WO2013136527A1 - Path selection method and wireless device - Google Patents

Path selection method and wireless device Download PDF

Info

Publication number
WO2013136527A1
WO2013136527A1 PCT/JP2012/056940 JP2012056940W WO2013136527A1 WO 2013136527 A1 WO2013136527 A1 WO 2013136527A1 JP 2012056940 W JP2012056940 W JP 2012056940W WO 2013136527 A1 WO2013136527 A1 WO 2013136527A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
power supply
evaluation value
value
wireless device
Prior art date
Application number
PCT/JP2012/056940
Other languages
French (fr)
Japanese (ja)
Inventor
岳夫 本田
秀成 三輪
瑞直 石川
正和 由良
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to PCT/JP2012/056940 priority Critical patent/WO2013136527A1/en
Publication of WO2013136527A1 publication Critical patent/WO2013136527A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/04Communication route or path selection, e.g. power-based or shortest path routing based on wireless node resources
    • H04W40/10Communication route or path selection, e.g. power-based or shortest path routing based on wireless node resources based on available power or energy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0219Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave where the power saving management affects multiple terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/18Self-organising networks, e.g. ad-hoc networks or sensor networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to a route selection method and a wireless device.
  • each node transmits a packet to a destination by relaying the packet received from an adjacent node to another node based on communication path information. That is, each node calculates an evaluation value of a plurality of communication paths leading to a certain target node, selects an adjacent node included in a communication path with a better evaluation value as a relay node as a packet transfer destination, and selects a packet. Forward.
  • the communication path evaluation value is calculated using, for example, an evaluation formula that combines a plurality of types of evaluation parameters.
  • a node using an external power source such as an AC power source as a driving power source and a node using an internal power source such as a battery as the driving power source coexist. Even in this case, each node selects a relay node as a packet transfer destination regardless of the type of power supply of the node. For this reason, nodes using an AC power source and nodes using a battery are equally selected as packet transfer destinations. However, a node using a battery becomes unusable when the electric power stored in the battery is exhausted. Therefore, it is desired to suppress the power consumption of the node using the battery as much as possible.
  • each node acquires information indicating the type of power supply of other nodes, and when the acquired information indicates an AC power supply, the other node is selected as a packet transfer destination, There is a technique for excluding other nodes from the packet transfer destination when a battery is indicated. Further, there is a technique in which each node measures the remaining power of the battery of another node and determines whether or not to select another node as a packet transfer destination based on the measured remaining power.
  • JP 2004-282268 A Japanese Patent Laid-Open No. 2005-160062
  • the above-described conventional technology has a problem in that although it is possible to suppress power consumption of a node using a battery as a power source, an appropriate communication path may not necessarily be selected.
  • the other node having the smallest remaining power is excluded from the packet transfer destination. Only the node using the AC power supply is selected as the packet transfer destination. For this reason, when nodes using AC power supplies are installed at positions separated from each other, the communication path becomes a detour and there is a possibility that the arrival rate of the packet is lowered.
  • the disclosed technology has been made in view of the above, and provides a route selection method and a wireless device capable of selecting an appropriate communication route while suppressing power consumption of a node using a battery as a power source. With the goal.
  • the route selection method disclosed in the present application is, in one aspect, a route selection method in a wireless device constituting an ad hoc network.
  • the route selection method power information indicating whether an adjacent wireless device or the power supply of the wireless device is an internal power supply or an external power supply is acquired.
  • the route selection method calculates a first value as an evaluation value of a route between the adjacent wireless device and the wireless device when the acquired power supply information indicates an internal power supply.
  • a second value indicating that the evaluation value is higher in quality than the first value is calculated.
  • the route selection method may include the neighboring corresponding to the evaluation value representing the highest quality among the addition values of the evaluation value of the route from each adjacent wireless device to the destination and the calculated evaluation value. Are selected as transfer destinations when packets are transmitted to the destination.
  • route selection method it is possible to select an appropriate communication route while suppressing power consumption of a node using a battery as a power source.
  • FIG. 1 is a diagram illustrating the configuration of the ad hoc network according to the first embodiment.
  • FIG. 2 is a diagram illustrating an example of a data structure of a hello packet according to the first embodiment.
  • FIG. 3 is a functional block diagram illustrating the configuration of the node according to the first embodiment.
  • FIG. 4 is a diagram illustrating an example of a data structure of the work table according to the first embodiment.
  • FIG. 5 is a diagram illustrating an example of a data structure of the communication path table according to the first embodiment.
  • FIG. 6 is a diagram illustrating an example of a data structure of a conversion table held by the evaluation value calculation unit according to the first embodiment.
  • FIG. 7 is a diagram for explaining an example of a processing flow from when the node according to the first embodiment receives a hello packet to when a data packet transfer destination is selected.
  • FIG. 8 is a flowchart illustrating a processing procedure of processing for calculating an evaluation value of a wireless link from a node according to the first embodiment to a destination node and storing the evaluation value in a communication path table.
  • FIG. 9 is a flowchart showing a processing procedure of processing for transferring a data packet.
  • FIG. 10 is a flowchart illustrating a processing procedure of processing for transmitting a hello packet.
  • FIG. 11 is a flowchart illustrating a processing procedure for transmitting a data packet.
  • FIG. 12 is a diagram illustrating verification conditions of the verification method according to the first embodiment.
  • FIG. 13 is a diagram illustrating weighting factors of other evaluation parameters.
  • FIG. 14 is a diagram illustrating a configuration of an ad hoc network applied to a simulation program.
  • FIG. 15 is a diagram illustrating a result of comparing the average value of the number of relay packets of the battery nodes included in the ad hoc network for each verification condition.
  • FIG. 16 is a diagram illustrating a result of comparing the average value of the number of relay packets of the AC power supply node included in the ad hoc network for each verification condition.
  • FIG. 17 is a diagram illustrating a result of comparing the ratio between the number of relay packets of the AC power supply node and the number of relay packets of the battery node in the total number of packets for each verification condition.
  • FIG. 15 is a diagram illustrating a result of comparing the average value of the number of relay packets of the battery nodes included in the ad hoc network for each verification condition.
  • FIG. 16 is a diagram illustrating
  • FIG. 18 is a diagram illustrating a result of comparing the drop rate for each verification condition.
  • FIG. 19 is a diagram (part 1) illustrating an example of a data structure of a conversion table held by the evaluation value calculation unit according to the second embodiment.
  • FIG. 20 is a diagram (part 2) illustrating an example of a data structure of a conversion table held by the evaluation value calculation unit according to the second embodiment.
  • FIG. 21 is a flowchart illustrating a processing procedure of processing for calculating an evaluation value of a wireless link from a node according to the second embodiment to a destination node and storing the evaluation value in a communication path table.
  • FIG. 19 is a diagram (part 1) illustrating an example of a data structure of a conversion table held by the evaluation value calculation unit according to the second embodiment.
  • FIG. 20 is a diagram (part 2) illustrating an example of a data structure of a conversion table held by the evaluation value calculation unit according to the second embodiment.
  • FIG. 21 is a flowchart illustrating a processing
  • FIG. 22 is a diagram illustrating a result of comparing the number of out-of-battery nodes included in the ad hoc network for each verification condition.
  • FIG. 23 is a diagram illustrating a hardware configuration of a computer that configures a node according to the first and second embodiments.
  • FIG. 1 is a diagram illustrating the configuration of the ad hoc network according to the first embodiment.
  • the ad hoc network includes a GW (Gate Way) 1 and nodes 100a to 100e.
  • the nodes 100a to 100e are examples of wireless devices.
  • the ad hoc network may have other nodes.
  • GW1 and each of the nodes 100a to 100e are connected to adjacent nodes by wireless links.
  • a wireless link is an example of a route.
  • the GW 1 is connected to the nodes 100c, 100d, and 100e.
  • the node 100a is connected to the nodes 100b and 100c.
  • the node 100b is connected to the nodes 100a, 100d, and 100e.
  • the node 100c is connected to the nodes 100a, 100e, and GW1.
  • the node 100d is connected to the nodes 100b and GW1.
  • the node 100e is connected to the nodes 100b, 100c, and GW1.
  • the nodes 100a, 100b, and 100e are nodes (hereinafter referred to as “AC power supply nodes”) that use AC power as an example of external power as drive power.
  • the nodes 100c and 100d are nodes (hereinafter referred to as “battery nodes”) that use batteries, which are examples of internal power supplies, as drive power supplies.
  • the nodes 100a to 100e are collectively referred to as the node 100 when the nodes 100a to 100e are not particularly distinguished.
  • the node 100 constructs a communication path by transmitting and receiving a hello packet.
  • the node 100 calculates a communication path evaluation value using a plurality of types of evaluation parameters including a parameter indicating the type of power supply of the node 100 or the adjacent node 100.
  • the node 100 receives the data packet to be transferred or transmits a new data packet, the node 100 selects a communication path corresponding to the evaluation value indicating the highest quality, and selects the selected communication path. The data packet is transferred.
  • the node 100 calculates a different value as the evaluation value of the radio link with the adjacent node 100 depending on whether the power type of the adjacent node 100 or the own node 100 is a battery or an AC power supply. To do. Specifically, when the type of power supply of the adjacent node 100 or the own node 100 is an AC power supply, the node 100 uses a value indicating that the quality is higher than the value corresponding to the battery as the evaluation value of the radio link. calculate. Then, the node 100 transmits, to the destination, a route having the highest quality of the added value of the evaluation value of the wireless link from the adjacent node 100 to the destination node 100 and the calculated evaluation value of the wireless link. Select as the destination of the data packet. Thereby, it is possible to preferentially select the communication path including the AC power supply node while reducing the opportunity for selecting the communication path including the battery node.
  • the higher the quality of the radio link the smaller the evaluation value.
  • the evaluation value that decreases as the quality of the radio link increases is equivalent to an evaluation value in which the quality of the radio link is replaced with the concept of distance, and is also referred to as “path quality distance”.
  • FIG. 2 is a diagram illustrating an example of a data structure of a hello packet according to the first embodiment.
  • this hello packet has a transmission source, power supply information, a destination, ⁇ D, and the number of hops.
  • the “source” stores the address of the node that is the source of the hello packet.
  • the “power supply information” stores power supply information indicating whether the power source of the “transmission source” node of the hello packet is a battery or an AC power supply.
  • “Destination” stores the address of the destination node of the communication path.
  • “ ⁇ D” stores the total value of the evaluation values of the radio links from the “destination” node to the “transmission source” node of the hello packet.
  • the “hop count” stores the number of hops from the “source” node to the “destination” node of the hello packet.
  • FIG. 3 is a functional block diagram illustrating the configuration of the node according to the first embodiment.
  • the node 100 according to the first embodiment includes a wireless communication unit 110, an input unit 120, a display unit 130, a storage unit 140, and a control unit 150.
  • the wireless communication unit 110 is a device that performs wireless data communication with adjacent nodes.
  • the wireless communication unit 110 corresponds to a wireless link module or the like.
  • the control unit 150 transmits / receives a hello packet, a data packet, and the like to / from an adjacent node via the wireless communication unit 110.
  • the input unit 120 is an input device for inputting various information to the node 100.
  • the input unit 120 corresponds to a keyboard, a mouse, a touch panel, and the like.
  • the display unit 130 is a display device that displays various types of information.
  • the display unit 130 corresponds to a display, a touch panel, and the like.
  • the storage unit 140 stores a work table 141 and a communication path table 142, for example.
  • the storage unit 140 corresponds to, for example, a semiconductor memory element such as a RAM (Random Access Memory), a ROM (Read Only Memory), and a flash memory (Flash Memory), or a storage device such as a hard disk or an optical disk.
  • the work table 141 is a table for temporarily storing hello packet information.
  • FIG. 4 is a diagram illustrating an example of a data structure of the work table according to the first embodiment. As shown in FIG. 4, this work table 141 has a destination, a transfer destination, ⁇ D, D, and the number of hops. Among these, the destination and the transfer destination store the destination and source of the hello packet shown in FIG. As the hop count, a value obtained by incrementing the hop count of the hello packet is stored. D stores the evaluation value of the radio link between the transfer destination node and the own node 100. ⁇ D stores an addition value of the value of ⁇ D of the hello packet and the value of D of the work table 141.
  • the communication path table 142 is a table that stores information on communication paths.
  • FIG. 5 is a diagram illustrating an example of a data structure of the communication path table according to the first embodiment. As illustrated in FIG. 5, the communication path table 142 stores a destination, a transfer destination, ⁇ D, the number of hops, and an update time in association with each other.
  • the destination indicates the destination of the packet.
  • the transfer destination indicates a transfer destination when the packet is transferred to the destination.
  • ⁇ D is a total value of the evaluation values of the radio links from the own node 100 to the destination node.
  • the number of hops indicates the number of hops from the own node 100 to the destination node.
  • the update time indicates the latest update time of the record in the communication path table 142.
  • the communication path table 142 shown in FIG. 5 indicates that there are a plurality of communication paths having the same destination. For example, in FIG. 5, there are two communication paths for the destination “GW1”. Specifically, there are a communication path having the transfer destination “node 100b” and a communication path having the transfer destination “node 100c”. In FIG. 5, for convenience of explanation, the name of the node is shown as the destination or transfer destination, but the address of the node may be registered.
  • the control unit 150 includes a power supply information acquisition unit 151, an evaluation value calculation unit 152, a route selection unit 153, a hello packet generation unit 154, and a data packet generation unit 155.
  • the control unit 150 corresponds to an integrated device such as an application specific integrated circuit (ASIC) or a field programmable gate array (FPGA).
  • the power source information acquisition unit 151 acquires and acquires power source information indicating whether the power source of the adjacent node or the own node 100 is a battery or an AC power source at the time of transmission / reception of a hello packet with the adjacent node.
  • the power supply information is output to the evaluation value calculation unit 152.
  • the power information acquisition unit 151 When receiving the hello packet, the power information acquisition unit 151 extracts the power information included in the hello packet and acquires the power information of the adjacent node that is the transmission source of the hello packet. Furthermore, the power information acquisition unit 151 acquires the power information of the own node 100 held in a predetermined area of the storage unit 140. The power information acquisition unit 151 outputs the acquired power information of adjacent nodes and the power information of the own node 100 to the evaluation value calculation unit 152.
  • the evaluation value calculation unit 152 calculates the evaluation value D of the radio link between the adjacent node and the own node 100 at the time of transmission / reception of the hello packet with the adjacent node.
  • the evaluation value D of the radio link calculated by the evaluation value calculation unit 152 is a different value depending on the type of power supply of the adjacent node or the own node 100. For example, the evaluation value calculation unit 152 calculates “20” as the evaluation value of the radio link when the power supply of the adjacent node or the own node 100 is a battery. On the other hand, the evaluation value calculation unit 152 sets “1” indicating that the evaluation value of the radio link is higher than “20” as the evaluation value of the radio link when the power supply of the adjacent node or the own node 100 is an AC power supply. calculate.
  • the evaluation value calculation unit 152 detects the reception quality of a hello packet when a hello packet is received from an adjacent node.
  • the evaluation value calculation unit 152 uses an average value of the radio wave intensity of the hello packet, a dispersion value of the radio wave intensity of the hello packet, an average value of the reception period of the hello packet, and a reception period of the hello packet The variance value of is detected.
  • the evaluation value calculation unit 152 receives the power supply information of the adjacent node and the power supply information of the own node 100 from the power supply information acquisition unit 151.
  • the evaluation value calculation unit 152 holds a conversion table in which each reception quality and power supply information as evaluation parameters are associated with evaluation values that are conversion values of the evaluation parameters.
  • FIG. 6 is a diagram illustrating an example of a data structure of a conversion table held by the evaluation value calculation unit 152 according to the first embodiment.
  • the conversion table shown in FIG. 6 stores evaluation parameters and evaluation values in association with each other.
  • the evaluation parameter includes items of radio wave intensity average value, radio wave intensity dispersion value, reception cycle average value, reception cycle dispersion value, and power supply information.
  • the radio field intensity average value indicates the average radio field intensity of the hello packet.
  • the radio field intensity dispersion value indicates the dispersion value of the radio field intensity of the hello packet.
  • the reception period average value indicates an average value of the reception period of the hello packet.
  • the reception cycle dispersion value indicates a dispersion value of the reception cycle of the hello packet.
  • the evaluation parameter further includes an item of power supply information.
  • the power source information indicates whether the power source of the node is a battery or an AC power source.
  • an evaluation value shows the conversion value of each evaluation parameter.
  • the evaluation value is smaller than the value corresponding to the battery when the power supply information indicates an AC power supply. For example, in FIG. 6, the evaluation value “1” when the power supply information “ps” is “AC power supply” is smaller than the evaluation value “20” corresponding to “battery”.
  • the evaluation value calculation unit 152 compares the conversion table with the detected reception quality and the received power supply information to determine an evaluation value. For example, in FIG. 6, the evaluation value calculation unit 152 determines the evaluation value “2” when the radio wave intensity average value “x” that is the reception quality is “45”. For example, the evaluation value calculation unit 152 determines the evaluation value “20” when the power supply information “ps” is “battery”.
  • the evaluation value calculation unit 152 applies the determined evaluation value to an evaluation formula that adds each reception quality and power supply information, which are evaluation parameters, while weighting them, so that the adjacent node and the own node 100 can be compared.
  • the evaluation value D of the wireless link is calculated.
  • the evaluation value calculation unit 152 calculates the evaluation value D of the radio link between the adjacent node and the own node 100 by applying the determined evaluation value to the evaluation formula shown by the following formula (1). To do.
  • Equation (1) a, b, c, d, and d are weighting factors.
  • Px, Py, Pz, Pw, and Pps are evaluation parameters indicating a radio wave intensity average value, a radio wave intensity variance value, a reception cycle average value, a reception cycle variance value, and radio wave information, respectively.
  • the evaluation value calculation unit 152 stores the calculated D in the work table 141.
  • the evaluation value calculation unit 152 uses the following equation (2). May be used to calculate the evaluation value D of the radio link.
  • Db is D in the formula (1).
  • D calculated using equation (2) is a round-trip evaluation value of the radio link.
  • the evaluation value calculation unit 152 when the evaluation value calculation unit 152 receives a hello packet, the evaluation value calculation unit 152 stores information included in the hello packet in the work table 141 and updates the communication path table 142 based on the record of the work table 141.
  • the evaluation value calculation unit 152 receives the hello packet and sets the destination included in the hello packet as the destination of the work table 141.
  • the evaluation value calculation unit 152 sets the transmission source node of the hello packet as the transfer destination of the work table 141.
  • the evaluation value calculation unit 152 stores a value obtained by adding the D value of the work table 141 to the ⁇ D value of the hello packet in the ⁇ D of the work table 141.
  • ⁇ D stored in the work table 141 corresponds to the evaluation value of the radio link from the own node 100 to the destination node.
  • the evaluation value calculation unit 152 stores a value obtained by incrementing the hop number of the hello packet in the hop number of the work table 141. Note that the evaluation value calculation unit 152 sets D in the work table 141 to have been set by the above processing.
  • the evaluation value calculation unit 152 updates the communication path table 142 based on the work table 141. Specifically, the evaluation value calculation unit 152 sets the destination, transfer destination, ⁇ D, and hop count included in the work table 141 in the communication path table 142, and sets the current time as the update time of each record.
  • the route selection unit 153 is a processing unit that selects a packet route when a packet is transmitted to a destination based on the communication route table 142.
  • a process in which the route selection unit 153 selects a route of a packet will be described.
  • the route selection unit 153 receives a data packet from a data packet generation unit 155 described later.
  • the route selection unit 153 refers to the communication route table 142 and compares ⁇ D for each identical destination. As a result of the comparison, the route selection unit 153 selects the transfer destination node having the smallest value of ⁇ D in the communication route table 142, and transmits the data packet to the selected transfer destination node.
  • ⁇ D for each identical destination.
  • the path selection unit 153 selects the node 100b that is the first transfer destination having the smallest value of ⁇ D, and transmits the data packet to the selected node 100b. In other words, the path selection unit 153 does not select the node 100c that is the second-stage transfer destination having a value of ⁇ D larger than that of the first stage.
  • Node 100b is an AC power supply node
  • node 100c is a battery node. Therefore, the node 100 according to the present embodiment can reduce the chance of selecting a route in which the transmission destination of the data packet is a battery node, and can preferentially select the AC power supply node as the transmission destination of the data packet.
  • the route selection unit 153 selects a route for transferring the data packet.
  • the route selection unit 153 refers to the communication route table 142 and compares ⁇ D for each identical destination. As a result of the comparison, the route selection unit 153 selects the transfer destination node having the smallest value of ⁇ D in the communication route table 142, and transfers the data packet to the selected transfer destination node.
  • the destinations of the first stage and the second stage are the same, and the value of the first stage ⁇ D is smaller than the value of the second stage ⁇ D.
  • the route selection unit 153 selects the node 100b that is the first-stage transfer destination having the smallest value of ⁇ D, and transfers the data packet to the selected node 100b.
  • the path selection unit 153 does not select the node 100c that is the second-stage transfer destination having a value of ⁇ D larger than that of the first stage.
  • Node 100b is an AC power supply node
  • node 100c is a battery node. Therefore, the node 100 according to the present embodiment can reduce the chance of selecting a route in which the transfer destination of the data packet is a battery node, and can preferentially select the AC power supply node as the transfer destination of the data packet.
  • the hello packet generation unit 154 is a processing unit that generates a hello packet based on the communication path table 142 and broadcasts the generated hello packet. For example, the hello packet generation unit 154 generates a hello packet every time a clock event occurs, and broadcasts the generated hello packet.
  • the hello packet generation unit 154 refers to the communication path table 142 and groups records for each destination.
  • the hello packet generation unit 154 sets a common destination for the group as the destination of the hello packet, and sets its own node 100 as the transmission source of the hello packet.
  • the hello packet generation unit 154 sets the hop number of the communication path table 142 to the hop number of the hello packet, and sets the power information of the own node 100 to the power information of the hello packet.
  • the hello packet generation unit 154 generates a hello packet by setting the minimum ⁇ D among the ⁇ Ds included in the group to ⁇ D of the hello packet.
  • the data packet generation unit 155 is a processing unit that generates a data packet and outputs the generated data packet to the route selection unit 153. For example, the data packet generation unit 155 generates a data packet when receiving a data packet transmission instruction from the input unit 120. The data packet generation unit 155 may generate a data packet every time a clock event occurs.
  • FIG. 7 is a diagram for explaining an example of a processing flow from when the node 100 according to the first embodiment receives a hello packet to when a transfer destination of a data packet is selected.
  • the node 100 when the node 100 receives the hello packet 161 from the adjacent node, the node 100 extracts the power supply information included in the hello packet 161, so that the power supply information of the adjacent node that is the transmission source of the hello packet 161 is obtained. 162 is acquired. The node 100 acquires the power supply information 163 of the own node 100 held in the storage unit 140. Further, the node 100 detects the reception quality 164 of the received hello packet 161.
  • the node 100 associates the reception quality and power supply information as evaluation parameters with evaluation values that are conversion values of the evaluation parameters, power supply information 162 of adjacent nodes, and power supply information 163 of the own node 100. And the reception quality 164 is compared.
  • the own node 100 determines the evaluation value as a result of the comparison, and applies the determined evaluation value to an evaluation expression that weights and adds each evaluation parameter, thereby allowing the radio link between the adjacent node and the own node 100 to The evaluation value 165 is calculated.
  • the node 100 calculates the evaluation value 165 of the wireless link round-trip. Also good.
  • the node 100 adds the calculated evaluation value 165 to the evaluation value 166 of the wireless link from the adjacent node to the destination node included in the hello packet 161, and reaches from the node 100 to the destination node.
  • An evaluation value 167 of the wireless link is calculated.
  • the own node 100 sets the evaluation value 167 of the radio link from the own node 100 to the destination node in the communication route table 168, and updates the communication route table 168.
  • the communication path table 168 corresponds to the communication path table 142 illustrated in FIG.
  • the node 100 when the node 100 receives the data packet 169 to be transferred, the node 100 refers to the communication path table 142 and compares ⁇ D for each identical destination. As a result of the comparison, the node 100 selects the transfer destination node having the smallest value of ⁇ D, and transfers the data packet 169 to the selected transfer destination node.
  • FIG. 8 is a flowchart illustrating a processing procedure of processing for calculating an evaluation value of a wireless link from a node according to the first embodiment to a destination node and storing the evaluation value in a communication path table.
  • the process illustrated in FIG. 8 is executed when a hello packet is received.
  • step S101 when the node 100 has not received the hello packet (step S101; No), the process ends.
  • the node 100 receives the hello packet (step S101; Yes)
  • the node 100 acquires the power information of the adjacent node that is the transmission source of the hello packet and the power information of the own node 100 held in the storage unit 140. (Step S102). Further, the node 100 detects the reception quality of the received hello packet.
  • the node 100 calculates the evaluation value D of the radio link between the adjacent node and the own node 100 based on the acquired power supply information and the received reception quality of the hello packet (step S103).
  • the node 100 newly creates a record in the work table 141 (step S104), and sets the “destination” included in the hello packet in the “destination” of the work table 141 (step S105).
  • the node 100 sets the address of the “transmission source” node of the hello packet in “transfer destination” of the work table 141 (step S106).
  • the node 100 stores “D” calculated in step S103 in “D” of the work table 141 (step S107).
  • the node 100 stores a value obtained by adding “ ⁇ D” included in the hello packet and “D” of the work table 141 as “ ⁇ D” of the work table 141 (step S108).
  • step S109 When the same “destination” and “transfer destination” records do not exist in the communication path table 142 (step S109; No), the node 100 stores the created record in the work table 141 in the communication path table 142. A new addition is made (step S110). Then, the node 100 moves the process to step S112.
  • step S109 when the same “destination” and “forwarding destination” records exist in the communication path table 142 (step S109; Yes), the node 100 overwrites them (step S111).
  • step S112 When there is an unprocessed packet received (step S112; Yes), the node 100 acquires unprocessed information (step S113), and returns the process to step S104.
  • step S112 when there is no unprocessed packet received (step S112; No), the node 100 ends the process.
  • FIG. 9 is a flowchart showing a processing procedure of processing for transferring a data packet. For example, the process shown in FIG. 9 is executed when a data packet is received.
  • step S201 when the node 100 has not received a data packet (step S201; No), the process ends.
  • step S201; Yes when receiving the data packet (step S201; Yes), the node 100 determines whether or not the destination of the data packet is its own address (step S202). If the destination of the data packet is its own address (step S202; Yes), the node 100 executes predetermined data processing based on the data packet (step S203).
  • the node 100 searches the communication path table 142 and groups the same “destination” (step S204). The node 100 compares “ ⁇ D” in the group, selects the “transfer destination” with the smallest “ ⁇ D” (step S205), and adds the selected “transfer destination” to the header of the data packet (step S206). ). Then, the node 100 transfers the data packet to the selected “transfer destination” node (step S207).
  • FIG. 10 illustrates a process for transmitting a hello packet.
  • FIG. 10 is a flowchart illustrating a processing procedure of processing for transmitting a hello packet. For example, the process shown in FIG. 10 is executed when a clock event occurs.
  • step S301 when there is no clock event, the node 100 returns the process to step S301.
  • step S301 Yes
  • the node 100 searches the communication path table 142 and groups the same “destination” (step S302).
  • the node 100 sets a common destination for the group in the “destination” of the hello packet (step S303).
  • the node 100 sets its own address as the “source” of the hello packet (step S304).
  • the node 100 sets the “hop number” of the communication path table 142 to the “hop number” of the hello packet (step S305), and sets the power information of the node 100 to the “power information” of the hello packet (step S306). ).
  • the node 100 sets the minimum “ ⁇ D” in the group to “ ⁇ D” of the hello packet (step S307). Then, the node 100 transmits a hello packet (step S308).
  • FIG. 11 is a flowchart illustrating a processing procedure for transmitting a data packet. For example, the process illustrated in FIG. 11 is executed when a data packet transmission instruction is received.
  • step S401 when the node 100 has not received a data packet transmission instruction (step S401; No), the process returns to step S401.
  • step S401 when the node 100 receives a data packet transmission instruction (step S401; Yes), the node 100 generates a data packet (step S402).
  • the node 100 searches the communication route table 142 and groups the same “destination” (step S403).
  • the node 100 compares “ ⁇ D” in the group and selects the “transfer destination” with the smallest “ ⁇ D” (step S404). The node 100 adds the selected “transfer destination” to the header of the data packet (step S405). Then, the node 100 transmits a data packet (step S406).
  • the node 100 included in the ad hoc network calculates a different value as the evaluation value of the radio link with the adjacent node according to the type of the power supply of the adjacent node or the own node 100. That is, the node 100 calculates a value indicating that the quality is higher than the value corresponding to the battery as the evaluation value of the radio link when the type of the power supply of the adjacent node or the node 100 is an AC power supply. Then, the own node 100 selects, as the transfer destination of the packet to be transmitted to the destination, the route having the highest quality value of the evaluation values of the radio links from the own node 100 to the destination node.
  • the node 100 can preferentially select the communication path including the AC power supply node while reducing the chance of selecting the communication path including the battery node. As a result, the node 100 can select an appropriate communication path while suppressing the power consumption of the battery node. For example, in the case where the AC power supply nodes are installed at positions separated from each other, the node 100 does not make a detour by selecting a communication path including a battery node instead of the AC power supply node, and packet It is possible to select a route that maintains the arrival rate.
  • the battery life of a battery node and the arrival rate of packets in an ad hoc network were verified using an existing simulation program.
  • the average value of the number of packets relayed by each of the AC power supply node and the battery node as an intermediate node of the ad hoc network (hereinafter “relay packet number”) is compared for each verification condition described later.
  • the average value of the number of relay packets is a value obtained by dividing the total number of packets by the number of AC power supply nodes or the number of battery nodes.
  • the Drop rate which is the ratio of unreachable packets that have not reached the destination, with respect to all packets is compared for each verification condition described later.
  • FIG. 12 is a diagram illustrating verification conditions of the verification method according to the first embodiment.
  • the above-described evaluation formula (1) is applied to the simulation program.
  • the verification condition “A” is a condition that the evaluation parameter “Pps” corresponding to the power supply information is deleted from the evaluation formula shown by the formula (1). That is, in the verification condition “A”, “0” is set to the weighting coefficient “e” of the evaluation parameter “Pps”.
  • the verification condition “B” is a condition that a relatively small value is set in the weighting coefficient “e” of the evaluation parameter “Pps” in the evaluation formula shown by the formula (1).
  • the verification condition “C” is a condition in the evaluation formula shown by the formula (1) that a value larger than the value of the verification condition “B” is set for the weighting coefficient “e” of the evaluation parameter “Pps”. . That is, in the verification condition “C”, “100” is set to the weighting coefficient “e” of the evaluation parameter “Pps”.
  • the verification condition “D” is a condition that the maximum value in the simulation program is set to the weighting coefficient “e” of the evaluation parameter “Pps” in the evaluation formula shown by the formula (1).
  • the maximum value “65535” is set to the weighting coefficient “e” of the evaluation parameter “Pps”.
  • the verification condition “D” corresponds to the prior art that excludes the battery node from the packet transfer destination.
  • the values shown in FIG. 13 are used as the weighting coefficients of evaluation parameters other than the evaluation parameter “Pps”.
  • FIG. 13 is a diagram illustrating weighting factors of other evaluation parameters.
  • the conversion table shown in FIG. 6 is used as a conversion table in which each evaluation parameter is associated with an evaluation value.
  • FIG. 14 is a diagram illustrating a configuration of an ad hoc network applied to a simulation program.
  • the ad hoc network shown in FIG. 14 includes one gateway (GW), 25 AC power supply nodes, and 81 battery nodes.
  • FIG. 15 is a diagram illustrating a result of comparing the average value of the number of relay packets of the battery nodes included in the ad hoc network for each verification condition.
  • FIG. 16 is a diagram illustrating a result of comparing the average value of the number of relay packets of the AC power supply node included in the ad hoc network for each verification condition.
  • FIG. 17 is a diagram illustrating a result of comparing the ratio between the number of relay packets of the AC power supply node and the number of relay packets of the battery node in the total number of packets for each verification condition. From the results shown in FIGS.
  • each node of the ad hoc network according to the first embodiment preferentially selects the communication path including the AC power supply node while reducing the chance of selecting the communication path including the battery node.
  • Example 1 it can be seen that the battery life of the battery node can be extended.
  • FIG. 18 is a diagram illustrating a result of comparing the drop rate for each verification condition. From the result shown in FIG. 18, the Drop rate corresponding to the verification condition “D” is the largest, and the Drop rate corresponding to the verification conditions “B” and “C” is maintained equal to the Drop rate corresponding to the verification condition “A”. You can see that. These results mean that each node of the ad hoc network according to the first embodiment selects an appropriate route that maintains the packet arrival rate.
  • the node according to the second embodiment is the same as the first embodiment except that the processing content of the evaluation value calculation unit 152 is different from the node according to the first embodiment, the description overlapping with the first embodiment is omitted.
  • the evaluation value calculation unit 152 measures the remaining power of the battery of the own node 100 at the time of transmission / reception of the hello packet with the adjacent node, and between the adjacent node and the own node 100 according to the measured remaining power. An evaluation value D of the radio link is calculated.
  • the evaluation value calculation unit 152 detects the reception quality of a hello packet when a hello packet is received from an adjacent node.
  • the evaluation value calculation unit 152 includes, as an example of reception quality, an average value of the radio wave intensity of the hello packet, a dispersion value of the radio wave intensity of the hello packet, an average value of the reception period of the hello packet, and a reception period of the hello packet. Detect the variance value.
  • the evaluation value calculation unit 152 receives the power supply information of the adjacent node and the power supply information of the own node 100 from the power supply information acquisition unit 151.
  • the evaluation value calculation unit 152 measures the remaining power of the battery when the power supply information of the own node 100 indicates the battery.
  • the evaluation value calculation unit 152 holds a conversion table in which each received product as an evaluation parameter, power supply information, and remaining power of the battery are associated with an evaluation value that is a conversion value of the evaluation parameter.
  • the conversion table shown in FIG. 19 stores the radio wave intensity average value, radio wave intensity dispersion value, reception period average value, reception period dispersion value, power supply information, and power supply information as evaluation parameters in association with each other.
  • the conversion table shown in FIG. 20 stores the remaining power of the battery as the evaluation parameter and the evaluation value of the power supply information indicating the battery in association with each other.
  • the explanation of the radio wave intensity average value, radio wave intensity dispersion value, reception period average value, reception period dispersion value, and power supply information is the same as that in FIG.
  • the remaining power of the battery indicates the remaining power of the battery of the own node 100.
  • an evaluation value shows the conversion value of each evaluation parameter.
  • the evaluation value is a fixed value smaller than the value corresponding to the battery when the power supply information indicates an AC power supply, and is larger than the fixed value corresponding to the AC power supply when the power supply information indicates a battery. It becomes. Furthermore, when the power supply information indicates a battery, the difference between the evaluation value and the fixed value corresponding to the AC power supply increases as the remaining power of the battery decreases. For example, in FIGS. 19 and 20, the evaluation value when the power supply information “ps” is “battery” becomes a larger value as the remaining power “b” of the battery is smaller. Further, in FIG. 19 and FIG. 20, the difference between the evaluation value when the power information “ps” is “battery” and the evaluation value “1” when the power information “ps” is “AC power” increases. .
  • the evaluation value calculation unit 152 determines the evaluation value by comparing the conversion table with the detected reception quality, the received power supply information, and the remaining power of the battery. For example, in FIG. 19, the evaluation value calculation unit 152 determines the evaluation value “1” when the power supply information “ps” is “AC power supply”. For example, in FIG. 19 and FIG. 20, the evaluation value calculation unit 152 causes the AC power supply when the power information “ps” is “battery” and the remaining power “b” of the battery of the node 100 is “5500”. An evaluation value “4” larger than the evaluation value “1” is determined.
  • the evaluation value calculation unit 152 determines the evaluation value “20” when the power supply information “ps” is “battery” and the remaining power “b” of the battery of the node 100 is “1500”. Then, the difference from the evaluation value “1” of the AC power supply is increased. That is, the evaluation value calculation unit 152 increases the difference between the evaluation value of the AC power source, which is a fixed value, and the evaluation value of the battery according to the decrease in the remaining power of the battery of the own node 100.
  • the evaluation value calculation unit 152 applies the determined evaluation value to an evaluation formula that adds each weighted reception quality and power supply information, which are evaluation parameters, while weighting, so that the node between the adjacent node and the own node 100 can be applied.
  • An evaluation value D of the radio link is calculated.
  • the evaluation value calculation unit 152 calculates the evaluation value D of the radio link between the above equation (1).
  • the evaluation value calculation unit 152 stores the calculated D in the work table 141.
  • FIG. 21 is a flowchart illustrating a processing procedure of processing for calculating an evaluation value of a wireless link from a node according to the second embodiment to a destination node and storing the evaluation value in a communication path table.
  • the process illustrated in FIG. 21 is executed when a hello packet is received. Note that steps S505 to S514 in FIG. 21 are the same as steps S104 to S113 in FIG. 8, and a detailed description thereof will be omitted.
  • step S501 when the node 100 has not received a hello packet (step S501; No), the process ends.
  • the node 100 receives the hello packet (step S501; Yes)
  • the node 100 obtains the power information of the adjacent node that is the transmission source of the hello packet and the power information of the own node 100 held in the storage unit 140. (Step S502). Further, the node 100 detects the reception quality of the received hello packet.
  • the node 100 measures the remaining power of the battery of the node 100 (Step S503).
  • the node 100 calculates the evaluation value D of the radio link between the adjacent node and the own node 100 based on the remaining battery power, the power supply information, and the reception quality of the hello packet (step S504), and the process is performed in step S505. Move to.
  • the node 100 included in the ad hoc network measures the remaining power of the battery when the power information of the node 100 is a battery.
  • the node 100 increases the difference between the evaluation value corresponding to the AC power source, which is a fixed value, and the evaluation value corresponding to the battery, according to the measured decrease in the remaining power of the battery.
  • the node 100 selects, as the transfer destination of the packet to be transmitted to the destination, the route having the highest quality value of the evaluation value of the radio link from the node 100 to the destination node.
  • the node 100 can reduce the chance of selecting a communication path including the battery node, and as a result, the number of nodes that run out of batteries can be suppressed. it can.
  • the number of battery nodes that run out of batteries (hereinafter referred to as “battery dead nodes”) among battery nodes in the ad hoc network was verified using an existing simulation program.
  • the number of battery exhausted nodes is compared for each verification condition.
  • the battery node whose number of relay packets of the battery node exceeds a predetermined number (for example, 1000) was counted as a battery dead node with a remaining power of “0”.
  • the verification conditions of this verification method are the same as the verification conditions “A” to “C” of the first embodiment shown in FIG. Further, in this verification method, the values of the first embodiment shown in FIG. 13 are used as the weighting coefficients of the evaluation parameters other than the evaluation parameter “Pps”.
  • the conversion table shown in FIG.19 and FIG.20 was used as a conversion table which matched each evaluation parameter and evaluation value.
  • the configuration shown in FIG. 14 is used as the configuration of the ad hoc network applied to the simulation program.
  • FIG. 22 is a diagram illustrating a result of comparing the number of out-of-battery nodes included in the ad hoc network for each verification condition.
  • the vertical axis indicates the number of nodes that have run out of battery
  • the horizontal axis indicates the time that has elapsed since the start of execution of the simulation program. From the results shown in FIG. 22, it is understood that the number of out-of-battery nodes corresponding to the verification conditions “B” and “C” is smaller than the verification condition “A” when the same time has elapsed. That is, in Example 2, it can be seen that the number of nodes that run out of batteries can be suppressed.
  • each component of the nodes 100 and 200 is functionally conceptual and does not necessarily need to be physically configured as illustrated. That is, the specific forms of the nodes 100 and 200 are not limited to those shown in the drawings, and can be configured to be functionally or physically distributed and integrated in arbitrary units according to various loads and usage conditions. For example, the functions of the processing units 151 to 155 in FIG.
  • FIG. 23 is a diagram illustrating a hardware configuration of a computer that configures a node according to the first and second embodiments.
  • the computer 300 includes a CPU 301 that executes various arithmetic processes, an input device 302 that receives input of data from a user, and a display 303.
  • the computer 300 also includes a reading device 304 that reads a program and the like from a storage medium, and an interface device 305 for connecting to other devices.
  • the computer 300 also includes a wireless communication device 306 that is wirelessly connected to other devices, a RAM 307 that temporarily stores various types of information, and a hard disk device 308. Each device 301 to 308 is connected to a bus 309.
  • the hard disk device 308 stores various programs such as a power information acquisition program, an evaluation value calculation program, and a route selection program.
  • the CPU 301 reads out each program stored in the hard disk device 308, develops it in the RAM 307, and performs various processes.
  • these programs can cause the computer to function as the power supply information acquisition unit 151, the evaluation value calculation unit 152, and the route selection unit 153 in FIG.
  • the computer 300 may read and execute a program stored in a storage medium such as a CD-ROM.
  • a storage medium such as a CD-ROM.
  • Each program may be stored in a storage device connected to a public line, the Internet, a LAN (Local Area Network), a WAN (Wide Area Network), or the like. In this case, the computer 300 may read and execute each program from these.

Abstract

This wireless device has a power supply information acquisition unit, a rating value calculation unit, and a path selection unit. The power supply information acquisition unit acquires power supply information indicating whether the power supply of a neighboring wireless device or the device itself is an internal power supply or an external power supply. The rating value calculation unit, if the power supply information acquired by the power supply information acquisition unit indicates an internal power supply, calculates a first value as a rating value of a path between the neighboring wireless device and the device itself. The rating value calculation unit, if the power supply information indicates an external power supply, calculates a second value representing being of higher quality than the first value as the rating value. The path selection unit selects a neighboring wireless device corresponding to the rating value representing being of highest quality among a sum of a rating value for a path from each neighboring wireless device to a destination and the rating value calculated at the rating value calculation unit, as a forwarding destination when transmitting packets to the destination.

Description

経路選択方法及び無線装置Route selection method and wireless device
 本発明は、経路選択方法及び無線装置に関する。 The present invention relates to a route selection method and a wireless device.
 近年、複数の無線装置が自律分散的に相互接続するアドホックネットワークの研究が進められている。以下では、無線装置を単にノードと表記する。アドホックネットワークでは、アクセスポイントは設置されず、各ノードが、隣接のノードから受信したパケットを通信経路情報に基づいて他のノードに中継することで、パケットを目的地に伝送する。すなわち、各ノードは、ある目的ノードに至る複数の通信経路の評価値を算出し、評価値がより良い通信経路に含まれる隣接のノードをパケットの転送先となる中継ノードとして選択し、パケットを転送する。通信経路の評価値は、例えば、複数種類の評価パラメータを組み合わせた評価式を用いて算出される。 In recent years, research on an ad hoc network in which a plurality of wireless devices are interconnected in an autonomous and distributed manner is underway. Hereinafter, the wireless device is simply referred to as a node. In an ad hoc network, an access point is not installed, and each node transmits a packet to a destination by relaying the packet received from an adjacent node to another node based on communication path information. That is, each node calculates an evaluation value of a plurality of communication paths leading to a certain target node, selects an adjacent node included in a communication path with a better evaluation value as a relay node as a packet transfer destination, and selects a packet. Forward. The communication path evaluation value is calculated using, for example, an evaluation formula that combines a plurality of types of evaluation parameters.
 また、最近のアドホックネットワークでは、交流電源などの外部電源を駆動電源として用いたノードと、電池などの内部電源を駆動電源として用いたノードとが混在することが想定されている。この場合であっても、各ノードは、ノードの電源の種別に関係なくパケットの転送先となる中継ノードを選択する。このため、交流電源を用いたノードと、電池を用いたノードとがパケットの転送先として均等に選択される。ただし、電池を用いたノードは、電池に蓄積された電力が使い尽くされると、使用不能となる。したがって、電池を用いたノードの消費電力をできるだけ抑えることが望まれる。 Also, in a recent ad hoc network, it is assumed that a node using an external power source such as an AC power source as a driving power source and a node using an internal power source such as a battery as the driving power source coexist. Even in this case, each node selects a relay node as a packet transfer destination regardless of the type of power supply of the node. For this reason, nodes using an AC power source and nodes using a battery are equally selected as packet transfer destinations. However, a node using a battery becomes unusable when the electric power stored in the battery is exhausted. Therefore, it is desired to suppress the power consumption of the node using the battery as much as possible.
 電池を用いたノードの消費電力を抑える技術として、各ノードが他ノードの電源の種別を示す情報を取得し、取得した情報が交流電源を示す場合に他ノードをパケットの転送先として選択し、電池を示す場合に他ノードをパケットの転送先から除外する技術がある。また、各ノードが他ノードの電池の残存電力を測定し、測定した残存電力を基に他ノードをパケットの転送先として選択するか否かを判定する技術がある。 As a technology to reduce the power consumption of nodes using batteries, each node acquires information indicating the type of power supply of other nodes, and when the acquired information indicates an AC power supply, the other node is selected as a packet transfer destination, There is a technique for excluding other nodes from the packet transfer destination when a battery is indicated. Further, there is a technique in which each node measures the remaining power of the battery of another node and determines whether or not to select another node as a packet transfer destination based on the measured remaining power.
特開2004-282268号公報JP 2004-282268 A 特開2005-160062号公報Japanese Patent Laid-Open No. 2005-160062
 しかしながら、上述した従来技術では、電源として電池を用いたノードの消費電力を抑えることができるものの、必ずしも適切な通信経路を選択することができない恐れがあるという問題があった。 However, the above-described conventional technology has a problem in that although it is possible to suppress power consumption of a node using a battery as a power source, an appropriate communication path may not necessarily be selected.
 すなわち、他ノードの電源の種別が電池を示す場合に他ノードをパケットの転送先から除外する技術では、電源として交流電源を用いたノードのみがパケットの転送先として選択される。このため、交流電源を用いたノードどうしが互いに離れた位置に設置されている場合には通信経路が遠回りとなり、パケットの到達率が低下する恐れがある。 That is, in the technique of excluding another node from the packet transfer destination when the power type of the other node indicates a battery, only the node using the AC power supply as the power supply is selected as the packet transfer destination. For this reason, when nodes using AC power supplies are installed at positions separated from each other, the communication path becomes a detour and there is a possibility that the arrival rate of the packet is lowered.
 また、他ノードの残存電力を基に他ノードをパケットの転送先として選択するか否かを判定する技術では、残存電力が最小となった他ノードがパケットの転送先から除外され、結果として、交流電源を用いたノードのみがパケットの転送先として選択される。このため、交流電源を用いたノードどうしが互いに離れた位置に設置されている場合には通信経路が遠回りとなり、パケットの到達率が低下する恐れがある。 Further, in the technology for determining whether or not to select another node as a packet transfer destination based on the remaining power of the other node, the other node having the smallest remaining power is excluded from the packet transfer destination. Only the node using the AC power supply is selected as the packet transfer destination. For this reason, when nodes using AC power supplies are installed at positions separated from each other, the communication path becomes a detour and there is a possibility that the arrival rate of the packet is lowered.
 開示の技術は、上記に鑑みてなされたものであって、電源として電池を用いたノードの消費電力を抑えつつ、適切な通信経路を選択することができる経路選択方法及び無線装置を提供することを目的とする。 The disclosed technology has been made in view of the above, and provides a route selection method and a wireless device capable of selecting an appropriate communication route while suppressing power consumption of a node using a battery as a power source. With the goal.
 本願の開示する経路選択方法は、一つの態様において、アドホックネットワークを構成する無線装置における経路選択方法である。また、経路選択方法は、隣接の無線装置または前記無線装置の電源が内部電源又は外部電源のいずれであるかを示す電源情報を取得する。また、経路選択方法は、取得された電源情報が内部電源を示す場合に、前記隣接の無線装置と前記無線装置との間の経路の評価値として第一の値を算出する。また、経路選択方法は、前記電源情報が外部電源を示す場合に、該評価値として前記第一の値よりも高品質であることを表す第二の値を算出する。また、経路選択方法は、各前記隣接の無線装置から目的地に至る経路の評価値と前記算出された評価値との加算値のうち最も高品質であることを表す評価値に対応する前記隣接の無線装置を、前記目的地にパケットを送信する場合の転送先として選択する。 The route selection method disclosed in the present application is, in one aspect, a route selection method in a wireless device constituting an ad hoc network. In the route selection method, power information indicating whether an adjacent wireless device or the power supply of the wireless device is an internal power supply or an external power supply is acquired. The route selection method calculates a first value as an evaluation value of a route between the adjacent wireless device and the wireless device when the acquired power supply information indicates an internal power supply. In the route selection method, when the power supply information indicates an external power supply, a second value indicating that the evaluation value is higher in quality than the first value is calculated. In addition, the route selection method may include the neighboring corresponding to the evaluation value representing the highest quality among the addition values of the evaluation value of the route from each adjacent wireless device to the destination and the calculated evaluation value. Are selected as transfer destinations when packets are transmitted to the destination.
 本願の開示する経路選択方法の一つの態様によれば、電源として電池を用いたノードの消費電力を抑えつつ、適切な通信経路を選択することができるという効果を奏する。 According to one aspect of the route selection method disclosed in the present application, it is possible to select an appropriate communication route while suppressing power consumption of a node using a battery as a power source.
図1は、本実施例1に係るアドホックネットワークの構成を示す図である。FIG. 1 is a diagram illustrating the configuration of the ad hoc network according to the first embodiment. 図2は、実施例1のハローパケットのデータ構造の一例を示す図である。FIG. 2 is a diagram illustrating an example of a data structure of a hello packet according to the first embodiment. 図3は、本実施例1に係るノードの構成を示す機能ブロック図である。FIG. 3 is a functional block diagram illustrating the configuration of the node according to the first embodiment. 図4は、実施例1のワークテーブルのデータ構造の一例を示す図である。FIG. 4 is a diagram illustrating an example of a data structure of the work table according to the first embodiment. 図5は、実施例1の通信経路テーブルのデータ構造の一例を示す図である。FIG. 5 is a diagram illustrating an example of a data structure of the communication path table according to the first embodiment. 図6は、実施例1における評価値算出部が保持する換算テーブルのデータ構造の一例を示す図である。FIG. 6 is a diagram illustrating an example of a data structure of a conversion table held by the evaluation value calculation unit according to the first embodiment. 図7は、本実施例1に係るノードがハローパケットを受信してからデータパケットの転送先を選択するまでの処理の流れの一例を説明するための図である。FIG. 7 is a diagram for explaining an example of a processing flow from when the node according to the first embodiment receives a hello packet to when a data packet transfer destination is selected. 図8は、実施例1に係るノードから目的地のノードに至る無線リンクの評価値を算出して通信経路テーブルに格納する処理の処理手順を示すフローチャートである。FIG. 8 is a flowchart illustrating a processing procedure of processing for calculating an evaluation value of a wireless link from a node according to the first embodiment to a destination node and storing the evaluation value in a communication path table. 図9は、データパケットを転送する処理の処理手順を示すフローチャートである。FIG. 9 is a flowchart showing a processing procedure of processing for transferring a data packet. 図10は、ハローパケットを送信する処理の処理手順を示すフローチャートである。FIG. 10 is a flowchart illustrating a processing procedure of processing for transmitting a hello packet. 図11は、データパケットを送信する処理の処理手順を示すフローチャートである。FIG. 11 is a flowchart illustrating a processing procedure for transmitting a data packet. 図12は、本実施例1に係る検証方法の検証条件を示す図である。FIG. 12 is a diagram illustrating verification conditions of the verification method according to the first embodiment. 図13は、他の評価パラメータの重み係数を示す図である。FIG. 13 is a diagram illustrating weighting factors of other evaluation parameters. 図14は、シミュレーションプログラムに適用するアドホックネットワークの構成を示す図である。FIG. 14 is a diagram illustrating a configuration of an ad hoc network applied to a simulation program. 図15は、アドホックネットワークに含まれる電池ノードの中継パケット数の平均値を検証条件ごとに比較した結果を示す図である。FIG. 15 is a diagram illustrating a result of comparing the average value of the number of relay packets of the battery nodes included in the ad hoc network for each verification condition. 図16は、アドホックネットワークに含まれる交流電源ノードの中継パケット数の平均値を検証条件ごとに比較した結果を示す図である。FIG. 16 is a diagram illustrating a result of comparing the average value of the number of relay packets of the AC power supply node included in the ad hoc network for each verification condition. 図17は、総パケット数に占める、交流電源ノードの中継パケット数と電池ノードの中継パケット数との比率を検証条件ごとに比較した結果を示す図である。FIG. 17 is a diagram illustrating a result of comparing the ratio between the number of relay packets of the AC power supply node and the number of relay packets of the battery node in the total number of packets for each verification condition. 図18は、Drop率を検証条件ごとに比較した結果を示す図である。FIG. 18 is a diagram illustrating a result of comparing the drop rate for each verification condition. 図19は、実施例2における評価値算出部が保持する換算テーブルのデータ構造の一例を示す図(その1)である。FIG. 19 is a diagram (part 1) illustrating an example of a data structure of a conversion table held by the evaluation value calculation unit according to the second embodiment. 図20は、実施例2における評価値算出部が保持する換算テーブルのデータ構造の一例を示す図(その2)である。FIG. 20 is a diagram (part 2) illustrating an example of a data structure of a conversion table held by the evaluation value calculation unit according to the second embodiment. 図21は、実施例2に係るノードから目的地のノードに至る無線リンクの評価値を算出して通信経路テーブルに格納する処理の処理手順を示すフローチャートである。FIG. 21 is a flowchart illustrating a processing procedure of processing for calculating an evaluation value of a wireless link from a node according to the second embodiment to a destination node and storing the evaluation value in a communication path table. 図22は、アドホックネットワークに含まれる電池切れノードの数を検証条件ごとに比較した結果を示す図である。FIG. 22 is a diagram illustrating a result of comparing the number of out-of-battery nodes included in the ad hoc network for each verification condition. 図23は、実施例1、2にかかるノードを構成するコンピュータのハードウェア構成を示す図である。FIG. 23 is a diagram illustrating a hardware configuration of a computer that configures a node according to the first and second embodiments.
 以下に、本願の開示する経路選択方法及び無線装置の実施例について、図面を参照しながら詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。 Hereinafter, embodiments of the route selection method and the wireless device disclosed in the present application will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.
 本実施例1のアドホックネットワークの構成について説明する。図1は、本実施例1に係るアドホックネットワークの構成を示す図である。図1に示すように、このアドホックネットワークは、GW(Gate Way)1及びノード100a~100eを有する。このノード100a~100eは、無線装置の一例である。ここでは図示を省略するが、アドホックネットワークは、この他にもノードを有していても良い。 The configuration of the ad hoc network according to the first embodiment will be described. FIG. 1 is a diagram illustrating the configuration of the ad hoc network according to the first embodiment. As shown in FIG. 1, the ad hoc network includes a GW (Gate Way) 1 and nodes 100a to 100e. The nodes 100a to 100e are examples of wireless devices. Although not shown here, the ad hoc network may have other nodes.
 GW1、各ノード100a~100eは、隣接のノードと無線リンクにより接続する。無線リンクは経路の一例である。例えば、GW1は、ノード100c、100d、100eに接続される。ノード100aは、ノード100b、100cに接続される。ノード100bは、ノード100a、100d、100eに接続される。ノード100cは、ノード100a、100e、GW1に接続される。ノード100dは、ノード100b、GW1に接続される。ノード100eは、ノード100b、100c、GW1に接続される。 GW1 and each of the nodes 100a to 100e are connected to adjacent nodes by wireless links. A wireless link is an example of a route. For example, the GW 1 is connected to the nodes 100c, 100d, and 100e. The node 100a is connected to the nodes 100b and 100c. The node 100b is connected to the nodes 100a, 100d, and 100e. The node 100c is connected to the nodes 100a, 100e, and GW1. The node 100d is connected to the nodes 100b and GW1. The node 100e is connected to the nodes 100b, 100c, and GW1.
 また、図1に示すアドホックネットワークでは、外部電源を駆動電源として用いたノードと、内部電源を駆動電源として用いたノードとが混在する。例えば、ノード100a、100b、100eは、外部電源の一例である交流電源を駆動電源として用いたノード(以下「交流電源ノード」という)である。ノード100c、100dは、内部電源の一例である電池を駆動電源として用いたノード(以下「電池ノード」という)である。なお、以下では、ノード100a~100eを特に区別しない場合にノード100a~100eをまとめてノード100と表記する。 In the ad hoc network shown in FIG. 1, a node using an external power source as a driving power source and a node using an internal power source as a driving power source coexist. For example, the nodes 100a, 100b, and 100e are nodes (hereinafter referred to as “AC power supply nodes”) that use AC power as an example of external power as drive power. The nodes 100c and 100d are nodes (hereinafter referred to as “battery nodes”) that use batteries, which are examples of internal power supplies, as drive power supplies. Hereinafter, the nodes 100a to 100e are collectively referred to as the node 100 when the nodes 100a to 100e are not particularly distinguished.
 ノード100は、ハローパケット(Hello Packet)を送受信することで、通信経路を構築する。ノード100は、通信経路を構築する場合に、ノード100または隣接のノード100の電源の種別を示すパラメータを含む複数種類の評価パラメータを用いて通信経路の評価値を算出する。そして、ノード100は、転送対象のデータパケットを受信した場合や、新規のデータパケットを送信する場合に、最も高品質であることを表す評価値に対応する通信経路を選択し、選択した通信経路に対してデータパケットの転送を行う。 The node 100 constructs a communication path by transmitting and receiving a hello packet. When constructing a communication path, the node 100 calculates a communication path evaluation value using a plurality of types of evaluation parameters including a parameter indicating the type of power supply of the node 100 or the adjacent node 100. When the node 100 receives the data packet to be transferred or transmits a new data packet, the node 100 selects a communication path corresponding to the evaluation value indicating the highest quality, and selects the selected communication path. The data packet is transferred.
 例えば、ノード100は、隣接のノード100又は自ノード100の電源の種別が電池又は交流電源のいずれであるかに応じて、隣接のノード100との間の無線リンクの評価値として異なる値を算出する。具体的に、ノード100は、隣接のノード100又は自ノード100の電源の種別が交流電源である場合に、電池に対応する値よりも高品質であることを示す値を無線リンクの評価値として算出する。そして、ノード100は、隣接のノード100から目的地のノード100に至る無線リンクの評価値と、算出した無線リンクの評価値との加算値が最も高品質となる経路を、目的地に送信するデータパケットの転送先として選択する。これにより、電池ノードを含む通信経路の選択機会を減少させつつ、交流電源ノードを含む通信経路を優先的に選択することができる。 For example, the node 100 calculates a different value as the evaluation value of the radio link with the adjacent node 100 depending on whether the power type of the adjacent node 100 or the own node 100 is a battery or an AC power supply. To do. Specifically, when the type of power supply of the adjacent node 100 or the own node 100 is an AC power supply, the node 100 uses a value indicating that the quality is higher than the value corresponding to the battery as the evaluation value of the radio link. calculate. Then, the node 100 transmits, to the destination, a route having the highest quality of the added value of the evaluation value of the wireless link from the adjacent node 100 to the destination node 100 and the calculated evaluation value of the wireless link. Select as the destination of the data packet. Thereby, it is possible to preferentially select the communication path including the AC power supply node while reducing the opportunity for selecting the communication path including the battery node.
 なお、本実施例1では、一例として、無線リンクの品質が高いほど、評価値の値は小さくなるものとする。また、無線リンクの品質が高いほど小さくなる評価値は、無線リンクの品質を距離の概念で置き換えた評価値に相当するものであり、「経路品質距離」とも呼ばれる。 In the first embodiment, as an example, the higher the quality of the radio link, the smaller the evaluation value. The evaluation value that decreases as the quality of the radio link increases is equivalent to an evaluation value in which the quality of the radio link is replaced with the concept of distance, and is also referred to as “path quality distance”.
 次に、ノード100が送受信するハローパケットのデータ構造について説明する。図2は、実施例1のハローパケットのデータ構造の一例を示す図である。図2に示すように、このハローパケットは、送信元、電源情報、目的地、ΣD、ホップ数を有する。このうち、「送信元」には、ハローパケットの送信元となるノードのアドレスが格納される。「電源情報」には、ハローパケットの「送信元」のノードの電源が電池または交流電源のいずれかであるかを示す電源情報が格納される。「目的地」には、通信経路の目的地のノードのアドレスが格納される。「ΣD」には、ハローパケットの「目的地」のノードから「送信元」のノードまでの無線リンクの評価値の合計値が格納される。「ホップ数」には、ハローパケットの「送信元」のノードから「目的地」のノードまでのホップ数が格納される。 Next, the data structure of the hello packet transmitted / received by the node 100 will be described. FIG. 2 is a diagram illustrating an example of a data structure of a hello packet according to the first embodiment. As shown in FIG. 2, this hello packet has a transmission source, power supply information, a destination, ΣD, and the number of hops. Among these, the “source” stores the address of the node that is the source of the hello packet. The “power supply information” stores power supply information indicating whether the power source of the “transmission source” node of the hello packet is a battery or an AC power supply. “Destination” stores the address of the destination node of the communication path. “ΣD” stores the total value of the evaluation values of the radio links from the “destination” node to the “transmission source” node of the hello packet. The “hop count” stores the number of hops from the “source” node to the “destination” node of the hello packet.
 次に、図1に示したノード100の構成について説明する。図3は、本実施例1に係るノードの構成を示す機能ブロック図である。図3に示すように、本実施例1に係るノード100は、無線通信部110、入力部120、表示部130、記憶部140及び制御部150を有する。 Next, the configuration of the node 100 shown in FIG. 1 will be described. FIG. 3 is a functional block diagram illustrating the configuration of the node according to the first embodiment. As illustrated in FIG. 3, the node 100 according to the first embodiment includes a wireless communication unit 110, an input unit 120, a display unit 130, a storage unit 140, and a control unit 150.
 無線通信部110は、隣接のノードとの間で無線によりデータ通信する装置である。例えば、無線通信部110は、無線リンクモジュールなどに対応する。制御部150は、無線通信部110を介して、隣接のノードとの間でハローパケットやデータパケット等を送受信する。 The wireless communication unit 110 is a device that performs wireless data communication with adjacent nodes. For example, the wireless communication unit 110 corresponds to a wireless link module or the like. The control unit 150 transmits / receives a hello packet, a data packet, and the like to / from an adjacent node via the wireless communication unit 110.
 入力部120は、各種の情報をノード100に入力するための入力装置である。例えば、入力部120は、キーボード、マウス及びタッチパネル等に対応する。表示部130は、各種の情報を表示する表示装置である。例えば、表示部130は、ディスプレイ及びタッチパネル等に対応する。 The input unit 120 is an input device for inputting various information to the node 100. For example, the input unit 120 corresponds to a keyboard, a mouse, a touch panel, and the like. The display unit 130 is a display device that displays various types of information. For example, the display unit 130 corresponds to a display, a touch panel, and the like.
 記憶部140は、例えば、ワークテーブル141及び通信経路テーブル142を記憶する。この記憶部140は、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ(Flash Memory)等の半導体メモリ素子、またはハードディスク、光ディスクなどの記憶装置に対応する。 The storage unit 140 stores a work table 141 and a communication path table 142, for example. The storage unit 140 corresponds to, for example, a semiconductor memory element such as a RAM (Random Access Memory), a ROM (Read Only Memory), and a flash memory (Flash Memory), or a storage device such as a hard disk or an optical disk.
 ワークテーブル141は、ハローパケットの情報を一時的に格納するテーブルである。図4は、実施例1のワークテーブルのデータ構造の一例を示す図である。図4に示すように、このワークテーブル141は、目的地、転送先、ΣD、D、ホップ数を有する。このうち、目的地、転送先は、図2に示したハローパケットの目的地、送信元をそれぞれ格納する。ホップ数は、ハローパケットのホップ数をインクリメントした値を格納する。Dは、転送先のノードと自ノード100との間の無線リンクの評価値を格納する。ΣDは、ハローパケットのΣDの値とワークテーブル141のDの値との加算値を格納する。 The work table 141 is a table for temporarily storing hello packet information. FIG. 4 is a diagram illustrating an example of a data structure of the work table according to the first embodiment. As shown in FIG. 4, this work table 141 has a destination, a transfer destination, ΣD, D, and the number of hops. Among these, the destination and the transfer destination store the destination and source of the hello packet shown in FIG. As the hop count, a value obtained by incrementing the hop count of the hello packet is stored. D stores the evaluation value of the radio link between the transfer destination node and the own node 100. ΣD stores an addition value of the value of ΣD of the hello packet and the value of D of the work table 141.
 通信経路テーブル142は、通信経路の情報を記憶するテーブルである。図5は、実施例1の通信経路テーブルのデータ構造の一例を示す図である。図5に示すように、この通信経路テーブル142は、目的地、転送先、ΣD、ホップ数、更新時刻を対応づけて記憶する。 The communication path table 142 is a table that stores information on communication paths. FIG. 5 is a diagram illustrating an example of a data structure of the communication path table according to the first embodiment. As illustrated in FIG. 5, the communication path table 142 stores a destination, a transfer destination, ΣD, the number of hops, and an update time in association with each other.
 このうち、目的地は、パケットの目的地を示す。転送先は、目的地にパケットを転送する場合の転送先を示す。ΣDは、自ノード100から目的地のノードまでの無線リンクの評価値を合計した値となる。ホップ数は、自ノード100から目的地のノードに至るホップ数を示す。更新時刻は、通信経路テーブル142のレコードの最新の更新時刻を示す。 Of these, the destination indicates the destination of the packet. The transfer destination indicates a transfer destination when the packet is transferred to the destination. ΣD is a total value of the evaluation values of the radio links from the own node 100 to the destination node. The number of hops indicates the number of hops from the own node 100 to the destination node. The update time indicates the latest update time of the record in the communication path table 142.
 図5に示す通信経路テーブル142は、目的地を同一とする通信経路が複数存在することを示している。例えば、図5では、目的地「GW1」に対する通信経路が2つ存在する。具体的には、転送先を「ノード100b」とする通信経路と、転送先を「ノード100c」とする通信経路が存在する。なお、図5では説明の便宜上、目的地や転送先にノードの名称を示したが、ノードのアドレスを登録してもよい。 The communication path table 142 shown in FIG. 5 indicates that there are a plurality of communication paths having the same destination. For example, in FIG. 5, there are two communication paths for the destination “GW1”. Specifically, there are a communication path having the transfer destination “node 100b” and a communication path having the transfer destination “node 100c”. In FIG. 5, for convenience of explanation, the name of the node is shown as the destination or transfer destination, but the address of the node may be registered.
 制御部150は、電源情報取得部151、評価値算出部152、経路選択部153、ハローパケット生成部154及びデータパケット生成部155を有する。例えば、制御部150は、ASIC(Application Specific Integrated Circuit)や、FPGA(Field Programmable Gate Array)などの集積装置に対応する。また、制御部150は、例えば、CPUやMPU(Micro Processing Unit)等の電子回路に対応する。 The control unit 150 includes a power supply information acquisition unit 151, an evaluation value calculation unit 152, a route selection unit 153, a hello packet generation unit 154, and a data packet generation unit 155. For example, the control unit 150 corresponds to an integrated device such as an application specific integrated circuit (ASIC) or a field programmable gate array (FPGA). Moreover, the control part 150 respond | corresponds to electronic circuits, such as CPU and MPU (Micro Processing Unit), for example.
 電源情報取得部151は、隣接のノードとの間におけるハローパケットの送受信時において、隣接のノード又は自ノード100の電源が電池又は交流電源のいずれであるかを示す電源情報を取得し、取得した電源情報を評価値算出部152に出力する。 The power source information acquisition unit 151 acquires and acquires power source information indicating whether the power source of the adjacent node or the own node 100 is a battery or an AC power source at the time of transmission / reception of a hello packet with the adjacent node. The power supply information is output to the evaluation value calculation unit 152.
 電源情報取得部151が、電源情報を取得する処理の一例について説明する。電源情報取得部151は、ハローパケットを受信した場合に、ハローパケットに含まれる電源情報を抽出して、ハローパケットの送信元となる隣接のノードの電源情報を取得する。さらに、電源情報取得部151は、記憶部140の所定領域に保持された自ノード100の電源情報を取得する。電源情報取得部151は、取得した隣接のノードの電源情報及び自ノード100の電源情報を評価値算出部152に出力する。 An example of processing in which the power information acquisition unit 151 acquires power information will be described. When receiving the hello packet, the power information acquisition unit 151 extracts the power information included in the hello packet and acquires the power information of the adjacent node that is the transmission source of the hello packet. Furthermore, the power information acquisition unit 151 acquires the power information of the own node 100 held in a predetermined area of the storage unit 140. The power information acquisition unit 151 outputs the acquired power information of adjacent nodes and the power information of the own node 100 to the evaluation value calculation unit 152.
 評価値算出部152は、隣接のノードとの間におけるハローパケットの送受信時において、隣接のノードと自ノード100との間の無線リンクの評価値Dを算出する。評価値算出部152によって算出される無線リンクの評価値Dは、隣接のノード又は自ノード100の電源の種別に応じて異なる値となる。例えば、評価値算出部152は、隣接のノード又は自ノード100の電源が電池である場合には、無線リンクの評価値として「20」を算出する。その一方、評価値算出部152は、隣接のノード又は自ノード100の電源が交流電源である場合には、無線リンクの評価値として「20」よりも高品質であることを表す「1」を算出する。 The evaluation value calculation unit 152 calculates the evaluation value D of the radio link between the adjacent node and the own node 100 at the time of transmission / reception of the hello packet with the adjacent node. The evaluation value D of the radio link calculated by the evaluation value calculation unit 152 is a different value depending on the type of power supply of the adjacent node or the own node 100. For example, the evaluation value calculation unit 152 calculates “20” as the evaluation value of the radio link when the power supply of the adjacent node or the own node 100 is a battery. On the other hand, the evaluation value calculation unit 152 sets “1” indicating that the evaluation value of the radio link is higher than “20” as the evaluation value of the radio link when the power supply of the adjacent node or the own node 100 is an AC power supply. calculate.
 評価値算出部152が、無線リンクの評価値を算出する処理の一例について説明する。まず、評価値算出部152は、隣接のノードからハローパケットを受信した場合に、ハローパケットの受信品質を検出する。本実施例では、評価値算出部152は、受信品質の一例として、ハローパケットの電波強度の平均値、ハローパケットの電波強度の分散値、ハローパケットの受信周期の平均値及びハローパケットの受信周期の分散値を検出する。評価値算出部152は、電源情報取得部151から隣接ノードの電源情報及び自ノード100の電源情報を受け付ける。評価値算出部152は、評価パラメータとしての各受信品質及び電源情報と、評価パラメータの換算値となる評価値とを対応付けた換算テーブルを保持する。 An example of processing in which the evaluation value calculation unit 152 calculates the evaluation value of the wireless link will be described. First, the evaluation value calculation unit 152 detects the reception quality of a hello packet when a hello packet is received from an adjacent node. In the present embodiment, the evaluation value calculation unit 152, as an example of reception quality, uses an average value of the radio wave intensity of the hello packet, a dispersion value of the radio wave intensity of the hello packet, an average value of the reception period of the hello packet, and a reception period of the hello packet The variance value of is detected. The evaluation value calculation unit 152 receives the power supply information of the adjacent node and the power supply information of the own node 100 from the power supply information acquisition unit 151. The evaluation value calculation unit 152 holds a conversion table in which each reception quality and power supply information as evaluation parameters are associated with evaluation values that are conversion values of the evaluation parameters.
 図6は、実施例1における評価値算出部152が保持する換算テーブルのデータ構造の一例を示す図である。図6に示す換算テーブルは、評価パラメータと、評価値とを対応付けて記憶する。このうち、評価パラメータは、電波強度平均値、電波強度分散値、受信周期平均値、受信周期分散値及び電源情報という項目を含む。電波強度平均値は、ハローパケットの電波強度の平均値を示す。電波強度分散値は、ハローパケットの電波強度の分散値を示す。受信周期平均値は、ハローパケットの受信周期の平均値を示す。受信周期分散値は、ハローパケットの受信周期の分散値を示す。評価パラメータは、さらに、電源情報という項目を含む。電源情報は、ノードの電源が電池または交流電源のいずれであるかを示す。また、評価値は、各評価パラメータの換算値を示す。 FIG. 6 is a diagram illustrating an example of a data structure of a conversion table held by the evaluation value calculation unit 152 according to the first embodiment. The conversion table shown in FIG. 6 stores evaluation parameters and evaluation values in association with each other. Among these, the evaluation parameter includes items of radio wave intensity average value, radio wave intensity dispersion value, reception cycle average value, reception cycle dispersion value, and power supply information. The radio field intensity average value indicates the average radio field intensity of the hello packet. The radio field intensity dispersion value indicates the dispersion value of the radio field intensity of the hello packet. The reception period average value indicates an average value of the reception period of the hello packet. The reception cycle dispersion value indicates a dispersion value of the reception cycle of the hello packet. The evaluation parameter further includes an item of power supply information. The power source information indicates whether the power source of the node is a battery or an AC power source. Moreover, an evaluation value shows the conversion value of each evaluation parameter.
 評価値は、各受信品質が高いほど、小さな値となる。例えば、図6では、電波強度平均値「x」が大きいほど、評価値が小さな値となる。例えば、電波強度分散値「y」が小さいほど、評価値が小さな値となる。例えば、受信周期平均値「z」が小さいほど、評価値が小さな値となる。受信周期分散値「w」が小さいほど、評価値が小さな値となる。また、評価値は、電源情報が交流電源を示す場合には、電池に対応する値よりも小さな値となる。例えば、図6では、電源情報「ps」が「交流電源」である場合の評価値「1」は、「電池」に対応する評価値「20」よりも小さな値となる。 The evaluation value becomes smaller as each reception quality is higher. For example, in FIG. 6, the evaluation value becomes smaller as the radio wave intensity average value “x” is larger. For example, the evaluation value becomes smaller as the radio wave intensity dispersion value “y” is smaller. For example, the smaller the reception cycle average value “z” is, the smaller the evaluation value is. The smaller the reception cycle dispersion value “w” is, the smaller the evaluation value is. The evaluation value is smaller than the value corresponding to the battery when the power supply information indicates an AC power supply. For example, in FIG. 6, the evaluation value “1” when the power supply information “ps” is “AC power supply” is smaller than the evaluation value “20” corresponding to “battery”.
 続いて、評価値算出部152は、換算テーブルと、検出した受信品質及び受け付けた電源情報とを比較して、評価値を判定する。例えば、図6では、評価値算出部152は、受信品質である電波強度平均値「x」が「45」である場合に、評価値「2」を判定する。また、例えば、評価値算出部152は、電源情報「ps」が「電池」である場合に、評価値「20」を判定する。 Subsequently, the evaluation value calculation unit 152 compares the conversion table with the detected reception quality and the received power supply information to determine an evaluation value. For example, in FIG. 6, the evaluation value calculation unit 152 determines the evaluation value “2” when the radio wave intensity average value “x” that is the reception quality is “45”. For example, the evaluation value calculation unit 152 determines the evaluation value “20” when the power supply information “ps” is “battery”.
 続いて、評価値算出部152は、評価パラメータである各受信品質及び電源情報を重み付けしつつ加算する評価式に、判定した評価値を適用することで、隣接のノードと自ノード100との間の無線リンクの評価値Dを算出する。例えば、評価値算出部152は、以下の式(1)で示す評価式に、判定した評価値を適用することで、隣接のノードと自ノード100との間の無線リンクの評価値Dを算出する。式(1)において、a、b、c、d及びdは、重み係数である。Px、Py、Pz、Pw及びPpsは、それぞれ、電波強度平均値、電波強度分散値、受信周期平均値、受信周期分散値及び電波情報を示す評価パラメータである。評価値算出部152は、算出したDを、ワークテーブル141に格納する。 Subsequently, the evaluation value calculation unit 152 applies the determined evaluation value to an evaluation formula that adds each reception quality and power supply information, which are evaluation parameters, while weighting them, so that the adjacent node and the own node 100 can be compared. The evaluation value D of the wireless link is calculated. For example, the evaluation value calculation unit 152 calculates the evaluation value D of the radio link between the adjacent node and the own node 100 by applying the determined evaluation value to the evaluation formula shown by the following formula (1). To do. In Equation (1), a, b, c, d, and d are weighting factors. Px, Py, Pz, Pw, and Pps are evaluation parameters indicating a radio wave intensity average value, a radio wave intensity variance value, a reception cycle average value, a reception cycle variance value, and radio wave information, respectively. The evaluation value calculation unit 152 stores the calculated D in the work table 141.
 D=a・Px+b・Py+c・Pz+d・Pw+e・Pps ・・・ (1) D = a · Px + b · Py + c · Pz + d · Pw + e · Pps (1)
 なお、受信したハローパケットに隣接のノードと目的地としての自ノード100との間の無線リンクの評価値Daが含まれている場合には、評価値算出部152は、以下の式(2)を用いて、無線リンクの評価値Dを算出しても良い。式(2)において、Dbは、式(1)のDである。式(2)を用いて算出されるDは、無線リンクの往復の評価値である。 When the received hello packet includes the evaluation value Da of the wireless link between the adjacent node and the node 100 as the destination, the evaluation value calculation unit 152 uses the following equation (2). May be used to calculate the evaluation value D of the radio link. In the formula (2), Db is D in the formula (1). D calculated using equation (2) is a round-trip evaluation value of the radio link.
 D=√(Da×Db) ・・・ (2) D = √ (Da × Db) (2)
 また、評価値算出部152は、ハローパケットを受信した場合には、ハローパケットに含まれる情報を、ワークテーブル141に格納し、ワークテーブル141のレコードに基づいて、通信経路テーブル142を更新する。 Moreover, when the evaluation value calculation unit 152 receives a hello packet, the evaluation value calculation unit 152 stores information included in the hello packet in the work table 141 and updates the communication path table 142 based on the record of the work table 141.
 評価値算出部152が、通信経路テーブル142を更新する処理の一例について説明する。具体的に、評価値算出部152は、ハローパケットを受信し、ハローパケットに含まれる目的地を、ワークテーブル141の目的地に設定する。評価値算出部152は、ワークテーブル141の転送先に、ハローパケットの送信元のノードを設定する。評価値算出部152は、ハローパケットのΣDの値に、ワークテーブル141のDの値を加算した値を、ワークテーブル141のΣDに格納する。ワークテーブル141に格納されたΣDは、自ノード100から目的地のノードに至る無線リンクの評価値に対応する。評価値算出部152は、ワークテーブル141のホップ数に、ハローパケットのホップ数をインクリメントした値を格納する。なお、上記処理により、評価値算出部152は、ワークテーブル141のDを設定済みとする。 An example of processing in which the evaluation value calculation unit 152 updates the communication path table 142 will be described. Specifically, the evaluation value calculation unit 152 receives the hello packet and sets the destination included in the hello packet as the destination of the work table 141. The evaluation value calculation unit 152 sets the transmission source node of the hello packet as the transfer destination of the work table 141. The evaluation value calculation unit 152 stores a value obtained by adding the D value of the work table 141 to the ΣD value of the hello packet in the ΣD of the work table 141. ΣD stored in the work table 141 corresponds to the evaluation value of the radio link from the own node 100 to the destination node. The evaluation value calculation unit 152 stores a value obtained by incrementing the hop number of the hello packet in the hop number of the work table 141. Note that the evaluation value calculation unit 152 sets D in the work table 141 to have been set by the above processing.
 続いて、評価値算出部152は、ワークテーブル141に基づいて、通信経路テーブル142を更新する。具体的に、評価値算出部152は、ワークテーブル141に含まれる目的地、転送先、ΣD、ホップ数を、通信経路テーブル142に設定し、各レコードの更新時刻に現時刻を設定する。 Subsequently, the evaluation value calculation unit 152 updates the communication path table 142 based on the work table 141. Specifically, the evaluation value calculation unit 152 sets the destination, transfer destination, ΣD, and hop count included in the work table 141 in the communication path table 142, and sets the current time as the update time of each record.
 経路選択部153は、通信経路テーブル142を基にして、目的地にパケットを送信する場合のパケットの経路を選択する処理部である。 The route selection unit 153 is a processing unit that selects a packet route when a packet is transmitted to a destination based on the communication route table 142.
 経路選択部153がパケットの経路を選択する処理について説明する。まず、経路選択部153がデータパケットを送信するための経路を選択する処理について説明する。経路選択部153は、後述するデータパケット生成部155からデータパケットを受け付ける。経路選択部153は、通信経路テーブル142を参照し、同一の目的地毎に、ΣDを比較する。経路選択部153は、比較の結果、通信経路テーブル142のΣDの値が最も小さい転送先のノードを選択し、選択した転送先のノードにデータパケットを送信する。図5に示す例では、1段目及び2段目の目的地が同一であり、2段目のΣDの値よりも、1段目のΣDの値の方が小さい。このため、経路選択部153は、ΣDの値が最も小さい1段目の転送先であるノード100bを選択し、選択したノード100bにデータパケットを送信する。言い換えると、経路選択部153は、1段目よりもΣDの値が大きい2段目の転送先であるノード100cを選択しない。ノード100bは、交流電源ノードであり、ノード100cは、電池ノードである。したがって、本実施例のノード100は、データパケットの送信先を電池ノードとする経路の選択機会を減少させるとともに、データパケットの送信先として交流電源ノードを優先的に選択することができる。 A process in which the route selection unit 153 selects a route of a packet will be described. First, a process in which the route selection unit 153 selects a route for transmitting a data packet will be described. The route selection unit 153 receives a data packet from a data packet generation unit 155 described later. The route selection unit 153 refers to the communication route table 142 and compares ΣD for each identical destination. As a result of the comparison, the route selection unit 153 selects the transfer destination node having the smallest value of ΣD in the communication route table 142, and transmits the data packet to the selected transfer destination node. In the example shown in FIG. 5, the destinations of the first stage and the second stage are the same, and the value of the first stage ΣD is smaller than the value of the second stage ΣD. For this reason, the path selection unit 153 selects the node 100b that is the first transfer destination having the smallest value of ΣD, and transmits the data packet to the selected node 100b. In other words, the path selection unit 153 does not select the node 100c that is the second-stage transfer destination having a value of ΣD larger than that of the first stage. Node 100b is an AC power supply node, and node 100c is a battery node. Therefore, the node 100 according to the present embodiment can reduce the chance of selecting a route in which the transmission destination of the data packet is a battery node, and can preferentially select the AC power supply node as the transmission destination of the data packet.
 次いで、経路選択部153がデータパケットを転送するための経路を選択する処理について説明する。経路選択部153は、転送対象となるデータパケットを受信した場合には、通信経路テーブル142を参照し、同一の目的地毎に、ΣDを比較する。経路選択部153は、比較の結果、通信経路テーブル142のΣDの値が最も小さい転送先のノードを選択し、選択した転送先のノードにデータパケットを転送する。図5に示す例では、1段目及び2段目の目的地が同一であり、2段目のΣDの値よりも、1段目のΣDの値の方が小さい。このため、経路選択部153は、ΣDの値が最も小さい1段目の転送先であるノード100bを選択し、選択したノード100bにデータパケットを転送する。言い換えると、経路選択部153は、1段目よりもΣDの値が大きい2段目の転送先であるノード100cを選択しない。ノード100bは、交流電源ノードであり、ノード100cは、電池ノードである。したがって、本実施例のノード100は、データパケットの転送先を電池ノードとする経路の選択機会を減少させるとともに、データパケットの転送先として交流電源ノードを優先的に選択することができる。 Next, a process in which the route selection unit 153 selects a route for transferring the data packet will be described. When the route selection unit 153 receives a data packet to be transferred, the route selection unit 153 refers to the communication route table 142 and compares ΣD for each identical destination. As a result of the comparison, the route selection unit 153 selects the transfer destination node having the smallest value of ΣD in the communication route table 142, and transfers the data packet to the selected transfer destination node. In the example shown in FIG. 5, the destinations of the first stage and the second stage are the same, and the value of the first stage ΣD is smaller than the value of the second stage ΣD. For this reason, the route selection unit 153 selects the node 100b that is the first-stage transfer destination having the smallest value of ΣD, and transfers the data packet to the selected node 100b. In other words, the path selection unit 153 does not select the node 100c that is the second-stage transfer destination having a value of ΣD larger than that of the first stage. Node 100b is an AC power supply node, and node 100c is a battery node. Therefore, the node 100 according to the present embodiment can reduce the chance of selecting a route in which the transfer destination of the data packet is a battery node, and can preferentially select the AC power supply node as the transfer destination of the data packet.
 ハローパケット生成部154は、通信経路テーブル142に基づいて、ハローパケットを生成し、生成したハローパケットをブロードキャストする処理部である。例えば、ハローパケット生成部154は、クロックイベントが発生する度に、ハローパケットを生成し、生成したハローパケットをブロードキャストする。 The hello packet generation unit 154 is a processing unit that generates a hello packet based on the communication path table 142 and broadcasts the generated hello packet. For example, the hello packet generation unit 154 generates a hello packet every time a clock event occurs, and broadcasts the generated hello packet.
 ハローパケット生成部154がハローパケットを生成する処理の一例について説明する。ハローパケット生成部154は、通信経路テーブル142を参照し、目的地毎にレコードをグループ分けする。ハローパケット生成部154は、ハローパケットの目的地に、グループに共通の目的地を設定し、ハローパケットの送信元に自ノード100を設定する。ハローパケット生成部154は、ハローパケットのホップ数に、通信経路テーブル142のホップ数を設定し、ハローパケットの電源情報に、自ノード100の電源情報を設定する。そして、ハローパケット生成部154は、ハローパケットのΣDに、グループに含まれるΣDのうち最小のΣDを設定することで、ハローパケットを生成する。 An example of a process in which the hello packet generation unit 154 generates a hello packet will be described. The hello packet generation unit 154 refers to the communication path table 142 and groups records for each destination. The hello packet generation unit 154 sets a common destination for the group as the destination of the hello packet, and sets its own node 100 as the transmission source of the hello packet. The hello packet generation unit 154 sets the hop number of the communication path table 142 to the hop number of the hello packet, and sets the power information of the own node 100 to the power information of the hello packet. Then, the hello packet generation unit 154 generates a hello packet by setting the minimum ΣD among the ΣDs included in the group to ΣD of the hello packet.
 データパケット生成部155は、データパケットを生成し、生成したデータパケットを経路選択部153に出力する処理部である。例えば、データパケット生成部155は、データパケットの送信指示を入力部120から受け付けた場合に、データパケットを生成する。なお、データパケット生成部155は、クロックイベントが発生する度に、データパケットを生成しても良い。 The data packet generation unit 155 is a processing unit that generates a data packet and outputs the generated data packet to the route selection unit 153. For example, the data packet generation unit 155 generates a data packet when receiving a data packet transmission instruction from the input unit 120. The data packet generation unit 155 may generate a data packet every time a clock event occurs.
 次に、本実施例1に係るノード100がハローパケットを受信してからデータパケットの転送先を選択するまでの処理の流れの一例を説明する。図7は、本実施例1に係るノード100がハローパケットを受信してからデータパケットの転送先を選択するまでの処理の流れの一例を説明するための図である。 Next, an example of a processing flow from when the node 100 according to the first embodiment receives a hello packet until a data packet transfer destination is selected will be described. FIG. 7 is a diagram for explaining an example of a processing flow from when the node 100 according to the first embodiment receives a hello packet to when a transfer destination of a data packet is selected.
 図7に示すように、ノード100は、隣接ノードからハローパケット161を受信した場合に、ハローパケット161に含まれる電源情報を抽出することで、ハローパケット161の送信元となる隣接ノードの電源情報162を取得する。ノード100は、記憶部140に保持された自ノード100の電源情報163を取得する。さらに、ノード100は、受信したハローパケット161の受信品質164を検出する。 As illustrated in FIG. 7, when the node 100 receives the hello packet 161 from the adjacent node, the node 100 extracts the power supply information included in the hello packet 161, so that the power supply information of the adjacent node that is the transmission source of the hello packet 161 is obtained. 162 is acquired. The node 100 acquires the power supply information 163 of the own node 100 held in the storage unit 140. Further, the node 100 detects the reception quality 164 of the received hello packet 161.
 続いて、ノード100は、評価パラメータとしての受信品質及び電源情報と、評価パラメータの換算値となる評価値とを対応付けた換算テーブルと、隣接ノードの電源情報162、自ノード100の電源情報163及び受信品質164とを比較する。自ノード100は、比較の結果、評価値を判定し、各評価パラメータを重み付けして加算する評価式に、判定した評価値を適用することで、隣接ノードと自ノード100との間の無線リンクの評価値165を算出する。なお、隣接ノードと目的地としての自ノード100との間の無線リンクの評価値がハローパケット161に含まれている場合には、ノード100は、無線リンクの往復の評価値165を算出してもよい。 Subsequently, the node 100 associates the reception quality and power supply information as evaluation parameters with evaluation values that are conversion values of the evaluation parameters, power supply information 162 of adjacent nodes, and power supply information 163 of the own node 100. And the reception quality 164 is compared. The own node 100 determines the evaluation value as a result of the comparison, and applies the determined evaluation value to an evaluation expression that weights and adds each evaluation parameter, thereby allowing the radio link between the adjacent node and the own node 100 to The evaluation value 165 is calculated. When the evaluation value of the wireless link between the adjacent node and the node 100 as the destination is included in the hello packet 161, the node 100 calculates the evaluation value 165 of the wireless link round-trip. Also good.
 続いて、ノード100は、ハローパケット161に含まれる隣接ノードから目的地のノードに至る無線リンクの評価値166に、算出した評価値165を加算して、自ノード100から目的地のノードに至る無線リンクの評価値167を算出する。自ノード100は、自ノード100から目的地のノードに至る無線リンクの評価値167を通信経路テーブル168に設定し、通信経路テーブル168を更新する。なお、通信経路テーブル168は、図3に示した通信経路テーブル142に対応する。 Subsequently, the node 100 adds the calculated evaluation value 165 to the evaluation value 166 of the wireless link from the adjacent node to the destination node included in the hello packet 161, and reaches from the node 100 to the destination node. An evaluation value 167 of the wireless link is calculated. The own node 100 sets the evaluation value 167 of the radio link from the own node 100 to the destination node in the communication route table 168, and updates the communication route table 168. The communication path table 168 corresponds to the communication path table 142 illustrated in FIG.
 続いて、ノード100は、転送対象となるデータパケット169を受信した場合に、通信経路テーブル142を参照し、同一の目的地毎に、ΣDを比較する。ノード100は、比較の結果、ΣDの値が最も小さい転送先のノードを選択し、選択した転送先のノードにデータパケット169を転送する。 Subsequently, when the node 100 receives the data packet 169 to be transferred, the node 100 refers to the communication path table 142 and compares ΣD for each identical destination. As a result of the comparison, the node 100 selects the transfer destination node having the smallest value of ΣD, and transfers the data packet 169 to the selected transfer destination node.
 次に、本実施例1に係るノード100の処理手順について説明する。図8は、実施例1に係るノードから目的地のノードに至る無線リンクの評価値を算出して通信経路テーブルに格納する処理の処理手順を示すフローチャートである。例えば、図8に示す処理は、ハローパケットを受信したことを契機に実行される。 Next, the processing procedure of the node 100 according to the first embodiment will be described. FIG. 8 is a flowchart illustrating a processing procedure of processing for calculating an evaluation value of a wireless link from a node according to the first embodiment to a destination node and storing the evaluation value in a communication path table. For example, the process illustrated in FIG. 8 is executed when a hello packet is received.
 図8に示すように、ノード100は、ハローパケットを受信していない場合には(ステップS101;No)、処理を終了する。一方、ノード100は、ハローパケットを受信した場合には(ステップS101;Yes)、ハローパケットの送信元となる隣接ノードの電源情報と、記憶部140に保持された自ノード100の電源情報を取得する(ステップS102)。さらに、ノード100は、受信したハローパケットの受信品質を検出する。 As shown in FIG. 8, when the node 100 has not received the hello packet (step S101; No), the process ends. On the other hand, when the node 100 receives the hello packet (step S101; Yes), the node 100 acquires the power information of the adjacent node that is the transmission source of the hello packet and the power information of the own node 100 held in the storage unit 140. (Step S102). Further, the node 100 detects the reception quality of the received hello packet.
 ノード100は、取得した電源情報と検出したハローパケットの受信品質とを基にして、隣接ノードと自ノード100との間の無線リンクの評価値Dを算出する(ステップS103)。ノード100は、ワークテーブル141にレコードを新規作成し(ステップS104)、ワークテーブル141の「目的地」に、ハローパケットに含まれる「目的地」を設定する(ステップS105)。ノード100は、ワークテーブル141の「転送先」に、ハローパケットの「送信元」のノードのアドレスを設定する(ステップS106)。 The node 100 calculates the evaluation value D of the radio link between the adjacent node and the own node 100 based on the acquired power supply information and the received reception quality of the hello packet (step S103). The node 100 newly creates a record in the work table 141 (step S104), and sets the “destination” included in the hello packet in the “destination” of the work table 141 (step S105). The node 100 sets the address of the “transmission source” node of the hello packet in “transfer destination” of the work table 141 (step S106).
 ノード100は、ワークテーブル141の「D」に、ステップS103にて算出した「D」を格納する(ステップS107)。ノード100は、ハローパケットに含まれる「ΣD」とワークテーブル141の「D」とを加算した値を、ワークテーブル141の「ΣD」として格納する(ステップS108)。 The node 100 stores “D” calculated in step S103 in “D” of the work table 141 (step S107). The node 100 stores a value obtained by adding “ΣD” included in the hello packet and “D” of the work table 141 as “ΣD” of the work table 141 (step S108).
 ノード100は、通信経路テーブル142に、同一の「目的地」及び「転送先」のレコードが存在しない場合には(ステップS109;No)、ワークテーブル141に作成したレコードを、通信経路テーブル142に新規追加する(ステップS110)。そして、ノード100は、処理をステップS112に移行する。 When the same “destination” and “transfer destination” records do not exist in the communication path table 142 (step S109; No), the node 100 stores the created record in the work table 141 in the communication path table 142. A new addition is made (step S110). Then, the node 100 moves the process to step S112.
 一方、ノード100は、通信経路テーブル142に、同一の「目的地」及び「転送先」のレコードが存在する場合には(ステップS109;Yes)、上書きする(ステップS111)。ノード100は、受信したパケットに未処理がある場合には(ステップS112;Yes)、未処理の情報を取得し(ステップS113)、処理をステップS104に戻す。 On the other hand, when the same “destination” and “forwarding destination” records exist in the communication path table 142 (step S109; Yes), the node 100 overwrites them (step S111). When there is an unprocessed packet received (step S112; Yes), the node 100 acquires unprocessed information (step S113), and returns the process to step S104.
 一方、ノード100は、受信したパケットに未処理がない場合には(ステップS112;No)、処理を終了する。 On the other hand, when there is no unprocessed packet received (step S112; No), the node 100 ends the process.
 次に、本実施例1に係るノード100がデータパケットを転送する処理について説明する。図9は、データパケットを転送する処理の処理手順を示すフローチャートである。例えば、図9に示す処理は、データパケットを受信したことを契機にして実行される。 Next, a process in which the node 100 according to the first embodiment transfers a data packet will be described. FIG. 9 is a flowchart showing a processing procedure of processing for transferring a data packet. For example, the process shown in FIG. 9 is executed when a data packet is received.
 図9に示すように、ノード100は、データパケットを受信していない場合には(ステップS201;No)、処理を終了する。一方、ノード100は、データパケットを受信した場合には(ステップS201;Yes)、データパケットの目的地が自アドレスであるか否かを判定する(ステップS202)。ノード100は、データパケットの目的地が自アドレスである場合には(ステップS202;Yes)、データパケットを基に所定のデータ処理を実行する(ステップS203)。 As shown in FIG. 9, when the node 100 has not received a data packet (step S201; No), the process ends. On the other hand, when receiving the data packet (step S201; Yes), the node 100 determines whether or not the destination of the data packet is its own address (step S202). If the destination of the data packet is its own address (step S202; Yes), the node 100 executes predetermined data processing based on the data packet (step S203).
 一方、ノード100は、データパケットの目的地が自アドレスでない場合には(ステップS202;No)、通信経路テーブル142を検索し、同一の「目的地」毎にグループ分けする(ステップS204)。ノード100は、グループ内の「ΣD」を比較して、「ΣD」が最も小さい「転送先」を選択し(ステップS205)、選択した「転送先」をデータパケットのヘッダに追加する(ステップS206)。そして、ノード100は、選択した「転送先」のノードにデータパケットを転送する(ステップS207)。 On the other hand, when the destination of the data packet is not its own address (step S202; No), the node 100 searches the communication path table 142 and groups the same “destination” (step S204). The node 100 compares “ΣD” in the group, selects the “transfer destination” with the smallest “ΣD” (step S205), and adds the selected “transfer destination” to the header of the data packet (step S206). ). Then, the node 100 transfers the data packet to the selected “transfer destination” node (step S207).
 次に、本実施例1に係るノード100がハローパケットを送信する処理について説明する。図10は、ハローパケットを送信する処理について説明する。図10は、ハローパケットを送信する処理の処理手順を示すフローチャートである。例えば、図10に示す処理は、クロックイベントが発生したことを契機にして実行される。 Next, a process in which the node 100 according to the first embodiment transmits a hello packet will be described. FIG. 10 illustrates a process for transmitting a hello packet. FIG. 10 is a flowchart illustrating a processing procedure of processing for transmitting a hello packet. For example, the process shown in FIG. 10 is executed when a clock event occurs.
 図10に示すように、ノード100は、クロックイベントがない場合には(ステップS301;No)、処理をステップS301に戻す。一方、ノード100は、クロックイベントがある場合には(ステップS301;Yes)、通信経路テーブル142を検索し、同一の「目的地」毎にグループ分けする(ステップS302)。ノード100は、ハローパケットの「目的地」に、グループに共通の目的地を設定する(ステップS303)。 As shown in FIG. 10, when there is no clock event, the node 100 returns the process to step S301. On the other hand, when there is a clock event (step S301; Yes), the node 100 searches the communication path table 142 and groups the same “destination” (step S302). The node 100 sets a common destination for the group in the “destination” of the hello packet (step S303).
 ノード100は、ハローパケットの「送信元」に、自アドレスを設定する(ステップS304)。ノード100は、ハローパケットの「ホップ数」に、通信経路テーブル142の「ホップ数」を設定し(ステップS305)、ハローパケットの「電源情報」に自ノード100の電源情報を設定する(ステップS306)。ノード100は、ハローパケットの「ΣD」に、グループ内の最小の「ΣD」を設定する(ステップS307)。そして、ノード100は、ハローパケットを送信する(ステップS308)。 The node 100 sets its own address as the “source” of the hello packet (step S304). The node 100 sets the “hop number” of the communication path table 142 to the “hop number” of the hello packet (step S305), and sets the power information of the node 100 to the “power information” of the hello packet (step S306). ). The node 100 sets the minimum “ΣD” in the group to “ΣD” of the hello packet (step S307). Then, the node 100 transmits a hello packet (step S308).
 次に、本実施例1に係るノード100がデータパケットを送信する処理について説明する。図11は、データパケットを送信する処理の処理手順を示すフローチャートである。例えば、図11に示す処理は、データパケットの送信指示を受け付けたことを契機にして実行される。 Next, a process in which the node 100 according to the first embodiment transmits a data packet will be described. FIG. 11 is a flowchart illustrating a processing procedure for transmitting a data packet. For example, the process illustrated in FIG. 11 is executed when a data packet transmission instruction is received.
 図11に示すように、ノード100は、データパケットの送信指示を受け付けていない場合には(ステップS401;No)、処理をステップS401に戻す。一方、ノード100は、データパケットの送信指示を受け付けた場合には(ステップS401;Yes)、データパケットを生成する(ステップS402)。ノード100は、通信経路テーブル142を検索し、同一の「目的地」毎にグループ分けする(ステップS403)。 As illustrated in FIG. 11, when the node 100 has not received a data packet transmission instruction (step S401; No), the process returns to step S401. On the other hand, when the node 100 receives a data packet transmission instruction (step S401; Yes), the node 100 generates a data packet (step S402). The node 100 searches the communication route table 142 and groups the same “destination” (step S403).
 ノード100は、グループ内の「ΣD」を比較して、「ΣD」が最も小さい「転送先」を選択する(ステップS404)。ノード100は、選択した「転送先」をデータパケットのヘッダに追加する(ステップS405)。そして、ノード100は、データパケットを送信する(ステップS406)。 The node 100 compares “ΣD” in the group and selects the “transfer destination” with the smallest “ΣD” (step S404). The node 100 adds the selected “transfer destination” to the header of the data packet (step S405). Then, the node 100 transmits a data packet (step S406).
 次に、本実施例1に係るアドホックネットワークの効果について説明する。アドホックネットワークに含まれるノード100は、隣接ノード又は自ノード100の電源の種別に応じて、隣接ノードとの間の無線リンクの評価値として異なる値を算出する。すなわち、ノード100は、隣接ノード又は自ノード100の電源の種別が交流電源である場合には、電池に対応する値よりも高品質であることを示す値を無線リンクの評価値として算出する。そして、自ノード100は、自ノード100から目的地のノードに到る無線リンクの評価値の加算値が最も高品質となる経路を、目的地に送信するパケットの転送先として選択する。このため、ノード100は、電池ノードを含む通信経路の選択の機会を減少させつつ、交流電源ノードを含む通信経路を優先的に選択することができる。結果として、ノード100は、電池ノードの消費電力を抑えつつ、適切な通信経路を選択することができる。例えば、ノード100は、交流電源ノードどうしが互いに離れた位置に設置されている場合には、交流電源ノードに代えて電池ノードを含む通信経路を選択することで、遠回りとならず、かつ、パケットの到達率を維持した経路を選択することができる。 Next, the effect of the ad hoc network according to the first embodiment will be described. The node 100 included in the ad hoc network calculates a different value as the evaluation value of the radio link with the adjacent node according to the type of the power supply of the adjacent node or the own node 100. That is, the node 100 calculates a value indicating that the quality is higher than the value corresponding to the battery as the evaluation value of the radio link when the type of the power supply of the adjacent node or the node 100 is an AC power supply. Then, the own node 100 selects, as the transfer destination of the packet to be transmitted to the destination, the route having the highest quality value of the evaluation values of the radio links from the own node 100 to the destination node. Therefore, the node 100 can preferentially select the communication path including the AC power supply node while reducing the chance of selecting the communication path including the battery node. As a result, the node 100 can select an appropriate communication path while suppressing the power consumption of the battery node. For example, in the case where the AC power supply nodes are installed at positions separated from each other, the node 100 does not make a detour by selecting a communication path including a battery node instead of the AC power supply node, and packet It is possible to select a route that maintains the arrival rate.
 次に、本実施例1に係るアドホックネットワークの効果の検証方法と、その検証結果について説明する。本検証方法では、アドホックネットワークにおける電池ノードの電池寿命と、パケットの到達率とを既存のシミュレーションプログラムを用いて検証した。電池ノードの電池寿命の検証では、アドホックネットワークの中間ノードとして交流電源ノード及び電池ノードそれぞれが中継したパケット数(以下「中継パケット数」)の平均値を、後述の検証条件ごとに比較する。なお、中継パケット数の平均値は、総パケット数を交流電源ノードの数又は電池ノードの数で除算した値である。また、パケットの到達率の検証では、全パケットに対する、目的地に到達しなかった未到達パケットの比率であるDrop率を、後述の検証条件ごとに比較する。 Next, a method for verifying the effect of the ad hoc network according to the first embodiment and a result of the verification will be described. In this verification method, the battery life of a battery node and the arrival rate of packets in an ad hoc network were verified using an existing simulation program. In the verification of the battery life of the battery node, the average value of the number of packets relayed by each of the AC power supply node and the battery node as an intermediate node of the ad hoc network (hereinafter “relay packet number”) is compared for each verification condition described later. The average value of the number of relay packets is a value obtained by dividing the total number of packets by the number of AC power supply nodes or the number of battery nodes. Further, in the verification of the arrival rate of packets, the Drop rate, which is the ratio of unreachable packets that have not reached the destination, with respect to all packets is compared for each verification condition described later.
 次いで、本実施例1に係る検証方法の検証条件について説明する。図12は、本実施例1に係る検証方法の検証条件を示す図である。本実施例1に係る検証方法では、上述の式(1)の評価式をシミュレーションプログラムに適用した。図12に示すように、検証条件「A」は、式(1)で示す評価式において、電源情報に対応する評価パラメータ「Pps」を削除するという条件である。すなわち、検証条件「A」では、評価パラメータ「Pps」の重み係数「e」に「0」を設定する。また、検証条件「B」は、式(1)で示す評価式において、評価パラメータ「Pps」の重み係数「e」に、相対的に小さい値を設定するという条件である。すなわち、検証条件「B」では、評価パラメータ「Pps」の重み係数「e」に「10」を設定する。また、検証条件「C」は、式(1)で示す評価式において、評価パラメータ「Pps」の重み係数「e」に、検証条件「B」の値よりも大きい値を設定するという条件である。すなわち、検証条件「C」では、評価パラメータ「Pps」の重み係数「e」に「100」を設定する。また、検証条件「D」は、式(1)で示す評価式において、評価パラメータ「Pps」の重み係数「e」に、シミュレーションプログラムにおける最大値を設定するという条件である。すなわち、検証条件「D」では、評価パラメータ「Pps」の重み係数「e」に最大値「65535」を設定する。なお、検証条件「D」は、電池ノードをパケットの転送先から除外する従来技術に対応するものである。なお、本検証方法では、評価パラメータ「Pps」以外の他の評価パラメータの重み係数として、図13に示す値を用いた。図13は、他の評価パラメータの重み係数を示す図である。また、本検証方法では、各評価パラメータと評価値とを対応付けた換算テーブルとして、図6に示した換算テーブルを用いた。 Next, verification conditions for the verification method according to the first embodiment will be described. FIG. 12 is a diagram illustrating verification conditions of the verification method according to the first embodiment. In the verification method according to the first embodiment, the above-described evaluation formula (1) is applied to the simulation program. As shown in FIG. 12, the verification condition “A” is a condition that the evaluation parameter “Pps” corresponding to the power supply information is deleted from the evaluation formula shown by the formula (1). That is, in the verification condition “A”, “0” is set to the weighting coefficient “e” of the evaluation parameter “Pps”. In addition, the verification condition “B” is a condition that a relatively small value is set in the weighting coefficient “e” of the evaluation parameter “Pps” in the evaluation formula shown by the formula (1). That is, in the verification condition “B”, “10” is set to the weighting coefficient “e” of the evaluation parameter “Pps”. The verification condition “C” is a condition in the evaluation formula shown by the formula (1) that a value larger than the value of the verification condition “B” is set for the weighting coefficient “e” of the evaluation parameter “Pps”. . That is, in the verification condition “C”, “100” is set to the weighting coefficient “e” of the evaluation parameter “Pps”. In addition, the verification condition “D” is a condition that the maximum value in the simulation program is set to the weighting coefficient “e” of the evaluation parameter “Pps” in the evaluation formula shown by the formula (1). That is, in the verification condition “D”, the maximum value “65535” is set to the weighting coefficient “e” of the evaluation parameter “Pps”. The verification condition “D” corresponds to the prior art that excludes the battery node from the packet transfer destination. In this verification method, the values shown in FIG. 13 are used as the weighting coefficients of evaluation parameters other than the evaluation parameter “Pps”. FIG. 13 is a diagram illustrating weighting factors of other evaluation parameters. In this verification method, the conversion table shown in FIG. 6 is used as a conversion table in which each evaluation parameter is associated with an evaluation value.
 次いで、本実施例1に係る検証方法のシミュレーションプログラムに適用するアドホックネットワークの構成について説明する。図14は、シミュレーションプログラムに適用するアドホックネットワークの構成を示す図である。図14に示すアドホックネットワークは、1台のゲートウェイ(GW)と、25台の交流電源ノードと、81台の電池ノードとを含む。 Next, the configuration of the ad hoc network applied to the simulation program for the verification method according to the first embodiment will be described. FIG. 14 is a diagram illustrating a configuration of an ad hoc network applied to a simulation program. The ad hoc network shown in FIG. 14 includes one gateway (GW), 25 AC power supply nodes, and 81 battery nodes.
 次いで、電池ノードの電池寿命の検証結果について説明する。図15は、アドホックネットワークに含まれる電池ノードの中継パケット数の平均値を検証条件ごとに比較した結果を示す図である。図16は、アドホックネットワークに含まれる交流電源ノードの中継パケット数の平均値を検証条件ごとに比較した結果を示す図である。図17は、総パケット数に占める、交流電源ノードの中継パケット数と電池ノードの中継パケット数との比率を検証条件ごとに比較した結果を示す図である。図15及び図16に示す結果から、検証条件「A」よりも検証条件「B」~「D」に対応する電池ノードの中継パケット数の平均値の方が小さいことが分かる。また、検証条件「A」よりも検証条件「B」~「D」に対応する電池ノードの中継パケット数の平均値の方が大きいことが分かる。また、図17に示す結果から、検証条件「B」~「D」において、電池ノードの中継パケット数の比率よりも交流電源ノードの中継パケット数の比率が大きいことが分かる。これらの結果は、本実施例1に係るアドホックネットワークの各ノードが、電池ノードを含む通信経路の選択の機会を減少させつつ、交流電源ノードを含む通信経路を優先的に選択していることを意味する。すなわち、本実施例1では、電池ノードの電池寿命を延ばすことができることが分かる。 Next, the verification result of the battery life of the battery node will be described. FIG. 15 is a diagram illustrating a result of comparing the average value of the number of relay packets of the battery nodes included in the ad hoc network for each verification condition. FIG. 16 is a diagram illustrating a result of comparing the average value of the number of relay packets of the AC power supply node included in the ad hoc network for each verification condition. FIG. 17 is a diagram illustrating a result of comparing the ratio between the number of relay packets of the AC power supply node and the number of relay packets of the battery node in the total number of packets for each verification condition. From the results shown in FIGS. 15 and 16, it can be seen that the average value of the number of relay packets of the battery node corresponding to the verification conditions “B” to “D” is smaller than the verification condition “A”. Further, it can be seen that the average value of the number of relay packets of the battery node corresponding to the verification conditions “B” to “D” is larger than the verification condition “A”. From the results shown in FIG. 17, it can be seen that the ratio of the number of relay packets of the AC power supply node is larger than the ratio of the number of relay packets of the battery node in the verification conditions “B” to “D”. These results show that each node of the ad hoc network according to the first embodiment preferentially selects the communication path including the AC power supply node while reducing the chance of selecting the communication path including the battery node. means. That is, in Example 1, it can be seen that the battery life of the battery node can be extended.
 次いで、パケットの到達率の検証結果について説明する。図18は、Drop率を検証条件ごとに比較した結果を示す図である。図18に示す結果から、検証条件「D」に対応するDrop率が最も大きく、検証条件「B」及び「C」に対応するDrop率が検証条件「A」に対応するDrop率と同等に維持されていることが分かる。これらの結果は、本実施例1に係るアドホックネットワークの各ノードが、パケットの到達率を維持した適切な経路を選択していることを意味する。 Next, the verification result of the packet arrival rate will be described. FIG. 18 is a diagram illustrating a result of comparing the drop rate for each verification condition. From the result shown in FIG. 18, the Drop rate corresponding to the verification condition “D” is the largest, and the Drop rate corresponding to the verification conditions “B” and “C” is maintained equal to the Drop rate corresponding to the verification condition “A”. You can see that. These results mean that each node of the ad hoc network according to the first embodiment selects an appropriate route that maintains the packet arrival rate.
 次に、実施例2に係るノードについて説明する。実施例2に係るノードは、評価値算出部152の処理内容が実施例1に係るノードと異なる以外は実施例1と同様であるため、実施例1と重複する説明を省略する。 Next, a node according to the second embodiment will be described. Since the node according to the second embodiment is the same as the first embodiment except that the processing content of the evaluation value calculation unit 152 is different from the node according to the first embodiment, the description overlapping with the first embodiment is omitted.
 評価値算出部152は、隣接ノードとの間におけるハローパケットの送受信時において、自ノード100の電池の残存電力を測定し、測定した残存電力に応じて隣接のノードと自ノード100との間の無線リンクの評価値Dを算出する。 The evaluation value calculation unit 152 measures the remaining power of the battery of the own node 100 at the time of transmission / reception of the hello packet with the adjacent node, and between the adjacent node and the own node 100 according to the measured remaining power. An evaluation value D of the radio link is calculated.
 評価値算出部152が無線リンクの評価値を算出する処理の一例について説明する。まず、評価値算出部152は、隣接のノードからハローパケットを受信した場合に、ハローパケットの受信品質を検出する。実施例では、評価値算出部152は、受信品質の一例として、ハローパケットの電波強度の平均値、ハローパケットの電波強度の分散値、ハローパケットの受信周期の平均値及びハローパケットの受信周期の分散値を検出する。評価値算出部152は、電源情報取得部151から隣接ノードの電源情報及び自ノード100の電源情報を受け付ける。 An example of processing in which the evaluation value calculation unit 152 calculates the evaluation value of the wireless link will be described. First, the evaluation value calculation unit 152 detects the reception quality of a hello packet when a hello packet is received from an adjacent node. In the embodiment, the evaluation value calculation unit 152 includes, as an example of reception quality, an average value of the radio wave intensity of the hello packet, a dispersion value of the radio wave intensity of the hello packet, an average value of the reception period of the hello packet, and a reception period of the hello packet. Detect the variance value. The evaluation value calculation unit 152 receives the power supply information of the adjacent node and the power supply information of the own node 100 from the power supply information acquisition unit 151.
 続いて、評価値算出部152は、自ノード100の電源情報が電池を示す場合に、電池の残存電力を測定する。評価値算出部152は、評価パラメータとしての各受信品、電源情報及び電池の残存電力と、評価パラメータの換算値となる評価値とを対応付けた換算テーブルを保持する。 Subsequently, the evaluation value calculation unit 152 measures the remaining power of the battery when the power supply information of the own node 100 indicates the battery. The evaluation value calculation unit 152 holds a conversion table in which each received product as an evaluation parameter, power supply information, and remaining power of the battery are associated with an evaluation value that is a conversion value of the evaluation parameter.
 図19及び図20は、実施例2における評価値算出部152が保持する換算テーブルのデータ構造の一例を示す図である。図19に示す換算テーブルは、評価パラメータとしての電波強度平均値、電波強度分散値、受信周期平均値、受信周期分散値及び電源情報と、評価値とを対応づけて記憶する。図20に示す換算テーブルは、評価パラメータとしての電池の残存電力と、電池を示す電源情報の評価値とを対応づけて記憶する。電波強度平均値、電波強度分散値、受信周期平均値、受信周期分散値及び電源情報の説明は、実施例1の図6と同様である。電池の残存電力は、自ノード100の電池の残存電力を示す。また、評価値は、各評価パラメータの換算値を示す。 19 and 20 are diagrams illustrating an example of a data structure of a conversion table held by the evaluation value calculation unit 152 according to the second embodiment. The conversion table shown in FIG. 19 stores the radio wave intensity average value, radio wave intensity dispersion value, reception period average value, reception period dispersion value, power supply information, and power supply information as evaluation parameters in association with each other. The conversion table shown in FIG. 20 stores the remaining power of the battery as the evaluation parameter and the evaluation value of the power supply information indicating the battery in association with each other. The explanation of the radio wave intensity average value, radio wave intensity dispersion value, reception period average value, reception period dispersion value, and power supply information is the same as that in FIG. The remaining power of the battery indicates the remaining power of the battery of the own node 100. Moreover, an evaluation value shows the conversion value of each evaluation parameter.
 評価値は、各受信品質が高いほど、小さな値となる。例えば、図19では、電波強度平均値「x」が大きいほど、評価値が小さな値となる。例えば、電波強度分散値「y」が小さいほど、評価値が小さな値となる。例えば、受信周期平均値「z」が小さいほど、評価値が小さな値となる。受信周期分散値「w」が小さいほど、評価値が小さな値となる。 The evaluation value becomes smaller as each reception quality is higher. For example, in FIG. 19, the evaluation value becomes smaller as the radio wave intensity average value “x” is larger. For example, the evaluation value becomes smaller as the radio wave intensity dispersion value “y” is smaller. For example, the smaller the reception cycle average value “z” is, the smaller the evaluation value is. The smaller the reception cycle dispersion value “w” is, the smaller the evaluation value is.
 また、評価値は、電源情報が交流電源を示す場合には、電池に対応する値よりも小さな固定値となり、電源情報が電池を示す場合には、交流電源に対応する固定値よりも大きな値となる。さらに、評価値は、電源情報が電池を示す場合には、電池の残存電力の減少に応じて、交流電源に対応する固定値との差が増大する。例えば、図19及び図20では、電源情報「ps」が「電池」である場合の評価値は、電池の残存電力「b」が小さいほど、大きな値となる。さらに、図19及び図20では、電源情報「ps」が「電池」である場合の評価値と電源情報「ps」が「交流電源」である場合の評価値「1」との差が増大する。 The evaluation value is a fixed value smaller than the value corresponding to the battery when the power supply information indicates an AC power supply, and is larger than the fixed value corresponding to the AC power supply when the power supply information indicates a battery. It becomes. Furthermore, when the power supply information indicates a battery, the difference between the evaluation value and the fixed value corresponding to the AC power supply increases as the remaining power of the battery decreases. For example, in FIGS. 19 and 20, the evaluation value when the power supply information “ps” is “battery” becomes a larger value as the remaining power “b” of the battery is smaller. Further, in FIG. 19 and FIG. 20, the difference between the evaluation value when the power information “ps” is “battery” and the evaluation value “1” when the power information “ps” is “AC power” increases. .
 続いて、評価値算出部152は、換算テーブルと、検出した受信品質、受け付けた電源情報及び電池の残存電力とを比較して、評価値を判定する。例えば、図19では、評価値算出部152は、電源情報「ps」が「交流電源」である場合に、評価値「1」を判定する。例えば、図19及び図20では、評価値算出部152は、電源情報「ps」が「電池」であり、自ノード100の電池の残存電力「b」が「5500」である場合に、交流電源の評価値「1」よりも大きい評価値「4」を判定する。また、例えば、評価値算出部152は、電源情報「ps」が「電池」であり、自ノード100の電池の残存電力「b」が「1500」である場合に、評価値「20」を判定し、交流電源の評価値「1」との差を増大させる。すなわち、評価値算出部152は、自ノード100の電池の残存電力の減少に応じて、固定値である交流電源の評価値と、電池の評価値との差を増大させる。 Subsequently, the evaluation value calculation unit 152 determines the evaluation value by comparing the conversion table with the detected reception quality, the received power supply information, and the remaining power of the battery. For example, in FIG. 19, the evaluation value calculation unit 152 determines the evaluation value “1” when the power supply information “ps” is “AC power supply”. For example, in FIG. 19 and FIG. 20, the evaluation value calculation unit 152 causes the AC power supply when the power information “ps” is “battery” and the remaining power “b” of the battery of the node 100 is “5500”. An evaluation value “4” larger than the evaluation value “1” is determined. For example, the evaluation value calculation unit 152 determines the evaluation value “20” when the power supply information “ps” is “battery” and the remaining power “b” of the battery of the node 100 is “1500”. Then, the difference from the evaluation value “1” of the AC power supply is increased. That is, the evaluation value calculation unit 152 increases the difference between the evaluation value of the AC power source, which is a fixed value, and the evaluation value of the battery according to the decrease in the remaining power of the battery of the own node 100.
 続いて、評価値算出部152は、評価パラメータである各受信品質及び電源情報を重み付けしつつ加算する評価式に、判定した評価値を適用することで、隣接ノードと自ノード100との間の無線リンクの評価値Dを算出する。例えば、評価値算出部152は、上述の式(1)との間の無線リンクの評価値Dを算出する。評価値算出部152は、算出したDを、ワークテーブル141に格納する。 Subsequently, the evaluation value calculation unit 152 applies the determined evaluation value to an evaluation formula that adds each weighted reception quality and power supply information, which are evaluation parameters, while weighting, so that the node between the adjacent node and the own node 100 can be applied. An evaluation value D of the radio link is calculated. For example, the evaluation value calculation unit 152 calculates the evaluation value D of the radio link between the above equation (1). The evaluation value calculation unit 152 stores the calculated D in the work table 141.
 次に、本実施例2に係るノード100の処理手順について説明する。図21は、実施例2に係るノードから目的地のノードに至る無線リンクの評価値を算出して通信経路テーブルに格納する処理の処理手順を示すフローチャートである。例えば、図21に示す処理は、ハローパケットを受信したことを契機に実行される。なお、図21におけるステップS505~S514は、図8におけるステップS104~S113と同様であるので、その詳細な説明を省略する。 Next, the processing procedure of the node 100 according to the second embodiment will be described. FIG. 21 is a flowchart illustrating a processing procedure of processing for calculating an evaluation value of a wireless link from a node according to the second embodiment to a destination node and storing the evaluation value in a communication path table. For example, the process illustrated in FIG. 21 is executed when a hello packet is received. Note that steps S505 to S514 in FIG. 21 are the same as steps S104 to S113 in FIG. 8, and a detailed description thereof will be omitted.
 図21に示すように、ノード100は、ハローパケットを受信していない場合には(ステップS501;No)、処理を終了する。一方、ノード100は、ハローパケットを受信した場合には(ステップS501;Yes)、ハローパケットの送信元となる隣接ノードの電源情報と、記憶部140に保持された自ノード100の電源情報を取得する(ステップS502)。さらに、ノード100は、受信したハローパケットの受信品質を検出する。 As shown in FIG. 21, when the node 100 has not received a hello packet (step S501; No), the process ends. On the other hand, when the node 100 receives the hello packet (step S501; Yes), the node 100 obtains the power information of the adjacent node that is the transmission source of the hello packet and the power information of the own node 100 held in the storage unit 140. (Step S502). Further, the node 100 detects the reception quality of the received hello packet.
 ノード100は、自ノード100の電源情報が電池を示す場合には、自ノード100の電池の残存電力を測定する(ステップS503)。ノード100は、電池の残存電力、電源情報及びハローパケットの受信品質を基にして、隣接ノードと自ノード100との間の無線リンクの評価値Dを算出し(ステップS504)、処理をステップS505に移項する。 When the power information of the node 100 indicates a battery, the node 100 measures the remaining power of the battery of the node 100 (Step S503). The node 100 calculates the evaluation value D of the radio link between the adjacent node and the own node 100 based on the remaining battery power, the power supply information, and the reception quality of the hello packet (step S504), and the process is performed in step S505. Move to.
 次に、本実施例2に係るアドホックネットワークの効果について説明する。アドホックネットワークに含まれるノード100は、自ノード100の電源情報が電池である場合に、電池の残存電力を測定する。ノード100は、測定した電池の残存電力の減少に応じて、固定値である交流電源に対応する評価値と、電池に対応する評価値との差を増大させる。そして、ノード100は、自ノード100から目的地のノードに至る無線リンクの評価値の加算値が最も高品質となる経路を、目的地に送信するパケットの転送先として選択する。このため、ノード100は、電池ノードの電池の残存電力が減少するほど、電池ノードを含む通信経路の選択の機会を減少させることができ、結果として、電池切れとなるノードの数を抑えることができる。 Next, the effect of the ad hoc network according to the second embodiment will be described. The node 100 included in the ad hoc network measures the remaining power of the battery when the power information of the node 100 is a battery. The node 100 increases the difference between the evaluation value corresponding to the AC power source, which is a fixed value, and the evaluation value corresponding to the battery, according to the measured decrease in the remaining power of the battery. Then, the node 100 selects, as the transfer destination of the packet to be transmitted to the destination, the route having the highest quality value of the evaluation value of the radio link from the node 100 to the destination node. For this reason, as the remaining power of the battery of the battery node decreases, the node 100 can reduce the chance of selecting a communication path including the battery node, and as a result, the number of nodes that run out of batteries can be suppressed. it can.
 次に、本実施例2に係るアドホックネットワークの効果の検証方法と、その検証結果について説明する。本検証方法では、アドホックネットワークにおける電池ノードのうち電池切れとなる電池ノード(以下「電池切れノード」という)の数を既存のシミュレーションプログラムを用いて検証した。電池切れノードの数の検証では、電池切れノードの数を、検証条件ごとに比較する。なお、本検証方法では、電池ノードの電池の残存電力と、電池ノードの中継パケット数とが反比例の関係にあるため、電池ノードの中継パケット数が所定数(例えば、1000)を超えた電池ノードを、残存電力「0」の電池切れノードとして計数した。また、本検証方法の検証条件は、図12に示した実施例1の検証条件「A」~「C」と同様である。また、本検証方法では、評価パラメータ「Pps」以外の他の評価パラメータの重み係数として、図13に示した実施例1の値を用いた。また、本検証方法では、各評価パラメータと評価値とを対応付けた換算テーブルとして、図19及び図20に示した換算テーブルを用いた。また、本検証方法では、シミュレーションプログラムに適用するアドホックネットワークの構成として、図14に示す構成を用いた。 Next, a method for verifying the effect of the ad hoc network according to the second embodiment and a result of the verification will be described. In this verification method, the number of battery nodes that run out of batteries (hereinafter referred to as “battery dead nodes”) among battery nodes in the ad hoc network was verified using an existing simulation program. In the verification of the number of battery exhausted nodes, the number of battery exhausted nodes is compared for each verification condition. In this verification method, since the remaining power of the battery of the battery node and the number of relay packets of the battery node are in an inversely proportional relationship, the battery node whose number of relay packets of the battery node exceeds a predetermined number (for example, 1000) Was counted as a battery dead node with a remaining power of “0”. The verification conditions of this verification method are the same as the verification conditions “A” to “C” of the first embodiment shown in FIG. Further, in this verification method, the values of the first embodiment shown in FIG. 13 are used as the weighting coefficients of the evaluation parameters other than the evaluation parameter “Pps”. Moreover, in this verification method, the conversion table shown in FIG.19 and FIG.20 was used as a conversion table which matched each evaluation parameter and evaluation value. In this verification method, the configuration shown in FIG. 14 is used as the configuration of the ad hoc network applied to the simulation program.
 次いで、電池切れノードの数の検証結果について説明する。図22は、アドホックネットワークに含まれる電池切れノードの数を検証条件ごとに比較した結果を示す図である。図22において、縦軸は、電池切れノードの数を示し、横軸は、シミュレーションプログラムの実行開始から経過した時間を示す。図22に示す結果から、同一の時間が経過した場合に、検証条件「A」よりも検証条件「B」及び「C」に対応する電池切れノードの数の方が少ないことが分かる。すなわち、本実施例2では、電池切れとなるノードの数を抑えることができることが分かる。 Next, the verification result of the number of nodes out of battery will be described. FIG. 22 is a diagram illustrating a result of comparing the number of out-of-battery nodes included in the ad hoc network for each verification condition. In FIG. 22, the vertical axis indicates the number of nodes that have run out of battery, and the horizontal axis indicates the time that has elapsed since the start of execution of the simulation program. From the results shown in FIG. 22, it is understood that the number of out-of-battery nodes corresponding to the verification conditions “B” and “C” is smaller than the verification condition “A” when the same time has elapsed. That is, in Example 2, it can be seen that the number of nodes that run out of batteries can be suppressed.
 ところで、ノード100、200の各構成要素は機能概念的なものであり、必ずしも物理的に図示の如く構成されていることを要しない。すなわち、ノード100、200の具体的形態は図示のものに限られず、各種の負荷や使用状況などに応じて、任意の単位で機能的または物理的に分散・統合して構成することができる。例えば、図3の各処理部151~155の機能をまとめてもよい。 By the way, each component of the nodes 100 and 200 is functionally conceptual and does not necessarily need to be physically configured as illustrated. That is, the specific forms of the nodes 100 and 200 are not limited to those shown in the drawings, and can be configured to be functionally or physically distributed and integrated in arbitrary units according to various loads and usage conditions. For example, the functions of the processing units 151 to 155 in FIG.
 上記実施例1,2に示したノード100の機能は、既知のPC(Personal Computer)またはPDA(Personal Digital Assistants)などの情報処理装置に、ノードに対応する各機能を搭載することによって実現することもできる。図23は、実施例1、2にかかるノードを構成するコンピュータのハードウェア構成を示す図である。 The functions of the node 100 shown in the first and second embodiments are realized by installing each function corresponding to the node in an information processing apparatus such as a known PC (Personal Computer) or PDA (Personal Digital Assistant). You can also. FIG. 23 is a diagram illustrating a hardware configuration of a computer that configures a node according to the first and second embodiments.
 図23に示すように、このコンピュータ300は、各種演算処理を実行するCPU301と、ユーザからのデータの入力を受け付ける入力装置302と、ディスプレイ303とを有する。また、コンピュータ300は、記憶媒体からプログラム等を読み取る読み取り装置304と、他の装置と接続するためのインターフェース装置305とを有する。また、コンピュータ300は、他の装置と無線により接続する無線通信装置306と、各種情報を一時記憶するRAM307と、ハードディスク装置308とを有する。各装置301~308は、バス309に接続される。 As shown in FIG. 23, the computer 300 includes a CPU 301 that executes various arithmetic processes, an input device 302 that receives input of data from a user, and a display 303. The computer 300 also includes a reading device 304 that reads a program and the like from a storage medium, and an interface device 305 for connecting to other devices. The computer 300 also includes a wireless communication device 306 that is wirelessly connected to other devices, a RAM 307 that temporarily stores various types of information, and a hard disk device 308. Each device 301 to 308 is connected to a bus 309.
 ハードディスク装置308には、電源情報取得プログラム、評価値算出プログラム、経路選択プログラムなどの各種のプログラムが記憶される。 The hard disk device 308 stores various programs such as a power information acquisition program, an evaluation value calculation program, and a route selection program.
 CPU301は、ハードディスク装置308に記憶された各プログラムを読み出して、RAM307に展開し、各種の処理を行う。また、これらのプログラムは、コンピュータを図3の電源情報取得部151、評価値算出部152、経路選択部153として機能させることができる。 The CPU 301 reads out each program stored in the hard disk device 308, develops it in the RAM 307, and performs various processes. In addition, these programs can cause the computer to function as the power supply information acquisition unit 151, the evaluation value calculation unit 152, and the route selection unit 153 in FIG.
 なお、上記のプログラムは、必ずしもハードディスク装置308に格納されている必要はない。例えば、CD-ROM等の記憶媒体に記憶されたプログラムを、コンピュータ300が読み出して実行するようにしてもよい。また、公衆回線、インターネット、LAN(Local Area Network)、WAN(Wide Area Network)等に接続された記憶装置に、各プログラムを記憶させておいてもよい。この場合、コンピュータ300がこれらから各プログラムを読み出して実行するようにしてもよい。 Note that the above program does not necessarily have to be stored in the hard disk device 308. For example, the computer 300 may read and execute a program stored in a storage medium such as a CD-ROM. Each program may be stored in a storage device connected to a public line, the Internet, a LAN (Local Area Network), a WAN (Wide Area Network), or the like. In this case, the computer 300 may read and execute each program from these.
1 GW(Gate Way)
100、100a~100e ノード
110 無線通信部
120 入力部
130 表示部
140 記憶部
141 ワークテーブル
142 通信経路テーブル
150 制御部
151 電源情報取得部
152 評価値算出部
153 経路選択部
154 ハローパケット生成部
155 データパケット生成部
1 GW (Gate Way)
100, 100a to 100e Node 110 Wireless communication unit 120 Input unit 130 Display unit 140 Storage unit 141 Work table 142 Communication path table 150 Control unit 151 Power supply information acquisition unit 152 Evaluation value calculation unit 153 Route selection unit 154 Hello packet generation unit 155 Data Packet generator

Claims (4)

  1.  アドホックネットワークを構成する無線装置における経路選択方法であって、
     隣接の無線装置または前記無線装置の電源が内部電源又は外部電源のいずれであるかを示す電源情報を取得し、
     取得された電源情報が内部電源を示す場合に、前記隣接の無線装置と前記無線装置との間の経路の評価値として第一の値を算出し、前記電源情報が外部電源を示す場合に、該評価値として前記第一の値よりも高品質であることを表す第二の値を算出し、
     複数の前記隣接の無線装置からパケットを受信した場合に、該パケットに含まれる各前記隣接の無線装置から目的地に至る経路の評価値と前記算出された評価値との加算値のうち最も高品質であることを表す評価値に対応する前記隣接の無線装置を、前記目的地にパケットを送信する場合の転送先として選択する
     ことを含むことを特徴とする経路選択方法。
    A route selection method in a wireless device constituting an ad hoc network,
    Obtaining power information indicating whether an adjacent wireless device or a power supply of the wireless device is an internal power supply or an external power supply;
    When the acquired power supply information indicates an internal power supply, a first value is calculated as an evaluation value of a path between the adjacent wireless device and the wireless device, and when the power supply information indicates an external power supply, Calculating a second value representing higher quality than the first value as the evaluation value;
    When a packet is received from a plurality of adjacent wireless devices, the highest value among the addition values of the evaluation value of the route from each adjacent wireless device included in the packet to the destination and the calculated evaluation value Selecting a neighboring wireless device corresponding to an evaluation value representing quality as a transfer destination when a packet is transmitted to the destination.
  2.  前記隣接の無線装置と前記無線装置との間の経路の評価値を算出する処理は、前記無線装置の前記電源情報が内部電源を示す場合に、該内部電源の残存電力を測定し、測定した残存電力の減少に応じて、固定値である前記第二の値と、前記隣接の無線装置と前記無線装置との間の経路の評価値として算出する前記第一の値との差を増大させることを特徴とする請求項1に記載の経路選択方法。 The process of calculating the evaluation value of the path between the adjacent wireless device and the wireless device is performed by measuring the remaining power of the internal power supply when the power supply information of the wireless device indicates the internal power supply. As the remaining power decreases, the difference between the second value, which is a fixed value, and the first value calculated as an evaluation value of a path between the adjacent wireless device and the wireless device is increased. The route selection method according to claim 1, wherein:
  3.  アドホックネットワークを構成する無線装置であって、
     隣接の無線装置または自装置の電源が内部電源又は外部電源のいずれであるかを示す電源情報を取得する電源情報取得部と、
     前記電源情報取得部によって取得された電源情報が内部電源を示す場合に、前記隣接の無線装置と自装置との間の経路の評価値として第一の値を算出し、前記電源情報が外部電源を示す場合に、該評価値として前記第一の値よりも高品質であることを表す第二の値を算出する評価値算出部と、
     複数の前記隣接の無線装置からパケットを受信した場合に、該パケットに含まれる各前記隣接の無線装置から目的地に至る経路の評価値と前記評価値算出部にて算出された評価値との加算値のうち最も高品質であることを表す評価値に対応する前記隣接の無線装置を、前記目的地にパケットを送信する場合の転送先として選択する経路選択部と
     を備える無線装置。
    A wireless device constituting an ad hoc network,
    A power information acquisition unit that acquires power information indicating whether the power of an adjacent wireless device or its own device is an internal power supply or an external power supply;
    When the power supply information acquired by the power supply information acquisition unit indicates an internal power supply, a first value is calculated as an evaluation value of a path between the adjacent wireless device and the own device, and the power supply information is an external power supply. An evaluation value calculation unit that calculates a second value representing the higher quality than the first value as the evaluation value,
    When a packet is received from a plurality of adjacent wireless devices, an evaluation value of a route from each adjacent wireless device included in the packet to a destination and an evaluation value calculated by the evaluation value calculation unit A wireless device comprising: a route selection unit that selects the adjacent wireless device corresponding to an evaluation value representing the highest quality among the added values as a transfer destination when a packet is transmitted to the destination.
  4.  前記評価値算出部は、自装置の前記電源情報が内部電源を示す場合に、該内部電源の残存電力を測定し、測定した残存電力の減少に応じて、固定値である前記第二の値と、前記隣接の無線装置と自装置との間の経路の評価値として算出する前記第一の値との差を増大させることを特徴とする請求項3に記載の無線装置。 The evaluation value calculation unit measures the remaining power of the internal power supply when the power supply information of the own device indicates an internal power supply, and the second value that is a fixed value according to a decrease in the measured remaining power The wireless apparatus according to claim 3, wherein a difference between the first value calculated as an evaluation value of a route between the adjacent wireless apparatus and the own apparatus is increased.
PCT/JP2012/056940 2012-03-16 2012-03-16 Path selection method and wireless device WO2013136527A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/056940 WO2013136527A1 (en) 2012-03-16 2012-03-16 Path selection method and wireless device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/056940 WO2013136527A1 (en) 2012-03-16 2012-03-16 Path selection method and wireless device

Publications (1)

Publication Number Publication Date
WO2013136527A1 true WO2013136527A1 (en) 2013-09-19

Family

ID=49160492

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/056940 WO2013136527A1 (en) 2012-03-16 2012-03-16 Path selection method and wireless device

Country Status (1)

Country Link
WO (1) WO2013136527A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015231071A (en) * 2014-06-03 2015-12-21 三菱電機株式会社 Network control device
JP2016024703A (en) * 2014-07-23 2016-02-08 富士電機株式会社 Radio network system
JP2017530663A (en) * 2015-01-20 2017-10-12 三菱電機株式会社 Node network, battery-powered node and method for managing battery-powered node
JP2018513595A (en) * 2015-03-13 2018-05-24 クアルコム,インコーポレイテッド Discover and select repeaters for any Internet of Things device
US10645631B2 (en) 2016-06-09 2020-05-05 Qualcomm Incorporated Device detection in mixed static and mobile device networks
US11350338B2 (en) 2016-09-23 2022-05-31 Nec Corporation Information processing apparatus, communication method, communication program, communication system, IoT device, and base station

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007074561A (en) * 2005-09-08 2007-03-22 Advanced Telecommunication Research Institute International Routing method of wireless network and wireless communication system
JP2007158478A (en) * 2005-11-30 2007-06-21 Sharp Corp Mobile terminal device
JP2008160584A (en) * 2006-12-25 2008-07-10 Fujitsu Ltd Network system and data transfer method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007074561A (en) * 2005-09-08 2007-03-22 Advanced Telecommunication Research Institute International Routing method of wireless network and wireless communication system
JP2007158478A (en) * 2005-11-30 2007-06-21 Sharp Corp Mobile terminal device
JP2008160584A (en) * 2006-12-25 2008-07-10 Fujitsu Ltd Network system and data transfer method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015231071A (en) * 2014-06-03 2015-12-21 三菱電機株式会社 Network control device
JP2016024703A (en) * 2014-07-23 2016-02-08 富士電機株式会社 Radio network system
JP2017530663A (en) * 2015-01-20 2017-10-12 三菱電機株式会社 Node network, battery-powered node and method for managing battery-powered node
JP2018513595A (en) * 2015-03-13 2018-05-24 クアルコム,インコーポレイテッド Discover and select repeaters for any Internet of Things device
US10476964B2 (en) 2015-03-13 2019-11-12 Qualcomm Incorporated Internet of everything device relay discovery and selection
US10645631B2 (en) 2016-06-09 2020-05-05 Qualcomm Incorporated Device detection in mixed static and mobile device networks
US11284329B2 (en) 2016-06-09 2022-03-22 Qualcomm Incorporated Device detection in mixed static and mobile device networks
US11350338B2 (en) 2016-09-23 2022-05-31 Nec Corporation Information processing apparatus, communication method, communication program, communication system, IoT device, and base station

Similar Documents

Publication Publication Date Title
WO2013136527A1 (en) Path selection method and wireless device
Laouid et al. A distributed multi-path routing algorithm to balance energy consumption in wireless sensor networks
KR101421145B1 (en) Method for gateway selecting to optimize network capacity gateway in wireless mesh networks
JP5939262B2 (en) Transmission control method, node, and transmission control program
US20090285124A1 (en) Wireless mesh network transit link topology optimization method and system
Temel et al. Routing protocol design guidelines for smart grid environments
EP3425861A1 (en) Improved routing in an heterogeneous iot network
Mahiddin et al. An internet access solution: MANET routing and a gateway selection approach for disaster scenarios
JP5810899B2 (en) Wireless communication apparatus, wireless communication program, and wireless communication method
JP5058020B2 (en) Communications system
Chu et al. Deployment of a connected reinforced backbone network with a limited number of backbone nodes
JPWO2013136527A1 (en) Route selection method and wireless device
JP2016045022A (en) Position estimation device
JP2012199703A (en) Wireless communication device and route construction method
Kim et al. Improving the topological resilience of mobile ad hoc networks
Ng et al. Energy-balanced dynamic source routing protocol for wireless sensor network
Ghazi Amor et al. Cyber-OF: An adaptive cyber-physical objective function for smart cities applications
JP5692404B2 (en) Transmission control method and transmission control apparatus
JP6408648B2 (en) Wireless communication apparatus and method, and program
KR20120044703A (en) An application-specific routing method in wireless sensor and actor network
JPWO2012132013A1 (en) Node, link forming method and link forming program
JP6747204B2 (en) Wireless communication device, wireless communication program, and wireless communication method
JP2015180013A (en) Route selection method, node apparatus, relay system, and program
JP2015012427A (en) Communication reliability evaluation device and multi-hop radio communication network system using the same
JP5778852B2 (en) Ad hoc network system and route selection method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12871071

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014504606

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12871071

Country of ref document: EP

Kind code of ref document: A1