tenter are gripped by a gripping tool, the film is guided into the heating zone, and the film is released from the gripping tool at the exit portion of the tenter. The film released from the gripping tool is wound around the core. Each of the pair of rails has an endless continuous track, and the gripping tool which has released the grip of the film at the exit portion of the tenter travels outside and is sequentially returned to the entrance portion.
 なお、テンターのレールパターンは左右で非対称な形状となっており、製造すべき長尺延伸フィルムに与える配向角θ、延伸倍率等に応じて、そのレールパターンは手動又は自動で調整できるようになっている。本発明のλ/4位相差フィルムに係る製造方法で用いられる斜め延伸機では、各レール部及びレール連結部の位置を自由に設定し、レールパターンを任意に変更できることが好ましい。なお、図3中で示す「○」部は、連結部の一例である。 In addition, the rail pattern of the tenter has an asymmetric shape on the left and right, and the rail pattern can be adjusted manually or automatically according to the orientation angle θ, stretch ratio, etc. given to the long stretched film to be manufactured. ing. In the oblique stretching machine used in the manufacturing method according to the λ / 4 retardation film of the present invention, it is preferable that the position of each rail part and the rail connecting part can be freely set and the rail pattern can be arbitrarily changed. In addition, the “◯” part shown in FIG. 3 is an example of the connecting part.
 本発明の実施形態において、テンターの把持具は、前後の把持具と一定間隔を保ちながら、一定速度で走行するようになっている。 In the embodiment of the present invention, the gripping tool of the tenter travels at a constant speed while maintaining a constant distance from the front and rear gripping tools.
 把持具の走行速度は適宜選択できるが、通常、1~100m/分の範囲内である。左右一対の把持具の走行速度の差は、通常は走行速度の1%以下であり、好ましくは0.5%以下、より好ましくは0.1%以下である。これは、延伸工程の出口でフィルムの左右で搬送速度差があると、延伸工程の出口でシワや寄りが発生するため、左右の把持具の速度差は、実質的に同速度であることが求められる。一般的なテンター装置等では、チェーンを駆動するスプロケットの歯の周期、駆動モーターの周波数等に応じ、秒以下のオーダーで発生する速度ムラがあり、しばしば数%のムラを生ずるが、これらは本発明の実施形態で述べる速度差には該当しない。 The traveling speed of the gripping tool can be selected as appropriate, but is usually in the range of 1 to 100 m / min. The difference between the traveling speeds of the pair of left and right grippers is usually 1% or less of the traveling speed, preferably 0.5% or less, more preferably 0.1% or less. This is because if there is a difference in the conveyance speed between the left and right of the film at the exit of the stretching process, wrinkles and deviations will occur at the exit of the stretching process, so the speed difference between the left and right gripping tools may be substantially the same speed. Desired. In general tenter devices, etc., there are speed irregularities that occur in the order of seconds or less depending on the period of the sprocket teeth that drive the chain, the frequency of the drive motor, etc. This does not correspond to the speed difference described in the embodiment of the invention.
 本発明の実施形態に係る製造方法で用いられる斜め延伸機において、特にフィルムの搬送が斜めになる箇所において、把持具の軌跡を規制するレールには、しばしば大きい屈曲率が求められる。急激な屈曲による把持具同士の干渉、あるいは局所的な応力集中を避ける目的から、屈曲部では把持具の軌跡が曲線を描くようにすることが望ましい。 In the oblique stretching machine used in the manufacturing method according to the embodiment of the present invention, a rail that regulates the trajectory of the gripping tool is often required to have a high bending rate, particularly in a portion where the film is transported obliquely. In order to avoid interference between gripping tools due to sudden bending or local stress concentration, it is desirable that the trajectory of the gripping tool draws a curve at the bent portion.
 本発明の実施形態において、長尺フィルム原反は斜め延伸機入口(図中Aの位置)において、その両端を左右の把持具によって順次把持されて、把持具の走行に伴い搬送される。斜め延伸機の入口(図中Aの位置)で、フィルム進行方向D1に対して略垂直な方向に相対している左右の把持具は、左右非対称なレール上を走行し、予熱ゾーン、延伸ゾーン、熱固定ゾーンを有する加熱ゾーンを通過する。 In the embodiment of the present invention, the long film original is sequentially gripped by the right and left grippers at the entrance of the oblique stretching machine (position A in the drawing), and is conveyed along with the travel of the grippers. The left and right gripping tools facing the direction substantially perpendicular to the film traveling direction D1 at the entrance of the oblique stretching machine (position A in the figure) run on a rail that is asymmetrical to the preheating zone and the stretching zone. Through a heating zone having a heat setting zone.
 予熱ゾーンとは、加熱ゾーン入口部において、両端を把持した把持具の間隔が一定の間隔を保ったまま走行する区間をさす。 The preheating zone refers to a section where the distance between the gripping tools gripping both ends is kept constant at the heating zone entrance.
 延伸ゾーンとは、両端を把持した把持具の間隔が開きだし、所定の間隔になるまでの区間をさす。 The stretching zone refers to the interval until the gap between the gripping tools that grips both ends starts to reach a predetermined interval.
 このとき、上述のような斜め延伸が行われるが、必要に応じて斜め延伸前後において縦方向あるいは横方向に延伸してもよい。 At this time, the oblique stretching as described above is performed, but the stretching may be performed in the longitudinal direction or the transverse direction before and after the oblique stretching as necessary.
 斜め延伸の場合、屈曲時に、遅相軸とは垂直の方向であるMD方向(進相軸方向)への収縮を伴う。 In the case of oblique stretching, at the time of bending, there is contraction in the MD direction (fast axis direction) which is a direction perpendicular to the slow axis.
 本発明のλ/4位相差フィルムにおいて、延伸処理に続いて、収縮処理を施すことにより、マトリックス樹脂であるセルロースアシレートの主鎖からずれた光学調整剤(例えば、前記一般式(A)で表される化合物。)の配向を、延伸方向と垂直な方向(進相軸方向)に収縮させることにより、光学調整剤の配向状態を回転させ、光学調整剤化合物の主軸をマトリックス樹脂であるセルロースアシレートの主鎖に合わせる。その結果、紫外線領域280nmにおける進相軸方向の屈折率ny280を高めることが可能となり、可視光領域のny順波長分散の傾きを急峻にすることができる。 In the λ / 4 retardation film of the present invention, an optical adjusting agent deviated from the main chain of the cellulose acylate that is the matrix resin (for example, the general formula (A)) by performing a shrinkage treatment following the stretching treatment. The orientation of the optical adjusting agent is rotated by shrinking the orientation of the compound represented by the compound)) in the direction perpendicular to the stretching direction (the fast axis direction), and the main axis of the optical adjusting agent compound is cellulose which is a matrix resin. Match to the main chain of the acylate. As a result, the refractive index ny280 in the fast axis direction in the ultraviolet region 280 nm can be increased, and the slope of the ny forward wavelength dispersion in the visible light region can be made steep.
 熱固定ゾーンとは、延伸ゾーンより後の把持具の間隔が再び一定となる期間において、両端の把持具が互いに平行を保ったまま走行する区間をさす。 The heat setting zone refers to the section in which the gripping tools at both ends run parallel to each other during the period when the spacing between the gripping tools after the stretching zone becomes constant again.
 熱固定ゾーンを通過した後に、ゾーン内の温度がフィルムを構成する熱可塑性樹脂のガラス転移温度Tg℃以下に設定される区間(冷却ゾーン)を通過してもよい。 After passing through the heat setting zone, it may pass through a section (cooling zone) where the temperature in the zone is set to the glass transition temperature Tg ° C. or lower of the thermoplastic resin constituting the film.
 このとき、冷却によるフィルムの縮みを考慮して、予め対向する把持具間隔を狭めるようなレールパターンとしてもよい。 At this time, in consideration of shrinkage of the film due to cooling, a rail pattern that narrows the gap between the opposing grippers in advance may be used.
 各ゾーンの温度は、熱可塑性樹脂のガラス転移温度Tgに対し、予熱ゾーンの温度はTg~Tg+30℃の範囲内で、延伸ゾーンの温度はTg~Tg+30℃の範囲内で、冷却ゾーンの温度はTg-30~Tg℃の範囲内で設定することが好ましい。 The temperature of each zone is the glass transition temperature Tg of the thermoplastic resin, the temperature of the preheating zone is within the range of Tg to Tg + 30 ° C, the temperature of the stretching zone is within the range of Tg to Tg + 30 ° C, and the temperature of the cooling zone is It is preferable to set within the range of Tg-30 to Tg ° C.
 なお、幅方向の厚さムラの制御のため、延伸ゾーンにおいて幅方向に温度差を付けてもよい。延伸ゾーンにおいて幅方向に温度差をつけるには、温風を恒温室内に送り込むノズルの開度を幅方向で差を付けるように調整する方法や、ヒーターを幅方向に並べて加熱制御するなどの公知の手法を用いることができる。予熱ゾーン、延伸ゾーン、収縮ゾーン及び冷却ゾーンの長さは適宜選択でき、延伸ゾーンの長さに対して、予熱ゾーンの長さが通常100~150%の範囲内であり、固定ゾーンの長さは通常50~100%の範囲内で設定される。 In order to control the thickness unevenness in the width direction, a temperature difference in the width direction may be applied in the stretching zone. In order to create a temperature difference in the width direction in the stretching zone, a method of adjusting the opening degree of the nozzle for sending warm air into the temperature-controlled room so as to make a difference in the width direction, or controlling the heating by arranging the heaters in the width direction is known. Can be used. The length of the preheating zone, the stretching zone, the shrinking zone and the cooling zone can be appropriately selected. The length of the preheating zone is usually within a range of 100 to 150% of the length of the stretching zone, and the length of the fixed zone Is usually set within a range of 50 to 100%.
 延伸工程における延伸倍率R(W/W0)は、好ましくは1.3~3.0の範囲内であり、より好ましくは1.5~2.8の範囲内である。延伸倍率がこの範囲内にあると、幅方向における厚さムラが小さくなるので好ましい。斜め延伸テンターの延伸ゾーンにおいて、幅方向で延伸温度に差を付けると、幅方向厚さムラをさらに良好なレベルにすることが可能になる。なお、W0は延伸前のフィルムの幅、Wは延伸後のフィルムの幅を表す。 The draw ratio R (W / W0) in the drawing step is preferably in the range of 1.3 to 3.0, more preferably in the range of 1.5 to 2.8. When the draw ratio is within this range, the thickness unevenness in the width direction is preferably reduced. In the stretching zone of the oblique stretching tenter, if the stretching temperature is made different in the width direction, the thickness unevenness in the width direction can be further improved. W0 represents the width of the film before stretching, and W represents the width of the film after stretching.
 本発明に適用可能な斜め延伸方法としては、上記図3に示した方法のほかに、図4A~図4C、図5A及び図5Bに示す延伸方法を挙げることができる。 As the oblique stretching method applicable to the present invention, in addition to the method shown in FIG. 3, the stretching methods shown in FIGS. 4A to 4C, 5A and 5B can be exemplified.
 図4A~図4Cは、本発明の実施形態に係る製造方法の一例(長尺フィルム原反ロールから繰り出してから斜め延伸する例)を示す概略図であり、一旦ロール状に巻き取られた長尺フィルム原反を繰り出して斜め延伸するパターンを示すものである。 4A to 4C are schematic views showing an example of the manufacturing method according to the embodiment of the present invention (an example in which the film is unwound from a long film roll and then obliquely stretched). It shows a pattern in which the original film is drawn out and obliquely stretched.
 図5A及び図5Bは、本発明の実施形態に係る製造方法の一例(長尺フィルム原反を巻き取らずに連続的に斜め延伸する例)を示す概略図であり、長尺フィルム原反を巻き取ることなく連続的に斜め延伸工程を行うパターンを示すものである。 5A and 5B are schematic views illustrating an example of a manufacturing method according to an embodiment of the present invention (an example in which a long film original fabric is continuously stretched obliquely without winding up). The pattern which performs a diagonal stretch process continuously, without winding up is shown.
 各図中、フィルム繰り出し装置16、搬送方向変更装置17、巻き取り装置18、製膜装置19を各々示す。 In each figure, a film feeding device 16, a transport direction changing device 17, a winding device 18, and a film forming device 19 are shown.
 フィルム繰り出し装置16は、斜め延伸テンター入口に対して所定の角度で前記フィルムを送り出せるように、スライド及び旋回可能となっているか、フィルム繰り出し装置16は、スライド可能となっており、搬送方向変更装置17により斜め延伸テンター入口に前記フィルムを送り出せるようになっていることが好ましい。前記フィルム繰り出し装置16、及び搬送方向変更装置17をこのような構成とすることにより、より製造装置全体の幅を狭くすることが可能となるほか、フィルムの送り出し位置及び角度を細かく制御することが可能となり、膜厚及び光学特性値のバラツキが小さい長尺延伸フィルムを得ることが可能となる。また、前記フィルム繰り出し装置16及び搬送方向変更装置17を移動可能とすることにより、前記左右のクリップのフィルムへの噛込み不良を有効に防止することができる。 The film unwinding device 16 is slidable and pivotable so that the film can be fed at a predetermined angle with respect to the obliquely stretched tenter entrance, or the film unwinding device 16 is slidable and the transport direction is changed. It is preferable that the film can be sent out to the entrance of the obliquely stretched tenter by the device 17. By configuring the film feeding device 16 and the conveyance direction changing device 17 in such a configuration, the width of the entire manufacturing apparatus can be further reduced, and the film feeding position and angle can be finely controlled. This makes it possible to obtain a long stretched film with small variations in film thickness and optical characteristic values. Further, by making the film feeding device 16 and the conveyance direction changing device 17 movable, it is possible to effectively prevent the left and right clips from being caught in the film.
 巻き取り装置18は、斜め延伸テンター出口に対して所定角度でフィルムを引き取れるように形成することにより、フィルムの引き取り位置及び角度を細かく制御することが可能となり、膜厚及び光学特性値のバラツキが小さい長尺延伸フィルムを得ることが可能となる。そのため、フィルムのシワの発生を有効に防止することができるとともに、フィルムの巻き取り性が向上するため、フィルムを長尺ロールとして巻き取ることが可能となる。本実施形態において、延伸後のフィルムの引取り張力T(N/m)は、100N/m<T<300N/m、好ましくは150N/m<T<250N/mの範囲内で調整することが好ましい。 By forming the winding device 18 so that the film can be pulled at a predetermined angle with respect to the outlet of the obliquely stretched tenter, it is possible to finely control the film take-up position and angle, and variations in film thickness and optical characteristic values. It becomes possible to obtain a long stretched film having a small diameter. Therefore, it is possible to effectively prevent wrinkling of the film and improve the winding property of the film, so that the film can be wound as a long roll. In this embodiment, the take-up tension T (N / m) of the stretched film can be adjusted within a range of 100 N / m <T <300 N / m, preferably 150 N / m <T <250 N / m. preferable.
 (溶融製膜法)
 本発明のλ/4位相差フィルムは、溶融製膜法により製膜しても良い。溶融製膜法は、樹脂及び可塑剤などの添加剤を含む組成物を、流動性を呈する温度まで加熱溶融し、その後、流動性の熱可塑性樹脂を含む溶融物を流延してフィルム成形する方法である。
(Melting method)
The λ / 4 retardation film of the present invention may be formed by a melt film forming method. In the melt film forming method, a composition containing an additive such as a resin and a plasticizer is heated and melted to a temperature exhibiting fluidity, and then a melt containing a fluid thermoplastic resin is cast to form a film. Is the method.
 加熱溶融する成形法としては、更に詳細には、溶融押出成形法、プレス成形法、インフレーション法、射出成形法、ブロー成形法、延伸成形法などに分類できる。これらの成形法の中では、機械的強度及び表面精度などの点から、溶融押出し法が好ましい。溶融押出し法に用いる複数の原材料は、通常、予め混錬してペレット化しておくことが好ましい。 More specifically, the heating and melting molding method can be classified into a melt extrusion molding method, a press molding method, an inflation method, an injection molding method, a blow molding method, a stretch molding method, and the like. Among these molding methods, the melt extrusion method is preferable from the viewpoint of mechanical strength and surface accuracy. The plurality of raw materials used in the melt extrusion method are usually preferably kneaded and pelletized in advance.
 ペレット化は、公知の方法を適用することができ、例えば、乾燥セルロースアシレートや可塑剤、その他添加剤をフィーダーで押出し機に供給し、一軸や二軸の押出し機を用いて混錬し、ダイからストランド状に押出し、水冷又は空冷し、カッティングすることでペレットを得ることができる。 A known method can be applied to pelletization, for example, dry cellulose acylate, plasticizer, and other additives are fed to an extruder with a feeder, and kneaded using a single or twin screw extruder, Pellets can be obtained by extrusion from a die into strands, water cooling or air cooling, and cutting.
 添加剤は、押出し機に供給する前に混合しておいてもよく、あるいはそれぞれ個別のフィーダーで供給してもよい。なお、微粒子や酸化防止剤等の少量の添加剤は、均一に混合するため、事前に混合しておくことが好ましい。 The additives may be mixed before being supplied to the extruder, or may be supplied by individual feeders. A small amount of additives such as fine particles and antioxidants are preferably mixed in advance in order to mix uniformly.
 ペレット化に用いる押出し機は、剪断力を抑え、樹脂が劣化(例えば、分子量低下、着色、ゲル生成等。)しないように、ペレット化が可能で、なるべく低温で加工する方式が好ましい。例えば、二軸押出し機の場合、深溝タイプのスクリューを用いて、同方向に回転させることが好ましい。混錬の均一性から、噛み合いタイプが好ましい。 The extruder used for pelletization is preferably a method in which pelletization is possible and processing is performed at as low a temperature as possible so that the shearing force is suppressed and the resin does not deteriorate (for example, molecular weight reduction, coloring, gel formation, etc.). For example, in the case of a twin screw extruder, it is preferable to rotate in the same direction using a deep groove type screw. From the uniformity of kneading, the meshing type is preferable.
 以上のようにして得られたペレットを用いてフィルム製膜を行う。もちろんペレット化せず、原材料の粉末をそのままフィーダーに投入して押出し機に供給し、加熱溶融した後、そのままフィルム製膜することも可能である。 Film formation is performed using the pellets obtained as described above. Of course, the raw material powder can be put into a feeder as it is, supplied to an extruder, heated and melted, and then directly formed into a film without being pelletized.
 上記ペレットを一軸や二軸タイプの押出し機を用いて、押出す際の溶融温度としては200~300℃の範囲内とし、リーフディスクタイプのフィルターなどで濾過して異物を除去した後、Tダイからフィルム状に流延し、冷却ローラーと弾性タッチローラーでフィルムをニップし、冷却ローラー上で固化させる。 The pellets are extruded using a single or twin screw type extruder and the melting temperature is within the range of 200 to 300 ° C. After removing foreign matter by filtering with a leaf disk type filter etc., the T die Then, the film is cast into a film, and the film is nipped with a cooling roller and an elastic touch roller, and solidified on the cooling roller.
 供給ホッパーから押出し機へ導入する際は、真空下又は減圧下や不活性ガス雰囲気下で行って、酸化による分解等を防止することが好ましい。 When introducing into the extruder from the supply hopper, it is preferable to carry out under vacuum, reduced pressure, or inert gas atmosphere to prevent decomposition due to oxidation.
 押出し流量は、ギヤポンプを導入するなどして安定に行うことが好ましい。また、異物の除去に用いるフィルターは、ステンレス繊維焼結フィルターが好ましく用いられる。ステンレス繊維焼結フィルターは、ステンレス繊維体を複雑に絡み合った状態を作り出した上で圧縮し、接触箇所を焼結して一体化したもので、その繊維の太さと圧縮量により密度を変え、濾過精度を調整できる。 The extrusion flow rate is preferably carried out stably by introducing a gear pump. Further, a stainless fiber sintered filter is preferably used as a filter used for removing foreign substances. A stainless steel fiber sintered filter is a product in which a stainless steel fiber body is intricately intertwined and compressed, and the contact points are sintered and integrated. The accuracy can be adjusted.
 可塑剤や微粒子などの各添加剤は、予め樹脂と混合しておいてもよいし、押出し機の途中で練り込んでもよい。均一に添加するために、スタチックミキサーなどの混合装置を用いることが好ましい。 Each additive such as plasticizer and fine particles may be mixed with the resin in advance, or may be kneaded in the middle of the extruder. In order to add uniformly, it is preferable to use a mixing apparatus such as a static mixer.
 冷却ローラーと弾性タッチローラーでフィルムをニップする際の弾性タッチローラー側のフィルム温度は、フィルムのTg~Tg+110℃の範囲内とすることが好ましい。このような目的で使用する弾性体を表面に有する弾性タッチローラーとしては、公知の弾性タッチローラーを使用することができる。弾性タッチローラーは、挟圧回転体ともいい、市販されているものを用いることもできる。 The film temperature on the elastic touch roller side when the film is nipped between the cooling roller and the elastic touch roller is preferably in the range of Tg to Tg + 110 ° C. of the film. A known elastic touch roller can be used as an elastic touch roller having an elastic body on the surface for such purposes. The elastic touch roller is also called a pinching rotary body, and a commercially available one can also be used.
 冷却ローラーからフィルムを剥離する際は、張力を制御してフィルムの変形を防止することが好ましい。 When peeling the film from the cooling roller, it is preferable to control the tension to prevent deformation of the film.
 また、上記のようにして得られたフィルムは、冷却ローラーに接する工程を通過した後、前記溶液流延法で説明したのと同様の延伸方法により延伸及び収縮処理を施す。 In addition, the film obtained as described above is subjected to a stretching and shrinking treatment by the same stretching method as described in the solution casting method after passing through the step of contacting the cooling roller.
 延伸及び収縮する方法は、前述のような公知のローラー延伸機やテンターなどを好ましく用いることができる。延伸温度は、通常フィルムを構成する樹脂のTg~Tg+60℃の温度範囲で行われることが好ましい。 As a method of stretching and shrinking, a known roller stretching machine or tenter as described above can be preferably used. The stretching temperature is usually preferably in the temperature range of Tg to Tg + 60 ° C. of the resin constituting the film.
 巻き取る前に、製品となる幅に端部をスリットして裁ち落とし、巻き中の貼り付きやすり傷防止のために、ナール加工(エンボッシング加工)を両端に施してもよい。ナール加工の方法は凸凹のパターンを側面に有する金属リングを加熱や加圧により加工することができる。なお、フィルム両端部のクリップの把持部分は通常、フィルムが変形しており製品として使用できないので切除されて、切除した廃材は再利用される。 Before winding, the end may be slit and cut to the product width, and knurled (embossed) may be applied to both ends to prevent sticking or scratching during winding. The knurling method can process a metal ring having an uneven pattern on its side surface by heating or pressing. In addition, since the film has deform | transformed and cannot use as a product normally, the holding | grip part of the clip of both ends of a film is cut out, and the cut waste material is reused.
 〔λ/4位相差フィルムの特性〕
 (フィルム仕様)
 本発明のλ/4位相差フィルムの膜厚は、特に限定はされないが、10~250μmの範囲内で用いることができるが、好ましくは20~100μmの範囲内であり、より好ましくは30~80μmの範囲内であり、特に好ましくは30~65μmの範囲内である。
[Characteristics of λ / 4 retardation film]
(Film specification)
The film thickness of the λ / 4 retardation film of the present invention is not particularly limited, but can be used in the range of 10 to 250 μm, preferably in the range of 20 to 100 μm, more preferably 30 to 80 μm. And particularly preferably in the range of 30 to 65 μm.
 本発明のλ/4位相差フィルムは、幅として1~4mの範囲内のものを用いることができる。更には、幅1.4~4mのものが好ましく用いられ、特に好ましくは1.6~3mである。幅として4m以下であれば、搬送安定性を確保することができる。 The λ / 4 retardation film of the present invention may have a width in the range of 1 to 4 m. Furthermore, those having a width of 1.4 to 4 m are preferably used, and particularly preferably 1.6 to 3 m. If it is 4 m or less as a width | variety, conveyance stability can be ensured.
 (表面粗さ)
 本発明のλ/4位相差フィルムの表面における算術平均粗さRaとしては、概ね2.0~4.0nmの範囲内であり、好ましくは2.5~3.5nmの範囲内である。
(Surface roughness)
The arithmetic average roughness Ra on the surface of the λ / 4 retardation film of the present invention is generally in the range of 2.0 to 4.0 nm, preferably in the range of 2.5 to 3.5 nm.
 (寸法変化率)
 本発明のλ/4位相差フィルムを、本発明の有機EL画像表示装置に具備した場合、使用する環境雰囲気、例えば、高湿環境下での吸湿での寸法変化により、ムラや位相差値の変化、あるいはコントラストの低下や色むらといった問題を発生させない為、本発明のλ/4位相差フィルムの寸法変化率(%)としては、0.5%未満であることが好ましく、更に、0.3%未満であることが好ましい。
(Dimensional change rate)
When the λ / 4 retardation film of the present invention is provided in the organic EL image display device of the present invention, due to dimensional changes due to moisture absorption in a high-humidity environment, for example, unevenness and retardation values In order not to cause a problem such as a change or a decrease in contrast or color unevenness, the dimensional change rate (%) of the λ / 4 retardation film of the present invention is preferably less than 0.5%. Preferably it is less than 3%.
 (故障耐性)
 本発明のλ/4位相差フィルムでは、フィルム中の故障(以下、欠点ともいう)が少ないことが好ましく、ここでいう欠点とは、溶液流延法により製膜において、乾燥工程での溶媒の急激な蒸発に起因して発生するフィルム中の空洞(発泡欠点)や、製膜原液中の異物や製膜中に混入する異物に起因するフィルム中の異物故障(異物欠点)をいう。
(Fault tolerance)
In the λ / 4 retardation film of the present invention, it is preferable that there are few failures in the film (hereinafter, also referred to as defects), and the defects referred to here are those of the solvent in the drying step in film formation by the solution casting method. It refers to a void in a film (foaming defect) generated due to rapid evaporation, a foreign matter failure (foreign matter defect) in the film due to a foreign matter in the film-forming stock solution or a foreign matter mixed in the film.
 具体的にはフィルム面内に、直径5μm以上の欠点が1個/10cm四方以下であることが好ましい。更に好ましくは0.5個/10cm四方以下であり、特に好ましくは0.1個/10cm四方以下である。 Specifically, it is preferable that a defect having a diameter of 5 μm or more is 1 piece / 10 cm square or less in the film plane. More preferably, it is 0.5 piece / 10 cm square or less, and particularly preferably 0.1 piece / 10 cm square or less.
 上記欠点の直径とは、欠点が円形の場合はその直径を示し、円形でない場合は欠点の範囲を下記方法により顕微鏡で観察して決定し、その最大径(外接円の直径)とする。 The diameter of the above defect indicates the diameter when the defect is circular, and when the defect is not circular, the range of the defect is determined by observing with a microscope according to the following method, and the maximum diameter (diameter of circumscribed circle) is determined.
 欠点の範囲は、欠点が気泡や異物の場合は、欠点を微分干渉顕微鏡の透過光で観察したときの影の大きさで測定する。また、欠点が、ローラー傷の転写や擦り傷など、表面形状の変化を伴う場合には、欠点を微分干渉顕微鏡の反射光で観察して大きさを確認する。 ¡When the defect is a bubble or a foreign object, the defect range is measured by the size of the shadow when the defect is observed with the transmitted light of the differential interference microscope. In addition, when the defect is accompanied by a change in surface shape such as transfer of a roller scratch or an abrasion, the size is confirmed by observing the defect with reflected light of a differential interference microscope.
 なお、反射光で観察する場合に、欠点の大きさが不明瞭であれば、表面にアルミや白金を蒸着して観察する。かかる欠点頻度にて表される品位に優れたフィルムを生産性よく得るには、ポリマー溶液を流延直前に高精度濾過することや、流延機周辺のクリーン度を高くすること、また、流延後の乾燥条件を段階的に設定し、効率よくかつ発泡を抑えて乾燥させることが有効である。 In addition, when observing with reflected light, if the size of the defect is not clear, aluminum or platinum is vapor-deposited on the surface for observation. In order to obtain a film having excellent quality expressed by such a defect frequency with high productivity, it is necessary to filter the polymer solution with high precision immediately before casting, to increase the cleanliness around the casting machine, It is effective to set drying conditions after rolling stepwise and to dry efficiently while suppressing foaming.
 欠点の個数が1個/10cm四方より多いと、例えば、後工程での加工時などでフィルムに張力がかかると、欠点を起点としてフィルムが破断して生産性が低下する場合がある。また、欠点の直径が5μm以上になると、偏光板観察などにより目視で確認でき、光学部材として用いたとき輝点が生じる場合がある。 When the number of defects is larger than 1/10 cm square, for example, when the film is tensioned during processing in a later process, the film may be broken starting from the defects and productivity may be reduced. Moreover, when the diameter of a defect becomes 5 micrometers or more, it can confirm visually by polarizing plate observation etc., and when used as an optical member, a bright spot may arise.
 (破断伸度)
 また、本発明のλ/4位相差フィルムは、JIS-K7127-1999に準拠した測定において、少なくとも一方向(TD方向又はMD方向)の破断伸度が、10%以上であることが好ましく、より好ましくは20%以上である。
(Elongation at break)
Further, the λ / 4 retardation film of the present invention preferably has a breaking elongation of at least 10% or more in at least one direction (TD direction or MD direction) in the measurement based on JIS-K7127-1999, Preferably it is 20% or more.
 破断伸度の上限は、特に限定されるものではないが、現実的には250%程度である。破断伸度を大きくするには、異物や発泡に起因するフィルム中の欠点の発生を、上記方法により抑制することが有効である。 The upper limit of the elongation at break is not particularly limited, but is practically about 250%. In order to increase the elongation at break, it is effective to suppress the occurrence of defects in the film due to foreign matter and foaming by the above method.
 (全光線透過率)
 本発明のλ/4位相差フィルムは、その全光線透過率が90%以上であることが好ましく、より好ましくは93%以上である。また、現実的な上限としては、99%程度である。かかる全光線透過率で表される優れた透明性を達成するには、可視光を吸収する添加剤や共重合成分を導入しないようにすることや、ポリマー中の異物を高精度濾過により除去し、フィルム内部の光の拡散や吸収を低減させることが有効な手段である。また、製膜時のフィルム接触部(冷却ローラー、カレンダーローラー、ドラム、ベルト、溶液流延法による製膜工程における塗布基材、搬送ローラーなど)の表面粗さを小さくして、フィルム表面の表面粗さを小さくすることによりフィルム表面の光の拡散や反射を低減させる方法が有効である。
(Total light transmittance)
The λ / 4 retardation film of the present invention preferably has a total light transmittance of 90% or more, more preferably 93% or more. Moreover, as a realistic upper limit, it is about 99%. In order to achieve excellent transparency expressed by such total light transmittance, it is necessary not to introduce an additive or copolymer component that absorbs visible light, or to remove foreign substances in the polymer by high-precision filtration. It is an effective means to reduce the diffusion and absorption of light inside the film. Also, reduce the surface roughness of the film surface at the time of film formation (cooling roller, calendar roller, drum, belt, coating substrate in the film forming process by the solution casting method, transport roller, etc.) A method of reducing the diffusion and reflection of light on the film surface by reducing the roughness is effective.
 《円偏光板》
 本発明に係る円偏光板は、長尺状の保護フィルム、長尺状の偏光子及び長尺状の本発明のλ/4位相差フィルムをこの順に有する長尺ロールを断裁して作製され、該長尺状のλ/4位相差フィルムが、請求項1で規定する条件を満たすことを特徴とするものであり、本発明に係る円偏光板を有機EL画像表示装置に適用することにより、有機EL発光体の金属電極における鏡面反射を遮蔽する効果を発現する。
《Circularly polarizing plate》
The circularly polarizing plate according to the present invention is produced by cutting a long roll having a long protective film, a long polarizer and a long λ / 4 retardation film of the present invention in this order, The long λ / 4 retardation film satisfies the conditions defined in claim 1, and by applying the circularly polarizing plate according to the present invention to an organic EL image display device, An effect of shielding the specular reflection in the metal electrode of the organic EL light-emitting body is exhibited.
 また、本発明のλ/4位相差フィルムを斜め延伸することによって、遅相軸の角度(即ち配向角θ)を長手方向に対して「実質的に45°」となるようにすると、面内の最大弾性率となる方向も長手方向に対して「実質的に45°」となり、このような場合には、円偏光板が斜め方向の反りを生じやすくなる。 In addition, when the λ / 4 retardation film of the present invention is obliquely stretched so that the angle of the slow axis (that is, the orientation angle θ) is “substantially 45 °” with respect to the longitudinal direction, The direction of the maximum elastic modulus is also “substantially 45 °” with respect to the longitudinal direction. In such a case, the circularly polarizing plate tends to bend in an oblique direction.
 上記課題に対し、本発明に係る円偏光板では、偏光子が本発明のλ/4位相差フィルムと保護フィルムによって挟持されている構成が好ましく、該保護フィルムの視認側に硬化層を積層することにより、円偏光板の反りを防止する効果を発現することができる観点から好ましい。 For the above-mentioned problem, the circularly polarizing plate according to the present invention preferably has a configuration in which the polarizer is sandwiched between the λ / 4 retardation film of the present invention and a protective film, and a cured layer is laminated on the viewing side of the protective film. By this, it is preferable from a viewpoint which can express the effect which prevents the curvature of a circularly-polarizing plate.
 また、本発明の有機EL画像表示装置は、紫外線による劣化を防止するため、本発明に係る円偏光板が紫外線吸収機能を備えていることが好ましい。視認側の保護フィルムが紫外線吸収機能を備えていると、偏光子と有機EL素子の両方を紫外線に対する保護効果を発現できる観点から好ましいが、さらに発光体側のλ/4位相差フィルムも紫外線吸収機能を備えていると、より有機EL素子の劣化を抑制できて好ましい。 Further, in the organic EL image display device of the present invention, it is preferable that the circularly polarizing plate according to the present invention has an ultraviolet absorption function in order to prevent deterioration due to ultraviolet rays. If the protective film on the viewing side has an ultraviolet absorbing function, both the polarizer and the organic EL element are preferable from the viewpoint of exhibiting the protective effect against ultraviolet rays, but the λ / 4 retardation film on the light emitter side also has an ultraviolet absorbing function. It is preferable that deterioration of the organic EL element can be further suppressed.
 《有機エレクトロルミネッセンス画像表示装置》
 本発明の有機エレクトロルミネッセンス画像表示装置は、本発明のλ/4位相差フィルムを有する円偏光板と、有機エレクトロルミネッセンス素子とを具備し、画面サイズが20インチ以上であることを特徴とする。
《Organic electroluminescence image display device》
The organic electroluminescence image display device of the present invention comprises a circularly polarizing plate having the λ / 4 retardation film of the present invention and an organic electroluminescence element, and has a screen size of 20 inches or more.
 図6に、本発明の有機EL画像表示装置の構成の一例を示すが、これに限定されるものではない。 FIG. 6 shows an example of the configuration of the organic EL image display device of the present invention, but the present invention is not limited to this.
 ガラスやポリイミド等を用いた基板101上に順に金属電極102、TFT103、有機機能層ユニット104、透明電極(ITO等)105、絶縁層106、封止層107、フィルム108(省略可)を有する有機EL素子B上に、偏光子110を本発明のλ/4位相差フィルム109と保護フィルム111によって挟持した本発明に係る円偏光板Cを設けて、有機EL画像表示装置Aを構成する。該保護フィルム111上には硬化層112が積層されていることが好ましい。硬化層112は、有機EL画像表示装置Aの表面のキズを防止するだけではなく、円偏光板による反りを防止する効果を有する。更に、硬化層上には、反射防止層113を有していてもよい。上記有機EL素子B自体の厚さは1μm程度である。 Organic having a metal electrode 102, a TFT 103, an organic functional layer unit 104, a transparent electrode (ITO, etc.) 105, an insulating layer 106, a sealing layer 107, and a film 108 (optional) on a substrate 101 made of glass, polyimide, or the like. On the EL element B, the circularly polarizing plate C according to the present invention in which the polarizer 110 is sandwiched between the λ / 4 retardation film 109 and the protective film 111 of the present invention is provided to constitute the organic EL image display device A. A cured layer 112 is preferably laminated on the protective film 111. The hardened layer 112 not only prevents scratches on the surface of the organic EL image display device A but also has an effect of preventing warpage due to the circularly polarizing plate. Further, an antireflection layer 113 may be provided on the cured layer. The thickness of the organic EL element B itself is about 1 μm.
 一般に、有機EL画像表示装置Aは、透明な基板101上に金属電極102と有機機能層ユニット104と透明電極105とを順に積層した発光体である素子(有機EL素子)を形成している。ここで、有機機能層ユニット104は、種々の有機薄膜の積層体であり、例えば、トリフェニルアミン誘導体等からなる正孔注入層と、アントラセン等の蛍光性の有機固体からなる有機発光層との積層体や、あるいはこのような発光層とペリレン誘導体等からなる電子注入層の積層体や、またあるいはこれらの正孔注入層、有機発光層、及び電子注入層の積層体等、種々の組み合わせをもった構成が知られている。 Generally, the organic EL image display apparatus A forms an element (organic EL element) which is a light emitting body in which a metal electrode 102, an organic functional layer unit 104, and a transparent electrode 105 are sequentially laminated on a transparent substrate 101. Here, the organic functional layer unit 104 is a laminate of various organic thin films, for example, a hole injection layer made of a triphenylamine derivative or the like and an organic light emitting layer made of a fluorescent organic solid such as anthracene. Various combinations such as a laminate, or a laminate of an electron injection layer composed of such a light emitting layer and a perylene derivative, or a laminate of these hole injection layer, organic light emitting layer, and electron injection layer, etc. A configuration with this is known.
 有機EL画像表示装置は、透明電極と金属電極とに電圧を印加することによって、有機発光層に正孔と電子が注入され、これら正孔と電子との再結合によって生じるエネルギーが蛍光物資あるいはリン光発光性物質を励起し、励起された蛍光物質あるいはリン光発光性物質が基底状態に戻るときに、有機発光層内部あるいは有機発光層の界面で、蛍光あるいはリン光を放射して発光する。途中における正孔と電子との再結合というメカニズムは、一般のダイオードと同様であり、このことからも予想できるように、電流と発光強度は印加電圧に対して整流性を伴う強い非線形性を示す。 In an organic EL image display device, holes and electrons are injected into an organic light emitting layer by applying a voltage to a transparent electrode and a metal electrode, and energy generated by recombination of these holes and electrons is converted into phosphor or phosphorus. When the photoluminescent substance is excited and the excited fluorescent substance or phosphorescent substance returns to the ground state, the fluorescent substance emits fluorescence or phosphorescence within the organic light emitting layer or at the interface of the organic light emitting layer. The mechanism of recombination of holes and electrons in the middle is the same as that of ordinary diodes. As can be expected from this, current and emission intensity show strong nonlinearity with rectification against the applied voltage. .
 有機EL画像表示装置において、有機発光層での発光を取り出すには、少なくとも一方の電極が透明であることが必要な要件であり、通常、酸化インジウムスズ(ITO)などの透明導電体で形成した透明電極を陽極として用いていることが好ましい。一方、電子注入を容易にして発光効率を高めるためには、陰極に仕事関数の小さな物質を用いることが重要であり、通常、Mg-Ag、Al-Liなどの金属電極を用いている。 In order to extract light emitted from the organic light emitting layer in an organic EL image display device, it is a requirement that at least one of the electrodes must be transparent, and it is usually formed of a transparent conductor such as indium tin oxide (ITO). A transparent electrode is preferably used as the anode. On the other hand, in order to facilitate electron injection and increase luminous efficiency, it is important to use a material having a small work function for the cathode, and usually metal electrodes such as Mg—Ag and Al—Li are used.
 本発明のλ/4位相差フィルムを有する円偏光板は、画面サイズが20インチ以上、即ち対角線距離が50.8cm以上の大型画面からなる機EL画像表示装置に適用することを特徴とする。 The circularly polarizing plate having the λ / 4 retardation film of the present invention is characterized by being applied to an EL image display device having a large screen having a screen size of 20 inches or more, that is, a diagonal distance of 50.8 cm or more.
 このような構成の有機EL画像表示装置において、有機発光層は、厚さ10nm程度ときわめて薄い膜で形成されている。このため、有機発光層も透明電極と同様、光をほぼ完全に透過する。その結果、非発光時に透明基板の表面から入射し、透明電極と有機発光層とを透過して金属電極で反射した光が、再び透明基板の表面側へと出るため、外部から視認したとき、有機EL画像表示装置の表示面が鏡面のように見える。 In the organic EL image display device having such a configuration, the organic light emitting layer is formed of a very thin film having a thickness of about 10 nm. For this reason, the organic light emitting layer transmits light almost completely like the transparent electrode. As a result, light that is incident from the surface of the transparent substrate at the time of non-light emission, passes through the transparent electrode and the organic light emitting layer, and is reflected by the metal electrode is again emitted to the surface side of the transparent substrate. The display surface of the organic EL image display device looks like a mirror surface.
 電圧の印加によって発光する有機機能層ユニットの表面側に透明電極を備えるとともに、有機機能層ユニットの裏面側に金属電極を備えてなる有機EL素子を含む有機EL画像表示装置において、透明電極の表面側(視認側)に偏光板を設けるとともに、これら透明電極と偏光板との間に位相差板を設けることができる。 In an organic EL image display device including an organic EL element having a transparent electrode on the surface side of an organic functional layer unit that emits light by applying a voltage and a metal electrode on the back side of the organic functional layer unit, the surface of the transparent electrode While providing a polarizing plate on the side (viewing side), a retardation plate can be provided between the transparent electrode and the polarizing plate.
 位相差板及び偏光板は、外部から入射して金属電極で反射してきた光を偏光する作用を有するため、その偏光作用によって金属電極の鏡面を外部から視認させないという効果がある。本発明の有機EL画像表示装置においては、位相差板を、本発明のλ/4位相差フィルムで構成し、かつ偏光板と位相差板との偏光方向のなす角をπ/4に調整すれば、金属電極の鏡面を完全に遮蔽することができる。 Since the retardation plate and the polarizing plate have a function of polarizing light incident from the outside and reflected by the metal electrode, there is an effect that the mirror surface of the metal electrode is not visually recognized by the polarization action. In the organic EL image display device of the present invention, the retardation plate is composed of the λ / 4 retardation film of the present invention, and the angle formed by the polarization direction of the polarizing plate and the retardation plate is adjusted to π / 4. Thus, the mirror surface of the metal electrode can be completely shielded.
 すなわち、この有機EL画像表示装置に入射する外部光は、偏光板により直線偏光成分のみが透過し、この直線偏光は位相差板により一般に楕円偏光となるが、本発明においては、位相差板が本発明のλ/4位相差フィルムであり、しかも偏光板と位相差板であるλ/4位相差フィルムとの偏光方向のなす角がπ/4のときには円偏光となる。 That is, the external light incident on the organic EL image display device transmits only the linearly polarized light component by the polarizing plate, and this linearly polarized light is generally elliptically polarized light by the phase difference plate, but in the present invention, the phase difference plate is The λ / 4 retardation film of the present invention is circularly polarized when the angle formed by the polarization direction of the polarizing plate and the λ / 4 retardation film as the retardation plate is π / 4.
 本発明に係る円偏光においては、透明基板、透明電極、有機機能層を透過し、金属電極で反射して、再び有機機能層、透明電極、透明基板を透過して、λ/4位相差フィルムにおいて再び直線偏光となる。そして、この直線偏光は、偏光板の偏光方向と直交しているので、偏光板を透過できない。その結果、本発明に係る円偏光においては、金属電極の鏡面を完全に遮蔽することができる。 In the circularly polarized light according to the present invention, the transparent substrate, the transparent electrode and the organic functional layer are transmitted, reflected by the metal electrode, and again transmitted through the organic functional layer, the transparent electrode and the transparent substrate, and the λ / 4 retardation film It becomes linearly polarized light again. And since this linearly polarized light is orthogonal to the polarization direction of a polarizing plate, it cannot permeate | transmit a polarizing plate. As a result, in the circularly polarized light according to the present invention, the mirror surface of the metal electrode can be completely shielded.
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「部」あるいは「%」の表示を用いるが、特に断りがない限り「質量部」あるいは「質量%」を表す。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. In addition, although the display of "part" or "%" is used in an Example, unless otherwise indicated, "part by mass" or "mass%" is represented.
 実施例1
 《λ/4位相差フィルムの作製》
 〔λ/4位相差フィルム101の作製:比較例〕
 窒素雰囲気下で、脱水したシクロヘキサンの500部に、1-ヘキセンを1.2部、ジブチルエーテルを0.15部、トリイソブチルアルミニウムを0.30部、それぞれ室温で反応器に入れて混合した後、45℃に保ちながら、トリシクロ[4.3.0.12,5]デカ-3,7-ジエン(ジシクロペンタジエン、以下、DCPと略記。)の20部、1,4-メタノ-1,4,4a,9a-テトラヒドロフルオレン(以下、MTFと略記。)の140部、及び8-メチル-テトラシクロ[4.4.0.12,5.17,10]-ドデカ-3-エン(以下、MTDと略記。)の40部からなるノルボルネン系モノマー混合物と、六塩化タングステン(0.7%トルエン溶液)の40部とを、2時間かけて連続的に添加して重合した。この重合溶液に、ブチルグリシジルエーテルを1.06部とイソプロピルアルコールを0.52部加えて重合触媒を不活性化し、重合反応を停止させた。
Example 1
<< Production of λ / 4 retardation film >>
[Production of λ / 4 Retardation Film 101: Comparative Example]
In a nitrogen atmosphere, 500 parts of dehydrated cyclohexane were mixed with 1.2 parts of 1-hexene, 0.15 parts of dibutyl ether and 0.30 parts of triisobutylaluminum in a reactor at room temperature. While maintaining at 45 ° C., 20 parts of tricyclo [4.3.12,5] deca-3,7-diene (dicyclopentadiene, hereinafter abbreviated as DCP), 1,4-methano-1, 140 parts of 4,4a, 9a-tetrahydrofluorene (hereinafter abbreviated as MTF) and 8-methyl-tetracyclo [4.4.0.12,5.17,10] -dodec-3-ene (hereinafter A norbornene monomer mixture consisting of 40 parts of MTD (abbreviated as MTD) and 40 parts of tungsten hexachloride (0.7% toluene solution) were continuously added over 2 hours for polymerization. To this polymerization solution, 1.06 part of butyl glycidyl ether and 0.52 part of isopropyl alcohol were added to inactivate the polymerization catalyst, and the polymerization reaction was stopped.
 次いで、得られた開環重合体を含有する反応溶液の100部に対して、シクロヘキサンを270部加え、更に、水素化触媒としてニッケル-アルミナ触媒(日揮化学社製)を5部加え、水素により5MPaに加圧して撹拌しながら、温度200℃まで加温した後、4時間反応させ、DCP/MTF/MTD開環重合体水素化ポリマーを20質量%含有する反応溶液を得た。濾過により水素化触媒を除去した後、軟質重合体(クラレ社製;セプトン2002)、及び酸化防止剤(BASFジャパン社製;イルガノックス1010)を、得られた溶液にそれぞれ軟質重合体100部あたり0.1部添加して溶解させた。 Next, 270 parts of cyclohexane was added to 100 parts of the reaction solution containing the obtained ring-opening polymer, and 5 parts of a nickel-alumina catalyst (manufactured by JGC Chemical Co., Ltd.) was added as a hydrogenation catalyst. The mixture was heated to 200 ° C. while being pressurized to 5 MPa and stirred, and then reacted for 4 hours to obtain a reaction solution containing 20% by mass of a hydrogenated polymer of a DCP / MTF / MTD ring-opening polymer. After removing the hydrogenation catalyst by filtration, a soft polymer (manufactured by Kuraray Co., Ltd .; Septon 2002) and an antioxidant (manufactured by BASF Japan Co., Ltd .; Irganox 1010) were added to the resulting solution per 100 parts of the soft polymer. 0.1 part was added and dissolved.
 次いで、溶液から、溶媒であるシクロヘキサン及びその他の揮発成分を、円筒型濃縮乾燥器(日立製作所製)を用いて除去し、水素化ポリマーを溶融状態で押出機からストランド状に押出、冷却して後ペレット化して回収した。重合体中の各ノルボルネン系モノマーの共重合比率を、重合後の溶液中の残留ノルボルネン類組成(ガスクロマトグラフィー法による)から計算したところ、DCP/MTF/MTD=10/70/20で、ほぼ添加上条件の組成に等しかった。この開環重合体水素添加物の重量平均分子量(Mw)は31,000、分子量分布(Mw/Mn)は2.5、水素添加率は99.9%、Tgは134℃であった。 Next, the solvent cyclohexane and other volatile components are removed from the solution using a cylindrical concentration dryer (manufactured by Hitachi, Ltd.), and the hydrogenated polymer is extruded in a strand form from an extruder in a molten state and cooled. It was then pelletized and collected. When the copolymerization ratio of each norbornene monomer in the polymer was calculated from the composition of residual norbornenes in the solution after polymerization (by gas chromatography), DCP / MTF / MTD = 10/70/20, It was equal to the composition of the addition conditions. The ring-opened polymer hydrogenated product had a weight average molecular weight (Mw) of 31,000, a molecular weight distribution (Mw / Mn) of 2.5, a hydrogenation rate of 99.9%, and a Tg of 134 ° C.
 上記調製した開環重合体水素添加物のペレットを、空気を流通させた熱風乾燥器を用いて、70℃で2時間乾燥して水分を除去した。次いで、上記ペレットを、コートハンガータイプのTダイを有する短軸押出機(三菱重工業株式会社製:スクリュー径90mm、Tダイリップ部材質は炭化タングステン、溶融樹脂との剥離強度44N)を用いて溶融押出成形して、厚さ100μmのシクロオレフィンポリマーフィルムを製造した。押出成形は、クラス10,000以下のクリーンルーム内で、溶融樹脂温度240℃、Tダイ温度240℃の成形条件にて幅1400mm長尺の未延伸フィルムを得た。未延伸フィルムはロールに巻き取った。 The pellets of the hydrogenated ring-opening polymer prepared as described above were dried at 70 ° C. for 2 hours using a hot air dryer in which air was circulated to remove moisture. Next, the pellets were melt extruded using a short shaft extruder having a coat hanger type T die (manufactured by Mitsubishi Heavy Industries, Ltd .: screw diameter 90 mm, T die lip material is tungsten carbide, peel strength 44N from molten resin). A cycloolefin polymer film having a thickness of 100 μm was produced by molding. In the extrusion molding, an unstretched film having a length of 1400 mm was obtained in a clean room of class 10,000 or less under molding conditions of a molten resin temperature of 240 ° C. and a T die temperature of 240 ° C. The unstretched film was wound up on a roll.
 上記にて得られたノルボルネン系樹脂の未延伸フィルムを、図3に示す斜め延伸装置のレールパターンを用い、以下に示す条件に従って延伸して、延伸フィルムであるλ/4位相差フィルム101を得た。 The norbornene-based unstretched film obtained above is stretched according to the following conditions using the rail pattern of the oblique stretching apparatus shown in FIG. 3 to obtain a λ / 4 retardation film 101 which is a stretched film. It was.
 なお、図3に示す延伸装置において、フィルムの繰り出し方向と巻取り方向とがなす角度θiは、49度とした。 In the stretching apparatus shown in FIG. 3, the angle θi formed by the film feeding direction and the winding direction was set to 49 degrees.
 はじめに、加熱ゾーンの手前付近にて、フィルム繰り出し装置から送られてくる未延伸フィルムの両端を、第1クリップCi(レールIN側)及び第2クリップCo(レールOUT側)で把持した。なお、未延伸フィルムを把持する際には、第1クリップ及び第2クリップのクリップレバーを、クリップクローザーにより動かすことにより、未延伸フィルムを把持した。またクリップ把持時の際は、フィルムの両端を第1クリップCi及び第2クリップCoで同時に把持し、かつフィルムの横方向に平行な軸に対して、両端の把持位置を結ぶ線が平行となる様に把持した。 First, near the front of the heating zone, both ends of the unstretched film sent from the film feeding device were gripped by the first clip Ci (rail IN side) and the second clip Co (rail OUT side). When gripping the unstretched film, the unstretched film was gripped by moving the clip levers of the first clip and the second clip with the clip closer. When gripping a clip, both ends of the film are simultaneously gripped by the first clip Ci and the second clip Co, and a line connecting the gripping positions at both ends is parallel to an axis parallel to the lateral direction of the film. Was gripped.
 次いで、把持した未延伸のフィルムを、上記第1クリップ及び第2クリップにより、加熱ゾーン内の予熱ゾーン、延伸ゾーン及び熱固定ゾーンを通過させることにより加熱し、幅方向に延伸して、延伸フィルムを得た。 Next, the gripped unstretched film is heated by passing through the preheating zone, the stretching zone, and the heat setting zone in the heating zone by the first clip and the second clip, and stretched in the width direction to stretch the stretched film. Got.
 なお、加熱及び延伸する際におけるフィルムの移動速度は、20m/分とした。また、予熱ゾーンの温度を160℃、延伸ゾーンの温度を140℃、熱固定ゾーンの温度を120℃とした。また、延伸前後におけるフィルムの延伸率(テンター入口部Aで把持したクリップ両端の間隔Woがテンター出口部Bにおいて間隔Wとなったときの倍率W/Woの比で定義される値)は120%(1.2倍)とし、延伸後のフィルムの厚さが60μm、幅が3080mmとなるようにした。作製した位相差フィルムは、長手方向に25%収縮していた。 The moving speed of the film during heating and stretching was 20 m / min. The temperature of the preheating zone was 160 ° C, the temperature of the stretching zone was 140 ° C, and the temperature of the heat setting zone was 120 ° C. Further, the stretching ratio of the film before and after stretching (the value defined by the ratio of the magnification W / Wo when the distance Wo between the clip ends gripped at the tenter inlet A becomes the distance W at the tenter outlet B) is 120%. (1.2 times), and the stretched film had a thickness of 60 μm and a width of 3080 mm. The produced retardation film was shrunk by 25% in the longitudinal direction.
 最後に、得られた延伸フィルムの両端にトリミング処理を施し、最終的なフィルム幅を2160mmとして、λ/4位相差フィルム101を得た。 Finally, both ends of the obtained stretched film were subjected to trimming treatment to obtain a λ / 4 retardation film 101 with a final film width of 2160 mm.
 〔λ/4位相差フィルム102の作製〕
 (微粒子分散液1の調製)
 微粒子(アエロジル R812、一次粒径:約7nm 日本アエロジル(株)製)                         11質量部
 エタノール                       89質量部
 以上をディゾルバーで50分間攪拌混合した後、マントンゴーリン分散機を用いて分散を行い、微粒子分散液1を調製した。
[Production of λ / 4 Retardation Film 102]
(Preparation of fine particle dispersion 1)
Fine particles (Aerosil R812, primary particle size: about 7 nm, manufactured by Nippon Aerosil Co., Ltd.) 11 parts by weight Ethanol 89 parts by weight The above is stirred and mixed with a dissolver for 50 minutes, and then dispersed using a Manton Gorin disperser to obtain a fine particle dispersion 1 was prepared.
 (微粒子添加液1の調製)
 溶解タンクにメチレンクロライドを50質量部入れ、メチレンクロライドを十分に攪拌しながら上記調製した微粒子分散液1の50質量部をゆっくりと添加した。更に、二次粒子の粒径が、所定の大きさとなるようにアトライターにて分散を行った。これを日本精線(株)製のファインメットNFで濾過して、微粒子添加液1を調製した。
(Preparation of fine particle additive solution 1)
50 parts by mass of methylene chloride was placed in the dissolution tank, and 50 parts by mass of the fine particle dispersion 1 prepared above was slowly added while sufficiently stirring the methylene chloride. Further, the particles were dispersed by an attritor so that the secondary particles had a predetermined particle size. This was filtered through Finemet NF manufactured by Nippon Seisen Co., Ltd. to prepare a fine particle additive solution 1.
 (ドープの調製)
 はじめに、加圧溶解タンクに、有機溶媒として下記に示すメチレンクロライドとエタノールを添加した。有機溶媒の入った加圧溶解タンクに、アセチル基置換度が1.90の下記セルロースアセテートを攪拌しながら投入した。これを加熱及び攪拌しながら、完全に溶解した後、安積濾紙(株)製の安積濾紙No.244を使用して濾過し、主ドープを調製した。
(Preparation of dope)
First, methylene chloride and ethanol shown below were added as an organic solvent to the pressure dissolution tank. The following cellulose acetate having an acetyl group substitution degree of 1.90 was added to a pressurized dissolution tank containing an organic solvent while stirring. After complete dissolution with heating and stirring, Azumi Filter Paper No. 1 manufactured by Azumi Filter Paper Co., Ltd. was used. The main dope was prepared by filtration using 244.
 次いで、上記調製した主ドープの入っている主溶解釜に、一般式(A)で表される化合物として例示化合物(221)、糖エステル化合物(平均置換度7.3のベンジルサッカロース)及び上記調製した微粒子添加液1を下記の比率で、投入し、密閉した後、攪拌しながら溶解してドープを調製した。 Next, in the main dissolution vessel containing the main dope prepared above, the exemplified compound (221), the sugar ester compound (benzyl saccharose having an average substitution degree of 7.3) as the compound represented by the general formula (A) and the above preparation The fine particle addition liquid 1 was added at the following ratio, sealed, and then dissolved with stirring to prepare a dope.
 〈ドープの組成〉
 メチレンクロライド                  340質量部
 エタノール                       64質量部
 セルロースアセテート(アセチル基置換度2.85、重量平均分子量約18万)                         100質量部
 一般式(A)で表される化合物:例示化合物(221)    4質量部
 糖エステル化合物(平均置換度7.3のベンジルサッカロース)5質量部
 微粒子添加液1                      2質量部
 (製膜)
 上記調製したドープを、ステンレスベルト支持体上に流延(キャスト)し、フィルム中の残留溶媒量が75質量%になるまで溶媒を蒸発させた後、剥離張力130N/mで、ステンレスベルト支持体上からフィルムを剥離した。
<Dope composition>
Methylene chloride 340 parts by mass Ethanol 64 parts by mass Cellulose acetate (acetyl group substitution degree 2.85, weight average molecular weight about 180,000) 100 parts by mass Compound represented by general formula (A): Exemplified compound (221) 4 parts by mass Sugar Ester compound (benzyl saccharose with an average substitution degree of 7.3) 5 parts by mass Fine particle additive solution 1 2 parts by mass (film formation)
The prepared dope is cast on a stainless steel belt support, the solvent is evaporated until the residual solvent amount in the film reaches 75% by mass, and then the stainless steel belt support with a peeling tension of 130 N / m. The film was peeled from above.
 〈延伸工程〉
 剥離した原反フィルム102を、180℃で加熱しながらテンターを用いて、幅手方向(TD方向)にのみ、120%の延伸倍率で一軸延伸し、次いで、搬送方向(MD方向)に6%収縮させた。延伸開始時の残留溶媒は、15質量%であった。
<Extension process>
The peeled original film 102 was uniaxially stretched at a stretch ratio of 120% only in the width direction (TD direction) using a tenter while heating at 180 ° C., and then 6% in the transport direction (MD direction). Shrink. The residual solvent at the start of stretching was 15% by mass.
 次いで、乾燥ゾーンを多数のローラーを介して搬送させながら乾燥を終了させた。乾燥温度は130℃で、搬送張力は100N/mとした。 Next, drying was completed while the drying zone was conveyed through a number of rollers. The drying temperature was 130 ° C. and the transport tension was 100 N / m.
 以上のようにして、乾燥膜厚が60μmのロール状のλ/4位相差フィルム102を得た。なお、λ/4位相差フィルム102の配向角は、0°であった。 As described above, a roll-like λ / 4 retardation film 102 having a dry film thickness of 60 μm was obtained. Note that the orientation angle of the λ / 4 retardation film 102 was 0 °.
 〔λ/4位相差フィルム103の作製〕
 上記λ/4位相差フィルム102で作製した原反フィルムにおいて、幅方向の延伸倍率を1.0%とし、搬送方向には収縮しないように搬送張力を調整した以外は同様にして、乾燥膜厚が125μmのロール状の原反フィルム103を作製した。
[Production of λ / 4 Retardation Film 103]
In the raw film produced with the λ / 4 retardation film 102, the dry film thickness was similarly obtained except that the draw ratio in the width direction was 1.0% and the conveyance tension was adjusted so as not to shrink in the conveyance direction. Produced a roll-shaped original film 103 having a thickness of 125 μm.
 〈延伸工程〉
 この原反フィルム103を、図3に記載の構成からなる斜め延伸装置を用いて、延伸温度=180℃、延伸倍率=120%、屈曲角度θi=70°、収縮率(MD方向)=6%、配向角:60°の条件で延伸し、膜厚が60μmのロール状のλ/4位相差フィルム103を得た。
<Extension process>
Using the oblique stretching apparatus having the configuration shown in FIG. 3, this raw film 103 is stretched at a temperature of 180 ° C., a stretching ratio of 120%, a bending angle θi = 70 °, and a shrinkage rate (MD direction) = 6%. The film was stretched under the condition of an orientation angle of 60 ° to obtain a roll-like λ / 4 retardation film 103 having a film thickness of 60 μm.
 〔λ/4位相差フィルム104、105、111及び112の作製〕
 上記λ/4位相差フィルム102の作製において、屈曲角度が0°の条件で、膜厚(μm)、延伸温度(℃)、延伸倍率(%)、収縮率(%)、収縮倍率/延伸倍率比を表1に記載の条件に変更した以外は同様にして、λ/4位相差フィルム102の作製で用いたのと同様の延伸工程に従って、λ/4位相差フィルム104、105、111及び112を作製した。
[Production of λ / 4 Retardation Films 104, 105, 111 and 112]
In the production of the λ / 4 retardation film 102, the film thickness (μm), stretching temperature (° C.), stretching ratio (%), shrinkage ratio (%), shrinkage ratio / stretching ratio under the condition that the bending angle is 0 °. The λ / 4 retardation films 104, 105, 111, and 112 were similarly manufactured according to the same stretching process used in the production of the λ / 4 retardation film 102 except that the ratio was changed to the conditions described in Table 1. Was made.
 〔λ/4位相差フィルム106~110の作製〕
 上記λ/4位相差フィルム103の作製において、屈曲角度θi(°)、配向角(°)、膜厚(μm)、延伸温度(℃)、延伸倍率(%)、収縮率(%)、収縮倍率/延伸倍率比を表1に記載の条件に変更した以外は同様にして、λ/4位相差フィルム103の作製の延伸工程(図3に記載の斜め延伸装置)を用いて、λ/4位相差フィルム106~110を作製した。
[Production of λ / 4 Retardation Films 106 to 110]
In the production of the λ / 4 retardation film 103, the bending angle θi (°), the orientation angle (°), the film thickness (μm), the stretching temperature (° C), the stretching ratio (%), the shrinkage rate (%), the shrinkage. In the same manner except that the ratio of magnification / stretch ratio was changed to the conditions described in Table 1, using the stretching process (oblique stretching apparatus described in FIG. 3) for producing the λ / 4 retardation film 103, λ / 4 Retardation films 106 to 110 were produced.
 〔λ/4位相差フィルム113の作製〕
 特開2010-254949号公報の実施例2に記載のフィルム121(表2に記載の構成を参照)の作製において、Ro(550)が140nmとなるように、膜厚を52μmから67μmに変更した以外は同様にして、λ/4位相差フィルム113を作製した。
[Production of λ / 4 Retardation Film 113]
In the production of the film 121 described in Example 2 of JP 2010-254949 A (see the configuration described in Table 2), the film thickness was changed from 52 μm to 67 μm so that Ro (550) was 140 nm. Except for the above, a λ / 4 retardation film 113 was produced in the same manner.
 〔λ/4位相差フィルム114の作製〕
 特開2010-254949号公報の実施例2に記載のフィルム124(表2に記載の構成を参照)の作製において、Ro(550)が140nmとなるように、膜厚を52μmから67μmに変更した以外は同様にして、λ/4位相差フィルム114を作製した。
[Production of λ / 4 Retardation Film 114]
In the production of the film 124 described in Example 2 of JP 2010-254949 A (see the configuration described in Table 2), the film thickness was changed from 52 μm to 67 μm so that Ro (550) was 140 nm. Except for the above, a λ / 4 retardation film 114 was produced in the same manner.
 〔フィルムの各特性値の測定〕
 上記作製した各λ/4位相差フィルムについて、23℃、55%RH環境下で、Axometrcs社製のAxoscanを用いて、450nm、550nm、650nmの波長での面内方向のリターデーションRo(450)、Ro(550)、Ro(650)と、550nmの波長でのRt(550)を測定し、Ro(450)/Ro(550)、Ro(550)/Ro(650)を算出した。
[Measurement of each characteristic value of film]
For each of the λ / 4 retardation films prepared above, retardation Ro in the in-plane direction at wavelengths of 450 nm, 550 nm, and 650 nm using Axoscan manufactured by Axomercs under an environment of 23 ° C. and 55% RH. , Ro (550), Ro (650) and Rt (550) at a wavelength of 550 nm were measured, and Ro (450) / Ro (550) and Ro (550) / Ro (650) were calculated.
 また、屈折率n(280)、n(280)、Δn(400)、Δn(400)は、アッベ屈折率計(1T)と分光光源を用いて、23℃、55%RH環境下で、波長280nm、400nm、410nmにおけるフィルム試料の平均屈折率を測定した。 The refractive index n y (280), n x (280), Δn y (400), Δn x (400) , using a spectral light source and an Abbe refractometer (1T), 23 ℃, 55 % RH environment Below, the average refractive index of the film sample in wavelength 280nm, 400nm, 410nm was measured.
 また、配向角も、同じくAxometrcs社製のAxoscanを用いて測定した。 Further, the orientation angle was also measured using an Axoscan manufactured by Axometrcs.
 また、フィルム膜厚は、市販のマイクロメーターを用いて測定した。 The film thickness was measured using a commercially available micrometer.
 以上により得られた各フィルム特性値を、表1に示す。 Table 1 shows the film characteristic values obtained as described above.
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-T000041
 《円偏光板101~114の作製》
 厚さ120μmのポリビニルアルコールフィルムに、一軸延伸(温度110℃、延伸倍率5倍)処理を施した。
<< Production of circularly polarizing plates 101 to 114 >>
A 120 μm-thick polyvinyl alcohol film was subjected to uniaxial stretching (temperature: 110 ° C., stretching ratio: 5 times).
 これをヨウ素0.075g、ヨウ化カリウム5g、水100gからなる水溶液に60秒間浸漬し、次いで、ヨウ化カリウム6g、ホウ酸7.5g、水100gからなる68℃の水溶液に浸漬した。次いで、これを水洗及び乾燥して偏光子を得た。 This was immersed in an aqueous solution consisting of 0.075 g of iodine, 5 g of potassium iodide and 100 g of water for 60 seconds, and then immersed in an aqueous solution of 68 ° C. consisting of 6 g of potassium iodide, 7.5 g of boric acid and 100 g of water. Next, this was washed with water and dried to obtain a polarizer.
 上記作製したλ/4位相差フィルム101~114を、完全ケン化型ポリビニルアルコール5%水溶液を粘着剤として、上記偏光子の片面に貼合した。その際、偏光子の透過軸とλ/4位相差フィルムの遅相軸が45度となるよう貼合した。偏光子のもう一方の面に、下記保護フィルム1を、同様にアルカリケン化処理して貼り合わせて、円偏光板101~114を作製した。 The λ / 4 retardation films 101 to 114 produced above were bonded to one side of the polarizer using a completely saponified polyvinyl alcohol 5% aqueous solution as an adhesive. At that time, bonding was performed such that the transmission axis of the polarizer and the slow axis of the λ / 4 retardation film were 45 degrees. The following protective film 1 was similarly subjected to alkali saponification treatment and bonded to the other surface of the polarizer to produce circularly polarizing plates 101 to 114.
 〔保護フィルム1の作製〕
 (エステル化合物1の調製)
 1,2-プロピレングリコールを251g、無水フタル酸を278g、アジピン酸を91g、安息香酸を610g、エステル化触媒としてテトライソプロピルチタネートを0.191g、温度計、撹拌器及び緩急冷却管を備えた2Lの四つ口フラスコに仕込み、窒素気流中で230℃になるまで、撹拌しながら徐々に昇温した。15時間脱水縮合反応させ、反応終了後200℃で未反応の1,2-プロピレングリコールを減圧留去することにより、エステル化合物1を得た。得られたエステル化合物1の酸価は0.10mgKOH/g、数平均分子量は450であった。
[Preparation of Protective Film 1]
(Preparation of ester compound 1)
251 g of 1,2-propylene glycol, 278 g of phthalic anhydride, 91 g of adipic acid, 610 g of benzoic acid, 0.191 g of tetraisopropyl titanate as an esterification catalyst, 2 L equipped with a thermometer, stirrer and slow cooling tube The mixture was charged into a four-necked flask and gradually heated with stirring until it reached 230 ° C. in a nitrogen stream. The ester compound 1 was obtained by carrying out a dehydration condensation reaction for 15 hours, and distilling off unreacted 1,2-propylene glycol under reduced pressure at 200 ° C. after completion of the reaction. The ester compound 1 obtained had an acid value of 0.10 mg KOH / g and a number average molecular weight of 450.
 (ドープの調製)
 セルロースアセテート(アセチル基置換度2.88、重量平均分子量約18万)                          90質量部
 エステル化合物1                    10質量部
 チヌビン928(*1)                2.5質量部
 微粒子添加液1(前出)                  4質量部
 メチレンクロライド                  432質量部
 エタノール                       38質量部
 *1)チヌビン928:2-(2H-ベンゾトリアゾール-2-イル)-4,6-ビス(1-メチル-1-フェニルエチル)フェノール(BASFジャパン(株)製)
 以上を密閉容器に投入し、加熱及び撹拌しながら、完全に溶解し、安積濾紙(株)製の安積濾紙No.24を使用して濾過し、ドープ液を調製した。
(Preparation of dope)
Cellulose acetate (acetyl group substitution degree 2.88, weight average molecular weight about 180,000) 90 parts by mass Ester compound 1 10 parts by mass Tinuvin 928 (* 1) 2.5 parts by mass Fine particle additive solution 1 (supra) 4 parts by mass Methylene Chloride 432 parts by mass Ethanol 38 parts by mass * 1) Tinuvin 928: 2- (2H-benzotriazol-2-yl) -4,6-bis (1-methyl-1-phenylethyl) phenol (manufactured by BASF Japan Ltd.) )
The above was put into a sealed container and completely dissolved while heating and stirring, and Azumi Filter Paper No. No. 24 was used for filtration to prepare a dope solution.
 (製膜)
 次に、ベルト流延装置を用い、ステンレスバンド支持体に均一に流延した。ステンレスバンド支持体で、残留溶媒量が100%になるまで溶媒を蒸発させ、ステンレスバンド支持体上から剥離した。セルロースエステルフィルムのウェブを35℃で溶媒を蒸発させ、1.65m幅にスリットし、160℃の熱をかけながらテンターでTD方向(フィルムの幅手方向)に30%、MD方向の延伸倍率は1%延伸した。延伸を始めたときの残留溶媒量は20%であった。その後、120℃の乾燥装置内を多数のローラーで搬送させながら15分間乾燥させた後、1.49m幅にスリットし、フィルム両端に幅15mm、高さ10μmのナーリング加工を施し、巻芯に巻き取り、保護フィルム1を得た。保護フィルム1の残留溶媒量は0.2%であり、膜厚は40μm、巻数は3900mであった。
(Film formation)
Next, the belt casting apparatus was used to uniformly cast on a stainless steel band support. With the stainless steel band support, the solvent was evaporated until the residual solvent amount reached 100%, and the stainless steel band support was peeled off. Cellulose ester film web was evaporated at 35 ° C, slit to 1.65m width, 30% in TD direction (film width direction) with a tenter while applying heat at 160 ° C, draw ratio in MD direction was Stretched 1%. The residual solvent amount at the start of stretching was 20%. After drying for 15 minutes while transporting the inside of a drying device at 120 ° C. with many rollers, slitting to 1.49 m width, applying a knurling process with a width of 15 mm and a height of 10 μm at both ends of the film, and winding it around the core The protective film 1 was obtained. The residual solvent amount of the protective film 1 was 0.2%, the film thickness was 40 μm, and the number of turns was 3900 m.
 保護フィルム1の配向角θは、王子計測器社製の自動複屈折計KOBRA-21ADHを用いて測定した結果、フィルム長手方向に対して90°±1°の範囲にあった。 The orientation angle θ of the protective film 1 was measured using an automatic birefringence meter KOBRA-21ADH manufactured by Oji Scientific Instruments, and as a result, it was in the range of 90 ° ± 1 ° with respect to the film longitudinal direction.
 《有機ELセルの作製》
 3mm厚の50インチ(127cm)用無アルカリガラスを用いて、特開2010-20925号公報の実施例に記載されている方法に従って、同公報の図8に記載されている構成からなる有機ELセルを作製した。
<< Production of organic EL cell >>
An organic EL cell having a configuration described in FIG. 8 of the publication using a 3 mm-thick 50-inch (127 cm) non-alkali glass in accordance with the method described in Examples of Japanese Patent Application Laid-Open No. 2010-20925. Was made.
 《有機EL画像表示装置の作製》
 上記作製した各円偏光板のλ/4位相差フィルムの表面に接着剤を塗工した後、有機ELセルの視認側に貼合することで有機EL画像表示装置101~114を作製した。
<< Production of organic EL image display apparatus >>
After the adhesive was applied to the surface of the λ / 4 retardation film of each circularly polarizing plate produced as described above, organic EL image display devices 101 to 114 were produced by bonding to the viewing side of the organic EL cell.
 《有機EL画像表示装置の評価》
 上記作製した各有機EL画像表示装置について、下記評価を行った。
<< Evaluation of organic EL image display device >>
The following evaluation was performed about each produced said organic EL image display apparatus.
 〔表示性能の評価〕
 (視認性の評価1:黒表示)
 23℃、55%RHの環境で、有機EL画像表示装置の最表面から5cm高い位置での照度が1000Lxとなる条件下で、有機EL画像表示装置に黒画像を表示した。
[Evaluation of display performance]
(Visibility evaluation 1: Black display)
In an environment of 23 ° C. and 55% RH, a black image was displayed on the organic EL image display device under the condition that the illuminance was 1000 Lx at a position 5 cm higher than the outermost surface of the organic EL image display device.
 次いで、表示した黒画像について、有機EL画像表示装置の正面位置(面法線に対し0°)と、面法線に対し40°の斜め角度からの視認性を一般モニター10人で行い、下記の基準に従って、黒画像の視認性を評価した。本発明では、△以上であれば実用上可と判断した。 Next, with respect to the displayed black image, the front position of the organic EL image display device (0 ° with respect to the surface normal) and the visibility from an oblique angle of 40 ° with respect to the surface normal are performed by 10 general monitors. The black image visibility was evaluated according to the above criteria. In the present invention, it was judged practically acceptable if it was Δ or more.
 ◎:9人以上のモニターが、表示された画像が黒であると判定した
 ○:7~8人のモニターが、表示された画像が黒であると判定した
 △:5~6人のモニターが、表示された画像が黒であると判定した
 ×:表示された画像が黒であると判定したモニターが、4人以下である
 (視認性の評価2:BGRカラー画像)
 23℃、55%RHの環境で、有機EL画像表示装置の最表面から5cm高い位置での照度が1000Lxとなる条件下で、有機EL画像表示装置にBGRカラーチャート画像を表示した。
◎: Nine or more monitors determined that the displayed image was black ○: Seven to eight monitors determined that the displayed image was black △: Five to six monitors , Determined that the displayed image is black ×: The number of monitors determined that the displayed image is black is 4 or less (Visibility evaluation 2: BGR color image)
In an environment of 23 ° C. and 55% RH, a BGR color chart image was displayed on the organic EL image display device under the condition that the illuminance at the position 5 cm higher than the outermost surface of the organic EL image display device was 1000 Lx.
 次いで、表示したBGRカラー画像について、有機EL画像表示装置の正面位置(面法線に対し0°)と、面法線に対し40°の斜め角度からの視認性を一般モニター10人で行い、下記の基準に従って、BGRカラー画像の視認性を評価した。本発明では、△以上であれば実用上可と判断した。 Next, with respect to the displayed BGR color image, the front position of the organic EL image display device (0 ° with respect to the surface normal) and visibility from an oblique angle of 40 ° with respect to the surface normal are performed by 10 general monitors, The visibility of the BGR color image was evaluated according to the following criteria. In the present invention, it was judged practically acceptable if it was Δ or more.
 ◎:9人以上のモニターが良好なBGRカラー画像であると判定した
 ○:7~8人のモニターが良好なBGRカラー画像であると判定した
 △:5~6人のモニターが良好なBGRカラー画像であると判定した
 ×:良好なBGRカラー画像であると判定したモニターが、4人以下である
 以上により得られた結果を、表2に示す。
A: Nine or more monitors were determined to be good BGR color images. O: Seven to eight monitors were determined to be good BGR color images. Δ: Five to six monitors were good BGR colors. Table 2 shows the results obtained by the above. The number of monitors determined to be good BGR color images is 4 or less.
Figure JPOXMLDOC01-appb-T000042
Figure JPOXMLDOC01-appb-T000042
 表2に記載の結果より明らかなように、本発明で規定する各特性値を備えた本発明のλ/4位相差フィルムを有する円偏光板を具備した本発明の有機EL画像表示装置は、比較例に対し、表示した黒画像及びBGRカラー画像の画像表示性能(視認性)に優れていることが分かる。 As is clear from the results shown in Table 2, the organic EL image display device of the present invention including the circularly polarizing plate having the λ / 4 retardation film of the present invention having each characteristic value defined in the present invention is It can be seen that the image display performance (visibility) of the displayed black image and BGR color image is superior to the comparative example.
 実施例2
 《λ/4位相差フィルムの作製》
 〔λ/4位相差フィルム201~207の作製〕
 実施例1に記載のλ/4位相差フィルム106の作製において、一般式(A)で表される化合物の種類及び膜厚を、表3に記載の構成に変更した以外は同様にして、λ/4位相差フィルム201~207の作製を作製した。
Example 2
<< Production of λ / 4 retardation film >>
[Production of λ / 4 retardation films 201 to 207]
In the production of the λ / 4 retardation film 106 described in Example 1, the type and film thickness of the compound represented by the general formula (A) were similarly changed except that the configuration described in Table 3 was used. / 4 Retardation films 201 to 207 were produced.
Figure JPOXMLDOC01-appb-T000043
Figure JPOXMLDOC01-appb-T000043
 《円偏光板、有機ELセル及び有機EL画像表示装置の作製》
 実施例1に記載の方法と同様にして、上記作製したλ/4位相差フィルム201~207を用いて、円偏光板201~207、有機ELセル201~207及び有機EL画像表示装置201~207を作製した。
<< Production of Circular Polarizing Plate, Organic EL Cell, and Organic EL Image Display >>
In the same manner as in the method described in Example 1, using the λ / 4 retardation films 201 to 207 produced above, circularly polarizing plates 201 to 207, organic EL cells 201 to 207, and organic EL image display devices 201 to 207 are used. Was made.
 《有機EL画像表示装置の評価》
 上記作製した有機EL画像表示装置201~207及び実施例1で作製した有機EL画像表示装置106について、実施例1に記載したのと同様の方法で、黒表示及びBGRカラー画像の画像表示性能(視認性)の評価を行い、得られた結果を表4に示す。
<< Evaluation of organic EL image display device >>
With respect to the organic EL image display devices 201 to 207 manufactured as described above and the organic EL image display device 106 manufactured in Example 1, the image display performance of black display and BGR color image (in the same manner as described in Example 1) ( (Visibility) was evaluated and the obtained results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000044
Figure JPOXMLDOC01-appb-T000044
 表4に記載の結果より明らかなように、本発明で規定する各特性値を備えた本発明のλ/4位相差フィルムを有す円偏光板を具備した本発明の有機EL画像表示装置は、比較例に対し、黒表示及びBGRカラー画像の画像表示性能(視認性)に優れていることが分かる。 As is clear from the results shown in Table 4, the organic EL image display device of the present invention comprising the circularly polarizing plate having the λ / 4 retardation film of the present invention having the characteristic values defined in the present invention is It can be seen that the image display performance (visibility) of the black display and the BGR color image is superior to the comparative example.
 本発明のλ/4位相差フィルムは、位相差発現性が高く、薄膜で逆波長分散特性を備え、厚さ方向の位相差を低減した広帯域のλ/4位相差フィルムであり、有機エレクトロルミネッセンス画像表示装置に好適に利用できる。 The λ / 4 retardation film of the present invention is a broadband λ / 4 retardation film having a high retardation development property, a thin film, having reverse wavelength dispersion characteristics, and a reduced retardation in the thickness direction, and organic electroluminescence. It can be suitably used for an image display device.
 1 マトリックス樹脂の主鎖
 2 延伸方向
 4 化合物の主鎖
 5 化合物の側鎖
 11 延伸法王
 13 搬送方向
 14 遅相軸
 D1 繰り出し方向
 D2 巻取り方向
 F セルロースアシレートフィルム
 θi 屈曲角度(繰り出し角度)
 Ci、Co 把持具
 Ri、Ro レール
 Wo 延伸前のフィルムの幅
 W 延伸後のフィルムの幅
 16 フィルム繰り出し装置
 17 搬送方向変更装置
 18 巻き取り装置
 19 製膜装置
 A 有機エレクトロルミネセンス画像表示装置
 B 有機エレクトロルミネセンス素子
 C 円偏光板
 101 透明基板
 102 金属電極
 103 TFT
 104 有機機能層ユニット
 105 透明電極
 106 絶縁層
 107 封止層
 108 フィルム
 109 λ/4位相差フィルム
 110 偏光子
 111 保護フィルム
 112 硬化層
 113 反射防止層
DESCRIPTION OF SYMBOLS 1 Main chain of matrix resin 2 Stretching direction 4 Compound main chain 5 Compound side chain 11 Stretching method 13 Transport direction 14 Slow axis D1 Feeding direction D2 Winding direction F Cellulose acylate film θi Bending angle (feeding angle)
Ci, Co gripper Ri, Ro Rail Wo Width of film before stretching W Width of film after stretching 16 Film feeding device 17 Transport direction changing device 18 Winding device 19 Film forming device A Organic electroluminescence image display device B Organic Electroluminescence element C Circularly polarizing plate 101 Transparent substrate 102 Metal electrode 103 TFT
104 Organic functional layer unit 105 Transparent electrode 106 Insulating layer 107 Sealing layer 108 Film 109 λ / 4 retardation film 110 Polarizer 111 Protective film 112 Cured layer 113 Antireflection layer

Claims (5)

  1.  23℃、相対湿度55%の環境下で測定した波長550nmにおける厚さ方向の位相差Rt(550)が150nm以下であり、23℃、相対湿度55%の環境下で測定した面内位相差Roの波長分散特性が下記条件1を満たし、かつ面内屈折率が下記条件2及び条件3を同時に満たすことを特徴とするλ/4位相差フィルム。
     条件1
       0.72≦Ro(450)/Ro(550)≦0.96
     かつ
       0.83≦Ro(550)/Ro(650)≦0.98
    〔式中、Ro(450)は波長450nmにおける面内位相差であり、Ro(550)は波長550nmにおける面内位相差であり、Ro(650)は波長650nmにおける面内位相差である。〕
     条件2
       1.000≦n(280)/n(280)≦3.500
    〔式中、n(280)は、波長280nmにおける進相軸方向の屈折率であり、n(280)は波長280nmにおける遅相軸方向の屈折率を表す。〕
     条件3
       1.05≦Δn(400)/Δn(400)≦2.15
    〔上記Δn(400)は、波長400nm近傍における進相軸方向の屈折率の傾きであり、Δn(400)=(n(410)-n(400))で表される。n(410)は波長410nmにおける進相軸方向の屈折率であり、n(400)は波長400nmにおける進相軸方向の屈折率である。上記Δn(400)は、波長400nm近傍における遅相軸方向の屈折率傾きであり、Δn(400)=(n(410)-n(400))で表される。n(410)は波長410nmにおける遅相軸方向の屈折率であり、n(400)は波長400nmにおける遅相軸方向の屈折率である。〕
    The thickness direction retardation Rt (550) measured at 23 ° C. and 55% relative humidity is 150 nm or less, and the in-plane retardation Ro measured at 23 ° C. and 55% relative humidity. The λ / 4 retardation film is characterized in that the wavelength dispersion characteristic satisfies the following condition 1 and the in-plane refractive index satisfies the following conditions 2 and 3 simultaneously.
    Condition 1
    0.72 ≦ Ro (450) / Ro (550) ≦ 0.96
    And 0.83 ≦ Ro (550) / Ro (650) ≦ 0.98
    [In the formula, Ro (450) is an in-plane phase difference at a wavelength of 450 nm, Ro (550) is an in-plane phase difference at a wavelength of 550 nm, and Ro (650) is an in-plane phase difference at a wavelength of 650 nm. ]
    Condition 2
    1.000 ≦ n y (280) / n x (280) ≦ 3.500
    [Where n y (280) represents the refractive index in the fast axis direction at a wavelength of 280 nm, and n x (280) represents the refractive index in the slow axis direction at a wavelength of 280 nm. ]
    Condition 3
    1.05 ≦ Δn y (400) / Δn x (400) ≦ 2.15
    [The Δn y (400) is the slope of the fast-axis refractive index at a wavelength of 400nm near represented by Δn y (400) = (n y (410) -n y (400)). n y (410) is the refractive index in the fast axis direction at a wavelength of 410 nm, and n y (400) is the refractive index in the fast axis direction at a wavelength of 400 nm. Δn x (400) is a refractive index gradient in the slow axis direction in the vicinity of a wavelength of 400 nm, and is represented by Δn x (400) = (n x (410) −n x (400)). n x (410) is a refractive index in the slow axis direction at a wavelength of 410nm, n x (400) is the refractive index in the slow axis direction at a wavelength of 400 nm. ]
  2.  遅相軸方向に延伸し、進相軸方向に収縮する延伸収縮工程を経て作製され、該遅相軸方向の延伸倍率に対する該進相軸方向の収縮倍率の比率(収縮倍率/延伸倍率)が、0.05~0.70の範囲内であることを特徴とする請求項1に記載のλ/4位相差フィルム。 The film is produced through a stretching / shrinking process in which the film is stretched in the slow axis direction and contracted in the fast axis direction, and the ratio of the shrinkage ratio in the fast axis direction to the stretch ratio in the slow axis direction (shrinkage ratio / stretch ratio) is The λ / 4 retardation film according to claim 1, wherein the λ / 4 retardation film is in a range of 0.05 to 0.70.
  3.  遅相軸方向が、搬送方向に対し30~60°の角度範囲内で配向していることを特徴とする請求項1又は請求項2に記載のλ/4位相差フィルム。 3. The λ / 4 retardation film according to claim 1, wherein the slow axis direction is oriented within an angle range of 30 to 60 ° with respect to the transport direction.
  4.  膜厚が、30~80μmの範囲内であることを特徴とする請求項1から請求項3までのいずれか一項に記載のλ/4位相差フィルム。 The λ / 4 retardation film according to any one of claims 1 to 3, wherein the film thickness is in a range of 30 to 80 µm.
  5.  請求項1から請求項4までのいずれか一項に記載のλ/4位相差フィルムを有する円偏光板と、有機エレクトロルミネッセンス素子とを具備し、画面サイズが20インチ以上であることを特徴とする有機エレクトロルミネッセンス画像表示装置。 It comprises a circularly polarizing plate having the λ / 4 retardation film according to any one of claims 1 to 4 and an organic electroluminescence element, and has a screen size of 20 inches or more. Organic electroluminescence image display device.
PCT/JP2013/055949 2012-03-12 2013-03-05 Λ/4 phase-shifted film and organic electroluminescent image display device WO2013137058A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020147023048A KR101498440B1 (en) 2012-03-12 2013-03-05 λ/4 PHASE-SHIFTED FILM AND ORGANIC ELECTROLUMINESCENT IMAGE DISPLAY DEVICE
JP2014504806A JP5601433B2 (en) 2012-03-12 2013-03-05 λ / 4 retardation film and organic electroluminescence image display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-053996 2012-03-12
JP2012053996 2012-03-12

Publications (1)

Publication Number Publication Date
WO2013137058A1 true WO2013137058A1 (en) 2013-09-19

Family

ID=49160971

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/055949 WO2013137058A1 (en) 2012-03-12 2013-03-05 Λ/4 phase-shifted film and organic electroluminescent image display device

Country Status (3)

Country Link
JP (1) JP5601433B2 (en)
KR (1) KR101498440B1 (en)
WO (1) WO2013137058A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220123722A (en) * 2020-07-07 2022-09-08 도요보 가부시키가이샤 liquid crystal display

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102054754B1 (en) * 2015-02-04 2019-12-11 후지필름 가부시키가이샤 Image display device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000137116A (en) * 1998-10-30 2000-05-16 Teijin Ltd Phase difference plate and liquid crystal display device using the same
JP2008530584A (en) * 2005-03-01 2008-08-07 日東電工株式会社 Compensation plate for liquid crystal display
JP2010151910A (en) * 2008-12-24 2010-07-08 Nippon Oil Corp Elliptical polarizer and image display device employing the same
JP2011519060A (en) * 2008-04-25 2011-06-30 クリスオプティクス株式会社 Color LCD and compensation panel

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4931531B2 (en) * 2006-09-25 2012-05-16 富士フイルム株式会社 Optical compensation film, method for producing the same, polarizing plate, and liquid crystal display device
US8043787B2 (en) * 2008-03-14 2011-10-25 Eastman Kodak Company Negative-working imageable elements with improved abrasion resistance

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000137116A (en) * 1998-10-30 2000-05-16 Teijin Ltd Phase difference plate and liquid crystal display device using the same
JP2008530584A (en) * 2005-03-01 2008-08-07 日東電工株式会社 Compensation plate for liquid crystal display
JP2011519060A (en) * 2008-04-25 2011-06-30 クリスオプティクス株式会社 Color LCD and compensation panel
JP2010151910A (en) * 2008-12-24 2010-07-08 Nippon Oil Corp Elliptical polarizer and image display device employing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220123722A (en) * 2020-07-07 2022-09-08 도요보 가부시키가이샤 liquid crystal display
KR102532754B1 (en) 2020-07-07 2023-05-16 도요보 가부시키가이샤 liquid crystal display

Also Published As

Publication number Publication date
JP5601433B2 (en) 2014-10-08
KR20140107693A (en) 2014-09-04
JPWO2013137058A1 (en) 2015-08-03
KR101498440B1 (en) 2015-03-03

Similar Documents

Publication Publication Date Title
JP6935840B2 (en) Method for manufacturing diagonally stretched film
KR101677866B1 (en) Phase difference film, circularly polarizing plate, and image forming device
WO2014061215A1 (en) Phase difference film, circular polarization plate and organic el display manufactured using phase difference film
JP2017109262A (en) Manufacturing method and manufacturing device of optical film
JP6102738B2 (en) ORGANIC ELECTROLUMINESCENCE DISPLAY DEVICE, MANUFACTURING METHOD FOR CIRCULAR POLARIZED PLATE, AND LONG λ / 4 PLATE
KR101700052B1 (en) Retardation film, elongated circularly polarizing plate produced using said retardation film, and organic el display
JP6699655B2 (en) Method for producing obliquely stretched film
JP2020179671A (en) Method for producing obliquely stretched film
JP6048349B2 (en) Method for producing retardation film
KR101662920B1 (en) /4 phase difference film and method for producing same circularly polarizing plate and organic electroluminescent display device
JP5601433B2 (en) λ / 4 retardation film and organic electroluminescence image display device
JP6056758B2 (en) Organic EL display device
WO2013137123A1 (en) λ/4 PHASE DIFFERENCE FILM, CIRCULARLY POLARIZING PLATE, AND ORGANIC ELECTROLUMINESCENT DISPLAY DEVICE
WO2016132893A1 (en) Method for producing elongated obliquely stretched film
WO2014087593A1 (en) Retardation film, circularly polarizing plate, and image display device
JP5724847B2 (en) Organic electroluminescence stereoscopic image display system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13761306

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014504806

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147023048

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13761306

Country of ref document: EP

Kind code of ref document: A1