WO2013136916A1 - Load lock device - Google Patents

Load lock device Download PDF

Info

Publication number
WO2013136916A1
WO2013136916A1 PCT/JP2013/053874 JP2013053874W WO2013136916A1 WO 2013136916 A1 WO2013136916 A1 WO 2013136916A1 JP 2013053874 W JP2013053874 W JP 2013053874W WO 2013136916 A1 WO2013136916 A1 WO 2013136916A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
container
substrate
purge gas
load lock
Prior art date
Application number
PCT/JP2013/053874
Other languages
French (fr)
Japanese (ja)
Inventor
仙尚 小林
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Publication of WO2013136916A1 publication Critical patent/WO2013136916A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/564Means for minimising impurities in the coating chamber such as dust, moisture, residual gases
    • C23C14/566Means for minimising impurities in the coating chamber such as dust, moisture, residual gases using a load-lock chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/54Apparatus specially adapted for continuous coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67201Apparatus for manufacturing or treating in a plurality of work-stations characterized by the construction of the load-lock chamber

Definitions

  • the present invention relates to a load lock device used in a vacuum processing apparatus that performs vacuum processing on a substrate to be processed such as a semiconductor wafer.
  • a semiconductor wafer (hereinafter simply referred to as a wafer) that is a substrate to be processed.
  • a plurality of vacuum processing units are connected to a transfer chamber held in a vacuum and provided in this transfer chamber.
  • a cluster tool type multi-chamber type vacuum processing system in which a wafer can be transferred to each vacuum processing unit by the transferred transfer device is used (for example, Patent Document 1).
  • a load lock device (load lock device) is provided between the transfer chamber and the wafer cassette. Chamber), and the wafer is transferred through the load lock device.
  • the wafer is taken out of the vacuum processing unit at a high temperature exceeding, for example, 500 ° C. and transferred into the container of the load lock device.
  • a high temperature exceeding, for example, 500 ° C.
  • the wafer is oxidized.
  • the storage container which is usually made of resin, melts.
  • a cooling plate with a cooling mechanism for cooling the wafer is arranged in the container of the load lock device, and gas is introduced into the container of the load lock device in a state where the wafer is close to the cooling plate. Then, the wafer is cooled while the inside of the container is returned from the vacuum to the atmospheric pressure.
  • the pressure in the container is low (10 Pa or less) at the time when the wafer is carried into the container of the load lock device and the cooling is started, the pressure region where the effect of conduction heat transfer in the initial stage of cooling is exhibited ( Up to several thousand Pa), it is difficult to perform cooling by the cooling plate.
  • the purge gas is rapidly flowed into the container, there is a concern that particles may be rolled up. Therefore, it is necessary to gradually introduce the gas for about 10 seconds until the pressure reaches 1000 Pa (slow vent).
  • the rate of temperature decrease is low, and it takes a long time to cool the wafer, and the cooling time of the wafer in the load lock device determines the processing of the entire processing system, thereby reducing the throughput.
  • an object of the present invention is to provide a load lock device that can efficiently cool a high-temperature substrate and increase the throughput of substrate processing.
  • a load lock device used when a substrate is transferred from an atmospheric atmosphere to a vacuum chamber held in a vacuum, and a high-temperature substrate is transferred from the vacuum chamber to the atmospheric atmosphere.
  • a container provided such that the pressure can be varied between a pressure corresponding to the vacuum chamber and the atmospheric pressure, a purge gas supply mechanism for supplying a purge gas into the container, an exhaust mechanism for exhausting the inside of the container, By controlling the purge gas supply mechanism and the exhaust mechanism, when the inside of the container communicates with the vacuum chamber, the pressure in the container is adjusted to a pressure corresponding to the vacuum chamber, and the inside of the container is in the atmosphere.
  • a pressure adjusting mechanism that adjusts the pressure in the container to atmospheric pressure when communicating with the space, a substrate support member that supports the substrate in the container, an upper surface of the substrate supported by the substrate support member, and Alternatively, a gas discharge member made of a porous body or a shower structure that is provided facing the lower surface and discharges the purge gas supplied from the purge gas supply mechanism toward the upper surface and / or the lower surface of the substrate, and the pressure in the container
  • the pressure difference between both sides sandwiching the gas discharge member is substantially maintained when the pressure is increased or when the inside of the container is at atmospheric pressure, and the temperature of the gas discharged from the gas discharge member is reduced.
  • a control unit that controls the pressure adjusting mechanism so as to provide the load lock device.
  • a load lock device used for transferring a substrate from an atmospheric atmosphere to a vacuum chamber held in a vacuum, and transferring a high-temperature substrate from the vacuum chamber to the atmospheric atmosphere.
  • a container provided such that the pressure can be varied between the pressure corresponding to the vacuum chamber and the atmospheric pressure, a purge gas supply mechanism for supplying a purge gas into the container, an exhaust mechanism for exhausting the inside of the container, and the purge gas
  • the pressure inside the container is adjusted to a pressure corresponding to the vacuum chamber when the inside of the container communicates with the vacuum chamber.
  • the internal pressure is increased or when the inside of the container becomes atmospheric pressure, the pressure difference between both sides sandwiching the gas discharge member is substantially maintained, and the temperature of the gas discharged from the gas discharge member is A control unit that controls the pressure adjusting mechanism so as to obtain an effect of decreasing, and in addition to a decrease in temperature of the substrate due to the fact that the pressure difference between both sides across the gas discharge member is substantially maintained, the upper surface of the substrate And / or a load lock device in which the temperature of the substrate is lowered due to a collision between the purge gas discharged
  • control unit can control the pressure adjusting mechanism so as to obtain a Joule-Thomson effect when the pressure in the container is increased or when the inside of the container becomes atmospheric pressure.
  • control unit controls the pressure adjusting mechanism so as to suppress a temperature increase due to adiabatic compression when the pressure in the container is increased.
  • the pressure adjustment mechanism alternately supplies the purge gas into the container and exhausts the container to thereby reduce the pressure in the container. It is preferable to control the pressure adjusting mechanism to adjust.
  • the gas discharge member can be made of a porous ceramic.
  • FIG. 1 is a vertical sectional view showing a load lock device according to a first embodiment of the present invention. It is a horizontal sectional view showing the load lock device concerning a 1st embodiment of the present invention. It is a timing chart which shows the example of the sequence which repeats purge gas supply and exhaust_gas
  • FIG. 1 is a horizontal sectional view showing a schematic structure of a multi-chamber type vacuum processing system to which a load lock device of the present invention is applied.
  • the vacuum processing system includes four vacuum processing units 1, 2, 3, and 4 that perform high-temperature processing such as film formation processing.
  • Each of these vacuum processing units 1 to 4 has a hexagonal transfer chamber 5.
  • load lock devices 6 and 7 according to the present embodiment are provided on the other two sides of the transfer chamber 5, respectively.
  • a loading / unloading chamber 8 is provided on the opposite side of the load lock devices 6 and 7 to the transfer chamber 5, and a wafer W as a substrate to be processed is placed on the loading / unloading chamber 8 on the opposite side of the load lock devices 6 and 7.
  • Ports 9, 10, and 11 for attaching three hoops F that can be accommodated are provided.
  • the hoop F is mounted on the mounting table S.
  • the vacuum processing units 1, 2, 3, and 4 are configured to perform predetermined vacuum processing, for example, etching or film formation processing, with a wafer W as a substrate to be processed placed on a processing plate. .
  • the vacuum processing units 1 to 4 are connected to each side of the transfer chamber 5 via a gate valve G as shown in the figure, and these are communicated with the transfer chamber 5 by opening the corresponding gate valve G. By closing the corresponding gate valve G, the transfer chamber 5 is shut off.
  • the load lock devices 6 and 7 are connected to each of the remaining sides of the transfer chamber 5 via the first gate valve G1, and are connected to the carry-in / out chamber 8 via the second gate valve G2. Has been.
  • the load lock devices 6 and 7 are communicated with the transfer chamber 5 by opening the first gate valve G1, and are disconnected from the transfer chamber 5 by closing the first gate valve G1.
  • the second gate valve G2 is opened to communicate with the loading / unloading chamber 8, and the second gate valve G2 is closed to shut off the loading / unloading chamber 8.
  • a transfer device 12 for loading and unloading the wafer W with respect to the vacuum processing units 1 to 4 and the load lock devices 6 and 7 is provided.
  • the transfer device 12 is disposed substantially at the center of the transfer chamber 5, and is capable of rotating and expanding / contracting, and a rotation / extension / contraction unit 13, and two support arms 14 a and 14 b that support the wafer W provided at the tip thereof. These two support arms 14a and 14b are attached to the rotating / extending / contracting portion 13 so as to face opposite directions.
  • the inside of the transfer chamber 5 is maintained at a predetermined degree of vacuum.
  • Shutters are provided in the ports 9, 10, and 11, which are wafer storage containers in the loading / unloading chamber 8, and the wafers W are accommodated in these ports 9, 10, and 11 or empty FOUPs F are directly attached. When attached, the shutter is released to communicate with the carry-in / out chamber 8 while preventing the entry of outside air.
  • An alignment chamber 15 is provided on the side surface of the loading / unloading chamber 8, and the wafer W is aligned there.
  • a transfer device 16 for loading / unloading the wafer W into / from the FOUP F and loading / unloading the wafer W into / from the load lock devices 6 and 7 is provided.
  • the transfer device 16 has an articulated arm structure and can run on the rail 18 along the direction in which the hoops F are arranged.
  • the wafer W is placed on the support arm 17 at the tip of the transfer device 16 and transferred. I do.
  • Each component in the vacuum processing system for example, the vacuum processing units 1 to 4, the transfer chamber 5, the gas supply system and the exhaust system in the load lock devices 6 and 7, the transfer devices 12 and 16, the gate valve, etc. It is controlled by a control unit 20 having a computer.
  • the control unit 20 includes a storage unit that stores a process sequence of the vacuum processing system and a process recipe that is a control parameter, an input unit, a display, and the like, and controls the vacuum processing system in accordance with the selected process recipe. Yes.
  • the wafer W is taken out from the FOUP F connected to the loading / unloading chamber 8 by the transfer device 16 and placed in the container 31 (see FIG. 2) of the load lock device 6 (or 7). Carry in. At this time, the inside of the container 31 of the load lock device 6 is set to an air atmosphere, and then the wafer W is loaded with the second gate valve G2 opened.
  • the container 31 is evacuated until the pressure corresponding to the transfer chamber 5 is reached, the first gate valve G1 is opened, the wafer W is received from the container 31 by the transfer device 12, and one of the vacuum processing units.
  • the gate valve G is opened and the wafer W is loaded therein, and the wafer W is subjected to vacuum processing at a high temperature such as film formation.
  • the gate valve G When the vacuum processing is completed, the gate valve G is opened, the transfer device 12 unloads the wafer W from the corresponding vacuum processing unit, the first gate valve G1 is opened, and the wafer W is loaded into the load lock devices 6 and 7. Then, a purge gas is introduced into the container 31, and the wafer W in the container 31 is cooled by the purge gas while the atmospheric pressure is set to atmospheric pressure (wafer cooling period). Then, the second gate valve G ⁇ b> 2 is opened, and the processed wafer W is stored in the FOUP F by the transfer device 16.
  • the load lock device 6 may be dedicated to carry-in, and the load lock device 7 may be dedicated to carry-out.
  • FIG. 2 is a vertical sectional view showing the load lock device according to the first embodiment of the present invention
  • FIG. 3 is a horizontal sectional view thereof.
  • the load lock device 6 (7) has a container 31.
  • the container 31 includes a container main body 31a having an upper opening and a lid 31b that closes the upper opening of the container main body 31a.
  • a cooling plate (cooling member) 32 that cools the wafer W is provided at the bottom of the container 31 in a state where the wafer W is close to the container 31.
  • the container 31 and the cooling plate 32 are made of, for example, aluminum or an aluminum alloy.
  • An opening 34 that can communicate with the transfer chamber 5 held in vacuum is provided on one side wall of the container 31, and an opening that can communicate with the loading / unloading chamber 8 held at atmospheric pressure is provided on the opposite side wall. 35 is provided.
  • the opening 34 can be opened and closed by the first gate valve G1, and the opening 35 can be opened and closed by the second gate valve G2.
  • the cooling plate 32 is provided with a plurality of wafer elevating pins (not shown) for wafer transfer so as to protrude and retract with respect to the surface (upper surface) of the cooling plate 32.
  • These wafer elevating pins are moved up and down by a drive mechanism (not shown) such as an air cylinder, and the wafer W is transferred from the surface (upper surface) of the cooling plate 32, and the cooling position is submerged in the cooling plate 32. It can be moved between.
  • Three (only two are shown in FIG. 2) wafer support pins (wafer support members) 54 are attached to the upper surface of the cooling plate 32, and the wafer W in the cooling position is cooled by these wafer support pins 54. It is located at a position separated from the plate 32. Since the wafer W is thus separated from the cooling plate 32, the adhesion of particles to the back surface of the wafer W can be reduced.
  • a lower gas discharge member 52 having a rod shape made of a porous body such as a porous ceramic or a shower structure, which discharges a gas serving as a purge gas and a cooling gas so as to face the lower surface of the wafer W. Is provided.
  • the lower surface of the lid 31b of the container 31 is from a porous body or shower structure such as a porous ceramic that discharges a gas that serves as both a purge gas and a cooling gas so as to face the upper surface of the wafer W on the cooling plate 32.
  • An upper gas discharge member 51 having a rod shape is provided.
  • the upper gas discharge member 51 and the lower gas discharge member 52 are disposed so as to face the central portions of the upper and lower surfaces of the wafer W.
  • the upper gas discharge member 51 is connected to an upper pipe 45 a extending from the side of the container 31, and the lower gas discharge member 52 is connected to a lower pipe 45 b extending from the side of the container 31.
  • the upper pipe 45 a and the lower pipe 45 b are branched from the purge gas supply pipe 45, and a purge gas source 48 is connected to the purge gas supply pipe 45.
  • the purge gas supply pipe 45 is provided with an opening / closing valve 46 and a flow rate adjusting valve 47.
  • open / close valves 55 and 56 are provided in the upper pipe 45a and the lower pipe 45b, respectively.
  • the purge gas serving as the cooling gas supplied from the purge gas source 48 through the purge gas supply pipe 45, the upper pipe 45a, and the lower pipe 45b while adjusting the flow rate by the flow rate adjusting valve 47 is used as the upper gas discharge member 51 and the lower gas discharge valve 51.
  • the upper surface of the wafer W is supplied from either the upper gas discharge member 51 or the lower gas discharge member 52 by supplying the gas from the side gas discharge member 52 toward the upper and lower surfaces of the wafer W or by operating the on-off valves 55 and 56. And it comes to supply toward the lower surface.
  • An exhaust port 36 for evacuating the inside of the container 31 is provided at the bottom of the container 31.
  • An exhaust pipe 41 is connected to the exhaust port 36, and an open / close valve 42, an exhaust speed adjustment valve 43, and a vacuum pump 44 are provided in the exhaust pipe 41. Therefore, the inside of the container 31 can be evacuated at a predetermined speed by the exhaust speed adjusting valve 43 and the vacuum pump 44.
  • the opening / closing valve 46 is closed and the opening / closing valve 42 is opened, and the exhaust speed adjustment valve 43 is adjusted to adjust the vacuum pump 44 at a predetermined speed.
  • the pressure in the container 31 is set to a pressure corresponding to the pressure in the transfer chamber 5, and in this state, the first gate valve G1 is opened and the container 31 and the transfer chamber 5 are opened.
  • the opening / closing valve 42 is closed and the opening / closing valve 46 is opened, and the flow rate adjusting valve 47 is adjusted to adjust nitrogen gas or the like.
  • the purge gas is supplied from the purge gas source 48 to the upper gas discharge member 51 and the lower gas discharge member 52 made of a porous body or a shower structure through the purge gas supply pipe 45, the upper pipe 45a and the lower pipe 45b. Are discharged onto the upper and lower surfaces of the wafer W, and the pressure in the container 31 is increased to near atmospheric pressure by the discharged purge gas. In this state, the second gate valve G2 is opened to open the container 31 and the loading / unloading chamber 8; Communicate between the two. When the pressure is increased, supply of purge gas and exhaust may be used in combination in order to adjust the rate of increase in pressure. Also, by operating the on-off valves 55 and 56, purge gas is supplied from the upper pipe 45a or the lower pipe 45b to the upper gas discharge member 51 or the lower gas discharge member 52 and discharged onto the upper or lower surface of the wafer W. Also good.
  • the pressure in the container 31 is adjusted between the atmospheric pressure and a predetermined vacuum atmosphere by the pressure adjusting mechanism 49.
  • the pressure adjusting mechanism 49 controls the opening / closing valve 42, the exhaust speed adjusting valve 43, the flow rate adjusting valve 47, and the opening / closing valve 46 based on the pressure in the container 31 measured by the pressure gauge 59. Adjust pressure.
  • the pressure adjustment mechanism 49 is controlled by the control unit 20 described above.
  • the control unit 20 is configured so that the pressure difference between the both sides of the upper gas discharge member 51 and the lower gas discharge member 52 which are porous bodies or shower structures is substantially maintained, and the temperature of the purge gas after discharge is reduced.
  • the pressure adjustment mechanism 49 is controlled to control the pressure in the container 31.
  • the wafer W taken out from the FOUP F by the transfer device 16 is loaded into the container 31.
  • the inside of the container 31 is set to an atmospheric atmosphere, and then the wafer W is loaded with the second gate valve G2 opened.
  • the gate valve G2 is closed, the inside of the container 31 is evacuated until a predetermined degree of vacuum corresponding to the transfer chamber 5 is reached, and then the first gate valve G1 is opened to support the support arm 14a or 14b of the transfer device 12.
  • the wafer W is unloaded from the container 31.
  • the unloaded wafer W is subjected to vacuum processing at a high temperature (for example, a temperature exceeding 500 ° C.) such as film formation by any vacuum processing unit.
  • the pressure in the container 31 is adjusted to a predetermined degree of vacuum corresponding to the transfer chamber 5, the first gate valve G ⁇ b> 1 is opened, and the processed high-temperature wafer W is loaded into the container 31.
  • the wafer W is cooled in the process of introducing the purge gas to increase the pressure in the container 31 to atmospheric pressure.
  • the second gate valve G2 is opened to support the wafer W in the container 31 by the transfer device 16. It is taken out by the arm 17 and accommodated in a predetermined hoop F.
  • the cooling of the wafer W is conventionally performed by passing a cooling medium through the cooling plate 32.
  • the pressure in the container 31 is low (10 Pa or less) when the wafer W is loaded into the container 31 of the load lock devices 6 and 7 and cooling is started, the conduction heat transfer in the initial stage of cooling is low.
  • the pressure range hundredseveral thousand Pa or more where the effect is exhibited, cooling by the cooling plate 32 through which the cooling medium is passed is difficult.
  • the purge gas is rapidly flowed into the container, there is a concern that particles are wound up. Therefore, it is necessary to perform a slow vent for about 10 seconds until the pressure reaches 1000 Pa. For this reason, the temperature drop rate becomes low, and it takes a long time to cool the wafer.
  • a porous body or a shower structure provided so as to face the central portion of the upper surface of the wafer W when the processed high-temperature wafer W is carried in and returned to the air atmosphere while cooling the wafer.
  • the purge gas is discharged toward the upper surface, the lower surface, or both of the wafer W, and the pressure difference between both sides of the upper gas discharge member 51 and / or the lower gas discharge member 52 is substantially maintained by the control unit 20. Then, the pressure adjusting mechanism 49 is controlled so as to obtain an effect of lowering the temperature of the purge gas after being discharged.
  • the gas when the gas is expanded by discharging the gas from the high pressure region to the low pressure region while maintaining the pressure difference through the porous body or the shower structure, the temperature of the gas is lowered by the Joule-Thomson effect. Therefore, the purge gas is supplied under the condition that the pressure difference is substantially maintained so that the Joule-Thomson effect is established.
  • the wafer W can be efficiently cooled by the purge gas.
  • the upper gas discharge member 51 and the lower gas discharge member 52 are formed of a porous body or a shower structure, and purge gas is gently discharged by the filter function, particles are not generated even when the purge gas is directly supplied to the wafer W. It is difficult for the roll-up to occur.
  • the pressure adjusting mechanism 49 controls the opening / closing valve 46 for the purge gas provided in the purge gas supply pipe 45 and the opening / closing valve 42 provided in the exhaust pipe 41, while repeating supply and exhaust of purge gas in a short time.
  • a method of gradually increasing the pressure so that the pressure difference does not increase can be employed.
  • the purge gas on / off valve 46 provided on the purge gas supply pipe 45 and the on / off valve 42 provided on the exhaust pipe 41 are turned on / off at intervals of 0.5 sec. As shown in FIG. 5, it was confirmed that a cooling effect of 20 ° C. or more was obtained in one cycle.
  • the temperature rise due to adiabatic compression can be suppressed by reducing the flow rate of the purge gas by the flow rate adjusting valve 47.
  • the temperature may increase due to adiabatic compression. Therefore, as described above, relatively complicated control such as repeated supply of the purge gas and evacuation is performed.
  • the pressure difference between the upper gas discharge member 51 and the lower gas discharge member 52 which are porous or shower structures, can be kept constant when the pressure reaches atmospheric pressure. The Joule-Thompson effect can be effectively exhibited easily, and a good cooling effect can be obtained.
  • the porous body provided to face the upper surface and / or the lower surface of the substrate (wafer) supported by the substrate support member (wafer support pins).
  • a purge gas is discharged from the gas discharge member having a shower structure toward the upper surface and / or lower surface of the substrate, and when the pressure in the container is increased by the control unit or when the pressure in the container becomes atmospheric pressure, The pressure adjustment mechanism is controlled so that the pressure difference between the both sides across the gas discharge member composed of a material or a shower structure is substantially maintained and the temperature of the gas discharged from the gas discharge member is reduced. Thereby, the substrate can be efficiently cooled by the purge gas.
  • the gas discharge member is made of a porous body or a shower structure, and the purge gas is gently discharged by the filter function. Therefore, even if the purge gas is directly supplied to the substrate, it is difficult for particles to be rolled up.
  • FIG. 6 is a vertical sectional view showing a load lock device according to a second embodiment of the present invention
  • FIG. 7 is a horizontal sectional view thereof.
  • the same components as those in the first embodiment are denoted by the same reference numerals and description thereof is omitted.
  • the wafer on the cooling plate 32 is provided on the side wall other than the openings 34 and 35 of the container 31, and on the side surface opposite to the exhaust port 36 in the figure.
  • a side gas discharge member 53 in the form of a rod made of a porous body such as a porous ceramic or a shower structure that discharges a gas that serves both as a purge gas and a cooling gas.
  • the side gas discharge member 53 is disposed so as to face the end surface of the wafer W.
  • a side pipe 45c extending from the side of the container 31 is connected to the side gas discharge member 53, and the side pipe 45c branches off from the purge gas pipe 45, as with the upper pipe 45a and the lower pipe 45b.
  • the purge gas that also serves as the cooling gas is branched from the purge gas source 48 through the purge gas supply pipe 45 to the upper pipe 45a, the lower pipe 45b, and the side pipe 45c while the flow rate is adjusted by the flow control valve 47.
  • the upper gas discharge member 51, the lower gas discharge member 52, and the side gas discharge member 53 can be supplied toward the upper surface, the lower surface, and the side surface of the wafer W.
  • the purge gas that also serves as the cooling gas can be discharged from the upper gas discharge member 51, the lower gas discharge member 52, and the side gas discharge member 53.
  • the gas can be discharged from the side gas discharge member 53, or from the lower gas discharge member 52 and the side gas discharge member 53.
  • the opening / closing valve 46 is closed and the opening / closing valve 42 is opened, and the exhaust speed adjustment valve 43 is adjusted.
  • the inside of the container 31 is evacuated by the vacuum pump 44 through the exhaust pipe 41 at a predetermined speed, the pressure in the container 31 is set to a pressure corresponding to the pressure in the transfer chamber 5, and the first gate valve G1 is opened in that state.
  • the container 31 communicates with the transfer chamber 5.
  • the opening / closing valve 42 is closed and the opening / closing valve 46 is opened, and the flow rate adjusting valve 47 is adjusted to adjust nitrogen gas or the like.
  • the discharge gas is supplied to the discharge member 52 and the side gas discharge member 53 and discharged from the upper and lower surfaces and the side surface of the wafer W, and the pressure in the container 31 is increased to near atmospheric pressure by the discharged purge gas.
  • the second gate valve G2 is opened to communicate between the container 31 and the loading / unloading chamber 8.
  • purge gas when the pressure is increased, supply of purge gas and exhaust may be used in combination in order to adjust the rate of increase in pressure. Further, by operating the on-off valves 55 and 56, purge gas is supplied from the upper pipe 45 a or the lower pipe 45 b to the upper gas discharge member 51 or the lower gas discharge member 52, and the side surface of the wafer W and the side surface gas discharge member 53 and The purge gas may be discharged to the upper surface of the wafer W, or may be discharged from the side surface gas discharge member 53 to the side surface and the lower surface of the wafer W.
  • the pressure in the container 31 is adjusted between the atmospheric pressure and a predetermined vacuum atmosphere by the pressure adjusting mechanism 49.
  • the pressure adjusting mechanism 49 controls the opening / closing valve 42, the exhaust speed adjusting valve 43, the flow rate adjusting valve 47, and the opening / closing valve 46 based on the pressure in the container 31 measured by the pressure gauge 59. Adjust pressure.
  • the pressure adjustment mechanism 49 is controlled by the control unit 20 described above. After the controller 20 discharges the upper gas discharge member 51, the lower gas discharge member 52, and the side gas discharge member 53, which are porous bodies or shower structures, the pressure difference between both sides is almost maintained.
  • the pressure adjustment mechanism 49 is controlled to control the pressure in the container 31 so that the temperature of the purge gas decreases.
  • the wafer W taken out from the FOUP F by the transfer device 16 is loaded into the container 31.
  • the inside of the container 31 is set to an atmospheric atmosphere, and then the wafer W is loaded with the second gate valve G2 opened.
  • the gate valve G2 is closed, the inside of the container 31 is evacuated until a predetermined degree of vacuum corresponding to the transfer chamber 5 is reached, and then the first gate valve G1 is opened to support the support arm 14a or 14b of the transfer device 12.
  • the wafer W is unloaded from the container 31.
  • the unloaded wafer W is subjected to vacuum processing at a high temperature (for example, a temperature exceeding 500 ° C.) such as film formation by any vacuum processing unit.
  • the pressure in the container 31 is adjusted to a predetermined degree of vacuum corresponding to the transfer chamber 5, the first gate valve G ⁇ b> 1 is opened, and the processed high-temperature wafer W is loaded into the container 31.
  • the wafer W is cooled in the process of introducing the purge gas to increase the pressure in the container 31 to atmospheric pressure.
  • the second gate valve G2 is opened to support the wafer W in the container 31 by the transfer device 16. It is taken out by the arm 17 and accommodated in a predetermined hoop F.
  • the porous body or shower structure when a high-temperature wafer W after processing is carried in and returned to the atmospheric atmosphere while cooling the wafer, the porous body or shower structure is provided so as to face the central portion of the upper surface of the wafer W.
  • the upper gas discharge member 51 and / or one of the lower gas discharge member 52 made of a porous body or shower structure provided so as to face the central portion of the lower surface of the wafer W, and the porous provided on the side surface of the wafer W
  • a purge gas that also serves as a cooling gas is discharged from the side surface gas discharge member 53 formed of a material or a shower structure toward the upper and lower surfaces of the wafer W or one of them and the side surface of the wafer W, and the control unit 20
  • the pressure adjustment mechanism 49 is controlled so that the pressure difference between the two sides sandwiching these is substantially maintained, and the effect of lowering the temperature of the purge gas after being discharged is obtained.
  • the purge gas is supplied under a condition in which the pressure difference is substantially maintained so that the Joule-Thomson effect is established.
  • the wafer W can be efficiently cooled by the purge gas.
  • the purge gas supplied from the side by the side gas discharge member 53 and the purge gas supplied from the upper side and / or the lower side supplied from the upper gas discharge member 51 and / or the lower gas discharge member 52 are efficient.
  • the collision cooling effect can be obtained by supplying the purge gas so as to collide well on the wafer surface.
  • the upper gas discharge member 51, the lower gas discharge member 52, and the side gas discharge member 53 are made of a porous body or a shower structure, and purge gas is gently discharged by the filter function. Even if the purge gas is supplied, the particles are hardly wound up.
  • the pressure adjustment mechanism 49 causes the purge gas on-off valve 46 provided in the purge gas supply pipe 45 and the exhaust pipe 41 to be suppressed by the pressure adjustment mechanism 49. It is possible to employ a method of controlling the provided on-off valve 42 and gradually increasing the pressure while repeating supply and exhaust of purge gas in a short time so that the pressure difference does not increase.
  • the upper surface and / or the lower surface and the side surface of the substrate (wafer) supported by the substrate support member (wafer support pins) are provided to face each other.
  • a purge gas is discharged from a gas discharge member made of a porous body or a shower structure toward the side surface of the substrate in addition to the upper surface and / or the lower surface of the substrate.
  • the pressure adjustment mechanism is controlled as follows.
  • the purge gas discharged toward the upper surface and / or the lower surface of the substrate collides with the purge gas discharged toward the side surface of the substrate. A temperature drop occurs, and the substrate can be cooled more efficiently.
  • the present invention can be variously modified without being limited to the above embodiment.
  • a multi-chamber type vacuum processing system provided with four vacuum processing units and two load lock devices has been described as an example, but the number is not limited thereto.
  • the load lock device of the present invention is not limited to such a multi-chamber type vacuum processing device, and can be applied to a system having one vacuum processing unit.
  • the gas discharge member made of a porous body or a shower structure is provided so as to face the upper surface and the lower surface of the wafer.
  • the gas discharge member may be provided on only one of them.
  • the shape of the gas discharge member is not limited to a rod shape, and may be other shapes such as a planar shape, and a plurality of gas discharge members may be provided on the upper surface side, the lower surface side, or the side surface side of the wafer.
  • the substrate to be processed is not limited to a semiconductor wafer, but can be other substrates such as a glass substrate for FPD.
  • vacuum processing unit 5; transfer chamber, 6, 7; load lock device, 8; loading / unloading chamber, 12, 16; transfer device, 20: control unit, 31: container, 32: cooling plate, 36; Exhaust port, 42; Open / close valve, 44; Vacuum pump, 46; Open / close valve, 47; Flow rate adjustment valve, 48; Purge gas source, 49; Pressure adjustment mechanism, 51: Upper gas discharge member, 52; 53; Side-side gas discharge member, 54; Wafer support pins, W; Semiconductor wafer

Abstract

This load lock device (6, 7) is equipped with: a vessel (31); a purge gas supply source (48) that supplies purge gas into the vessel (31); an exhaust mechanism (44) that exhausts the interior of the vessel (31); a pressure adjustment mechanism (49) that adjusts between atmospheric pressure and a pressure corresponding to a conveyance chamber (5) whereby the vessel (31) interior pressure is held at a vacuum; a substrate support member (54) that supports a substrate (W) in the vessel (31); a gas discharge member (51, 52) that is provided facing the upper surface and/or lower surface of the substrate (W) and that comprises a shower structure or a porous body that discharges purge gas towards the upper surface and/or the lower surface of the substrate (W); and a control unit (20) that controls the pressure adjustment mechanism (49) in a manner so that an effect is obtained of the temperature of the gas after discharge decreasing, and so that the pressure difference of both sides sandwiching the gas discharge member (51, 52) is nearly constant.

Description

ロードロック装置Load lock device
 本発明は、例えば半導体ウエハ等の被処理基板に真空処理を施す真空処理装置に用いられるロードロック装置に関する。 The present invention relates to a load lock device used in a vacuum processing apparatus that performs vacuum processing on a substrate to be processed such as a semiconductor wafer.
 半導体デバイスの製造工程においては、被処理基板である半導体ウエハ(以下、単にウエハと記す)に対し、成膜処理やエッチング処理等の真空雰囲気で行われる真空処理が多用されている。最近では、このような真空処理の効率化の観点、および酸化やコンタミネーション等の汚染を抑制する観点から、複数の真空処理ユニットを真空に保持される搬送室に連結し、この搬送室に設けられた搬送装置により各真空処理ユニットにウエハを搬送可能としたクラスターツール型のマルチチャンバタイプの真空処理システムが用いられている(例えば特許文献1)。 In the manufacturing process of semiconductor devices, vacuum processing performed in a vacuum atmosphere such as film formation processing or etching processing is frequently used for a semiconductor wafer (hereinafter simply referred to as a wafer) that is a substrate to be processed. Recently, from the viewpoint of improving the efficiency of such vacuum processing and suppressing contamination such as oxidation and contamination, a plurality of vacuum processing units are connected to a transfer chamber held in a vacuum and provided in this transfer chamber. A cluster tool type multi-chamber type vacuum processing system in which a wafer can be transferred to each vacuum processing unit by the transferred transfer device is used (for example, Patent Document 1).
 このようなマルチチャンバ処理システムにおいては、大気中に置かれているウエハカセットから真空に保持された搬送室へウエハを搬送するために、搬送室とウエハカセットとの間にロードロック装置(ロードロック室)を設け、このロードロック装置を介してウエハが搬送される。 In such a multi-chamber processing system, in order to transfer a wafer from a wafer cassette placed in the atmosphere to a transfer chamber held in a vacuum, a load lock device (load lock device) is provided between the transfer chamber and the wafer cassette. Chamber), and the wafer is transferred through the load lock device.
 ところで、このようなマルチチャンバ処理システムを成膜処理のような高温処理に適用する場合には、ウエハは例えば500℃を超える高温のまま真空処理ユニットから取り出され、ロードロック装置の容器内に搬送されるが、このような高温状態でウエハを大気に曝露するとウエハが酸化してしまう。また、このような高温のままウエハを収納容器に収納させると、通常樹脂製である収納容器が溶ける等の不都合が生じる。 By the way, when such a multi-chamber processing system is applied to a high temperature process such as a film forming process, the wafer is taken out of the vacuum processing unit at a high temperature exceeding, for example, 500 ° C. and transferred into the container of the load lock device. However, when the wafer is exposed to the atmosphere in such a high temperature state, the wafer is oxidized. Further, if the wafer is stored in the storage container at such a high temperature, there is a problem that the storage container, which is usually made of resin, melts.
 このような不都合を回避するため、ロードロック装置の容器内にウエハを冷却する冷却機構を備えたクーリングプレートを配置し、ウエハをクーリングプレートに近接した状態でロードロック装置の容器内にガスを導入して容器内を真空から大気圧に戻す間にウエハを冷却することが行われている。 In order to avoid such inconvenience, a cooling plate with a cooling mechanism for cooling the wafer is arranged in the container of the load lock device, and gas is introduced into the container of the load lock device in a state where the wafer is close to the cooling plate. Then, the wafer is cooled while the inside of the container is returned from the vacuum to the atmospheric pressure.
特開2000-208589号公報JP 2000-208589 A
 ウエハがロードロック装置の容器内に搬入されて冷却が開始される時点では、容器内の圧力が低い状態(10Pa以下)であるため、冷却初期の伝導伝熱の効果が発揮される圧力域(数千Pa以上)までは、クーリングプレートによる冷却が行われ難い。また、容器内にパージガスを急激に流すと、パーティクルを巻き上げることが懸念されるため、1000Paになるまで10sec程度の間はガス導入を緩やかに行う必要がある(スローベント)。 Since the pressure in the container is low (10 Pa or less) at the time when the wafer is carried into the container of the load lock device and the cooling is started, the pressure region where the effect of conduction heat transfer in the initial stage of cooling is exhibited ( Up to several thousand Pa), it is difficult to perform cooling by the cooling plate. In addition, if the purge gas is rapidly flowed into the container, there is a concern that particles may be rolled up. Therefore, it is necessary to gradually introduce the gas for about 10 seconds until the pressure reaches 1000 Pa (slow vent).
 このようなことから、降温レートが低くなって、ウエハの冷却に長時間を要し、ロードロック装置のウエハの冷却時間が処理システム全体の処理を律速し、スループットが低下してしまう。 For this reason, the rate of temperature decrease is low, and it takes a long time to cool the wafer, and the cooling time of the wafer in the load lock device determines the processing of the entire processing system, thereby reducing the throughput.
 したがって、本発明の目的は、高温の基板を効率良く冷却して基板処理のスループットを高くすることができるロードロック装置を提供することにある。 Therefore, an object of the present invention is to provide a load lock device that can efficiently cool a high-temperature substrate and increase the throughput of substrate processing.
 すなわち、本発明の一つの観点によれば、大気雰囲気から真空に保持された真空室へ基板を搬送し、前記真空室から高温の基板を前記大気雰囲気に搬送する際に用いられるロードロック装置であって、真空室に対応する圧力と大気圧との間で圧力を変動可能に設けられた容器と、前記容器内にパージガスを供給するパージガス供給機構と、前記容器内を排気する排気機構と、前記パージガス供給機構と前記排気機構を制御することにより、前記容器内が前記真空室と連通した際に前記容器内の圧力を前記真空室に対応する圧力に調整し、前記容器内が前記大気雰囲気の空間と連通した際に前記容器内の圧力を大気圧に調整する圧力調整機構と、前記容器内で基板を支持する基板支持部材と、前記基板支持部材に支持された基板の上面および/または下面に対向して設けられ、前記パージガス供給機構から供給されたパージガスを基板の上面および/または下面に向けて吐出する、多孔質体またはシャワー構造からなるガス吐出部材と、前記容器内の圧力を上昇させる際または前記容器内が大気圧になった際に、前記ガス吐出部材を挟んだ両側の圧力差がほぼ保たれて、前記ガス吐出部材から吐出した後のガスの温度が低下する効果が得られるように前記圧力調整機構を制御する制御部とを具備する、ロードロック装置が提供される。 That is, according to one aspect of the present invention, there is provided a load lock device used when a substrate is transferred from an atmospheric atmosphere to a vacuum chamber held in a vacuum, and a high-temperature substrate is transferred from the vacuum chamber to the atmospheric atmosphere. A container provided such that the pressure can be varied between a pressure corresponding to the vacuum chamber and the atmospheric pressure, a purge gas supply mechanism for supplying a purge gas into the container, an exhaust mechanism for exhausting the inside of the container, By controlling the purge gas supply mechanism and the exhaust mechanism, when the inside of the container communicates with the vacuum chamber, the pressure in the container is adjusted to a pressure corresponding to the vacuum chamber, and the inside of the container is in the atmosphere. A pressure adjusting mechanism that adjusts the pressure in the container to atmospheric pressure when communicating with the space, a substrate support member that supports the substrate in the container, an upper surface of the substrate supported by the substrate support member, and Alternatively, a gas discharge member made of a porous body or a shower structure that is provided facing the lower surface and discharges the purge gas supplied from the purge gas supply mechanism toward the upper surface and / or the lower surface of the substrate, and the pressure in the container The pressure difference between both sides sandwiching the gas discharge member is substantially maintained when the pressure is increased or when the inside of the container is at atmospheric pressure, and the temperature of the gas discharged from the gas discharge member is reduced. And a control unit that controls the pressure adjusting mechanism so as to provide the load lock device.
 本発明の他の観点によれば、大気雰囲気から真空に保持された真空室へ基板を搬送し、前記真空室から高温の基板を前記大気雰囲気に搬送する際に用いられるロードロック装置であって、真空室に対応する圧力と大気圧との間で圧力を変動可能に設けられた容器と、前記容器内にパージガスを供給するパージガス供給機構と、前記容器内を排気する排気機構と、前記パージガス供給機構と前記排気機構を制御することにより、前記容器内が前記真空室と連通した際に前記容器内の圧力を前記真空室に対応する圧力に調整し、前記容器内が前記大気雰囲気の空間と連通した際に前記容器内の圧力を大気圧に調整する圧力調整機構と、前記容器内で基板を支持する基板支持部材と、前記基板支持部材に支持された基板の上面および/または下面、ならびに側面に対向して設けられ、前記パージガス供給機構から供給されたパージガスを基板の上面および/または下面、ならびに側面に向けて吐出する、多孔質体またはシャワー構造からなるガス吐出部材と、前記容器内の圧力を上昇させる際または前記容器内が大気圧になった際に、前記ガス吐出部材を挟んだ両側の圧力差がほぼ保たれて、前記ガス吐出部材から吐出した後のガスの温度が低下する効果が得られるように前記圧力調整機構を制御する制御部とを具備し、前記ガス吐出部材を挟んだ両側の圧力差がほぼ保たれることによる基板の温度低下に加え、基板の上面および/または下面に向けて吐出されたパージガスと、基板の側面に向けて吐出したパージガスとが衝突することによる基板の温度低下が生じる、ロードロック装置を提供する。 According to another aspect of the present invention, there is provided a load lock device used for transferring a substrate from an atmospheric atmosphere to a vacuum chamber held in a vacuum, and transferring a high-temperature substrate from the vacuum chamber to the atmospheric atmosphere. A container provided such that the pressure can be varied between the pressure corresponding to the vacuum chamber and the atmospheric pressure, a purge gas supply mechanism for supplying a purge gas into the container, an exhaust mechanism for exhausting the inside of the container, and the purge gas By controlling the supply mechanism and the exhaust mechanism, the pressure inside the container is adjusted to a pressure corresponding to the vacuum chamber when the inside of the container communicates with the vacuum chamber. A pressure adjusting mechanism for adjusting the pressure in the container to atmospheric pressure when communicating with the substrate, a substrate support member for supporting the substrate in the container, and an upper surface and / or a lower surface of the substrate supported by the substrate support member And a gas discharge member made of a porous body or a shower structure, which is provided facing the side surface and discharges the purge gas supplied from the purge gas supply mechanism toward the upper surface and / or the lower surface and the side surface of the substrate, and the container When the internal pressure is increased or when the inside of the container becomes atmospheric pressure, the pressure difference between both sides sandwiching the gas discharge member is substantially maintained, and the temperature of the gas discharged from the gas discharge member is A control unit that controls the pressure adjusting mechanism so as to obtain an effect of decreasing, and in addition to a decrease in temperature of the substrate due to the fact that the pressure difference between both sides across the gas discharge member is substantially maintained, the upper surface of the substrate And / or a load lock device in which the temperature of the substrate is lowered due to a collision between the purge gas discharged toward the lower surface and the purge gas discharged toward the side surface of the substrate. To provide.
 本発明において、前記制御部は、前記容器内の圧力を上昇させる際または前記容器内が大気圧になった際に、ジュール=トムソン効果が得られるように前記圧力調整機構を制御することができる。 In the present invention, the control unit can control the pressure adjusting mechanism so as to obtain a Joule-Thomson effect when the pressure in the container is increased or when the inside of the container becomes atmospheric pressure. .
 また、前記制御部は、前記容器内の圧力を上昇させる際に、断熱圧縮による温度上昇を抑制するように、前記圧力調整機構を制御することが好ましい。この場合に、前記制御部は、前記容器内の圧力を上昇させる際に、前記圧力調整機構が前記容器内へのパージガスの供給および前記容器内の排気を交互に行って前記容器内の圧力を調整するように前記圧力調整機構を制御することが好ましい。 Further, it is preferable that the control unit controls the pressure adjusting mechanism so as to suppress a temperature increase due to adiabatic compression when the pressure in the container is increased. In this case, when the control unit increases the pressure in the container, the pressure adjustment mechanism alternately supplies the purge gas into the container and exhausts the container to thereby reduce the pressure in the container. It is preferable to control the pressure adjusting mechanism to adjust.
 さらに、前記ガス吐出部材は、多孔質セラミックで構成することができる。 Furthermore, the gas discharge member can be made of a porous ceramic.
本発明のロードロック装置が適用されるマルチチャンバタイプの真空処理システムの概略構造を示す水平断面図である。It is a horizontal sectional view showing a schematic structure of a multi-chamber type vacuum processing system to which the load lock device of the present invention is applied. 本発明の第1の実施形態に係るロードロック装置を示す垂直断面図である。1 is a vertical sectional view showing a load lock device according to a first embodiment of the present invention. 本発明の第1の実施形態に係るロードロック装置を示す水平断面図である。It is a horizontal sectional view showing the load lock device concerning a 1st embodiment of the present invention. 圧力調整機構によるパージガス供給および排気を繰り返すシーケンスの例を示すタイミングチャートである。It is a timing chart which shows the example of the sequence which repeats purge gas supply and exhaust_gas | exhaustion by a pressure adjustment mechanism. 図4のシーケンスにより容器内の圧力を上昇させた際のウエハの温度低下を示す図である。It is a figure which shows the temperature fall of the wafer at the time of raising the pressure in a container by the sequence of FIG. 本発明の第2の実施形態に係るロードロック装置を示す垂直断面図である。It is a vertical sectional view showing a load lock device concerning a 2nd embodiment of the present invention. 本発明の第2の実施形態に係るロードロック装置を示す水平断面図である。It is a horizontal sectional view showing a load lock device concerning a 2nd embodiment of the present invention.
 以下、添付図面を参照して本発明の実施形態について具体的に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
 <本発明のロードロック装置が適用される真空処理システム>
 図1は、本発明のロードロック装置が適用されるマルチチャンバタイプの真空処理システムの概略構造を示す水平断面図である。
<Vacuum processing system to which the load lock device of the present invention is applied>
FIG. 1 is a horizontal sectional view showing a schematic structure of a multi-chamber type vacuum processing system to which a load lock device of the present invention is applied.
 真空処理システムは、例えば成膜処理のような高温処理を行う4つの真空処理ユニット1、2、3、4を備えており、これらの各真空処理ユニット1~4は六角形をなす搬送室5の4つの辺にそれぞれ対応して設けられている。また、搬送室5の他の2つの辺にはそれぞれ本実施形態に係るロードロック装置6、7が設けられている。これらロードロック装置6、7の搬送室5と反対側には搬入出室8が設けられており、搬入出室8のロードロック装置6、7と反対側には被処理基板としてのウエハWを収容可能な3つのフープFを取り付けるポート9、10、11が設けられている。フープFは載置台Sに載置されている。真空処理ユニット1、2、3、4は、その中で処理プレート上に被処理基板であるウエハWを載置した状態で所定の真空処理、例えばエッチングや成膜処理を行うようになっている。 The vacuum processing system includes four vacuum processing units 1, 2, 3, and 4 that perform high-temperature processing such as film formation processing. Each of these vacuum processing units 1 to 4 has a hexagonal transfer chamber 5. Are provided in correspondence with the four sides. In addition, load lock devices 6 and 7 according to the present embodiment are provided on the other two sides of the transfer chamber 5, respectively. A loading / unloading chamber 8 is provided on the opposite side of the load lock devices 6 and 7 to the transfer chamber 5, and a wafer W as a substrate to be processed is placed on the loading / unloading chamber 8 on the opposite side of the load lock devices 6 and 7. Ports 9, 10, and 11 for attaching three hoops F that can be accommodated are provided. The hoop F is mounted on the mounting table S. The vacuum processing units 1, 2, 3, and 4 are configured to perform predetermined vacuum processing, for example, etching or film formation processing, with a wafer W as a substrate to be processed placed on a processing plate. .
 真空処理ユニット1~4は、同図に示すように、搬送室5の各辺にゲートバルブGを介して接続され、これらは対応するゲートバルブGを開放することにより搬送室5と連通され、対応するゲートバルブGを閉じることにより搬送室5から遮断される。また、ロードロック装置6,7は、搬送室5の残りの辺のそれぞれに、第1のゲートバルブG1を介して接続され、また、搬入出室8に第2のゲートバルブG2を介して接続されている。そして、ロードロック装置6,7は、第1のゲートバルブG1を開放することにより搬送室5に連通され、第1のゲートバルブG1を閉じることにより搬送室5から遮断される。また、第2のゲートバルブG2を開放することにより搬入出室8に連通され、第2のゲートバルブG2を閉じることにより搬入出室8から遮断される。 The vacuum processing units 1 to 4 are connected to each side of the transfer chamber 5 via a gate valve G as shown in the figure, and these are communicated with the transfer chamber 5 by opening the corresponding gate valve G. By closing the corresponding gate valve G, the transfer chamber 5 is shut off. The load lock devices 6 and 7 are connected to each of the remaining sides of the transfer chamber 5 via the first gate valve G1, and are connected to the carry-in / out chamber 8 via the second gate valve G2. Has been. The load lock devices 6 and 7 are communicated with the transfer chamber 5 by opening the first gate valve G1, and are disconnected from the transfer chamber 5 by closing the first gate valve G1. The second gate valve G2 is opened to communicate with the loading / unloading chamber 8, and the second gate valve G2 is closed to shut off the loading / unloading chamber 8.
 搬送室5内には、真空処理ユニット1~4、ロードロック装置6,7に対して、ウエハWの搬入出を行う搬送装置12が設けられている。この搬送装置12は、搬送室5の略中央に配設されており、回転および伸縮可能な回転・伸縮部13と、その先端に設けられたウエハWを支持する2つの支持アーム14a,14bとを有しており、これら2つの支持アーム14a,14bは互いに反対方向を向くように回転・伸縮部13に取り付けられている。この搬送室5内は所定の真空度に保持されるようになっている。 In the transfer chamber 5, a transfer device 12 for loading and unloading the wafer W with respect to the vacuum processing units 1 to 4 and the load lock devices 6 and 7 is provided. The transfer device 12 is disposed substantially at the center of the transfer chamber 5, and is capable of rotating and expanding / contracting, and a rotation / extension / contraction unit 13, and two support arms 14 a and 14 b that support the wafer W provided at the tip thereof. These two support arms 14a and 14b are attached to the rotating / extending / contracting portion 13 so as to face opposite directions. The inside of the transfer chamber 5 is maintained at a predetermined degree of vacuum.
 搬入出室8のウエハ収納容器であるポート9,10、11にはそれぞれ図示しないシャッターが設けられており、これらポート9,10,11にウエハWを収容した、または空のフープFが直接取り付けられ、取り付けられた際にシャッターが外れて外気の侵入を防止しつつ搬入出室8と連通するようになっている。また、搬入出室8の側面にはアライメント室15が設けられており、そこでウエハWのアライメントが行われる。 Shutters (not shown) are provided in the ports 9, 10, and 11, which are wafer storage containers in the loading / unloading chamber 8, and the wafers W are accommodated in these ports 9, 10, and 11 or empty FOUPs F are directly attached. When attached, the shutter is released to communicate with the carry-in / out chamber 8 while preventing the entry of outside air. An alignment chamber 15 is provided on the side surface of the loading / unloading chamber 8, and the wafer W is aligned there.
 搬入出室8内には、フープFに対するウエハWの搬入出およびロードロック装置6,7に対するウエハWの搬入出を行う搬送装置16が設けられている。この搬送装置16は、多関節アーム構造を有しており、フープFの配列方向に沿ってレール18上を走行可能となっていて、その先端の支持アーム17上にウエハWを載せてその搬送を行う。 In the loading / unloading chamber 8, a transfer device 16 for loading / unloading the wafer W into / from the FOUP F and loading / unloading the wafer W into / from the load lock devices 6 and 7 is provided. The transfer device 16 has an articulated arm structure and can run on the rail 18 along the direction in which the hoops F are arranged. The wafer W is placed on the support arm 17 at the tip of the transfer device 16 and transferred. I do.
 この真空処理システムにおける各構成部、例えば、真空処理ユニット1~4、搬送室5、ロードロック装置6,7におけるガス供給系や排気系、搬送装置12、16、ゲートバルブ等は、マイクロプロセッサ(コンピュータ)を備えた制御部20により制御されるようになっている。制御部20は真空処理システムのプロセスシーケンスおよび制御パラメータであるプロセスレシピを記憶した記憶部や、入力手段およびディスプレイ等を備えており、選択されたプロセスレシピに従って真空処理システムを制御するようになっている。 Each component in the vacuum processing system, for example, the vacuum processing units 1 to 4, the transfer chamber 5, the gas supply system and the exhaust system in the load lock devices 6 and 7, the transfer devices 12 and 16, the gate valve, etc. It is controlled by a control unit 20 having a computer. The control unit 20 includes a storage unit that stores a process sequence of the vacuum processing system and a process recipe that is a control parameter, an input unit, a display, and the like, and controls the vacuum processing system in accordance with the selected process recipe. Yes.
 以上のように構成される真空処理システムにおいては、搬送装置16により搬入出室8に接続されたフープFからウエハWを取り出し、ロードロック装置6(または7)の容器31(図2参照)に搬入する。このとき、ロードロック装置6の容器31内は大気雰囲気にされ、その後第2のゲートバルブG2が開放された状態でウエハWが搬入される。 In the vacuum processing system configured as described above, the wafer W is taken out from the FOUP F connected to the loading / unloading chamber 8 by the transfer device 16 and placed in the container 31 (see FIG. 2) of the load lock device 6 (or 7). Carry in. At this time, the inside of the container 31 of the load lock device 6 is set to an air atmosphere, and then the wafer W is loaded with the second gate valve G2 opened.
 そして、容器31内を搬送室5に対応する圧力になるまで真空排気し、第1のゲートバルブG1を開放して搬送装置12により容器31内からウエハWを受け取って、いずれかの真空処理ユニットのゲートバルブGを開いてその中にウエハWを搬入し、ウエハWに対して成膜等の高温での真空処理を行う。 Then, the container 31 is evacuated until the pressure corresponding to the transfer chamber 5 is reached, the first gate valve G1 is opened, the wafer W is received from the container 31 by the transfer device 12, and one of the vacuum processing units. The gate valve G is opened and the wafer W is loaded therein, and the wafer W is subjected to vacuum processing at a high temperature such as film formation.
 真空処理が終了した時点で、ゲートバルブGを開放し、搬送装置12が対応する真空処理ユニットからウエハWを搬出し、第1のゲートバルブG1を開放してウエハWをロードロック装置6および7のいずれかの容器31内に搬入し、容器31内にパージガスを導入し、容器31内のウエハWをパージガスにより冷却しつつその中を大気圧とする(ウエハ冷却期間)。そして、第2のゲートバルブG2を開け、搬送装置16により、フープFに処理後のウエハWを収納する。 When the vacuum processing is completed, the gate valve G is opened, the transfer device 12 unloads the wafer W from the corresponding vacuum processing unit, the first gate valve G1 is opened, and the wafer W is loaded into the load lock devices 6 and 7. Then, a purge gas is introduced into the container 31, and the wafer W in the container 31 is cooled by the purge gas while the atmospheric pressure is set to atmospheric pressure (wafer cooling period). Then, the second gate valve G <b> 2 is opened, and the processed wafer W is stored in the FOUP F by the transfer device 16.
 なお、2つのロードロック装置6、7について、ロードロック装置6を搬入専用にし、ロードロック装置7を搬出専用にしてもよい。 In addition, regarding the two load lock devices 6 and 7, the load lock device 6 may be dedicated to carry-in, and the load lock device 7 may be dedicated to carry-out.
 <ロードロック装置の第1の実施形態>
 次に、本発明の第1の実施形態に係るロードロック装置について説明する。
 図2は本発明の第1の実施形態に係るロードロック装置を示す垂直断面図、図3はその水平断面図である。本実施形態において、ロードロック装置6(7)は、容器31を有している。この容器31は、上部が開口した容器本体31aと、容器本体31aの上部開口を塞ぐ蓋体31bとを有している。容器31内の底部には、ウエハWが近接された状態で配置されてウエハWを冷却するクーリングプレート(冷却部材)32が設けられている。容器31およびクーリングプレート32は、例えばアルミニウムまたはアルミニウム合金で構成されている。
<First Embodiment of Load Lock Device>
Next, the load lock device according to the first embodiment of the present invention will be described.
FIG. 2 is a vertical sectional view showing the load lock device according to the first embodiment of the present invention, and FIG. 3 is a horizontal sectional view thereof. In the present embodiment, the load lock device 6 (7) has a container 31. The container 31 includes a container main body 31a having an upper opening and a lid 31b that closes the upper opening of the container main body 31a. A cooling plate (cooling member) 32 that cools the wafer W is provided at the bottom of the container 31 in a state where the wafer W is close to the container 31. The container 31 and the cooling plate 32 are made of, for example, aluminum or an aluminum alloy.
 容器31の一方の側壁には真空に保持された搬送室5と連通可能な開口34が設けられており、これと対向する側壁には大気圧に保持された搬入出室8と連通可能な開口35が設けられている。そして、開口34は第1のゲートバルブG1により開閉可能となっており、開口35は第2のゲートバルブG2により開閉可能となっている。 An opening 34 that can communicate with the transfer chamber 5 held in vacuum is provided on one side wall of the container 31, and an opening that can communicate with the loading / unloading chamber 8 held at atmospheric pressure is provided on the opposite side wall. 35 is provided. The opening 34 can be opened and closed by the first gate valve G1, and the opening 35 can be opened and closed by the second gate valve G2.
 クーリングプレート32には、ウエハ搬送用の複数のウエハ昇降ピン(図示せず)がクーリングプレート32の表面(上面)に対して突没可能に設けられている。これらウエハ昇降ピンは、エアシリンダ等の駆動機構(図示せず)により昇降され、ウエハWを、クーリングプレート32の表面(上面)から突出した受け渡し位置と、クーリングプレート32内に没した冷却位置との間で移動させることができるようになっている。クーリングプレート32の上面には、3個(図2では2個のみ図示)のウエハ支持ピン(ウエハ支持部材)54が取り付けられており、これらウエハ支持ピン54により、冷却位置にあるウエハWがクーリングプレート32から離隔した位置に位置されるようになっている。このようにウエハWがクーリングプレート32から離隔していることにより、ウエハW裏面へのパーティクルの付着を低減することができる。 The cooling plate 32 is provided with a plurality of wafer elevating pins (not shown) for wafer transfer so as to protrude and retract with respect to the surface (upper surface) of the cooling plate 32. These wafer elevating pins are moved up and down by a drive mechanism (not shown) such as an air cylinder, and the wafer W is transferred from the surface (upper surface) of the cooling plate 32, and the cooling position is submerged in the cooling plate 32. It can be moved between. Three (only two are shown in FIG. 2) wafer support pins (wafer support members) 54 are attached to the upper surface of the cooling plate 32, and the wafer W in the cooling position is cooled by these wafer support pins 54. It is located at a position separated from the plate 32. Since the wafer W is thus separated from the cooling plate 32, the adhesion of particles to the back surface of the wafer W can be reduced.
 クーリングプレート32の表面には、ウエハW下面と対向するようにパージガスと冷却ガスを兼ねたガスを吐出する、多孔質セラミック等の多孔質体またはシャワー構造からなる棒状をなす下側ガス吐出部材52が設けられている。 On the surface of the cooling plate 32, a lower gas discharge member 52 having a rod shape made of a porous body such as a porous ceramic or a shower structure, which discharges a gas serving as a purge gas and a cooling gas so as to face the lower surface of the wafer W. Is provided.
 一方、容器31の蓋体31bの下面には、クーリングプレート32上のウエハW上面に対向するように、パージガスと冷却ガスを兼ねたガスを吐出する多孔質セラミック等の多孔質体またはシャワー構造からなる棒状をなす上側ガス吐出部材51が設けられている。 On the other hand, the lower surface of the lid 31b of the container 31 is from a porous body or shower structure such as a porous ceramic that discharges a gas that serves as both a purge gas and a cooling gas so as to face the upper surface of the wafer W on the cooling plate 32. An upper gas discharge member 51 having a rod shape is provided.
 本実施形態では上側ガス吐出部材51と下側ガス吐出部材52とはウエハWの上下面の中央部に対向するように配置されている。 In the present embodiment, the upper gas discharge member 51 and the lower gas discharge member 52 are disposed so as to face the central portions of the upper and lower surfaces of the wafer W.
 上側ガス吐出部材51には容器31の側方から延びる上側配管45aが接続され、下側ガス吐出部材52には容器31の側方から延びる下側配管45bが接続されている。これら上側配管45aおよび下側配管45bは、パージガス供給配管45から分岐しており、パージガス供給配管45にはパージガス源48が接続されている。パージガス供給配管45には開閉バルブ46および流量調節バルブ47が設けられている。また、上側配管45aおよび下側配管45bにはそれぞれ開閉バルブ55および56が設けられている。これにより、流量調節バルブ47により流量を調節しつつパージガス源48からパージガス供給配管45および上側配管45aおよび下側配管45bを通って供給された冷却ガスを兼ねたパージガスを上側ガス吐出部材51および下側ガス吐出部材52からウエハWの上面および下面に向けて供給するか、または開閉バルブ55、56の操作により、上側ガス吐出部材51および下側ガス吐出部材52のいずれかから、ウエハWの上面および下面に向けて供給するようになっている。 The upper gas discharge member 51 is connected to an upper pipe 45 a extending from the side of the container 31, and the lower gas discharge member 52 is connected to a lower pipe 45 b extending from the side of the container 31. The upper pipe 45 a and the lower pipe 45 b are branched from the purge gas supply pipe 45, and a purge gas source 48 is connected to the purge gas supply pipe 45. The purge gas supply pipe 45 is provided with an opening / closing valve 46 and a flow rate adjusting valve 47. In addition, open / close valves 55 and 56 are provided in the upper pipe 45a and the lower pipe 45b, respectively. Accordingly, the purge gas serving as the cooling gas supplied from the purge gas source 48 through the purge gas supply pipe 45, the upper pipe 45a, and the lower pipe 45b while adjusting the flow rate by the flow rate adjusting valve 47 is used as the upper gas discharge member 51 and the lower gas discharge valve 51. The upper surface of the wafer W is supplied from either the upper gas discharge member 51 or the lower gas discharge member 52 by supplying the gas from the side gas discharge member 52 toward the upper and lower surfaces of the wafer W or by operating the on-off valves 55 and 56. And it comes to supply toward the lower surface.
 容器31の底部には、容器31内を真空排気するための排気口36が設けられている。排気口36には排気管41が接続されており、この排気管41には、開閉バルブ42、排気速度調整バルブ43および真空ポンプ44が設けられている。したがって、排気速度調整バルブ43および真空ポンプ44により、容器31内を所定の速度で真空排気可能となっている。 An exhaust port 36 for evacuating the inside of the container 31 is provided at the bottom of the container 31. An exhaust pipe 41 is connected to the exhaust port 36, and an open / close valve 42, an exhaust speed adjustment valve 43, and a vacuum pump 44 are provided in the exhaust pipe 41. Therefore, the inside of the container 31 can be evacuated at a predetermined speed by the exhaust speed adjusting valve 43 and the vacuum pump 44.
 真空側の搬送室5との間でウエハWの搬送を行う場合には、開閉バルブ46を閉じ、開閉バルブ42を開けた状態として、排気速度調整バルブ43を調節して所定速度で真空ポンプ44により排気管41を介して容器31内を排気し、容器31内の圧力を搬送室5内の圧力に対応する圧力とし、その状態で第1のゲートバルブG1を開けて容器31と搬送室5との間を連通する。また、大気側の搬入出室8との間でウエハWの搬送を行う場合には、開閉バルブ42を閉じ、開閉バルブ46を開けた状態とし、流量調節バルブ47を調節して、窒素ガス等のパージガスを、パージガス源48からパージガス供給配管45、ならびに上側配管45aおよび下側配管45bを介して多孔質体またはシャワー構造からなる上側ガス吐出部材51および下側ガス吐出部材52に供給し、これらからウエハWの上下面に吐出するとともに、吐出されたパージガスにより容器31内の圧力を上昇させて大気圧近傍にし、その状態で第2のゲートバルブG2を開けて容器31と搬入出室8との間を連通する。なお、圧力を上昇させる際に、圧力の上昇速度を調整するために、パージガスの供給と排気とを併用してもよい。また、開閉バルブ55、56の操作により、上側配管45aまたは下側配管45bから上側ガス吐出部材51または下側ガス吐出部材52にパージガスを供給し、ウエハWの上面または下面に吐出させるようにしてもよい。 When the wafer W is transferred to or from the vacuum-side transfer chamber 5, the opening / closing valve 46 is closed and the opening / closing valve 42 is opened, and the exhaust speed adjustment valve 43 is adjusted to adjust the vacuum pump 44 at a predetermined speed. By evacuating the container 31 through the exhaust pipe 41, the pressure in the container 31 is set to a pressure corresponding to the pressure in the transfer chamber 5, and in this state, the first gate valve G1 is opened and the container 31 and the transfer chamber 5 are opened. Communicating with When transferring the wafer W to / from the atmosphere-side loading / unloading chamber 8, the opening / closing valve 42 is closed and the opening / closing valve 46 is opened, and the flow rate adjusting valve 47 is adjusted to adjust nitrogen gas or the like. The purge gas is supplied from the purge gas source 48 to the upper gas discharge member 51 and the lower gas discharge member 52 made of a porous body or a shower structure through the purge gas supply pipe 45, the upper pipe 45a and the lower pipe 45b. Are discharged onto the upper and lower surfaces of the wafer W, and the pressure in the container 31 is increased to near atmospheric pressure by the discharged purge gas. In this state, the second gate valve G2 is opened to open the container 31 and the loading / unloading chamber 8; Communicate between the two. When the pressure is increased, supply of purge gas and exhaust may be used in combination in order to adjust the rate of increase in pressure. Also, by operating the on-off valves 55 and 56, purge gas is supplied from the upper pipe 45a or the lower pipe 45b to the upper gas discharge member 51 or the lower gas discharge member 52 and discharged onto the upper or lower surface of the wafer W. Also good.
 容器31内の圧力は、圧力調整機構49により大気圧と所定の真空雰囲気との間で調整される。この圧力調整機構49は、圧力計59により測定された容器31内の圧力に基づいて、開閉バルブ42、排気速度調整バルブ43、流量調節バルブ47および開閉バルブ46を制御することにより容器31内の圧力を調整する。圧力調整機構49は上述の制御部20により制御される。制御部20は、多孔質体またはシャワー構造である上側ガス吐出部材51および下側ガス吐出部材52の両側の圧力差がほぼ保たれ、吐出した後のパージガスの温度が低下する条件となるように、圧力調整機構49を制御して容器31内の圧力を制御するようになっている。 The pressure in the container 31 is adjusted between the atmospheric pressure and a predetermined vacuum atmosphere by the pressure adjusting mechanism 49. The pressure adjusting mechanism 49 controls the opening / closing valve 42, the exhaust speed adjusting valve 43, the flow rate adjusting valve 47, and the opening / closing valve 46 based on the pressure in the container 31 measured by the pressure gauge 59. Adjust pressure. The pressure adjustment mechanism 49 is controlled by the control unit 20 described above. The control unit 20 is configured so that the pressure difference between the both sides of the upper gas discharge member 51 and the lower gas discharge member 52 which are porous bodies or shower structures is substantially maintained, and the temperature of the purge gas after discharge is reduced. The pressure adjustment mechanism 49 is controlled to control the pressure in the container 31.
 次に、本実施形態におけるロードロック装置6、7の動作について説明する。
 まず、搬送装置16によりフープFから取り出されたウエハWを、容器31に搬入する。このとき、容器31内は大気雰囲気にされ、その後第2のゲートバルブG2が開放された状態でウエハWが搬入される。
Next, the operation of the load lock devices 6 and 7 in this embodiment will be described.
First, the wafer W taken out from the FOUP F by the transfer device 16 is loaded into the container 31. At this time, the inside of the container 31 is set to an atmospheric atmosphere, and then the wafer W is loaded with the second gate valve G2 opened.
 そして、ゲートバルブG2を閉じ、容器31内を搬送室5に対応する所定の真空度になるまで真空排気し、次いで、第1のゲートバルブG1を開放して搬送装置12の支持アーム14aまたは14bにより容器31内からウエハWを搬出する。搬出されたウエハWは、いずれかの真空処理ユニットにより成膜等の高温(例えば500℃を超える温度)での真空処理が行われる。 Then, the gate valve G2 is closed, the inside of the container 31 is evacuated until a predetermined degree of vacuum corresponding to the transfer chamber 5 is reached, and then the first gate valve G1 is opened to support the support arm 14a or 14b of the transfer device 12. Thus, the wafer W is unloaded from the container 31. The unloaded wafer W is subjected to vacuum processing at a high temperature (for example, a temperature exceeding 500 ° C.) such as film formation by any vacuum processing unit.
 次いで、容器31内の圧力を搬送室5に対応する所定の真空度に調整し、第1のゲートバルブG1を開けて処理後の高温のウエハWを容器31内に搬入した後、容器31内にパージガスを導入して容器31内の圧力を大気圧に上昇させる過程でウエハWを冷却する。そして、容器31内が大気圧になりかつウエハWが100℃程度以下の所定の温度まで冷却された時点で、第2のゲートバルブG2を開けて容器31内のウエハWを搬送装置16の支持アーム17により取り出して所定のフープFに収容する。 Next, the pressure in the container 31 is adjusted to a predetermined degree of vacuum corresponding to the transfer chamber 5, the first gate valve G <b> 1 is opened, and the processed high-temperature wafer W is loaded into the container 31. The wafer W is cooled in the process of introducing the purge gas to increase the pressure in the container 31 to atmospheric pressure. When the inside of the container 31 becomes atmospheric pressure and the wafer W is cooled to a predetermined temperature of about 100 ° C. or less, the second gate valve G2 is opened to support the wafer W in the container 31 by the transfer device 16. It is taken out by the arm 17 and accommodated in a predetermined hoop F.
 このときのウエハWの冷却は、従来、クーリングプレート32に冷却媒体を通流させることにより行っていた。しかし、ウエハWがロードロック装置6,7の容器31内に搬入されて冷却が開始される時点では、容器31内の圧力が低い状態(10Pa以下)であるため、冷却初期の伝導伝熱の効果が発揮される圧力域(数千Pa以上)までは、冷却媒体を通流させたクーリングプレート32による冷却が行われ難い。また、容器内にパージガスを急激に流すと、パーティクルを巻き上げることが懸念されるため、1000Paになるまで10sec程度の間はスローベントを行う必要がある。このようなことから、降温レートが低くなって、ウエハの冷却に長時間を要する。 At this time, the cooling of the wafer W is conventionally performed by passing a cooling medium through the cooling plate 32. However, since the pressure in the container 31 is low (10 Pa or less) when the wafer W is loaded into the container 31 of the load lock devices 6 and 7 and cooling is started, the conduction heat transfer in the initial stage of cooling is low. Until the pressure range (several thousand Pa or more) where the effect is exhibited, cooling by the cooling plate 32 through which the cooling medium is passed is difficult. Further, if the purge gas is rapidly flowed into the container, there is a concern that particles are wound up. Therefore, it is necessary to perform a slow vent for about 10 seconds until the pressure reaches 1000 Pa. For this reason, the temperature drop rate becomes low, and it takes a long time to cool the wafer.
 そこで、本実施形態では、処理後の高温のウエハWを搬入してウエハを冷却しつつ大気雰囲気に戻す際に、ウエハW上面の中央部に対向するように設けられた多孔質体またはシャワー構造からなる上側ガス吐出部材51、またはウエハW下面の中央部に対向するように設けられた多孔質体またはシャワー構造からなる下側ガス吐出部材52から、またはこれらの両方から、冷却ガスを兼ねたパージガスを、ウエハWの上面または下面、またはこれらの両方に向けて吐出し、制御部20により、上側ガス吐出部材51および/または下側ガス吐出部材52を挟んだ両側の圧力差がほぼ保たれ、吐出された後のパージガスの温度が低下する効果が得られるように圧力調整機構49を制御する。 Therefore, in the present embodiment, a porous body or a shower structure provided so as to face the central portion of the upper surface of the wafer W when the processed high-temperature wafer W is carried in and returned to the air atmosphere while cooling the wafer. The upper gas discharge member 51 made of or the lower gas discharge member 52 made of a porous body or shower structure provided so as to face the central portion of the lower surface of the wafer W, or both of them also served as a cooling gas. The purge gas is discharged toward the upper surface, the lower surface, or both of the wafer W, and the pressure difference between both sides of the upper gas discharge member 51 and / or the lower gas discharge member 52 is substantially maintained by the control unit 20. Then, the pressure adjusting mechanism 49 is controlled so as to obtain an effect of lowering the temperature of the purge gas after being discharged.
 すなわち、多孔質体またはシャワー構造を通して圧力差を保ちながら圧力の高い領域から圧力の低い領域に気体を吐出して気体を膨張させた場合には、ジュール=トムソン効果により気体の温度を低下させることができるため、ジュール=トムソン効果が成り立つようにほぼ圧力差が保持される条件でパージガスを供給する。 That is, when the gas is expanded by discharging the gas from the high pressure region to the low pressure region while maintaining the pressure difference through the porous body or the shower structure, the temperature of the gas is lowered by the Joule-Thomson effect. Therefore, the purge gas is supplied under the condition that the pressure difference is substantially maintained so that the Joule-Thomson effect is established.
 これにより、パージガスによりウエハWを効率良く冷却することができる。また、上側ガス吐出部材51および下側ガス吐出部材52は多孔質体またはシャワー構造からなっており、そのフィルター機能によりパージガスが緩やかに吐出されるため、ウエハWに直接パージガスを供給してもパーティクルの巻き上げが生じ難い。 Thereby, the wafer W can be efficiently cooled by the purge gas. Further, since the upper gas discharge member 51 and the lower gas discharge member 52 are formed of a porous body or a shower structure, and purge gas is gently discharged by the filter function, particles are not generated even when the purge gas is directly supplied to the wafer W. It is difficult for the roll-up to occur.
 パージガス供給による圧力の上昇速度が大きくなると、上側ガス吐出部材51および下側ガス吐出部材52から吐出されたパージガスが断熱圧縮されて温度が上昇してしまうため、断熱圧縮が抑制されるように、例えば、圧力調整機構49により、パージガス供給配管45に設けられたパージガス用の開閉バルブ46と、排気管41に設けられた開閉バルブ42を制御し、パージガスの供給と排気とを短時間で繰り返しながら徐々に圧力を上げていき、圧力差が大きくならないようにする手法を採用することができる。 As the rate of pressure increase due to the supply of purge gas increases, the purge gas discharged from the upper gas discharge member 51 and the lower gas discharge member 52 is adiabatically compressed and the temperature rises, so that adiabatic compression is suppressed. For example, the pressure adjusting mechanism 49 controls the opening / closing valve 46 for the purge gas provided in the purge gas supply pipe 45 and the opening / closing valve 42 provided in the exhaust pipe 41, while repeating supply and exhaust of purge gas in a short time. A method of gradually increasing the pressure so that the pressure difference does not increase can be employed.
 実際に、図4に示すように、パージガス供給配管45に設けられたパージガス用の開閉バルブ46と、排気管41に設けられた開閉バルブ42を0.5sec間隔でオン・オフすることにより、図5に示すように1サイクルで20℃以上の冷却効果が得られることが確認された。 Actually, as shown in FIG. 4, the purge gas on / off valve 46 provided on the purge gas supply pipe 45 and the on / off valve 42 provided on the exhaust pipe 41 are turned on / off at intervals of 0.5 sec. As shown in FIG. 5, it was confirmed that a cooling effect of 20 ° C. or more was obtained in one cycle.
 また、流量調節バルブ47によりパージガスの流量を小さくすることによっても、断熱圧縮による温度上昇を抑制することができる。 Also, the temperature rise due to adiabatic compression can be suppressed by reducing the flow rate of the purge gas by the flow rate adjusting valve 47.
 容器31内にパージガスを導入して圧力を上昇させる局面では、断熱圧縮による温度上昇の懸念があるため、上記のように、パージガスの供給と真空排気とを繰り返す等の比較的複雑な制御を行わざるを得ない場合があるが、圧力が大気圧になった時点では多孔質体またはシャワー構造である上側ガス吐出部材51および下側ガス吐出部材52の両側の圧力差は一定に保ちやすくなるので、ジュール=トムソン効果を有効に発揮しやすくなり、良好な冷却効果を得ることができる。 In the phase where the purge gas is introduced into the container 31 to increase the pressure, there is a concern that the temperature may increase due to adiabatic compression. Therefore, as described above, relatively complicated control such as repeated supply of the purge gas and evacuation is performed. In some cases, the pressure difference between the upper gas discharge member 51 and the lower gas discharge member 52, which are porous or shower structures, can be kept constant when the pressure reaches atmospheric pressure. The Joule-Thompson effect can be effectively exhibited easily, and a good cooling effect can be obtained.
 以上のように、本発明の第1の実施形態によれば、基板支持部材(ウエハ支持ピン)に支持された基板(ウエハ)の上面および/または下面に対向して設けられた、多孔質体またはシャワー構造からなるガス吐出部材から、パージガスを基板の上面および/または下面に向けて吐出し、制御部により、容器内の圧力を上昇させる際または容器内が大気圧になった際に、多孔質体またはシャワー構造からなるガス吐出部材を挟んだ両側の圧力差がほぼ保たれて、ガス吐出部材から吐出した後のガスの温度が低下する効果が得られるように圧力調整機構を制御する。これにより、パージガスにより基板を効率良く冷却することができる。さらに、ガス吐出部材は多孔質体またはシャワー構造からなっており、そのフィルター機能によりパージガスが緩やかに吐出されるため、基板に直接パージガスを供給してもパーティクルの巻き上げが生じ難い。 As described above, according to the first embodiment of the present invention, the porous body provided to face the upper surface and / or the lower surface of the substrate (wafer) supported by the substrate support member (wafer support pins). Alternatively, a purge gas is discharged from the gas discharge member having a shower structure toward the upper surface and / or lower surface of the substrate, and when the pressure in the container is increased by the control unit or when the pressure in the container becomes atmospheric pressure, The pressure adjustment mechanism is controlled so that the pressure difference between the both sides across the gas discharge member composed of a material or a shower structure is substantially maintained and the temperature of the gas discharged from the gas discharge member is reduced. Thereby, the substrate can be efficiently cooled by the purge gas. Further, the gas discharge member is made of a porous body or a shower structure, and the purge gas is gently discharged by the filter function. Therefore, even if the purge gas is directly supplied to the substrate, it is difficult for particles to be rolled up.
 <ロードロック装置の第2の実施形態>
 次に、本発明の第2の実施形態に係るロードロック装置について説明する。
 図6は本発明の第2の実施形態に係るロードロック装置を示す垂直断面図、図7はその水平断面図である。本実施形態において、第1の実施形態と同じものには同じ符号を付して説明を省略する。
<Second Embodiment of Load Lock Device>
Next, a load lock device according to a second embodiment of the present invention will be described.
FIG. 6 is a vertical sectional view showing a load lock device according to a second embodiment of the present invention, and FIG. 7 is a horizontal sectional view thereof. In the present embodiment, the same components as those in the first embodiment are denoted by the same reference numerals and description thereof is omitted.
 本実施形態では、上側ガス吐出部材51および下側ガス吐出部材52に加えて、容器31の開口34、35以外の側壁、図では排気口36と反対側の側面に、クーリングプレート32上のウエハWの側面に、パージガスと冷却ガスを兼ねたガスを吐出する多孔質セラミック等の多孔質体またはシャワー構造からなる棒状をなす側面側ガス吐出部材53が設けられている。側面側ガス吐出部材53はウエハWの端面に対向するように配置されている。側面側ガス吐出部材53には容器31の側方から延びる側面側配管45cが接続され、この側面側配管45cも上側配管45aおよび下側配管45bと同様、パージガス配管45から分岐している。 In the present embodiment, in addition to the upper gas discharge member 51 and the lower gas discharge member 52, the wafer on the cooling plate 32 is provided on the side wall other than the openings 34 and 35 of the container 31, and on the side surface opposite to the exhaust port 36 in the figure. On the side surface of W, there is provided a side gas discharge member 53 in the form of a rod made of a porous body such as a porous ceramic or a shower structure that discharges a gas that serves both as a purge gas and a cooling gas. The side gas discharge member 53 is disposed so as to face the end surface of the wafer W. A side pipe 45c extending from the side of the container 31 is connected to the side gas discharge member 53, and the side pipe 45c branches off from the purge gas pipe 45, as with the upper pipe 45a and the lower pipe 45b.
 これにより、冷却ガスを兼ねたパージガスを、流量調節バルブ47により流量を調節しつつパージガス源48からパージガス供給配管45を通り、さらに上側配管45aおよび下側配管45bおよび側面側配管45cに分岐させて、これらから上側ガス吐出部材51および下側ガス吐出部材52および側面側ガス吐出部材53からウエハWの上面および下面および側面に向けて供給することが可能となっている。開閉バルブ55、56の存在により、冷却ガスを兼ねたパージガスを、上側ガス吐出部材51および下側ガス吐出部材52および側面側ガス吐出部材53から吐出させることもできるし、上側ガス吐出部材51と側面側ガス吐出部材53、または下側ガス吐出部材52と側面側ガス吐出部材53から吐出させることもできる。 As a result, the purge gas that also serves as the cooling gas is branched from the purge gas source 48 through the purge gas supply pipe 45 to the upper pipe 45a, the lower pipe 45b, and the side pipe 45c while the flow rate is adjusted by the flow control valve 47. From these, the upper gas discharge member 51, the lower gas discharge member 52, and the side gas discharge member 53 can be supplied toward the upper surface, the lower surface, and the side surface of the wafer W. Due to the presence of the on-off valves 55 and 56, the purge gas that also serves as the cooling gas can be discharged from the upper gas discharge member 51, the lower gas discharge member 52, and the side gas discharge member 53. The gas can be discharged from the side gas discharge member 53, or from the lower gas discharge member 52 and the side gas discharge member 53.
 本実施形態においても、真空側の搬送室5との間でウエハWの搬送を行う場合には、開閉バルブ46を閉じ、開閉バルブ42を開けた状態として、排気速度調整バルブ43を調節して所定速度で真空ポンプ44により排気管41を介して容器31内を排気し、容器31内の圧力を搬送室5内の圧力に対応する圧力とし、その状態で第1のゲートバルブG1を開けて容器31と搬送室5との間を連通する。また、大気側の搬入出室8との間でウエハWの搬送を行う場合には、開閉バルブ42を閉じ、開閉バルブ46を開けた状態とし、流量調節バルブ47を調節して、窒素ガス等のパージガスをパージガス源48からパージガス供給配管45を通り、さらに上側配管45aおよび下側配管45bおよび側面側配管45cに分岐させて、多孔質体またはシャワー構造からなる上側ガス吐出部材51および下側ガス吐出部材52および側面側ガス吐出部材53に供給し、これらからウエハWの上下面および側面に吐出するとともに、吐出されたパージガスにより容器31内の圧力を上昇させて大気圧近傍にし、その状態で第2のゲートバルブG2を開けて容器31と搬入出室8との間を連通する。 Also in this embodiment, when the wafer W is transferred to or from the transfer chamber 5 on the vacuum side, the opening / closing valve 46 is closed and the opening / closing valve 42 is opened, and the exhaust speed adjustment valve 43 is adjusted. The inside of the container 31 is evacuated by the vacuum pump 44 through the exhaust pipe 41 at a predetermined speed, the pressure in the container 31 is set to a pressure corresponding to the pressure in the transfer chamber 5, and the first gate valve G1 is opened in that state. The container 31 communicates with the transfer chamber 5. When transferring the wafer W to / from the atmosphere-side loading / unloading chamber 8, the opening / closing valve 42 is closed and the opening / closing valve 46 is opened, and the flow rate adjusting valve 47 is adjusted to adjust nitrogen gas or the like. The purge gas from the purge gas source 48 through the purge gas supply pipe 45 and further branched into the upper pipe 45a, the lower pipe 45b, and the side pipe 45c, and the upper gas discharge member 51 and the lower gas made of a porous body or shower structure The discharge gas is supplied to the discharge member 52 and the side gas discharge member 53 and discharged from the upper and lower surfaces and the side surface of the wafer W, and the pressure in the container 31 is increased to near atmospheric pressure by the discharged purge gas. The second gate valve G2 is opened to communicate between the container 31 and the loading / unloading chamber 8.
 なお、圧力を上昇させる際に、圧力の上昇速度を調整するために、パージガスの供給と排気とを併用してもよい。また、開閉バルブ55、56の操作により、上側配管45aまたは下側配管45bから上側ガス吐出部材51または下側ガス吐出部材52にパージガスを供給し、側面側ガス吐出部材53からウエハWの側面およびウエハWの上面へパージガスを吐出させるか、または側面側ガス吐出部材53からウエハWの側面および下面に吐出させるようにしてもよい。 Note that when the pressure is increased, supply of purge gas and exhaust may be used in combination in order to adjust the rate of increase in pressure. Further, by operating the on-off valves 55 and 56, purge gas is supplied from the upper pipe 45 a or the lower pipe 45 b to the upper gas discharge member 51 or the lower gas discharge member 52, and the side surface of the wafer W and the side surface gas discharge member 53 and The purge gas may be discharged to the upper surface of the wafer W, or may be discharged from the side surface gas discharge member 53 to the side surface and the lower surface of the wafer W.
 容器31内の圧力は、圧力調整機構49により大気圧と所定の真空雰囲気との間で調整される。この圧力調整機構49は、圧力計59により測定された容器31内の圧力に基づいて、開閉バルブ42、排気速度調整バルブ43、流量調節バルブ47および開閉バルブ46を制御することにより容器31内の圧力を調整する。圧力調整機構49は上述の制御部20により制御される。制御部20は、多孔質体またはシャワー構造である上側ガス吐出部材51および下側ガス吐出部材52および側面側ガス吐出部材53について、これらを挟んだ両側の圧力差がほぼ保たれ、吐出した後のパージガスの温度が低下する条件となるように、圧力調整機構49を制御して容器31内の圧力を制御するようになっている。 The pressure in the container 31 is adjusted between the atmospheric pressure and a predetermined vacuum atmosphere by the pressure adjusting mechanism 49. The pressure adjusting mechanism 49 controls the opening / closing valve 42, the exhaust speed adjusting valve 43, the flow rate adjusting valve 47, and the opening / closing valve 46 based on the pressure in the container 31 measured by the pressure gauge 59. Adjust pressure. The pressure adjustment mechanism 49 is controlled by the control unit 20 described above. After the controller 20 discharges the upper gas discharge member 51, the lower gas discharge member 52, and the side gas discharge member 53, which are porous bodies or shower structures, the pressure difference between both sides is almost maintained. The pressure adjustment mechanism 49 is controlled to control the pressure in the container 31 so that the temperature of the purge gas decreases.
 本実施形態においても、第1の実施形態と同様、まず、搬送装置16によりフープFから取り出されたウエハWを、容器31に搬入する。このとき、容器31内は大気雰囲気にされ、その後第2のゲートバルブG2が開放された状態でウエハWが搬入される。 Also in this embodiment, as in the first embodiment, first, the wafer W taken out from the FOUP F by the transfer device 16 is loaded into the container 31. At this time, the inside of the container 31 is set to an atmospheric atmosphere, and then the wafer W is loaded with the second gate valve G2 opened.
 そして、ゲートバルブG2を閉じ、容器31内を搬送室5に対応する所定の真空度になるまで真空排気し、次いで、第1のゲートバルブG1を開放して搬送装置12の支持アーム14aまたは14bにより容器31内からウエハWを搬出する。搬出されたウエハWは、いずれかの真空処理ユニットにより成膜等の高温(例えば500℃を超える温度)での真空処理が行われる。 Then, the gate valve G2 is closed, the inside of the container 31 is evacuated until a predetermined degree of vacuum corresponding to the transfer chamber 5 is reached, and then the first gate valve G1 is opened to support the support arm 14a or 14b of the transfer device 12. Thus, the wafer W is unloaded from the container 31. The unloaded wafer W is subjected to vacuum processing at a high temperature (for example, a temperature exceeding 500 ° C.) such as film formation by any vacuum processing unit.
 次いで、容器31内の圧力を搬送室5に対応する所定の真空度に調整し、第1のゲートバルブG1を開けて処理後の高温のウエハWを容器31内に搬入した後、容器31内にパージガスを導入して容器31内の圧力を大気圧に上昇させる過程でウエハWを冷却する。そして、容器31内が大気圧になりかつウエハWが100℃程度以下の所定の温度まで冷却された時点で、第2のゲートバルブG2を開けて容器31内のウエハWを搬送装置16の支持アーム17により取り出して所定のフープFに収容する。 Next, the pressure in the container 31 is adjusted to a predetermined degree of vacuum corresponding to the transfer chamber 5, the first gate valve G <b> 1 is opened, and the processed high-temperature wafer W is loaded into the container 31. The wafer W is cooled in the process of introducing the purge gas to increase the pressure in the container 31 to atmospheric pressure. When the inside of the container 31 becomes atmospheric pressure and the wafer W is cooled to a predetermined temperature of about 100 ° C. or less, the second gate valve G2 is opened to support the wafer W in the container 31 by the transfer device 16. It is taken out by the arm 17 and accommodated in a predetermined hoop F.
 本実施形態では、処理後の高温のウエハWを搬入してウエハを冷却しつつ大気雰囲気に戻す際に、ウエハW上面の中央部に対向するように設けられた多孔質体またはシャワー構造からなる上側ガス吐出部材51およびウエハW下面の中央部に対向するように設けられた多孔質体またはシャワー構造からなる下側ガス吐出部材52の両方またはいずれか一方と、ウエハW側面に設けられた多孔質体またはシャワー構造からなる側面側ガス吐出部材53とから、冷却ガスを兼ねたパージガスを、ウエハWの上面および下面、またはこれらの一方と、ウエハW側面とに向けて吐出し、制御部20により、これらを挟んだ両側の圧力差がほぼ保たれ、吐出された後のパージガスの温度が低下する効果が得られるように圧力調整機構49を制御する。 In the present embodiment, when a high-temperature wafer W after processing is carried in and returned to the atmospheric atmosphere while cooling the wafer, the porous body or shower structure is provided so as to face the central portion of the upper surface of the wafer W. The upper gas discharge member 51 and / or one of the lower gas discharge member 52 made of a porous body or shower structure provided so as to face the central portion of the lower surface of the wafer W, and the porous provided on the side surface of the wafer W A purge gas that also serves as a cooling gas is discharged from the side surface gas discharge member 53 formed of a material or a shower structure toward the upper and lower surfaces of the wafer W or one of them and the side surface of the wafer W, and the control unit 20 Thus, the pressure adjustment mechanism 49 is controlled so that the pressure difference between the two sides sandwiching these is substantially maintained, and the effect of lowering the temperature of the purge gas after being discharged is obtained.
 すなわち、本実施形態でも第1の実施形態と同様、多孔質体またはシャワー構造を通して圧力差を保ちながら圧力の高い領域から圧力の低い領域に気体を吐出して気体を膨張させた場合には、ジュール=トムソン効果により気体の温度を低下させることができるため、ジュール=トムソン効果が成り立つようにほぼ圧力差が保持される条件でパージガスを供給する。 That is, in this embodiment as well as the first embodiment, when the gas is expanded by discharging the gas from the high pressure region to the low pressure region while maintaining the pressure difference through the porous body or the shower structure, Since the temperature of the gas can be lowered by the Joule-Thomson effect, the purge gas is supplied under a condition in which the pressure difference is substantially maintained so that the Joule-Thomson effect is established.
 これにより、パージガスによりウエハWを効率良く冷却することができる。また、側面側ガス吐出部材53による側方から供給されるパージガスと、上側ガス吐出部材51および/または下側ガス吐出部材52から供給される上方および/または下方から供給されたパージガスとが、効率よくウエハ面上で衝突するように、パージガスを供給することで衝突冷却効果が得られる。さらに、上側ガス吐出部材51および下側ガス吐出部材52および側面側ガス吐出部材53は多孔質体またはシャワー構造からなっており、そのフィルター機能によりパージガスが緩やかに吐出されるため、ウエハWに直接パージガスを供給してもパーティクルの巻き上げが生じ難い。 Thereby, the wafer W can be efficiently cooled by the purge gas. Further, the purge gas supplied from the side by the side gas discharge member 53 and the purge gas supplied from the upper side and / or the lower side supplied from the upper gas discharge member 51 and / or the lower gas discharge member 52 are efficient. The collision cooling effect can be obtained by supplying the purge gas so as to collide well on the wafer surface. Further, the upper gas discharge member 51, the lower gas discharge member 52, and the side gas discharge member 53 are made of a porous body or a shower structure, and purge gas is gently discharged by the filter function. Even if the purge gas is supplied, the particles are hardly wound up.
 本実施形態においても第1の実施形態と同様、断熱圧縮が抑制されるように、例えば、圧力調整機構49により、パージガス供給配管45に設けられたパージガス用の開閉バルブ46と、排気管41に設けられた開閉バルブ42を制御し、パージガスの供給と排気とを短時間で繰り返しながら徐々に圧力を上げていき、圧力差が大きくならないようにする手法を採用することができる。 Also in the present embodiment, as in the first embodiment, for example, the pressure adjustment mechanism 49 causes the purge gas on-off valve 46 provided in the purge gas supply pipe 45 and the exhaust pipe 41 to be suppressed by the pressure adjustment mechanism 49. It is possible to employ a method of controlling the provided on-off valve 42 and gradually increasing the pressure while repeating supply and exhaust of purge gas in a short time so that the pressure difference does not increase.
 以上のように、本発明の第2の実施形態によれば、基板支持部材(ウエハ支持ピン)に支持された基板〔ウエハ)の上面および/または下面、ならびに側面に対向して設けられた、多孔質体またはシャワー構造からなるガス吐出部材から、パージガスを基板の上面および/または下面に加えて基板の側面に向けて吐出し、制御部により、容器内の圧力を上昇させる際または容器内が大気圧になった際に、多孔質体またはシャワー構造からなるガス吐出部材を挟んだ両側の圧力差がほぼ保たれて、ガス吐出部材から吐出した後のガスの温度が低下する効果が得られるように圧力調整機構を制御する。これにより、上記第1の実施形態と同様の効果を奏する他、基板の上面および/または下面に向けて吐出されたパージガスと、基板の側面に向けて吐出したパージガスとが衝突することによる基板の温度低下が生じ、より一層効率良く基板を冷却することができる。 As described above, according to the second embodiment of the present invention, the upper surface and / or the lower surface and the side surface of the substrate (wafer) supported by the substrate support member (wafer support pins) are provided to face each other. A purge gas is discharged from a gas discharge member made of a porous body or a shower structure toward the side surface of the substrate in addition to the upper surface and / or the lower surface of the substrate. When the atmospheric pressure is reached, the pressure difference between the two sides sandwiching the gas discharge member composed of the porous body or the shower structure is substantially maintained, and the temperature of the gas discharged from the gas discharge member is reduced. The pressure adjustment mechanism is controlled as follows. Thus, in addition to the same effect as the first embodiment, the purge gas discharged toward the upper surface and / or the lower surface of the substrate collides with the purge gas discharged toward the side surface of the substrate. A temperature drop occurs, and the substrate can be cooled more efficiently.
 <他の適用>
 なお、本発明は上記実施形態に限定されることなく種々変形可能である。例えば、上記実施形態では、真空処理ユニットを4つ、ロードロック装置を2つ設けたマルチチャンバタイプの真空処理システムを例にとって説明したが、これらの数に限定されるものではない。また、本発明のロードロック装置は、このようなマルチチャンバタイプの真空処理装置に限らず、真空処理ユニットが1個のシステムであっても適用可能である。
<Other applications>
The present invention can be variously modified without being limited to the above embodiment. For example, in the above-described embodiment, a multi-chamber type vacuum processing system provided with four vacuum processing units and two load lock devices has been described as an example, but the number is not limited thereto. Further, the load lock device of the present invention is not limited to such a multi-chamber type vacuum processing device, and can be applied to a system having one vacuum processing unit.
 また、上記実施形態においては、ウエハの上面および下面に対向するように多孔質体またはシャワー構造からなるガス吐出部材を設けたが、いずれか一方のみに設けてもよい。さらに、ガス吐出部材の形状は棒状のものに限らず平面状のもの等他の形状であってもよく、ウエハの上面側または下面側または側面側に複数のガス吐出部材を設けてもよい。 In the above-described embodiment, the gas discharge member made of a porous body or a shower structure is provided so as to face the upper surface and the lower surface of the wafer. However, the gas discharge member may be provided on only one of them. Further, the shape of the gas discharge member is not limited to a rod shape, and may be other shapes such as a planar shape, and a plurality of gas discharge members may be provided on the upper surface side, the lower surface side, or the side surface side of the wafer.
 さらに、上記実施形態では断熱膨張による温度上昇を回避するために、圧力上昇過程で、パージガスの供給と真空引きとを交互に複数回行うシーケンスを用いたが、断熱膨張とならずにジュール=トムソン効果が有効に発揮することができれば、これに限るものではない。 Furthermore, in the above embodiment, in order to avoid a temperature rise due to adiabatic expansion, a sequence in which the supply of purge gas and evacuation are alternately performed a plurality of times in the pressure increasing process is used. If an effect can be exhibited effectively, it will not restrict to this.
 さらにまた、被処理基板についても、半導体ウエハに限らず、FPD用ガラス基板などの他の基板を対象にすることができることはいうまでもない。 Furthermore, it goes without saying that the substrate to be processed is not limited to a semiconductor wafer, but can be other substrates such as a glass substrate for FPD.
 なお、本国際出願は、2012年3月14日に出願した日本国特許出願第2012-057978号に基づく優先権を主張するものであり、日本国特許出願第2012-057978号の全内容を本国際出願に援用する。 This international application claims priority based on Japanese Patent Application No. 2012-057978 filed on March 14, 2012, and the entire contents of Japanese Patent Application No. 2012-057978 are hereby incorporated by reference. Included in international applications.
 1~4;真空処理ユニット、5;搬送室、6,7;ロードロック装置、8;搬入出室、12,16;搬送装置、20:制御部、31:容器、32:クーリングプレート、36;排気口、42;開閉バルブ、44;真空ポンプ、46;開閉バルブ、47;流量調節バルブ、48;パージガス源、49;圧力調整機構、51;上側ガス吐出部材、52;下側ガス吐出部材、53;側面側ガス吐出部材、54;ウエハ支持ピン、W;半導体ウエハ 1 to 4; vacuum processing unit, 5; transfer chamber, 6, 7; load lock device, 8; loading / unloading chamber, 12, 16; transfer device, 20: control unit, 31: container, 32: cooling plate, 36; Exhaust port, 42; Open / close valve, 44; Vacuum pump, 46; Open / close valve, 47; Flow rate adjustment valve, 48; Purge gas source, 49; Pressure adjustment mechanism, 51: Upper gas discharge member, 52; 53; Side-side gas discharge member, 54; Wafer support pins, W; Semiconductor wafer

Claims (10)

  1.  大気雰囲気から真空に保持された真空室へ基板を搬送し、前記真空室から高温の基板を前記大気雰囲気に搬送する際に用いられるロードロック装置であって、
     真空室に対応する圧力と大気圧との間で圧力を変動可能に設けられた容器と、
     前記容器内にパージガスを供給するパージガス供給機構と、
     前記容器内を排気する排気機構と、
     前記パージガス供給機構と前記排気機構を制御することにより、前記容器内が前記真空室と連通した際に前記容器内の圧力を前記真空室に対応する圧力に調整し、前記容器内が前記大気雰囲気の空間と連通した際に前記容器内の圧力を大気圧に調整する圧力調整機構と、
     前記容器内で基板を支持する基板支持部材と、
     前記基板支持部材に支持された基板の上面および/または下面に対向して設けられ、前記パージガス供給機構から供給されたパージガスを基板の上面および/または下面に向けて吐出する、多孔質体またはシャワー構造からなるガス吐出部材と、
     前記容器内の圧力を上昇させる際または前記容器内が大気圧になった際に、前記ガス吐出部材を挟んだ両側の圧力差がほぼ保たれて、前記ガス吐出部材から吐出した後のガスの温度が低下する効果が得られるように前記圧力調整機構を制御する制御部と
    を具備する、ロードロック装置。
    A load lock device used for transporting a substrate from a vacuum chamber to a vacuum chamber held in a vacuum, and transporting a high temperature substrate from the vacuum chamber to the atmospheric atmosphere,
    A container provided so that the pressure can be varied between the pressure corresponding to the vacuum chamber and the atmospheric pressure;
    A purge gas supply mechanism for supplying a purge gas into the container;
    An exhaust mechanism for exhausting the inside of the container;
    By controlling the purge gas supply mechanism and the exhaust mechanism, when the inside of the container communicates with the vacuum chamber, the pressure in the container is adjusted to a pressure corresponding to the vacuum chamber, and the inside of the container is in the atmosphere. A pressure adjusting mechanism that adjusts the pressure in the container to atmospheric pressure when communicating with the space;
    A substrate support member for supporting the substrate in the container;
    A porous body or shower that is provided facing the upper surface and / or lower surface of the substrate supported by the substrate support member and discharges the purge gas supplied from the purge gas supply mechanism toward the upper surface and / or lower surface of the substrate. A gas discharge member having a structure;
    When the pressure inside the container is increased or when the inside of the container becomes atmospheric pressure, the pressure difference between both sides sandwiching the gas discharge member is substantially maintained, and the gas discharged from the gas discharge member A load lock device comprising: a control unit that controls the pressure adjusting mechanism so as to obtain an effect of lowering the temperature.
  2.  前記制御部は、前記容器内の圧力を上昇させる際または前記容器内が大気圧になった際に、ジュール=トムソン効果が得られるように前記圧力調整機構を制御する、請求項1に記載のロードロック装置。 The said control part controls the said pressure adjustment mechanism so that a Joule-Thompson effect may be acquired, when raising the pressure in the said container or when the inside of the said container becomes atmospheric pressure. Load lock device.
  3.  前記制御部は、前記容器内の圧力を上昇させる際に、断熱圧縮による温度上昇を抑制するように、前記圧力調整機構を制御する、請求項1に記載のロードロック装置。 The load lock device according to claim 1, wherein the control unit controls the pressure adjusting mechanism so as to suppress a temperature increase due to adiabatic compression when the pressure in the container is increased.
  4.  前記制御部は、前記容器内の圧力を上昇させる際に、前記圧力調整機構が前記容器内へのパージガスの供給および前記容器内の排気を交互に行って前記容器内の圧力を調整するように前記圧力調整機構を制御する、請求項3に記載のロードロック装置。 The control unit adjusts the pressure in the container by alternately supplying the purge gas into the container and evacuating the container when the pressure in the container is increased. The load lock device according to claim 3 which controls said pressure regulation mechanism.
  5.  前記ガス吐出部材は、多孔質セラミックで構成されている、請求項1に記載のロードロック装置。 The load lock device according to claim 1, wherein the gas discharge member is made of a porous ceramic.
  6.  大気雰囲気から真空に保持された真空室へ基板を搬送し、前記真空室から高温の基板を前記大気雰囲気に搬送する際に用いられるロードロック装置であって、
     真空室に対応する圧力と大気圧との間で圧力を変動可能に設けられた容器と、
     前記容器内にパージガスを供給するパージガス供給機構と、
     前記容器内を排気する排気機構と、
     前記パージガス供給機構と前記排気機構を制御することにより、前記容器内が前記真空室と連通した際に前記容器内の圧力を前記真空室に対応する圧力に調整し、前記容器内が前記大気雰囲気の空間と連通した際に前記容器内の圧力を大気圧に調整する圧力調整機構と、
     前記容器内で基板を支持する基板支持部材と、
     前記基板支持部材に支持された基板の上面および/または下面、ならびに側面に対向して設けられ、前記パージガス供給機構から供給されたパージガスを基板の上面および/または下面、ならびに側面に向けて吐出する、多孔質体またはシャワー構造からなるガス吐出部材と、
     前記容器内の圧力を上昇させる際または前記容器内が大気圧になった際に、前記ガス吐出部材を挟んだ両側の圧力差がほぼ保たれて、前記ガス吐出部材から吐出した後のガスの温度が低下する効果が得られるように前記圧力調整機構を制御する制御部と
    を具備し、
     前記ガス吐出部材を挟んだ両側の圧力差がほぼ保たれることによる基板の温度低下に加え、基板の上面および/または下面に向けて吐出されたパージガスと、基板の側面に向けて吐出したパージガスとが衝突することによる基板の温度低下が生じる、ロードロック装置。
    A load lock device used for transporting a substrate from a vacuum chamber to a vacuum chamber held in a vacuum, and transporting a high temperature substrate from the vacuum chamber to the atmospheric atmosphere,
    A container provided so that the pressure can be varied between the pressure corresponding to the vacuum chamber and the atmospheric pressure;
    A purge gas supply mechanism for supplying a purge gas into the container;
    An exhaust mechanism for exhausting the inside of the container;
    By controlling the purge gas supply mechanism and the exhaust mechanism, when the inside of the container communicates with the vacuum chamber, the pressure in the container is adjusted to a pressure corresponding to the vacuum chamber, and the inside of the container is in the atmosphere. A pressure adjusting mechanism that adjusts the pressure in the container to atmospheric pressure when communicating with the space;
    A substrate support member for supporting the substrate in the container;
    The purge gas supplied from the purge gas supply mechanism is discharged toward the upper surface and / or the lower surface and the side surface of the substrate, which is provided facing the upper surface and / or the lower surface and the side surface of the substrate supported by the substrate support member. A gas discharge member comprising a porous body or a shower structure;
    When the pressure inside the container is increased or when the inside of the container becomes atmospheric pressure, the pressure difference between both sides sandwiching the gas discharge member is substantially maintained, and the gas discharged from the gas discharge member A control unit that controls the pressure adjusting mechanism so as to obtain an effect of lowering the temperature,
    Purging gas discharged toward the upper surface and / or lower surface of the substrate and purge gas discharged toward the side surface of the substrate in addition to the temperature drop of the substrate due to the pressure difference between both sides sandwiching the gas discharging member being substantially maintained A load lock device in which the temperature of the substrate is reduced due to collision with the substrate.
  7.  前記制御部は、前記容器内の圧力を上昇させる際または前記容器内が大気圧になった際に、ジュール=トムソン効果が得られるように前記圧力調整機構を制御する、請求項6に記載のロードロック装置。 The said control part controls the said pressure adjustment mechanism so that the Joule-Thompson effect may be acquired when raising the pressure in the said container or when the inside of the said container becomes atmospheric pressure. Load lock device.
  8.  前記制御部は、前記容器内の圧力を上昇させる際に、断熱圧縮による温度上昇を抑制するように、前記圧力調整機構を制御する、請求項6に記載のロードロック装置。 The load lock device according to claim 6, wherein the control unit controls the pressure adjusting mechanism so as to suppress a temperature increase due to adiabatic compression when the pressure in the container is increased.
  9.  前記制御部は、前記容器内の圧力を上昇させる際に、前記圧力調整機構が前記容器内へのパージガスの供給および前記容器内の排気を交互に行って前記容器内の圧力を調整するように前記圧力調整機構を制御する、請求項8に記載のロードロック装置。 The control unit adjusts the pressure in the container by alternately supplying the purge gas into the container and evacuating the container when the pressure in the container is increased. The load lock device according to claim 8 which controls said pressure regulation mechanism.
  10.  前記ガス吐出部材は、多孔質セラミックで構成されている、請求項6に記載のロードロック装置。 The load lock device according to claim 6, wherein the gas discharge member is made of a porous ceramic.
PCT/JP2013/053874 2012-03-14 2013-02-18 Load lock device WO2013136916A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-057978 2012-03-14
JP2012057978A JP2013191782A (en) 2012-03-14 2012-03-14 Load lock device

Publications (1)

Publication Number Publication Date
WO2013136916A1 true WO2013136916A1 (en) 2013-09-19

Family

ID=49160835

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/053874 WO2013136916A1 (en) 2012-03-14 2013-02-18 Load lock device

Country Status (3)

Country Link
JP (1) JP2013191782A (en)
TW (1) TW201347067A (en)
WO (1) WO2013136916A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111696888A (en) * 2019-03-12 2020-09-22 日新离子机器株式会社 Substrate cooling apparatus and substrate cooling method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014204017A (en) * 2013-04-08 2014-10-27 シンフォニアテクノロジー株式会社 Reception device of workpiece
KR101522675B1 (en) * 2013-12-20 2015-06-03 주식회사 에스에프에이 Loadlock chamber and venting metho thereof
KR102538177B1 (en) 2017-11-16 2023-05-31 삼성전자주식회사 Deposition apparatus including upper shower head and lower shower head
KR102404061B1 (en) 2017-11-16 2022-05-31 삼성전자주식회사 Deposition apparatus including upper shower head and lower shower head

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06260432A (en) * 1993-03-04 1994-09-16 Kokusai Electric Co Ltd Substrate cooling device and method therefor
JPH06267898A (en) * 1993-03-17 1994-09-22 Tokyo Electron Ltd Vacuum treatment device
JP2001510279A (en) * 1997-07-11 2001-07-31 エーエスエム アメリカ インコーポレイテッド Substrate cooling device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06260432A (en) * 1993-03-04 1994-09-16 Kokusai Electric Co Ltd Substrate cooling device and method therefor
JPH06267898A (en) * 1993-03-17 1994-09-22 Tokyo Electron Ltd Vacuum treatment device
JP2001510279A (en) * 1997-07-11 2001-07-31 エーエスエム アメリカ インコーポレイテッド Substrate cooling device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111696888A (en) * 2019-03-12 2020-09-22 日新离子机器株式会社 Substrate cooling apparatus and substrate cooling method

Also Published As

Publication number Publication date
TW201347067A (en) 2013-11-16
JP2013191782A (en) 2013-09-26

Similar Documents

Publication Publication Date Title
US9607855B2 (en) Etching method and storage medium
JP5916608B2 (en) Load lock device
US9589819B1 (en) Substrate processing apparatus
JP4916140B2 (en) Vacuum processing system
JP4642619B2 (en) Substrate processing system and method
US20120170999A1 (en) Load lock device and processing system
WO2009096249A1 (en) Load lock apparatus and substrate cooling method
JP2009206270A (en) Load lock apparatus and substrate cooling method
WO2013136916A1 (en) Load lock device
US20080223399A1 (en) Substrate processing apparatus, substrate processing method and storage medium
US9691630B2 (en) Etching method
JP2013136839A (en) Vacuum processing system
US11011383B2 (en) Etching method
JP2012119626A (en) Load lock device
JP5496837B2 (en) Cooling method, cooling device, and computer-readable storage medium for workpiece
JP2008251991A (en) Load-lock device and boosting method
US10115611B2 (en) Substrate cooling method, substrate transfer method, and load-lock mechanism
JP5144352B2 (en) Etching device
TWI533389B (en) Airtight module and exhaust method of the airtight module
JP2001316816A (en) Apparatus for cooling substrate
JP2008024975A (en) Semi-conductor manufacturing equipment
JP2005333076A (en) Load locking device, processing system and its using method
WO2004057656A1 (en) Substrate processing device and semiconductor device producing method
JP2012069628A (en) Substrate-processing apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13761025

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13761025

Country of ref document: EP

Kind code of ref document: A1