WO2013136856A1 - Thermal type fluid flow rate sensor and manufacturing method therefor - Google Patents

Thermal type fluid flow rate sensor and manufacturing method therefor Download PDF

Info

Publication number
WO2013136856A1
WO2013136856A1 PCT/JP2013/051518 JP2013051518W WO2013136856A1 WO 2013136856 A1 WO2013136856 A1 WO 2013136856A1 JP 2013051518 W JP2013051518 W JP 2013051518W WO 2013136856 A1 WO2013136856 A1 WO 2013136856A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating resistor
wiring
stress
fluid flow
flow sensor
Prior art date
Application number
PCT/JP2013/051518
Other languages
French (fr)
Japanese (ja)
Inventor
佐久間 憲之
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Publication of WO2013136856A1 publication Critical patent/WO2013136856A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/688Structural arrangements; Mounting of elements, e.g. in relation to fluid flow using a particular type of heating, cooling or sensing element
    • G01F1/69Structural arrangements; Mounting of elements, e.g. in relation to fluid flow using a particular type of heating, cooling or sensing element of resistive type
    • G01F1/692Thin-film arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/6845Micromachined devices

Definitions

  • the present invention relates to a thermal fluid flow sensor and a manufacturing method thereof, and more particularly, to a thermal fluid flow sensor having a plurality of wires having different wiring widths and a manufacturing method thereof.
  • thermal type fluid flow sensor used in an air flow meter for measuring an intake air amount provided in an electronically controlled fuel injection device of an internal combustion engine such as an automobile is mainly used because a thermal type can directly detect a mass air amount. It has become.
  • thermal air flow sensor manufactured by semiconductor micromachining technology has attracted attention because it can reduce the cost and can be driven with low power.
  • Patent Document 1 As a prior art of such an airflow sensor, for example, there is one disclosed in Patent Document 1, and platinum (Pt) is used as a heating element (heater) and a temperature detection element (sensor), and Si and the lower part of the heater and sensor are used.
  • Pt platinum
  • the diaphragm structure from which the film is removed a technique is disclosed in which the upper and lower layers of the heater and the sensor are covered with an insulating film, and the combined stress of these insulating films is used as a slight tensile stress.
  • Patent Document 2 the upper layer and the lower layer of the heater and the sensor have a laminated structure of compressive stress and tensile stress, and this film structure is arranged symmetrically to form a structure that is resistant to thermal stress.
  • Patent Document 3 is another conventional technique related to an airflow sensor.
  • Patent Document 3 discloses a process of depositing a silicon oxide film to insulate between a fluid temperature detector (sensor) and a heater. At that time, the surface of the silicon oxide film is uneven due to the sensor and heater pattern, so CMP (Chemical-Mechanical-Polishing) is performed on the surface of the silicon oxide film to remove the unevenness, and the silicon oxide film is flattened. The process of doing is disclosed.
  • CMP Chemical-Mechanical-Polishing
  • JP-A-11-194043 JP 2001-153705 A Japanese Patent Laid-Open No. 2001-165737
  • Patent Documents 1 and 2 describe the stress control of the entire diaphragm, but do not perform stress control considering the shape of the heater and the sensor. Therefore, with only the stress control technology disclosed in Patent Documents 1 and 2, the average stress on the wiring is not zero due to the stress of the metal material forming the heater and the sensor arranged in a limited region, and as a result, the diaphragm Even though the overall stress control is performed, warping occurs.
  • heaters and sensors formed of the same material have different resistance values, so that the wiring widths thereof are also usually different. At this time, due to the stress of the wiring material, the greater the wiring width, the greater the warpage in the vicinity of the wiring. As a result, there is a problem that deflection due to stress imbalance occurs at the boundary between the thick wiring and the thin wiring, and the resistance values of the heater and the sensor change due to the thermal influence of the heater heating.
  • patent document 3 has description about the planarization process using CMP, the special description and consideration about stress control are not disclosed.
  • an object of the present invention is to provide a thermal fluid flow sensor with higher detection accuracy of flow measurement in a thermal fluid flow sensor having wires of different wiring widths.
  • a thermal fluid flow sensor comprising a heating layer having a tensile stress, a wiring layer provided with a temperature measuring resistor having a tensile stress and a wiring width different from that of the heating resistor, A plurality of first insulating films provided on the upper layer and the lower layer, each having a tensile stress, and an insulating layer on which a plurality of second insulating films each having a compressive stress are stacked, and the insulating layer generates heat
  • the average value of the stress at the upper and lower portions of the wiring with the larger wiring width of the resistor or resistance temperature detector is located at the upper and lower portions of the wiring with the narrow wiring width of the heating resistor or the resistance temperature detector. It is characterized in that it is on the compression side with respect to the average value of the stress of the part to be.
  • a thermal fluid flow sensor a heating layer having a tensile stress, a wiring layer provided with a temperature measuring resistor having a tensile stress and a wiring width narrower than the heating resistor, A stress adjusting layer provided on the upper layer, having a compressive stress, and having a film thickness at an upper portion of a portion where the heating resistor is provided being thicker than a thickness of a portion where the resistance temperature detector is provided; .
  • thermo fluid flow sensor in which (a) a plurality of first insulating films each having a tensile stress and a plurality of second insulations each having a compressive stress are formed on an upper layer of a semiconductor substrate.
  • thermo fluid flow sensor having wirings with different wiring widths
  • a sensor may be provided.
  • FIG. 1 is a schematic layout diagram of a thermal air flow meter mounted with a thermal fluid flow sensor attached to an intake passage of an internal combustion engine such as an automobile according to Embodiment 1 of the present invention. It is the principal part top view which expanded a part of FIG. FIG. 10 is a main part cross-sectional view taken along line B-B ′ of FIG. 9. It is the circuit diagram which showed an example of the thermal type fluid flow sensor which concerns on Example 1 of this invention.
  • a measuring element 1 which is a thermal fluid flow sensor according to the first embodiment includes a semiconductor substrate 2, a heating resistor 3, a heating resistor temperature measuring resistor 4, temperature measuring resistors 5a to 5d, and an air temperature measuring resistor. 6, heater temperature control resistors 7 and 8, terminal electrodes 9a9i, and lead wires 10a, 10b, 10c-1, 10c-2, 10d, 10e, 10f, 10g, 10h-1, 10h-2, 10i-1 10i-2 or the like.
  • the semiconductor substrate 2 is made of, for example, single crystal Si.
  • the heating resistor 3 is formed on the semiconductor substrate 2 via an insulating film, and the wiring width is, for example, about 1 ⁇ m to 150 ⁇ m.
  • the resistance temperature detector 4 for the heating resistor is used for temperature detection of the heating resistor 3, and the wiring width is, for example, about 0.3 ⁇ m to 10 ⁇ m.
  • the resistance temperature detector comprises two upstream resistance temperature detectors 5a and 5b and two downstream resistance temperature detectors 5c and 5d, and is used for temperature detection of air heated by the heating resistor 3.
  • the wiring width of the upstream side resistance thermometers 5a and 5b and the downstream side resistance thermometers 5c and 5d is, for example, about 0.3 ⁇ m to 10 ⁇ m.
  • the air temperature measuring resistor 6 is used for measuring the air temperature, and the wiring width is, for example, about 0.3 ⁇ m to 10 ⁇ m.
  • each of the upstream side resistance temperature detectors 5 a and 5 b, the downstream side resistance temperature detectors 5 c and 5 d, and the air temperature resistance temperature detector 6 has a wiring width narrower than that of the heating resistor 3. Formed.
  • the wiring width of the heater temperature control resistors 7 and 8 is, for example, about 0.3 ⁇ m to 10 ⁇ m.
  • the terminal electrodes 9a to 9i are used for connecting the signal of the temperature measuring element 1 to an external circuit.
  • the lead wiring 10a electrically connects the heating resistor 3 to the terminal electrode 9a, and the wiring width is, for example, about 5 ⁇ m to 500 ⁇ m.
  • the lead-out wiring 10b electrically connects the heating resistor 3 to the terminal electrode 9b, and the line width is, for example, about 5 ⁇ m to 500 ⁇ m.
  • the two lead wires 10c-1 and 10c-2 electrically connect the heater temperature control resistor 7 and the heater temperature control resistor 8 to the terminal electrode 9c, and the wire width is, for example, about 5 ⁇ m to 500 ⁇ m. .
  • the lead wiring 10d electrically connects the resistance temperature measuring resistor 4 and the heater temperature control resistor 7 to the terminal electrode 9d, and the wiring width is, for example, about 5 ⁇ m to 500 ⁇ m.
  • the lead wiring 10e electrically connects the air temperature measuring resistor 6 and the heater temperature control resistor 8 to the terminal electrode 9e, and the wiring width is, for example, about 5 ⁇ m to 500 ⁇ m.
  • the lead wiring 10f electrically connects the upstream resistance temperature detector 5a and the downstream resistance temperature detector 5c to the terminal electrode 9f, and the wiring width is, for example, about 1 ⁇ m to 500 ⁇ m.
  • the lead wiring 10g electrically connects the resistance temperature detector 4 for the heating resistor, the air temperature resistance resistor 6, the upstream side resistance temperature detector 5b, and the downstream side resistance temperature detector 5d to the terminal electrode 9g.
  • the width is, for example, about 1 ⁇ m to 500 ⁇ m.
  • the two lead wires 10h-1 and 10h-2 electrically connect the upstream resistance temperature detector 5b and the downstream resistance temperature detector 5c to the terminal electrode 9h, and the wiring width is, for example, about 1 ⁇ m to 500 ⁇ m. .
  • the two lead wires 10i-1 and 10i-2 electrically connect the upstream resistance temperature detector 5a and the downstream resistance temperature detector 5d to the terminal electrode 9i, and the wiring width is, for example, about 1 ⁇ m to 500 ⁇ m. .
  • an opening 11 is provided in at least the heating resistor 3, the resistance thermometer 4 for the heating resistor, and the protective film on the temperature measuring resistor, and the lower Si substrate (semiconductor substrate 2) is removed from the diaphragm.
  • Structure 12 is formed. At this time, due to the diaphragm structure 12, the outer periphery of the opening portion 11 of the protective film is approximately 50 ⁇ m or more inside from the outer periphery of the diaphragm structure 12 in a plane.
  • This measuring element 1 measures the air temperature of the air flow 13 with the air temperature measuring resistor 6, and compares the temperature difference with the increase in resistance of the resistance thermometer 4 for the heating resistor heated by the heating resistor 3 ( ⁇ Th) is calculated, and the resistance of the resistance temperature detectors 5 a, 5 b, 5 c, and 5 d is changed by the flow of air heated by the heating resistor 3.
  • a wiring structure with a folded meander pattern is adopted.
  • FIGS. 2 to 7 are cross-sectional views of relevant parts corresponding to the line AA in FIG.
  • a semiconductor substrate 2 made of single crystal Si is prepared.
  • the insulating film 14 is formed on the main surface of the semiconductor substrate 2, and the insulating film 15, the insulating film 16, the insulating film 17, and the insulating film 18 are sequentially formed.
  • the insulating film 14 is a silicon oxide film formed in, for example, a high-temperature furnace and has a thickness of about 200 nm.
  • the insulating film 15 is a silicon nitride film using, for example, a CVD method and has a thickness of about 100 to 200 nm. These insulating film 14 and insulating film 15 are also formed on the back surface of the semiconductor substrate 2.
  • the insulating film 16 is a silicon oxide film using, for example, a CVD method and has a thickness of about 300 to 500 nm.
  • the insulating film 17 is a silicon nitride film using, for example, a CVD method or a plasma CVD method, and the film thickness is determined by the wiring pitch of the sensor portion, but is in the range of about 20 nm to 200 nm.
  • the insulating film 18 is a silicon oxide film using, for example, a CVD method or a plasma CVD method, and has a thickness of 50 nm to 300 nm.
  • the insulating film 14, the insulating film 16, and the insulating film 18 are films having a compressive stress (second insulating film), and the insulating film 15 and the insulating film 17 are films having a tensile stress (first insulating film).
  • the residual stress of the first insulating film is a tensile stress of about 700 MPa to 1200 MPa, for example, and the residual stress of the second insulating film is a compressive stress of about 50 MPa to 250 MPa, for example.
  • the insulating film 15 and the insulating film 17 may be aluminum nitride films having a tensile stress of 500 MPa to 1200 MPa. In order to adjust the stress of each film after forming these insulating films, a heat treatment at about 1000 ° C. may be performed in a nitrogen atmosphere.
  • a Mo (molybdenum) film is formed to a thickness of about 100 to 200 nm by sputtering, for example.
  • the underlying insulating film 18 is etched by about 5 nm to 20 nm by a sputter etching method using Ar (argon) gas before the Mo film is deposited.
  • the semiconductor substrate 2 is formed at a temperature of about 200 ° C. to 500 ° C.
  • a heat treatment at about 1000 ° C. is performed in a nitrogen atmosphere in the furnace body or lamp heating apparatus after the Mo film is formed.
  • the metal film 19 is patterned by etching using a photolithography method, so that the heating resistor 3, the heating resistor temperature measuring resistor 4, the temperature measuring resistor (upstream temperature measuring device). Resistors 5a and 5b and downstream temperature measuring resistors 5c and 5d), air temperature measuring resistor 6, heater temperature control resistors 7 and 8, and lead wires 10a to 10i-2 are formed (however, FIG. 3). Then, the air temperature measuring resistor 6, the heater temperature control resistors 7, 8 and a part of the lead wiring are not shown).
  • each of the wirings (3 to 10i-2) obtained by the patterning has a tensile stress, and the residual stress is a strong tensile stress of about 800 MPa, for example. .
  • the underlying insulating film 18 is etched at a maximum of about 50 nm in a portion where the metal film 19 is not present. Therefore, the step difference between the portion formed of the metal film 19 such as the heating resistor 3 and the portion where the insulating film 18 is etched by processing the metal film 19 is about 150 to 250 nm.
  • the insulating film 20 serving as a stress adjusting layer a silicon oxide film deposited by, for example, a CVD method or a low temperature CVD method using plasma using TEOS (tetraethoxysilane) is formed to a thickness of about 300 to 600 nm.
  • the insulating film 20 is not particularly limited to those manufactured by these manufacturing methods, and may be a film having at least a compressive stress.
  • the insulating film 20 is polished by using a CMP (Chemical Mechanical Polishing) method so that the film thickness is different between the heater and the sensor having different wiring widths of the underlying metal film.
  • the stress adjustment layer 37 refers to a layer having a relatively large compressive stress in an upper layer of a thick wiring and a relatively small compressive stress in an upper layer of a thin wiring among heaters or sensors having different wiring widths.
  • the insulating film 20 after the film thickness control is referred to as a stress adjustment layer 37.
  • the heating resistor 4 for the heating resistor and the temperature measuring resistors (the upstream temperature measuring resistors 5a and 5b and the downstream temperature measuring resistors 5c and 5d).
  • the resistance temperature detector 4 for the heating resistor having a narrow wiring width, the resistance temperature detector (the upstream resistance temperature detectors 5a and 5b, and the downstream resistance temperature detector) 5c and 5d), by setting the conditions and the amount of polishing in which the polishing progresses quickly in the heating resistor 3 having a large wiring width and in which the polishing progresses slowly, the temperature measuring resistor 4 for the heating resistor, the resistance thermometer
  • the body upstream resistance temperature detectors 5a, 5b and downstream resistance temperature detectors 5c, 5d
  • the heating resistor 3 is thick
  • the stress adjustment layer having a different thickness depending on the width of the underlying wiring from the same insulating film
  • the polishing amount is preferably equal to or less than the thickness of the metal film 19.
  • the polishing amount including the shaving amount may be used.
  • this stress adjustment layer it is possible to reduce the difference in warpage amount that differs depending on the wiring width, to suppress the deflection at the boundary portion where the wiring width differs, and to reduce the heat generated by heating the heating resistor 3.
  • the plastic deformation of influence can be reduced. Further, as compared with a process by dry etching which will be described later, there is an advantage that the corners of the unevenness of the insulating film generated at the upper part of each wiring can be rounded and the sensor characteristics are improved.
  • the film thickness is adjusted by the CMP method based on the lower metal wiring width of the stress adjusting layer 37.
  • the insulating film 20 is formed and then the wiring is formed by photolithography.
  • the insulating film 21 is a silicon nitride film deposited by, for example, a CVD method or a low temperature CVD method using plasma, and has a thickness of about 150 to 200 nm.
  • the insulating film 22 is a silicon oxide film deposited by, for example, a CVD method or a low temperature CVD method using TEOS as a raw material and using plasma, and has a thickness of about 100 to 500 nm.
  • the stress adjusting film 20 and the insulating film 22 which are silicon oxide films are films (second films) whose residual stress at room temperature is a compressive stress of about 50 MPa to 250 MPa, and the insulating film 21 which is a silicon nitride film. Is a film (first film) having a residual stress of about 700 MPa to 1200 MPa at room temperature. Further, when the insulating film 21 is a silicon nitride film formed by a low temperature CVD method using plasma, heat treatment is performed at a temperature of about 800 ° C. or higher, preferably about 1000 ° C., so as to obtain a desired tensile stress.
  • the silicon oxide film that is the insulating film 22 is also preferably subjected to heat treatment after deposition because heat resistance is improved by performing heat treatment at about 1000 ° C.
  • the connection hole 23 for exposing a part of the lead wirings 10a to 10i-2 is formed by dry etching or wet etching using a photolithography method. In FIG. 5, illustration of the connection holes 23 other than the connection hole 23 reaching the lead wiring 10g is omitted.
  • the metal film 24 for example, an Al alloy film that fills the connection hole 23 with a thickness of about 1 ⁇ m is formed.
  • the surfaces of the lead wirings 10a to 10i-2 may be sputter-etched with Ar (argon) gas before the formation.
  • a barrier metal film such as a TiN (titanium nitride) film is formed as a third metal film before the Al alloy film is deposited, and a laminated film of the barrier film and the Al alloy film May be formed.
  • the thickness is preferably about 20 nm.
  • the thickness of the barrier metal film can be 200 nm or less.
  • the TiN film is exemplified as the barrier metal film, a TiW (titanium tungsten) film, a Ti (titanium) film, and a laminated film thereof may be used.
  • the metal film 24 is patterned by dry etching or wet etching using a photolithography method to form terminal electrodes 9a to 9i.
  • a polyimide film is formed as the protective film 25 on the terminal electrodes 9a to 9i, and at least the heating resistor 3, the heating resistor 4 for the heating resistor, and the upper temperature measuring resistor are formed by etching using a photolithography method. Openings (not shown) for connecting the openings 11 and the terminal electrodes 9a to 9i to external circuits are formed on the bodies 5a, 5b and the lower resistance temperature detectors 5c, 5d.
  • the protective film 25 may be a photosensitive organic film or the like, and the film thickness is about 2 to 3 ⁇ m.
  • a photoresist film pattern (not shown) is formed on the back surface of the semiconductor substrate 2 by photolithography, and the insulating film 14 and the insulating film 15 formed on the back surface are dry-etched. Or by wet etching.
  • the semiconductor substrate 2 is wet-etched from the back surface with KOH (potassium hydroxide), TMAH (Tetramethylammonium hydroxide) or an aqueous solution containing these as a main component to form the diaphragm structure 12.
  • the diaphragm structure 12 is designed to be larger than the opening 11 of the protective film 25, and is preferably formed to be approximately 50 ⁇ m or more larger than all sides of the protective film 25 opening 11.
  • the total film thickness of the insulating film (insulating film 14, insulating film 15, insulating film 16, insulating film 17, insulating film 18, insulating film 20, insulating film 21, and insulating film 22) constituted by this diaphragm structure 12 is 1. About 5 ⁇ m or more is desirable. If it is thinner than this, the strength of the insulating film constituted by the diaphragm structure 12 is lowered, and there is a high possibility that the insulating film is broken due to the collision of dust contained in the intake air of the automobile.
  • the film formed below the semiconductor substrate 2 in the insulating film 14 serves as a buffer film when dust collides from below, dust collides such that the lower surface of the chip is covered with a lead frame, for example.
  • the insulating film 14 may be omitted if the configuration is such that it does not.
  • the thermal fluid flow sensor in which the metal film 19 to be the heating resistor 3 or the like is formed of Mo has been described.
  • metals other than Mo, metal nitride compounds, metal silicide compounds, polycrystalline silicon Alternatively, it may be formed from polycrystalline silicon doped with phosphorus or boron as impurities.
  • a metal ⁇ -Ta (alpha tantalum), Ti (titanium), W (tungsten), Co (cobalt), Ni (nickel), Fe (iron), Nb (niobium), Hf (hafnium), Examples thereof include metals mainly composed of Cr (chromium) or Zr (zirconium).
  • metal nitride compound examples include TaN (tantalum nitride), MoN (molybdenum nitride), and WN (tungsten nitride).
  • metal silicide compound examples include MoSi (molybdenum silicide), CoSi (cobalt silicide), and NiSi (nickel silicide).
  • polysilicon doped with phosphorus or boron can be exemplified.
  • FIG. 8 is a schematic layout diagram of a thermal air flow meter mounted with an intake passage of an internal combustion engine such as an automobile in which the thermal fluid flow sensor according to the present embodiment according to the first embodiment is mounted.
  • the thermal air flow meter 26 includes the above-described measuring element 1 which is a thermal fluid flow sensor, a support body 27 including an upper part and a lower part, and an external circuit 28.
  • the measuring element 1 is provided inside the air passage 29. It is arranged in the auxiliary passage 30 in The external circuit 28 is electrically connected to the terminal of the measuring element 1 through the support body 27.
  • the intake air flows in the direction of the air flow indicated by the arrow (air flow 13) in FIG. 8 or in the opposite direction depending on the conditions of the internal combustion engine.
  • FIG. 9 is an enlarged plan view of a main part of a part (measuring element 1 and support 27) of FIG. 8 described above
  • FIG. 10 is a cross-sectional view of the main part taken along line BB in FIG.
  • the measuring element 1 is fixed on the lower support 27a, and the space between each of the terminal electrodes 9a to 9i of the measuring element 1 and the terminal electrode 31 of the external circuit 28 is as follows. For example, they are electrically connected by a wire bonding method using a gold wire 32 or the like.
  • the terminal electrodes 9a to 9i, 31 and the gold wire 32 are protected by being covered with an upper support body 27b.
  • the upper support 27b may be sealed and protected with a resin.
  • FIG. 11 is a circuit diagram showing the measuring element 1 and the external circuit 28 according to the first embodiment.
  • Reference numeral 33 denotes a power source
  • reference numeral 34 denotes a transistor for supplying a heating current to the heating resistor 3
  • reference numeral 35 denotes A control circuit composed of an output circuit including an A / D converter or the like and a CPU (Central Processing ⁇ ⁇ ⁇ Unit) that performs arithmetic processing
  • a reference numeral 36 is a memory circuit.
  • the circuit shown in FIG. 11 has two bridge circuits.
  • One is a heater control bridge circuit composed of a heating resistor temperature measuring resistor 4, an air temperature measuring resistor 6, and heater control resistors 7, 8.
  • the other is a temperature sensor bridge circuit comprising four resistance temperature detectors (upstream resistance resistors 5a and 5b and downstream resistance resistors 5c and 5d).
  • the terminal electrode 9c is electrically connected to both of the two heater temperature control resistors 7 and 8 via two lead wires 10c-1 and 10c-2.
  • a predetermined potential Vref1 is supplied to the terminal electrode 9c.
  • the terminal electrode 9f is electrically connected to both the upstream resistance temperature detector 5a and the downstream resistance temperature detector 5c, and a predetermined potential Vref2 is supplied to the terminal electrode 9f.
  • the terminal electrode 9g is electrically connected to each of the air temperature measuring resistor 6, the heating resistor temperature measuring resistor 4, the upstream temperature measuring resistor 5b, and the downstream temperature measuring resistor 5d through the lead wire 10g.
  • the terminal electrode 9g is set to the ground potential as shown in FIG.
  • a terminal electrode 9d electrically connected to both the heating resistor temperature measuring resistor 4 and the heater temperature control resistor 7 through the lead wiring 10d corresponds to the node A in FIG.
  • terminal electrode 9e electrically connected to both the air temperature measuring resistor 6 and the heater temperature control resistor 8 through the lead wiring 10e corresponds to the node B in FIG.
  • a terminal electrode 9i electrically connected to both the upstream side resistance temperature detector 5a and the downstream side resistance temperature detector 5d via the two lead wires 10i-1 and 10i-2 is connected to the node in FIG. Corresponds to C.
  • the terminal electrode 9h electrically connected to both the upstream resistance temperature detector 5b and the downstream resistance temperature detector 5c via the two lead wires 10h-1 and 10h-2 is connected to the node in FIG. Corresponds to D.
  • the ground potential of the heater bridge circuit and the temperature sensor bridge circuit is supplied by the common terminal electrode 9g.
  • the terminal electrode may be increased and each terminal electrode may be set to the ground potential.
  • the heater control bridge circuit When the gas heated by the heating resistor 3 is higher than the intake air temperature by a certain temperature ( ⁇ Th, for example, 100 ° C.), the heater control bridge circuit is connected to the node A (terminal electrode 9d) and the node B (terminal electrode 9e).
  • the resistance values of the heating resistor temperature measuring resistor 4, the air temperature measuring resistor 6, and the heater control resistors 7, 8 are set so that the potential difference between them is 0V.
  • the constant temperature ( ⁇ Th) deviates from the setting, a potential difference is generated between the node A and the node B, the transistor 34 is controlled by the control circuit 35 to change the current of the heating resistor 3, and the bridge circuit Is kept in an equilibrium state (potential difference between A and B is 0 V).
  • the temperature sensor bridge circuit is designed so that the distance from the heating resistor 3 to each of the resistance temperature detectors (the upstream resistance temperature detectors 5a and 5b and the downstream resistance temperature detectors 5c and 5d) is the same. Therefore, the potential difference between the node C (terminal electrode 9i) and the node D (terminal electrode 9h) becomes an equilibrium state and becomes 0V in the absence of wind regardless of heating by the heating resistor 3.
  • FIG. 12 is a cross-sectional view of a main part of a conventional thermal fluid flow sensor having a diaphragm structure which is a comparative example of the diaphragm structure according to the first embodiment (see FIG. 7).
  • the wiring width of the sensor wiring upstream temperature sensing resistors 5a and 5b and downstream temperature sensing resistors 5c and 5d, and the heating resistor temperature sensing resistor 4
  • the heater wiring The wiring width of the heating resistor 3
  • the surface is measured by a palpation step meter, and the relative displacement at each surface position with reference to the uppermost silicon oxide film at the center of the diaphragm portion. The quantity is illustrated.
  • the conventional thermal fluid flow rate sensor does not perform the CMP process on the insulating film 20 (that is, the stress adjustment layer 37 is not formed), so that the wiring width is large.
  • the film thickness is the same on the thick heater wiring and the sensor wiring with a narrow wiring width.
  • the amount of displacement locally changes at the boundary between the sensor unit (heating resistor 4 for heating resistor) and the heater unit (heating resistor 3).
  • the heater portion has a convex shape about 0.15 ⁇ m downward.
  • the space width between the wirings is about 1 ⁇ m in both the sensor part and the heater part, and is small enough not to affect the displacement compared to each wiring. Is negligibly small. Therefore, the above-described local change in the displacement amount is caused by the difference in the wiring width of the metal film 19.
  • the metal film 19 usually has a tensile stress
  • the Mo film used in the present invention has a strong tensile stress of particularly 800 MPa or more, so that it protrudes downward particularly in a heater portion having a large wiring width. The warpage which becomes a shape occurs remarkably, resulting in a displacement amount as shown in the lower part of FIG.
  • the heater part When there is a local change in the amount of displacement as described above, the heater part is likely to rise when the heater is heated, and the diaphragm is likely to be deformed. As a result, the resistance value changes.
  • the above-mentioned constant temperature ( ⁇ Th) as a reference is calculated from the resistance value of the resistance temperature detector 4 for the heating resistor, and when the thermal fluid flow sensor is operated according to the design value while the resistance value is changing. There is a concern that the detection accuracy is lowered due to a decrease in ⁇ Th, and the film structure is destroyed due to abnormal heating of the heater due to excessive current.
  • FIG. 13 shows a cross-sectional view of the main part of the thermal fluid flow sensor according to the first embodiment
  • the lower part of FIG. Measure the surface of the wiring (upstream resistance thermometers 5a, 5b and downstream resistance thermometers 5c, 5d, the resistance thermometer 4 for the heating resistor) and the heater wiring (heating resistor 3) with a palpation step meter. The amount of displacement is shown.
  • the thermal fluid flow sensor includes a heating resistor (3) having tensile stress and a resistance temperature detector (4, 5a) having a tensile stress and a wiring width different from that of the heating resistor. 5d, or 6), and a plurality of first insulating films having tensile stress and a plurality of second insulating films having compressive stress, which are provided in the upper layer and the lower layer of each of the heating resistor and the resistance temperature detector, And an insulating layer.
  • the term “insulating layer” is used in the first embodiment to include the insulating films 14 to 18 and the stress adjusting layer 37. Furthermore, in Examples 2 and 3 to be described later, this is used to include the insulating film 20.
  • the average value of the stress of the part located in the upper part and the lower part of the wiring having a large wiring width of the heating resistor or the resistance thermometer in the insulating layer is the wiring width of the heating resistor or the resistance thermometer. It is characterized in that it is on the compression side with respect to the average value of the stress at the upper and lower portions of the thin wiring.
  • the term “upper part” is used as a word indicating the vertical upper direction with respect to the surface of the substrate 2 in each of the heating resistor and the resistance temperature detector, and the term “lower part” is used as a vertical direction with respect to the surface of the substrate 2. It is used as a word pointing down.
  • step (FIG. 3) and step (c) step (b) of forming a resistance temperature detector having a different wiring width from the heat resistance resistor the heat resistance resistor or the resistance temperature detector of the insulating layer is formed.
  • the average value of the stress at the top and bottom of the wiring with a large wiring width is the average value of the stress at the top and bottom of the wiring with a narrow wiring width of the heating resistor or resistance temperature detector.
  • the step of making the compression side (FIG. 6). To.
  • the step (c) includes a step of polishing at least one of the plurality of second insulating films using a CMP method, or a plurality of steps.
  • a step of removing at least one of the second insulating films located above the wiring having a narrow wiring width by dry etching here, “removal” in the step (c) Is not meant to completely remove the part, but to be partially removed or thinned).
  • the diaphragm structure of the thermal fluid flow sensor according to the present invention there is no local step between the heater portion and the sensor portion, and the diaphragm and the periphery are gently curved.
  • the value is very small, about 0.05 ⁇ m.
  • the thickness of the stress adjustment layer 37 is such that the upper part or the lower part of the heater part (heating resistor 3) is the sensor part (temperature measuring resistor 4, It is thicker than the upper or lower part of 5a to 5d, 6).
  • the heater portion is provided at the center side of the diaphragm than the normal sensor portion, that is, at a portion where the amplitude at the time of bending is particularly large, and thus the effect of the film thickness is particularly effective.
  • FIG. 14 shows the rate of change in resistance of the resistance temperature detector 4 for the heating resistor for each cumulative energization time of the acceleration test in which the heater section (heating resistor 3) is energized so that the temperature is about 600 ° C.
  • the conventional thermal fluid flow sensor (the upper part of FIG. 12) is compared with the thermal fluid flow sensor of the present embodiment (the upper part of FIG. 13).
  • the resistance of the resistance temperature detector for the heating resistor changes suddenly at the beginning of energization, and the resistance gradually changes after 24 hours. Recognize.
  • the resistance change is gentle from the initial energization, and the initial resistance change seen in the conventional thermal fluid flow sensor can be suppressed. Recognize. From this result, in the conventional method, it is presumed that the plastic deformation of the resistance temperature detector 4 for the heating resistor due to the influence of the heater heating is accelerated in the initial stage of energization and appears as a resistance change.
  • the thermal fluid flow sensor according to Example 1 is characterized in that the stress adjustment layer is provided in contact with the heating resistor and the resistance temperature detector.
  • stress concentration associated with the steps of the insulating films 21 and 22 provided in the upper stage of the stress adjustment layer is alleviated, so that there is an advantage that the sensor characteristics are further improved.
  • the position where the stress adjustment layer is provided is not limited to just above the heater wiring and sensor wiring.
  • a modified example in which the stress adjustment layer is formed on the uppermost layer of the diaphragm will be described as an example of a configuration in which the stress adjustment layer is formed except for the heater wiring and the sensor wiring.
  • FIG. 15 is an example of a thermal fluid flow sensor according to the second embodiment, and shows a cross-sectional view of the main part corresponding to the line AA in FIG.
  • a silicon oxide film deposited by a low temperature CVD method using plasma using a CVD method or TEOS as a raw material is formed on the heater and sensor as compared with the first embodiment.
  • the process is the same up to the steps (FIGS. 2 to 3).
  • Example 1 after that, the insulating film 20 was subjected to CMP to adjust the film thickness of the portions having different wiring widths.
  • the film thickness adjustment is not performed in this step, but the low temperature CVD method using plasma.
  • the silicon nitride film insulating film 21 and the silicon oxide insulating film 22 deposited by the low temperature CVD method using plasma using a CVD method or TEOS as a raw material are formed.
  • film thickness adjustment (CMP or dry etching) similar to that of FIG. 4 is performed on the insulating film 22 to obtain a stress adjustment layer 37 having a film thickness that varies depending on the wiring width.
  • the connection hole 23 exposing a part of the lead wirings 10a to 10i-2
  • the lead wiring, the protective film 25, and the diaphragm 12 are formed as in the first embodiment.
  • the compressive stress of the heater wiring portion becomes larger than the sensor wiring portion, the deflection of the sensor wiring portion and the heater wiring portion is eliminated, and the thermal influence at the time of heating the heater can be suppressed as in Example 1, Resistance change with time can be reduced.
  • the stress adjustment layer can be formed by a method other than controlling the film thickness of the insulating film.
  • Example 3 a structure in which a stress adjustment layer is newly provided only on the upper part of the sensor unit will be described.
  • FIG. 16 is an example of a thermal fluid flow sensor according to the third embodiment, and shows a cross-sectional view of the main part corresponding to the line AA in FIG.
  • the thermal fluid flow sensor of the third embodiment is equivalent to the step of forming the insulating film 22 as compared with the second embodiment, and is then nitrided by a low temperature CVD method using plasma as the stress adjustment layer 37.
  • a silicon film is formed to a thickness of about 20 to 50 nm, and only the upper part of the sensor portion with a narrow wiring width is left by dry etching using a photolithography method.
  • the connection hole 23 exposing a part of the lead wirings 10a to 10i-2
  • the lead wiring, the protective film 25, and the diaphragm 12 are formed as in the first embodiment.
  • the stress adjusting layer 37 is described as being on the sensor wiring, but may be a region including between the wirings.
  • the insulating layer is an insulating film having tensile stress, and is provided on the upper part of the wiring having a large wiring width (heater portion). It has a stress adjustment layer 37 that is not provided on the upper part of the (sensor part). Further, from the viewpoint of the manufacturing method, in the step (c) described above, at least one of the plurality of first insulating films included in the insulating layer is dried on the portion located above the wiring having a large wiring width. It is a process of removing by etching.
  • the sensor wiring portion has a structure in which the compressive stress is reduced as compared with the heater wiring portion, and the same effects as those of the first and second embodiments can be obtained. Furthermore, since the stress can be adjusted by the amount of film formation of the stress adjustment layer 37 provided separately in the upper layer, the error in the design is further reduced, and a sensor with higher accuracy can be provided.
  • the heater part wiring has been described as being thicker than the sensor part wiring (temperature measuring resistor).
  • the present invention also includes a thermal fluid flow sensor using the “wiring with a wide wiring width” as the sensor part.
  • Representative materials are illustrated as materials of each member, but the illustrated materials are main ones and do not exclude secondary elements, additives, additional elements, and the like.
  • another material having the same kind of stress may be applied to a portion where the material is described from the aspect of stress (tensile stress or compressive stress).

Abstract

In order to solve the problem of deflection and the like due to stress imbalance in a thermal type fluid flow rate sensor having wires with different wire widths to thereby provide the thermal type fluid flow rate sensor with higher flow rate measurement detection accuracy, a thermal type fluid flow rate sensor is provided with a heating resistor (3) having tensile stress, thermometric resistors (5a-5d) having tensile stress and having a wire width different from that of the heating resistor, and an insulating layer provided in layers above and below each of the heating resistor and thermometric resistors and including a plurality of first insulating films (15, 17) having tensile stress and a plurality of second insulating films (14, 16, 18) having compressive stress. In the insulating layer, the average value of stress in portions located above and below a wire with a wide wire width in the heating resistor or the thermometric resistors is set closer to the compression side than the average value of stress in portions located above and below a wire with a narrow wire width in the heating resistor or the thermometric resistors.

Description

熱式流体流量センサおよびその製造方法Thermal fluid flow sensor and manufacturing method thereof
 本発明は、熱式流体流量センサおよびその製造方法に関し、特に、異なる配線幅の複数の配線を有する熱式流体流量センサおよびその製造方法に関する。 The present invention relates to a thermal fluid flow sensor and a manufacturing method thereof, and more particularly, to a thermal fluid flow sensor having a plurality of wires having different wiring widths and a manufacturing method thereof.
 現在、自動車などの内燃機関の電子制御燃料噴射装置に設けられ吸入空気量を測定する空気流量計に用いられる熱式流体流量センサとしては、熱式のものが質量空気量を直接検知できることから主流となってきている。 Currently, a thermal type fluid flow sensor used in an air flow meter for measuring an intake air amount provided in an electronically controlled fuel injection device of an internal combustion engine such as an automobile is mainly used because a thermal type can directly detect a mass air amount. It has become.
 この中で特に半導体マイクロマシンニング技術により製造された熱式空気流量(エアフロー)センサが、コストを低減でき且つ低電力で駆動することができることから注目されてきた。 Among them, a thermal air flow sensor manufactured by semiconductor micromachining technology has attracted attention because it can reduce the cost and can be driven with low power.
 このようなエアフローセンサの従来技術としては、例えば特許文献1に開示されているものがあり、発熱素子(ヒータ)および温度検出素子(センサ)に白金(Pt)を用い、ヒータおよびセンサ下部のSi膜を除去したダイヤフラム構造において、ヒータおよびセンサの上層および下層を絶縁膜で覆い、これら絶縁膜の合成した応力を軽度の引張り応力とする技術を開示している。また、特許文献2では、ヒータおよびセンサの上層および下層を圧縮応力と引張り応力との積層構成とし、この膜構成を対称に配置することで、熱ストレスに対して強い構造を形成している。 As a prior art of such an airflow sensor, for example, there is one disclosed in Patent Document 1, and platinum (Pt) is used as a heating element (heater) and a temperature detection element (sensor), and Si and the lower part of the heater and sensor are used. In the diaphragm structure from which the film is removed, a technique is disclosed in which the upper and lower layers of the heater and the sensor are covered with an insulating film, and the combined stress of these insulating films is used as a slight tensile stress. In Patent Document 2, the upper layer and the lower layer of the heater and the sensor have a laminated structure of compressive stress and tensile stress, and this film structure is arranged symmetrically to form a structure that is resistant to thermal stress.
 また、エアフローセンサに関する他の従来技術として、特許文献3がある。特許文献3では、流体温度検出体(センサ)とヒータの間を絶縁するためシリコン酸化膜を堆積させる工程が開示されている。その際、センサおよびヒータのパターンの影響でシリコン酸化膜の表面に凹凸ができるため、この凹凸を除去する目的でシリコン酸化膜の表面にCMP(Chemical Mechanical Polishing)を行い、シリコン酸化膜を平坦化する工程が開示されている。 Further, Patent Document 3 is another conventional technique related to an airflow sensor. Patent Document 3 discloses a process of depositing a silicon oxide film to insulate between a fluid temperature detector (sensor) and a heater. At that time, the surface of the silicon oxide film is uneven due to the sensor and heater pattern, so CMP (Chemical-Mechanical-Polishing) is performed on the surface of the silicon oxide film to remove the unevenness, and the silicon oxide film is flattened. The process of doing is disclosed.
特開平11―194043号公報JP-A-11-194043 特開2001―153705号公報JP 2001-153705 A 特開2001―165737号公報Japanese Patent Laid-Open No. 2001-165737
 しかしながら、特許文献1および2においては、ダイヤフラム全体の応力制御に関して記載されているが、ヒータとセンサの形状を考慮した応力制御までは行っていない。そのため、特許文献1および2に開示の応力制御技術だけでは、限られた領域に配置されたヒータおよびセンサを形成する金属材料の応力によって、配線上の平均応力がゼロではなくなり、その結果、ダイヤフラム全体の応力制御を行ったにも関わらず、そりが発生してしまう。通常同一材料で形成するヒータおよびセンサは、それぞれの抵抗値を異ならせるため、それぞれの配線幅も通常異なる。その際、配線の材料が有する応力によって、配線幅が太くなるほどその配線近傍により大きな反りが生じる。結果として、太い配線と細い配線の境界において応力の不均衡によるたわみが生じ、ヒータ加熱による熱影響を受けヒータおよびセンサの抵抗値が変化する課題がある。 However, Patent Documents 1 and 2 describe the stress control of the entire diaphragm, but do not perform stress control considering the shape of the heater and the sensor. Therefore, with only the stress control technology disclosed in Patent Documents 1 and 2, the average stress on the wiring is not zero due to the stress of the metal material forming the heater and the sensor arranged in a limited region, and as a result, the diaphragm Even though the overall stress control is performed, warping occurs. Usually, heaters and sensors formed of the same material have different resistance values, so that the wiring widths thereof are also usually different. At this time, due to the stress of the wiring material, the greater the wiring width, the greater the warpage in the vicinity of the wiring. As a result, there is a problem that deflection due to stress imbalance occurs at the boundary between the thick wiring and the thin wiring, and the resistance values of the heater and the sensor change due to the thermal influence of the heater heating.
 なお、特許文献3には、CMPを用いた平坦化工程に関する記載はあるものの、応力制御について特段の記載および考察は開示されていない。 In addition, although patent document 3 has description about the planarization process using CMP, the special description and consideration about stress control are not disclosed.
 以上を踏まえ、本発明の目的は、異なる配線幅の配線を有する熱式流体流量センサにおいて、より流量計測の検出精度の高い熱式流体流量センサを提供することにある。 Based on the above, an object of the present invention is to provide a thermal fluid flow sensor with higher detection accuracy of flow measurement in a thermal fluid flow sensor having wires of different wiring widths.
 本願発明による課題を解決するための手段のうち、代表的なものを例示すれば以下の通りである。 Of the means for solving the problems according to the present invention, typical examples are as follows.
 第1に、熱式流体流量センサであって、引っ張り応力を有する発熱抵抗体と、引っ張り応力を有し発熱抵抗体とは配線幅が異なる測温抵抗体が設けられる配線層と、配線層の上層および下層に設けられ、それぞれが引っ張り応力を有する複数の第1絶縁膜と、それぞれが圧縮応力を有する複数の第2絶縁膜が積層される絶縁層と、を有し、絶縁層は、発熱抵抗体または測温抵抗体のうち配線幅の太い配線の上部および下部に位置する部分の応力の平均値が、発熱抵抗体または測温抵抗体のうち配線幅の細い配線の上部および下部に位置する部分の応力の平均値よりも圧縮側であることを特徴とする。 First, a thermal fluid flow sensor comprising a heating layer having a tensile stress, a wiring layer provided with a temperature measuring resistor having a tensile stress and a wiring width different from that of the heating resistor, A plurality of first insulating films provided on the upper layer and the lower layer, each having a tensile stress, and an insulating layer on which a plurality of second insulating films each having a compressive stress are stacked, and the insulating layer generates heat The average value of the stress at the upper and lower portions of the wiring with the larger wiring width of the resistor or resistance temperature detector is located at the upper and lower portions of the wiring with the narrow wiring width of the heating resistor or the resistance temperature detector. It is characterized in that it is on the compression side with respect to the average value of the stress of the part to be.
 第2に、熱式流体流量センサであって、引っ張り応力を有する発熱抵抗体と、引っ張り応力を有し発熱抵抗体よりも配線幅が細い測温抵抗体が設けられる配線層と、配線層の上層に設けられ、圧縮応力を有し、発熱抵抗体が設けられる部分の上部の膜厚が測温抵抗体の設けられる部分の膜厚よりも厚い応力調整層と、を有することを特徴とする。 Second, a thermal fluid flow sensor, a heating layer having a tensile stress, a wiring layer provided with a temperature measuring resistor having a tensile stress and a wiring width narrower than the heating resistor, A stress adjusting layer provided on the upper layer, having a compressive stress, and having a film thickness at an upper portion of a portion where the heating resistor is provided being thicker than a thickness of a portion where the resistance temperature detector is provided; .
 第3に、熱式流体流量センサの製造方法であって、(a)半導体基板の上層に、それぞれが引っ張り応力を有する複数の第1絶縁膜と、それぞれが圧縮応力を有する複数の第2絶縁膜と、を含む絶縁層を形成する工程と、(b)半導体基板の上層に、引っ張り応力を有する発熱抵抗体と、引っ張り応力を有し発熱抵抗体とは配線幅の異なる測温抵抗体と、を形成する工程と、(c)工程(b)の後に、絶縁層のうち、発熱抵抗体または測温抵抗体のうち配線幅の太い配線の上部および下部に位置する部分の応力の平均値を、発熱抵抗体または測温抵抗体のうち配線幅の細い配線の上部および下部に位置する部分の応力の平均値よりも圧縮側にする工程と、を有することを特徴とする。 Third, there is a method for manufacturing a thermal fluid flow sensor, in which (a) a plurality of first insulating films each having a tensile stress and a plurality of second insulations each having a compressive stress are formed on an upper layer of a semiconductor substrate. A step of forming an insulating layer including a film; (b) a heating resistor having a tensile stress on the upper layer of the semiconductor substrate; and a resistance temperature detector having a tensile stress and a wiring width different from that of the heating resistor; And (c) after step (b), the average value of the stress of the portions of the insulating layer located on the upper and lower portions of the wiring having a larger wiring width in the heating resistor or the resistance temperature detector And a step of making the compression side of the average value of the stress of the portion located above and below the thin wiring of the heating resistor or the resistance temperature detector.
 本願において開示される発明のうち、代表的なものによって得られる効果を簡単に説明すれば、異なる配線幅の配線を有する熱式流体流量センサにおいて、より流量計測の検出精度の高い熱式流体流量センサを提供しうる。 The effects obtained by typical ones of the inventions disclosed in the present application will be briefly described. In a thermal fluid flow sensor having wirings with different wiring widths, a thermal fluid flow rate with higher detection accuracy of flow rate measurement. A sensor may be provided.
本発明の実施例1に係る熱式流体流量センサの一例を示す要部平面図である。It is a principal part top view which shows an example of the thermal type fluid flow sensor which concerns on Example 1 of this invention. 本発明の実施例1に係る熱式流体流量センサの製造方法を示す要部断面図である。It is principal part sectional drawing which shows the manufacturing method of the thermal type fluid flow sensor which concerns on Example 1 of this invention. 本発明の実施例1に係る熱式流体流量センサの製造方法を示す要部断面図である。It is principal part sectional drawing which shows the manufacturing method of the thermal type fluid flow sensor which concerns on Example 1 of this invention. 本発明の実施例1に係る熱式流体流量センサの製造方法を示す要部断面図である。It is principal part sectional drawing which shows the manufacturing method of the thermal type fluid flow sensor which concerns on Example 1 of this invention. 本発明の実施例1に係る熱式流体流量センサの製造方法を示す要部断面図である。It is principal part sectional drawing which shows the manufacturing method of the thermal type fluid flow sensor which concerns on Example 1 of this invention. 本発明の実施例1に係る熱式流体流量センサの製造方法を示す要部断面図である。It is principal part sectional drawing which shows the manufacturing method of the thermal type fluid flow sensor which concerns on Example 1 of this invention. 本発明の実施例1に係る熱式流体流量センサおよびその製造方法を示す要部断面図である。It is principal part sectional drawing which shows the thermal type fluid flow sensor which concerns on Example 1 of this invention, and its manufacturing method. 本発明の実施例1に係る自動車等の内燃機関の吸気通路に取り付けられた熱式流体流量センサを実装した熱式空気流量計の概略配置図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic layout diagram of a thermal air flow meter mounted with a thermal fluid flow sensor attached to an intake passage of an internal combustion engine such as an automobile according to Embodiment 1 of the present invention. 図8の一部を拡大した要部平面図である。It is the principal part top view which expanded a part of FIG. 図9のB-B’線における要部断面図である。FIG. 10 is a main part cross-sectional view taken along line B-B ′ of FIG. 9. 本発明の実施例1に係る熱式流体流量センサの一例を示した回路図である。It is the circuit diagram which showed an example of the thermal type fluid flow sensor which concerns on Example 1 of this invention. 従来方式による熱式流体流量センサの要部断面図(上段)およびその表面の変位量(下段)を示した説明図である。It is explanatory drawing which showed the principal part sectional drawing (upper stage) and the displacement amount (lower stage) of the surface of the thermal type fluid flow sensor by a conventional system. 実施例1に係る熱式流体流量センサの要部断面図(上段)およびその表面の変位量(下段)を示した説明図である。It is explanatory drawing which showed the principal part sectional drawing (upper stage) of the thermal type fluid flow sensor which concerns on Example 1, and the displacement amount (lower stage) of the surface. 本発明の実施例1と従来方式の熱式流体流量センサにおける、累積通電時間と抵抗変化率との関係を示した説明図である。It is explanatory drawing which showed the relationship between the cumulative energization time and resistance change rate in Example 1 of this invention and the thermal-type fluid flow sensor of a conventional system. 本発明の実施例2に係る熱式流体流量センサおよびその製造方法を示す要部断面図である。It is principal part sectional drawing which shows the thermal type fluid flow sensor which concerns on Example 2 of this invention, and its manufacturing method. 本発明の実施例3に係る熱式流体流量センサおよびその製造方法を示す要部断面図である。It is principal part sectional drawing which shows the thermal type fluid flow sensor which concerns on Example 3 of this invention, and its manufacturing method.
 <熱式流体流量センサの構成>
実施例1に係る熱式流体流量センサの要部平面図の一例を図1に示す。実施例1に係る熱式流体流量センサである測定素子1は、半導体基板2、発熱抵抗体3、発熱抵抗体用測温抵抗体4、測温抵抗体5a~5d、空気温度測温抵抗体6、ヒータ温度制御用抵抗体7、8、端子電極9a9i、および引き出し配線10a、10b、10c-1、10c-2、10d、10e、10f、10g、10h-1、10h-2、10i-1、10i-2等から形成されている。
<Configuration of thermal fluid flow sensor>
An example of a plan view of the main part of the thermal fluid flow sensor according to the first embodiment is shown in FIG. A measuring element 1 which is a thermal fluid flow sensor according to the first embodiment includes a semiconductor substrate 2, a heating resistor 3, a heating resistor temperature measuring resistor 4, temperature measuring resistors 5a to 5d, and an air temperature measuring resistor. 6, heater temperature control resistors 7 and 8, terminal electrodes 9a9i, and lead wires 10a, 10b, 10c-1, 10c-2, 10d, 10e, 10f, 10g, 10h-1, 10h-2, 10i-1 10i-2 or the like.
 半導体基板2は、例えば単結晶Siからなる。 The semiconductor substrate 2 is made of, for example, single crystal Si.
 発熱抵抗体3は、半導体基板2上に絶縁膜を介して形成されており、配線幅は、例えば1μm~150μm程度である。 The heating resistor 3 is formed on the semiconductor substrate 2 via an insulating film, and the wiring width is, for example, about 1 μm to 150 μm.
 発熱抵抗体用測温抵抗体4は、発熱抵抗体3の温度検知に用いられ、配線幅は、例えば0.3μm~10μm程度である。 The resistance temperature detector 4 for the heating resistor is used for temperature detection of the heating resistor 3, and the wiring width is, for example, about 0.3 μm to 10 μm.
 測温抵抗体は、2つの上流側測温抵抗体5a、5bと、2つの下流側測温抵抗体5c、5dからなり、発熱抵抗体3により暖められた空気の温度検知に用いられる。 The resistance temperature detector comprises two upstream resistance temperature detectors 5a and 5b and two downstream resistance temperature detectors 5c and 5d, and is used for temperature detection of air heated by the heating resistor 3.
 上流側測温抵抗体5a、5bおよび下流側測温抵抗体5c、5dの配線幅は、例えば0.3μm~10μm程度である。空気温度測温抵抗体6は、空気温度の測定に用いられ、配線幅は、例えば0.3μm~10μm程度である。但し、上流側測温抵抗体5a、5b、下流側測温抵抗体5c、5d、および空気温度測温抵抗体6のそれぞれは、その配線幅が発熱抵抗体3の配線幅よりも細くなるように形成される。 The wiring width of the upstream side resistance thermometers 5a and 5b and the downstream side resistance thermometers 5c and 5d is, for example, about 0.3 μm to 10 μm. The air temperature measuring resistor 6 is used for measuring the air temperature, and the wiring width is, for example, about 0.3 μm to 10 μm. However, each of the upstream side resistance temperature detectors 5 a and 5 b, the downstream side resistance temperature detectors 5 c and 5 d, and the air temperature resistance temperature detector 6 has a wiring width narrower than that of the heating resistor 3. Formed.
 ヒータ温度制御用抵抗体7、8の配線幅は、例えば0.3μm~10μm程度である。 The wiring width of the heater temperature control resistors 7 and 8 is, for example, about 0.3 μm to 10 μm.
 端子電極9a~9iは、測温素子1の信号を外部回路へ接続するために用いられる。 The terminal electrodes 9a to 9i are used for connecting the signal of the temperature measuring element 1 to an external circuit.
 引き出し配線10aは、発熱抵抗体3を端子電極9aに電気的に接続し、配線幅は、例えば5μm~500μm程度である。 The lead wiring 10a electrically connects the heating resistor 3 to the terminal electrode 9a, and the wiring width is, for example, about 5 μm to 500 μm.
 引き出し配線10bは、発熱抵抗体3を端子電極9bに電気的に接続し、線幅は、例えば5μm~500μm程度である。 The lead-out wiring 10b electrically connects the heating resistor 3 to the terminal electrode 9b, and the line width is, for example, about 5 μm to 500 μm.
 2つの引き出し配線10c-1、10c-2は、ヒータ温度制御用抵抗体7およびヒータ温度制御用抵抗体8を端子電極9cに電気的に接続し、配線幅は、例えば5μm~500μm程度である。 The two lead wires 10c-1 and 10c-2 electrically connect the heater temperature control resistor 7 and the heater temperature control resistor 8 to the terminal electrode 9c, and the wire width is, for example, about 5 μm to 500 μm. .
 引き出し配線10dは、発熱抵抗体用測温抵抗体4およびヒータ温度制御用抵抗体7を端子電極9dに電気的に接続し、配線幅は、例えば5μm~500μm程度である。 The lead wiring 10d electrically connects the resistance temperature measuring resistor 4 and the heater temperature control resistor 7 to the terminal electrode 9d, and the wiring width is, for example, about 5 μm to 500 μm.
 引き出し配線10eは、空気温度測温抵抗体6およびヒータ温度制御用抵抗体8を端子電極9eに電気的に接続し、配線幅は、例えば5μm~500μm程度である。 The lead wiring 10e electrically connects the air temperature measuring resistor 6 and the heater temperature control resistor 8 to the terminal electrode 9e, and the wiring width is, for example, about 5 μm to 500 μm.
 引き出し配線10fは、上流測温抵抗体5aおよび下流測温抵抗体5cを端子電極9fに電気的に接続し、配線幅は、例えば1μm~500μm程度である。 The lead wiring 10f electrically connects the upstream resistance temperature detector 5a and the downstream resistance temperature detector 5c to the terminal electrode 9f, and the wiring width is, for example, about 1 μm to 500 μm.
 引き出し配線10gは、発熱抵抗体用測温抵抗体4、空気温度測温抵抗体6、上流側測温抵抗体5bおよび下流側測温抵抗体5dを端子電極9gに電気的に接続し、配線幅は、例えば1μm~500μm程度である。 The lead wiring 10g electrically connects the resistance temperature detector 4 for the heating resistor, the air temperature resistance resistor 6, the upstream side resistance temperature detector 5b, and the downstream side resistance temperature detector 5d to the terminal electrode 9g. The width is, for example, about 1 μm to 500 μm.
 2つの引き出し配線10h-1、10h-2は、上流側測温抵抗体5bおよび下流側測温抵抗体5cを端子電極9hに電気的に接続し、配線幅は、例えば1μm~500μm程度である。 The two lead wires 10h-1 and 10h-2 electrically connect the upstream resistance temperature detector 5b and the downstream resistance temperature detector 5c to the terminal electrode 9h, and the wiring width is, for example, about 1 μm to 500 μm. .
 2つの引き出し配線10i-1、10i-2は、上流側測温抵抗体5aおよび下流側測温抵抗体5dを端子電極9iに電気的に接続し、配線幅は、例えば1μm~500μm程度である。 The two lead wires 10i-1 and 10i-2 electrically connect the upstream resistance temperature detector 5a and the downstream resistance temperature detector 5d to the terminal electrode 9i, and the wiring width is, for example, about 1 μm to 500 μm. .
 また、少なくとも発熱抵抗体3、発熱抵抗体用測温抵抗体4および測温抵抗体上の保護膜に開口部11が設けられており、下層のSi基板(半導体基板2)は除去されたダイヤフラム構造12となっている。この際、ダイヤフラム構造12により、保護膜の開口部11の外周は、平面でダイヤフラム構造12の外周より約50μm以上内側となっている。 In addition, an opening 11 is provided in at least the heating resistor 3, the resistance thermometer 4 for the heating resistor, and the protective film on the temperature measuring resistor, and the lower Si substrate (semiconductor substrate 2) is removed from the diaphragm. Structure 12 is formed. At this time, due to the diaphragm structure 12, the outer periphery of the opening portion 11 of the protective film is approximately 50 μm or more inside from the outer periphery of the diaphragm structure 12 in a plane.
 この測定素子1は、空気の流れ13の空気温度を空気温度測定抵抗体6で測定し、発熱抵抗体3で加熱した発熱抵抗体用測温抵抗体4の抵抗増加と比較して温度差(ΔTh)を計算し、発熱抵抗体3で暖められた空気の流れにより測温抵抗体5a、5b、5c、5dの抵抗が変化する構造となっている。なお、各抵抗体の抵抗値を設計値に合わせるために、折り返し蛇行パターンの配線構造としている。 This measuring element 1 measures the air temperature of the air flow 13 with the air temperature measuring resistor 6, and compares the temperature difference with the increase in resistance of the resistance thermometer 4 for the heating resistor heated by the heating resistor 3 ( ΔTh) is calculated, and the resistance of the resistance temperature detectors 5 a, 5 b, 5 c, and 5 d is changed by the flow of air heated by the heating resistor 3. In addition, in order to match the resistance value of each resistor with the design value, a wiring structure with a folded meander pattern is adopted.
 <熱式流体流量センサの製造方法>
次に、実施例1に係る熱式流体流量センサの製造方法の一例を図2~図7を用いて工程順に説明する。図2~図7は、図1中のA-A線に対応する要部断面図である。
<Method for manufacturing thermal fluid flow sensor>
Next, an example of a manufacturing method of the thermal fluid flow sensor according to the first embodiment will be described in the order of steps with reference to FIGS. 2 to 7 are cross-sectional views of relevant parts corresponding to the line AA in FIG.
 まず、図2に示すように、単結晶Siからなる半導体基板2を用意する。続いて、半導体基板2の主面上に絶縁膜14を形成し、さらに絶縁膜15、絶縁膜16、絶縁膜17および絶縁膜18を順次形成する。絶縁膜14は、例えば高温の炉体で形成する酸化シリコン膜であり、厚さは200nm程度である。絶縁膜15は、例えばCVD法を用いた窒化シリコン膜であり、厚さは100~200nm程度である。これら、絶縁膜14および絶縁膜15は、半導体基板2の裏面にも成膜される。絶縁膜16は、例えばCVD法を用いた酸化シリコン膜であり、膜厚は300~500nm程度である。絶縁膜17は、例えばCVD法またはプラズマCVD法を用いた窒化シリコン膜であり、膜厚はセンサ部の配線ピッチから決められるが、20nm~200nm程度の範囲である。絶縁膜18は、例えばCVD法またはプラズマCVD法を用いた酸化シリコン膜であり、膜厚は50nm~300nmである。 First, as shown in FIG. 2, a semiconductor substrate 2 made of single crystal Si is prepared. Subsequently, the insulating film 14 is formed on the main surface of the semiconductor substrate 2, and the insulating film 15, the insulating film 16, the insulating film 17, and the insulating film 18 are sequentially formed. The insulating film 14 is a silicon oxide film formed in, for example, a high-temperature furnace and has a thickness of about 200 nm. The insulating film 15 is a silicon nitride film using, for example, a CVD method and has a thickness of about 100 to 200 nm. These insulating film 14 and insulating film 15 are also formed on the back surface of the semiconductor substrate 2. The insulating film 16 is a silicon oxide film using, for example, a CVD method and has a thickness of about 300 to 500 nm. The insulating film 17 is a silicon nitride film using, for example, a CVD method or a plasma CVD method, and the film thickness is determined by the wiring pitch of the sensor portion, but is in the range of about 20 nm to 200 nm. The insulating film 18 is a silicon oxide film using, for example, a CVD method or a plasma CVD method, and has a thickness of 50 nm to 300 nm.
 ここで、絶縁膜14、絶縁膜16および絶縁膜18は、圧縮応力を有する膜(第2の絶縁膜)であり、絶縁膜15および絶縁膜17は、引っ張り応力を有する膜(第1の絶縁膜)である。第1の絶縁膜の残留応力は、例えば700MPa~1200MPa程度の引っ張り応力であり、第2の絶縁膜の残留応力は、例えば50MPa~250MPa程度の圧縮応力である。また、絶縁膜15および絶縁膜17は、500MPa~1200MPaの引っ張り応力を有する窒化アルミニウム膜としてもよい。これら絶縁膜形成後に各膜の応力を整えるため、窒素雰囲気中で約1000℃の熱処理を行ってもよい。 Here, the insulating film 14, the insulating film 16, and the insulating film 18 are films having a compressive stress (second insulating film), and the insulating film 15 and the insulating film 17 are films having a tensile stress (first insulating film). Membrane). The residual stress of the first insulating film is a tensile stress of about 700 MPa to 1200 MPa, for example, and the residual stress of the second insulating film is a compressive stress of about 50 MPa to 250 MPa, for example. The insulating film 15 and the insulating film 17 may be aluminum nitride films having a tensile stress of 500 MPa to 1200 MPa. In order to adjust the stress of each film after forming these insulating films, a heat treatment at about 1000 ° C. may be performed in a nitrogen atmosphere.
 次に、金属膜19として、例えばスパッタリング法でMo(モリブデン)膜を100~200nm程度成膜する。この際、接着性向上および結晶性向上のため、Mo膜の堆積前にAr(アルゴン)ガスを用いたスパッタエッチング法により、下地の絶縁膜18を5nm~20nm程度エッチングし、Mo膜堆積時の半導体基板2の温度を200℃~500℃程度として形成する。また、Mo膜の結晶性をさらに高めるため、Mo膜成膜後に炉体またはランプ加熱装置において窒素雰囲気中で約1000℃の熱処理を施す。 Next, as the metal film 19, a Mo (molybdenum) film is formed to a thickness of about 100 to 200 nm by sputtering, for example. At this time, in order to improve adhesion and crystallinity, the underlying insulating film 18 is etched by about 5 nm to 20 nm by a sputter etching method using Ar (argon) gas before the Mo film is deposited. The semiconductor substrate 2 is formed at a temperature of about 200 ° C. to 500 ° C. In order to further enhance the crystallinity of the Mo film, a heat treatment at about 1000 ° C. is performed in a nitrogen atmosphere in the furnace body or lamp heating apparatus after the Mo film is formed.
 次に、図3に示すように、フォトリソグラフィ法を用いたエッチングにより金属膜19のパターニングを行い、発熱抵抗体3、発熱抵抗体用測温抵抗体4、測温抵抗体(上流側測温抵抗体5a、5bおよび下流側測温抵抗体5c、5d)、空気温度測温抵抗体6、ヒータ温度制御用抵抗体7、8および引き出し配線10a~10i-2を形成する(但し、図3では、空気温度測温抵抗体6、ヒータ温度制御用抵抗体7、8および引き出し配線の一部の図示を省略)。金属膜19は引っ張り応力を有する膜であるため、そのパターニングによって得られる各配線(3~10i-2)は、いずれも引っ張り応力を有し、その残留応力は例えば800MPa程度の強い引っ張り応力である。また、金属膜19の加工時のオーバーエッチングにより、下地の絶縁膜18は、金属膜19が無い部分で最大50nm程度エッチングされる。従って、発熱抵抗体3等の金属膜19から形成された部分と、金属膜19の加工より絶縁膜18がエッチングされた部分との段差は、合わせると約150~250nmとなる。 Next, as shown in FIG. 3, the metal film 19 is patterned by etching using a photolithography method, so that the heating resistor 3, the heating resistor temperature measuring resistor 4, the temperature measuring resistor (upstream temperature measuring device). Resistors 5a and 5b and downstream temperature measuring resistors 5c and 5d), air temperature measuring resistor 6, heater temperature control resistors 7 and 8, and lead wires 10a to 10i-2 are formed (however, FIG. 3). Then, the air temperature measuring resistor 6, the heater temperature control resistors 7, 8 and a part of the lead wiring are not shown). Since the metal film 19 is a film having a tensile stress, each of the wirings (3 to 10i-2) obtained by the patterning has a tensile stress, and the residual stress is a strong tensile stress of about 800 MPa, for example. . In addition, due to over-etching during processing of the metal film 19, the underlying insulating film 18 is etched at a maximum of about 50 nm in a portion where the metal film 19 is not present. Therefore, the step difference between the portion formed of the metal film 19 such as the heating resistor 3 and the portion where the insulating film 18 is etched by processing the metal film 19 is about 150 to 250 nm.
 その後、応力調整層となる絶縁膜20として例えばCVD法またはTEOS(tetraethoxysilane)を原料としプラズマを用いた低温CVD法で堆積した酸化シリコン膜を約300~600nm形成する。但し、絶縁膜20は、特にこれらの製造方法で製造したものに限定されず、少なくとも圧縮応力を有する膜であれば良い。本実施例では、室温での残留応力が50MPa~250MPa程度の圧縮応力となる膜(第2の膜)とした。 Thereafter, as the insulating film 20 serving as a stress adjusting layer, a silicon oxide film deposited by, for example, a CVD method or a low temperature CVD method using plasma using TEOS (tetraethoxysilane) is formed to a thickness of about 300 to 600 nm. However, the insulating film 20 is not particularly limited to those manufactured by these manufacturing methods, and may be a film having at least a compressive stress. In this example, a film (second film) in which the residual stress at room temperature becomes a compressive stress of about 50 MPa to 250 MPa.
 次に、図4に示すように、CMP(Chemical Mechanical Polishing)法を用いて絶縁膜20に研磨を施し、下地金属膜の配線幅が異なるヒータとセンサにおいて膜厚が異なるようにする。ここで応力調整層37とは、配線幅が異なるヒータないしセンサのうち、太い配線の上層において相対的に圧縮応力が大きく、細い配線の上層において相対的に圧縮応力が小さい層を指す。特に実施例1および2においては、係る膜厚制御を行った後の絶縁膜20を応力調整層37と称している。 Next, as shown in FIG. 4, the insulating film 20 is polished by using a CMP (Chemical Mechanical Polishing) method so that the film thickness is different between the heater and the sensor having different wiring widths of the underlying metal film. Here, the stress adjustment layer 37 refers to a layer having a relatively large compressive stress in an upper layer of a thick wiring and a relatively small compressive stress in an upper layer of a thin wiring among heaters or sensors having different wiring widths. Particularly in Examples 1 and 2, the insulating film 20 after the film thickness control is referred to as a stress adjustment layer 37.
 ここで、例えば特許文献3で示されているような従来のCMP法では、配線幅に係わらず平坦化により配線上の膜厚を一定にするのが通常である。しかし、CMP法には、配線上の絶縁膜を研磨する際に、細い配線上の絶縁膜は相対的に大きく研磨され絶縁膜が薄くなり、太い配線上の絶縁膜は相対的に小さく研磨され絶縁膜が厚くなる特性がある。この特性を、ヒータとセンサの配線幅に違いに起因する、局所的な応力の不均衡を解消するために活用することができる。 Here, for example, in the conventional CMP method as disclosed in Patent Document 3, it is usual to make the film thickness on the wiring constant by flattening regardless of the wiring width. However, in the CMP method, when the insulating film on the wiring is polished, the insulating film on the thin wiring is polished relatively large and the insulating film is thinned, and the insulating film on the thick wiring is polished relatively small. There is a characteristic that the insulating film becomes thick. This characteristic can be utilized to eliminate local stress imbalances due to differences in heater and sensor wiring widths.
 すなわち、本実施例では特に、発熱抵抗体3、発熱抵抗体用測温抵抗体4、および測温抵抗体(上流側測温抵抗体5a、5bおよび下流側測温抵抗体5c、5d)においてパターン配置にも考慮しながらCMP法の上記特性を活かし、配線幅が細い発熱抵抗体用測温抵抗体4、測温抵抗体(上流側測温抵抗体5a、5bおよび下流側測温抵抗体5c、5d)は研磨が早く進行し、配線幅が太い発熱抵抗体3では研磨の進行が遅くなる条件、および研磨量を設定することで、発熱抵抗体用測温抵抗体4、測温抵抗体(上流側測温抵抗体5a、5bおよび下流側測温抵抗体5c、5d)は薄く、発熱抵抗体3は厚く、同一の絶縁膜20から、下地配線幅により膜厚が異なる応力調整層37を形成することができる。研磨量としては金属膜19の膜厚以下がよい。ただし、金属膜19加工時の下地絶縁膜18の削れ量が大きい場合は、その削れ量を含めた研磨量としてもよい。この後、応力調整および耐湿性が向上のため1000℃程度の熱処理を施すのが望ましい。この応力調整層を形成することで、配線幅によりより異なるそり量の違いを低減することができ、配線幅が異なる境界部分でのたわみを抑制することができ、発熱抵抗体3の加熱による熱影響の塑性変形を低減できる。また、後述するドライエッチングによる工程と比較すると、各配線の上部において生じる絶縁膜の凹凸について、角を取ることができセンサ特性が向上する利点がある。 That is, in the present embodiment, particularly in the heating resistor 3, the heating resistor 4 for the heating resistor, and the temperature measuring resistors (the upstream temperature measuring resistors 5a and 5b and the downstream temperature measuring resistors 5c and 5d). Taking advantage of the above-mentioned characteristics of the CMP method while taking into account the pattern arrangement, the resistance temperature detector 4 for the heating resistor having a narrow wiring width, the resistance temperature detector (the upstream resistance temperature detectors 5a and 5b, and the downstream resistance temperature detector) 5c and 5d), by setting the conditions and the amount of polishing in which the polishing progresses quickly in the heating resistor 3 having a large wiring width and in which the polishing progresses slowly, the temperature measuring resistor 4 for the heating resistor, the resistance thermometer The body (upstream resistance temperature detectors 5a, 5b and downstream resistance temperature detectors 5c, 5d) is thin, the heating resistor 3 is thick, and the stress adjustment layer having a different thickness depending on the width of the underlying wiring from the same insulating film 20 37 can be formed. The polishing amount is preferably equal to or less than the thickness of the metal film 19. However, when the shaving amount of the base insulating film 18 at the time of processing the metal film 19 is large, the polishing amount including the shaving amount may be used. Thereafter, it is desirable to perform a heat treatment at about 1000 ° C. in order to improve stress adjustment and moisture resistance. By forming this stress adjustment layer, it is possible to reduce the difference in warpage amount that differs depending on the wiring width, to suppress the deflection at the boundary portion where the wiring width differs, and to reduce the heat generated by heating the heating resistor 3. The plastic deformation of influence can be reduced. Further, as compared with a process by dry etching which will be described later, there is an advantage that the corners of the unevenness of the insulating film generated at the upper part of each wiring can be rounded and the sensor characteristics are improved.
 なお、前記では応力調整層37の下部金属配線幅による膜厚の調整をCMP法により行っているが、図4の工程の変形例として、絶縁膜20を形成後、フォトリソグラフィ法を用いて配線幅の細いセンサ部分のみドライエッチングにより薄くして応力調整層37を形成する方法もある。この方法は、図4の工程と比較して、マスクを形成する工程が必要とはなるものの、絶縁膜20の削れ量をドライエッチングにより調整することができるので、CMPと比較してより設計に対する誤差を低減できる利点がある。 In the above description, the film thickness is adjusted by the CMP method based on the lower metal wiring width of the stress adjusting layer 37. As a modification of the process of FIG. 4, the insulating film 20 is formed and then the wiring is formed by photolithography. There is also a method of forming the stress adjustment layer 37 by thinning only a narrow sensor portion by dry etching. Although this method requires a step of forming a mask as compared with the step of FIG. 4, the amount of abrasion of the insulating film 20 can be adjusted by dry etching. There is an advantage that the error can be reduced.
 次に、図5に示すように、絶縁膜21および絶縁膜22を順次成膜する。絶縁膜21は、例えばCVD法またはプラズマを用いた低温CVD法で堆積した窒化シリコン膜であり、膜厚は150~200nm程度とする。絶縁膜22は、例えばCVD法またはTEOSを原料としプラズマを用いた低温CVD法で堆積した酸化シリコン膜であり、膜厚は100~500nm程度である。なお、酸化シリコン膜である応力調整膜20および絶縁膜22は、室温での残留応力が50MPa~250MPa程度の圧縮応力となる膜(第2の膜)であり、窒化シリコン膜である絶縁膜21は、室温での残留応力が700MPa~1200MPa程度の引っ張り応力となる膜(第1の膜)である。また、絶縁膜21がプラズマを用いた低温CVD法による窒化シリコン膜とした場合には、800℃程度以上、好ましくは1000℃程度の熱処理を施して所望の引っ張り応力となるように調整する。絶縁膜22である酸化シリコン膜に関しても、1000℃程度の熱処理を施すことにより耐湿性が向上することから、堆積後に熱処理を行なうのが望ましい。次に、フォトリソグラフィ法を用いたドライエッチングまたはウエットエッチングにより、引き出し配線10a~10i-2の一部を露出させる接続孔23を形成する。なお、図5では、引き出し配線10gに達する接続孔23以外の接続孔23の図示は省略している。その後、金属膜24として、例えば厚さ1μm程度の接続孔23を埋め込むAl合金膜を成膜する。なお、引き出し配線10gとの接触を良好にするため、形成前にAr(アルゴン)ガスにより引き出し配線10a~10i-2の表面をスパッタエッチングングしてもよい。さらに、その接触を確実なものとするため、Al合金膜の堆積前に第3の金属膜としてTiN(窒化チタン)膜等のバリア金属膜を成膜してバリア膜とAl合金膜の積層膜を形成してもよい。なお、この時のバリア金属膜を相対的に厚く形成するとコンタクト抵抗が増加するため、その厚さは20nm程度とすることが望ましい。しかし、十分接触面積がとれて抵抗増加の問題が回避できる場合は、バリア金属膜の厚さを200nm以下とすることができる。また、バリア金属膜としてTiN膜を挙げたがTiW(チタンタングステン)膜、Ti(チタン)膜およびこれらの積層膜としてもよい。 Next, as shown in FIG. 5, an insulating film 21 and an insulating film 22 are sequentially formed. The insulating film 21 is a silicon nitride film deposited by, for example, a CVD method or a low temperature CVD method using plasma, and has a thickness of about 150 to 200 nm. The insulating film 22 is a silicon oxide film deposited by, for example, a CVD method or a low temperature CVD method using TEOS as a raw material and using plasma, and has a thickness of about 100 to 500 nm. The stress adjusting film 20 and the insulating film 22 which are silicon oxide films are films (second films) whose residual stress at room temperature is a compressive stress of about 50 MPa to 250 MPa, and the insulating film 21 which is a silicon nitride film. Is a film (first film) having a residual stress of about 700 MPa to 1200 MPa at room temperature. Further, when the insulating film 21 is a silicon nitride film formed by a low temperature CVD method using plasma, heat treatment is performed at a temperature of about 800 ° C. or higher, preferably about 1000 ° C., so as to obtain a desired tensile stress. The silicon oxide film that is the insulating film 22 is also preferably subjected to heat treatment after deposition because heat resistance is improved by performing heat treatment at about 1000 ° C. Next, the connection hole 23 for exposing a part of the lead wirings 10a to 10i-2 is formed by dry etching or wet etching using a photolithography method. In FIG. 5, illustration of the connection holes 23 other than the connection hole 23 reaching the lead wiring 10g is omitted. Thereafter, as the metal film 24, for example, an Al alloy film that fills the connection hole 23 with a thickness of about 1 μm is formed. In order to improve the contact with the lead wiring 10g, the surfaces of the lead wirings 10a to 10i-2 may be sputter-etched with Ar (argon) gas before the formation. Further, in order to ensure the contact, a barrier metal film such as a TiN (titanium nitride) film is formed as a third metal film before the Al alloy film is deposited, and a laminated film of the barrier film and the Al alloy film May be formed. Note that, when the barrier metal film at this time is formed relatively thick, the contact resistance increases. Therefore, the thickness is preferably about 20 nm. However, when the sufficient contact area can be taken and the problem of resistance increase can be avoided, the thickness of the barrier metal film can be 200 nm or less. Further, although the TiN film is exemplified as the barrier metal film, a TiW (titanium tungsten) film, a Ti (titanium) film, and a laminated film thereof may be used.
 次に、図6に示すように、フォトリソグラフィ法を用いたドライエッチングまたはウエットエッチングにより金属膜24をパターニングし、端子電極9a~9iを形成する。次に、端子電極9a~9i上の保護膜25として、例えばポリイミド膜を形成し、フォトリソグラフィ法を用いたエッチングにより少なくとも発熱抵抗体3、発熱抵抗体用測温抵抗体4、上部測温抵抗体5a、5bおよび下部測温抵抗体5c、5d上に開口部11および端子電極9a~9iを外部回路と接続するための開口部(図示は省略)を形成する。なお、保護膜25は感光性の有機膜等としてもよく、膜厚は2~3μm程度とする。 Next, as shown in FIG. 6, the metal film 24 is patterned by dry etching or wet etching using a photolithography method to form terminal electrodes 9a to 9i. Next, for example, a polyimide film is formed as the protective film 25 on the terminal electrodes 9a to 9i, and at least the heating resistor 3, the heating resistor 4 for the heating resistor, and the upper temperature measuring resistor are formed by etching using a photolithography method. Openings (not shown) for connecting the openings 11 and the terminal electrodes 9a to 9i to external circuits are formed on the bodies 5a, 5b and the lower resistance temperature detectors 5c, 5d. The protective film 25 may be a photosensitive organic film or the like, and the film thickness is about 2 to 3 μm.
 次に、図7に示すように、半導体基板2の裏面にフォリソグラフィ法によりフォトレジスト膜のパターン(図示は省略)を形成し、裏面に形成されている絶縁膜14および絶縁膜15をドライエッチング法またはウエットエッチング法により除去する。次いで、残された絶縁膜14および絶縁膜15をマスクとして半導体基板2を裏面からKOH(水酸化カリウム)、TMAH(Tetramethylammonium hydroxide)またはこれらを主成分とする水溶液でウエットエッチングし、ダイヤフラム構造12を形成する。ダイヤフラム構造12は、保護膜25の開口部11より大きく設計されており、保護膜25開口部11の全ての辺より約50μm以上大きく形成するのが望ましい。このダイヤフラム構造12で構成された絶縁膜(絶縁膜14、絶縁膜15、絶縁膜16、絶縁膜17、絶縁膜18、絶縁膜20、絶縁膜21および絶縁膜22)の総膜厚は1.5μm程度以上が望ましい。これより薄い場合には、ダイヤフラム構造12で構成された絶縁膜の強度が低下し、自動車の吸気に含まれるダストの衝突などで破壊するおそれが大きくなる。ただし、絶縁膜14のうち半導体基板2の下方に形成された膜は、下方からのダスト衝突時の緩衝膜の役割を果たしているため、例えばチップ下面がリードフレームで覆われる等の、ダストが衝突しないような構成になっていれば、絶縁膜14は省略してもよい。 Next, as shown in FIG. 7, a photoresist film pattern (not shown) is formed on the back surface of the semiconductor substrate 2 by photolithography, and the insulating film 14 and the insulating film 15 formed on the back surface are dry-etched. Or by wet etching. Next, using the remaining insulating film 14 and insulating film 15 as a mask, the semiconductor substrate 2 is wet-etched from the back surface with KOH (potassium hydroxide), TMAH (Tetramethylammonium hydroxide) or an aqueous solution containing these as a main component to form the diaphragm structure 12. Form. The diaphragm structure 12 is designed to be larger than the opening 11 of the protective film 25, and is preferably formed to be approximately 50 μm or more larger than all sides of the protective film 25 opening 11. The total film thickness of the insulating film (insulating film 14, insulating film 15, insulating film 16, insulating film 17, insulating film 18, insulating film 20, insulating film 21, and insulating film 22) constituted by this diaphragm structure 12 is 1. About 5 μm or more is desirable. If it is thinner than this, the strength of the insulating film constituted by the diaphragm structure 12 is lowered, and there is a high possibility that the insulating film is broken due to the collision of dust contained in the intake air of the automobile. However, since the film formed below the semiconductor substrate 2 in the insulating film 14 serves as a buffer film when dust collides from below, dust collides such that the lower surface of the chip is covered with a lead frame, for example. The insulating film 14 may be omitted if the configuration is such that it does not.
 なお、上記の実施の形態では、発熱抵抗体3等になる金属膜19をMoにより形成した熱式流体流量センサに関して説明したが、Mo以外の金属、金属窒化化合物、金属シリサイド化合物、多結晶シリコンあるいは不純物としてリンまたはホウ素がドープされた多結晶シリコンから形成してもよい。金属とした場合には、α-Ta(アルファタンタル)、Ti(チタン)、W(タングステン)、Co(コバルト)、Ni(ニッケル)、Fe(鉄)、Nb(ニオブ)、Hf(ハフニウム)、Cr(クロム)またはZr(ジルコニウム)等を主成分とする金属を例示できる。金属窒化化合物とした場合には、TaN(窒化タンタル)、MoN(窒化モリブデン)またはWN(窒化タングステン)などを例示できる。金属シリサイド化合物とした場合には、MoSi(モリブデンシリサイド)、CoSi(コバルトシリサイド)またはNiSi(ニッケルシリサイド)などを例示できる。さらに他の例として、燐もしくはボロンをドープしたポリシリコンなどを例示できる。 In the above embodiment, the thermal fluid flow sensor in which the metal film 19 to be the heating resistor 3 or the like is formed of Mo has been described. However, metals other than Mo, metal nitride compounds, metal silicide compounds, polycrystalline silicon Alternatively, it may be formed from polycrystalline silicon doped with phosphorus or boron as impurities. In the case of a metal, α-Ta (alpha tantalum), Ti (titanium), W (tungsten), Co (cobalt), Ni (nickel), Fe (iron), Nb (niobium), Hf (hafnium), Examples thereof include metals mainly composed of Cr (chromium) or Zr (zirconium). Examples of the metal nitride compound include TaN (tantalum nitride), MoN (molybdenum nitride), and WN (tungsten nitride). Examples of the metal silicide compound include MoSi (molybdenum silicide), CoSi (cobalt silicide), and NiSi (nickel silicide). As yet another example, polysilicon doped with phosphorus or boron can be exemplified.
 <熱式流体流量計の構成>
図8は、実施例1に係る本実施れに係る熱式流体流量センサが実装され、自動車等の内燃機関の吸気通路に取り付けられた熱式空気流量計の概略配置図である。熱式空気流量計26は、熱式流体流量センサである前述の測定素子1と、上部および下部からなる支持体27と、外部回路28とから構成され、測定素子1は、空気通路29の内部にある副通路30に配置される。外部回路28は、支持体27を介して測定素子1の端子に電気的に接続される。吸気された空気は、内燃機関の条件によって、図8中の矢印(空気の流れ13)で示された空気流の方向、またはこれとは逆の方向に流れる。
<Configuration of thermal fluid flow meter>
FIG. 8 is a schematic layout diagram of a thermal air flow meter mounted with an intake passage of an internal combustion engine such as an automobile in which the thermal fluid flow sensor according to the present embodiment according to the first embodiment is mounted. The thermal air flow meter 26 includes the above-described measuring element 1 which is a thermal fluid flow sensor, a support body 27 including an upper part and a lower part, and an external circuit 28. The measuring element 1 is provided inside the air passage 29. It is arranged in the auxiliary passage 30 in The external circuit 28 is electrically connected to the terminal of the measuring element 1 through the support body 27. The intake air flows in the direction of the air flow indicated by the arrow (air flow 13) in FIG. 8 or in the opposite direction depending on the conditions of the internal combustion engine.
 図9は、前述の図8の一部(測定素子1および支持体27)を拡大した要部平面図であり、図10は、図9のB-B線における要部断面図である。図9および図10に示すように、測定素子1は、下部の支持体27a上に固定されており、測定素子1の端子電極9a~9iのそれぞれと外部回路28の端子電極31との間は、例えば金線32等を用いたワイヤボンディング法により電気的に接続されている。端子電極9a~9i、31および金線32は、上部の支持体27bで覆うことにより保護されている。上部の支持体27bは、樹脂による密封保護であってもよい。 FIG. 9 is an enlarged plan view of a main part of a part (measuring element 1 and support 27) of FIG. 8 described above, and FIG. 10 is a cross-sectional view of the main part taken along line BB in FIG. As shown in FIGS. 9 and 10, the measuring element 1 is fixed on the lower support 27a, and the space between each of the terminal electrodes 9a to 9i of the measuring element 1 and the terminal electrode 31 of the external circuit 28 is as follows. For example, they are electrically connected by a wire bonding method using a gold wire 32 or the like. The terminal electrodes 9a to 9i, 31 and the gold wire 32 are protected by being covered with an upper support body 27b. The upper support 27b may be sealed and protected with a resin.
 次に、図11を用いて、前述した熱式空気流量計26の動作について説明する。図11は、本実施例1に係る測定素子1と外部回路28とを示した回路図であり、符号33は電源、符号34は発熱抵抗体3に加熱電流を流すためのトランジスタ、符号35はA/D変換器等を含む出力回路と演算処理を行なうCPU(Central Processing Unit)からなる制御回路、符号36はメモリ回路である。 Next, the operation of the above-described thermal air flow meter 26 will be described with reference to FIG. FIG. 11 is a circuit diagram showing the measuring element 1 and the external circuit 28 according to the first embodiment. Reference numeral 33 denotes a power source, reference numeral 34 denotes a transistor for supplying a heating current to the heating resistor 3, and reference numeral 35 denotes A control circuit composed of an output circuit including an A / D converter or the like and a CPU (Central Processing 行 な う Unit) that performs arithmetic processing, and a reference numeral 36 is a memory circuit.
 図11に示す回路には二つのブリッジ回路があり、ひとつは発熱抵抗体用測温抵抗体4、空気温度測温抵抗体6およびヒータ制御用抵抗体7、8からなるヒータ制御ブリッジ回路であり、もうひとつは4つの測温抵抗体(上流側測温抵抗体5a、5bおよび下流側測温抵抗体5c、5d)による温度センサブリッジ回路である。 The circuit shown in FIG. 11 has two bridge circuits. One is a heater control bridge circuit composed of a heating resistor temperature measuring resistor 4, an air temperature measuring resistor 6, and heater control resistors 7, 8. The other is a temperature sensor bridge circuit comprising four resistance temperature detectors ( upstream resistance resistors 5a and 5b and downstream resistance resistors 5c and 5d).
 図1に示した測定素子1において、端子電極9cが2つの引き出し配線10c-1、10c-2を介して2つのヒータ温度制御用抵抗体7、8の双方に電気的に接続されており、この端子電極9cに所定電位Vref1を供給する。また、端子電極9fが上流測温抵抗体5aおよび下流測温抵抗体5cの双方に電気的に接続されており、この端子電極9fに所定電位Vref2を供給する。さらに、端子電極9gが引き出し配線10gを介して空気温度測温抵抗体6、発熱抵抗体用測温抵抗体4、上流測温抵抗体5bおよび下流測温抵抗体5dのそれぞれに電気的に接続されており、この端子電極9gは図11に示すようにグランド電位とする。 In the measurement element 1 shown in FIG. 1, the terminal electrode 9c is electrically connected to both of the two heater temperature control resistors 7 and 8 via two lead wires 10c-1 and 10c-2. A predetermined potential Vref1 is supplied to the terminal electrode 9c. Further, the terminal electrode 9f is electrically connected to both the upstream resistance temperature detector 5a and the downstream resistance temperature detector 5c, and a predetermined potential Vref2 is supplied to the terminal electrode 9f. Further, the terminal electrode 9g is electrically connected to each of the air temperature measuring resistor 6, the heating resistor temperature measuring resistor 4, the upstream temperature measuring resistor 5b, and the downstream temperature measuring resistor 5d through the lead wire 10g. The terminal electrode 9g is set to the ground potential as shown in FIG.
 引き出し配線10dを介して発熱抵抗体用測温抵抗体4およびヒータ温度制御用抵抗体7の双方に電気的に接続された端子電極9dは、図11中のノードAに対応する。 A terminal electrode 9d electrically connected to both the heating resistor temperature measuring resistor 4 and the heater temperature control resistor 7 through the lead wiring 10d corresponds to the node A in FIG.
 また、引き出し配線10eを介して空気温度測温抵抗体6およびヒータ温度制御用抵抗体8の双方に電気的に接続された端子電極9eは、図11中のノードBに対応する。また、2つの引き出し配線10i-1、10i-2を介して上流側測温抵抗体5aおよび下流側測温抵抗体5dの双方に電気的に接続された端子電極9iは、図11中のノードCに対応する。また、2つの引き出し配線10h-1、10h-2を介して上流側測温抵抗体5bおよび下流側測温抵抗体5cの双方に電気的に接続された端子電極9hは、図11中のノードDに対応する。 Further, the terminal electrode 9e electrically connected to both the air temperature measuring resistor 6 and the heater temperature control resistor 8 through the lead wiring 10e corresponds to the node B in FIG. A terminal electrode 9i electrically connected to both the upstream side resistance temperature detector 5a and the downstream side resistance temperature detector 5d via the two lead wires 10i-1 and 10i-2 is connected to the node in FIG. Corresponds to C. Further, the terminal electrode 9h electrically connected to both the upstream resistance temperature detector 5b and the downstream resistance temperature detector 5c via the two lead wires 10h-1 and 10h-2 is connected to the node in FIG. Corresponds to D.
 なお、本実施の形態ではヒータブリッジ回路および温度センサブリッジ回路のグランド電位を共通の端子電極9gで供給しているが、端子電極を増やし、それぞれの端子電極をグランド電位としてもよい。 In this embodiment, the ground potential of the heater bridge circuit and the temperature sensor bridge circuit is supplied by the common terminal electrode 9g. However, the terminal electrode may be increased and each terminal electrode may be set to the ground potential.
 ヒータ制御用ブリッジ回路は、発熱抵抗体3により熱せられた気体が吸気温度よりある一定温度(ΔTh、例えば100℃)高い場合に、ノードA(端子電極9d)とノードB(端子電極9e)の間の電位差が0Vになるように発熱抵抗体用測温抵抗体4、空気温度測温抵抗体6およびヒータ制御用抵抗体7、8の各抵抗値が設定されている。上記一定温度(ΔTh)が設定よりずれた場合には、ノードAとノードBとの間に電位差が生じ、制御回路35によってトランジスタ34を制御して発熱抵抗体3の電流を変化させ、ブリッジ回路を平衡状態(A-B間の電位差0V)に保つように設計されている。 When the gas heated by the heating resistor 3 is higher than the intake air temperature by a certain temperature (ΔTh, for example, 100 ° C.), the heater control bridge circuit is connected to the node A (terminal electrode 9d) and the node B (terminal electrode 9e). The resistance values of the heating resistor temperature measuring resistor 4, the air temperature measuring resistor 6, and the heater control resistors 7, 8 are set so that the potential difference between them is 0V. When the constant temperature (ΔTh) deviates from the setting, a potential difference is generated between the node A and the node B, the transistor 34 is controlled by the control circuit 35 to change the current of the heating resistor 3, and the bridge circuit Is kept in an equilibrium state (potential difference between A and B is 0 V).
 一方、温度センサブリッジ回路は、発熱抵抗体3からそれぞれの測温抵抗体(上流側測温抵抗体5a、5bおよび下流側測温抵抗体5c、5d)までの距離が同じとなるように設計されているため、発熱抵抗体3による加熱にかかわらず、無風の場合には、ノードC(端子電極9i)とノードD(端子電極9h)との間の電位差が平衡状態となり0Vとなる。発熱抵抗体3に電圧を印加し、吸気が空気の流れ13の方向に流れると、発熱抵抗体3で暖められた上流測温抵抗体5a,5bは温度が低下し、下流側測温抵抗体5c、5dの温度が高くなり、測温抵抗体の抵抗値が上流側と下流側で異なり、温度センサブリッジのバランスが崩れ、ノードCとノードDの間に差電圧が発生する。この差電圧を制御回路35に入力し、メモリ36に記録されている差電圧と空気流量の対比表から求めた空気流量(Q)を演算処理して出力する。なお、空気の流れ13が逆方向になった場合においても、同様に空気流量が計測できるので逆流検知も可能である。 On the other hand, the temperature sensor bridge circuit is designed so that the distance from the heating resistor 3 to each of the resistance temperature detectors (the upstream resistance temperature detectors 5a and 5b and the downstream resistance temperature detectors 5c and 5d) is the same. Therefore, the potential difference between the node C (terminal electrode 9i) and the node D (terminal electrode 9h) becomes an equilibrium state and becomes 0V in the absence of wind regardless of heating by the heating resistor 3. When a voltage is applied to the heating resistor 3 and the intake air flows in the direction of the air flow 13, the temperature of the upstream resistance thermometers 5a and 5b heated by the heating resistor 3 decreases, and the downstream resistance thermometer The temperature of 5c, 5d becomes high, the resistance value of the resistance temperature detector is different between the upstream side and the downstream side, the balance of the temperature sensor bridge is lost, and a differential voltage is generated between the node C and the node D. This difference voltage is input to the control circuit 35, and the air flow rate (Q) obtained from the comparison table of the difference voltage and the air flow rate recorded in the memory 36 is processed and output. Even in the case where the air flow 13 is in the reverse direction, the air flow rate can be measured in the same manner, so that the reverse flow can be detected.
 <実施例1の特徴およびその効果>
次に、ダイヤフラム表面の変位量を用いて、実施例1の特徴およびその効果について説明する。図12上段は、本発明者が実施例1に係るダイヤフラム構造(図7参照)に対する比較例としたダイヤフラム構造を有する、従来方式の熱式流体流量センサの要部断面図である。図12下段には、センサ配線(上流側測温抵抗体5a、5bおよび下流側測温抵抗体5c、5d、発熱抵抗体用測温抵抗体4)の配線幅を約1μmとし、ヒータ配線(発熱抵抗体3)の配線幅を約5μmとし、図12下段ではその表面を触診段差計により計測し、ダイヤフラム部中心における最上層のシリコン酸化膜を基準とした、各表面位置における相対的な変位量を図示している。
<Characteristics and Effects of Example 1>
Next, features and effects of the first embodiment will be described using the displacement amount of the diaphragm surface. The upper part of FIG. 12 is a cross-sectional view of a main part of a conventional thermal fluid flow sensor having a diaphragm structure which is a comparative example of the diaphragm structure according to the first embodiment (see FIG. 7). In the lower part of FIG. 12, the wiring width of the sensor wiring (upstream temperature sensing resistors 5a and 5b and downstream temperature sensing resistors 5c and 5d, and the heating resistor temperature sensing resistor 4) is about 1 μm, and the heater wiring ( The wiring width of the heating resistor 3) is about 5 μm. In the lower part of FIG. 12, the surface is measured by a palpation step meter, and the relative displacement at each surface position with reference to the uppermost silicon oxide film at the center of the diaphragm portion. The quantity is illustrated.
 図12上段の断面図に示すように、従来方式の熱式流体流量センサは、絶縁膜20に対しCMP工程を行っていない(すなわち、応力調整層37を形成していない)ため、配線幅が太いヒータ配線上と配線幅が細いセンサ配線上では同じ膜厚となっている。 As shown in the upper cross-sectional view of FIG. 12, the conventional thermal fluid flow rate sensor does not perform the CMP process on the insulating film 20 (that is, the stress adjustment layer 37 is not formed), so that the wiring width is large. The film thickness is the same on the thick heater wiring and the sensor wiring with a narrow wiring width.
 このような従来方式の熱式流体流量センサの構造の場合には、センサ部(発熱抵抗体用測温抵抗体4)とヒータ部(発熱抵抗体3)の境界で変位量が局所的に変化し、ヒータ部が約0.15μmほど下に凸形状となっている。この際、配線間のスペース幅はセンサ部もヒータ部も約1μm程度であり各配線と比較して変位量に影響を与えない程度に小さいため、配線間のスペース部分の応力による局所的な変形は無視できる程度に小さい。よって、上述した変位量の局所的な変化は、金属膜19の配線幅の違いによって発生している。具体的には、通常金属膜19は引っ張り応力を有しており、本発明で用いているMo膜は特に800MPa以上の強い引っ張り応力であるため、特に配線幅の太いヒータ部において、下に凸形状となるそりが顕著に発生し、結果的に図12下段のような変位量となる。 In the case of such a conventional thermal fluid flow sensor structure, the amount of displacement locally changes at the boundary between the sensor unit (heating resistor 4 for heating resistor) and the heater unit (heating resistor 3). The heater portion has a convex shape about 0.15 μm downward. At this time, the space width between the wirings is about 1 μm in both the sensor part and the heater part, and is small enough not to affect the displacement compared to each wiring. Is negligibly small. Therefore, the above-described local change in the displacement amount is caused by the difference in the wiring width of the metal film 19. Specifically, the metal film 19 usually has a tensile stress, and the Mo film used in the present invention has a strong tensile stress of particularly 800 MPa or more, so that it protrudes downward particularly in a heater portion having a large wiring width. The warpage which becomes a shape occurs remarkably, resulting in a displacement amount as shown in the lower part of FIG.
 前記のように変位量の局所的な変化があると、ヒータ加熱した際にヒータ部が盛り上がるなどダイヤフラムの変形が起こりやすく、特にたわみが生じている発熱抵抗体用測温抵抗体4が塑性変形して抵抗値が変化する。この発熱抵抗体用測温抵抗体4の抵抗値から基準となる前述の一定温度(ΔTh)を計算しており、抵抗値が変化したまま設計値に合わせて熱式流体流量センサを作動させると、ΔThの低下による検出精度の低下や、過剰電流によるヒータ異常加熱による膜構造体が破壊されてしまう懸念が生じる。 When there is a local change in the amount of displacement as described above, the heater part is likely to rise when the heater is heated, and the diaphragm is likely to be deformed. As a result, the resistance value changes. The above-mentioned constant temperature (ΔTh) as a reference is calculated from the resistance value of the resistance temperature detector 4 for the heating resistor, and when the thermal fluid flow sensor is operated according to the design value while the resistance value is changing. There is a concern that the detection accuracy is lowered due to a decrease in ΔTh, and the film structure is destroyed due to abnormal heating of the heater due to excessive current.
 一方、図13上段には、実施例1に係る熱式流体流量センサの要部断面図を図示し、図13下段には、本実施の形態の熱式流体流量センサにおいて、と同様に、センサ配線(上流側測温抵抗体5a、5bおよび下流側測温抵抗体5c、5d、発熱抵抗体用測温抵抗体4)、およびヒータ配線(発熱抵抗体3)の表面を触診段差計により計測した変位量を図示している。 On the other hand, the upper part of FIG. 13 shows a cross-sectional view of the main part of the thermal fluid flow sensor according to the first embodiment, and the lower part of FIG. Measure the surface of the wiring ( upstream resistance thermometers 5a, 5b and downstream resistance thermometers 5c, 5d, the resistance thermometer 4 for the heating resistor) and the heater wiring (heating resistor 3) with a palpation step meter. The amount of displacement is shown.
 以上をまとめると、本発明に係る熱式流体流量センサは、引っ張り応力を有する発熱抵抗体(3)と、引っ張り応力を有し発熱抵抗体とは配線幅が異なる測温抵抗体(4、5a~5d、または6)と、発熱抵抗体および測温抵抗体のそれぞれの上層および下層に設けられ、引っ張り応力を有する複数の第1絶縁膜と、圧縮応力を有する複数の第2絶縁膜と、を含む絶縁層と、を有する。ここで、「絶縁層」なる用語を、実施例1においては絶縁膜14~18と、応力調整層37とを含む意味で用いている。さらに、後述する実施例2および3においては、絶縁膜20を含む意味で用いている。そして、絶縁層のうち、発熱抵抗体または測温抵抗体のうち配線幅の太い配線の上部および下部に位置する部分の応力の平均値が、発熱抵抗体または測温抵抗体のうち配線幅の細い配線の上部および下部に位置する部分の応力の平均値よりも圧縮側であることを特徴としている。ここで、「上部」なる語は、発熱抵抗体および測温抵抗体のそれぞれにおいて、基板2の表面に対する鉛直上方を指す語として用いており、「下部」なる語は、基板2の表面に対する鉛直下方を指す語として用いている。 In summary, the thermal fluid flow sensor according to the present invention includes a heating resistor (3) having tensile stress and a resistance temperature detector (4, 5a) having a tensile stress and a wiring width different from that of the heating resistor. 5d, or 6), and a plurality of first insulating films having tensile stress and a plurality of second insulating films having compressive stress, which are provided in the upper layer and the lower layer of each of the heating resistor and the resistance temperature detector, And an insulating layer. Here, the term “insulating layer” is used in the first embodiment to include the insulating films 14 to 18 and the stress adjusting layer 37. Furthermore, in Examples 2 and 3 to be described later, this is used to include the insulating film 20. And the average value of the stress of the part located in the upper part and the lower part of the wiring having a large wiring width of the heating resistor or the resistance thermometer in the insulating layer is the wiring width of the heating resistor or the resistance thermometer. It is characterized in that it is on the compression side with respect to the average value of the stress at the upper and lower portions of the thin wiring. Here, the term “upper part” is used as a word indicating the vertical upper direction with respect to the surface of the substrate 2 in each of the heating resistor and the resistance temperature detector, and the term “lower part” is used as a vertical direction with respect to the surface of the substrate 2. It is used as a word pointing down.
 また、実施例1および2に共通する熱式流体流量センサの特徴を別の観点から説明すれば、引っ張り応力を有する発熱抵抗体(3)と、引っ張り応力を有し発熱抵抗体よりも配線幅が細い測温抵抗体(4、5a~5d、または6)と、発熱抵抗体および測温抵抗体の上層に設けられ、圧縮応力を有し、発熱抵抗体が設けられる部分の上部の膜厚が測温抵抗体の設けられる部分の膜厚よりも厚い応力調整層(37)と、を有することを特徴とする。 Further, the characteristics of the thermal fluid flow sensor common to the first and second embodiments will be described from another viewpoint. The heating resistor (3) having tensile stress and the wiring width larger than that of the heating resistor having tensile stress. Is a thin RTD (4, 5a to 5d, or 6), and is provided on the upper layer of the heating resistor and the RTD, has a compressive stress, and the film thickness above the portion where the heating resistor is provided Has a stress adjustment layer (37) thicker than the film thickness of the portion where the resistance temperature detector is provided.
 また、実施例1に係る熱式流体流量センサの特徴を、製造方法の観点から説明すれば、(a)半導体基板の上層に、それぞれが引っ張り応力を有する複数の第1絶縁膜と、それぞれが圧縮応力を有する複数の第2絶縁膜と、を含む絶縁層を形成する工程(図2~6)と、(b)半導体基板の上層に、引っ張り応力を有する発熱抵抗体と、引っ張り応力を有し発熱抵抗体とは配線幅の異なる測温抵抗体と、を形成する工程(図3)と、(c)工程(b)の後に、絶縁層のうち、発熱抵抗体または測温抵抗体のうち配線幅の太い配線の上部および下部に位置する部分の応力の平均値を、発熱抵抗体または測温抵抗体のうち配線幅の細い配線の上部および下部に位置する部分の応力の平均値よりも圧縮側にする工程(図6)と、を有することを特徴とする。 Further, the characteristics of the thermal fluid flow sensor according to the first embodiment will be described from the viewpoint of the manufacturing method. (A) A plurality of first insulating films each having tensile stress on the upper layer of the semiconductor substrate, and A step of forming an insulating layer including a plurality of second insulating films having compressive stress (FIGS. 2 to 6); and (b) a heating resistor having tensile stress on the upper layer of the semiconductor substrate, and having tensile stress. After the step (FIG. 3) and (c) step (b) of forming a resistance temperature detector having a different wiring width from the heat resistance resistor, the heat resistance resistor or the resistance temperature detector of the insulating layer is formed. Of these, the average value of the stress at the top and bottom of the wiring with a large wiring width is the average value of the stress at the top and bottom of the wiring with a narrow wiring width of the heating resistor or resistance temperature detector. And the step of making the compression side (FIG. 6). To.
 その上で、実施例1(実施例2も同様)においては特に、工程(c)が、前記複数の第2絶縁膜のうち少なくとも1つを、CMP法を用いて研磨する工程、または、複数の第2絶縁膜のうち少なくとも1つについて、前記配線幅の細い配線の上部に位置する部分をドライエッチングで除去する工程を有することを特徴とする(ここで、工程(c)における「除去」なる語は、完全に当該部分を取り除く意味では無く、部分的に取り除く、あるいは薄膜化する、という意味で用いている)。 In addition, in Example 1 (same as in Example 2), in particular, the step (c) includes a step of polishing at least one of the plurality of second insulating films using a CMP method, or a plurality of steps. A step of removing at least one of the second insulating films located above the wiring having a narrow wiring width by dry etching (here, “removal” in the step (c)) Is not meant to completely remove the part, but to be partially removed or thinned).
 このような本発明に係る熱式流体流量センサのダイヤフラム構造の場合には、ヒータ部とセンサ部とで局所的な段差は見られず、ダイヤフラムと周辺において緩やかに湾曲しているが、その絶対値は約0.05μmと非常に少ない。このような緩やかな湾曲であれば、ヒータ加熱の熱影響によりヒータ部が盛り上がってもダイヤフラム全体で変形を緩和できるため、配線幅が細い発センサ配線(上流側測温抵抗体5a、5bおよび下流側測温抵抗体5c、5d、発熱抵抗体用測温抵抗体4)を塑性変形力させるような応力集中を抑制できる。 In the case of the diaphragm structure of the thermal fluid flow sensor according to the present invention as described above, there is no local step between the heater portion and the sensor portion, and the diaphragm and the periphery are gently curved. The value is very small, about 0.05 μm. With such a gentle curve, even if the heater part rises due to the heat effect of the heater heating, the deformation of the entire diaphragm can be alleviated, so that the sensor wiring (the upstream resistance temperature detectors 5a, 5b and the downstream side) has a narrow wiring width. It is possible to suppress stress concentration that causes the side resistance temperature detectors 5c and 5d and the resistance temperature detector resistance element 4) to be plastically deformed.
 したがって、センサ部の抵抗値の変化を防ぎ、ΔThの低下による検出精度の低下や、過剰電流によるヒータ異常加熱による膜構造体の破壊といった不具合を防ぐことが可能となる。 Therefore, it is possible to prevent a change in the resistance value of the sensor unit and prevent problems such as a decrease in detection accuracy due to a decrease in ΔTh and a breakdown of the film structure due to abnormal heater heating due to excessive current.
 また、特に実施例1(実施例2も同様)においては特に、応力調整層37の膜厚は、ヒータ部(発熱抵抗体3)の上部または下部の方がセンサ部(測温抵抗体4、5a~5d、6)の上部または下部より厚い。ここで、係る応力調整層の特徴によって、熱膨張によるたわみがより発生し易いヒータ部近傍がより厚膜の絶縁膜で保護されることとなり、ダイヤフラムの強度が向上する効果もある。特にヒータ部は、通常センサ部よりもダイヤフラムにおける中央側、すなわち、特にたわむ際の振幅が大きくなる箇所に設けられるため、特に当該膜厚による効果が有効となる。 Particularly in Example 1 (same as in Example 2), the thickness of the stress adjustment layer 37 is such that the upper part or the lower part of the heater part (heating resistor 3) is the sensor part (temperature measuring resistor 4, It is thicker than the upper or lower part of 5a to 5d, 6). Here, due to the characteristics of the stress adjusting layer, the vicinity of the heater portion where deflection due to thermal expansion is more likely to occur is protected by a thicker insulating film, and the strength of the diaphragm is improved. In particular, the heater portion is provided at the center side of the diaphragm than the normal sensor portion, that is, at a portion where the amplitude at the time of bending is particularly large, and thus the effect of the film thickness is particularly effective.
 図14は、ヒータ部(発熱抵抗体3)が約600℃となるように通電した加速試験の累積通電時間毎の発熱抵抗体用測温抵抗体4の抵抗変化率を示したものであり、従来方式の熱式流体流量センサ(図12上段)と本実施の形態の熱式流体流量センサ(図13上段)とを比較している。 FIG. 14 shows the rate of change in resistance of the resistance temperature detector 4 for the heating resistor for each cumulative energization time of the acceleration test in which the heater section (heating resistor 3) is energized so that the temperature is about 600 ° C. The conventional thermal fluid flow sensor (the upper part of FIG. 12) is compared with the thermal fluid flow sensor of the present embodiment (the upper part of FIG. 13).
 図14に示すように、従来方式の熱式流体流量センサでは、通電初期に発熱抵抗体用測温抵抗体の抵抗が急激に変化し、24時間に以降緩やかに抵抗が変化していることがわかる。これに対し、本実施の形態の熱式流体流量センサでは、通電初期から緩やかな抵抗の変化であり、従来方式の熱式流体流量センサで見られた初期の抵抗変化を抑制できていることがわかる。本結果より、従来方式では、通電初期にヒータ加熱の影響による発熱抵抗体用測温抵抗体4の塑性変形が加速され、抵抗変化として現れていると推測される。 As shown in FIG. 14, in the conventional thermal fluid flow sensor, the resistance of the resistance temperature detector for the heating resistor changes suddenly at the beginning of energization, and the resistance gradually changes after 24 hours. Recognize. On the other hand, in the thermal fluid flow sensor of the present embodiment, the resistance change is gentle from the initial energization, and the initial resistance change seen in the conventional thermal fluid flow sensor can be suppressed. Recognize. From this result, in the conventional method, it is presumed that the plastic deformation of the resistance temperature detector 4 for the heating resistor due to the influence of the heater heating is accelerated in the initial stage of energization and appears as a resistance change.
 従って、センサ部とヒータ部との間での局所的なたわみを無くすことで信頼性の高い熱式流体流量センサを得ることが可能となる。 Therefore, it is possible to obtain a highly reliable thermal fluid flow sensor by eliminating local deflection between the sensor unit and the heater unit.
 なお、後述する実施例2と比較すると、実施例1に係る熱式流体流量センサは、応力調整層が発熱抵抗体および測温抵抗体と接して設けられることを特徴とする。係る特徴により、応力調整層の上段に設けられる絶縁膜21、22の段差に伴う応力集中も緩和されるため、よりセンサ特性が向上する利点がある。 In addition, compared with Example 2 described later, the thermal fluid flow sensor according to Example 1 is characterized in that the stress adjustment layer is provided in contact with the heating resistor and the resistance temperature detector. With such a feature, stress concentration associated with the steps of the insulating films 21 and 22 provided in the upper stage of the stress adjustment layer is alleviated, so that there is an advantage that the sensor characteristics are further improved.
 応力調整層を設ける位置は、ヒータ配線およびセンサ配線の直上に限られない。実施例2では、応力調整層をヒータ配線、およびセンサ配線の直上以外に形成した構成の例として、ダイヤフラム最上層に形成した変形例を説明する。 The position where the stress adjustment layer is provided is not limited to just above the heater wiring and sensor wiring. In the second embodiment, a modified example in which the stress adjustment layer is formed on the uppermost layer of the diaphragm will be described as an example of a configuration in which the stress adjustment layer is formed except for the heater wiring and the sensor wiring.
 図15は、実施例2に係る熱式流体流量センサの一例であり、図1中のAーA線に対応する要部断面図を示している。 FIG. 15 is an example of a thermal fluid flow sensor according to the second embodiment, and shows a cross-sectional view of the main part corresponding to the line AA in FIG.
 本実施例2に係る熱式流体流量センサは、実施例1と比較して、ヒータ、およびセンサ上にCVD法またはTEOSを原料としプラズマを用いた低温CVD法で堆積した酸化シリコン膜を形成する工程(図2~図3)まで同等である。 In the thermal fluid flow sensor according to the second embodiment, a silicon oxide film deposited by a low temperature CVD method using plasma using a CVD method or TEOS as a raw material is formed on the heater and sensor as compared with the first embodiment. The process is the same up to the steps (FIGS. 2 to 3).
 実施例1では、この後絶縁膜20にCMPを行い、配線幅の異なる部位の膜厚を調整したが、実施の形態では、前記膜厚調整をこの工程ではなく、プラズマを用いた低温CVD法で堆積した窒化シリコン膜の絶縁膜21およびCVD法またはTEOSを原料としプラズマを用いた低温CVD法で堆積した酸化シリコン膜の絶縁膜22を形成する。ここで前記絶縁膜22に、図4と同様の膜厚調整(CMPまたはドライエッチング)を行い、配線幅により膜厚の異なる応力調整層37とする。この後、引き出し配線10a~10i-2の一部を露出させる接続孔23形成以降は実施の形態1と同様に、引き出し配線、保護膜25、ダイヤフラム12を形成する。 In Example 1, after that, the insulating film 20 was subjected to CMP to adjust the film thickness of the portions having different wiring widths. However, in the embodiment, the film thickness adjustment is not performed in this step, but the low temperature CVD method using plasma. The silicon nitride film insulating film 21 and the silicon oxide insulating film 22 deposited by the low temperature CVD method using plasma using a CVD method or TEOS as a raw material are formed. Here, film thickness adjustment (CMP or dry etching) similar to that of FIG. 4 is performed on the insulating film 22 to obtain a stress adjustment layer 37 having a film thickness that varies depending on the wiring width. Thereafter, after the formation of the connection hole 23 exposing a part of the lead wirings 10a to 10i-2, the lead wiring, the protective film 25, and the diaphragm 12 are formed as in the first embodiment.
 上記の構造とすることで、センサ配線部よりヒータ配線部の圧縮応力が大きくなり、センサ配線部とヒータ配線部のたわみは無くなり、実施例1と同様にヒータ加熱時の熱影響を抑制でき、抵抗経時変化を低減できる。 By adopting the above structure, the compressive stress of the heater wiring portion becomes larger than the sensor wiring portion, the deflection of the sensor wiring portion and the heater wiring portion is eliminated, and the thermal influence at the time of heating the heater can be suppressed as in Example 1, Resistance change with time can be reduced.
 応力調整層は、絶縁膜の膜厚を制御する以外の方法で形成することも可能である。実施例3では、センサ部の上部のみに応力調整層を新たに設けた構造を説明する。 The stress adjustment layer can be formed by a method other than controlling the film thickness of the insulating film. In Example 3, a structure in which a stress adjustment layer is newly provided only on the upper part of the sensor unit will be described.
 図16は、実施例3に係る熱式流体流量センサの一例であり、図1中のAーA線に対応する要部断面図を示している。 FIG. 16 is an example of a thermal fluid flow sensor according to the third embodiment, and shows a cross-sectional view of the main part corresponding to the line AA in FIG.
 本実施例3の熱式流体流量センサは、実施例2と比較して、絶縁膜22を成膜する工程まで同等であり、その後応力調整層37としてプラズマを用いた低温CVD法で堆積した窒化シリコン膜を約20~50nm程度形成し、フォトリソグラフィ法を用いたドライエッチングにより、配線幅が細いセンサ部分の上部のみ残す。その後、引き出し配線10a~10i-2の一部を露出させる接続孔23形成以降は実施の形態1と同様に、引き出し配線、保護膜25、ダイヤフラム12を形成する。なお、前記応力調整層37はセンサ配線上と記載したが配線間を含めた領域であってもよい。 The thermal fluid flow sensor of the third embodiment is equivalent to the step of forming the insulating film 22 as compared with the second embodiment, and is then nitrided by a low temperature CVD method using plasma as the stress adjustment layer 37. A silicon film is formed to a thickness of about 20 to 50 nm, and only the upper part of the sensor portion with a narrow wiring width is left by dry etching using a photolithography method. Thereafter, after the formation of the connection hole 23 exposing a part of the lead wirings 10a to 10i-2, the lead wiring, the protective film 25, and the diaphragm 12 are formed as in the first embodiment. The stress adjusting layer 37 is described as being on the sensor wiring, but may be a region including between the wirings.
 このように、実施例3に係る熱式流体流量センサは、絶縁層が、引っ張り応力を有する絶縁膜であって、配線幅の太い配線(ヒータ部)の上部に設けられ、配線幅の細い配線(センサ部)の上部には設けられない応力調整層37を有することを特徴とする。また、製造方法の観点から説明すれば、上述の工程(c)が、絶縁層に含まれる複数の第1絶縁膜のうち少なくとも1つについて、配線幅の太い配線の上部に位置する部分をドライエッチングで除去する工程であることを特徴とする。係る特徴によって、センサ配線部がヒータ配線部と比較し圧縮応力を低減した構造となり、実施例1および2と同等の効果を持たせることができる。さらに、上層に別途設けられた応力調整層37の成膜量によって応力を調整することが可能となるため、設計に対する誤差がより小さくなり、より高精度のセンサを提供しうる。 As described above, in the thermal fluid flow sensor according to the third embodiment, the insulating layer is an insulating film having tensile stress, and is provided on the upper part of the wiring having a large wiring width (heater portion). It has a stress adjustment layer 37 that is not provided on the upper part of the (sensor part). Further, from the viewpoint of the manufacturing method, in the step (c) described above, at least one of the plurality of first insulating films included in the insulating layer is dried on the portion located above the wiring having a large wiring width. It is a process of removing by etching. With such a feature, the sensor wiring portion has a structure in which the compressive stress is reduced as compared with the heater wiring portion, and the same effects as those of the first and second embodiments can be obtained. Furthermore, since the stress can be adjusted by the amount of film formation of the stress adjustment layer 37 provided separately in the upper layer, the error in the design is further reduced, and a sensor with higher accuracy can be provided.
 以上、本発明者によってなされた発明を実施の形態に基づき具体的に説明したが、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることはいうまでもない。 As mentioned above, the invention made by the present inventor has been specifically described based on the embodiment. However, the present invention is not limited to the embodiment, and various modifications can be made without departing from the scope of the invention. Needless to say.
 例えば、本明細書においては、ヒータ部の配線(発熱抵抗体)をセンサ部の配線(測温抵抗体)よりも太いものとして説明してきた。しかしながら、センサ部の配線をヒータ部より太くした場合は、本願発明は、「配線幅の太い配線」をセンサ部とした熱式流体流量センサについても包含するものである。 For example, in the present specification, the heater part wiring (heating resistor) has been described as being thicker than the sensor part wiring (temperature measuring resistor). However, when the wiring of the sensor part is made thicker than the heater part, the present invention also includes a thermal fluid flow sensor using the “wiring with a wide wiring width” as the sensor part.
 各部材の材料については、代表的なものを例示しているが、例示した材料は主要なものであって、副次的要素、添加物、付加要素等を排除するものではない。特に、応力(引っ張り応力または圧縮応力)の面から材料を説明している箇所については、同種の応力を有する他の材料を適用しても良い。 材料 Representative materials are illustrated as materials of each member, but the illustrated materials are main ones and do not exclude secondary elements, additives, additional elements, and the like. In particular, another material having the same kind of stress may be applied to a portion where the material is described from the aspect of stress (tensile stress or compressive stress).
 各実施例において、要素の数等(個数、数値、量、範囲等を含む)に言及する場合、特に明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではなく、特定の数以上でも以下でも良い。さらに、各実施例において、その構成要素(要素ステップ等も含む)は、特に明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。また、構成要素等について、「Aからなる」、「Aよりなる」と言うときは、特にその要素のみである旨明示した場合等を除き、それ以外の要素を排除するものでない。同様に、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に明らかにそうでないと考えられる場合等を除き、実質的にその形状等に近似または類似するもの等を含むものとする。このことは、上記数値および範囲についても同様である。 In each embodiment, when referring to the number of elements (including the number, numerical value, quantity, range, etc.), unless otherwise specified, or in principle limited to a specific number, etc. The number is not limited to a specific number, and may be a specific number or more. Furthermore, in each embodiment, it is needless to say that its constituent elements (including element steps and the like) are not necessarily indispensable unless otherwise specified and clearly considered essential in principle. . In addition, regarding the constituent elements and the like, when “consisting of A” and “consisting of A” are stated, other elements are not excluded unless specifically indicated that only the elements are included. Similarly, when referring to the shape, positional relationship, etc. of components, etc., those that are substantially similar to or similar to the shape, etc., unless explicitly stated or otherwise considered otherwise apparent Etc. The same applies to the above numerical values and ranges.
 また、全図において同一機能を有するものは原則として同一の符号を付し、その繰り返しの説明は省略した。図面においては、平面図であっても図面を見易くするために部分的にハッチングを付した。 In addition, as a general rule, those having the same function in all drawings are denoted by the same reference numerals, and repeated description thereof is omitted. In the drawings, even a plan view is partially hatched to make the drawings easy to see.
 1:測定素子、2:半導体基板、3:発熱抵抗体、4:発熱抵抗体用測温抵抗体、5a、5b:上流側測温抵抗体、5c、5d:下流側測温抵抗体、6:空気温度測温抵抗体、7、8:ヒータ温度制御用抵抗体、9a~9i:端子電極、10a、10b、10c-1、10c-2、10d、10e、10f、10g、10h-1、10h-2、10i-1、10i-2:引き出し配線、11:開口部、12:ダイヤフラム構造、13:空気の流れ、14:絶縁膜、15:絶縁膜、16:絶縁膜、17:絶縁膜、18:絶縁膜、19:金属膜、20:絶縁膜、21:絶縁膜、22:絶縁膜、23:接続孔、24:金属膜、25:保護膜、26:熱式空気流量計、27、27a、27b:支持体、28:外部回路、29:空気通路、30:副通路、31:端子電極、32:金線、33:電源、34:トランジスタ、35:制御回路、36:メモリ回路、37:応力調整層。 1: measurement element, 2: semiconductor substrate, 3: heating resistor, 4: resistance temperature detector for heating resistor, 5a, 5b: upstream resistance temperature detector, 5c, 5d: downstream resistance temperature detector, 6 : Air temperature measuring resistor, 7, 8: Heater temperature control resistor, 9a to 9i: Terminal electrodes, 10a, 10b, 10c-1, 10c-2, 10d, 10e, 10f, 10g, 10h-1, 10h-2, 10i-1, 10i-2: Lead-out wiring, 11: Opening, 12: Diaphragm structure, 13: Air flow, 14: Insulating film, 15: Insulating film, 16: Insulating film, 17: Insulating film 18: Insulating film, 19: Metal film, 20: Insulating film, 21: Insulating film, 22: Insulating film, 23: Connection hole, 24: Metal film, 25: Protective film, 26: Thermal air flow meter, 27 27a, 27b: support, 28: external circuit, 29: air passage, 30: secondary passage , 31: terminal electrodes, 32: gold, 33: Power, 34: transistor 35: control circuit, 36: Memory circuit 37: stress adjusting layer.

Claims (15)

  1.  引っ張り応力を有する発熱抵抗体と、
     引っ張り応力を有し前記発熱抵抗体とは配線幅が異なる測温抵抗体と、
     前記発熱抵抗体および前記測温抵抗体のそれぞれの上層および下層に設けられ、引っ張り応力を有する複数の第1絶縁膜と、圧縮応力を有する複数の第2絶縁膜と、を含む絶縁層と、を有し、
     前記絶縁層のうち、前記発熱抵抗体または前記測温抵抗体のうち配線幅の太い配線の上部および下部に位置する部分の応力の平均値が、前記発熱抵抗体または前記測温抵抗体のうち配線幅の細い配線の上部および下部に位置する部分の応力の平均値よりも圧縮側であることを特徴とする熱式流体流量センサ。
    A heating resistor having a tensile stress;
    A resistance temperature detector having a tensile stress and a wiring width different from that of the heating resistor, and
    An insulating layer provided on the upper layer and the lower layer of each of the heating resistor and the resistance temperature detector and including a plurality of first insulating films having tensile stress and a plurality of second insulating films having compressive stress; Have
    Of the insulating layer, an average value of stresses of portions of the heating resistor or the temperature measuring resistor located at the upper and lower portions of the wiring having a large wiring width is the heating resistor or the temperature measuring resistor. A thermal fluid flow sensor characterized in that it is on the compression side with respect to an average value of stresses at the upper and lower portions of the wiring having a narrow wiring width.
  2.  請求項1において、
     前記絶縁層は、圧縮応力を有する絶縁膜であって、前記配線幅の太い配線の上部の膜厚が前記配線幅の細い配線の上部の膜厚よりも厚い応力調整層をさらに有することを特徴とする熱式流体流量センサ。
    In claim 1,
    The insulating layer is an insulating film having a compressive stress, and further includes a stress adjustment layer in which a film thickness of an upper part of the wiring having a large wiring width is larger than a film thickness of an upper part of the wiring having a thin wiring width. A thermal fluid flow sensor.
  3.  請求項2において、
     前記応力調整層は、前記発熱抵抗体および前記測温抵抗体と接して設けられることを特徴とする熱式流体流量センサ。
    In claim 2,
    The thermal fluid flow sensor, wherein the stress adjustment layer is provided in contact with the heating resistor and the resistance temperature detector.
  4.  請求項2において、
     前記応力調整層は、酸化シリコン膜からなることを特徴とする熱式流体流量センサ。
    In claim 2,
    The thermal fluid flow sensor, wherein the stress adjusting layer is made of a silicon oxide film.
  5.  請求項1において、
     前記絶縁層は、引っ張り応力を有する絶縁膜であって、前記配線幅の太い配線の上部に設けられ、前記配線幅の細い配線の上部には設けられない応力調整層をさらに有することを特徴とする熱式流体流量センサ。
    In claim 1,
    The insulating layer is an insulating film having a tensile stress, and is further provided with a stress adjusting layer provided on an upper part of the wiring having a large wiring width and not provided on an upper part of the wiring having a small wiring width. Thermal fluid flow sensor.
  6.  請求項5において、
     前記応力調整層は、窒化シリコン膜または窒化アルミニウム膜からなることを特徴とする熱式流体流量センサ。
    In claim 5,
    The thermal fluid flow sensor, wherein the stress adjustment layer is made of a silicon nitride film or an aluminum nitride film.
  7.  請求項1において、
     前記発熱抵抗体の配線幅は、前記測温抵抗体の配線幅よりも太いことを特徴とする熱式流体流量センサ。
    In claim 1,
    The thermal fluid flow sensor according to claim 1, wherein a wiring width of the heating resistor is larger than a wiring width of the temperature measuring resistor.
  8.  請求項1において、
     前記発熱抵抗体および前記測温抵抗体は、モリブデン、アルファタンタル、チタン、タングステン、コバルト、ニッケル、鉄、ニオブ、ハフニウム、クロム、ジルコニウム、白金、ベータタンタルのうちのいずれかを主成分とする金属膜、窒化タンタル、窒化モリブデン、窒化タングステン、窒化チタンのうちのいずれかを主成分とする金属窒化化合物、タングステンシリサイド、モリブデンシリサイド、コバルトシリサイド、ニッケルシリサイドのうちのいずれかを主成分とする金属シリサイド化合物、または、燐もしくはボロンをドープしたポリシリコンであることを特徴とする請求項1に記載の熱式流体流量センサ。
    In claim 1,
    The heating resistor and the resistance temperature detector are each composed mainly of molybdenum, alpha tantalum, titanium, tungsten, cobalt, nickel, iron, niobium, hafnium, chromium, zirconium, platinum, or beta tantalum. A metal nitride compound mainly containing any one of a film, tantalum nitride, molybdenum nitride, tungsten nitride, and titanium nitride, a metal silicide mainly containing any of tungsten silicide, molybdenum silicide, cobalt silicide, and nickel silicide 2. The thermal fluid flow sensor according to claim 1, wherein the thermal fluid flow sensor is a compound or polysilicon doped with phosphorus or boron.
  9.  引っ張り応力を有する発熱抵抗体と、
     引っ張り応力を有し前記発熱抵抗体よりも配線幅が細い測温抵抗体と、
     前記発熱抵抗体および前記測温抵抗体の上層に設けられ、圧縮応力を有し、前記発熱抵抗体が設けられる部分の上部の膜厚が前記測温抵抗体の設けられる部分の膜厚よりも厚い応力調整層と、を有することを特徴とする熱式流体流量センサ。
    A heating resistor having a tensile stress;
    A resistance temperature detector having a tensile stress and a wiring width narrower than the heating resistor,
    Provided in the upper layer of the heating resistor and the resistance temperature detector, has a compressive stress, and the thickness of the upper portion of the portion where the heating resistor is provided is larger than the thickness of the portion where the resistance temperature detector is provided. A thermal fluid flow sensor comprising a thick stress adjusting layer.
  10.  請求項9において、
     前記応力調整層は、前記発熱抵抗体および前記測温抵抗体と接することを特徴とする熱式流体流量センサ。
    In claim 9,
    The thermal fluid flow sensor, wherein the stress adjusting layer is in contact with the heating resistor and the resistance temperature detector.
  11.  請求項9において、
     前記応力調整層は、酸化シリコン膜からなることを特徴とする熱式流体流量センサ。
    In claim 9,
    The thermal fluid flow sensor, wherein the stress adjusting layer is made of a silicon oxide film.
  12. (a)半導体基板の上層に、それぞれが引っ張り応力を有する複数の第1絶縁膜と、それぞれが圧縮応力を有する複数の第2絶縁膜と、を含む絶縁層を形成する工程と、
    (b)半導体基板の上層に、引っ張り応力を有する発熱抵抗体と、引っ張り応力を有し前記発熱抵抗体とは配線幅の異なる測温抵抗体と、を形成する工程と、
    (c)前記工程(b)の後に、前記絶縁層のうち、前記発熱抵抗体または前記測温抵抗体のうち配線幅の太い配線の上部および下部に位置する部分の応力の平均値を、前記発熱抵抗体または前記測温抵抗体のうち配線幅の細い配線の上部および下部に位置する部分の応力の平均値よりも圧縮側にする工程と、を有することを特徴とする熱式流体流量センサの製造方法。
    (A) forming an insulating layer including a plurality of first insulating films each having a tensile stress and a plurality of second insulating films each having a compressive stress on an upper layer of the semiconductor substrate;
    (B) forming a heating resistor having a tensile stress and a temperature measuring resistor having a tensile stress and having a wiring width different from that of the heating resistor on an upper layer of the semiconductor substrate;
    (C) After the step (b), an average value of stresses of portions of the insulating layer located in the upper part and the lower part of the wiring having a large wiring width in the heating resistor or the temperature measuring resistor is calculated as A thermal fluid flow sensor characterized by comprising a step of making the compressive side more than the average value of the stresses in the upper and lower portions of the wiring having a narrow wiring width of the heating resistor or the temperature measuring resistor. Manufacturing method.
  13.  請求項12において、
     前記工程(c)は、前記複数の第2絶縁膜のうち少なくとも1つを、CMP法を用いて研磨する工程であることを特徴とする熱式流体流量センサの製造方法。
    In claim 12,
    The step (c) is a step of polishing at least one of the plurality of second insulating films by using a CMP method.
  14.  請求項12において、
     前記工程(c)は、前記複数の第2絶縁膜のうち少なくとも1つについて、前記配線幅の細い配線の上部に位置する部分をドライエッチングで除去する工程であることを特徴とする熱式流体流量センサの製造方法。
    In claim 12,
    The step (c) is a step of removing, by dry etching, at least one of the plurality of second insulating films, the portion located above the wiring having a narrow wiring width. Manufacturing method of flow sensor.
  15.  請求項12において、
     前記工程(c)は、前記複数の第1絶縁膜のうち少なくとも1つについて、前記配線幅の太い配線の上部に位置する部分をドライエッチングで除去する工程であることを特徴とする熱式流体流量センサの製造方法。
    In claim 12,
    In the thermal fluid, the step (c) is a step of removing at least one of the plurality of first insulating films located on the upper part of the wiring having a large wiring width by dry etching. Manufacturing method of flow sensor.
PCT/JP2013/051518 2012-03-14 2013-01-25 Thermal type fluid flow rate sensor and manufacturing method therefor WO2013136856A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012056657A JP5753807B2 (en) 2012-03-14 2012-03-14 Thermal fluid flow sensor and manufacturing method thereof
JP2012-056657 2012-03-14

Publications (1)

Publication Number Publication Date
WO2013136856A1 true WO2013136856A1 (en) 2013-09-19

Family

ID=49160778

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/051518 WO2013136856A1 (en) 2012-03-14 2013-01-25 Thermal type fluid flow rate sensor and manufacturing method therefor

Country Status (2)

Country Link
JP (1) JP5753807B2 (en)
WO (1) WO2013136856A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106932039A (en) * 2015-12-15 2017-07-07 株式会社堀场制作所 Flow measurement device, fuel consumption measuring device and flow-measuring method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6362913B2 (en) * 2014-04-28 2018-07-25 日立オートモティブシステムズ株式会社 Thermal air flow sensor
JP7134920B2 (en) * 2019-06-17 2022-09-12 日立Astemo株式会社 Thermal sensor device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001141540A (en) * 1999-10-27 2001-05-25 Robert Bosch Gmbh Mass flow sensor
JP2001165737A (en) * 1999-12-14 2001-06-22 Denso Corp Microheater and its production method and flow sensor
JP2006242941A (en) * 2005-02-07 2006-09-14 Ngk Spark Plug Co Ltd Micro-heater and sensor
JP2010133897A (en) * 2008-12-08 2010-06-17 Hitachi Automotive Systems Ltd Thermal fluid flow sensor and method of manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001141540A (en) * 1999-10-27 2001-05-25 Robert Bosch Gmbh Mass flow sensor
JP2001165737A (en) * 1999-12-14 2001-06-22 Denso Corp Microheater and its production method and flow sensor
JP2006242941A (en) * 2005-02-07 2006-09-14 Ngk Spark Plug Co Ltd Micro-heater and sensor
JP2010133897A (en) * 2008-12-08 2010-06-17 Hitachi Automotive Systems Ltd Thermal fluid flow sensor and method of manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106932039A (en) * 2015-12-15 2017-07-07 株式会社堀场制作所 Flow measurement device, fuel consumption measuring device and flow-measuring method

Also Published As

Publication number Publication date
JP2013190320A (en) 2013-09-26
JP5753807B2 (en) 2015-07-22

Similar Documents

Publication Publication Date Title
JP5276964B2 (en) Thermal fluid flow sensor and manufacturing method thereof
JP5202007B2 (en) Thermal fluid flow sensor
JP5406674B2 (en) Thermal fluid flow sensor and manufacturing method thereof
US7886594B2 (en) Thermal type fluid flow sensor with metal film resistor
JP5526065B2 (en) Thermal sensor and manufacturing method thereof
JP4966526B2 (en) Flow sensor
JP4474771B2 (en) Flow measuring device
JP5753807B2 (en) Thermal fluid flow sensor and manufacturing method thereof
US10989579B2 (en) Thermal detection sensor
JP6215773B2 (en) Flow sensor and manufacturing method thereof
JP6421071B2 (en) Flow sensor
JP7158369B2 (en) Thermal detection sensor
JP6532810B2 (en) Flow sensor
JP6293575B2 (en) Micro heater and gas sensor
JP2005181016A (en) Heat type sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13761713

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13761713

Country of ref document: EP

Kind code of ref document: A1