WO2013136490A1 - Line beam generation device - Google Patents

Line beam generation device Download PDF

Info

Publication number
WO2013136490A1
WO2013136490A1 PCT/JP2012/056733 JP2012056733W WO2013136490A1 WO 2013136490 A1 WO2013136490 A1 WO 2013136490A1 JP 2012056733 W JP2012056733 W JP 2012056733W WO 2013136490 A1 WO2013136490 A1 WO 2013136490A1
Authority
WO
WIPO (PCT)
Prior art keywords
line beam
beam generator
grin lens
beam generation
optical fiber
Prior art date
Application number
PCT/JP2012/056733
Other languages
French (fr)
Japanese (ja)
Inventor
鈴木 太郎
定良 家田
Original Assignee
東洋製罐グループホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋製罐グループホールディングス株式会社 filed Critical 東洋製罐グループホールディングス株式会社
Priority to PCT/JP2012/056733 priority Critical patent/WO2013136490A1/en
Publication of WO2013136490A1 publication Critical patent/WO2013136490A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0005Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being of the fibre type
    • G02B6/0008Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being of the fibre type the light being emitted at the end of the fibre
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0911Anamorphotic systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/095Refractive optical elements
    • G02B27/0955Lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0087Simple or compound lenses with index gradient

Definitions

  • the present invention relates to an apparatus for generating a so-called line beam that spreads at a large angle when viewed from one direction and hardly expands when viewed from the perpendicular direction.
  • the line beam reads optical information as shown in the following Patent Document 3, laser processing of a liquid crystal display or an organic EL display as shown in the following Patent Document 4, optical measurement as shown in the following Patent Document 5, etc. Has been used for a variety of purposes.
  • the line beam is generated by arranging an optical lens in the optical path of the laser beam and shaping the laser beam as shown in Patent Documents 1 and 2 below.
  • Such a line beam generator is desired to be as small as possible, but the structure in which the optical lens is arranged in the optical path of the laser beam has a limit in miniaturization.
  • FIG. 9 and 10 are examples of the most miniaturized line beam generator using an optical lens (rod lens 5), FIG. 9 is a horizontal sectional view, and FIG. 10 is a vertical sectional view.
  • a GRIN lens 5 is fused to the tip surface of the optical fiber 4.
  • a zirconia capillary tube 7 is attached to the outside of the optical fiber 4, and a stainless steel sheath tube 8 is attached to the outside of the capillary tube 7.
  • a rod lens 6 is bonded and fixed to the distal end of the sheath tube 8.
  • JP 2008-177372 A Special table 2009-514227 JP 7-240840 A JP 2011-204913 A JP 2010-1117312 A
  • the outer diameter of the sheath tube 7 is about 1.5 mm.
  • the work of adhering and fixing the rod lens 5 to the sheath tube 7 is extremely complicated and not easy to manufacture, and the rod lens 5 at the tip is easily damaged or dropped off.
  • the line beam is emitted forward with respect to the fiber axis direction, it is necessary to make the optical axis to be irradiated and the fiber axis substantially coincide with each other. There was also.
  • the object of the present invention is to make the line beam generator much smaller than before, to make it easy to manufacture, and to make the whole device smaller.
  • the present invention is a line beam generator characterized in that the front end surface of a GRIN lens having a circular cross section is an inclined surface inclined with respect to the axis, and the rear end surface is a connection surface connected to an optical fiber.
  • the line beam generator of the present invention is manufactured by polishing the tip surface of a GRIN lens having a circular cross section into an inclined surface inclined with respect to the axis.
  • a GRIN lens (graded index lens) is an optical fiber that acts as a lens by having a refractive index distribution from the center to the radial direction, and the refractive index distribution is preferably a square distribution or a distribution close to a square distribution.
  • the laser light propagated in the core of the optical fiber 2 enters the line beam generator 1 from the connection surface 1b, propagates as shown by an arrow, and is reflected by the inclined surface 1a. It emits as a line beam on the upper side.
  • the exiting line beam hardly spreads when viewed from the side as shown in FIG. 4, but when viewed from the front side of FIG. 5, the lens effect that the outer peripheral portion is circular causes a relatively large angle ⁇ . Spread with.
  • the present invention also provides the line beam generator according to claim 1, wherein an inclination angle ⁇ with respect to the axis of the inclined surface is 40 ° to 50 °.
  • the tilt angle ⁇ may be appropriately determined as necessary, but by setting it to 40 ° to 50 °, the line beam can be emitted at an angle close to a right angle with respect to the axis. Usually 45 ° is optimal. Of course, ⁇ is an angle other than 90 °.
  • the meandering period of light propagating in the GRIN lens is 8 ⁇ / 40 ⁇ L ⁇ 12 ⁇ / 40
  • L is in the range of or a length obtained by adding n ⁇ / 2 (where n is a natural number) to L.
  • the line beam generator of the present invention can be easily manufactured by polishing the end surface of the GRIN lens to form an inclined surface.
  • the outer diameter can be set to 125 ⁇ m, which is the same as that of the single mode optical fiber, and the size can be significantly reduced as compared with the conventional product.
  • the entire apparatus can be made smaller than before by arranging the optical axis and the fiber axis perpendicularly.
  • FIG. 1 is a front view of a line beam generator 1.
  • FIG. 1 is a perspective view of a line beam generator 1.
  • FIG. It is side surface explanatory drawing of the line beam radiate
  • FIG. It is front explanatory drawing of the line beam radiate
  • FIG. It is explanatory drawing of the spread angle (alpha) of the line beam radiate
  • FIG. It is explanatory drawing of the spread angle (alpha) of the line beam radiate
  • FIG. 2 is a cross-sectional explanatory view of the line beam generator 1.
  • FIG. It is a horizontal sectional view of a conventional line beam generator. It is a vertical sectional view of a conventional line beam generator.
  • the line beam generator 1 shown in FIGS. 1 to 7 polishes one end of a GRIN lens having a circular cross section manufactured by a sol-gel method, forms an inclined surface 1a having an angle ⁇ with respect to an axis, and uses the other end as an axis.
  • the connection surface 1b was formed by polishing at a right angle.
  • the tip inclined surface 1a can be coated with a mirror coat (Au coat or the like) or a half mirror coat (dielectric multilayer film coat or the like) as necessary.
  • one end surface of the optical fiber 2 is connected to the connection surface 1 b of the line beam generator 1.
  • Laser light is incident from the other end face of the optical fiber 2 by a laser diode or the like.
  • the laser light propagated in the core 2a of the optical fiber 2 enters the line beam generator 1 from the connection surface 1b, propagates as shown by an arrow, reflects on the inclined surface 1a, and moves upward in FIGS. Output as a line beam.
  • NA number of the GRIN lens
  • NA number of the GRIN lens
  • NA number of the GRIN lens
  • NA is the sine of a critical angle (the maximum angle with respect to an axis that allows light to enter the GRIN lens when light is incident on the GRIN lens with an inclination relative to its axis).
  • the spread angle ⁇ of the line beam when viewed from the front side is smaller as the outer diameter of the GRIN lens is larger, and is larger as the refractive index of the peripheral portion of the GRIN lens is smaller.
  • 6 schematically shows a line beam when the refractive index of the GRIN lens peripheral portion is 1.00 by an arrow
  • FIG. 7 shows the line when the refractive index of the GRIN lens peripheral portion is 1.40.
  • the beam is schematically represented by an arrow.
  • the outer diameter of the GRIN lens in FIGS. 6 and 7 is the same.
  • the diffusion is reduced when the NA (numerical aperture) of the GRIN lens is reduced, and the diffusion is increased when the NA is increased.
  • the line beam generator 1 can be equipped with a protective tube 3 on the outside as shown in FIG.
  • the protective tube 3 has an exit 3a, and the line beam exits from the exit 3a.
  • the protection tube completely protects the line beam generator 1 and eliminates the possibility of damage.

Abstract

The present invention enables a line beam generation device to be easily produced and causes the line beam generation device to be more compact than conventional line beam generation devices. The front end surface of a GRIN lens having a circular cross section is an inclined surface that is inclined with respect to the axial line thereof, and an optical fiber is connected to the connection surface of the back end surface thereof. Laser light propagated within the core of an optical fiber enters within the line beam generation device through the connection surface, is reflected at the inclined surface, and exits as a line beam. The exiting line beam for the most part does not broaden when viewed laterally, and when viewed head-on, broadens at a relatively large angle by means of the lens effect of the outer perimeter being circular.

Description

ラインビーム発生装置Line beam generator
 本発明は、一方向から見ると大きな角度で広がり、その直角方向から見るとほとんど広がらない、いわゆるラインビームを発生する装置に関する。 The present invention relates to an apparatus for generating a so-called line beam that spreads at a large angle when viewed from one direction and hardly expands when viewed from the perpendicular direction.
 ラインビームは、下記特許文献3に示されるような光学的情報読み取り、下記特許文献4に示されるような液晶ディスプレイや有機ELディスプレイのレーザ処理、下記特許文献5に示されるような光学式計測など、さまざまな目的で使用されている。 The line beam reads optical information as shown in the following Patent Document 3, laser processing of a liquid crystal display or an organic EL display as shown in the following Patent Document 4, optical measurement as shown in the following Patent Document 5, etc. Has been used for a variety of purposes.
 ラインビームは、下記特許文献1,2に示されるように、レーザ光の光路に光学レンズを配置してレーザ光を整形することで生成される。このようなラインビーム発生装置は、なるべく小型であることが望まれているが、レーザ光の光路に光学レンズを配置する構造は、小型化に限界があった。 The line beam is generated by arranging an optical lens in the optical path of the laser beam and shaping the laser beam as shown in Patent Documents 1 and 2 below. Such a line beam generator is desired to be as small as possible, but the structure in which the optical lens is arranged in the optical path of the laser beam has a limit in miniaturization.
 図9,10は光学レンズ(ロッドレンズ5)を用いた最も小型化されたラインビーム発生装置の例で、図9は水平断面図、図10は垂直断面図である。光ファイバ4の先端面にGRINレンズ5が融着されている。光ファイバ4の外側にはジルコニア製のキャピラリ-チューブ7、更にその外側にステンレス製の鞘管8が装着され、鞘管8の先端部にロッドレンズ6が接着固定されている。 9 and 10 are examples of the most miniaturized line beam generator using an optical lens (rod lens 5), FIG. 9 is a horizontal sectional view, and FIG. 10 is a vertical sectional view. A GRIN lens 5 is fused to the tip surface of the optical fiber 4. A zirconia capillary tube 7 is attached to the outside of the optical fiber 4, and a stainless steel sheath tube 8 is attached to the outside of the capillary tube 7. A rod lens 6 is bonded and fixed to the distal end of the sheath tube 8.
 光ファイバ4のコア内を伝播してきた光はGRINレンズ5内を伝播し、その先端面からほぼ平行光として出射し、ロッドレンズ6を透過することでラインビームとなる。すなわち、図9において光は広い角度で広がり、図10においてはほとんど広がらない。 The light that has propagated through the core of the optical fiber 4 propagates through the GRIN lens 5, is emitted as almost parallel light from the tip surface thereof, and passes through the rod lens 6 to become a line beam. That is, the light spreads at a wide angle in FIG. 9 and hardly spreads in FIG.
特開2008-177372号公報JP 2008-177372 A 特表2009-514227号公報Special table 2009-514227 特開平7-240840号公報JP 7-240840 A 特開2011-204913号公報JP 2011-204913 A 特開2010-117312号公報JP 2010-1117312 A
 図9,10のラインビーム発生装置は、最も小型化したものであるが、鞘管7の外径は1.5mm程度である。また、ロッドレンズ5を鞘管7に接着固定する作業がきわめて煩雑で、製作が容易でなく、先端のロッドレンズ5は破損、脱落しやすいという問題もあった。さらに、ファイバ軸方向に対してラインビームが前方に出射されるため、照射する光軸とファイバ軸を概一致させる必要があり、したがってラインビーム発生装置を含む装置全体を大きくする必要があるという問題もあった。 9 and 10 is the most compact line beam generator, but the outer diameter of the sheath tube 7 is about 1.5 mm. In addition, the work of adhering and fixing the rod lens 5 to the sheath tube 7 is extremely complicated and not easy to manufacture, and the rod lens 5 at the tip is easily damaged or dropped off. Further, since the line beam is emitted forward with respect to the fiber axis direction, it is necessary to make the optical axis to be irradiated and the fiber axis substantially coincide with each other. There was also.
 本発明は、ラインビーム発生装置を従来に比較して格段に小型化すること、容易に製作できるようにすること、さらに装置全体を小型化することを課題とするものである。 The object of the present invention is to make the line beam generator much smaller than before, to make it easy to manufacture, and to make the whole device smaller.
〔請求項1〕
 本発明は、円形断面のGRINレンズの先端面を、軸線に対して傾斜した傾斜面とし、後端面を光ファイバに接続する接続面としたことを特徴とするラインビーム発生装置である。
[Claim 1]
The present invention is a line beam generator characterized in that the front end surface of a GRIN lens having a circular cross section is an inclined surface inclined with respect to the axis, and the rear end surface is a connection surface connected to an optical fiber.
 本発明のラインビーム発生装置は、円形断面のGRINレンズの先端面を、軸線に対して傾斜した傾斜面に研磨して製作される。GRINレンズ(Graded Indexレンズ)とは、中心から半径方向にかけて屈折率分布を有することでレンズとして作用する光ファイバであり、屈折率分布は二乗分布又は二乗分布に近い分布が望ましい。 The line beam generator of the present invention is manufactured by polishing the tip surface of a GRIN lens having a circular cross section into an inclined surface inclined with respect to the axis. A GRIN lens (graded index lens) is an optical fiber that acts as a lens by having a refractive index distribution from the center to the radial direction, and the refractive index distribution is preferably a square distribution or a distribution close to a square distribution.
 図4に示すように、光ファイバ2のコア内を伝播したレーザ光は接続面1bからラインビーム発生装置1内に入射し、矢印で示すように伝播し、傾斜面1aで反射して図4の上側にラインビームとして出射する。出射するラインビームは、図4のように側方から見た場合はほとんど広がらず、図5の正面側から見た場合は、外周部が円形であることのレンズ効果により、比較的大きな角度αで広がる。 As shown in FIG. 4, the laser light propagated in the core of the optical fiber 2 enters the line beam generator 1 from the connection surface 1b, propagates as shown by an arrow, and is reflected by the inclined surface 1a. It emits as a line beam on the upper side. The exiting line beam hardly spreads when viewed from the side as shown in FIG. 4, but when viewed from the front side of FIG. 5, the lens effect that the outer peripheral portion is circular causes a relatively large angle α. Spread with.
〔請求項2〕
 また本発明は、前記傾斜面の軸線に対する傾斜角度θが40°~50°である請求項1に記載のラインビーム発生装置である。
[Claim 2]
The present invention also provides the line beam generator according to claim 1, wherein an inclination angle θ with respect to the axis of the inclined surface is 40 ° to 50 °.
 傾斜角度θは、必要に応じて適宜決定すればよいが、40°~50°にすることで、軸線に対して直角に近い角度でラインビームを出射することができる。通常は、45°が最適である。なお、もちろんθは90°以外の角度である。 The tilt angle θ may be appropriately determined as necessary, but by setting it to 40 ° to 50 °, the line beam can be emitted at an angle close to a right angle with respect to the axis. Usually 45 ° is optimal. Of course, θ is an angle other than 90 °.
〔請求項3〕
 また本発明は、前記GRINレンズの軸線における長さが、GRINレンズ内を伝播する光の蛇行周期をλとすると、
  8λ/40≦L≦12λ/40
の範囲にあるL、又はこのLにnλ/2(但し、nは自然数)を加えた長さである請求項1又は2に記載のラインビーム発生装置である。
[Claim 3]
In the present invention, if the length of the GRIN lens in the axis is λ, the meandering period of light propagating in the GRIN lens is
8λ / 40 ≦ L ≦ 12λ / 40
The line beam generator according to claim 1 or 2, wherein L is in the range of or a length obtained by adding nλ / 2 (where n is a natural number) to L.
 GRINレンズの軸線における長さが上記の範囲から外れると、ビームが広がりすぎてライン幅が大きくなりすぎ、実用的なラインビームが得られないおそれがある。 If the length of the GRIN lens in the axial line is out of the above range, the beam is too wide and the line width becomes too large, and a practical line beam may not be obtained.
 本発明のラインビーム発生装置は、GRINレンズの端面を研磨して傾斜面とすることで容易に製作することができる。また、例えば、外径をシングルモード光ファイバと同じ125μmにすることも可能で、従来品に比べて格段に小型化できる。さらには、ラインビームがファイバ軸と垂直方向に出射されるため、光軸とファイバ軸を垂直に配置することにより装置全体を従来よりも小型化できる。 The line beam generator of the present invention can be easily manufactured by polishing the end surface of the GRIN lens to form an inclined surface. Further, for example, the outer diameter can be set to 125 μm, which is the same as that of the single mode optical fiber, and the size can be significantly reduced as compared with the conventional product. Furthermore, since the line beam is emitted in a direction perpendicular to the fiber axis, the entire apparatus can be made smaller than before by arranging the optical axis and the fiber axis perpendicularly.
ラインビーム発生装置1の側面図である。2 is a side view of the line beam generator 1. FIG. ラインビーム発生装置1の正面図である。1 is a front view of a line beam generator 1. FIG. ラインビーム発生装置1の斜視図である。1 is a perspective view of a line beam generator 1. FIG. ラインビーム発生装置1から出射されるラインビームの側面説明図である。It is side surface explanatory drawing of the line beam radiate | emitted from the line beam generator 1. FIG. ラインビーム発生装置1から出射されるラインビームの正面説明図である。It is front explanatory drawing of the line beam radiate | emitted from the line beam generator 1. FIG. ラインビーム発生装置1から出射されるラインビームの広がり角度αの説明図である。It is explanatory drawing of the spread angle (alpha) of the line beam radiate | emitted from the line beam generator 1. FIG. ラインビーム発生装置1から出射されるラインビームの広がり角度αの説明図である。It is explanatory drawing of the spread angle (alpha) of the line beam radiate | emitted from the line beam generator 1. FIG. ラインビーム発生装置1の断面説明図である。2 is a cross-sectional explanatory view of the line beam generator 1. FIG. 従来のラインビーム発生装置の水平断面図である。It is a horizontal sectional view of a conventional line beam generator. 従来のラインビーム発生装置の垂直断面図である。It is a vertical sectional view of a conventional line beam generator.
発明の実施の形態BEST MODE FOR CARRYING OUT THE INVENTION
 図1~7に示すラインビーム発生装置1は、ゾルゲル方で製造した円形断面のGRINレンズの一端を研磨し、軸に対してθの角度を有する傾斜面1aを形成し、他端を軸に対して直角に研磨して接続面1bを形成した。 The line beam generator 1 shown in FIGS. 1 to 7 polishes one end of a GRIN lens having a circular cross section manufactured by a sol-gel method, forms an inclined surface 1a having an angle θ with respect to an axis, and uses the other end as an axis. On the other hand, the connection surface 1b was formed by polishing at a right angle.
 先端の傾斜面1aには、必要に応じてミラーコート(Auコートなど)、ハーフミラーコート(誘電多層膜コートなど)などのコーティングを施すことができる。 The tip inclined surface 1a can be coated with a mirror coat (Au coat or the like) or a half mirror coat (dielectric multilayer film coat or the like) as necessary.
 図4に示すように、ラインビーム発生装置1の接続面1bには光ファイバ2の一端面を接続する。光ファイバ2の他端面からレーザダイオード等によりレーザ光を入射する。光ファイバ2のコア2a内を伝播したレーザ光は接続面1bからラインビーム発生装置1内に入射し、矢印で示すように伝播し、傾斜面1aで反射して図4,5の上方向にラインビームとして出射する。 As shown in FIG. 4, one end surface of the optical fiber 2 is connected to the connection surface 1 b of the line beam generator 1. Laser light is incident from the other end face of the optical fiber 2 by a laser diode or the like. The laser light propagated in the core 2a of the optical fiber 2 enters the line beam generator 1 from the connection surface 1b, propagates as shown by an arrow, reflects on the inclined surface 1a, and moves upward in FIGS. Output as a line beam.
 図4のように側方から見た場合のラインビームは、GRINレンズのNA(開口数)を小さくすると拡散が小さく、NAを大きくすると拡散が大きくなる。NA(開口数)とは、臨界角(光がGRINレンズにその軸線に対して傾いて入射する場合、光がGRINレンズ内に進入可能な軸線に対する最大角度)の正弦である。 As shown in FIG. 4, the line beam viewed from the side is less diffused when the NA (numerical aperture) of the GRIN lens is decreased, and is increased when the NA is increased. NA (numerical aperture) is the sine of a critical angle (the maximum angle with respect to an axis that allows light to enter the GRIN lens when light is incident on the GRIN lens with an inclination relative to its axis).
 図5のように正面側から見た場合のラインビームの広がり角度αは、GRINレンズの外径が大きいほど小さくなり、GRINレンズの周辺部分の屈折率が小さいほど大きくなる。図6は、GRINレンズ周辺部分の屈折率が1.00の場合のラインビームを矢印で模式的に表したものであり、図7はGRINレンズ周辺部分の屈折率が1.40の場合のラインビームを矢印で模式的に表したものである。なお、図6と図7のGRINレンズの外径は同じである。また、正面側から見た場合のラインビームにおいても、GRINレンズのNA(開口数)を小さくすると拡散が小さく、NAを大きくすると拡散が大きくなる。 As shown in FIG. 5, the spread angle α of the line beam when viewed from the front side is smaller as the outer diameter of the GRIN lens is larger, and is larger as the refractive index of the peripheral portion of the GRIN lens is smaller. 6 schematically shows a line beam when the refractive index of the GRIN lens peripheral portion is 1.00 by an arrow, and FIG. 7 shows the line when the refractive index of the GRIN lens peripheral portion is 1.40. The beam is schematically represented by an arrow. The outer diameter of the GRIN lens in FIGS. 6 and 7 is the same. Also, in the line beam viewed from the front side, the diffusion is reduced when the NA (numerical aperture) of the GRIN lens is reduced, and the diffusion is increased when the NA is increased.
 ラインビーム発生装置1は、図8に示すように、外側に保護チューブ3を装着することができる。保護チューブ3には出射口3aが開孔しており、ラインビームは出射口3aから出射する。保護チューブにより、ラインビーム発生装置1が完全に保護され、損傷するおそれがなくなる。 The line beam generator 1 can be equipped with a protective tube 3 on the outside as shown in FIG. The protective tube 3 has an exit 3a, and the line beam exits from the exit 3a. The protection tube completely protects the line beam generator 1 and eliminates the possibility of damage.
 1 ラインビーム発生装置
 1a 傾斜面
 1b 接続面
 2 光ファイバ
 2a コア
 3 保護チューブ
 4 光ファイバ
 5 GRINレンズ
 6 ロッドレンズ
 7 キャピラリ-チューブ
 8 鞘管
DESCRIPTION OF SYMBOLS 1 Line beam generator 1a Inclined surface 1b Connection surface 2 Optical fiber 2a Core 3 Protection tube 4 Optical fiber 5 GRIN lens 6 Rod lens 7 Capillary tube 8 Sheath tube

Claims (3)

  1. 円形断面のGRINレンズの先端面を、軸線に対して傾斜した傾斜面とし、後端面を光ファイバに接続する接続面としたことを特徴とするラインビーム発生装置。 A line beam generator characterized in that a front end surface of a GRIN lens having a circular cross section is an inclined surface inclined with respect to an axis, and a rear end surface is a connection surface connected to an optical fiber.
  2. 前記傾斜面の軸線に対する傾斜角度θが40°~50°である請求項1に記載のラインビーム発生装置。 2. The line beam generator according to claim 1, wherein an inclination angle θ with respect to the axis of the inclined surface is 40 ° to 50 °.
  3. 前記GRINレンズの軸線における長さが、GRINレンズ内を伝播する光の蛇行周期をλとすると、
      8λ/40≦L≦12λ/40
    の範囲にあるL、又はこのLにnλ/2(但し、nは自然数)を加えた長さである請求項1又は2に記載のラインビーム発生装置。
    When the length of the GRIN lens in the axis is λ, the meandering period of light propagating in the GRIN lens is λ.
    8λ / 40 ≦ L ≦ 12λ / 40
    The line beam generator according to claim 1 or 2, wherein L is in the range of or a length obtained by adding nλ / 2 (where n is a natural number) to L.
PCT/JP2012/056733 2012-03-15 2012-03-15 Line beam generation device WO2013136490A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/056733 WO2013136490A1 (en) 2012-03-15 2012-03-15 Line beam generation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/056733 WO2013136490A1 (en) 2012-03-15 2012-03-15 Line beam generation device

Publications (1)

Publication Number Publication Date
WO2013136490A1 true WO2013136490A1 (en) 2013-09-19

Family

ID=49160456

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/056733 WO2013136490A1 (en) 2012-03-15 2012-03-15 Line beam generation device

Country Status (1)

Country Link
WO (1) WO2013136490A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019100743A (en) * 2017-11-29 2019-06-24 アダマンド並木精密宝石株式会社 Laser line generator

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004061887A (en) * 2002-07-29 2004-02-26 Kyocera Corp Fiber lens
JP2005519342A (en) * 2002-03-04 2005-06-30 コーニング インコーポレイテッド Beam bending apparatus and manufacturing method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005519342A (en) * 2002-03-04 2005-06-30 コーニング インコーポレイテッド Beam bending apparatus and manufacturing method thereof
JP2004061887A (en) * 2002-07-29 2004-02-26 Kyocera Corp Fiber lens

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019100743A (en) * 2017-11-29 2019-06-24 アダマンド並木精密宝石株式会社 Laser line generator
JP7066163B2 (en) 2017-11-29 2022-05-13 アダマンド並木精密宝石株式会社 Laser line generator

Similar Documents

Publication Publication Date Title
US11256076B2 (en) High power laser system
US8509577B2 (en) Fiberoptic device with long focal length gradient-index or grin fiber lens
US9823422B2 (en) Varying beam parameter product of a laser beam
US8835804B2 (en) Beam homogenizer
US20060098934A1 (en) Beam shaper and imaging head having beam shapers
US20180364024A1 (en) Beam-shaping elements for optical coherence tomography probes
JP2012159749A (en) Bessel beam generator
US9494739B2 (en) Cladding mode spatial filter
US8831396B1 (en) Homogenizing optical fiber apparatus and systems employing the same
EP2856584B1 (en) High power spatial filter
JP2013518299A5 (en)
US20140355638A1 (en) High Power Spatial Filter
JP2017203966A5 (en)
JP2016524723A (en) Method for forming a TIR optical fiber lens
US20120238821A1 (en) Optical connector and endoscope system
WO2013136490A1 (en) Line beam generation device
JP2014102305A (en) Optical multiplexing device
JP2002040271A (en) Terminal structure for optical fiber and method for treating terminal of optical fiber
Ryu et al. Fabrication and optical characteristics of large-core radial-firing optical fiber tip comprised of conically shaped air-pocket
JP7154669B1 (en) Narrow beam generator
US7164828B2 (en) Laser ribbon
KR101567985B1 (en) optical fiber having dual core and laser machining apparatus using the same
JP2014102304A (en) Optical multiplexing device
US20130101255A1 (en) Laser concentrating waveguide device
JP2023030808A (en) Optical control member, optical device, and laser device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12871297

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12871297

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP