WO2013136614A1 - Exhaust gas purification device - Google Patents

Exhaust gas purification device Download PDF

Info

Publication number
WO2013136614A1
WO2013136614A1 PCT/JP2012/082202 JP2012082202W WO2013136614A1 WO 2013136614 A1 WO2013136614 A1 WO 2013136614A1 JP 2012082202 W JP2012082202 W JP 2012082202W WO 2013136614 A1 WO2013136614 A1 WO 2013136614A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
exhaust
evaporation pipe
pipe
reducing agent
Prior art date
Application number
PCT/JP2012/082202
Other languages
French (fr)
Japanese (ja)
Inventor
孝博 藤林
Original Assignee
日立造船株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立造船株式会社 filed Critical 日立造船株式会社
Priority to JP2014504636A priority Critical patent/JP5801472B2/en
Priority to KR1020147027982A priority patent/KR101619098B1/en
Priority to CN201280070864.XA priority patent/CN104136727B/en
Publication of WO2013136614A1 publication Critical patent/WO2013136614A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/08Other arrangements or adaptations of exhaust conduits
    • F01N13/10Other arrangements or adaptations of exhaust conduits of exhaust manifolds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2892Exhaust flow directors or the like, e.g. upstream of catalytic device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • B01D2251/2067Urea
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/01Engine exhaust gases
    • B01D2258/012Diesel engines and lean burn gasoline engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/45Gas separation or purification devices adapted for specific applications
    • B01D2259/4566Gas separation or purification devices adapted for specific applications for use in transportation means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9431Processes characterised by a specific device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/40Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a hydrolysis catalyst
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2470/00Structure or shape of gas passages, pipes or tubes
    • F01N2470/20Dimensional characteristics of tubes, e.g. length, diameter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2470/00Structure or shape of gas passages, pipes or tubes
    • F01N2470/24Concentric tubes or tubes being concentric to housing, e.g. telescopically assembled
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2470/00Structure or shape of gas passages, pipes or tubes
    • F01N2470/30Tubes with restrictions, i.e. venturi or the like, e.g. for sucking air or measuring mass flow
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/10Capture or disposal of greenhouse gases of nitrous oxide (N2O)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to an exhaust gas purifying apparatus for reducing and removing nitrogen oxide (hereinafter referred to as “NOx”) in exhaust gas discharged from an internal combustion engine by reacting with a reducing agent under a denitration catalyst such as an SCR catalyst. .
  • NOx nitrogen oxide
  • a denitration reactor in which an SCR catalyst is interposed in an exhaust passage of a diesel engine has been provided, and an exhaust gas purification system provided with a nozzle capable of spraying a reducing agent precursor such as urea water on the upstream side of the denitration reactor.
  • An apparatus is used (for example, Patent Document 1).
  • the urea water sprayed into the exhaust gas from the nozzle is hydrolyzed as shown in the following formula (1) before reaching the SCR catalyst if the temperature in the exhaust passage is sufficiently high.
  • ammonia gas (NH 3 ) is generated.
  • the ammonia gas generated by the hydrolysis is supplied to the SCR catalyst, whereby a denitration reaction such as the following formulas (2) and (3) is performed between ammonia and NOx in the exhaust gas on the SCR catalyst, NOx is decomposed into nitrogen and water and detoxified.
  • a denitration reaction such as the following formulas (2) and (3) is performed between ammonia and NOx in the exhaust gas on the SCR catalyst, NOx is decomposed into nitrogen and water and detoxified.
  • the reaction time is not limited to the exhaust system of the engine, but also in a device that causes a chemical reaction or a state change by adding another gas or liquid to the gas flowing in the pipe.
  • a method of increasing the diameter of the piping in that section is adopted.
  • the pipe 203 in the section (the section from broken lines A to B in FIG. 10) in which the gas flow velocity is reduced is twice the diameter (2D) with respect to the diameters (D) of the front and rear pipes 201 and 202. ).
  • the velocity V of the gas flowing in the flow velocity reduction section 203 is V 0/4. Can be reduced.
  • the size of the diameter of the flow velocity reduction section 203 becomes large, and there is a problem that the apparatus cannot be reduced in size.
  • the exhaust manifold 101 occupies a large volume, and it is necessary to provide an evaporation pipe 107 having a larger diameter.
  • the evaporation tube 107 is a factor that hinders downsizing of the entire apparatus.
  • the problem to be solved by the present invention is to reduce the flow rate of the exhaust gas in the section from the urea water spray nozzle to the denitration reactor in order to ensure sufficient time for the urea water to be hydrolyzed.
  • an evaporation pipe having a diameter larger than that of the exhaust passage was used, and this evaporation pipe was a factor that hindered downsizing of the apparatus.
  • the exhaust gas purification apparatus of the present invention is An exhaust manifold that collects exhaust gas discharged from an exhaust communication pipe connected to an exhaust port of the engine and guides the exhaust gas to an exhaust passage; and a denitration reactor provided in the exhaust passage; An evaporation pipe that is upstream of the denitration reactor and that is open at both ends in the longitudinal direction is provided inside the exhaust passage, and a reducing agent and a reducing agent precursor for the exhaust gas that passes through the evaporation pipe.
  • the main feature is that a nozzle capable of spraying an aqueous solution containing either or both of these is provided.
  • the exhaust gas purification apparatus of the present invention is configured such that an evaporation pipe is provided inside the exhaust passage on the upstream side of the denitration reactor and, for example, urea water or the like is sprayed from the nozzle to the exhaust gas passing through the inside of the evaporation pipe. Therefore, the flow rate of the exhaust gas passing through the inside of the evaporation pipe is reduced, and a sufficient time can be secured for the hydrolysis reaction of urea water or the like to proceed. Therefore, according to the present invention, the size of the diameter of the flow velocity reduction section can be made smaller than before.
  • the object of the present invention is to provide a low flow rate section for securing hydrolysis time of urea water or the like without increasing the size of the pipe diameter in the exhaust gas purification device of the engine.
  • An exhaust manifold that collects exhaust gas discharged from an exhaust communication pipe connected to an exhaust port of the engine and guides the exhaust gas to an exhaust passage; and a denitration reactor provided in the exhaust passage;
  • An evaporation pipe that is upstream of the denitration reactor and that is open at both ends in the longitudinal direction is provided inside the exhaust passage, and a reducing agent and a reducing agent precursor for exhaust gas that passes through the evaporation pipe. This was realized by providing a nozzle capable of spraying an aqueous solution containing either or both of these.
  • the venturi is formed in the exhaust passage so that the diameter of the outlet portion of the evaporation pipe is smaller than the diameter of the inlet portion and the position where the open end of the outlet portion of the evaporation pipe exists is present.
  • the diameter of the outlet part of the evaporation pipe By restricting the diameter of the outlet part of the evaporation pipe, the flow rate of the exhaust gas flowing in the evaporation pipe can be slowed, and the pressure near the outlet part of the evaporation pipe is increased by the action of the venturi formed in the exhaust passage. Therefore, the exhaust gas does not stay in the evaporation pipe, and a stable flow of the exhaust gas from the inlet to the outlet can be achieved.
  • FIG. 1 is a diagram for explaining the configuration of the flow velocity reducing means of the present invention.
  • reference numeral 1 denotes a flow velocity reduction means of the present invention that can be applied to apparatuses in various fields.
  • the outer tube 2 through which gas flows inside is only inside the section where the flow velocity is to be reduced for some purpose.
  • the pipe 3 is provided, and the flow velocity reduction section (the section from the broken lines A to B in FIG. 1) has a double pipe structure with the outer pipe 2 and the inner pipe 3.
  • the inner tube 3 is a cylindrical member whose both ends in the longitudinal direction are open, and as shown in FIG. 1, the outlet 3a on the downstream side is shaped like a nozzle and has a smaller diameter than the inlet 3b. Further, a venturi 2a is formed on the outer tube 2 so as to include a position where the open end 3aa of the nozzle-shaped outlet portion 3a exists (a position indicated by a broken line B in FIG. 1), and the tube diameter is reduced. ing.
  • the gas flowing in the outer tube 2 is divided into a gas passing through the inner tube 3 and a gas passing through the outer tube 3 at the position of the broken line A. Will join.
  • the flow velocity of the gas at the position of the broken line A is V 0
  • the relationship between the velocity V of the gas passing inside the inner tube 3 and the velocity V ′ of the gas passing outside the inner tube 3 is V
  • the sizes of the diameters of the outer tube 2 and the inner tube 3 are set so that ⁇ V 0 ⁇ V ′.
  • the upstream diameter is D
  • the diameter of the downstream venturi 2a is Dr
  • the diameter of the inlet 3b in the inner pipe 3 is d
  • the flow velocity V of the gas in the inner tube 3 can be set to a desired value.
  • a stable flow velocity reduction section can be obtained without increasing the pipe diameter.
  • the present invention can be applied to various devices regardless of the field as long as it is a piping device related to a fluid.
  • the effect of the present invention is that the apparatus can be miniaturized while ensuring the reaction time, change time, dissolution time, evaporation time and the like.
  • FIG. 2 is a diagram showing the configuration of the first embodiment of the exhaust gas purifying apparatus of the present invention.
  • reference numeral 11 denotes an exhaust gas purification device in which the present invention is applied to a four-cylinder marine diesel engine.
  • the exhaust gas purification device 11 is discharged from an exhaust communication pipe 13 connected to an exhaust port 12 a provided in each cylinder head of the engine 12.
  • the exhaust manifold 16 that collects the exhaust gas and leads it to the exhaust passage 15 upstream of the turbine 14 a of the turbocharger 14, and the denitration reactor 17 provided in the exhaust passage 15 are provided.
  • Reference numeral 14b denotes a compressor of the turbocharger 14 that compresses the air supplied from the supply passage 21.
  • Reference numeral 22 denotes an air supply manifold that distributes the air compressed by the compressor 14b to an air supply port of each cylinder of the engine 12 through an air supply communication pipe.
  • an evaporation pipe 18 whose both ends in the longitudinal direction are opened in the exhaust passage 15 is provided, and in the vicinity of the inlet portion 18 b of the evaporation pipe 18, an evaporation pipe is provided.
  • a nozzle 19 capable of spraying urea water 19a is provided for the exhaust gas passing through the interior 18.
  • the exhaust passage 15 corresponds to the outer tube 2 in FIG. 1
  • the evaporation tube 18 corresponds to the inner tube 3 in FIG.
  • the reason why the nozzle 19 is provided in the vicinity of the inlet 18b of the evaporation pipe 18 is that a long time for the sprayed urea water 19a to pass through the high-temperature evaporation pipe 18 can be secured.
  • the denitration reactor 17 is provided with an SCR catalyst that selectively reduces and removes NOx soot that is contained in the exhaust gas discharged from the engine 12 and causes environmental pollution such as acid rain and photochemical smog.
  • SCR catalyst a desired catalyst such as a metal oxide catalyst such as alumina, zirconia, vanadia / titania or a zeolite catalyst can be used, and these catalysts may be combined.
  • the SCR catalyst may be supported on a catalyst carrier having a honeycomb structure, or may be charged in a cylinder and caged.
  • urea is stored as a reducing agent precursor in a tank connected to the nozzle 19 in the form of an aqueous solution, and during operation, the urea water 19a is injected from the nozzle 19 into the evaporation pipe 18, and the evaporation pipe 18 Urea is hydrolyzed using ammonia heat to generate ammonia gas.
  • FIG. 3 is an enlarged view showing the configuration of the evaporation pipe 18 (inner pipe) and the exhaust passage 15 (outer pipe) of the first embodiment.
  • the first embodiment in order to sufficiently secure the time for the hydrolysis reaction of the urea water sprayed from the nozzle 19, the section from the broken line A to B in FIG. Yes.
  • the high-temperature exhaust gas collected by the exhaust manifold 16 flows into the exhaust passage 15 and is divided into one passing through the inside of the evaporation pipe 18 and one passing through the outside of the evaporation pipe 18 at the position of the broken line A. Merge at the position of the broken line B.
  • the exhaust gas passing through the outside of the evaporation pipe 18 is not mixed with urea water at that time, but the exhaust gas passing through the inside of the evaporation pipe 18 contains ammonia gas that has been hydrolyzed. It quickly mixes with ammonia gas when it joins in place. Therefore, when introduced into the denitration reactor 17, the ammonia gas is in a state where it has spread throughout the exhaust gas.
  • the exhaust gas flowing outside the evaporation pipe 18 is rectified into a straight flow without swirling so that the flow of the exhaust gas is good, so that the outside of the inlet 18b of the exhaust pipe 18 is improved.
  • a guide vane 20 is provided in the vicinity.
  • the outlet portion 18a on the downstream side of the evaporation pipe 18 has a nozzle shape, and the pipe diameter is narrower than that of the inlet portion 18b.
  • a venturi 15a is formed in the exhaust passage 15 so as to include at least a position (a position indicated by a broken line B) where the open end 18aa of the nozzle-shaped outlet portion 18a exists, and the diameter of the exhaust passage 15 is also reduced. It is over.
  • the pressure of the exhaust gas near the nozzle-shaped outlet 18a of the evaporation pipe 18 is lower than the pressure of the exhaust gas near the inlet 18b.
  • the gas flow velocity at the position of the broken line A is V 0
  • the upstream diameter in the exhaust passage 15 is D
  • the diameter of the venturi 15a is Dr
  • the diameter of the upstream inlet 18b in the evaporation pipe 18 is d
  • the degree of restriction of the exhaust passage 15 (Dr / D value)
  • the degree of restriction of the evaporation pipe 18 (value of dr / d) is insufficient, or when these restrictions are not provided at all, The speed of the exhaust gas passing through the inside and outside of the evaporation pipe 18 may not be stable.
  • the values of Dr / D and dr / d are too narrow, the pressure loss of the exhaust system will be too high and the engine efficiency or performance may be reduced. Therefore, the degree of restriction of the exhaust passage 15 and the evaporation pipe 18 is adjusted according to the size and shape of these pipes and the target value of the flow velocity V of the exhaust gas.
  • FIG. 4 is a diagram showing the configuration of the second embodiment of the exhaust gas purifying apparatus of the present invention.
  • the difference between the exhaust gas purifying apparatus 11 of the second embodiment and the first embodiment is that the diameter of the inlet portion 18b and the outlet portion 18a of the evaporation pipe 18 are the same, and the evaporation pipe 18 (inner pipe) is connected.
  • Urea for accelerating the hydrolysis of urea water 19a an aqueous solution containing either or both of a reducing agent and a reducing agent precursor
  • a hydrolysis catalyst 23 is provided as the urea hydrolysis catalyst 23, for example, a catalyst having a structure in which tungsten oxide (WO 3) is added to a titanium oxide (TiO 2 ) support can be used.
  • FIG. 5 is an enlarged view showing the configuration of the evaporation pipe 18 (inner pipe) and the exhaust passage 15 (outer pipe) of the second embodiment.
  • the second embodiment in order to sufficiently secure the time for the hydrolysis reaction of the urea water sprayed from the nozzle 19, the section from the broken line A to B in FIG. However, the outlet 18a is not provided with a throttle.
  • a urea hydrolysis catalyst 23 is arranged in the vicinity of the outlet 18 a inside the evaporation pipe 18.
  • the urea hydrolysis catalyst 23 When the urea hydrolysis catalyst 23 is arranged at the outlet 18a in this way, the flow rate of exhaust gas flowing through the evaporation pipe 18 is reduced due to pressure loss when the exhaust gas passes through the urea hydrolysis catalyst 23. Thereby, also in the structure of 2nd Example, the flow velocity of the waste gas which flows through the inside of the evaporation pipe 18 can be made slow.
  • urea hydrolysis is promoted by the action of the urea hydrolysis catalyst 23, so that hydrolysis to ammonia can be completed within the flow velocity reduction section.
  • the exhaust gas passing through the evaporation pipe 18 has a low flow rate
  • the speed of urea contained in the exhaust gas is also reduced. Therefore, the time until urea passes through the urea hydrolysis catalyst 23 becomes longer, and the frequency of contact between urea and the urea hydrolysis catalyst 23 increases. Therefore, the required hydrolysis rate can be obtained even with a small amount of catalyst.
  • the flow rate of the exhaust gas flowing through the evaporation pipe 18 is small, the concentration of urea in the exhaust gas is increased by introducing a required amount of urea therein. Thereby, since the frequency with which urea and the urea hydrolysis catalyst 23 come into contact increases, a required hydrolysis rate can be obtained even with a small amount of catalyst.
  • the present invention by adopting the double pipe structure as described above, when urea water adheres to the inner surface of the evaporation pipe 18, not only the heat of the exhaust gas flowing in the evaporation pipe 18 but also the evaporation pipe Since heat is also applied from the exhaust gas flowing outside 18, there is an advantage that the portion to which the urea water adheres is unlikely to cool, and the urea-derived deposit is difficult to be generated.
  • FIG. 6 is a view showing a configuration of a third embodiment of the exhaust gas purifying apparatus of the present invention.
  • Reference numeral 51 denotes an exhaust gas purifying apparatus in which the present invention is applied to a four-cylinder marine diesel engine.
  • An evaporation pipe 58 and a denitration reactor 57 having both ends in the longitudinal direction opened into the exhaust manifold 56 are continuously arranged inside the exhaust manifold 56 leading to the exhaust passage 55 upstream of the turbine 54 a of the turbocharger 54.
  • a nozzle 59 is provided that can spray an aqueous solution 59a containing either or both of the reducing agent and the reducing agent precursor to the exhaust gas passing through the evaporation pipe 58.
  • the shape of the outlet portion 58a of the evaporation pipe 58 is a nozzle shape, which is smaller than the diameter of the inlet portion 58b. Further, a venturi 56a is formed in the exhaust manifold 56 so as to include a position where the open end 58aa of the outlet portion 58a of the evaporation pipe 58 exists.
  • Reference numeral 54 b denotes a compressor of the turbocharger 54 that compresses the air supplied from the supply passage 61.
  • Reference numeral 62 denotes an air supply manifold that distributes the air compressed by the compressor 54b to the air supply ports of the cylinders of the engine 52 via the air supply communication pipe.
  • the exhaust manifold 56 corresponds to the outer pipe 2 in FIG. 1 and the evaporation pipe 58 corresponds to the inner pipe 3 in FIG. 1, and the evaporation pipe 58 is incorporated in the exhaust manifold 56.
  • this is different from the first embodiment.
  • the third embodiment since all of the evaporation pipe 58 and the denitration reactor 57 are incorporated in the exhaust manifold 56, an evaporation pipe having a large pipe diameter is provided together with the exhaust manifold. Compared with the device, the device size is much more compact. Further, in general, in an engine equipped with a turbocharger, there may be a control delay such as a delay in supply air in response to a request for an increase in engine output when sudden acceleration is performed. In the configuration of the third embodiment, Since the exhaust path to the turbine 54a can be shortened, exhaust control is also facilitated.
  • FIG. 7 is a view showing the configuration of a fourth embodiment of the exhaust gas purifying apparatus of the present invention.
  • the difference between the exhaust gas purifying apparatus 51 of the fourth embodiment and the third embodiment is that the diameters of the inlet 58b and outlet 58a of the evaporation pipe 58 are the same, and the evaporation pipe 58 (inner pipe) Urea for accelerating hydrolysis of urea water 59a (an aqueous solution containing either or both of a reducing agent and a reducing agent precursor) sprayed from a nozzle 59 inside the evaporation pipe 58 without a restriction.
  • urea hydrolysis catalyst 63 similarly to the second embodiment described above, for example, can be used as the added structure carrier tungsten oxide (WO3) of titanium oxide (TiO 2).
  • the urea hydrolysis catalyst 63 is disposed in the vicinity of the outlet 58a inside the evaporation pipe 58, and the urea hydrolysis is promoted by the action of the urea hydrolysis catalyst 63. Can complete the hydrolysis to ammonia.
  • the configuration in which the urea water 19a is sprayed from the nozzle 19 to the exhaust gas in the evaporation pipe 18 as the reducing agent precursor is disclosed, but the components of the reducing agent precursor are not limited thereto.
  • a mixed aqueous solution of high concentration urea and low concentration ammonia may be used.
  • the position which provides the nozzle 19 is not restricted to this, For example, you may provide in the center of the evaporation pipe
  • the second embodiment as shown in FIG. 5, in the case where the urea hydrolysis catalyst 23 is arranged inside the evaporation pipe 18, an example in which no restriction is provided at the outlet portion 18a of the evaporation pipe 18 is disclosed.
  • the configuration of the second embodiment is not limited to this.
  • a throttle may be provided at the outlet portion 18 a of the evaporation pipe 18.
  • the flow rate of the exhaust gas can be easily reduced to a desired speed, and the hydrolysis of urea can be promoted by the action of the catalyst.
  • the exhaust gas in the evaporation pipe 58 is disposed downstream of the nozzle 59 and inside the evaporation pipe 58.
  • a rectifier may be provided to regulate the flow.
  • a static mixer may be provided inside the evaporation pipe 58 so that ammonia gas and exhaust gas generated by hydrolysis of the urea water 59a are sufficiently mixed in the evaporation pipe 58.

Abstract

[Problem] An evaporation tube given a greater diameter than that of an exhaust gas channel has been the reason it is difficult to reduce device size. [Solution] An evaporation tube (18), both longitudinal ends of which are opened, is provided to an upstream side of a denitration reactor (17) and inside an exhaust gas channel (15). A nozzle (19) is provided from which an aqueous solution including a reducing agent and/or a reducing agent precursor can be sprayed into an exhaust gas that passes through the evaporation tube (18). An outlet part (18a) of the evaporation tube (18) is given a smaller diameter than that of an inlet part (18b), and a Venturi tube (15a) is formed in the exhaust gas channel (15) so as to include a position where the open end of the outlet part (18a) of the evaporation tube (18) is present. [Effects] Ample time for the hydrolysis reaction of aqueous urea to proceed can be ensured, and the diameter of a flow rate reduction zone is reduced in size.

Description

排ガス浄化装置Exhaust gas purification device
 本発明は、内燃機関から排出される排ガス中の窒素酸化物(以下「NOx 」という。)を例えばSCR触媒等の脱硝触媒下で還元剤と反応させて還元除去する排ガス浄化装置に関するものである。 The present invention relates to an exhaust gas purifying apparatus for reducing and removing nitrogen oxide (hereinafter referred to as “NOx”) in exhaust gas discharged from an internal combustion engine by reacting with a reducing agent under a denitration catalyst such as an SCR catalyst. .
 従来、例えばディーゼルエンジンの排気通路にSCR触媒が介装された脱硝反応器を設けると共に、この脱硝反応器の上流側に、尿素水等の還元剤前駆体を噴霧可能なノズルを設けた排ガス浄化装置が利用されている(例えば、特許文献1)。 Conventionally, for example, a denitration reactor in which an SCR catalyst is interposed in an exhaust passage of a diesel engine has been provided, and an exhaust gas purification system provided with a nozzle capable of spraying a reducing agent precursor such as urea water on the upstream side of the denitration reactor. An apparatus is used (for example, Patent Document 1).
 上記のような装置において、ノズルから排ガス中に噴霧された尿素水は、排気通路内の温度が十分に高ければ、SCR触媒に到達するまでの間に下記の式(1)のように加水分解され、アンモニアガス(NH3)が生成される。
 (NH22CO+H2O→2NH3 +CO2 ・・・・(1)
In the apparatus as described above, the urea water sprayed into the exhaust gas from the nozzle is hydrolyzed as shown in the following formula (1) before reaching the SCR catalyst if the temperature in the exhaust passage is sufficiently high. As a result, ammonia gas (NH 3 ) is generated.
(NH 2 ) 2 CO + H 2 O → 2NH 3 + CO 2 ... (1)
 そして、加水分解により発生したアンモニアガスはSCR触媒に供給され、これによりSCR触媒上でアンモニアと排ガス中のNOx の間に次の式(2)及び(3)のような脱硝反応が行われ、NOx は窒素と水に分解されて無害化される。
 4NH3+4NO+O2 →4N2+6H2O・・・・(2)
 2NH3+NO+NO2 →2N2+3H2O・・・・(3)
The ammonia gas generated by the hydrolysis is supplied to the SCR catalyst, whereby a denitration reaction such as the following formulas (2) and (3) is performed between ammonia and NOx in the exhaust gas on the SCR catalyst, NOx is decomposed into nitrogen and water and detoxified.
4NH 3 + 4NO + O 2 → 4N 2 + 6H 2 O (2)
2NH 3 + NO + NO 2 → 2N 2 + 3H 2 O (3)
 このように、SCR触媒を用いた排ガス浄化装置では、噴霧した尿素水が排気通路内を流動中に上記式(1)の加水分解反応が十分に進行する時間を確保する必要がある。 As described above, in the exhaust gas purification apparatus using the SCR catalyst, it is necessary to secure a time for the hydrolysis reaction of the above formula (1) to sufficiently proceed while the sprayed urea water flows in the exhaust passage.
 そのため、従来、例えば図9に示すような、排気マニホールド101を備えた4気筒の舶用ディーゼルエンジン102においては、ターボチャージャー103のタービン103aの上流側の排気通路104に設けた尿素水噴霧用のノズル105とSCR触媒106との間に、排気通路104よりも管路断面積を大きくした蒸発管107を設け、この蒸発管107を設けた区間の排ガスの流速を低減し、ノズル105から噴霧された尿素水の加水分解反応が進行する時間を確保する場合がある。 For this reason, conventionally, in a four-cylinder marine diesel engine 102 having an exhaust manifold 101 as shown in FIG. An evaporation pipe 107 having a pipe cross-sectional area larger than that of the exhaust passage 104 is provided between the 105 and the SCR catalyst 106. The flow rate of the exhaust gas in the section in which the evaporation pipe 107 is provided is reduced and sprayed from the nozzle 105. There may be a case where the time for the hydrolysis reaction of urea water to proceed is secured.
 また、従来、図10に示すように、エンジンの排気系に限らず、配管内を流れる気体に対し、他の気体や液体を添加して化学反応や状態変化を生じさせる装置においても、反応時間や変化時間、気体同士の混合時間などを確保するために気体の流速を遅くする区間を設ける必要がある場合、その区間の配管の径を大きくする方法が採用されている。図10の例では、前後の配管201,202の直径(D)に対し、気体の流速を低減させる区間(図10中、破線A~Bまでの区間)の配管203は2倍の直径(2D)としている。 Conventionally, as shown in FIG. 10, the reaction time is not limited to the exhaust system of the engine, but also in a device that causes a chemical reaction or a state change by adding another gas or liquid to the gas flowing in the pipe. When it is necessary to provide a section in which the gas flow rate is slowed in order to secure the change time, the mixing time of the gases, etc., a method of increasing the diameter of the piping in that section is adopted. In the example of FIG. 10, the pipe 203 in the section (the section from broken lines A to B in FIG. 10) in which the gas flow velocity is reduced is twice the diameter (2D) with respect to the diameters (D) of the front and rear pipes 201 and 202. ).
 このように、径の長さに2倍の差を設けた場合、例えば配管201内を流れる気体の速度をV0とすると、流速低減区間203内を流れる気体の速度Vは、V0/4に低減させることができる。  As described above, when the difference in diameter is doubled, for example, when the velocity of the gas flowing in the pipe 201 is V 0 , the velocity V of the gas flowing in the flow velocity reduction section 203 is V 0/4. Can be reduced.
 しかしながら、上記のような流速低減手段を用いた場合、流速低減区間203の径のサイズが大きくなってしまうため、装置を小型化できないという問題がある。例えば、図9に示したような、舶用ディーゼルエンジン102の排気系においても、排気マニホールド101が大きな容積を占めている上に、さらに径のサイズが大きい蒸発管107を設ける必要があるため、この蒸発管107が装置全体の小型化を妨げる要因となっている。 However, when the flow velocity reduction means as described above is used, the size of the diameter of the flow velocity reduction section 203 becomes large, and there is a problem that the apparatus cannot be reduced in size. For example, in the exhaust system of the marine diesel engine 102 as shown in FIG. 9, the exhaust manifold 101 occupies a large volume, and it is necessary to provide an evaporation pipe 107 having a larger diameter. The evaporation tube 107 is a factor that hinders downsizing of the entire apparatus.
実公平6-45617号公報No. 6-45617
 本発明が解決しようとする問題点は、従来は、尿素水が加水分解される時間を十分に確保するために、尿素水噴霧ノズルから脱硝反応器に至るまでの区間の排ガスの流速を低減させる手段として、排気通路よりも径のサイズを大きくした蒸発管を使用していたので、この蒸発管が装置の小型化を妨げる要因となっていた点である。 Conventionally, the problem to be solved by the present invention is to reduce the flow rate of the exhaust gas in the section from the urea water spray nozzle to the denitration reactor in order to ensure sufficient time for the urea water to be hydrolyzed. As an means, an evaporation pipe having a diameter larger than that of the exhaust passage was used, and this evaporation pipe was a factor that hindered downsizing of the apparatus.
 本発明の排ガス浄化装置は、
 エンジンの排気ポートに接続された排気連絡管から排出された排ガスを集合し、排気通路に導く排気マニホールドと、前記排気通路に設けられた脱硝反応器とを備え、
 前記脱硝反応器の上流側であって、かつ、前記排気通路の内部に、長手方向両端が開放された蒸発管を設けると共に、前記蒸発管内を通過する排ガスに対して還元剤、還元剤前駆体の双方または何れか一方を含む水溶液を噴霧可能なノズルを設けたことを最も主要な特徴点としている。
The exhaust gas purification apparatus of the present invention is
An exhaust manifold that collects exhaust gas discharged from an exhaust communication pipe connected to an exhaust port of the engine and guides the exhaust gas to an exhaust passage; and a denitration reactor provided in the exhaust passage;
An evaporation pipe that is upstream of the denitration reactor and that is open at both ends in the longitudinal direction is provided inside the exhaust passage, and a reducing agent and a reducing agent precursor for the exhaust gas that passes through the evaporation pipe. The main feature is that a nozzle capable of spraying an aqueous solution containing either or both of these is provided.
 本発明の排ガス浄化装置は、脱硝反応器の上流側の排気通路の内部に蒸発管を設け、この蒸発管の内側を通過する排ガスに対してノズルから例えば尿素水等を噴霧するように構成したので、蒸発管内を通過する排ガスの流速が低減され、尿素水等の加水分解反応が進行する時間を十分に確保することができる。よって、本発明によれば、流速低減区間の径のサイズを従来よりも小さくすることができる。 The exhaust gas purification apparatus of the present invention is configured such that an evaporation pipe is provided inside the exhaust passage on the upstream side of the denitration reactor and, for example, urea water or the like is sprayed from the nozzle to the exhaust gas passing through the inside of the evaporation pipe. Therefore, the flow rate of the exhaust gas passing through the inside of the evaporation pipe is reduced, and a sufficient time can be secured for the hydrolysis reaction of urea water or the like to proceed. Therefore, according to the present invention, the size of the diameter of the flow velocity reduction section can be made smaller than before.
本発明の流速低減手段の構成を説明する図である。It is a figure explaining the structure of the flow velocity reduction means of this invention. 本発明の排ガス浄化装置の第1実施例の構成を示した図である。It is the figure which showed the structure of 1st Example of the exhaust gas purification apparatus of this invention. 脱硝反応器の上流側の排気通路の内部に設けた蒸発管と、尿素水噴霧用のノズルと、蒸発管の出口部の開放端付近に設けた排気通路のベンチュリを示した拡大図である。It is the enlarged view which showed the venturi of the exhaust pipe provided in the inside of the exhaust passage of the upstream of a denitration reactor, the nozzle for urea water spraying, and the exhaust passage provided in the open end vicinity of the exit part of an evaporation pipe. 本発明の排ガス浄化装置の第2実施例の構成を示した図である。It is the figure which showed the structure of 2nd Example of the exhaust gas purification apparatus of this invention. 脱硝反応器の上流側の排気通路の内部に設けた蒸発管と、尿素水噴霧用のノズルと、蒸発管の出口部の近傍に設けた尿素加水分解触媒を示した拡大図である。It is the enlarged view which showed the urea hydrolysis catalyst provided in the vicinity of the evaporating pipe provided in the inside of the exhaust passage of the upstream of a denitration reactor, the nozzle for urea water spraying, and the exit part of an evaporating pipe. 本発明の排ガス浄化装置の第3実施例の構成を示した図である。It is the figure which showed the structure of 3rd Example of the exhaust gas purification apparatus of this invention. 本発明の排ガス浄化装置の第4実施例の構成を示した図である。It is the figure which showed the structure of 4th Example of the exhaust gas purification apparatus of this invention. 本発明の排ガス浄化装置の第2実施例の変形例を示した図である。It is the figure which showed the modification of 2nd Example of the exhaust gas purification apparatus of this invention. 従来の舶用ディーゼルエンジンの構成を示した図である。It is the figure which showed the structure of the conventional marine diesel engine. 従来の流速低減手段の構成を説明する図である。It is a figure explaining the structure of the conventional flow velocity reduction means.
 本発明は、エンジンの排ガス浄化装置において、管径のサイズを大きくすることなく、尿素水等の加水分解時間を確保するための低流速区間を設けるという目的を、
 エンジンの排気ポートに接続された排気連絡管から排出された排ガスを集合し、排気通路に導く排気マニホールドと、前記排気通路に設けられた脱硝反応器とを備え、
 前記脱硝反応器の上流側であって、かつ、前記排気通路の内部に、長手方向両端が開放された蒸発管を設けると共に、前記蒸発管内を通過する排ガスに対して還元剤、還元剤前駆体の双方または何れか一方を含む水溶液を噴霧可能なノズルを設けた構成とすることによって実現した。
The object of the present invention is to provide a low flow rate section for securing hydrolysis time of urea water or the like without increasing the size of the pipe diameter in the exhaust gas purification device of the engine.
An exhaust manifold that collects exhaust gas discharged from an exhaust communication pipe connected to an exhaust port of the engine and guides the exhaust gas to an exhaust passage; and a denitration reactor provided in the exhaust passage;
An evaporation pipe that is upstream of the denitration reactor and that is open at both ends in the longitudinal direction is provided inside the exhaust passage, and a reducing agent and a reducing agent precursor for exhaust gas that passes through the evaporation pipe. This was realized by providing a nozzle capable of spraying an aqueous solution containing either or both of these.
 前記本発明の排ガス浄化装置において、
 前記蒸発管の出口部の径を入口部の径よりも小さくすると共に、前記蒸発管の出口部の開放端が存在する位置を含むように前記排気通路にベンチュリを形成した場合は、
 蒸発管の出口部の径に絞りをかけることによって蒸発管内を流れる排ガスの流速を遅くすることができると共に、排気通路に形成したベンチュリの作用により、蒸発管の出口部付近の圧力が入口部付近の圧力よりも低くなるので、蒸発管内で排ガスが滞留することなく、入口部から出口部へ向かう安定した排ガスの流れができて、好適である。
In the exhaust gas purification apparatus of the present invention,
When the venturi is formed in the exhaust passage so that the diameter of the outlet portion of the evaporation pipe is smaller than the diameter of the inlet portion and the position where the open end of the outlet portion of the evaporation pipe exists is present,
By restricting the diameter of the outlet part of the evaporation pipe, the flow rate of the exhaust gas flowing in the evaporation pipe can be slowed, and the pressure near the outlet part of the evaporation pipe is increased by the action of the venturi formed in the exhaust passage. Therefore, the exhaust gas does not stay in the evaporation pipe, and a stable flow of the exhaust gas from the inlet to the outlet can be achieved.
 以下、本発明を実施するための種々の形態を、図1~図8を用いて詳細に説明する。図1は、本発明の流速低減手段の構成を説明する図である。 Hereinafter, various modes for carrying out the present invention will be described in detail with reference to FIGS. FIG. 1 is a diagram for explaining the configuration of the flow velocity reducing means of the present invention.
 図1において、1は、様々な分野の装置に適用可能な本発明の流速低減手段であり、内部に気体が流れる外管2のうち、何らかの目的で流速を低減させたい区間にのみ内部に内管3を設け、流速低減区間(図1中、破線A~Bまでの区間)を外管2と内管3による二重管構造としている。 In FIG. 1, reference numeral 1 denotes a flow velocity reduction means of the present invention that can be applied to apparatuses in various fields. The outer tube 2 through which gas flows inside is only inside the section where the flow velocity is to be reduced for some purpose. The pipe 3 is provided, and the flow velocity reduction section (the section from the broken lines A to B in FIG. 1) has a double pipe structure with the outer pipe 2 and the inner pipe 3.
 内管3は、長手方向両端が開放した筒状の部材であり、図1に示すように、下流側の出口部3aはノズル状として入口部3bよりも管径に絞りをかけている。また、このノズル状の出口部3aの開放端3aaが存在する位置(図1中、破線Bで示した位置)を含むように、外管2にベンチュリ2aを形成し、管径に絞りをかけている。 The inner tube 3 is a cylindrical member whose both ends in the longitudinal direction are open, and as shown in FIG. 1, the outlet 3a on the downstream side is shaped like a nozzle and has a smaller diameter than the inlet 3b. Further, a venturi 2a is formed on the outer tube 2 so as to include a position where the open end 3aa of the nozzle-shaped outlet portion 3a exists (a position indicated by a broken line B in FIG. 1), and the tube diameter is reduced. ing.
 以上のような構成とすると、外管2を流れる気体は、破線Aの位置で、内管3の内側を通過するものと、内管3の外側を通過するものとに分かれ、破線Bの位置で合流することになる。 With the configuration as described above, the gas flowing in the outer tube 2 is divided into a gas passing through the inner tube 3 and a gas passing through the outer tube 3 at the position of the broken line A. Will join.
 ここで、破線Aの位置における気体の流速をV0とした場合、内管3の内側を通過する気体の速度Vと、内管3の外側を通過する気体の速度V’の関係は、V<V0<V’となるように外管2と内管3の各径のサイズを設定する。 Here, when the flow velocity of the gas at the position of the broken line A is V 0 , the relationship between the velocity V of the gas passing inside the inner tube 3 and the velocity V ′ of the gas passing outside the inner tube 3 is V The sizes of the diameters of the outer tube 2 and the inner tube 3 are set so that <V 0 <V ′.
 また、外管2において上流側の径をD、下流側のベンチュリ2aの径をDr、内管3において入口部3bの径をd、ノズル状の出口部3aの径をdrとした場合、内管3の内側を通過する気体の速度Vは、V=V0×{(dr×D)/(d×Dr)}2の式で求められるので、外管2と内管3の絞りの程度(Dr/D、dr/d)を適宜調節することにより、内管3内の気体の流速Vを所望の値に設定することができる。 In the outer pipe 2, the upstream diameter is D, the diameter of the downstream venturi 2a is Dr, the diameter of the inlet 3b in the inner pipe 3 is d, and the diameter of the nozzle-shaped outlet 3a is dr. Since the velocity V of the gas passing through the inside of the tube 3 is obtained by the equation V = V 0 × {(dr × D) / (d × Dr)} 2 , the degree of restriction of the outer tube 2 and the inner tube 3 By appropriately adjusting (Dr / D, dr / d), the flow velocity V of the gas in the inner tube 3 can be set to a desired value.
 また、図1の実施例では、外管2に設けたベンチュリ2aの効果により、内管3の出口部3a付近の気体の圧力が入口部3b付近の気体の圧力よりも低くなる。これにより、内管3内では、流体が滞留することなく、内管3の入口部3bから出口部3aへと向かう安定した流れを作り出すことができる。 Further, in the embodiment of FIG. 1, due to the effect of the venturi 2a provided in the outer tube 2, the gas pressure near the outlet 3a of the inner tube 3 becomes lower than the gas pressure near the inlet 3b. Thereby, in the inner pipe 3, the stable flow which goes to the exit part 3a from the inlet part 3b of the inner pipe 3 can be produced, without a fluid retaining.
 以上の構成の本発明の流速低減手段によれば、管径を太くせずとも安定した流速低減区間が得られる。本発明は、流体に関する配管装置であれば、特に分野は問わず様々な装置に適用できる。本発明の効果は、反応時間や変化時間、溶解時間、蒸発時間等を確保しつつ、装置を小型化できる点にある。 According to the flow velocity reduction means of the present invention having the above configuration, a stable flow velocity reduction section can be obtained without increasing the pipe diameter. The present invention can be applied to various devices regardless of the field as long as it is a piping device related to a fluid. The effect of the present invention is that the apparatus can be miniaturized while ensuring the reaction time, change time, dissolution time, evaporation time and the like.
 次に、図2は、本発明の排ガス浄化装置の第1実施例の構成を示した図である。図2において、11は、本発明を4気筒の舶用ディーゼルエンジンに適用した排ガス浄化装置であり、エンジン12の各シリンダヘッドに設けられた排気ポート12aに夫々接続された排気連絡管13から排出された排ガスを集合し、ターボチャージャー14のタービン14aの上流側の排気通路15に導く排気マニホールド16と、排気通路15に設けられた脱硝反応器17とを備えている。なお、14bは、給気通路21から給気された空気を圧縮するターボチャージャー14のコンプレッサを示している。また、22は、コンプレッサ14bによって圧縮された空気を、給気連絡管を介してエンジン12の各シリンダの給気ポートに分配する給気マニホールドを示している。 Next, FIG. 2 is a diagram showing the configuration of the first embodiment of the exhaust gas purifying apparatus of the present invention. In FIG. 2, reference numeral 11 denotes an exhaust gas purification device in which the present invention is applied to a four-cylinder marine diesel engine. The exhaust gas purification device 11 is discharged from an exhaust communication pipe 13 connected to an exhaust port 12 a provided in each cylinder head of the engine 12. The exhaust manifold 16 that collects the exhaust gas and leads it to the exhaust passage 15 upstream of the turbine 14 a of the turbocharger 14, and the denitration reactor 17 provided in the exhaust passage 15 are provided. Reference numeral 14b denotes a compressor of the turbocharger 14 that compresses the air supplied from the supply passage 21. Reference numeral 22 denotes an air supply manifold that distributes the air compressed by the compressor 14b to an air supply port of each cylinder of the engine 12 through an air supply communication pipe.
 脱硝反応器17よりも上流側の排気通路15の内部には、長手方向両端が排気通路15内に開放された蒸発管18を設けると共に、この蒸発管18の入口部18bの近傍に、蒸発管18内を通過する排ガスに対して、尿素水19aを噴霧可能なノズル19を設けている。 In the exhaust passage 15 upstream of the denitration reactor 17, an evaporation pipe 18 whose both ends in the longitudinal direction are opened in the exhaust passage 15 is provided, and in the vicinity of the inlet portion 18 b of the evaporation pipe 18, an evaporation pipe is provided. A nozzle 19 capable of spraying urea water 19a is provided for the exhaust gas passing through the interior 18.
 つまり、第1実施例は、排気通路15が図1の外管2に、蒸発管18が図1の内管3に相当するものである。なお、ノズル19を、蒸発管18の入口部18bの近傍に設けた理由は、噴霧された尿素水19aが高温の蒸発管18内を通過する時間を長く確保できるからである。 That is, in the first embodiment, the exhaust passage 15 corresponds to the outer tube 2 in FIG. 1, and the evaporation tube 18 corresponds to the inner tube 3 in FIG. The reason why the nozzle 19 is provided in the vicinity of the inlet 18b of the evaporation pipe 18 is that a long time for the sprayed urea water 19a to pass through the high-temperature evaporation pipe 18 can be secured.
 脱硝反応器17には、エンジン12から排出される排ガス中に含まれ、酸性雨や光化学スモッグなどの環境汚染の原因となるNOx を選択的に還元除去するSCR触媒が介装されている。SCR触媒は、例えばアルミナ、ジルコニア、バナジア/チタニア等の金属酸化物系触媒やゼオライト系触媒など所望の触媒を使用することができ、これらの触媒を組み合わせても良い。また、SCR触媒は、ハニカム構造を有する触媒担体に担持させても良いし、筒体に装入してケージングさせても良い。 The denitration reactor 17 is provided with an SCR catalyst that selectively reduces and removes NOx soot that is contained in the exhaust gas discharged from the engine 12 and causes environmental pollution such as acid rain and photochemical smog. As the SCR catalyst, a desired catalyst such as a metal oxide catalyst such as alumina, zirconia, vanadia / titania or a zeolite catalyst can be used, and these catalysts may be combined. Further, the SCR catalyst may be supported on a catalyst carrier having a honeycomb structure, or may be charged in a cylinder and caged.
 SCR触媒を利用して排ガス中のNOx を窒素と水に分解して無害化する場合、その上流側で排ガス中にアンモニア等の還元剤を供給する必要があるが、アンモニア水を船内に貯蔵しておくことは危険を伴う。よって、本実施例ではノズル19と接続されたタンクに還元剤前駆体として尿素を水溶液の状態で貯蔵しておき、運転時にノズル19から尿素水19aを蒸発管18内に噴射し、蒸発管18の熱を利用して尿素を加水分解し、アンモニアガスを発生させるようにしている。 When NOx soot in exhaust gas is decomposed into nitrogen and water using an SCR catalyst to make it harmless, it is necessary to supply a reducing agent such as ammonia into the exhaust gas upstream, but ammonia water is stored in the ship. It is dangerous to keep. Therefore, in this embodiment, urea is stored as a reducing agent precursor in a tank connected to the nozzle 19 in the form of an aqueous solution, and during operation, the urea water 19a is injected from the nozzle 19 into the evaporation pipe 18, and the evaporation pipe 18 Urea is hydrolyzed using ammonia heat to generate ammonia gas.
 図3は、第1実施例の蒸発管18(内管)と排気通路15(外管)の構成を示す拡大図である。第1実施例では、ノズル19から噴霧した尿素水の加水分解反応が進行する時間を十分に確保するために、図3中、破線A~Bまでの区間を二重管構造による流速低減区間としている。 FIG. 3 is an enlarged view showing the configuration of the evaporation pipe 18 (inner pipe) and the exhaust passage 15 (outer pipe) of the first embodiment. In the first embodiment, in order to sufficiently secure the time for the hydrolysis reaction of the urea water sprayed from the nozzle 19, the section from the broken line A to B in FIG. Yes.
 排気マニホールド16によって集合された高温の排ガスは、排気通路15内を流れて、破線Aの位置で、蒸発管18の内側を通過するものと、蒸発管18の外側を通過するものとに分かれ、破線Bの位置で合流する。蒸発管18の外側を通過する排ガスは、その時点では尿素水と混合されないが、蒸発管18の内側を通過する排ガス中には加水分解を終えたアンモニアガスが含まれているので、破線Bの位置で合流した時にアンモニアガスと速やかに混合される。よって、脱硝反応器17に導入される時点では、アンモニアガスは排ガス全体に行き渡った状態となっている。 The high-temperature exhaust gas collected by the exhaust manifold 16 flows into the exhaust passage 15 and is divided into one passing through the inside of the evaporation pipe 18 and one passing through the outside of the evaporation pipe 18 at the position of the broken line A. Merge at the position of the broken line B. The exhaust gas passing through the outside of the evaporation pipe 18 is not mixed with urea water at that time, but the exhaust gas passing through the inside of the evaporation pipe 18 contains ammonia gas that has been hydrolyzed. It quickly mixes with ammonia gas when it joins in place. Therefore, when introduced into the denitration reactor 17, the ammonia gas is in a state where it has spread throughout the exhaust gas.
 なお、第1実施例では、蒸発管18の外側を流れる排ガスを、旋回させずに真っ直ぐな流れに整流して、排ガスの流れを良好にするために、排気管18の入口部18bの外側の近傍にガイドベーン20を設けている。 In the first embodiment, the exhaust gas flowing outside the evaporation pipe 18 is rectified into a straight flow without swirling so that the flow of the exhaust gas is good, so that the outside of the inlet 18b of the exhaust pipe 18 is improved. A guide vane 20 is provided in the vicinity.
 図3に示すように、蒸発管18の下流側の出口部18aはノズル状とし、入口部18bよりも管径に絞りをかけている。また、このノズル状の出口部18aの開放端18aaが存在する位置(破線Bで示した位置)を少なくとも含むように、排気通路15にベンチュリ15aを形成し、排気通路15の管径にも絞りをかけている。 As shown in FIG. 3, the outlet portion 18a on the downstream side of the evaporation pipe 18 has a nozzle shape, and the pipe diameter is narrower than that of the inlet portion 18b. Further, a venturi 15a is formed in the exhaust passage 15 so as to include at least a position (a position indicated by a broken line B) where the open end 18aa of the nozzle-shaped outlet portion 18a exists, and the diameter of the exhaust passage 15 is also reduced. It is over.
 第1実施例では、排気通路15に設けたベンチュリ15aの効果により、蒸発管18のノズル状の出口部18a付近の排ガスの圧力は、入口部18b付近の排ガスの圧力よりも低くなる。これにより、蒸発管18内では、排ガスが滞留することなく、入口部18bから出口部18aへと向かう安定した排ガスの流れができる。 In the first embodiment, due to the effect of the venturi 15a provided in the exhaust passage 15, the pressure of the exhaust gas near the nozzle-shaped outlet 18a of the evaporation pipe 18 is lower than the pressure of the exhaust gas near the inlet 18b. Thereby, in the evaporation pipe 18, the flow of the stable exhaust gas which goes to the exit part 18a from the inlet part 18b can be performed, without waste gas staying.
 図1と同様、破線Aの位置における気体の流速をV0、排気通路15において上流側の径をD、ベンチュリ15aの径をDr、蒸発管18において上流側の入口部18bの径をd、ノズル状の出口部18aの径をdrとした場合、蒸発管18の内側を通過する排ガスの速度Vは、V=V0×{(dr×D)/(d×Dr)}2の式で求められる。 As in FIG. 1, the gas flow velocity at the position of the broken line A is V 0 , the upstream diameter in the exhaust passage 15 is D, the diameter of the venturi 15a is Dr, the diameter of the upstream inlet 18b in the evaporation pipe 18 is d, When the diameter of the nozzle-shaped outlet 18a is dr, the velocity V of the exhaust gas passing through the inside of the evaporation pipe 18 is expressed by the equation V = V 0 × {(dr × D) / (d × Dr)} 2 . Desired.
 ここで、排気通路15の絞りの程度(Dr/Dの値)や蒸発管18の絞りの程度(dr/dの値)が不足しているか、又は、これらの絞りを全く設けない場合は、蒸発管18の内側及び外側を通過する排ガスの速度が安定しない場合がある。逆に、Dr/Dやdr/dの値を絞りすぎると、排気系の圧力損失が立ちすぎて、エンジンの効率または性能の低下を招くおそれがある。よって、排気通路15と蒸発管18の絞りの程度は、これらの管のサイズや形状、目標とする排ガスの流速Vの値に応じて調整する。 Here, when the degree of restriction of the exhaust passage 15 (Dr / D value), the degree of restriction of the evaporation pipe 18 (value of dr / d) is insufficient, or when these restrictions are not provided at all, The speed of the exhaust gas passing through the inside and outside of the evaporation pipe 18 may not be stable. On the other hand, if the values of Dr / D and dr / d are too narrow, the pressure loss of the exhaust system will be too high and the engine efficiency or performance may be reduced. Therefore, the degree of restriction of the exhaust passage 15 and the evaporation pipe 18 is adjusted according to the size and shape of these pipes and the target value of the flow velocity V of the exhaust gas.
 図4は、本発明の排ガス浄化装置の第2実施例の構成を示した図である。この第2実施例の排ガス浄化装置11が前述の第1実施例と異なる点は、蒸発管18の入口部18bと出口部18aの径の長さは同じとし、蒸発管18(内管)に絞りを設けていない点と、蒸発管18の内部にノズル19から噴霧された尿素水19a(還元剤、還元剤前駆体の双方または何れか一方を含む水溶液)の加水分解を促進するための尿素加水分解触媒23を設けた点である。この尿素加水分解触媒23は、例えば、酸化チタン(TiO2)の担体に酸化タングステン(WO3)を添加した構造のものを使用することができる。 FIG. 4 is a diagram showing the configuration of the second embodiment of the exhaust gas purifying apparatus of the present invention. The difference between the exhaust gas purifying apparatus 11 of the second embodiment and the first embodiment is that the diameter of the inlet portion 18b and the outlet portion 18a of the evaporation pipe 18 are the same, and the evaporation pipe 18 (inner pipe) is connected. Urea for accelerating the hydrolysis of urea water 19a (an aqueous solution containing either or both of a reducing agent and a reducing agent precursor) sprayed from the nozzle 19 inside the evaporation pipe 18 without a restriction. This is a point where a hydrolysis catalyst 23 is provided. As the urea hydrolysis catalyst 23, for example, a catalyst having a structure in which tungsten oxide (WO 3) is added to a titanium oxide (TiO 2 ) support can be used.
 図5は、第2実施例の蒸発管18(内管)と排気通路15(外管)の構成を示す拡大図である。第2実施例では、ノズル19から噴霧した尿素水の加水分解反応が進行する時間を十分に確保するために、図5中、破線A~Bまでの区間を二重管構造による流速低減区間としているが、出口部18aに絞りは設けていない。一方で、図5に示すように、蒸発管18の内部で出口部18aの近傍に尿素加水分解触媒23を配置している。このように出口部18aに尿素加水分解触媒23を配置すると、この尿素加水分解触媒23を排ガスが通過するときの圧力損失により、蒸発管18内を流れる排ガス流量が減少する。これにより、第2実施例の構成においても、蒸発管18内を流れる排ガスの流速を遅くすることができる。加えて、第2実施例では、この尿素加水分解触媒23の作用により尿素の加水分解が促進されるので、流速低減区間内でアンモニアへの加水分解を完結することができる。 FIG. 5 is an enlarged view showing the configuration of the evaporation pipe 18 (inner pipe) and the exhaust passage 15 (outer pipe) of the second embodiment. In the second embodiment, in order to sufficiently secure the time for the hydrolysis reaction of the urea water sprayed from the nozzle 19, the section from the broken line A to B in FIG. However, the outlet 18a is not provided with a throttle. On the other hand, as shown in FIG. 5, a urea hydrolysis catalyst 23 is arranged in the vicinity of the outlet 18 a inside the evaporation pipe 18. When the urea hydrolysis catalyst 23 is arranged at the outlet 18a in this way, the flow rate of exhaust gas flowing through the evaporation pipe 18 is reduced due to pressure loss when the exhaust gas passes through the urea hydrolysis catalyst 23. Thereby, also in the structure of 2nd Example, the flow velocity of the waste gas which flows through the inside of the evaporation pipe 18 can be made slow. In addition, in the second embodiment, urea hydrolysis is promoted by the action of the urea hydrolysis catalyst 23, so that hydrolysis to ammonia can be completed within the flow velocity reduction section.
 本発明では、蒸発管18(内管)を通過する排ガスは流速が遅いので、その排ガスに含まれる尿素の速度も遅くなる。よって、尿素が尿素加水分解触媒23を通過するまでの時間が長くなり、尿素と尿素加水分解触媒23が接触する頻度が高くなるので、少ない触媒量でも所要の加水分解率が得られる。また、蒸発管18内を流れる排ガス流量は少ないので、そこに所要の量の尿素を投入することにより、排ガス中の尿素の濃度が高くなる。これにより、尿素と尿素加水分解触媒23が接触する頻度が高くなるので、少ない触媒量でも所要の加水分解率が得られる。 In the present invention, since the exhaust gas passing through the evaporation pipe 18 (inner pipe) has a low flow rate, the speed of urea contained in the exhaust gas is also reduced. Therefore, the time until urea passes through the urea hydrolysis catalyst 23 becomes longer, and the frequency of contact between urea and the urea hydrolysis catalyst 23 increases. Therefore, the required hydrolysis rate can be obtained even with a small amount of catalyst. In addition, since the flow rate of the exhaust gas flowing through the evaporation pipe 18 is small, the concentration of urea in the exhaust gas is increased by introducing a required amount of urea therein. Thereby, since the frequency with which urea and the urea hydrolysis catalyst 23 come into contact increases, a required hydrolysis rate can be obtained even with a small amount of catalyst.
 また、図9に示すような、従来の蒸発管107では、尿素水の噴霧状態が良くないと、尿素水の一部が蒸発管107の内面に付着し、その付着部分が冷温になって尿素に十分な熱が加わらないため、アンモニアではなく、シアヌル酸やビュレット、メラミン、その他の尿素由来の化合物が生成され、それらの堆積物が蒸発管107の内面に付着し、この堆積物が排ガスの流れを妨げるという問題があった。これに対し、本発明では、上記のとおり二重管構造を採用することにより、蒸発管18の内面に尿素水が付着した場合に、蒸発管18内を流れる排ガスの熱のみならず、蒸発管18の外側を流れる排ガスからも熱が加わるので、尿素水が付着した部分が冷温になり難く、尿素由来の上記堆積物が生成され難いという利点がある。 Further, in the conventional evaporation pipe 107 as shown in FIG. 9, if the spray state of the urea water is not good, a part of the urea water adheres to the inner surface of the evaporation pipe 107, and the attached part becomes cold and the urea becomes cold. As a result, cyanuric acid, burette, melamine, and other urea-derived compounds are produced instead of ammonia, and these deposits adhere to the inner surface of the evaporation tube 107, and these deposits form exhaust gas. There was a problem of obstructing the flow. On the other hand, in the present invention, by adopting the double pipe structure as described above, when urea water adheres to the inner surface of the evaporation pipe 18, not only the heat of the exhaust gas flowing in the evaporation pipe 18 but also the evaporation pipe Since heat is also applied from the exhaust gas flowing outside 18, there is an advantage that the portion to which the urea water adheres is unlikely to cool, and the urea-derived deposit is difficult to be generated.
 図6は、本発明の排ガス浄化装置の第3実施例の構成を示した図である。51は、本発明を4気筒の舶用ディーゼルエンジンに適用した排ガス浄化装置であり、エンジン52の各シリンダヘッドに設けられた排気ポート52aに夫々接続された排気連絡管53から排出された排ガスを集合し、ターボチャージャー54のタービン54aの上流側の排気通路55に導く排気マニホールド56の内部に、長手方向両端が排気マニホールド56内に開放された蒸発管58と脱硝反応器57が連続配置されている。そして、蒸発管58内を通過する排ガスに対して還元剤、還元剤前駆体の双方または何れか一方を含む水溶液59aを噴霧可能なノズル59が設けられている。 FIG. 6 is a view showing a configuration of a third embodiment of the exhaust gas purifying apparatus of the present invention. Reference numeral 51 denotes an exhaust gas purifying apparatus in which the present invention is applied to a four-cylinder marine diesel engine. An evaporation pipe 58 and a denitration reactor 57 having both ends in the longitudinal direction opened into the exhaust manifold 56 are continuously arranged inside the exhaust manifold 56 leading to the exhaust passage 55 upstream of the turbine 54 a of the turbocharger 54. . A nozzle 59 is provided that can spray an aqueous solution 59a containing either or both of the reducing agent and the reducing agent precursor to the exhaust gas passing through the evaporation pipe 58.
 蒸発管58の出口部58aの形状はノズル状であり、入口部58bの径よりも小さくしている。また、蒸発管58の出口部58aの開放端58aaが存在する位置を含むように排気マニホールド56にベンチュリ56aを形成している。なお、54bは、給気通路61から給気された空気を圧縮するターボチャージャー54のコンプレッサを示している。また、62は、コンプレッサ54bによって圧縮された空気を、給気連絡管を介してエンジン52の各シリンダの給気ポートに分配する給気マニホールドを示している。 The shape of the outlet portion 58a of the evaporation pipe 58 is a nozzle shape, which is smaller than the diameter of the inlet portion 58b. Further, a venturi 56a is formed in the exhaust manifold 56 so as to include a position where the open end 58aa of the outlet portion 58a of the evaporation pipe 58 exists. Reference numeral 54 b denotes a compressor of the turbocharger 54 that compresses the air supplied from the supply passage 61. Reference numeral 62 denotes an air supply manifold that distributes the air compressed by the compressor 54b to the air supply ports of the cylinders of the engine 52 via the air supply communication pipe.
 つまり、第3実施例は、排気マニホールド56が図1の外管2に、蒸発管58が図1の内管3に相当するものであり、蒸発管58を排気マニホールド56の内部に組み込んだ点が、第1実施例と相違している。 That is, in the third embodiment, the exhaust manifold 56 corresponds to the outer pipe 2 in FIG. 1 and the evaporation pipe 58 corresponds to the inner pipe 3 in FIG. 1, and the evaporation pipe 58 is incorporated in the exhaust manifold 56. However, this is different from the first embodiment.
 よって、第3実施例では、排気マニホールド56の内部に、蒸発管58及び脱硝反応器57の全部が組み込まれているので、管径のサイズが大きい蒸発管が排気マニホールドと併設されていた従来の装置と比較すると、装置サイズが格段にコンパクトになる。また、一般に、ターボチャージャーを備えたエンジンにおいては、急な加速を行うときにエンジン出力の増大要求に対し給気の遅れが生じるなど制御遅れが生じる場合があるが、第3実施例の構成では、タービン54aに至る排気の経路を短くすることができるので、排気制御も容易となる。 Therefore, in the third embodiment, since all of the evaporation pipe 58 and the denitration reactor 57 are incorporated in the exhaust manifold 56, an evaporation pipe having a large pipe diameter is provided together with the exhaust manifold. Compared with the device, the device size is much more compact. Further, in general, in an engine equipped with a turbocharger, there may be a control delay such as a delay in supply air in response to a request for an increase in engine output when sudden acceleration is performed. In the configuration of the third embodiment, Since the exhaust path to the turbine 54a can be shortened, exhaust control is also facilitated.
 図7は、本発明の排ガス浄化装置の第4実施例の構成を示した図である。この第4実施例の排ガス浄化装置51が前述の第3実施例と異なる点は、蒸発管58の入口部58bと出口部58aの径の長さは同じとし、蒸発管58(内管)に絞りを設けていない点と、蒸発管58の内部にノズル59から噴霧された尿素水59a(還元剤、還元剤前駆体の双方または何れか一方を含む水溶液)の加水分解を促進するための尿素加水分解触媒63を設けた点である。この尿素加水分解触媒63は、前述の第2実施例と同様、例えば、酸化チタン(TiO2)の担体に酸化タングステン(WO3)を添加した構造のものを使用することができる。 FIG. 7 is a view showing the configuration of a fourth embodiment of the exhaust gas purifying apparatus of the present invention. The difference between the exhaust gas purifying apparatus 51 of the fourth embodiment and the third embodiment is that the diameters of the inlet 58b and outlet 58a of the evaporation pipe 58 are the same, and the evaporation pipe 58 (inner pipe) Urea for accelerating hydrolysis of urea water 59a (an aqueous solution containing either or both of a reducing agent and a reducing agent precursor) sprayed from a nozzle 59 inside the evaporation pipe 58 without a restriction. This is the point that a hydrolysis catalyst 63 is provided. The urea hydrolysis catalyst 63, similarly to the second embodiment described above, for example, can be used as the added structure carrier tungsten oxide (WO3) of titanium oxide (TiO 2).
 第4実施例では、蒸発管58の内部で出口部58aの近傍に尿素加水分解触媒63を配置し、この尿素加水分解触媒63の作用により尿素の加水分解が促進されるので、流速低減区間内でアンモニアへの加水分解を完結することができる。 In the fourth embodiment, the urea hydrolysis catalyst 63 is disposed in the vicinity of the outlet 58a inside the evaporation pipe 58, and the urea hydrolysis is promoted by the action of the urea hydrolysis catalyst 63. Can complete the hydrolysis to ammonia.
 本発明は、前記の実施例に限るものではなく、各請求項に記載の技術的思想の範囲内において、適宜実施の形態を変更しても良いことは言うまでもない。 The present invention is not limited to the above-described embodiments, and it is needless to say that the embodiments may be appropriately changed within the scope of the technical idea described in each claim.
 例えば、前記の実施例では、蒸発管18内の排ガスにノズル19から還元剤前駆体として尿素水19aを噴霧する構成を開示したが、還元剤前駆体の成分はこれに限らない。例えば、高濃度の尿素と低濃度のアンモニアの混合水溶液を使用しても良い。 For example, in the above-described embodiment, the configuration in which the urea water 19a is sprayed from the nozzle 19 to the exhaust gas in the evaporation pipe 18 as the reducing agent precursor is disclosed, but the components of the reducing agent precursor are not limited thereto. For example, a mixed aqueous solution of high concentration urea and low concentration ammonia may be used.
 また、前記の実施例では、蒸発管18の入口部18bの近傍にノズル19を設ける例を開示したが、ノズル19を設ける位置はこれに限らず、例えば蒸発管18の中央に設けても良い。 Moreover, although the example which provides the nozzle 19 in the vicinity of the inlet part 18b of the evaporation pipe | tube 18 was disclosed in the said Example, the position which provides the nozzle 19 is not restricted to this, For example, you may provide in the center of the evaporation pipe | tube 18. .
 また、第2実施例では、図5に示すように、蒸発管18の内部に尿素加水分解触媒23を配置する場合において、蒸発管18の出口部18aに絞りは設けない例を開示したが、第2実施例の構成はこれに限らない。例えば、図8に示す変形例ように、蒸発管18の内部に尿素加水分解触媒23を配置する場合においても、蒸発管18の出口部18aに絞りを設けても良い。 Further, in the second embodiment, as shown in FIG. 5, in the case where the urea hydrolysis catalyst 23 is arranged inside the evaporation pipe 18, an example in which no restriction is provided at the outlet portion 18a of the evaporation pipe 18 is disclosed. The configuration of the second embodiment is not limited to this. For example, as in the modification shown in FIG. 8, even when the urea hydrolysis catalyst 23 is disposed inside the evaporation pipe 18, a throttle may be provided at the outlet portion 18 a of the evaporation pipe 18.
 蒸発管18の出口部18aに絞りを設けない図5の構成でも、尿素加水分解触媒23を配置したことによる圧力損失により、排ガスの流速をある程度低減することは可能であるが、排ガスの流速を所望の速度に細かく調整することは困難である。これに対し、図8の構成のように、蒸発管18の出口部18aに絞りを設ける場合は、絞りの程度を最適に設計することにより排ガスの流速の調整が容易に行える。 Even in the configuration of FIG. 5 in which the outlet 18a of the evaporation pipe 18 is not provided with a throttle, the flow rate of the exhaust gas can be reduced to some extent due to the pressure loss due to the urea hydrolysis catalyst 23 being arranged. Fine adjustment to the desired speed is difficult. On the other hand, when the throttle is provided at the outlet 18a of the evaporation pipe 18 as in the configuration of FIG. 8, the flow rate of the exhaust gas can be easily adjusted by designing the degree of the throttle optimally.
 このように、尿素加水分解触媒23と出口部18aの絞りを併用した場合は、排ガスの流速を所望の速度に低減し易く、かつ、触媒の作用により尿素の加水分解を促進することができる。 Thus, when the urea hydrolysis catalyst 23 and the throttle of the outlet portion 18a are used in combination, the flow rate of the exhaust gas can be easily reduced to a desired speed, and the hydrolysis of urea can be promoted by the action of the catalyst.
 また、第3実施例では、蒸発管58の内部にノズル59のみを設ける例を開示したが、ノズル59の下流側であって、かつ、蒸発管58の内部に、蒸発管58内の排ガスの流れを整えるために整流器を設けても良い。また、尿素水59aが加水分解されて生じたアンモニアガスと排ガスが蒸発管58内で十分に混合されるように、蒸発管58の内部にスタティックミキサーを設けても良い。 Further, in the third embodiment, an example in which only the nozzle 59 is provided inside the evaporation pipe 58 is disclosed, but the exhaust gas in the evaporation pipe 58 is disposed downstream of the nozzle 59 and inside the evaporation pipe 58. A rectifier may be provided to regulate the flow. Further, a static mixer may be provided inside the evaporation pipe 58 so that ammonia gas and exhaust gas generated by hydrolysis of the urea water 59a are sufficiently mixed in the evaporation pipe 58.
 11  排ガス浄化装置
 12  エンジン
 12a 排気ポート
 13  排気連絡管
 14  ターボチャージャー
 14a タービン
 15  排気通路
 15a ベンチュリ
 16  排気マニホールド
 17  脱硝反応器
 18  蒸発管
 18a 出口部
 18b 入口部
 19  ノズル
 19a 尿素水
DESCRIPTION OF SYMBOLS 11 Exhaust gas purification device 12 Engine 12a Exhaust port 13 Exhaust communication pipe 14 Turbocharger 14a Turbine 15 Exhaust passage 15a Venturi 16 Exhaust manifold 17 Denitration reactor 18 Evaporating pipe 18a Outlet part 18b Inlet part 19 Nozzle 19a Urea water

Claims (6)

  1.  エンジンの排気ポートに接続された排気連絡管から排出された排ガスを集合し、排気通路に導く排気マニホールドと、前記排気通路に設けられた脱硝反応器とを備え、
     前記脱硝反応器の上流側であって、かつ、前記排気通路の内部に、長手方向両端が開放された蒸発管を設けると共に、前記蒸発管内を通過する排ガスに対して還元剤、還元剤前駆体の双方または何れか一方を含む水溶液を噴霧可能なノズルを設けたことを特徴とする排ガス浄化装置。
    An exhaust manifold that collects exhaust gas discharged from an exhaust communication pipe connected to an exhaust port of the engine and guides the exhaust gas to an exhaust passage; and a denitration reactor provided in the exhaust passage;
    An evaporation pipe that is upstream of the denitration reactor and that is open at both ends in the longitudinal direction is provided inside the exhaust passage, and a reducing agent and a reducing agent precursor for exhaust gas that passes through the evaporation pipe. An exhaust gas purification apparatus provided with a nozzle capable of spraying an aqueous solution containing either or both of the above.
  2.  前記蒸発管の出口部の径を入口部の径よりも小さくすると共に、前記蒸発管の出口部の開放端が存在する位置を含むように前記排気通路にベンチュリを形成したことを特徴とする請求項1に記載の排ガス浄化装置。 A venturi is formed in the exhaust passage so that a diameter of an outlet portion of the evaporation pipe is made smaller than a diameter of an inlet portion and a position where an open end of the outlet portion of the evaporation pipe exists is included. Item 2. An exhaust gas purifying apparatus according to Item 1.
  3.  前記蒸発管の内部に、前記ノズルから噴霧された還元剤、還元剤前駆体の双方または何れか一方を含む水溶液の加水分解を促進するための尿素加水分解触媒を設けたことを特徴とする請求項1に記載の排ガス浄化装置。 The urea hydrolysis catalyst for accelerating the hydrolysis of the aqueous solution containing either or both of the reducing agent and the reducing agent precursor sprayed from the nozzle is provided inside the evaporation pipe. Item 2. An exhaust gas purifying apparatus according to Item 1.
  4.  エンジンの排気ポートに接続された排気連絡管から排出された排ガスを集合し、排気通路に導く排気マニホールドの内部に、長手方向両端が開放された蒸発管と脱硝反応器を連続配置すると共に、前記蒸発管内を通過する排ガスに対して還元剤、還元剤前駆体の双方または何れか一方を含む水溶液を噴霧可能なノズルを設けたことを特徴とする排ガス浄化装置。 An exhaust pipe that collects exhaust gas discharged from the exhaust communication pipe connected to the exhaust port of the engine and leads to the exhaust passage is continuously arranged with an evaporation pipe and a denitration reactor that are open at both ends in the longitudinal direction. An exhaust gas purification apparatus comprising a nozzle capable of spraying an aqueous solution containing either or both of a reducing agent and a reducing agent precursor to exhaust gas passing through an evaporation pipe.
  5.  前記蒸発管の出口部の径を入口部の径よりも小さくすると共に、前記蒸発管の出口部の開放端が存在する位置を含むように前記排気マニホールドにベンチュリを形成したことを特徴とする請求項4に記載の排ガス浄化装置。 The vent manifold is formed in the exhaust manifold so as to include a position where the diameter of the outlet portion of the evaporation pipe is smaller than the diameter of the inlet portion and the open end of the outlet portion of the evaporation pipe exists. Item 5. The exhaust gas purifying apparatus according to Item 4.
  6.  前記蒸発管の内部に、前記ノズルから噴霧された還元剤、還元剤前駆体の双方または何れか一方を含む水溶液の加水分解を促進するための尿素加水分解触媒を設けたことを特徴とする請求項4に記載の排ガス浄化装置。 The urea hydrolysis catalyst for accelerating the hydrolysis of the aqueous solution containing either or both of the reducing agent and the reducing agent precursor sprayed from the nozzle is provided inside the evaporation pipe. Item 5. The exhaust gas purifying apparatus according to Item 4.
PCT/JP2012/082202 2012-03-15 2012-12-12 Exhaust gas purification device WO2013136614A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014504636A JP5801472B2 (en) 2012-03-15 2012-12-12 Exhaust gas purification device
KR1020147027982A KR101619098B1 (en) 2012-03-15 2012-12-12 Exhaust gas purification device
CN201280070864.XA CN104136727B (en) 2012-03-15 2012-12-12 Waste gas purification apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-058577 2012-03-15
JP2012058577 2012-03-15

Publications (1)

Publication Number Publication Date
WO2013136614A1 true WO2013136614A1 (en) 2013-09-19

Family

ID=49160567

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/082202 WO2013136614A1 (en) 2012-03-15 2012-12-12 Exhaust gas purification device

Country Status (5)

Country Link
JP (1) JP5801472B2 (en)
KR (1) KR101619098B1 (en)
CN (1) CN104136727B (en)
TW (1) TWI576507B (en)
WO (1) WO2013136614A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015116979A3 (en) * 2014-01-31 2015-10-22 Donaldson Company, Inc. Dosing and mixing arrangement for use in exhaust aftertreatment
JP2016200117A (en) * 2015-04-14 2016-12-01 イビデン株式会社 Exhaust system component and exhaust emission control device
WO2017201558A1 (en) * 2016-05-23 2017-11-30 Avl List Gmbh Exhaust gas aftertreatment device for an internal combustion engine
GB2595907A (en) * 2020-06-11 2021-12-15 Csk Inc Dry gas scrubber

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017024302A1 (en) * 2015-08-06 2017-02-09 Clean Air-Engineering - Maritime, Inc. Emission control system for auxiliary diesel engines
US10287940B2 (en) 2015-08-06 2019-05-14 Clean Air-Engineering—Maritime, Inc. Movable emission control system for auxiliary diesel engines
US10422260B2 (en) 2015-08-06 2019-09-24 Clean Air-Engineering-Maritime, Inc. Movable emission control system for auxiliary diesel engines
KR102247340B1 (en) * 2016-09-08 2021-04-30 한국조선해양 주식회사 Reducing agent supply device for SCR system
CN108757155B (en) * 2018-06-27 2020-01-14 福州大学 Venturi tube-based turbocharging system and working method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000120426A (en) * 1998-10-12 2000-04-25 Man B & W Diesel As INTERNAL COMBUSTION ENGINE HAVING REACTOR FOR REDUCING NOx CONTENT IN EXHAUST GAS AND NOx REDUCING METHOD
JP2006076877A (en) * 2004-09-01 2006-03-23 Man Nutzfahrzeuge Ag Apparatus and method for generation of ammonia from solid urea pellet
JP2008509328A (en) * 2004-08-06 2008-03-27 スカニア シーブイ アクチボラグ(パブル) Device for supplying a medium into an exhaust gas conduit of an internal combustion engine

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060196172A1 (en) * 2005-03-02 2006-09-07 Johnson Jeffery S Injection device for the treatment of exhaust fumes from motor vehicles
US8166752B2 (en) 2008-11-26 2012-05-01 GM Global Technology Operations LLC Apparatus and method for cooling an exhaust gas

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000120426A (en) * 1998-10-12 2000-04-25 Man B & W Diesel As INTERNAL COMBUSTION ENGINE HAVING REACTOR FOR REDUCING NOx CONTENT IN EXHAUST GAS AND NOx REDUCING METHOD
JP2008509328A (en) * 2004-08-06 2008-03-27 スカニア シーブイ アクチボラグ(パブル) Device for supplying a medium into an exhaust gas conduit of an internal combustion engine
JP2006076877A (en) * 2004-09-01 2006-03-23 Man Nutzfahrzeuge Ag Apparatus and method for generation of ammonia from solid urea pellet

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015116979A3 (en) * 2014-01-31 2015-10-22 Donaldson Company, Inc. Dosing and mixing arrangement for use in exhaust aftertreatment
US9528415B2 (en) 2014-01-31 2016-12-27 Donaldson Company, Inc. Dosing and mixing arrangement for use in exhaust aftertreatment
US10030562B2 (en) 2014-01-31 2018-07-24 Donaldson Company, Inc. Dosing and mixing arrangement for use in exhaust aftertreatment
US10844764B2 (en) 2014-01-31 2020-11-24 Donaldson Company, Inc. Dosing and mixing arrangement for use in exhaust aftertreatment
JP2016200117A (en) * 2015-04-14 2016-12-01 イビデン株式会社 Exhaust system component and exhaust emission control device
WO2017201558A1 (en) * 2016-05-23 2017-11-30 Avl List Gmbh Exhaust gas aftertreatment device for an internal combustion engine
GB2595907A (en) * 2020-06-11 2021-12-15 Csk Inc Dry gas scrubber

Also Published As

Publication number Publication date
CN104136727B (en) 2016-08-24
TW201339409A (en) 2013-10-01
TWI576507B (en) 2017-04-01
KR101619098B1 (en) 2016-05-10
KR20140129366A (en) 2014-11-06
JPWO2013136614A1 (en) 2015-08-03
CN104136727A (en) 2014-11-05
JP5801472B2 (en) 2015-10-28

Similar Documents

Publication Publication Date Title
JP5801472B2 (en) Exhaust gas purification device
US10188994B2 (en) Method, apparatus and system for aftertreatment of exhaust gas
US8627653B2 (en) Exhaust purification apparatus
US20120124983A1 (en) Exhaust system having reductant nozzle flow diverter
JP4605205B2 (en) Exhaust purification device
JP2008045559A (en) Method of adding at least one reactant into exhaust gas flow from internal combustion engine and treatment device for exhaust gas flow from internal combustion engine
RU2009105733A (en) COMPACT WASTE GAS PROCESSING SYSTEM
US10473018B2 (en) Exhaust line for a vehicle
KR100999614B1 (en) Apparatus for reducing nitrogen oxide in exhaust pipe
CN104975920B (en) A kind of SCR system and its box catalytic muffler
JP2009091976A (en) Exhaust emission control device for internal combustion engine
EP2754865B1 (en) Exhaust gas purifying apparatus
US20140260198A1 (en) Exhaust aftertreatment system
WO2021199858A1 (en) Exhaust gas denitration device
WO2019172229A1 (en) Exhaust gas purification device
JP7478228B2 (en) Mixing device and method for exhaust aftertreatment
JP2019183665A (en) Exhaust emission control device
US10603641B2 (en) Diesel exhaust fluid mixing body using variable cross-section switchback arrangement
EP3992442B1 (en) Exhaust gas purification device, flow path forming member, and tubular member
JP7252182B2 (en) Urea vaporizer
WO2019194169A1 (en) Exhaust pipe
JP2023167157A (en) Exhaust emission control device
JP2022068826A (en) Exhaust emission control device
KR20090108867A (en) Harmful gas reducing system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12871457

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014504636

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147027982

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 12871457

Country of ref document: EP

Kind code of ref document: A1