WO2013136586A1 - Electronic thermometer - Google Patents

Electronic thermometer Download PDF

Info

Publication number
WO2013136586A1
WO2013136586A1 PCT/JP2012/079296 JP2012079296W WO2013136586A1 WO 2013136586 A1 WO2013136586 A1 WO 2013136586A1 JP 2012079296 W JP2012079296 W JP 2012079296W WO 2013136586 A1 WO2013136586 A1 WO 2013136586A1
Authority
WO
WIPO (PCT)
Prior art keywords
oscillation circuit
measurement
time
electronic thermometer
temperature
Prior art date
Application number
PCT/JP2012/079296
Other languages
French (fr)
Japanese (ja)
Inventor
大資 石原
Original Assignee
オムロンヘルスケア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロンヘルスケア株式会社 filed Critical オムロンヘルスケア株式会社
Publication of WO2013136586A1 publication Critical patent/WO2013136586A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/32Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using change of resonant frequency of a crystal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K13/00Thermometers specially adapted for specific purposes
    • G01K13/20Clinical contact thermometers for use with humans or animals

Definitions

  • the present invention relates to an electronic thermometer.
  • thermometer that uses a CR oscillation circuit including a resistance temperature detector such as a thermistor and measures temperature based on the oscillation frequency is known (see, for example, Patent Document 1).
  • thermometer described in Patent Document 1 the CR oscillation circuit is intermittently driven at a constant time interval, and the temperature is sampled at a constant time interval. Thereby, power consumption is reduced.
  • thermometer described in Patent Document 2 the sampling interval is changed according to the change in the measured temperature, and when the temperature change is large, the sampling interval is shortened, while when the temperature change is small The sampling interval is extended. Thereby, reduction of power consumption is achieved.
  • Electronic thermometers are typically supplied with operating power by small batteries such as button batteries and coin batteries. Therefore, electronic thermometers are required to reduce power consumption.
  • the present invention has been made in view of the above-described circumstances, and an object thereof is to provide an electronic thermometer with reduced power consumption without degrading measurement accuracy.
  • a temperature measurement unit having an oscillation circuit including a resistance temperature detector, and a control unit for driving the oscillation circuit intermittently at a constant time interval and calculating a temperature value based on the frequency of a signal output from the oscillation circuit
  • the control unit is configured to be able to change the driving time in intermittent driving of the oscillation circuit, and the driving time is shorter than the time when the measurement is completed in the period from the start to the completion of the measurement.
  • Electronic thermometer with a period.
  • the power consumption of the electronic thermometer can be reduced without reducing the measurement accuracy.
  • thermometer for demonstrating embodiment of this invention. It is a perspective view which decomposes
  • 1 and 2 show an example of an electronic thermometer for explaining an embodiment of the present invention.
  • the electronic thermometer 1 includes a case 2, a functional unit 3 and a battery 4 stored in the case 2.
  • the case 2 includes a main body 10 formed in a tapered hollow cylindrical shape, a cap 11 that closes an opening on the distal end side on the narrow side of the main body 10, and a cap 12 that closes an opening on the proximal end side of the main body 10. It consists of and.
  • the functional unit 3 includes a resistance temperature detector 20 that detects the user's body temperature, an operation unit 33 that accepts operations such as power on / off by the user, a display unit 34 that displays the measured temperature, and the like. And a subassembly 21 on which is mounted.
  • the battery 4 is loaded into the base end of the main body 10 of the case 2.
  • a cap 12 that closes the base-end opening of the main body 10 holds the battery 4 loaded in the base end of the main body 10.
  • the electronic thermometer 1 is used with the front end portion of the main body portion 10 in the case 2 sandwiched between the user's armpit or the tongue, and the cap 11 that closes the front end opening of the main body portion 10 is in close contact with the user.
  • the cap 11 is formed in a bottomed cylindrical shape using a metal material having excellent thermal conductivity such as a stainless alloy.
  • the main body 10 and the cap 12 are formed by injection molding using, for example, a thermoplastic hard resin material.
  • a thermoplastic hard resin material examples include ABS (acrylonitrile-butadiene-styrene copolymer) resin.
  • the resistance temperature detector 20 is disposed in the cap 11 and connected to the subassembly 21 via the lead wire 22. The user's body temperature is transmitted to the resistance temperature detector 20 through the cap 11 as thermal energy.
  • a thermistor is used for the resistance temperature detector 20.
  • the resistance temperature detector 20 may be a platinum resistance temperature detector.
  • FIG. 3 shows the configuration of the functional unit 3.
  • the function unit 3 is roughly divided into a control unit 30, a storage unit 31, a temperature measurement unit 32, a notification unit 35, a power supply unit 36, and the operation unit 33 and the display unit 34 described above.
  • the control unit 30 is configured by, for example, a CPU (Central Processing Unit), and controls the operation of each unit of the functional unit 3.
  • a CPU Central Processing Unit
  • the storage unit 31 includes, for example, a ROM (Read Only Memory) and a RAM (Random Access Memory).
  • the storage unit 31 stores a program for causing the control unit 30 to execute a body temperature measurement process.
  • the temperature measuring unit 32 includes the resistance thermometer 20 and measures the temperature of the user.
  • the operation unit 33 is configured by, for example, a push button type switch, receives an operation such as power on / off by a user, and inputs a control signal to the control unit 30 and the power supply unit 36 according to the operation.
  • the display unit 34 is configured by, for example, an LCD (Liquid Crystal Display), and displays a measured temperature value and the like.
  • LCD Liquid Crystal Display
  • the notification unit 35 is configured by a buzzer, for example, and notifies the user that the user's operation has been accepted or measurement has been completed.
  • the power supply unit 36 includes the battery 4 and supplies operating power to each unit of the functional unit 3 such as the control unit 30 and the temperature measurement unit 32.
  • the control unit 30, the storage unit 31, the temperature measurement unit 32, the operation unit 33, the display unit 34, the notification unit 35, and the power supply unit 36 are the subassembly 21 (FIG. 2) except for the battery 4 and the resistance temperature detector 20. Is implemented).
  • FIG. 4 shows the configuration of the temperature measurement unit 32.
  • the temperature measuring unit 32 measures the body temperature of the user using a CR oscillation circuit having the resistance temperature detector 20 as a load resistance.
  • the control unit 30 calculates the temperature value based on the frequency (oscillation frequency) of the signal output from the CR oscillation circuit.
  • the oscillation frequency f of the CR oscillation circuit is expressed by the following equation (1).
  • C represents the capacitance value of the capacitor
  • R represents the resistance value of the resistance temperature detector 20
  • k represents a proportionality constant
  • a thermistor is used for the resistance temperature detector 20, and the relationship between the resistance value R and the temperature T [k] is expressed by the following equation (2).
  • Equation (2) R 0 represents the resistance value of the thermistor when the temperature is T 0 [k], and B represents the thermistor constant.
  • the temperature T [k] is expressed by the following formula (3).
  • Equation (3) f 0 represents the oscillation frequency when the temperature is T 0 [k].
  • the temperature of the resistance temperature detector 20 can be calculated based on the oscillation frequency of the CR oscillation circuit.
  • the temperature measuring unit 32 includes a resistance temperature detector 20, a reference resistor 42, a capacitor 43, an oscillation control circuit 44, switch elements 45 and 46, and a counter 47.
  • the switch element 45 is interposed between the resistance temperature detector 20 and the oscillation control circuit 44, and the switch element 46 is interposed between the reference resistor 42 and the oscillation control circuit 44.
  • the switch element 45 is opened and closed by the control unit 30.
  • the The control unit 30 opens and closes the switch elements 45 and 46 so that any one of the resistance temperature detector 20 and the reference resistor 42 is selectively connected to the oscillation control circuit 44.
  • a CR oscillation circuit (hereinafter referred to as a reference oscillation circuit) is configured.
  • Each of the sensor oscillating circuit and the reference oscillating circuit is alternately and intermittently driven at a constant time interval by a control signal input from the control unit 30 to the oscillation control circuit 44.
  • the signals output from these oscillation circuits are input to the counter 47, and the number of peaks in the change in the potential level is counted. The number of peaks counted by the counter 47 is taken into the control unit 30.
  • the control unit 30 drives the reference oscillation circuit to perform reference oscillation.
  • the control unit 30 continues driving the reference oscillation circuit until the number of peaks counted by the counter 47 reaches the specified number of times, and counts the driving time at that time.
  • the control unit 30 stops driving the reference oscillation circuit when the number of peaks of the signal output from the reference oscillation circuit reaches a specified number. Next, the control unit 30 drives the sensor oscillation circuit at a predetermined time interval to perform sensor oscillation. In this sensor oscillation, the control unit 30 drives the sensor oscillation circuit for the same time as the drive time of the reference oscillation circuit in the immediately preceding reference oscillation.
  • the control unit 30 acquires the peak number of the signal output from the sensor oscillation circuit during the period of driving the sensor oscillation circuit from the counter 47, and calculates the sensor from the acquired peak number and the driving time of the sensor oscillation circuit. Calculate the oscillation frequency of the oscillation circuit.
  • the sensor oscillation circuit and the reference oscillation circuit are substantially different only in the load resistance constituting the CR oscillation circuit. Therefore, by setting the driving time of the sensor oscillation circuit using the reference oscillation circuit as described above, error factors such as the temperature characteristics of the capacitor 43 and the oscillation control circuit 44 can be eliminated.
  • the oscillation frequency of the sensor oscillation circuit can be calculated with high accuracy.
  • control unit 30 calculates the temperature value of the resistance temperature detector 20 based on the calculated oscillation frequency of the sensor oscillation circuit, and updates the display of the display unit 34 with the calculated temperature value.
  • the calculation of the temperature based on the oscillation frequency of the sensor oscillation circuit can be performed by, for example, an operation using a natural logarithm represented by Equation (3). It is also possible to obtain the relationship between the oscillation frequency and temperature in advance, store the temperature characteristics of the oscillation frequency in the storage unit 31 as a lookup table, and refer to this lookup table.
  • the control unit 30 intermittently repeats reference oscillation and sensor oscillation alternately at regular time intervals until the measurement of the body temperature is completed, samples the temperature value at regular time intervals, and updates the display on the display unit 34 To do.
  • ⁇ Power consumption can be reduced by intermittently performing sensor oscillation and reference oscillation. Moreover, since the temperature value is sampled at a constant time interval and the display on the display unit 34 is updated, the user is not confused.
  • FIG. 5 shows an example of a temperature value change curve in body temperature measurement and signal waveforms output from the reference oscillation circuit and the sensor oscillation circuit.
  • the calculation accuracy of the oscillating frequency of the sensation oscillation circuit is affected by the driving time of the sensor oscillating circuit.
  • the longer the driving time the higher the calculation accuracy of the oscillating frequency, and the higher the measurement accuracy of the body temperature.
  • the influence of the drive time on the calculation accuracy of the oscillation frequency becomes significant.
  • the number of peaks of signals output from the sensor oscillation circuit during that period is 10000 counts when the temperature of the resistance temperature detector 20 is 37.0 ° C. It is assumed that the count was 9600 at 0 ° C. In that case, the resolution is 0.0025 ° C. ((37.0-36.0) / (10000-9600)).
  • the peak number of signals output from the sensor oscillation circuit during that period is 20000 count when the temperature of the resistance temperature detector 20 is 37.0 ° C. and 36.0 ° C. Sometimes 19200 counts and the resolution is 0.0013 ° C. ((37.0-36.0) / (20000-19200)).
  • the power consumption increases as the driving time of the sensor oscillation circuit becomes longer.
  • the drive time of the sensor oscillation circuit is appropriately changed in the period from the start of measurement of the body temperature to the completion of the measurement, and the drive time is shorter than the drive time at the time of completion of measurement. A period is provided. Note that the driving time of the sensor oscillation circuit at the time of completion of measurement is the driving time of the sensor oscillation circuit performed last in the measurement period.
  • the driving time of the sensor oscillation circuit is the driving time of the reference oscillation circuit until the peak number of the signal output from the reference oscillation circuit reaches the specified number of times.
  • the driving time of the sensor oscillation circuit can be changed by appropriately changing the specified number of times set for the number of peaks of the output signal of the oscillation circuit.
  • the control unit 30 determines whether a thermally balanced state has been formed. For example, the control unit 30 uses a predetermined threshold for increase / decrease or change rate (absolute value) of the temperature value sampled at a constant time interval, and an equilibrium state is formed when the increase / decrease or change rate is smaller than the threshold. It is determined that
  • the driving time of the sensor oscillation circuit be relatively long at the end of measurement in which an equilibrium state or a quasi-equilibrium state is formed.
  • the driving time of the sensor oscillation circuit is changed based on the elapsed time from the start of measurement.
  • the control unit 30 counts the elapsed time from the start of measurement, determines whether the elapsed time exceeds a predetermined threshold value t th , and changes the driving time of the sensor oscillation circuit.
  • the threshold for the elapsed time is that the time required for a thermal equilibrium between the user and the electronic thermometer 1 to be formed is approximately 10 minutes under the armpit and approximately 5 minutes under the tongue. For example, it can be set to 2 to 3 minutes.
  • the driving time of the sensor oscillator is a t 1
  • the driving of the sensor oscillator time is longer t 2 than the drive time t 1 in the initial.
  • the power consumption can be reduced by making the drive time of the sensor oscillation circuit shorter than the drive time at the end of measurement (when measurement is completed).
  • the resolution can be improved and the measurement accuracy of the body temperature can be improved.
  • FIG. 6 shows another example of a temperature value change curve in body temperature measurement, and a signal waveform output from the reference oscillation circuit and the sensor oscillation circuit.
  • the example shown in FIG. 6 changes the driving time of the sensor oscillation circuit based on the temperature value because the temperature value typically increases monotonously in body temperature measurement.
  • the control unit 30 samples the temperature value at a constant time interval from the start of measurement, determines whether the temperature value T has exceeded a predetermined threshold value Tth , and changes the driving time of the sensor oscillation circuit.
  • the threshold value T th for the temperature value can be set to 30 ° C., for example, considering that the room temperature is approximately 25 ° C. and the normal heat of the human body is approximately 36 ° C.
  • the driving time of the sensor oscillator is a t 1
  • the driving time of the sensor oscillation circuit is t 2 which is longer than the initial driving time t 1 .
  • the driving time of the sensor oscillation circuit is changed based on the temperature value T, the driving time is more appropriately timing than when the driving time of the sensor oscillation circuit is changed based on the elapsed time shown in FIG. Can be changed to further reduce power consumption.
  • the time (measurement period) required until a thermally balanced state is formed varies depending on, for example, the contact state between the user and the electronic thermometer 1, but the timing for changing the driving time according to a predetermined threshold value for the temperature value is set. If determined, the timing for changing the drive time can be changed in accordance with the fluctuation of the measurement period.
  • FIG. 7 shows another example of the temperature value change curve in the body temperature measurement and other signal waveforms output from the reference oscillation circuit and the sensor oscillation circuit.
  • the example shown in FIG. 7 is based on the temperature value difference because the temperature value typically increases monotonically in a logarithmic function and the temperature value difference sampled at regular time intervals gradually decreases. Thus, the driving time of the sensor oscillation circuit is changed.
  • the control unit 30 samples the temperature value at a constant time interval from the start of measurement, determines whether or not the temperature value difference ⁇ T exceeds a predetermined threshold value ⁇ T th , and changes the driving time of the sensor oscillation circuit.
  • the driving time of the sensor oscillation circuit is t 1
  • the driving time of the sensor oscillation circuit is t 2 which is longer than the driving time t 1 in the initial stage.
  • FIG. 8 shows another example of the temperature value change curve in the body temperature measurement and the signal waveform output from the reference oscillation circuit and the sensor oscillation circuit.
  • the temperature value in the body temperature measurement typically increases monotonically in a logarithmic function, and the rate of change per unit time of the temperature value sampled at regular time intervals gradually decreases.
  • the driving time of the sensor oscillation circuit is changed based on the change rate of the value.
  • the control unit 30 samples the temperature value at regular time intervals from the start of measurement, determines whether or not the rate of change dT of the temperature value exceeds a predetermined threshold value dT th and changes the driving time of the sensor oscillation circuit. .
  • the driving time of the sensor oscillator is a t 1
  • the driving time of the sensor oscillation circuit is set to t 2 which is longer than the driving time t 1 in the initial stage.
  • the drive time of the sensor oscillation circuit is changed based on the temperature value difference ⁇ T or the change rate dT, compared to the case where the drive time of the sensor oscillation circuit is changed based on the temperature value T shown in FIG.
  • the driving time can be changed at a more appropriate timing to further reduce the power consumption.
  • the temperature value in the thermally balanced state varies depending on, for example, individual differences between users and the user's state, but the timing for changing the driving time is determined by the threshold value for the temperature value difference ⁇ T and the rate of change dT. Then, the timing for changing the driving time can be changed according to the fluctuation of the temperature value in the equilibrium state.
  • the measurement period is divided into an initial period and an end period using one threshold value, and the driving time of the sensor oscillation circuit is set as an initial period (t 1 ) and an end period (t 2 ).
  • the measurement period may be divided into three or more using a plurality of thresholds, and the drive time may be changed more finely.
  • the driving time may be gradually increased from the initial stage to the final stage of the measurement, or the driving time may be set at the initial stage and the final stage of the measurement.
  • the drive time in the middle period of measurement may be shortened by increasing the length.
  • the measurement period is divided into an initial period and an end period
  • the driving time is constant in each of the initial period and the final period
  • the driving time is stepwise when transitioning from the initial stage to the final stage.
  • a predetermined calculation using variables such as elapsed time, temperature value sampled at a constant time interval, or a difference or change rate of the temperature value is performed, and continuous calculation is performed based on these variables.
  • the driving time may be changed.
  • the driving time of the sensor oscillation circuit is shorter than the driving time at the completion of the measurement in the measurement period. By providing the period, it is possible to reduce power consumption without reducing measurement accuracy.
  • the body temperature is measured by a prediction formula
  • the measurement is completed before the thermal equilibrium state is formed, and the body temperature is determined based on a change curve of the temperature value sampled during the measurement period. Predicted by calculation.
  • the drive time of the sensor oscillation circuit is lengthened to improve resolution, and at the beginning of measurement, the drive time of the sensor oscillation circuit is shorter than the drive time at the end of measurement (when measurement is completed). If so, power consumption can be reduced without degrading measurement accuracy.
  • the period after transition to measurement formula is set as a new measurement period, and as described above, the sensor oscillation circuit
  • the drive time may be shorter than the drive time when the measurement is completed. According to this, power consumption can be further reduced.
  • a temperature measurement unit having an oscillation circuit including a resistance temperature detector, and the oscillation circuit is driven intermittently at a constant time interval, and a temperature value is calculated based on the frequency of a signal output from the oscillation circuit
  • a control unit configured to change a driving time in intermittent driving of the oscillation circuit, and in a period from the start of measurement to completion, the driving time is shorter than that at the time of completion of measurement.
  • Electronic thermometer with a period that is time.
  • thermometer with reduced power consumption without reducing measurement accuracy.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

An electronic thermometer (1) is provided with: a temperature measurement unit (32) that has an oscillation circuit including a resistance thermometer (20); and a control unit (30) that intermittently drives the oscillation circuit at fixed time intervals, and calculates a temperature value on the basis of the frequency of a signal output from the oscillation circuit. The control unit (30) is configured so as to be able to change the driving time in the intermittent driving of the oscillation circuit, and has, in the period from measurement start to end, a period in which the driving time is a short time compared when measurement ends.

Description

電子体温計Electronic thermometer
 本発明は電子体温計に関する。 The present invention relates to an electronic thermometer.
 サーミスタなどの測温抵抗体を含むCR発振回路を用い、その発振周波数に基づいて温度を計測する温度計が知られている(例えば、特許文献1参照)。 A thermometer that uses a CR oscillation circuit including a resistance temperature detector such as a thermistor and measures temperature based on the oscillation frequency is known (see, for example, Patent Document 1).
 特許文献1に記載された温度計においては、CR発振回路が一定の時間間隔で間欠的に駆動され、温度が一定の時間間隔でサンプリングされる。それにより、消費電力の低減が図られている。 In the thermometer described in Patent Document 1, the CR oscillation circuit is intermittently driven at a constant time interval, and the temperature is sampled at a constant time interval. Thereby, power consumption is reduced.
 また、特許文献2に記載された温度計においては、計測される温度の変化に応じてサンプリング間隔が変更され、温度変化が大きい際にはサンプリング間隔が短縮され、一方、温度変化が小さい際にはサンプリング間隔が延長される。それにより、消費電力の低減が図られている。 Further, in the thermometer described in Patent Document 2, the sampling interval is changed according to the change in the measured temperature, and when the temperature change is large, the sampling interval is shortened, while when the temperature change is small The sampling interval is extended. Thereby, reduction of power consumption is achieved.
日本国特開昭59-97026号公報Japanese Unexamined Patent Publication No. 59-97026 日本国特開平10-160591号公報Japanese Laid-Open Patent Publication No. 10-160591
 電子体温計は、典型的にはボタン電池やコイン電池などの小型電池により、その動作電力が賄われている。よって、電子体温計においては、消費電力の低減が要請される。 Electronic thermometers are typically supplied with operating power by small batteries such as button batteries and coin batteries. Therefore, electronic thermometers are required to reduce power consumption.
 電子体温計において、特許文献2に記載された温度計のように、計測温度の変化に応じてサンプリング間隔が変更されると、温度値の表示が更新されるタイミングも変わり、使用者を困惑させる虞がある。例えば、サンプリング間隔が延長されることにより、温度値の表示が比較的長時間にわたって更新されないといった事態が生じ、適切に計測がなされているのか否かといった不安を使用者に抱かせる虞がある。 In the electronic thermometer, as in the thermometer described in Patent Document 2, when the sampling interval is changed in accordance with the change in the measured temperature, the timing at which the display of the temperature value is updated also changes, which may annoy the user. There is. For example, when the sampling interval is extended, there is a possibility that the display of the temperature value is not updated for a relatively long time, and the user may be worried about whether or not the measurement is properly performed.
 また、実測式の電子体温計においては、熱的に平衡な状態となったことを検出して計測を完了するが、特許文献2に記載された温度計におけるサンプリング間隔の変更様式に従うと、平衡状態に近づくにつれてサンプリング間隔が延長されることになり、平衡状態の検出や計測精度に影響を及ぼす虞がある。 Moreover, in the actual measurement type electronic thermometer, it is detected that the thermal equilibrium state is reached, and the measurement is completed. However, according to the sampling interval change mode in the thermometer described in Patent Document 2, the equilibrium state is obtained. As the value approaches, the sampling interval is extended, which may affect the detection of the equilibrium state and the measurement accuracy.
 本発明は、上述した事情に鑑みなされたものであり、計測精度を低下させることなく消費電力を低減した電子体温計を提供することを目的としている。 The present invention has been made in view of the above-described circumstances, and an object thereof is to provide an electronic thermometer with reduced power consumption without degrading measurement accuracy.
 測温抵抗体を含む発振回路を有する温度計測部と、前記発振回路を一定の時間間隔で間欠的に駆動し、前記発振回路から出力される信号の周波数に基づいて温度値を算出する制御部と、を備え、前記制御部は、前記発振回路の間欠駆動における駆動時間を変更可能に構成されており、計測開始から完了までの期間において、前記駆動時間が計測完了時に比べて短時間である期間を有する電子体温計。 A temperature measurement unit having an oscillation circuit including a resistance temperature detector, and a control unit for driving the oscillation circuit intermittently at a constant time interval and calculating a temperature value based on the frequency of a signal output from the oscillation circuit The control unit is configured to be able to change the driving time in intermittent driving of the oscillation circuit, and the driving time is shorter than the time when the measurement is completed in the period from the start to the completion of the measurement. Electronic thermometer with a period.
 本発明によれば、計測精度を低下させることなく電子体温計の消費電力を低減することができる。 According to the present invention, the power consumption of the electronic thermometer can be reduced without reducing the measurement accuracy.
本発明の実施形態を説明するための、電子体温計の一例を示す斜視図である。It is a perspective view which shows an example of the electronic thermometer for demonstrating embodiment of this invention. 図1の電子体温計を分解して示す斜視図である。It is a perspective view which decomposes | disassembles and shows the electronic thermometer of FIG. 図1の電子体温計の機能ブロック図である。It is a functional block diagram of the electronic thermometer of FIG. 図1の電子体温計の温度計測部の回路ブロック図である。It is a circuit block diagram of the temperature measurement part of the electronic thermometer of FIG. 体温計測における温度値の変化曲線と共に図4の温度計測部の発振回路から出力される信号波形の一例を示すグラフである。It is a graph which shows an example of the signal waveform output from the oscillation circuit of the temperature measurement part of FIG. 4 with the change curve of the temperature value in body temperature measurement. 体温計測における温度値の変化曲線と共に図4の温度計測部の発振回路から出力される信号波形の他の例を示すグラフである。It is a graph which shows the other example of the signal waveform output from the oscillation circuit of the temperature measurement part of FIG. 4 with the change curve of the temperature value in body temperature measurement. 体温計測における温度値の変化曲線と共に図4の温度計測部の発振回路から出力される信号波形の他の例を示すグラフである。It is a graph which shows the other example of the signal waveform output from the oscillation circuit of the temperature measurement part of FIG. 4 with the change curve of the temperature value in body temperature measurement. 体温計測における温度値の変化曲線と共に図4の温度計測部の発振回路から出力される信号波形の他の例を示すグラフである。It is a graph which shows the other example of the signal waveform output from the oscillation circuit of the temperature measurement part of FIG. 4 with the change curve of the temperature value in body temperature measurement.
 図1及び図2は、本発明の実施形態を説明するための、電子体温計の一例を示す。 1 and 2 show an example of an electronic thermometer for explaining an embodiment of the present invention.
 電子体温計1は、ケース2と、ケース2に収納される機能部3及び電池4とを備えている。 The electronic thermometer 1 includes a case 2, a functional unit 3 and a battery 4 stored in the case 2.
 ケース2は、先細の中空筒状に形成された本体部10と、本体部10の細側の先端側の開口を閉塞するキャップ11と、本体部10の基端側の開口を閉塞するキャップ12とで構成されている。 The case 2 includes a main body 10 formed in a tapered hollow cylindrical shape, a cap 11 that closes an opening on the distal end side on the narrow side of the main body 10, and a cap 12 that closes an opening on the proximal end side of the main body 10. It consists of and.
 機能部3は、詳細は後述するが、使用者の体温を検出する測温抵抗体20と、使用者による電源入断等の操作を受け付ける操作部33や計測温度等を表示する表示部34などが実装されたサブアセンブリ21とで構成されている。 As will be described in detail later, the functional unit 3 includes a resistance temperature detector 20 that detects the user's body temperature, an operation unit 33 that accepts operations such as power on / off by the user, a display unit 34 that displays the measured temperature, and the like. And a subassembly 21 on which is mounted.
 電池4は、ケース2の本体部10の基端部内に装填される。本体部10の基端側開口を閉塞するキャップ12は、本体部10の基端部内に装填された電池4を保持する。 The battery 4 is loaded into the base end of the main body 10 of the case 2. A cap 12 that closes the base-end opening of the main body 10 holds the battery 4 loaded in the base end of the main body 10.
 電子体温計1は、ケース2における本体部10の先端部側を使用者の腋下又は舌下などに挟み込まれて使用され、本体部10の先端側開口を閉塞するキャップ11は使用者に密接する。キャップ11は、例えばステンレス合金などの熱伝導性に優れる金属材料を用いて有底筒状に形成されている。 The electronic thermometer 1 is used with the front end portion of the main body portion 10 in the case 2 sandwiched between the user's armpit or the tongue, and the cap 11 that closes the front end opening of the main body portion 10 is in close contact with the user. . The cap 11 is formed in a bottomed cylindrical shape using a metal material having excellent thermal conductivity such as a stainless alloy.
 なお、本体部10やキャップ12は、例えば熱可塑性の硬質な樹脂材料を用いて射出成形により形成される。本体部10やキャップ12に用いられる樹脂材料としては、ABS(アクリロニトリル‐ブタジエン‐スチレン共重合体)樹脂などを例示することができる。 The main body 10 and the cap 12 are formed by injection molding using, for example, a thermoplastic hard resin material. Examples of the resin material used for the main body 10 and the cap 12 include ABS (acrylonitrile-butadiene-styrene copolymer) resin.
 測温抵抗体20は、キャップ11内に配置され、リード線22を介してサブアセンブリ21に接続されている。使用者の体温は、熱エネルギーとして、キャップ11を介して測温抵抗体20に伝達される。 The resistance temperature detector 20 is disposed in the cap 11 and connected to the subassembly 21 via the lead wire 22. The user's body temperature is transmitted to the resistance temperature detector 20 through the cap 11 as thermal energy.
 本例の電子体温計1において、測温抵抗体20にはサーミスタが用いられている。なお、測温抵抗体20には、白金測温抵抗体なども用いることができる。 In the electronic thermometer 1 of this example, a thermistor is used for the resistance temperature detector 20. The resistance temperature detector 20 may be a platinum resistance temperature detector.
 図3は、機能部3の構成を示す。 FIG. 3 shows the configuration of the functional unit 3.
 機能部3は、制御部30、記憶部31、温度計測部32、報知部35、電源部36、そして、上記の操作部33及び表示部34に大別される。 The function unit 3 is roughly divided into a control unit 30, a storage unit 31, a temperature measurement unit 32, a notification unit 35, a power supply unit 36, and the operation unit 33 and the display unit 34 described above.
 制御部30は、例えばCPU(Central Processing Unit)により構成され、機能部3の各部の動作を制御する。 The control unit 30 is configured by, for example, a CPU (Central Processing Unit), and controls the operation of each unit of the functional unit 3.
 記憶部31は、例えばROM(Read Only Memory)及びRAM(Random Access Memory)により構成される。記憶部31は、体温の計測処理を制御部30に実行させるためのプログラムを記憶している。 The storage unit 31 includes, for example, a ROM (Read Only Memory) and a RAM (Random Access Memory). The storage unit 31 stores a program for causing the control unit 30 to execute a body temperature measurement process.
 温度計測部32は、詳細は後述するが、測温抵抗体20を含んで構成され、使用者の体温を計測する。 Although the details will be described later, the temperature measuring unit 32 includes the resistance thermometer 20 and measures the temperature of the user.
 操作部33は、例えば押し釦式のスイッチにより構成され、使用者による電源入断などの操作を受け付け、操作に応じて制御信号を制御部30及び電源部36に入力する。 The operation unit 33 is configured by, for example, a push button type switch, receives an operation such as power on / off by a user, and inputs a control signal to the control unit 30 and the power supply unit 36 according to the operation.
 表示部34は、例えばLCD(Liquid Crystal Display)により構成され、計測された温度値などを表示する。 The display unit 34 is configured by, for example, an LCD (Liquid Crystal Display), and displays a measured temperature value and the like.
 報知部35は、例えばブザーにより構成され、使用者の操作を受け付けたことや計測が終了したことなどを使用者に知らせる。 The notification unit 35 is configured by a buzzer, for example, and notifies the user that the user's operation has been accepted or measurement has been completed.
 電源部36は、電池4を含んで構成され、制御部30や温度計測部32などの機能部3の各部に動作電力を供給する。 The power supply unit 36 includes the battery 4 and supplies operating power to each unit of the functional unit 3 such as the control unit 30 and the temperature measurement unit 32.
 以上の、制御部30、記憶部31、温度計測部32、操作部33、表示部34、報知部35、電源部36は、電池4及び測温抵抗体20を除き、サブアセンブリ21(図2参照)に実装されている。 The control unit 30, the storage unit 31, the temperature measurement unit 32, the operation unit 33, the display unit 34, the notification unit 35, and the power supply unit 36 are the subassembly 21 (FIG. 2) except for the battery 4 and the resistance temperature detector 20. Is implemented).
 図4は、温度計測部32の構成を示す。 FIG. 4 shows the configuration of the temperature measurement unit 32.
 本例において、温度計測部32は、測温抵抗体20を負荷抵抗とするCR発振回路を用いて使用者の体温を計測する。制御部30は、このCR発振回路から出力される信号の周波数(発振周波数)に基づいて温度値を算出する。 In this example, the temperature measuring unit 32 measures the body temperature of the user using a CR oscillation circuit having the resistance temperature detector 20 as a load resistance. The control unit 30 calculates the temperature value based on the frequency (oscillation frequency) of the signal output from the CR oscillation circuit.
 以下に、CR発振回路の発振周波数に基づく温度計測の原理について説明する。 Hereinafter, the principle of temperature measurement based on the oscillation frequency of the CR oscillation circuit will be described.
 CR発振回路の発振周波数fは、次式(1)により表される。 The oscillation frequency f of the CR oscillation circuit is expressed by the following equation (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 なお、式(1)において、Cはコンデンサの容量値を、Rは測温抵抗体20の抵抗値を、kは比例定数をそれぞれ示す。 In equation (1), C represents the capacitance value of the capacitor, R represents the resistance value of the resistance temperature detector 20, and k represents a proportionality constant.
 本例において、測温抵抗体20にはサーミスタが用いられており、その抵抗値Rと、温度T[k]との関係は、次式(2)により表される。 In this example, a thermistor is used for the resistance temperature detector 20, and the relationship between the resistance value R and the temperature T [k] is expressed by the following equation (2).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 なお、式(2)において、Rは温度がT[k]であるときのサーミスタの抵抗値を示し、Bはサーミスタ定数を示す。 In Equation (2), R 0 represents the resistance value of the thermistor when the temperature is T 0 [k], and B represents the thermistor constant.
 式(1)及び式(2)から、温度T[k]は、次式(3)により表される。 From the formula (1) and the formula (2), the temperature T [k] is expressed by the following formula (3).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 なお、式(3)においてfは、温度がT[k]であるときの発振周波数を示す。 In Equation (3), f 0 represents the oscillation frequency when the temperature is T 0 [k].
 式(3)より、CR発振回路の発振周波数に基づいて測温抵抗体20の温度を算出することができる。 From Equation (3), the temperature of the resistance temperature detector 20 can be calculated based on the oscillation frequency of the CR oscillation circuit.
 温度計測部32は、測温抵抗体20と、基準抵抗体42と、コンデンサ43と、発振制御回路44と、スイッチ素子45,46と、カウンタ47とで構成されている。 The temperature measuring unit 32 includes a resistance temperature detector 20, a reference resistor 42, a capacitor 43, an oscillation control circuit 44, switch elements 45 and 46, and a counter 47.
 スイッチ素子45は測温抵抗体20と発振制御回路44との間に,またスイッチ素子46は基準抵抗体42と発振制御回路44との間にそれぞれ介装されており、制御部30により開閉される。制御部30は、測温抵抗体20及び基準抵抗体42のいずれか一方が選択的に発振制御回路44に接続されるように、スイッチ素子45,46を開閉する。 The switch element 45 is interposed between the resistance temperature detector 20 and the oscillation control circuit 44, and the switch element 46 is interposed between the reference resistor 42 and the oscillation control circuit 44. The switch element 45 is opened and closed by the control unit 30. The The control unit 30 opens and closes the switch elements 45 and 46 so that any one of the resistance temperature detector 20 and the reference resistor 42 is selectively connected to the oscillation control circuit 44.
 スイッチ素子45,46の開閉によって、測温抵抗体20及びコンデンサ43並びに発振制御回路44からなるCR発振回路(以下、センサ発振回路という)、又は基準抵抗体42及びコンデンサ43並びに発振制御回路44からなるCR発振回路(以下、基準発振回路という)が構成される。 By opening and closing the switch elements 45 and 46, from the resistance temperature detector 20 and the capacitor 43 and the oscillation control circuit 44 (hereinafter referred to as a sensor oscillation circuit), or from the reference resistor 42 and the capacitor 43 and the oscillation control circuit 44 A CR oscillation circuit (hereinafter referred to as a reference oscillation circuit) is configured.
 センサ発振回路及び基準発振回路の各々は、制御部30から発振制御回路44に入力される制御信号によって、一定の時間間隔で間欠的に交互に駆動される。そして、これらの発振回路から出力される信号はカウンタ47に入力され、その電位レベルの変化におけるピーク数がカウントされる。カウンタ47によりカウントされたピーク数は、制御部30に取り込まれる。 Each of the sensor oscillating circuit and the reference oscillating circuit is alternately and intermittently driven at a constant time interval by a control signal input from the control unit 30 to the oscillation control circuit 44. The signals output from these oscillation circuits are input to the counter 47, and the number of peaks in the change in the potential level is counted. The number of peaks counted by the counter 47 is taken into the control unit 30.
 以上の構成において、まず、制御部30は、基準発振回路を駆動し、基準発振を行う。制御部30は、カウンタ47によりカウントされるピーク数が規定回数に達するまで基準発振回路の駆動を継続し、その際の駆動時間をカウントする。 In the above configuration, first, the control unit 30 drives the reference oscillation circuit to perform reference oscillation. The control unit 30 continues driving the reference oscillation circuit until the number of peaks counted by the counter 47 reaches the specified number of times, and counts the driving time at that time.
 制御部30は、基準発振回路から出力される信号のピーク数が規定回数に達したところで、基準発振回路の駆動を停止する。次いで、制御部30は、所定の時間間隔をおいてセンサ発振回路を駆動し、センサ発振を行う。このセンサ発振において、制御部30は、直前の基準発振における基準発振回路の駆動時間と同じ時間だけセンサ発振回路を駆動する。 The control unit 30 stops driving the reference oscillation circuit when the number of peaks of the signal output from the reference oscillation circuit reaches a specified number. Next, the control unit 30 drives the sensor oscillation circuit at a predetermined time interval to perform sensor oscillation. In this sensor oscillation, the control unit 30 drives the sensor oscillation circuit for the same time as the drive time of the reference oscillation circuit in the immediately preceding reference oscillation.
 制御部30は、センサ発振回路を駆動している期間内にセンサ発振回路から出力された信号のピーク数をカウンタ47から取得し、取得したピーク数と、センサ発振回路の駆動時間とから、センサ発振回路の発振周波数を算出する。 The control unit 30 acquires the peak number of the signal output from the sensor oscillation circuit during the period of driving the sensor oscillation circuit from the counter 47, and calculates the sensor from the acquired peak number and the driving time of the sensor oscillation circuit. Calculate the oscillation frequency of the oscillation circuit.
 センサ発振回路と基準発振回路とでは、実質的にCR発振回路を構成する負荷抵抗が異なるだけである。そこで、上述の通り基準発振回路を用いてセンサ発振回路の駆動時間を設定することにより、例えばコンデンサ43や発振制御回路44などの温度特性といった誤差要因を排除することができ、温度との関係においてセンサ発振回路の発振周波数を精度良く算出することができる。 The sensor oscillation circuit and the reference oscillation circuit are substantially different only in the load resistance constituting the CR oscillation circuit. Therefore, by setting the driving time of the sensor oscillation circuit using the reference oscillation circuit as described above, error factors such as the temperature characteristics of the capacitor 43 and the oscillation control circuit 44 can be eliminated. The oscillation frequency of the sensor oscillation circuit can be calculated with high accuracy.
 そして、制御部30は、算出したセンサ発振回路の発振周波数に基づいて、測温抵抗体20の温度値を算出し、算出した温度値で表示部34の表示を更新する。 Then, the control unit 30 calculates the temperature value of the resistance temperature detector 20 based on the calculated oscillation frequency of the sensor oscillation circuit, and updates the display of the display unit 34 with the calculated temperature value.
 センサ発振回路の発振周波数に基づく温度の算出は、例えば、式(3)に表される自然対数を使用した演算によって行うことができる。また、予め発振周波数と温度との関係を取得し、この発振周波数の温度特性をルックアップテーブルとして記憶部31に記憶させておき、このルックアップテーブルを参照することによって行うこともできる。 The calculation of the temperature based on the oscillation frequency of the sensor oscillation circuit can be performed by, for example, an operation using a natural logarithm represented by Equation (3). It is also possible to obtain the relationship between the oscillation frequency and temperature in advance, store the temperature characteristics of the oscillation frequency in the storage unit 31 as a lookup table, and refer to this lookup table.
 制御部30は、体温の計測を完了するまで、一定の時間間隔で間欠的に基準発振及びセンサ発振を交互に繰り返し行い、一定の時間間隔で温度値をサンプリングして表示部34の表示を更新する。 The control unit 30 intermittently repeats reference oscillation and sensor oscillation alternately at regular time intervals until the measurement of the body temperature is completed, samples the temperature value at regular time intervals, and updates the display on the display unit 34 To do.
 センサ発振及び基準発振を間欠的に行うことにより、消費電力を低減することができる。また、一定の時間間隔で温度値をサンプリングして表示部34の表示を更新するので、使用者を困惑させることもない。 ・ Power consumption can be reduced by intermittently performing sensor oscillation and reference oscillation. Moreover, since the temperature value is sampled at a constant time interval and the display on the display unit 34 is updated, the user is not confused.
 図5は、体温計測における温度値の変化曲線、及び基準発振回路及びセンサ発振回路から出力される信号波形の一例を示す。 FIG. 5 shows an example of a temperature value change curve in body temperature measurement and signal waveforms output from the reference oscillation circuit and the sensor oscillation circuit.
 サンセ発振回路の発振周波数の算出精度は、センサ発振回路の駆動時間の影響を受け、典型的には、駆動時間が長くなるほどに発振周波数の算出精度が高まり、ひいては体温の計測精度が高まる。特に、センサ発振回路の駆動時間と、その期間にセンサ発振回路から出力される信号のピーク数とから発振周波数を算出する場合に、駆動時間が発振周波数の算出精度に及ぼす影響は顕著となる。 The calculation accuracy of the oscillating frequency of the sensation oscillation circuit is affected by the driving time of the sensor oscillating circuit. Typically, the longer the driving time, the higher the calculation accuracy of the oscillating frequency, and the higher the measurement accuracy of the body temperature. In particular, when the oscillation frequency is calculated from the drive time of the sensor oscillation circuit and the peak number of signals output from the sensor oscillation circuit during that period, the influence of the drive time on the calculation accuracy of the oscillation frequency becomes significant.
 例えば、センサ発振回路を時間tだけ駆動するものとして、その期間にセンサ発振回路から出力される信号のピーク数について、測温抵抗体20の温度が37.0℃のときに10000カウント、36.0℃のときに9600カウントであったとする。その場合に、分解能は0.0025℃((37.0-36.0)/(10000-9600))となる。 For example, assuming that the sensor oscillation circuit is driven for time t, the number of peaks of signals output from the sensor oscillation circuit during that period is 10000 counts when the temperature of the resistance temperature detector 20 is 37.0 ° C. It is assumed that the count was 9600 at 0 ° C. In that case, the resolution is 0.0025 ° C. ((37.0-36.0) / (10000-9600)).
 センサ発振回路の駆動時間を2tとすると、その期間にセンサ発振回路から出力される信号のピーク数は、測温抵抗体20の温度が37.0℃のときに20000カウント、36.0℃のときに19200カウントとなり、分解能は0.0013℃((37.0-36.0)/(20000-19200))となる。 Assuming that the driving time of the sensor oscillation circuit is 2t, the peak number of signals output from the sensor oscillation circuit during that period is 20000 count when the temperature of the resistance temperature detector 20 is 37.0 ° C. and 36.0 ° C. Sometimes 19200 counts and the resolution is 0.0013 ° C. ((37.0-36.0) / (20000-19200)).
 一方で、センサ発振回路の駆動時間が長くなるほどに消費電力は増加する。 On the other hand, the power consumption increases as the driving time of the sensor oscillation circuit becomes longer.
 そこで、本例の電子体温計1においては、体温の計測開始から計測完了までの期間において、センサ発振回路の駆動時間が適宜変更され、その駆動時間が計測完了時における駆動時間に比べて短時間となる期間が設けられる。なお、計測完了時のセンサ発振回路の駆動時間とは、計測期間内において最後に行われたセンサ発振回路の駆動時間である。 Therefore, in the electronic thermometer 1 of this example, the drive time of the sensor oscillation circuit is appropriately changed in the period from the start of measurement of the body temperature to the completion of the measurement, and the drive time is shorter than the drive time at the time of completion of measurement. A period is provided. Note that the driving time of the sensor oscillation circuit at the time of completion of measurement is the driving time of the sensor oscillation circuit performed last in the measurement period.
 上述した体温の計測処理において、センサ発振回路の駆動時間は基準発振回路から出力される信号のピーク数が規定回数に達するまでの基準発振回路の駆動時間とされており、制御部30は、基準発振回路の出力信号のピーク数に対して設定される規定回数を適宜変更することにより、センサ発振回路の駆動時間を変更可能に構成されている。 In the body temperature measurement process described above, the driving time of the sensor oscillation circuit is the driving time of the reference oscillation circuit until the peak number of the signal output from the reference oscillation circuit reaches the specified number of times. The driving time of the sensor oscillation circuit can be changed by appropriately changing the specified number of times set for the number of peaks of the output signal of the oscillation circuit.
 体温の計測が実測式で行われる場合には、使用者と電子体温計1との間で熱的に平衡な状態が形成されたことをもって計測を完了する。熱的に平衡な状態が形成されたか否かは制御部30により判定される。制御部30は、例えば一定の時間間隔でサンプリングする温度値の増減や変化率(絶対値)に対して所定の閾値を用い、増減や変化率が閾値よりも小さい場合に、平衡状態が形成されたものと判定する。 When measurement of body temperature is performed by an actual measurement formula, the measurement is completed when a thermal equilibrium state is formed between the user and the electronic thermometer 1. The controller 30 determines whether a thermally balanced state has been formed. For example, the control unit 30 uses a predetermined threshold for increase / decrease or change rate (absolute value) of the temperature value sampled at a constant time interval, and an equilibrium state is formed when the increase / decrease or change rate is smaller than the threshold. It is determined that
 平衡状態が形成されたか否かの判定を高精度に行うには、細かな分解能が必要となる。そのため、平衡状態ないし準平衡状態が形成される計測の終期においては、センサ発振回路の駆動時間を比較的長くとることが好ましい。 細 Fine resolution is required to determine whether or not an equilibrium state has been formed with high accuracy. For this reason, it is preferable that the driving time of the sensor oscillation circuit be relatively long at the end of measurement in which an equilibrium state or a quasi-equilibrium state is formed.
 一方で、計測の初期においては計測の終期ほどには分解能を必要としないから、センサ発振回路の駆動時間を比較的短くしても支障はない。 On the other hand, since the resolution is not required as early as the end of measurement, there is no problem even if the driving time of the sensor oscillation circuit is relatively short.
 図5に示す例は、計測開始からの経過時間に基づいてセンサ発振回路の駆動時間を変更するものである。 In the example shown in FIG. 5, the driving time of the sensor oscillation circuit is changed based on the elapsed time from the start of measurement.
 制御部30は、計測開始からの経過時間をカウントし、経過時間が所定の閾値tthを超えているか否かを判定してセンサ発振回路の駆動時間を変更する。経過時間に対する閾値は、使用者と電子体温計1との間で熱的に平衡な状態が形成されるまでに要する時間が概ね腋下で10分程度であり、舌下で5分程度であることを考慮して、例えば2~3分とすることができる。 The control unit 30 counts the elapsed time from the start of measurement, determines whether the elapsed time exceeds a predetermined threshold value t th , and changes the driving time of the sensor oscillation circuit. The threshold for the elapsed time is that the time required for a thermal equilibrium between the user and the electronic thermometer 1 to be formed is approximately 10 minutes under the armpit and approximately 5 minutes under the tongue. For example, it can be set to 2 to 3 minutes.
 経過時間が閾値以下であるとき(計測の初期)には、センサ発振回路の駆動時間はtとされ、経過時間が閾値を超えているとき(計測の終期)には、センサ発振回路の駆動時間は、初期における駆動時間tよりも長いtとされる。 But when the elapsed time is equal to or less than the threshold (initial measurement), the driving time of the sensor oscillator is a t 1, but when the elapsed time exceeds the threshold value (end of measurement), the driving of the sensor oscillator time is longer t 2 than the drive time t 1 in the initial.
 このように、計測の初期において、センサ発振回路の駆動時間を計測の終期(計測完了時)の駆動時間よりも短時間とすることにより、消費電力を低減することができる。 Thus, at the initial stage of measurement, the power consumption can be reduced by making the drive time of the sensor oscillation circuit shorter than the drive time at the end of measurement (when measurement is completed).
 そして、計測の終期においてセンサ発振回路の駆動時間を長くすることにより、分解能を高め、体温の計測精度を高めることができる。 And by increasing the driving time of the sensor oscillation circuit at the end of the measurement, the resolution can be improved and the measurement accuracy of the body temperature can be improved.
 図6は、体温計測における温度値の変化曲線、及び基準発振回路及びセンサ発振回路から出力される信号波形の他の例を示す。 FIG. 6 shows another example of a temperature value change curve in body temperature measurement, and a signal waveform output from the reference oscillation circuit and the sensor oscillation circuit.
 図6に示す例は、体温計測において温度値が典型的には単調に増加することから、温度値に基づいてセンサ発振回路の駆動時間を変更するものである。 The example shown in FIG. 6 changes the driving time of the sensor oscillation circuit based on the temperature value because the temperature value typically increases monotonously in body temperature measurement.
 制御部30は、計測開始から一定の時間間隔で温度値をサンプリングし、温度値Tが所定の閾値Tthを超えたか否かを判定してセンサ発振回路の駆動時間を変更する。温度値に対する閾値Tthは、室温が概ね25℃程度、人体の平熱が概ね36℃程度であることを考慮して、例えば30℃とすることができる。 The control unit 30 samples the temperature value at a constant time interval from the start of measurement, determines whether the temperature value T has exceeded a predetermined threshold value Tth , and changes the driving time of the sensor oscillation circuit. The threshold value T th for the temperature value can be set to 30 ° C., for example, considering that the room temperature is approximately 25 ° C. and the normal heat of the human body is approximately 36 ° C.
 温度値Tが閾値Tth以下であるとき(計測の初期)には、センサ発振回路の駆動時間はtとされ、温度値Tが閾値Tthを超えているとき(計測の終期)には、センサ発振回路の駆動時間は、初期における駆動時間tよりも長いtとされる。 When the temperature value T is equal to or less than the threshold T th (initial measurement), the driving time of the sensor oscillator is a t 1, when the temperature value T exceeds the threshold value T th (end of measurement) is The driving time of the sensor oscillation circuit is t 2 which is longer than the initial driving time t 1 .
 温度値Tに基づいてセンサ発振回路の駆動時間を変更するようにすれば、図5に示す経過時間に基づいてセンサ発振回路の駆動時間を変更する場合に比べて、より適切なタイミングで駆動時間を変更し、消費電力の更なる低減を図ることができる。 If the driving time of the sensor oscillation circuit is changed based on the temperature value T, the driving time is more appropriately timing than when the driving time of the sensor oscillation circuit is changed based on the elapsed time shown in FIG. Can be changed to further reduce power consumption.
 熱的に平衡な状態が形成されるまでに要する時間(計測期間)は、例えば使用者と電子体温計1との接触状態によって変動するが、温度値に対する所定の閾値によって駆動時間を変更するタイミングを定めるようにすれば、計測期間の変動に応じて、駆動時間を変更するタイミングを変化させることができる。 The time (measurement period) required until a thermally balanced state is formed varies depending on, for example, the contact state between the user and the electronic thermometer 1, but the timing for changing the driving time according to a predetermined threshold value for the temperature value is set. If determined, the timing for changing the drive time can be changed in accordance with the fluctuation of the measurement period.
 図7は、体温計測における温度値の変化曲線、及び基準発振回路及びセンサ発振回路から出力される信号波形の他の例を示す。 FIG. 7 shows another example of the temperature value change curve in the body temperature measurement and other signal waveforms output from the reference oscillation circuit and the sensor oscillation circuit.
 図7に示す例は、体温計測において温度値が典型的には対数関数的に単調に増加し、一定の時間間隔でサンプリングされる温度値の差分が漸減することから、温度値の差分に基づいてセンサ発振回路の駆動時間を変更するものである。 The example shown in FIG. 7 is based on the temperature value difference because the temperature value typically increases monotonically in a logarithmic function and the temperature value difference sampled at regular time intervals gradually decreases. Thus, the driving time of the sensor oscillation circuit is changed.
 制御部30は、計測開始から一定の時間間隔で温度値をサンプリングし、温度値の差分ΔTが所定の閾値ΔTthを超えているか否かを判定してセンサ発振回路の駆動時間を変更する。 The control unit 30 samples the temperature value at a constant time interval from the start of measurement, determines whether or not the temperature value difference ΔT exceeds a predetermined threshold value ΔT th , and changes the driving time of the sensor oscillation circuit.
 温度値の差分ΔTが閾値ΔTth以上であるとき(計測の初期)には、センサ発振回路の駆動時間はtとされ、温度値の差分ΔTが閾値ΔTth未満であるとき(計測の終期)には、センサ発振回路の駆動時間は、初期における駆動時間tよりも長いtとされている。 When the temperature value difference ΔT is equal to or greater than the threshold value ΔT th (initial measurement), the driving time of the sensor oscillation circuit is t 1, and when the temperature value difference ΔT is less than the threshold value ΔT th (end of measurement) ), The driving time of the sensor oscillation circuit is t 2 which is longer than the driving time t 1 in the initial stage.
 図8は、体温計測における温度値の変化曲線、及び基準発振回路及びセンサ発振回路から出力される信号波形の他の例を示す。 FIG. 8 shows another example of the temperature value change curve in the body temperature measurement and the signal waveform output from the reference oscillation circuit and the sensor oscillation circuit.
 図8に示す例は、体温計測において温度値が典型的には対数関数的に単調に増加し、一定の時間間隔でサンプリングされる温度値の単位時間あたりの変化率が漸減することから、温度値の変化率に基づいてセンサ発振回路の駆動時間を変更するものである。 In the example shown in FIG. 8, the temperature value in the body temperature measurement typically increases monotonically in a logarithmic function, and the rate of change per unit time of the temperature value sampled at regular time intervals gradually decreases. The driving time of the sensor oscillation circuit is changed based on the change rate of the value.
 制御部30は、計測開始から一定の時間間隔で温度値をサンプリングし、温度値の変化率dTが所定の閾値dTthを超えているか否かを判定してセンサ発振回路の駆動時間を変更する。 The control unit 30 samples the temperature value at regular time intervals from the start of measurement, determines whether or not the rate of change dT of the temperature value exceeds a predetermined threshold value dT th and changes the driving time of the sensor oscillation circuit. .
 温度値の変化率dTが閾値dTth以上であるとき(計測の初期)には、センサ発振回路の駆動時間はtとされ、温度値の変化率dTが閾値dTth未満であるとき(計測の終期)には、センサ発振回路の駆動時間は、初期における駆動時間tよりも長いtとされている。 When the change rate dT in the temperature value is the threshold value dT th or more (initial measurement), the driving time of the sensor oscillator is a t 1, when the change rate dT in the temperature value is less than the threshold value dT th (Measurement At the end of (2), the driving time of the sensor oscillation circuit is set to t 2 which is longer than the driving time t 1 in the initial stage.
 温度値の差分ΔTないし変化率dTに基づいてセンサ発振回路の駆動時間を変更するようにすれば、図6に示す温度値Tに基づいてセンサ発振回路の駆動時間を変更する場合に比べて、より適切なタイミングで駆動時間を変更し、消費電力の更なる低減を図ることができる。 If the drive time of the sensor oscillation circuit is changed based on the temperature value difference ΔT or the change rate dT, compared to the case where the drive time of the sensor oscillation circuit is changed based on the temperature value T shown in FIG. The driving time can be changed at a more appropriate timing to further reduce the power consumption.
 熱的に平衡な状態における温度値は、例えば使用者間の個人差や使用者の状態によって変動するが、温度値の差分ΔTや変化率dTに対する閾値によって駆動時間を変更するタイミングを定めるようにすれば、平衡な状態における温度値の変動に応じて、駆動時間を変更するタイミングを変化させることができる。 The temperature value in the thermally balanced state varies depending on, for example, individual differences between users and the user's state, but the timing for changing the driving time is determined by the threshold value for the temperature value difference ΔT and the rate of change dT. Then, the timing for changing the driving time can be changed according to the fluctuation of the temperature value in the equilibrium state.
 なお、図5から図8に示す例では、いずれも一つの閾値を用いて計測期間を初期と終期とに区分し、センサ発振回路の駆動時間を初期(t)と終期(t)とで変更しているが、複数の閾値を用いて計測期間を3以上に区分し、駆動時間をより細かく変更するようにしてもよい。 In each of the examples shown in FIGS. 5 to 8, the measurement period is divided into an initial period and an end period using one threshold value, and the driving time of the sensor oscillation circuit is set as an initial period (t 1 ) and an end period (t 2 ). However, the measurement period may be divided into three or more using a plurality of thresholds, and the drive time may be changed more finely.
 複数の閾値を用いて計測期間を3以上に区分する場合に、例えば、計測の初期から終期に向けて駆動時間が次第に長くなるようにしてもよいし、計測の初期及び終期においては駆動時間を長くし、計測の中期における駆動時間を短くしてもよい。 When the measurement period is divided into three or more using a plurality of threshold values, for example, the driving time may be gradually increased from the initial stage to the final stage of the measurement, or the driving time may be set at the initial stage and the final stage of the measurement. The drive time in the middle period of measurement may be shortened by increasing the length.
 また、図5から図8に示す例では、いずれも計測期間を初期及び終期に区分し、初期及び終期の各々においては駆動時間を一定として、初期から終期に遷移する際にステップ的に駆動時間を変更しているが、例えば、経過時間や、一定の時間間隔でサンプリングされる温度値や温度値の差分ないし変化率を変数とする所定の演算を行って、それらの変数に基づいて連続的に駆動時間を変更するようにしてもよい。 Further, in the examples shown in FIGS. 5 to 8, the measurement period is divided into an initial period and an end period, the driving time is constant in each of the initial period and the final period, and the driving time is stepwise when transitioning from the initial stage to the final stage. However, for example, a predetermined calculation using variables such as elapsed time, temperature value sampled at a constant time interval, or a difference or change rate of the temperature value is performed, and continuous calculation is performed based on these variables. Alternatively, the driving time may be changed.
 また、体温の計測が実測式で行われる場合について説明したが、予測式で行われる場合についても、計測期間において、センサ発振回路の駆動時間が計測完了時における駆動時間に比べて短時間となる期間を設けることにより、計測精度を低下させることなく消費電力を低減することができる。 Moreover, although the case where the measurement of the body temperature is performed using the actual measurement formula has been described, also in the case where the measurement is performed using the prediction formula, the driving time of the sensor oscillation circuit is shorter than the driving time at the completion of the measurement in the measurement period. By providing the period, it is possible to reduce power consumption without reducing measurement accuracy.
 体温の計測が予測式で行われる場合には、熱的に平衡な状態が形成される前に計測を完了し、体温は、計測期間にサンプリングされた温度値の変化曲線に基づいて、所定の演算により予測される。 When the body temperature is measured by a prediction formula, the measurement is completed before the thermal equilibrium state is formed, and the body temperature is determined based on a change curve of the temperature value sampled during the measurement period. Predicted by calculation.
 体温の予測を高精度に行うには、温度値の変化曲線を高精度に取得する必要があり、特に計測の終期における温度値の変化曲線の精度が重要である。そこで、計測の終期においては、センサ発振回路の駆動時間を長くして分解能を高め、計測の初期においては、センサ発振回路の駆動時間を計測の終期(計測完了時)の駆動時間よりも短時間とすれば、計測精度を低下させることなく消費電力を低減することができる。 In order to predict body temperature with high accuracy, it is necessary to acquire a temperature value change curve with high accuracy, and in particular, the accuracy of the temperature value change curve at the end of measurement is important. Therefore, at the end of measurement, the drive time of the sensor oscillation circuit is lengthened to improve resolution, and at the beginning of measurement, the drive time of the sensor oscillation circuit is shorter than the drive time at the end of measurement (when measurement is completed). If so, power consumption can be reduced without degrading measurement accuracy.
 また、予測式での計測を完了した後に実測式での計測に移行する場合に、実測式に移行してからの期間を新たな計測期間として、その計測期間において、上述の通り、センサ発振回路の駆動時間が計測完了時における駆動時間に比べて短時間となる期間を設けるようにしてもよい。それによれば、消費電力を更に低減することができる。 In addition, when shifting to measurement based on measurement formula after completing measurement based on prediction formula, the period after transition to measurement formula is set as a new measurement period, and as described above, the sensor oscillation circuit The drive time may be shorter than the drive time when the measurement is completed. According to this, power consumption can be further reduced.
 以上、説明したように、本明細書には以下の事項が開示されている。 As described above, the following items are disclosed in this specification.
 (1) 測温抵抗体を含む発振回路を有する温度計測部と、前記発振回路を一定の時間間隔で間欠的に駆動し、前記発振回路から出力される信号の周波数に基づいて温度値を算出する制御部と、を備え、前記制御部は、前記発振回路の間欠駆動における駆動時間を変更可能に構成されており、計測開始から完了までの期間において、前記駆動時間が計測完了時に比べて短時間である期間を有する電子体温計。
 (2) 上記(1)の電子体温計であって、前記制御部は、前記駆動時間と、該駆動時間内に前記発振回路から出力される信号のピーク数とから、前記発振回路から出力される信号の周波数を算出する電子体温計。
 (3) 上記(1)又は(2)の電子体温計であって、前記制御部は、計測開始からの経過時間に基づいて前記駆動時間を変更する電子体温計。
 (4) 上記(1)又は(2)の電子体温計であって、前記制御部は、算出した温度値に基づいて前記駆動時間を変更する電子体温計。
 (5) 上記(1)又は(2)の電子体温計であって、前記制御部は、算出した温度値と前回駆動時に算出された温度値との差分に基づいて前記駆動時間を変更する電子体温計。
 (6) 上記(1)又は(2)の電子体温計であって、前記制御部は、算出した温度値の単位時間当たりの変化率に基づいて前記駆動時間を変更する電子体温計。
(1) A temperature measurement unit having an oscillation circuit including a resistance temperature detector, and the oscillation circuit is driven intermittently at a constant time interval, and a temperature value is calculated based on the frequency of a signal output from the oscillation circuit And a control unit configured to change a driving time in intermittent driving of the oscillation circuit, and in a period from the start of measurement to completion, the driving time is shorter than that at the time of completion of measurement. Electronic thermometer with a period that is time.
(2) The electronic thermometer according to (1), wherein the control unit is output from the oscillation circuit based on the drive time and a peak number of signals output from the oscillation circuit within the drive time. An electronic thermometer that calculates the frequency of the signal.
(3) The electronic thermometer according to (1) or (2), wherein the control unit changes the driving time based on an elapsed time from the start of measurement.
(4) The electronic thermometer according to (1) or (2), wherein the control unit changes the driving time based on the calculated temperature value.
(5) The electronic thermometer according to (1) or (2), wherein the control unit changes the driving time based on a difference between the calculated temperature value and a temperature value calculated at the previous driving time. .
(6) The electronic thermometer according to (1) or (2), wherein the control unit changes the driving time based on a rate of change of the calculated temperature value per unit time.
 本発明によれば、計測精度を低下させることなく消費電力を低減した電子体温計を提供することができる。 According to the present invention, it is possible to provide an electronic thermometer with reduced power consumption without reducing measurement accuracy.
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2012年3月13日出願の日本特許出願(特願2012-056027)に基づくものであり、その内容はここに参照として取り込まれる。
Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
This application is based on a Japanese patent application filed on March 13, 2012 (Japanese Patent Application No. 2012-056027), the contents of which are incorporated herein by reference.
1  電子体温計
2  ケース
3  機能部
4  電池
10 本体部
11 キャップ
12 キャップ
20 測温抵抗体
21 サブアセンブリ
22 リード線
30 制御部
31 記憶部
32 温度計測部
33 操作部
34 表示部
35 報知部
36 電源部
42 基準抵抗体
43 コンデンサ
44 発振制御回路
45 スイッチ素子
46 スイッチ素子
47 カウンタ
DESCRIPTION OF SYMBOLS 1 Electronic thermometer 2 Case 3 Function part 4 Battery 10 Main body part 11 Cap 12 Cap 20 Resistance temperature detector 21 Subassembly 22 Lead wire 30 Control part 31 Storage part 32 Temperature measurement part 33 Operation part 34 Display part 35 Notification part 36 Power supply part 42 Reference resistor 43 Capacitor 44 Oscillation control circuit 45 Switch element 46 Switch element 47 Counter

Claims (6)

  1.  測温抵抗体を含む発振回路を有する温度計測部と、
     前記発振回路を一定の時間間隔で間欠的に駆動し、前記発振回路から出力される信号の周波数に基づいて温度値を算出する制御部と、
     を備え、
     前記制御部は、前記発振回路の間欠駆動における駆動時間を変更可能に構成されており、
     計測開始から完了までの期間において、前記駆動時間が計測完了時に比べて短時間である期間を有する電子体温計。
    A temperature measurement unit having an oscillation circuit including a resistance temperature detector;
    A controller that intermittently drives the oscillation circuit at regular time intervals and calculates a temperature value based on a frequency of a signal output from the oscillation circuit;
    With
    The control unit is configured to be able to change a driving time in intermittent driving of the oscillation circuit,
    An electronic thermometer having a period in which the driving time is shorter than that at the time of completion of measurement in a period from the start of measurement to completion.
  2.  請求項1に記載の電子体温計であって、
     前記制御部は、前記駆動時間と、該駆動時間内に前記発振回路から出力される信号のピーク数とから、前記発振回路から出力される信号の周波数を算出する電子体温計。
    The electronic thermometer according to claim 1,
    The control unit is an electronic thermometer that calculates a frequency of a signal output from the oscillation circuit from the driving time and the number of peaks of the signal output from the oscillation circuit within the driving time.
  3.  請求項1又は2に記載の電子体温計であって、
     前記制御部は、計測開始からの経過時間に基づいて前記駆動時間を変更する電子体温計。
    The electronic thermometer according to claim 1 or 2,
    The said control part is an electronic thermometer which changes the said drive time based on the elapsed time from the measurement start.
  4.  請求項1又は2に記載の電子体温計であって、
     前記制御部は、算出した温度値に基づいて前記駆動時間を変更する電子体温計。
    The electronic thermometer according to claim 1 or 2,
    The said control part is an electronic thermometer which changes the said drive time based on the calculated temperature value.
  5.  請求項1又は2に記載の電子体温計であって、
     前記制御部は、算出した温度値と前回駆動時に算出された温度値との差分に基づいて前記駆動時間を変更する電子体温計。
    The electronic thermometer according to claim 1 or 2,
    The said control part is an electronic thermometer which changes the said drive time based on the difference of the calculated temperature value and the temperature value calculated at the time of last drive.
  6.  請求項1又は2に記載の電子体温計であって、
     前記制御部は、算出した温度値の単位時間当たりの変化率に基づいて前記駆動時間を変更する電子体温計。
    The electronic thermometer according to claim 1 or 2,
    The said control part is an electronic thermometer which changes the said drive time based on the change rate per unit time of the calculated temperature value.
PCT/JP2012/079296 2012-03-13 2012-11-12 Electronic thermometer WO2013136586A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-056027 2012-03-13
JP2012056027A JP2013190282A (en) 2012-03-13 2012-03-13 Electronic thermometer

Publications (1)

Publication Number Publication Date
WO2013136586A1 true WO2013136586A1 (en) 2013-09-19

Family

ID=49160539

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/079296 WO2013136586A1 (en) 2012-03-13 2012-11-12 Electronic thermometer

Country Status (2)

Country Link
JP (1) JP2013190282A (en)
WO (1) WO2013136586A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6069526A (en) * 1983-09-24 1985-04-20 Casio Comput Co Ltd Electronic temperature measuring device
JPS60142225A (en) * 1983-12-28 1985-07-27 Toshiba Corp Electronic clinical thermometer
JPH0542606B2 (en) * 1984-01-27 1993-06-29 Terumo Corp
JP2003028726A (en) * 2001-07-12 2003-01-29 Citizen Electronics Co Ltd Electronic clinical thermometer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6069526A (en) * 1983-09-24 1985-04-20 Casio Comput Co Ltd Electronic temperature measuring device
JPS60142225A (en) * 1983-12-28 1985-07-27 Toshiba Corp Electronic clinical thermometer
JPH0542606B2 (en) * 1984-01-27 1993-06-29 Terumo Corp
JP2003028726A (en) * 2001-07-12 2003-01-29 Citizen Electronics Co Ltd Electronic clinical thermometer

Also Published As

Publication number Publication date
JP2013190282A (en) 2013-09-26

Similar Documents

Publication Publication Date Title
US7549792B2 (en) Electronic thermometer with selectable modes
WO2007007607A1 (en) Electronic clinical thermometer, and control method and control program for electronic clinical thermometer
TW201003051A (en) Electronic thermometer and control method thereof
JP2007068839A (en) Electronic thermometer for women, and method and program for electronic thermometer for women
EP1906162B1 (en) Electronic clinical thermometer, control method and control program for electronic clinical thermometer
JP5596323B2 (en) Electronic thermometer and control method of electronic thermometer
US9267848B2 (en) Thermometer using differential temperature measurements
US7778791B2 (en) Electronic clinical thermometer, method of controlling the same, and control program
JP2005098982A (en) Electronic clinical thermometer
WO2013145542A1 (en) Electronic clinical thermometer and control method therefor
JP5517636B2 (en) Electronic thermometer and control method
WO2013136586A1 (en) Electronic thermometer
JP5432066B2 (en) Electronic thermometer and its control method
JP5378028B2 (en) Electronic thermometer and operation control method
JP2007071776A (en) Electronic clinical thermometer for women, and control method and control program for electronic clinical thermometer for women
JP5300613B2 (en) Electronic thermometer
JPS5951321A (en) Electronic clinical thermometer
JP5227572B2 (en) Electronic thermometer with selectable mode
JP2010237149A (en) Electronic clinical thermometer and operation control method
JP2017156206A (en) Electronic thermometer
JPS62190427A (en) Electronic clinical thermometer
JP2011002236A (en) Electronic clinical thermometer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12871422

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12871422

Country of ref document: EP

Kind code of ref document: A1