WO2013136373A1 - Three-dimensional image processing device and three-dimensional image processing method - Google Patents
Three-dimensional image processing device and three-dimensional image processing method Download PDFInfo
- Publication number
- WO2013136373A1 WO2013136373A1 PCT/JP2012/001846 JP2012001846W WO2013136373A1 WO 2013136373 A1 WO2013136373 A1 WO 2013136373A1 JP 2012001846 W JP2012001846 W JP 2012001846W WO 2013136373 A1 WO2013136373 A1 WO 2013136373A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- image
- viewpoint image
- file
- viewpoint
- unit
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N5/00—Details of television systems
- H04N5/76—Television signal recording
- H04N5/765—Interface circuits between an apparatus for recording and another apparatus
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N13/00—Stereoscopic video systems; Multi-view video systems; Details thereof
- H04N13/10—Processing, recording or transmission of stereoscopic or multi-view image signals
- H04N13/106—Processing image signals
- H04N13/172—Processing image signals image signals comprising non-image signal components, e.g. headers or format information
- H04N13/178—Metadata, e.g. disparity information
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N13/00—Stereoscopic video systems; Multi-view video systems; Details thereof
- H04N13/10—Processing, recording or transmission of stereoscopic or multi-view image signals
- H04N13/189—Recording image signals; Reproducing recorded image signals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N9/00—Details of colour television systems
- H04N9/79—Processing of colour television signals in connection with recording
- H04N9/80—Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback
- H04N9/804—Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback involving pulse code modulation of the colour picture signal components
- H04N9/8042—Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback involving pulse code modulation of the colour picture signal components involving data reduction
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N9/00—Details of colour television systems
- H04N9/79—Processing of colour television signals in connection with recording
- H04N9/80—Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback
- H04N9/82—Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback the individual colour picture signal components being recorded simultaneously only
- H04N9/8205—Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback the individual colour picture signal components being recorded simultaneously only involving the multiplexing of an additional signal and the colour video signal
- H04N9/8227—Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback the individual colour picture signal components being recorded simultaneously only involving the multiplexing of an additional signal and the colour video signal the additional signal being at least another television signal
Definitions
- the present invention relates to a 3D image processing apparatus and 3D image processing method, and more particularly to a 3D image processing apparatus and 3D image processing method for extracting a 3D still image from a 3D image.
- Patent Document 1 discloses a technique for capturing a screen image of a two-dimensional video and storing the captured screen image as a JPEG file.
- Patent Document 2 discloses a technique for storing a stereoscopic video as a stereoscopic still image file.
- Patent Literatures 1 and 2 have a problem that they can not capture a screen image of a stereoscopic video and store it in a mode that can be viewed as a stereoscopic still image later.
- the present invention has been made in view of the above problems, and it is an object of the present invention to provide a three-dimensional video processing apparatus and a three-dimensional video processing method capable of storing a screen image of a three-dimensional video later as a stereoscopic still image. To aim.
- a stereoscopic video processing apparatus includes: a display unit that alternately displays a first viewpoint image and a second viewpoint image that form a stereoscopic video; an input reception unit that receives an input of a capture request from a user; A multi-picture format compliant in which the first viewpoint image displayed on the display unit and the second viewpoint image corresponding to the first viewpoint image are stored as a pair of still images at the timing when the capture request is received by the input reception unit And a file generation unit for generating a file of
- the screen image of the stereoscopic video can be stored in a mode that can be viewed as a stereoscopic still image later.
- the file generation unit may store the pair of still images acquired from each of the plurality of stereoscopic videos in the file when a plurality of stereoscopic videos are simultaneously displayed on the display unit.
- the file generation unit may be configured to combine a plurality of first viewpoint images stored in the file according to a layout displayed on the display unit, and a plurality of combined first viewpoint images stored in the file.
- the second viewpoint image may be stored in the file together with a combined second viewpoint image combined according to the layout displayed on the display unit.
- the file generation unit may store, in the file, information specifying a combination of a first viewpoint image and a second viewpoint image constituting the pair of still images.
- the three-dimensional video processing apparatus may further include a file reproduction unit that reads out the first viewpoint image and the second viewpoint image constituting the pair of still images from the file and alternately displays them on the display unit.
- the first viewpoint image may be one of a left viewpoint image and a right viewpoint image having parallax.
- the second viewpoint image may be the other of the left viewpoint image and the right viewpoint image.
- the present invention can be realized not only as such a 3D image processing apparatus and 3D image processing method, but also as an integrated circuit for realizing the functions of the 3D image processing apparatus, and each step of the 3D image processing method It can also be realized as a program to be executed by Needless to say, such a program can be distributed via a recording medium such as a CD-ROM and a transmission medium such as the Internet.
- a three-dimensional video processing apparatus capable of storing a screen image of a three-dimensional video so as to be viewed as a three-dimensional still image later.
- FIG. 1 is a block diagram of a 3D image processing apparatus according to the first embodiment.
- FIG. 2 is a diagram for explaining the outline of the operation of the 3D image processing apparatus.
- FIG. 3 is a flowchart of file generation processing according to the first embodiment.
- FIG. 4 is a flowchart of left viewpoint image generation processing according to the first embodiment.
- FIG. 5 is a flowchart of right viewpoint image generation processing according to the first embodiment.
- FIG. 6 is a diagram showing an example of data of parameter 1.
- FIG. 7 is a view showing an example of data of parameter 2.
- FIG. 8 is a diagram showing an example of data of parameter 3.
- FIG. 9 is a diagram showing an example of the data layout of the mpo file according to the first embodiment.
- FIG. 1 is a block diagram of a 3D image processing apparatus according to the first embodiment.
- FIG. 2 is a diagram for explaining the outline of the operation of the 3D image processing apparatus.
- FIG. 3 is a flowchart of file generation
- FIG. 10 is a diagram for explaining the outline of the operation of the 3D image processing apparatus.
- FIG. 11 is a flowchart of file generation processing according to the second embodiment.
- FIG. 12 is a flowchart of left viewpoint image generation processing according to the second embodiment.
- FIG. 13 is a flowchart of right viewpoint image generation processing according to the second embodiment.
- FIG. 14 is a flowchart of combined left viewpoint image generation processing according to the second embodiment.
- FIG. 15 is a flowchart of combined right-viewpoint image generation processing according to the second embodiment.
- FIG. 16A is a diagram illustrating an example of data of parameter 4;
- FIG. 16B is a view showing a continuation of FIG. 16A of the data example of parameter 4;
- FIG. 16C is a view showing a continuation of FIG.
- FIG. 17 is a diagram showing an example of data of parameter 5.
- FIG. 18 is a diagram of an example of data of parameter 6;
- FIG. 19 shows an example of data of parameter 7.
- FIG. 20 is a diagram of an example of data of the parameter 8.
- FIG. 21 is a diagram showing an example of the data layout of the mpo file according to the second embodiment.
- FIG. 1 is a block diagram of a 3D image processing apparatus 100 according to the first embodiment.
- FIG. 2 is a diagram for explaining an outline of the operation of the stereoscopic video processing device 100. As shown in FIG.
- the stereoscopic video processing apparatus 100 includes a video acquisition unit 110, a video decoding unit 120, a display unit 130, an input reception unit 140, a 2D / 3D detection unit 150, and a file generation unit 160. , A storage unit 170, and a file reproduction unit 180.
- the video acquisition unit 110 acquires a video signal from the outside of the apparatus, and outputs the acquired video signal to the video decoding unit 120.
- the acquisition destination of the video signal is not particularly limited, for example, the video acquisition unit 110 may acquire the video signal through a broadcast wave or a communication network, or may read the video signal from the recording medium. That is, the stereoscopic video processing apparatus 100 according to the first embodiment can be applied to a television receiver or the like. Further, the video acquisition unit 110 may include an imaging device (not shown) and may acquire a video signal from the imaging device. That is, the three-dimensional video processing apparatus 100 according to the first embodiment can be applied to a video camera capable of capturing a three-dimensional video.
- broadcast wave is not specifically limited, For example, analog broadcast, terrestrial digital broadcast, BS (Broadcast Satellite) broadcast, CS (Communication Satellite) broadcast etc. correspond.
- specific examples of the recording medium are not particularly limited, but, for example, a DVD (Digital Versatile Disc), a BD (Blu-ray Disc), an SD (Secure Digital) card and the like correspond.
- the video signal acquired by the video acquisition unit 110 may be a signal of a two-dimensional video, or may be a signal of a three-dimensional video (stereoscopic video).
- a stereoscopic video is composed of a left viewpoint video and a right viewpoint video.
- the left viewpoint video and the right viewpoint video shown in FIG. 2 are videos obtained by capturing an object from different viewpoints.
- the left viewpoint video is composed of a plurality of images (left viewpoint images) L 1 , L 2 , L 3 , L 4 , L 5 .
- the right viewpoint video is composed of a plurality of images (right viewpoint images) R 1 , R 2 , R 3 , R 4 , R 5 .
- the image R 1 of the image L 1 and the right view image of the left view image, an object as seen at the same time a (the same time captured in) the image these referred to as "corresponding image".
- the images L 2 and R 2 , the images L 3 and R 3 , the images L 4 and R 4 , and the images L 5 and R 5 are respectively corresponding images. Then, parallax in the horizontal direction is added to the corresponding pair of images.
- the video decoding unit 120 decodes the video signal acquired from the video acquisition unit 110, and outputs the decoded video to the display unit 130.
- the video signal acquired from the video acquisition unit 110 is, for example, H.264. H.264 / AVC or the like is coded by a moving picture coding method such as H.264 / AVC. That is, at least a part of the image included in the video is encoded with reference to another image. Therefore, the image forming the video can only be decoded after decoding the reference image.
- the display unit 130 has a display screen on which the video acquired from the video decoding unit 120 is displayed.
- a display part is not specifically limited, For example, a liquid crystal display, a plasma display, or organic electroluminescent (ElectroLuminescence) display etc. are employable.
- the display unit 130 alternately displays the left viewpoint image and the right viewpoint image.
- the stereoscopic image shown in FIG. 2 is displayed in the order of images L 1 , R 1 , L 2 , R 2 , L 3 , R 3 , L 4 , R 4 , L 5 , R 5 as indicated by arrows. Ru.
- the viewer can grasp the depth of the stereoscopic video by opening and closing the shutters of the left eye lens and the right eye lens of the glasses worn by the viewer (user) in synchronization with the image displayed on the display unit 130 it can.
- the display order of the corresponding left viewpoint image and right viewpoint image is not limited to left ⁇ right as described above, but may be right ⁇ left.
- the input receiving unit 140 is a user interface that receives input of various instructions (requests) from the viewer.
- the input receiving unit 140 according to the first embodiment receives an input of a capture request requesting acquisition of a screen image of a video displayed on the display unit 130 as a still image, and notifies the file generation unit 160 of the input.
- the 2D / 3D detection unit 150 detects whether the image displayed on the display unit 130 is a two-dimensional (2D) image or a three-dimensional (3D) image.
- the detection method is not particularly limited, for example, the 2D / 3D detection unit 150 sets a flag indicating that it is a stereoscopic image (typically, a flag indicating that it is a side-by-side type or top and bottom type) to the video signal.
- a flag indicating that it is a stereoscopic image typically, a flag indicating that it is a side-by-side type or top and bottom type
- it may be detected as a stereoscopic video.
- the file generation unit 160 acquires an image displayed on the display unit 130 as a still image, and stores the acquired still image according to a multi-picture format file (see FIG.
- the mpo file is generated, and the generated mpo file is stored in the storage unit 170.
- the file generation unit 160 may obtain, for example, a still image from the video decoding unit 120. That is, the video decoding unit 120 needs to hold the decoded image for a predetermined period of time after output to the display unit 130.
- the file generation unit 160 stores the image displayed on the display unit 130 in the mpo file in such a manner that the image can be viewed as a stereoscopic still image later. For example, as shown in FIG. 2, at the timing when the image L 3 of the left view image on the display unit 130 is displayed, the capture request is received by the input receiving unit 140. In this case, the file generation unit 160, an image L 3 displayed on the display unit 130, and an image R 3 in the right-view image corresponding to the image L 3, and stores the mpo file.
- the storage unit 170 stores the file generated by the file generation unit 160.
- the specific configuration of the storage unit is not particularly limited, for example, data such as dynamic random access memory (DRAM), synchronous dynamic random access memory (SDRAM), flash memory, ferroelectric memory, or hard disk drive (HDD) Any means can be used as long as it is a means capable of storing.
- DRAM dynamic random access memory
- SDRAM synchronous dynamic random access memory
- HDD hard disk drive
- the file reproduction unit 180 reads the file stored in the storage unit 170 and reproduces a still image included in the read file.
- the file reproducing unit 180 reads the mpo file shown in FIG. 2 and causes the display unit 130 to alternately display the images L 3 and R 3 included in the read mpo file.
- the viewer can view the stereoscopic still image.
- the video decoding unit 120 when the video acquisition unit 110 acquires a video that has already been decoded, the video decoding unit 120 can be omitted. Further, when the video input to the video acquisition unit 110 is only a stereoscopic video, the 2D / 3D detection unit 150 can be omitted.
- the storage unit 170 may be an external storage device provided separately from the stereoscopic video processing device 100.
- the file playback unit 180 may be a component of a playback apparatus that plays back a 3D still image by reading an mpo file stored in the storage unit 170 instead of the component of the 3D image processing apparatus 100.
- FIG. 3 is a flowchart of file generation processing according to the first embodiment.
- FIG. 4 is a flowchart of left viewpoint image generation processing according to the first embodiment.
- FIG. 5 is a flowchart of right viewpoint image generation processing according to the first embodiment.
- 6 to 8 show examples of data stored in the header of the mpo file.
- FIG. 9 is a diagram showing an example of the data layout of the mpo file.
- FIG. 2 will be described as an example.
- the stereoscopic video processing apparatus 100 displays the stereoscopic video acquired by the video acquisition unit 110 and decoded by the video decoding unit 120 on the display unit 130.
- the input receiving unit 140 accepts a capture request from a user (S11).
- the 2D / 3D detection unit 150 detects whether the video displayed on the display unit 130 is a stereoscopic video (S12).
- a stereoscopic video is displayed on the display unit 130 (YES in S12)
- the file generation unit 160 executes left viewpoint image generation processing (S13) and right viewpoint image generation processing (S14).
- the file generation unit 160 first compresses the image L 3 of the left-view in JPEG format (S21).
- the compression format encoding format
- the compression format is not limited to JPEG, it needs to be a format that can be compressed and expanded (encoding and decoding) by one image alone, unlike the case of video.
- the file generation unit 160 adds an APP2 marker to the image data compressed in step S21 (S22).
- the APP2 marker indicates MP format attached information defined by the multi-picture format of the Camera & Imaging Products Industry Association standard.
- the file generation unit 160 stores the parameter 1 shown in FIG. 6 in the APP2 marker added in step S22 (S23). Details of data set in parameter 1 will be described later.
- the file generation unit 160 stores the parameter 2 shown in FIG. 7 in the APP2 marker added in step S22 (S24). Details of data set in parameter 2 will be described later.
- the file generation unit 160 first compresses the image R 3 in right viewpoint in JPEG format (S31).
- the compression format (coding format) is not limited to JPEG, but it is desirable to be in the same format as the left viewpoint image.
- the file generation unit 160 adds an APP2 marker to the image data compressed in step S31 (S32).
- the APP2 marker indicates MP format attached information defined by the multi-picture format of the Camera & Imaging Products Industry Association standard.
- the file generation unit 160 stores the parameter 3 shown in FIG. 8 in the APP2 marker added in step S32 (S33). Details of the data set in the parameter 3 will be described later.
- the file generation unit 160 links the compressed image data generated in the left viewpoint image generation processing (S13) and the right viewpoint image generation processing (S14) (S15). Then, the file generation unit 160 stores the data obtained in step S15 in the storage unit 170 as an mpo file (S16). The data layout of the mpo file generated in step S16 will be described later.
- the file generation unit 160 compresses the image L 3 displayed on the display unit 130 in the JPEG format (S18), and compressed
- the image data is stored as a JPEG file in the storage unit 170 (S19).
- the processes in steps S18 to S19 are the same as those in the related art, and thus detailed description will be omitted.
- the mpo file generated in step S16 has, for example, the data layout shown in FIG. Specifically, the mpo file of FIG. 9, the APP1 marker, and APP2 marker which stores parameters 1 and 2, the image L 3 which is compressed, and the APP1 marker, and APP2 marker which stores parameter 3, the compression an image R 3 which is is stored in this order.
- the APP1 marker indicates exif attached information defined in a multi-picture format of the Camera & Imaging Products Industry Association standard.
- Parameter 1 shown in FIG. 6 includes common items and information (a plurality of MP entries) for each image.
- the number of MP entries corresponds to the number of images (two in the example of FIG. 6) stored in the mpo file.
- the common items are the MP format version ("0100" in the example of FIG. 6) indicating the version of the mpo file, and the number of recorded images ("2" in the example of FIG. 6) indicating the number of images stored in the mpo file. , MP entry for storing information (offset) for specifying the position of the first MP entry (MP entry 1) on the mpo file.
- the MP entry 1 information about the image L 3 of the left viewpoint is stored. Specifically, in the MP entry 1, individual image type management information including a subordinate parent image flag, a subordinate child image flag, and an MP type, an individual image data offset, a subordinate image 1 entry number, and a subordinate image 2 entry Including numbers and
- the MP type MP entry 1 the value indicating that the image L 3 are stored as a three-dimensional still image ( "0x020002”) is set.
- the individual image data offset, the offset value indicating the position of the image L 3 on mpo file (since the image L 3 is stored in the head "0x0”) is set.
- "0x” indicates that the subsequent numerical value is a hexadecimal number.
- the values set to the other tags of the MP entry 1 are not particularly different from the conventional ones, so the description will be omitted.
- the MP entry 2 information about the image R 3 in the right viewpoint is stored.
- the data format of the MP entry 2 is the same as that of the MP entry 1. Then, set an offset value indicating the position of the image R 3 on mpo file into separate image data offset, "0x0" except as set out in the dependent image 1 entry number, the same value is set and MP entry 1 .
- Parameter 2 shown in FIG. 7 includes an individual image number and a reference viewpoint number.
- the individual image number is a number for specifying an image (an image L 3 in the example of FIG. 9) to which the APP2 marker including the parameter 2 is added on the mpo file, and “0x1” is set in the example of FIG. Ru.
- the reference viewpoint number is a number for identifying a viewpoint serving as a reference of a pair of still images (images L 3 and R 3 ) stored in the mpo file.
- the individual image number “0x1” of the image L 3 Is set. That is, in this mpo file, the left viewpoint is used as the reference viewpoint.
- Parameter 3 shown in FIG. 8 includes an MP format version, an individual image number, and a reference viewpoint number.
- the MP format version the same value "0100" as the MP format version included in the common item of FIG. 6 is set.
- the individual image number an image (an image R 3 in the example of FIG. 9) to which an APP2 marker including parameter 3 is added is a number for specifying on the mpo file, and “0x2” is set in the example of FIG. Be done.
- the reference viewpoint number the individual image number of the image L 3 "0x1" is set.
- the left viewpoint image is the first viewpoint image (reference viewpoint image) and the right viewpoint image is the second viewpoint image
- the first viewpoint image may be used
- the left viewpoint image may be used as the second viewpoint image.
- the file generation unit 160 is imaged at the same time (typically, the same time stamp is added), and a pair of still images (image L 3 , R 3 ) is stored in one mpo file, and the same reference viewpoint number (“0x020002” for MP type) as a value indicating that a pair of still images is stored as a stereoscopic still image in the mpo file “0x1” is set and stored in the storage unit 170.
- the file reproduction unit 180 recognizes that the pair of still images included in the mpo file read from the storage unit 170 is a three-dimensional still image, and causes the display unit 130 to alternately display the images L 3 and R 3 . As a result, it is possible to allow the user to view a stereoscopic still image.
- the left viewpoint image is displayed on the display unit 130 at the timing when the capture request is input, and the file generation unit 160 is to display the left viewpoint image during display and immediately thereafter.
- An example of acquiring the right viewpoint image has been described.
- the file generation unit 160 may obtain the right viewpoint image being displayed and the left viewpoint image displayed immediately before that.
- Embodiment 2 of the stereoscopic video processing device 100 Next, an operation according to Embodiment 2 of the stereoscopic video processing device 100 will be described.
- the configuration of the three-dimensional video processing apparatus 100 is the same as that of FIG. Further, detailed description of the operation common to the first embodiment will be omitted, and differences will be mainly described.
- the first three-dimensional video includes a left-view video composed of images L 11 , L 12 , L 13 ..., And a right-view video composed of images R 11 , R 12 , R 13 .
- the second three-dimensional video is a left-view video composed of images L 21 , L 22 , L 23 ... And a right-view video composed of images R 21 , R 22 , R 23. including.
- the stereoscopic video processing apparatus 100 acquires the first stereoscopic video and the second stereoscopic video by the video acquisition unit 110, decodes the first stereoscopic video and the second stereoscopic video by the video decoding unit 120, and obtains the first stereoscopic video.
- the second stereoscopic video are simultaneously displayed on the display unit 130. That is, the display unit 130 can display a plurality of sub-screens on the display screen, and can simultaneously display different videos on each sub-screen. For example, the display unit 130 shown in FIG.
- the image L 12 of the left perspective of the first stereoscopic image is displayed on the left side of the relatively small sub-screen
- right image L 22 of left view of the second stereoscopic image is displayed on a relatively large child screen.
- the file generation unit 160 acquires a pair of still images acquired from each of the first 3D image and the 2nd 3D image displayed on the display unit 130.
- the mpo file storing the combined left viewpoint image obtained by combining the left viewpoint images of the recorded still images and the combined right viewpoint image obtained by combining the right viewpoint images of the acquired still images is stored in the storage unit 170 Let That is, assuming that the number of stereoscopic images displayed on the display unit 130 is n, 2 (n + 1) images are stored in the mpo file according to the second embodiment.
- FIG. 11 is a flowchart of file generation processing according to the second embodiment.
- FIG. 12 is a flowchart of left viewpoint image generation processing according to the second embodiment.
- FIG. 13 is a flowchart of right viewpoint image generation processing according to the second embodiment.
- FIG. 14 is a flowchart of combined left viewpoint image generation processing according to the second embodiment.
- FIG. 15 is a flowchart of combined right-viewpoint image generation processing according to the second embodiment.
- 16A to 20 show examples of data stored in the header of the mpo file.
- FIG. 21 is a diagram showing an example of the data layout of the mpo file.
- FIG. 10 will be described as an example.
- the flowchart of FIG. 11 corresponds to the process of steps S13 to S15 of FIG.
- the file generation unit 160 first compresses the image L 12 of the left-view in JPEG format (S51). Next, the file generation unit 160 adds an APP2 marker to the image data compressed in step S51 (S52). Steps S51 to S52 correspond to steps S21 to S22 in FIG.
- n 1, that is, when processing the first 3D image (YES in S53), the file generation unit 160 adds the parameter 4 shown in FIGS. 16A to 16C to the APP2 marker added in step S52.
- Store S54. Details of the data set in the parameter 4 will be described later.
- the file generation unit 160 skips step S54.
- the file generation unit 160 stores the parameter 5 in the APP2 marker added in step S52 (S55).
- the data layout and setting value of parameter 5 added to the APP2 marker of the left viewpoint image of the first three-dimensional video are the same as parameter 2 shown in FIG.
- the data layout and setting values of the parameter 5 to be added to the APP2 marker of the left viewpoint image of the second 3D image described later will be described later with reference to FIG.
- the file generation unit 160 first compresses the image R 12 in right viewpoint in JPEG format (S61). Next, the file generation unit 160 adds an APP2 marker to the image data compressed in step S61 (S62). Steps S61 to S62 correspond to steps S31 to S32 in FIG.
- the file generation unit 160 stores the parameter 6 in the APP2 marker added in step S62 (S63). Note that the data layout and setting values of the parameter 6 added to the APP2 marker of the first right-viewpoint image are common to the parameter 3 shown in FIG. On the other hand, the data layout and setting values of the parameters 6 to be added to the APP2 marker of the right viewpoint image of the second stereoscopic video described later will be described later with reference to FIG.
- the file generation unit 160 uses the still image generated in steps S42 to S45 to perform combined left viewpoint image generation processing (S46), and combines the combined right viewpoint image.
- the generation process (S47) is performed.
- file generation unit 160 obtains the position and size on display unit 130 of each image displayed on display unit 130 (S71). In other words, the file generation unit 160 obtains the coordinates and size of the child screen on which the first three-dimensional video is displayed on the display unit 130, and the coordinates and size of the child screen on which the second three-dimensional video is displayed on the display unit 130. Do.
- the file generation unit 160 sets the coordinate (x, y) of the upper left end of the display unit 130 to the origin (0, 0), the horizontal direction rightward of the display unit 130 the positive direction of the x coordinate, the vertical direction of the display unit 130 In a two-dimensional coordinate system where the downward direction is the positive direction of the y coordinate, acquire the coordinates of the upper left end of each child screen as the coordinates of the child screen, and acquire the height and width of each child screen as the size of the child screen Good.
- the information specifying the layout of each child screen is not limited to the above.
- the file generation unit 160 may acquire the coordinates of the upper left end and the coordinates of the lower right end of each child screen instead of the above information.
- the file generation unit 160 acquires each of the images 1 (image L 12 of the left viewpoint of the first three-dimensional video) and image 3 (image L 22 of the left viewpoint of the second three-dimensional video) in step S71.
- a combined left viewpoint image combined according to screen coordinates and size is generated.
- the file generation unit 160 compresses the generated combined left viewpoint image in JPEG format (S72).
- the combined left viewpoint image is a screen image actually displayed on the display unit 130.
- the file generation unit 160 adds the APP2 marker to the image data compressed in step S72 (S73). Then, the file generation unit 160 stores the parameter 7 shown in FIG. 19 in the APP2 marker added in step S73 (S74). Details of the data set in the parameter 7 will be described later.
- file generation unit 160 acquires the position and size on display unit 130 of each image displayed on display unit 130 (S81).
- step S81 the information acquired in step S71 described above may be reused.
- the file generation unit 160 acquires the image 2 (the image R 12 of the right viewpoint of the first three-dimensional video) and the image 4 (the image R 22 of the right viewpoint of the second three-dimensional video) A combined right viewpoint image combined according to the screen coordinates and size is generated. Then, the file generation unit 160 compresses the generated combined right-viewpoint image in JPEG format (S 82).
- the combined right viewpoint image is a screen image that is actually displayed on the display unit 130.
- the file generation unit 160 adds an APP2 marker to the image data compressed in step S82 (S83). Then, the file generation unit 160 stores the parameter 8 shown in FIG. 20 in the APP2 marker added in step S83 (S84). Details of the data set in the parameter 7 will be described later.
- the file generation unit 160 performs left viewpoint image generation processing (S42), right viewpoint image generation processing (S43), combined left viewpoint image generation processing (S46), and combined right viewpoint image generation processing (S42).
- the compressed image data generated in S47) are linked (S48).
- the file generation unit 160 stores the data obtained in step S48 in the storage unit 170 as an mpo file.
- the mpo file generated by the process of FIG. 11 has, for example, the data layout shown in FIG. Specifically, the mpo file of Figure 21, the APP1 marker, and APP2 marker which stores parameter 4,2, a compressed image L 12, and APP1 marker, and APP2 marker which stores parameter 3, the compression an image R 12 which are the APP1 marker, and APP2 marker which stores parameters 5, the image L 22 which is compressed, and the APP1 marker, and APP2 marker which stores parameter 6, the image R 22 compressed, APP1 A marker, an APP 2 marker storing parameter 7, a compressed combined left-viewpoint image, an APP 1 marker, an APP 2 marker storing parameter 8, and a compressed combined right-viewpoint image are stored in this order.
- Parameters 4 shown in FIGS. 16A, 16B, and 16C include common items and information (a plurality of MP entries) for each image.
- the data layout of the common items in FIG. 16A is the same as that in FIG. 6 except that the number of recording images is set to “6”.
- the MP entry 1 shown in FIG. 16A information about the image L 12 of the left perspective of the first stereoscopic image is stored.
- the MP entry 2 information about the image R 12 in the right perspective of the first stereoscopic image is stored.
- the data layout and setting values of the MP entries 1 and 2 are almost the same as those in FIG. However, the same value (“0x1”) is set to the subordinate parent image flag of the MP entry 1 and the subordinate child image flag of the MP entry 2. That is, two images in which the same value is set to these flags constitute a pair of still images.
- the MP entry 3 shown in FIG. 16B information about the image L 22 of left view of the second stereo image is stored.
- the data layout of MP entry 3 is common to that of entry 1.
- the subordinate parent image flag is “0x2”
- the individual image data offset is the offset to image 3
- the subordinate image 1 entry number is “0x4 (point to MP entry 4)
- the same value as entry 1 is set except that “is set.
- the MP entry 4 shown in FIG. 16B information about the image R 22 in the right perspective of the second stereo image is stored.
- the data layout of MP entry 4 is common to that of entry 2, and the same value as entry 2 is set except that “0x2” is set to the subordinate image flag and the offset to image 4 is set to the individual image data offset. ing.
- MP entry 5 information related to the combined left viewpoint image is stored.
- the data layout of MP entry 5 is the same as entry 1.
- the subordinate parent image flag is “0x3”
- the individual image data offset is the offset to image 5
- the subordinate image 1 entry number is “0x6 (point to MP entry 6)
- the same value as entry 1 is set except that “is set.
- MP entry 6 shown in FIG. 16C information on the combined right viewpoint image is stored.
- the data layout of MP entry 6 is common to that of entry 2, and the same value as MP entry 2 is set except that “0x3” is set to the subordinate image flag and the offset to image 6 is set to the individual image data offset. It is done.
- parameter 5 shown in FIG. 17 is the same as parameter 3 shown in FIG. 8, and the number “0x3” specifying image 3 (the image L 22 of the left viewpoint of the second stereoscopic video) is the individual image number. , except that the individual image number "0x3" of the image L 22 is set to the reference viewpoint number, the same value as the parameter 3 are set.
- parameter 6 shown in FIG. 18 is the same as parameter 3 shown in FIG. 8, and the number “0x4” specifying image 4 (the right viewpoint image R 22 of the second stereoscopic video) is the individual image number. , except that the individual image number "0x3" of the image L 22 is set to the reference viewpoint number, the same value as the parameter 3 are set.
- the file generation unit 160 extends the first embodiment and acquires and acquires a pair of still images from each of the plurality of stereoscopic images simultaneously displayed on the display unit 130. Store multiple sets of still images in an mpo file. Also, the file generation unit 160 stores, in the mpo file, information (a subordinate parent image flag and a subordinate child image flag of the MP entry) specifying the combination of the left viewpoint image and the right viewpoint image constituting the pair of still images.
- information (a subordinate parent image flag and a subordinate child image flag of the MP entry) specifying the combination of the left viewpoint image and the right viewpoint image constituting the pair of still images.
- file reproducing unit 180 sets the same value to the subordinate parent image flag and the subordinate child image flag of the MP entry.
- the still image is read, and the read pair of images is alternately displayed on the display unit 130. As a result, it is possible to allow the user to view a stereoscopic still image.
- the file generation unit 160 combines a plurality of left viewpoint images stored in the mpo file according to the layout displayed on the display unit 130 according to the layout, and a plurality of right viewpoint images stored in the mpo file. And the combined right viewpoint image combined according to the layout displayed on the display unit 130 is stored in the mpo file.
- the file reproducing unit 180 reads out the combined left viewpoint image and the combined right viewpoint image from the mpo file and alternately displays the combined left viewpoint image and the combined right viewpoint image on the display unit 130, whereby the display unit at the time when the input request unit 140 receives the capture request. It becomes possible to reproduce the display contents of 130 as a three-dimensional still image.
- the file generation unit 160 may execute the processing for NO in step S12 of FIG. 3 for 2D video and the processing for YES in step S12 of FIG. 3 for 3D video.
- each of the above-described devices is a computer system including a microprocessor, a ROM, a RAM, a hard disk unit, a display unit, a keyboard, a mouse and the like.
- a computer program is stored in the RAM or the hard disk unit.
- Each device achieves its function by the microprocessor operating according to the computer program.
- the computer program is configured by combining a plurality of instruction codes indicating instructions to the computer in order to achieve a predetermined function.
- the system LSI is a super multifunctional LSI manufactured by integrating a plurality of components on one chip, and more specifically, is a computer system configured to include a microprocessor, a ROM, a RAM and the like. .
- the RAM stores a computer program.
- the system LSI achieves its functions by the microprocessor operating according to the computer program.
- the IC card or module is a computer system including a microprocessor, a ROM, a RAM, and the like.
- the IC card or module may include the above-described ultra-multifunctional LSI.
- the IC card or module achieves its function by the microprocessor operating according to the computer program. This IC card or this module may have tamper resistance.
- the present invention may be methods shown above.
- it may be a computer program that realizes these methods by a computer, or may be a digital signal composed of a computer program.
- the present invention is a computer program or recording medium capable of reading digital signals from a computer, such as a flexible disk, hard disk, CD-ROM, MO, DVD, DVD-ROM, DVD-RAM, BD (Blu-ray Disc), It may be recorded in a semiconductor memory or the like. In addition, digital signals may be recorded on these recording media.
- a computer such as a flexible disk, hard disk, CD-ROM, MO, DVD, DVD-ROM, DVD-RAM, BD (Blu-ray Disc), It may be recorded in a semiconductor memory or the like.
- digital signals may be recorded on these recording media.
- the present invention may transmit a computer program or a digital signal via a telecommunication line, a wireless or wired communication line, a network typified by the Internet, data broadcasting, and the like.
- the present invention is a computer system comprising a microprocessor and a memory, the memory storing the computer program, and the microprocessor may operate according to the computer program.
- the present invention is advantageously used in a stereoscopic video processing apparatus and a stereoscopic video processing method.
- Reference Signs List 100 stereoscopic video processing device 110 video acquisition unit 120 video decoding unit 130 display unit 140 input reception unit 150 2D / 3D detection unit 160 file generation unit 170 storage unit 180 file reproduction unit
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Library & Information Science (AREA)
- Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
Abstract
A three-dimensional image processing device (100) comprises: a display unit (130) for alternately displaying a first viewpoint image and a second viewpoint image that constitute a three-dimensional image; an input receiving unit (140) for receiving a capture request input from the user; and a file generation unit (160) for generating a file conforming to the multi-picture format, in which a first viewpoint image and a second viewpoint image corresponding to the first viewpoint image are stored as a pair of still images, said first and second viewpoint images being displayed on the display unit (130) at a timing when the capture request input is received by the input receiving unit (140).
Description
本発明は、立体映像処理装置及び立体映像処理方法に関し、特に立体映像から立体静止画像を抽出する立体映像処理装置及び立体映像処理方法に関するものである。
The present invention relates to a 3D image processing apparatus and 3D image processing method, and more particularly to a 3D image processing apparatus and 3D image processing method for extracting a 3D still image from a 3D image.
特許文献1には、2次元映像のスクリーンイメージをキャプチャし、JPEGファイルとして保存する技術が開示されている。また、特許文献2には、立体映像を立体静止画像ファイルとして保存する技術が開示されている。
Patent Document 1 discloses a technique for capturing a screen image of a two-dimensional video and storing the captured screen image as a JPEG file. Patent Document 2 discloses a technique for storing a stereoscopic video as a stereoscopic still image file.
しかしながら、特許文献1、2に開示されている従来の技術では、立体映像のスクリーンイメージをキャプチャし、後に立体静止画像として視聴できる態様で保存することはできないという課題がある。
However, the conventional techniques disclosed in Patent Literatures 1 and 2 have a problem that they can not capture a screen image of a stereoscopic video and store it in a mode that can be viewed as a stereoscopic still image later.
本発明は、上記の課題に鑑みてなされたものであり、立体映像のスクリーンイメージを後に立体静止画像として視聴できる態様で保存することができる立体映像処理装置及び立体映像処理方法を提供することを目的とする。
The present invention has been made in view of the above problems, and it is an object of the present invention to provide a three-dimensional video processing apparatus and a three-dimensional video processing method capable of storing a screen image of a three-dimensional video later as a stereoscopic still image. To aim.
本発明の一形態にかかる立体映像処理装置は、立体映像を構成する第1視点画像及び第2視点画像を交互に表示する表示部と、ユーザからキャプチャ要求の入力を受け付ける入力受付部と、前記入力受付部でキャプチャ要求が受け付けられたタイミングで前記表示部に表示されている第1視点画像及び当該第1視点画像に対応する第2視点画像を、一対の静止画像として格納したマルチピクチャフォーマット準拠のファイルを生成するファイル生成部とを備える。
A stereoscopic video processing apparatus according to an aspect of the present invention includes: a display unit that alternately displays a first viewpoint image and a second viewpoint image that form a stereoscopic video; an input reception unit that receives an input of a capture request from a user; A multi-picture format compliant in which the first viewpoint image displayed on the display unit and the second viewpoint image corresponding to the first viewpoint image are stored as a pair of still images at the timing when the capture request is received by the input reception unit And a file generation unit for generating a file of
上記構成によれば、立体映像のスクリーンイメージを、後に立体静止画像として視聴できる態様で保存することができる。
According to the above configuration, the screen image of the stereoscopic video can be stored in a mode that can be viewed as a stereoscopic still image later.
また、前記ファイル生成部は、前記表示部に複数の立体映像が同時に表示されている場合に、前記複数の立体映像それぞれから取得した前記一対の静止画像を、前記ファイルに格納してもよい。
The file generation unit may store the pair of still images acquired from each of the plurality of stereoscopic videos in the file when a plurality of stereoscopic videos are simultaneously displayed on the display unit.
さらに、前記ファイル生成部は、前記ファイルに格納される複数の第1視点画像を、前記表示部に表示されるレイアウトに合わせて結合した結合第1視点画像と、前記ファイルに格納される複数の第2視点画像を、前記表示部に表示されるレイアウトに合わせて結合した結合第2視点画像とを、前記ファイルに格納してもよい。
Furthermore, the file generation unit may be configured to combine a plurality of first viewpoint images stored in the file according to a layout displayed on the display unit, and a plurality of combined first viewpoint images stored in the file. The second viewpoint image may be stored in the file together with a combined second viewpoint image combined according to the layout displayed on the display unit.
これにより、入力受付部でキャプチャ要求が受け付けられた時点での表示部の表示内容を、後に立体静止画像として再現することが可能となる。
This makes it possible to reproduce the display content of the display unit at the time when the capture request is accepted by the input acceptance unit later as a stereoscopic still image.
さらに、前記ファイル生成部は、前記一対の静止画像を構成する第1視点画像及び第2視点画像の組み合わせを特定する情報を、前記ファイルに格納してもよい。
Furthermore, the file generation unit may store, in the file, information specifying a combination of a first viewpoint image and a second viewpoint image constituting the pair of still images.
さらに、該立体映像処理装置は、前記一対の静止画像を構成する第1視点画像及び第2視点画像を前記ファイルから読み出して、前記表示部に交互に表示させるファイル再生部を備えてもよい。
Furthermore, the three-dimensional video processing apparatus may further include a file reproduction unit that reads out the first viewpoint image and the second viewpoint image constituting the pair of still images from the file and alternately displays them on the display unit.
一例として、前記第1視点画像は、互いに視差を有する左視点画像及び右視点画像の一方であってもよい。また、前記第2視点画像は、前記左視点画像及び前記右視点画像の他方であってもよい。
As an example, the first viewpoint image may be one of a left viewpoint image and a right viewpoint image having parallax. The second viewpoint image may be the other of the left viewpoint image and the right viewpoint image.
本発明の一形態にかかる立体映像処理方法は、立体映像を構成する第1視点画像及び第2視点画像を交互に表示する表示ステップと、ユーザからキャプチャ要求の入力を受け付ける入力受付ステップと、前記入力受付ステップでキャプチャ要求が受け付けられたタイミングで前記表示ステップにおいて表示されている第1視点画像及び当該第1視点画像に対応する第2視点画像を、一対の静止画像として格納したマルチピクチャフォーマット準拠のファイルを生成するファイル生成ステップとを含む。
In a stereoscopic video processing method according to an aspect of the present invention, a display step of alternately displaying a first viewpoint image and a second viewpoint image constituting a stereoscopic video, an input receiving step of receiving an input of a capture request from a user, and A multi-picture format compliant in which the first viewpoint image displayed in the display step and the second viewpoint image corresponding to the first viewpoint image are stored as a pair of still images at the timing when the capture request is received in the input reception step And a file generation step of generating a file of
なお、本発明は、このような立体映像処理装置及び立体映像処理方法等として実現できるだけでなく、立体映像処理装置の機能を実現する集積回路として実現したり、立体映像処理方法の各ステップをコンピュータに実行させるプログラムとして実現したりすることもできる。そして、そのようなプログラムは、CD-ROM等の記録媒体及びインターネット等の伝送媒体を介して流通させることができるのは言うまでもない。
The present invention can be realized not only as such a 3D image processing apparatus and 3D image processing method, but also as an integrated circuit for realizing the functions of the 3D image processing apparatus, and each step of the 3D image processing method It can also be realized as a program to be executed by Needless to say, such a program can be distributed via a recording medium such as a CD-ROM and a transmission medium such as the Internet.
本発明によれば、立体映像のスクリーンイメージを、後に立体静止画像として視聴できる態様で保存することができる立体映像処理装置を得ることができる。
According to the present invention, it is possible to obtain a three-dimensional video processing apparatus capable of storing a screen image of a three-dimensional video so as to be viewed as a three-dimensional still image later.
以下、図面を参照して、本発明に係る立体映像処理装置及び立体映像処理方法を説明する。なお、本発明は、請求の範囲の記載に基づいて特定される。よって、以下の実施の形態における構成要素のうち、請求項に記載されていない構成要素は、本発明の課題を達成するのに必ずしも必要ではない。すなわち、以下の実施の形態は、本発明のより好ましい形態を説明するものである。また、各図は模式図であり、必ずしも厳密に図示したものではない。
Hereinafter, a stereoscopic video processing apparatus and a stereoscopic video processing method according to the present invention will be described with reference to the drawings. The present invention is specified based on the description of the claims. Therefore, among the components in the following embodiments, components not described in the claims are not necessarily required to achieve the object of the present invention. That is, the following embodiment is a description of a more preferable embodiment of the present invention. Further, each drawing is a schematic view, and is not necessarily strictly illustrated.
(実施の形態1)
図1及び図2を参照して、本発明の実施の形態1に係る立体映像処理装置を説明する。図1は、実施の形態1に係る立体映像処理装置100のブロック図である。図2は、立体映像処理装置100の動作の概要を説明するための図である。Embodiment 1
A stereoscopic video processing apparatus according to the first embodiment of the present invention will be described with reference to FIGS. 1 and 2. FIG. 1 is a block diagram of a 3Dimage processing apparatus 100 according to the first embodiment. FIG. 2 is a diagram for explaining an outline of the operation of the stereoscopic video processing device 100. As shown in FIG.
図1及び図2を参照して、本発明の実施の形態1に係る立体映像処理装置を説明する。図1は、実施の形態1に係る立体映像処理装置100のブロック図である。図2は、立体映像処理装置100の動作の概要を説明するための図である。
A stereoscopic video processing apparatus according to the first embodiment of the present invention will be described with reference to FIGS. 1 and 2. FIG. 1 is a block diagram of a 3D
立体映像処理装置100は、図1に示されるように、映像取得部110と、映像復号部120と、表示部130と、入力受付部140と、2D/3D検出部150と、ファイル生成部160と、記憶部170と、ファイル再生部180とを備える。
As shown in FIG. 1, the stereoscopic video processing apparatus 100 includes a video acquisition unit 110, a video decoding unit 120, a display unit 130, an input reception unit 140, a 2D / 3D detection unit 150, and a file generation unit 160. , A storage unit 170, and a file reproduction unit 180.
映像取得部110は、装置の外部から映像信号を取得し、取得した映像信号を映像復号部120に出力する。映像信号の取得先は特に限定されないが、例えば、映像取得部110は、放送波又は通信ネットワークを通じて映像信号を取得してもよいし、記録媒体から映像信号を読み出してもよい。すなわち、実施の形態1に係る立体映像処理装置100は、テレビジョン受像装置等に適用することができる。また、映像取得部110は、撮像素子(図示省略)を備え、撮像素子から映像信号を取得してもよい。すなわち、実施の形態1に係る立体映像処理装置100は、立体映像を撮像可能なビデオカメラに適用することができる。
The video acquisition unit 110 acquires a video signal from the outside of the apparatus, and outputs the acquired video signal to the video decoding unit 120. Although the acquisition destination of the video signal is not particularly limited, for example, the video acquisition unit 110 may acquire the video signal through a broadcast wave or a communication network, or may read the video signal from the recording medium. That is, the stereoscopic video processing apparatus 100 according to the first embodiment can be applied to a television receiver or the like. Further, the video acquisition unit 110 may include an imaging device (not shown) and may acquire a video signal from the imaging device. That is, the three-dimensional video processing apparatus 100 according to the first embodiment can be applied to a video camera capable of capturing a three-dimensional video.
なお、放送波の具体例は特に限定されないが、例えば、アナログ放送、地上波デジタル放送、BS(Broadcast Satellite)放送、CS(Communication Satellite)放送等が該当する。また、記録媒体の具体例は特に限定されないが、例えば、DVD(Digital Versatile Disc)、BD(Blu-ray Disc)、SD(Secure Digital)カード等が該当する。
In addition, although the specific example of a broadcast wave is not specifically limited, For example, analog broadcast, terrestrial digital broadcast, BS (Broadcast Satellite) broadcast, CS (Communication Satellite) broadcast etc. correspond. Further, specific examples of the recording medium are not particularly limited, but, for example, a DVD (Digital Versatile Disc), a BD (Blu-ray Disc), an SD (Secure Digital) card and the like correspond.
また、映像取得部110で取得される映像信号は、2次元映像の信号であってもよいし、3次元映像(立体映像)の信号であってもよい。立体映像は、例えば、図2に示されるように、左視点映像と右視点映像とで構成される。
Further, the video signal acquired by the video acquisition unit 110 may be a signal of a two-dimensional video, or may be a signal of a three-dimensional video (stereoscopic video). For example, as shown in FIG. 2, a stereoscopic video is composed of a left viewpoint video and a right viewpoint video.
図2に示される左視点映像及び右視点映像は、被写体を互いに異なる視点から撮像した映像である。左視点映像は、複数の画像(左視点画像)L1、L2、L3、L4、L5・・・で構成される。同様に、右視点映像は、複数の画像(右視点画像)R1、R2、R3、R4、R5・・・で構成される。そして、左視点映像の画像L1と右視点映像の画像R1とは、被写体を同一時刻に見た(同一時刻に撮像した)画像であり、これらを「対応する画像」と呼ぶ。同様に、画像L2、R2、画像L3、R3、画像L4、R4、及び画像L5、R5は、それぞれ対応する画像である。そして、対応する一対の画像には、水平方向の視差が付加されている。
The left viewpoint video and the right viewpoint video shown in FIG. 2 are videos obtained by capturing an object from different viewpoints. The left viewpoint video is composed of a plurality of images (left viewpoint images) L 1 , L 2 , L 3 , L 4 , L 5 . Similarly, the right viewpoint video is composed of a plurality of images (right viewpoint images) R 1 , R 2 , R 3 , R 4 , R 5 . Then, the image R 1 of the image L 1 and the right view image of the left view image, an object as seen at the same time a (the same time captured in) the image, these referred to as "corresponding image". Similarly, the images L 2 and R 2 , the images L 3 and R 3 , the images L 4 and R 4 , and the images L 5 and R 5 are respectively corresponding images. Then, parallax in the horizontal direction is added to the corresponding pair of images.
映像復号部120は、映像取得部110から取得した映像信号を復号し、復号された映像を表示部130に出力する。映像取得部110から取得した映像信号は、例えば、H.264/AVC等の動画像符号化方式で符号されている。すなわち、映像に含まれる画像の少なくとも一部は、他の画像を参照して符号化されている。そのため、映像を構成する画像は、参照画像を復号してからでなければ復号することができない。
The video decoding unit 120 decodes the video signal acquired from the video acquisition unit 110, and outputs the decoded video to the display unit 130. The video signal acquired from the video acquisition unit 110 is, for example, H.264. H.264 / AVC or the like is coded by a moving picture coding method such as H.264 / AVC. That is, at least a part of the image included in the video is encoded with reference to another image. Therefore, the image forming the video can only be decoded after decoding the reference image.
表示部130は、映像復号部120から取得した映像を表示する表示画面を有する。表示部の具体的な構成は特に限定されないが、例えば、液晶ディスプレイ、プラズマディスプレイ、又は有機EL(ElectroLuminescence)ディスプレイ等を採用することができる。
The display unit 130 has a display screen on which the video acquired from the video decoding unit 120 is displayed. Although the specific structure of a display part is not specifically limited, For example, a liquid crystal display, a plasma display, or organic electroluminescent (ElectroLuminescence) display etc. are employable.
また、映像復号部120から出力される映像が立体映像である場合、表示部130は、左視点画像と右視点画像とを交互に表示する。図2に示される立体映像は、矢印で示されるように、画像L1、R1、L2、R2、L3、R3、L4、R4、L5、R5の順に表示される。そして、視聴者(ユーザ)が装着する眼鏡の左目レンズ及び右目レンズのシャッターを、表示部130に表示される画像に同期させて開閉することにより、視聴者は立体映像の奥行きを把握することができる。なお、対応する左視点画像及び右視点画像の表示順は、上記のように左→右に限定されず、右→左であってもよいことは言うまでもない。
Also, when the video output from the video decoding unit 120 is a stereoscopic video, the display unit 130 alternately displays the left viewpoint image and the right viewpoint image. The stereoscopic image shown in FIG. 2 is displayed in the order of images L 1 , R 1 , L 2 , R 2 , L 3 , R 3 , L 4 , R 4 , L 5 , R 5 as indicated by arrows. Ru. Then, the viewer can grasp the depth of the stereoscopic video by opening and closing the shutters of the left eye lens and the right eye lens of the glasses worn by the viewer (user) in synchronization with the image displayed on the display unit 130 it can. It is needless to say that the display order of the corresponding left viewpoint image and right viewpoint image is not limited to left → right as described above, but may be right → left.
入力受付部140は、視聴者からの様々な指示(要求)の入力を受け付けるユーザインタフェースである。実施の形態1に係る入力受付部140は、表示部130に表示されている映像のスクリーンイメージを静止画像として取得することを要求するキャプチャ要求の入力を受け付けて、ファイル生成部160に通知する。
The input receiving unit 140 is a user interface that receives input of various instructions (requests) from the viewer. The input receiving unit 140 according to the first embodiment receives an input of a capture request requesting acquisition of a screen image of a video displayed on the display unit 130 as a still image, and notifies the file generation unit 160 of the input.
2D/3D検出部150は、表示部130に表示されている映像が2次元(2D)映像であるか、或いは3次元(3D)映像であるかを検出する。検出方法は特に限定されないが、例えば、2D/3D検出部150は、立体映像であることを示すフラグ(典型的には、サイドバイサイド形式又はトップアンドボトム形式であることを示すフラグ)が映像信号に含まれている場合、又は表示部130に表示される一対の画像が水平方向の視差を有する場合に、立体映像であると検出してもよい。
The 2D / 3D detection unit 150 detects whether the image displayed on the display unit 130 is a two-dimensional (2D) image or a three-dimensional (3D) image. Although the detection method is not particularly limited, for example, the 2D / 3D detection unit 150 sets a flag indicating that it is a stereoscopic image (typically, a flag indicating that it is a side-by-side type or top and bottom type) to the video signal. When it is included, or when a pair of images displayed on the display unit 130 has horizontal parallax, it may be detected as a stereoscopic video.
ファイル生成部160は、入力受付部140からキャプチャ要求が通知された場合に、表示部130に表示されている画像を静止画像として取得し、取得した静止画像を格納したマルチピクチャフォーマット準拠のファイル(mpoファイル)を生成し、生成したmpoファイルを記憶部170に記憶させる。ファイル生成部160は、例えば、映像復号部120から静止画像を取得すればよい。すなわち、映像復号部120は、表示部130に出力した後の所定期間、復号した画像を保持しておく必要がある。
When the capture request is notified from the input reception unit 140, the file generation unit 160 acquires an image displayed on the display unit 130 as a still image, and stores the acquired still image according to a multi-picture format file (see FIG. The mpo file is generated, and the generated mpo file is stored in the storage unit 170. The file generation unit 160 may obtain, for example, a still image from the video decoding unit 120. That is, the video decoding unit 120 needs to hold the decoded image for a predetermined period of time after output to the display unit 130.
特に表示部130に立体映像が表示されている場合、ファイル生成部160は、表示部130に表示されている画像を、後に立体静止画像として視聴できる態様でmpoファイルに格納する。例えば、図2に示されるように、表示部130に左視点映像の画像L3が表示されているタイミングで、入力受付部140でキャプチャ要求が受け付けられたとする。この場合、ファイル生成部160は、表示部130に表示されている画像L3と、画像L3に対応する右視点映像の画像R3とを、mpoファイルに格納する。
In particular, when a stereoscopic image is displayed on the display unit 130, the file generation unit 160 stores the image displayed on the display unit 130 in the mpo file in such a manner that the image can be viewed as a stereoscopic still image later. For example, as shown in FIG. 2, at the timing when the image L 3 of the left view image on the display unit 130 is displayed, the capture request is received by the input receiving unit 140. In this case, the file generation unit 160, an image L 3 displayed on the display unit 130, and an image R 3 in the right-view image corresponding to the image L 3, and stores the mpo file.
記憶部170は、ファイル生成部160で生成されたファイルを記憶する。記憶部の具体的な構成は特に限定されないが、例えば、DRAM(Dynamic random access memory)、SDRAM(Synchronous dynamic random access memory)、フラッシュメモリ、強誘電体メモリ、又はHDD(Hard disk drive)等のデータを記憶可能な手段であればどのようなものを利用しても構わない。
The storage unit 170 stores the file generated by the file generation unit 160. Although the specific configuration of the storage unit is not particularly limited, for example, data such as dynamic random access memory (DRAM), synchronous dynamic random access memory (SDRAM), flash memory, ferroelectric memory, or hard disk drive (HDD) Any means can be used as long as it is a means capable of storing.
ファイル再生部180は、記憶部170に記憶されているファイルを読み出し、読み出したファイルに含まれる静止画像を再生する。例えば、ファイル再生部180は、図2に示されるmpoファイルを読み出し、読み出したmpoファイルに含まれる画像L3、R3を、表示部130に交互に表示させる。これにより、視聴者は、立体静止画像を視聴することができる。
The file reproduction unit 180 reads the file stored in the storage unit 170 and reproduces a still image included in the read file. For example, the file reproducing unit 180 reads the mpo file shown in FIG. 2 and causes the display unit 130 to alternately display the images L 3 and R 3 included in the read mpo file. Thus, the viewer can view the stereoscopic still image.
なお、図1に示される立体映像処理装置100において、既に復号済みの映像を映像取得部110が取得する場合には、映像復号部120を省略することができる。また、映像取得部110に入力される映像が立体映像のみである場合には、2D/3D検出部150は省略することができる。また、記憶部170は、立体映像処理装置100とは別に設けられた外部記憶装置であってもよい。さらに、ファイル再生部180は、立体映像処理装置100の構成要素ではなく、記憶部170に保存されているmpoファイルを読み出して、立体静止画像を再生する再生装置の構成要素であってもよい。
In the stereoscopic video processing apparatus 100 illustrated in FIG. 1, when the video acquisition unit 110 acquires a video that has already been decoded, the video decoding unit 120 can be omitted. Further, when the video input to the video acquisition unit 110 is only a stereoscopic video, the 2D / 3D detection unit 150 can be omitted. In addition, the storage unit 170 may be an external storage device provided separately from the stereoscopic video processing device 100. Furthermore, the file playback unit 180 may be a component of a playback apparatus that plays back a 3D still image by reading an mpo file stored in the storage unit 170 instead of the component of the 3D image processing apparatus 100.
次に、図3~図9を参照して、立体映像処理装置100の実施の形態1に係る動作を説明する。図3は、実施の形態1に係るファイル生成処理のフローチャートである。図4は、実施の形態1に係る左視点画像生成処理のフローチャートである。図5は、実施の形態1に係る右視点画像生成処理のフローチャートである。図6~図8は、mpoファイルのヘッダーに格納されるデータの例を示す図である。図9は、mpoファイルのデータレイアウトの例を示す図である。以降、図2を例にとって説明する。
Next, with reference to FIGS. 3 to 9, an operation according to Embodiment 1 of the stereoscopic video processing device 100 will be described. FIG. 3 is a flowchart of file generation processing according to the first embodiment. FIG. 4 is a flowchart of left viewpoint image generation processing according to the first embodiment. FIG. 5 is a flowchart of right viewpoint image generation processing according to the first embodiment. 6 to 8 show examples of data stored in the header of the mpo file. FIG. 9 is a diagram showing an example of the data layout of the mpo file. Hereinafter, FIG. 2 will be described as an example.
まず、立体映像処理装置100は、映像取得部110で取得され、映像復号部120で復号された立体映像を、表示部130に表示している。そして、入力受付部140は、立体映像の表示中(表示部130に画像L3が表示されているタイミング)に、ユーザからキャプチャ要求を受け付ける(S11)。
First, the stereoscopic video processing apparatus 100 displays the stereoscopic video acquired by the video acquisition unit 110 and decoded by the video decoding unit 120 on the display unit 130. The input receiving unit 140, during the display of stereoscopic images (the timing at which the image L 3 on the display unit 130 is displayed), accepts a capture request from a user (S11).
キャプチャ要求が受け付けられると、2D/3D検出部150は、表示部130に表示されている映像が立体映像であるか否かを検出する(S12)。表示部130に立体映像が表示されている場合(S12でYES)、ファイル生成部160は、左視点画像生成処理(S13)と、右視点画像生成処理(S14)とを実行する。
When the capture request is accepted, the 2D / 3D detection unit 150 detects whether the video displayed on the display unit 130 is a stereoscopic video (S12). When a stereoscopic video is displayed on the display unit 130 (YES in S12), the file generation unit 160 executes left viewpoint image generation processing (S13) and right viewpoint image generation processing (S14).
図4を参照して、ファイル生成部160は、まず、左視点の画像L3をJPEG形式で圧縮する(S21)。なお、圧縮形式(符号化形式)はJPEGに限定されないが、映像の場合と異なり、1枚の画像単独で圧縮及び伸張(符号化及び復号)できる形式である必要がある。
Referring to FIG. 4, the file generation unit 160 first compresses the image L 3 of the left-view in JPEG format (S21). Although the compression format (encoding format) is not limited to JPEG, it needs to be a format that can be compressed and expanded (encoding and decoding) by one image alone, unlike the case of video.
次に、ファイル生成部160は、ステップS21で圧縮された画像データにAPP2マーカを付加する(S22)。なお、APP2マーカは、カメラ映像機器工業会規格のマルチピクチャフォーマットで定義されるMPフォーマット付属情報を指す。
Next, the file generation unit 160 adds an APP2 marker to the image data compressed in step S21 (S22). Note that the APP2 marker indicates MP format attached information defined by the multi-picture format of the Camera & Imaging Products Industry Association standard.
次に、ファイル生成部160は、図6に示されるパラメータ1を、ステップS22で付加されたAPP2マーカに格納する(S23)。パラメータ1に設定されるデータの詳細は、後述する。
Next, the file generation unit 160 stores the parameter 1 shown in FIG. 6 in the APP2 marker added in step S22 (S23). Details of data set in parameter 1 will be described later.
次に、ファイル生成部160は、図7に示されるパラメータ2を、ステップS22で付加されたAPP2マーカに格納する(S24)。パラメータ2に設定されるデータの詳細は、後述する。
Next, the file generation unit 160 stores the parameter 2 shown in FIG. 7 in the APP2 marker added in step S22 (S24). Details of data set in parameter 2 will be described later.
図5を参照して、ファイル生成部160は、まず、右視点の画像R3をJPEG形式で圧縮する(S31)。圧縮形式(符号化形式)はJPEGに限定されないが、左視点画像と同じ形式であることが望ましい。
Referring to FIG. 5, the file generation unit 160 first compresses the image R 3 in right viewpoint in JPEG format (S31). The compression format (coding format) is not limited to JPEG, but it is desirable to be in the same format as the left viewpoint image.
次に、ファイル生成部160は、ステップS31で圧縮された画像データにAPP2マーカを付加する(S32)。なお、APP2マーカは、カメラ映像機器工業会規格のマルチピクチャフォーマットで定義されるMPフォーマット付属情報を指す。
Next, the file generation unit 160 adds an APP2 marker to the image data compressed in step S31 (S32). Note that the APP2 marker indicates MP format attached information defined by the multi-picture format of the Camera & Imaging Products Industry Association standard.
次に、ファイル生成部160は、図8に示されるパラメータ3を、ステップS32で付加されたAPP2マーカに格納する(S33)。パラメータ3に設定されるデータの詳細は、後述する。
Next, the file generation unit 160 stores the parameter 3 shown in FIG. 8 in the APP2 marker added in step S32 (S33). Details of the data set in the parameter 3 will be described later.
図3の処理に戻って、ファイル生成部160は、左視点画像生成処理(S13)及び右視点画像生成処理(S14)で生成された圧縮画像データを連結する(S15)。そして、ファイル生成部160は、ステップS15で得られたデータを、mpoファイルとして記憶部170に保存する(S16)。ステップS16で生成されるmpoファイルのデータレイアウトは、後述する。
Returning to the processing of FIG. 3, the file generation unit 160 links the compressed image data generated in the left viewpoint image generation processing (S13) and the right viewpoint image generation processing (S14) (S15). Then, the file generation unit 160 stores the data obtained in step S15 in the storage unit 170 as an mpo file (S16). The data layout of the mpo file generated in step S16 will be described later.
一方、表示部130に2次元映像が表示されている場合(S12でNO)、ファイル生成部160は、表示部130に表示されている画像L3をJPEG形式で圧縮し(S18)、圧縮した画像データをJPEGファイルとして記憶部170に保存する(S19)。ステップS18~ステップS19の処理は、従来と特に変わることがないので、詳細な説明は省略する。
On the other hand, if the two-dimensional image on the display unit 130 is displayed (NO at S12), the file generation unit 160 compresses the image L 3 displayed on the display unit 130 in the JPEG format (S18), and compressed The image data is stored as a JPEG file in the storage unit 170 (S19). The processes in steps S18 to S19 are the same as those in the related art, and thus detailed description will be omitted.
ステップS16で生成されるmpoファイルは、例えば、図9に示されるデータレイアウトとなっている。具体的には、図9のmpoファイルには、APP1マーカと、パラメータ1、2を格納したAPP2マーカと、圧縮された画像L3と、APP1マーカと、パラメータ3を格納したAPP2マーカと、圧縮された画像R3とが、この順に格納される。なお、APP1マーカは、カメラ映像機器工業会規格のマルチピクチャフォーマットで定義されるexif付属情報を指す。
The mpo file generated in step S16 has, for example, the data layout shown in FIG. Specifically, the mpo file of FIG. 9, the APP1 marker, and APP2 marker which stores parameters 1 and 2, the image L 3 which is compressed, and the APP1 marker, and APP2 marker which stores parameter 3, the compression an image R 3 which is is stored in this order. Note that the APP1 marker indicates exif attached information defined in a multi-picture format of the Camera & Imaging Products Industry Association standard.
図6に示されるパラメータ1は、共通項目と、画像毎の情報(複数のMPエントリ)とを含む。MPエントリの数は、mpoファイルに格納される画像の枚数(図6の例では2枚)に対応する。
Parameter 1 shown in FIG. 6 includes common items and information (a plurality of MP entries) for each image. The number of MP entries corresponds to the number of images (two in the example of FIG. 6) stored in the mpo file.
共通項目は、mpoファイルのバージョンを示すMPフォーマットバージョン(図6の例では“0100”)と、mpoファイルに格納される画像の枚数を示す記録画像枚数(図6の例では“2”)と、mpoファイル上の最初のMPエントリ(MPエントリ1)の位置を特定するための情報(オフセット)を格納するMPエントリとを含む。
The common items are the MP format version ("0100" in the example of FIG. 6) indicating the version of the mpo file, and the number of recorded images ("2" in the example of FIG. 6) indicating the number of images stored in the mpo file. , MP entry for storing information (offset) for specifying the position of the first MP entry (MP entry 1) on the mpo file.
MPエントリ1には、左視点の画像L3に関する情報が格納される。具体的には、MPエントリ1には、従属親画像フラグ、従属子画像フラグ、及びMP種別を含む個別画像種別管理情報と、個別画像データオフセットと、従属画像1エントリ番号と、従属画像2エントリ番号とを含む。
The MP entry 1, information about the image L 3 of the left viewpoint is stored. Specifically, in the MP entry 1, individual image type management information including a subordinate parent image flag, a subordinate child image flag, and an MP type, an individual image data offset, a subordinate image 1 entry number, and a subordinate image 2 entry Including numbers and
MPエントリ1のMP種別には、画像L3が立体静止画像として保存されることを示す値(“0x020002”)が設定される。また、個別画像データオフセットには、mpoファイル上の画像L3の位置を示すオフセット値(画像L3は先頭に格納されるので“0x0”)が設定される。なお、“0x”とは、後続の数値が16進数であることを表す。また、MPエントリ1のその他のタグに設定される値は、従来と特に変わるところがないので、説明を省略する。
The MP type MP entry 1, the value indicating that the image L 3 are stored as a three-dimensional still image ( "0x020002") is set. In addition, the individual image data offset, the offset value indicating the position of the image L 3 on mpo file (since the image L 3 is stored in the head "0x0") is set. "0x" indicates that the subsequent numerical value is a hexadecimal number. Further, the values set to the other tags of the MP entry 1 are not particularly different from the conventional ones, so the description will be omitted.
MPエントリ2には、右視点の画像R3に関する情報が格納される。なお、MPエントリ2のデータフォーマットは、MPエントリ1と同一である。そして、個別画像データオフセットにmpoファイル上の画像R3の位置を示すオフセット値が設定され、従属画像1エントリ番号に“0x0”設定される以外は、MPエントリ1と同一の値が設定される。
The MP entry 2, information about the image R 3 in the right viewpoint is stored. The data format of the MP entry 2 is the same as that of the MP entry 1. Then, set an offset value indicating the position of the image R 3 on mpo file into separate image data offset, "0x0" except as set out in the dependent image 1 entry number, the same value is set and MP entry 1 .
図7に示されるパラメータ2は、個別画像番号と、基準視点番号とを含む。個別画像番号は、パラメータ2を含むAPP2マーカが付加される画像(図9の例では、画像L3)を、mpoファイル上で特定する番号であり、図7の例では“0x1”が設定される。基準視点番号は、mpoファイルに格納される一対の静止画像(画像L3、R3)の基準となる視点を特定する番号であり、図7の例では画像L3の個別画像番号“0x1”が設定される。すなわち、このmpoファイルでは、左視点を基準視点としている。
Parameter 2 shown in FIG. 7 includes an individual image number and a reference viewpoint number. The individual image number is a number for specifying an image (an image L 3 in the example of FIG. 9) to which the APP2 marker including the parameter 2 is added on the mpo file, and “0x1” is set in the example of FIG. Ru. The reference viewpoint number is a number for identifying a viewpoint serving as a reference of a pair of still images (images L 3 and R 3 ) stored in the mpo file. In the example of FIG. 7, the individual image number “0x1” of the image L 3 Is set. That is, in this mpo file, the left viewpoint is used as the reference viewpoint.
図8に示されるパラメータ3は、MPフォーマットバージョンと、個別画像番号と、基準視点番号とを含む。MPフォーマットバージョンには、図6の共通項目に含まれるMPフォーマットバージョンと同一の値“0100”が設定される。個別画像番号には、パラメータ3を含むAPP2マーカが付加される画像(図9の例では、画像R3)を、mpoファイル上で特定する番号であり、図8の例では“0x2”が設定される。また、基準視点番号には、画像L3の個別画像番号“0x1”が設定される。
Parameter 3 shown in FIG. 8 includes an MP format version, an individual image number, and a reference viewpoint number. In the MP format version, the same value "0100" as the MP format version included in the common item of FIG. 6 is set. In the individual image number, an image (an image R 3 in the example of FIG. 9) to which an APP2 marker including parameter 3 is added is a number for specifying on the mpo file, and “0x2” is set in the example of FIG. Be done. In addition, the reference viewpoint number, the individual image number of the image L 3 "0x1" is set.
なお、図7及び図8では、左視点画像を第1視点画像(基準視点画像)とし、右視点画像を第2視点画像とした例を示したが、これに限定されず、右視点画像を第1視点画像(基準視点画像)とし、左視点画像を第2視点画像としてもよい。
7 and 8 show an example in which the left viewpoint image is the first viewpoint image (reference viewpoint image) and the right viewpoint image is the second viewpoint image, the present invention is not limited to this. The first viewpoint image (reference viewpoint image) may be used, and the left viewpoint image may be used as the second viewpoint image.
上記のように、実施の形態1に係るファイル生成部160は、同一時刻に撮像され(典型的には、同一タイムスタンプが付加され)、且つ互いに視差を有する一対の静止画像(画像L3、R3)を1つのmpoファイルに格納すると共に、当該mpoファイルに、一対の静止画像が立体静止画像として保存されることを示す値(MP種別に“0x020002”)と、同一の基準視点番号(“0x1”)とを設定して、記憶部170に保存する。
As described above, the file generation unit 160 according to the first embodiment is imaged at the same time (typically, the same time stamp is added), and a pair of still images (image L 3 , R 3 ) is stored in one mpo file, and the same reference viewpoint number (“0x020002” for MP type) as a value indicating that a pair of still images is stored as a stereoscopic still image in the mpo file “0x1” is set and stored in the storage unit 170.
そして、ファイル再生部180は、記憶部170から読み出したmpoファイルに含まれる一対の静止画像が立体静止画像であると認識し、画像L3、R3を表示部130に交互に表示させる。これにより、ユーザに立体静止画像を視聴させることが可能となる。
Then, the file reproduction unit 180 recognizes that the pair of still images included in the mpo file read from the storage unit 170 is a three-dimensional still image, and causes the display unit 130 to alternately display the images L 3 and R 3 . As a result, it is possible to allow the user to view a stereoscopic still image.
なお、実施の形態1では、キャプチャ要求が入力されたタイミングで表示部130に左視点画像が表示されており、ファイル生成部160は、表示中の左視点画像と、その直後に表示されるべき右視点画像とを取得する例を説明した。しかしながら、キャプチャ要求が入力されたタイミングで表示部130に右視点画像が表示されている場合でも、本発明を適用できることは言うまでもない。その場合、ファイル生成部160は、表示中の右視点画像と、その直前に表示されていた左視点画像とを取得すればよい。
In the first embodiment, the left viewpoint image is displayed on the display unit 130 at the timing when the capture request is input, and the file generation unit 160 is to display the left viewpoint image during display and immediately thereafter. An example of acquiring the right viewpoint image has been described. However, it goes without saying that the present invention can be applied even when the right viewpoint image is displayed on the display unit 130 at the timing when the capture request is input. In that case, the file generation unit 160 may obtain the right viewpoint image being displayed and the left viewpoint image displayed immediately before that.
(実施の形態2)
次に、立体映像処理装置100の実施の形態2に係る動作を説明する。なお、立体映像処理装置100の構成は図1と共通するので、再度の説明は省略する。また、実施の形態1と共通する動作の詳しい説明は省略し、相違点を中心に説明する。 Second Embodiment
Next, an operation according toEmbodiment 2 of the stereoscopic video processing device 100 will be described. The configuration of the three-dimensional video processing apparatus 100 is the same as that of FIG. Further, detailed description of the operation common to the first embodiment will be omitted, and differences will be mainly described.
次に、立体映像処理装置100の実施の形態2に係る動作を説明する。なお、立体映像処理装置100の構成は図1と共通するので、再度の説明は省略する。また、実施の形態1と共通する動作の詳しい説明は省略し、相違点を中心に説明する。 Second Embodiment
Next, an operation according to
まず、図10を参照して、立体映像処理装置100の実施の形態2に係る動作の概要を説明する。図10の例では、立体映像処理装置100に複数の立体映像が入力される。第1立体映像は、画像L11、L12、L13・・・で構成される左視点映像と、画像R11、R12、R13・・・で構成される右視点映像とを含む。同様に、第2立体映像は、画像L21、L22、L23・・・で構成される左視点映像と、画像R21、R22、R23・・・で構成される右視点映像とを含む。
First, with reference to FIG. 10, the outline of the operation according to the second embodiment of the stereoscopic video processing device 100 will be described. In the example of FIG. 10, a plurality of 3D images are input to the 3D image processing apparatus 100. The first three-dimensional video includes a left-view video composed of images L 11 , L 12 , L 13 ..., And a right-view video composed of images R 11 , R 12 , R 13 . Similarly, the second three-dimensional video is a left-view video composed of images L 21 , L 22 , L 23 ... And a right-view video composed of images R 21 , R 22 , R 23. including.
そして、立体映像処理装置100は、第1立体映像及び第2立体映像を映像取得部110で取得し、第1立体映像及び第2立体映像それぞれを映像復号部120で復号し、第1立体映像及び第2立体映像を同時に表示部130に表示する。すなわち、表示部130は、表示画面上に複数の子画面を表示させることができ、各子画面に別々の映像を同時に表示させることができる。例えば、図10に示される表示部130には、大小2つの子画面が表示されており、左側の相対的に小さな子画面に第1立体映像の左視点の画像L12が表示され、右側の相対的に大きな子画面に第2立体映像の左視点の画像L22が表示されている。
Then, the stereoscopic video processing apparatus 100 acquires the first stereoscopic video and the second stereoscopic video by the video acquisition unit 110, decodes the first stereoscopic video and the second stereoscopic video by the video decoding unit 120, and obtains the first stereoscopic video. And the second stereoscopic video are simultaneously displayed on the display unit 130. That is, the display unit 130 can display a plurality of sub-screens on the display screen, and can simultaneously display different videos on each sub-screen. For example, the display unit 130 shown in FIG. 10, are displayed large and small child screen, the image L 12 of the left perspective of the first stereoscopic image is displayed on the left side of the relatively small sub-screen, right image L 22 of left view of the second stereoscopic image is displayed on a relatively large child screen.
そして、ファイル生成部160は、入力受付部140でキャプチャ要求が受け付けられた場合に、表示部130に表示されている第1立体映像及び第2立体映像それぞれから取得した一対の静止画像と、取得した静止画像のうちの左視点画像同士を結合した結合左視点画像と、取得した静止画像のうちの右視点画像同士を結合した結合右視点画像とを格納したmpoファイルを、記憶部170に記憶させる。すなわち、表示部130に表示されている立体映像の数をnとすると、実施の形態2に係るmpoファイルには、2(n+1)枚の画像が格納される。
Then, when the capture request is received by the input reception unit 140, the file generation unit 160 acquires a pair of still images acquired from each of the first 3D image and the 2nd 3D image displayed on the display unit 130. The mpo file storing the combined left viewpoint image obtained by combining the left viewpoint images of the recorded still images and the combined right viewpoint image obtained by combining the right viewpoint images of the acquired still images is stored in the storage unit 170 Let That is, assuming that the number of stereoscopic images displayed on the display unit 130 is n, 2 (n + 1) images are stored in the mpo file according to the second embodiment.
図11~図21を参照して、立体映像処理装置100の実施の形態2に係る動作を説明する。図11は、実施の形態2に係るファイル生成処理のフローチャートである。図12は、実施の形態2に係る左視点画像生成処理のフローチャートである。図13は、実施の形態2に係る右視点画像生成処理のフローチャートである。図14は、実施の形態2に係る結合左視点画像生成処理のフローチャートである。図15は、実施の形態2に係る結合右視点画像生成処理のフローチャートである。図16A~図20は、mpoファイルのヘッダーに格納されるデータの例を示す図である。図21は、mpoファイルのデータレイアウトの例を示す図である。以降、図10を例にとって説明する。
The operation according to the second embodiment of the stereoscopic video processing device 100 will be described with reference to FIGS. 11 to 21. FIG. 11 is a flowchart of file generation processing according to the second embodiment. FIG. 12 is a flowchart of left viewpoint image generation processing according to the second embodiment. FIG. 13 is a flowchart of right viewpoint image generation processing according to the second embodiment. FIG. 14 is a flowchart of combined left viewpoint image generation processing according to the second embodiment. FIG. 15 is a flowchart of combined right-viewpoint image generation processing according to the second embodiment. 16A to 20 show examples of data stored in the header of the mpo file. FIG. 21 is a diagram showing an example of the data layout of the mpo file. Hereinafter, FIG. 10 will be described as an example.
図11のフローチャートは、図3のステップS13~S15の処理に相当する。まず、ファイル生成部160は、n=1として(S41)、第1立体映像の左視点画像生成処理(S42)と、第1立体映像の右視点画像生成処理(S43)とを実行する。
The flowchart of FIG. 11 corresponds to the process of steps S13 to S15 of FIG. First, the file generation unit 160 sets n = 1 (S41), and executes left viewpoint image generation processing (S42) of the first three-dimensional video and right viewpoint image generation processing (S43) of the first three-dimensional video.
図12を参照して、ファイル生成部160は、まず、左視点の画像L12をJPEG形式で圧縮する(S51)。次に、ファイル生成部160は、ステップS51で圧縮された画像データにAPP2マーカを付加する(S52)。なお、ステップS51~S52は、図4のステップS21~S22に対応する。
Referring to FIG. 12, the file generation unit 160 first compresses the image L 12 of the left-view in JPEG format (S51). Next, the file generation unit 160 adds an APP2 marker to the image data compressed in step S51 (S52). Steps S51 to S52 correspond to steps S21 to S22 in FIG.
次に、n=1、すなわち第1立体映像の処理を行う場合(S53でYES)、ファイル生成部160は、図16A~図16Cに示されるパラメータ4を、ステップS52で付加されたAPP2マーカに格納する(S54)。パラメータ4に設定されるデータの詳細は、後述する。一方、後述の第2立体映像の処理を行う場合(S53でNO)、ファイル生成部160は、ステップS54をスキップする。
Next, n = 1, that is, when processing the first 3D image (YES in S53), the file generation unit 160 adds the parameter 4 shown in FIGS. 16A to 16C to the APP2 marker added in step S52. Store (S54). Details of the data set in the parameter 4 will be described later. On the other hand, when the processing of the second stereoscopic video described later is performed (NO in S53), the file generation unit 160 skips step S54.
次に、ファイル生成部160は、ステップS52で付加されたAPP2マーカにパラメータ5を格納する(S55)。なお、第1立体映像の左視点画像のAPP2マーカに付加されるパラメータ5のデータレイアウト及び設定値は、図7に示されるパラメータ2と共通するので、図21ではパラメータ2と表記する。一方、後述の第2立体映像の左視点画像のAPP2マーカに付加されるパラメータ5のデータレイアウト及び設定値は、図17を用いて後述する。
Next, the file generation unit 160 stores the parameter 5 in the APP2 marker added in step S52 (S55). Note that the data layout and setting value of parameter 5 added to the APP2 marker of the left viewpoint image of the first three-dimensional video are the same as parameter 2 shown in FIG. On the other hand, the data layout and setting values of the parameter 5 to be added to the APP2 marker of the left viewpoint image of the second 3D image described later will be described later with reference to FIG.
図13を参照して、ファイル生成部160は、まず、右視点の画像R12をJPEG形式で圧縮する(S61)。次に、ファイル生成部160は、ステップS61で圧縮された画像データにAPP2マーカを付加する(S62)。なお、ステップS61~S62は、図5のステップS31~S32に対応する。
Referring to FIG. 13, the file generation unit 160 first compresses the image R 12 in right viewpoint in JPEG format (S61). Next, the file generation unit 160 adds an APP2 marker to the image data compressed in step S61 (S62). Steps S61 to S62 correspond to steps S31 to S32 in FIG.
次に、ファイル生成部160は、ステップS62で付加されたAPP2マーカにパラメータ6を格納する(S63)。なお、最初の右視点画像のAPP2マーカに付加されるパラメータ6のデータレイアウト及び設定値は、図8に示されるパラメータ3と共通するので、図21ではパラメータ3と表記する。一方、後述の第2立体映像の右視点画像のAPP2マーカに付加されるパラメータ6のデータレイアウト及び設定値は、図18を用いて後述する。
Next, the file generation unit 160 stores the parameter 6 in the APP2 marker added in step S62 (S63). Note that the data layout and setting values of the parameter 6 added to the APP2 marker of the first right-viewpoint image are common to the parameter 3 shown in FIG. On the other hand, the data layout and setting values of the parameters 6 to be added to the APP2 marker of the right viewpoint image of the second stereoscopic video described later will be described later with reference to FIG.
図11の処理に戻って、ファイル生成部160は、全ての映像の画像生成を完了したか否かを判断する(S44)。上記の例では、第2立体映像の処理が終わっていないので(S44でNO)、ファイル生成部160は、n=n+1(S45)とし、第2立体映像に対する左視点画像生成処理(S42)及び右視点画像生成処理(S43)を実行する。すなわち、ファイル生成部160は、第2立体映像の左視点の画像L22に対して左視点画像生成処理(S42)を実行し、第2立体映像の右視点の画像R22に対して右視点画像生成処理(S43)を実行する。
Returning to the process of FIG. 11, the file generation unit 160 determines whether the image generation of all the videos has been completed (S44). In the above example, since the processing of the second 3D image has not been completed (NO in S44), the file generation unit 160 sets n = n + 1 (S45), and generates the left viewpoint image generation process (S42) for the second 3D image. A right viewpoint image generation process (S43) is performed. That is, the file generating unit 160 performs a left viewpoint image generation processing (S42) the image L 22 of left view of the second stereoscopic image, right viewpoint for the image R 22 in the right perspective of the second stereoscopic image An image generation process (S43) is performed.
第2立体映像の処理が完了すると(S44でYES)、ファイル生成部160は、ステップS42~S45で生成された静止画像を用いて、結合左視点画像生成処理(S46)と、結合右視点画像生成処理(S47)とを実行する。
When the processing of the second 3D image is completed (YES in S44), the file generation unit 160 uses the still image generated in steps S42 to S45 to perform combined left viewpoint image generation processing (S46), and combines the combined right viewpoint image. The generation process (S47) is performed.
図14を参照して、ファイル生成部160は、表示部130に表示されている各画像の表示部130上の位置及びサイズを取得する(S71)。言い換えれば、ファイル生成部160は、表示部130上の第1立体映像を表示する子画面の座標及びサイズと、表示部130上の第2立体映像を表示する子画面の座標及びサイズとを取得する。
Referring to FIG. 14, file generation unit 160 obtains the position and size on display unit 130 of each image displayed on display unit 130 (S71). In other words, the file generation unit 160 obtains the coordinates and size of the child screen on which the first three-dimensional video is displayed on the display unit 130, and the coordinates and size of the child screen on which the second three-dimensional video is displayed on the display unit 130. Do.
ファイル生成部160は、例えば、表示部130の左上端の座標(x,y)を原点(0,0)、表示部130の水平方向右向きをx座標の正の方向、表示部130の垂直方向下向きをy座標の正の方向とする2次元座標系において、各子画面の左上端の座標を子画面の座標として取得し、各子画面の高さ及び横幅を子画面のサイズとして取得すればよい。但し、各子画面のレイアウトを特定する情報は上記に限定されない。例えば、ファイル生成部160は、上記の情報に代えて、各子画面の左上端の座標と右下端の座標とを取得してもよい。
For example, the file generation unit 160 sets the coordinate (x, y) of the upper left end of the display unit 130 to the origin (0, 0), the horizontal direction rightward of the display unit 130 the positive direction of the x coordinate, the vertical direction of the display unit 130 In a two-dimensional coordinate system where the downward direction is the positive direction of the y coordinate, acquire the coordinates of the upper left end of each child screen as the coordinates of the child screen, and acquire the height and width of each child screen as the size of the child screen Good. However, the information specifying the layout of each child screen is not limited to the above. For example, the file generation unit 160 may acquire the coordinates of the upper left end and the coordinates of the lower right end of each child screen instead of the above information.
次に、ファイル生成部160は、画像1(第1立体映像の左視点の画像L12)と画像3(第2立体映像の左視点の画像L22)とを、ステップS71で取得した各子画面の座標及びサイズに合わせて結合した結合左視点画像を生成する。そして、ファイル生成部160は、生成した結合左視点画像をJPEG形式で圧縮する(S72)。結合左視点画像は、表示部130に実際に表示されるスクリーンイメージである。
Next, the file generation unit 160 acquires each of the images 1 (image L 12 of the left viewpoint of the first three-dimensional video) and image 3 (image L 22 of the left viewpoint of the second three-dimensional video) in step S71. A combined left viewpoint image combined according to screen coordinates and size is generated. Then, the file generation unit 160 compresses the generated combined left viewpoint image in JPEG format (S72). The combined left viewpoint image is a screen image actually displayed on the display unit 130.
次に、ファイル生成部160は、ステップS72で圧縮された画像データにAPP2マーカを付加する(S73)。そして、ファイル生成部160は、図19に示されるパラメータ7を、ステップS73で付加されたAPP2マーカに格納する(S74)。パラメータ7に設定されるデータの詳細は、後述する。
Next, the file generation unit 160 adds the APP2 marker to the image data compressed in step S72 (S73). Then, the file generation unit 160 stores the parameter 7 shown in FIG. 19 in the APP2 marker added in step S73 (S74). Details of the data set in the parameter 7 will be described later.
図15を参照して、ファイル生成部160は、表示部130に表示されている各画像の表示部130上の位置及びサイズを取得する(S81)。なお、ステップS81では、前述のステップS71で取得した情報を再利用すればよい。
Referring to FIG. 15, file generation unit 160 acquires the position and size on display unit 130 of each image displayed on display unit 130 (S81). In step S81, the information acquired in step S71 described above may be reused.
次に、ファイル生成部160は、画像2(第1立体映像の右視点の画像R12)と画像4(第2立体映像の右視点の画像R22)とを、ステップS81で取得した各子画面の座標及びサイズに合わせて結合した結合右視点画像を生成する。そして、ファイル生成部160は、生成した結合右視点画像をJPEG形式で圧縮する(S82)。結合右視点画像は、表示部130に実際に表示されるスクリーンイメージである。
Next, the file generation unit 160 acquires the image 2 (the image R 12 of the right viewpoint of the first three-dimensional video) and the image 4 (the image R 22 of the right viewpoint of the second three-dimensional video) A combined right viewpoint image combined according to the screen coordinates and size is generated. Then, the file generation unit 160 compresses the generated combined right-viewpoint image in JPEG format (S 82). The combined right viewpoint image is a screen image that is actually displayed on the display unit 130.
次に、ファイル生成部160は、ステップS82で圧縮された画像データにAPP2マーカを付加する(S83)。そして、ファイル生成部160は、図20に示されるパラメータ8を、ステップS83で付加されたAPP2マーカに格納する(S84)。パラメータ7に設定されるデータの詳細は、後述する。
Next, the file generation unit 160 adds an APP2 marker to the image data compressed in step S82 (S83). Then, the file generation unit 160 stores the parameter 8 shown in FIG. 20 in the APP2 marker added in step S83 (S84). Details of the data set in the parameter 7 will be described later.
図11の処理に戻って、ファイル生成部160は、左視点画像生成処理(S42)、右視点画像生成処理(S43)、結合左視点画像生成処理(S46)、及び結合右視点画像生成処理(S47)で生成された圧縮画像データを連結する(S48)。そして、ファイル生成部160は、ステップS48で得られたデータを、mpoファイルとして記憶部170に保存する。
Returning to the processing of FIG. 11, the file generation unit 160 performs left viewpoint image generation processing (S42), right viewpoint image generation processing (S43), combined left viewpoint image generation processing (S46), and combined right viewpoint image generation processing (S42). The compressed image data generated in S47) are linked (S48). Then, the file generation unit 160 stores the data obtained in step S48 in the storage unit 170 as an mpo file.
図11の処理で生成されるmpoファイルは、例えば、図21に示されるデータレイアウトとなっている。具体的には、図21のmpoファイルには、APP1マーカと、パラメータ4、2を格納したAPP2マーカと、圧縮された画像L12と、APP1マーカと、パラメータ3を格納したAPP2マーカと、圧縮された画像R12と、APP1マーカと、パラメータ5を格納したAPP2マーカと、圧縮された画像L22と、APP1マーカと、パラメータ6を格納したAPP2マーカと、圧縮された画像R22と、APP1マーカと、パラメータ7を格納したAPP2マーカと、圧縮された結合左視点画像と、APP1マーカと、パラメータ8を格納したAPP2マーカと、圧縮された結合右視点画像とが、この順に格納される。
The mpo file generated by the process of FIG. 11 has, for example, the data layout shown in FIG. Specifically, the mpo file of Figure 21, the APP1 marker, and APP2 marker which stores parameter 4,2, a compressed image L 12, and APP1 marker, and APP2 marker which stores parameter 3, the compression an image R 12 which are the APP1 marker, and APP2 marker which stores parameters 5, the image L 22 which is compressed, and the APP1 marker, and APP2 marker which stores parameter 6, the image R 22 compressed, APP1 A marker, an APP 2 marker storing parameter 7, a compressed combined left-viewpoint image, an APP 1 marker, an APP 2 marker storing parameter 8, and a compressed combined right-viewpoint image are stored in this order.
図16A、図16B、及び図16Cに示されるパラメータ4は、共通項目と、画像毎の情報(複数のMPエントリ)とを含む。図16Aの共通項目のデータレイアウトは図6と共通し、記録画像枚数に“6”が設定されている点のみが異なる。
Parameters 4 shown in FIGS. 16A, 16B, and 16C include common items and information (a plurality of MP entries) for each image. The data layout of the common items in FIG. 16A is the same as that in FIG. 6 except that the number of recording images is set to “6”.
図16Aに示されるMPエントリ1には、第1立体映像の左視点の画像L12に関する情報が格納される。また、MPエントリ2には、第1立体映像の右視点の画像R12に関する情報が格納される。
The MP entry 1 shown in FIG. 16A, information about the image L 12 of the left perspective of the first stereoscopic image is stored. In addition, the MP entry 2, information about the image R 12 in the right perspective of the first stereoscopic image is stored.
MPエントリ1、2のデータレイアウト及び設定値は、図6とほぼ共通する。但し、MPエントリ1の従属親画像フラグ及びMPエントリ2の従属子画像フラグには、同一の値(“0x1”)が設定される。すなわち、これらのフラグに同一の値が設定されている2つの画像は、一対の静止画像を構成する。
The data layout and setting values of the MP entries 1 and 2 are almost the same as those in FIG. However, the same value (“0x1”) is set to the subordinate parent image flag of the MP entry 1 and the subordinate child image flag of the MP entry 2. That is, two images in which the same value is set to these flags constitute a pair of still images.
図16Bに示されるMPエントリ3には、第2立体映像の左視点の画像L22に関する情報が格納される。MPエントリ3のデータレイアウトはエントリ1と共通し、従属親画像フラグに“0x2”が、個別画像データオフセットに画像3へのオフセットが、従属画像1エントリ番号に“0x4(MPエントリ4を指す)”が設定されている他は、エントリ1と同一の値が設定されている。
The MP entry 3 shown in FIG. 16B, information about the image L 22 of left view of the second stereo image is stored. The data layout of MP entry 3 is common to that of entry 1. The subordinate parent image flag is “0x2”, the individual image data offset is the offset to image 3 and the subordinate image 1 entry number is “0x4 (point to MP entry 4) The same value as entry 1 is set except that “is set.
図16Bに示されるMPエントリ4には、第2立体映像の右視点の画像R22に関する情報が格納される。MPエントリ4のデータレイアウトはエントリ2と共通し、従属子画像フラグに“0x2”が、個別画像データオフセットに画像4へのオフセットが設定されている他は、エントリ2と同一の値が設定されている。
The MP entry 4 shown in FIG. 16B, information about the image R 22 in the right perspective of the second stereo image is stored. The data layout of MP entry 4 is common to that of entry 2, and the same value as entry 2 is set except that “0x2” is set to the subordinate image flag and the offset to image 4 is set to the individual image data offset. ing.
図16Cに示されるMPエントリ5には、結合左視点画像に関する情報が格納される。MPエントリ5のデータレイアウトはエントリ1と共通し、従属親画像フラグに“0x3”が、個別画像データオフセットに画像5へのオフセットが、従属画像1エントリ番号に“0x6(MPエントリ6を指す)”が設定されている他は、エントリ1と同一の値が設定されている。
In the MP entry 5 shown in FIG. 16C, information related to the combined left viewpoint image is stored. The data layout of MP entry 5 is the same as entry 1. The subordinate parent image flag is “0x3”, the individual image data offset is the offset to image 5, and the subordinate image 1 entry number is “0x6 (point to MP entry 6) The same value as entry 1 is set except that “is set.
図16Cに示されるMPエントリ6には、結合右視点画像に関する情報が格納される。MPエントリ6のデータレイアウトはエントリ2と共通し、従属子画像フラグに“0x3”が、個別画像データオフセットに画像6へのオフセットが設定されている他は、MPエントリ2と同一の値が設定されている。
In the MP entry 6 shown in FIG. 16C, information on the combined right viewpoint image is stored. The data layout of MP entry 6 is common to that of entry 2, and the same value as MP entry 2 is set except that “0x3” is set to the subordinate image flag and the offset to image 6 is set to the individual image data offset. It is done.
図17に示されるパラメータ5のデータレイアウトは、図8に示されるパラメータ3と共通し、個別画像番号に画像3(第2立体映像の左視点の画像L22)を特定する番号“0x3”が、基準視点番号に画像L22の個別画像番号“0x3”が設定されている他は、パラメータ3と同一の値が設定されている。
The data layout of parameter 5 shown in FIG. 17 is the same as parameter 3 shown in FIG. 8, and the number “0x3” specifying image 3 (the image L 22 of the left viewpoint of the second stereoscopic video) is the individual image number. , except that the individual image number "0x3" of the image L 22 is set to the reference viewpoint number, the same value as the parameter 3 are set.
図18に示されるパラメータ6のデータレイアウトは、図8に示されるパラメータ3と共通し、個別画像番号に画像4(第2立体映像の右視点の画像R22)を特定する番号“0x4”が、基準視点番号に画像L22の個別画像番号“0x3”が設定されている他は、パラメータ3と同一の値が設定されている。
The data layout of parameter 6 shown in FIG. 18 is the same as parameter 3 shown in FIG. 8, and the number “0x4” specifying image 4 (the right viewpoint image R 22 of the second stereoscopic video) is the individual image number. , except that the individual image number "0x3" of the image L 22 is set to the reference viewpoint number, the same value as the parameter 3 are set.
図19及び図20に示されるパラメータ7、8のデータレイアウトは、図8に示されるパラメータ3と共通し、個別画像番号及び基準視点番号に“0xFFFFFFFF(結合画像であることを示す値)”が設定されている他は、パラメータ3と同一の値が設定されている。
The data layout of parameters 7 and 8 shown in FIGS. 19 and 20 is in common with parameter 3 shown in FIG. 8, and “0xFFFFFFFF (value indicating that it is a combined image)” is used as the individual image number and reference view number. The same value as parameter 3 is set except for the setting.
上記のように、実施の形態2に係るファイル生成部160は、実施の形態1を拡張し、表示部130に同時に表示されている複数の立体映像のそれぞれから一対の静止画像を取得し、取得した複数セットの一対の静止画像をmpoファイルに格納する。また、ファイル生成部160は、一対の静止画像を構成する左視点画像及び右視点画像の組み合わせを特定する情報(MPエントリの従属親画像フラグ及び従属子画像フラグ)を、mpoファイルに格納する。
As described above, the file generation unit 160 according to the second embodiment extends the first embodiment and acquires and acquires a pair of still images from each of the plurality of stereoscopic images simultaneously displayed on the display unit 130. Store multiple sets of still images in an mpo file. Also, the file generation unit 160 stores, in the mpo file, information (a subordinate parent image flag and a subordinate child image flag of the MP entry) specifying the combination of the left viewpoint image and the right viewpoint image constituting the pair of still images.
そして、ファイル再生部180は、記憶部170から読み出したmpoファイルに含まれる複数の静止画像のうちから、MPエントリの従属親画像フラグ及び従属子画像フラグに同一の値が設定されている一対の静止画像を読み出し、読み出した一対の画像を表示部130に交互に表示させる。これにより、ユーザに立体静止画像を視聴させることが可能となる。
Then, of the plurality of still images included in the mpo file read out from storage unit 170, file reproducing unit 180 sets the same value to the subordinate parent image flag and the subordinate child image flag of the MP entry. The still image is read, and the read pair of images is alternately displayed on the display unit 130. As a result, it is possible to allow the user to view a stereoscopic still image.
さらに、ファイル生成部160は、mpoファイルに格納される複数の左視点画像を表示部130に表示されるレイアウトに合わせて結合した結合左視点画像と、mpoファイルに格納される複数の右視点画像を表示部130に表示されるレイアウトに合わせて結合した結合右視点画像とを、mpoファイルに格納する。
Furthermore, the file generation unit 160 combines a plurality of left viewpoint images stored in the mpo file according to the layout displayed on the display unit 130 according to the layout, and a plurality of right viewpoint images stored in the mpo file. And the combined right viewpoint image combined according to the layout displayed on the display unit 130 is stored in the mpo file.
そして、ファイル再生部180は、結合左視点画像及び結合右視点画像をmpoファイルから読み出して表示部130に交互に表示させることによって、入力受付部140でキャプチャ要求が受け付けられた時点での表示部130の表示内容を立体静止画像として再現することが可能となる。
Then, the file reproducing unit 180 reads out the combined left viewpoint image and the combined right viewpoint image from the mpo file and alternately displays the combined left viewpoint image and the combined right viewpoint image on the display unit 130, whereby the display unit at the time when the input request unit 140 receives the capture request. It becomes possible to reproduce the display contents of 130 as a three-dimensional still image.
なお、上記の例では、表示部130に同時に2つの立体映像が表示されている場合を説明したが、立体映像の数はこれに限定されず、3つ以上であってもよい。また、表示部130に2D映像と3D映像とが同時に表示されていてもよい。その場合、ファイル生成部160は、2D映像に図3のステップS12でNOとなる場合の処理を、3D映像に図3のステップS12でYESとなる場合の処理を実行すればよい。
In the above example, the case where two stereoscopic videos are simultaneously displayed on the display unit 130 has been described, but the number of stereoscopic videos is not limited to this and may be three or more. In addition, 2D video and 3D video may be displayed on the display unit 130 simultaneously. In that case, the file generation unit 160 may execute the processing for NO in step S12 of FIG. 3 for 2D video and the processing for YES in step S12 of FIG. 3 for 3D video.
(その他の実施の形態)
なお、本発明を上記実施の形態に基づいて説明してきたが、本発明は、上記の実施の形態に限定されないのはもちろんである。以下のような場合も本発明に含まれる。 (Other embodiments)
Although the present invention has been described based on the above embodiment, it is needless to say that the present invention is not limited to the above embodiment. The following cases are also included in the present invention.
なお、本発明を上記実施の形態に基づいて説明してきたが、本発明は、上記の実施の形態に限定されないのはもちろんである。以下のような場合も本発明に含まれる。 (Other embodiments)
Although the present invention has been described based on the above embodiment, it is needless to say that the present invention is not limited to the above embodiment. The following cases are also included in the present invention.
上記の各装置は、具体的には、マイクロプロセッサ、ROM、RAM、ハードディスクユニット、ディスプレイユニット、キーボード、マウスなどから構成されるコンピュータシステムである。RAMまたはハードディスクユニットには、コンピュータプログラムが記憶されている。マイクロプロセッサが、コンピュータプログラムにしたがって動作することにより、各装置は、その機能を達成する。ここでコンピュータプログラムは、所定の機能を達成するために、コンピュータに対する指令を示す命令コードが複数個組み合わされて構成されたものである。
Specifically, each of the above-described devices is a computer system including a microprocessor, a ROM, a RAM, a hard disk unit, a display unit, a keyboard, a mouse and the like. A computer program is stored in the RAM or the hard disk unit. Each device achieves its function by the microprocessor operating according to the computer program. Here, the computer program is configured by combining a plurality of instruction codes indicating instructions to the computer in order to achieve a predetermined function.
上記の各装置を構成する構成要素の一部または全部は、1個のシステムLSI(大規模集積回路)から構成されているとしてもよい。システムLSIは、複数の構成要素を1個のチップ上に集積して製造された超多機能LSIであり、具体的には、マイクロプロセッサ、ROM、RAMなどを含んで構成されるコンピュータシステムである。RAMには、コンピュータプログラムが記憶さている。マイクロプロセッサが、コンピュータプログラムにしたがって動作することにより、システムLSIは、その機能を達成する。
Some or all of the components constituting each of the above-described devices may be configured from one system LSI (large scale integrated circuit). The system LSI is a super multifunctional LSI manufactured by integrating a plurality of components on one chip, and more specifically, is a computer system configured to include a microprocessor, a ROM, a RAM and the like. . The RAM stores a computer program. The system LSI achieves its functions by the microprocessor operating according to the computer program.
上記の各装置を構成する構成要素の一部または全部は、各装置に脱着可能なICカードまたは単体のモジュールから構成されているとしてもよい。ICカードまたはモジュールは、マイクロプロセッサ、ROM、RAMなどから構成されるコンピュータシステムである。ICカードまたはモジュールは、上記の超多機能LSIを含むとしてもよい。マイクロプロセッサが、コンピュータプログラムにしたがって動作することにより、ICカードまたはモジュールは、その機能を達成する。このICカードまたはこのモジュールは、耐タンパ性を有してもよい。
Some or all of the components that make up each of the above-described devices may be configured from an IC card or a single module that can be attached to or detached from each device. The IC card or module is a computer system including a microprocessor, a ROM, a RAM, and the like. The IC card or module may include the above-described ultra-multifunctional LSI. The IC card or module achieves its function by the microprocessor operating according to the computer program. This IC card or this module may have tamper resistance.
本発明は、上記に示す方法であるとしてもよい。また、これらの方法をコンピュータにより実現するコンピュータプログラムであってもよいし、コンピュータプログラムからなるデジタル信号であってもよい。
The present invention may be methods shown above. In addition, it may be a computer program that realizes these methods by a computer, or may be a digital signal composed of a computer program.
また、本発明は、コンピュータプログラムまたはデジタル信号をコンピュータ読み取り可能な記録媒体、例えば、フレキシブルディスク、ハードディスク、CD-ROM、MO、DVD、DVD-ROM、DVD-RAM、BD(Blu-ray Disc)、半導体メモリなどに記録してもよい。また、これらの記録媒体に記録されているデジタル信号であるとしてもよい。
Also, the present invention is a computer program or recording medium capable of reading digital signals from a computer, such as a flexible disk, hard disk, CD-ROM, MO, DVD, DVD-ROM, DVD-RAM, BD (Blu-ray Disc), It may be recorded in a semiconductor memory or the like. In addition, digital signals may be recorded on these recording media.
また、本発明は、コンピュータプログラムまたはデジタル信号を、電気通信回線、無線または有線通信回線、インターネットを代表とするネットワーク、データ放送等を経由して伝送してもよい。
In addition, the present invention may transmit a computer program or a digital signal via a telecommunication line, a wireless or wired communication line, a network typified by the Internet, data broadcasting, and the like.
また、本発明は、マイクロプロセッサとメモリを備えたコンピュータシステムであって、メモリは、上記コンピュータプログラムを記憶しており、マイクロプロセッサは、コンピュータプログラムにしたがって動作してもよい。
Furthermore, the present invention is a computer system comprising a microprocessor and a memory, the memory storing the computer program, and the microprocessor may operate according to the computer program.
また、プログラムまたはデジタル信号を記録媒体に記録して移送することにより、またはプログラムまたはデジタル信号をネットワーク等を経由して移送することにより、独立した他のコンピュータシステムにより実施してもよい。
In addition, it may be implemented by another independent computer system by recording and transporting a program or digital signal on a recording medium, or by transporting a program or digital signal via a network or the like.
上記実施の形態及び上記変形例をそれぞれ組み合わせてもよい。
The above embodiment and the above modification may be combined respectively.
以上、図面を参照してこの発明の実施形態を説明したが、この発明は、図示した実施形態のものに限定されない。図示した実施形態に対して、この発明と同一の範囲内において、あるいは均等の範囲内において、種々の修正や変形を加えることが可能である。
Although the embodiments of the present invention have been described above with reference to the drawings, the present invention is not limited to the illustrated embodiments. Various modifications and variations can be made to the illustrated embodiment within the same or equivalent scope of the present invention.
本発明は、立体映像処理装置及び立体映像処理方法に有利に利用される。
The present invention is advantageously used in a stereoscopic video processing apparatus and a stereoscopic video processing method.
100 立体映像処理装置
110 映像取得部
120 映像復号部
130 表示部
140 入力受付部
150 2D/3D検出部
160 ファイル生成部
170 記憶部
180 ファイル再生部
Reference Signs List 100 stereoscopic video processing device 110 video acquisition unit 120 video decoding unit 130 display unit 140 input reception unit 150 2D / 3D detection unit 160 file generation unit 170 storage unit 180 file reproduction unit
110 映像取得部
120 映像復号部
130 表示部
140 入力受付部
150 2D/3D検出部
160 ファイル生成部
170 記憶部
180 ファイル再生部
Claims (7)
- 立体映像を構成する第1視点画像及び第2視点画像を交互に表示する表示部と、
ユーザからキャプチャ要求の入力を受け付ける入力受付部と、
前記入力受付部でキャプチャ要求が受け付けられたタイミングで前記表示部に表示されている第1視点画像及び当該第1視点画像に対応する第2視点画像を、一対の静止画像として格納したマルチピクチャフォーマット準拠のファイルを生成するファイル生成部とを備える
立体映像処理装置。 A display unit which alternately displays a first viewpoint image and a second viewpoint image constituting a stereoscopic video;
An input receiving unit that receives an input of a capture request from a user;
A multi-picture format in which the first viewpoint image displayed on the display unit and the second viewpoint image corresponding to the first viewpoint image are stored as a pair of still images at the timing when the capture request is received by the input reception unit. And a file generation unit that generates a compliant file. - 前記ファイル生成部は、前記表示部に複数の立体映像が同時に表示されている場合に、前記複数の立体映像それぞれから取得した前記一対の静止画像を、前記ファイルに格納する
請求項1に記載の立体映像処理装置。 The file generation unit stores, in the file, the pair of still images acquired from each of the plurality of three-dimensional videos when a plurality of three-dimensional videos are simultaneously displayed on the display unit. Stereoscopic image processing device. - 前記ファイル生成部は、さらに、
前記ファイルに格納される複数の第1視点画像を、前記表示部に表示されるレイアウトに合わせて結合した結合第1視点画像と、
前記ファイルに格納される複数の第2視点画像を、前記表示部に表示されるレイアウトに合わせて結合した結合第2視点画像とを、前記ファイルに格納する
請求項2に記載の立体映像処理装置。 The file generation unit is further configured to:
A combined first viewpoint image in which a plurality of first viewpoint images stored in the file are combined according to the layout displayed on the display unit;
The stereoscopic video processing device according to claim 2, wherein a plurality of second viewpoint images stored in the file and a combined second viewpoint image obtained by combining the plurality of second viewpoint images according to the layout displayed on the display unit are stored in the file. . - 前記ファイル生成部は、さらに、前記一対の静止画像を構成する第1視点画像及び第2視点画像の組み合わせを特定する情報を、前記ファイルに格納する
請求項2又は3に記載の立体映像処理装置。 The stereoscopic video processing apparatus according to claim 2, wherein the file generation unit further stores, in the file, information identifying a combination of a first viewpoint image and a second viewpoint image constituting the pair of still images. . - 該立体映像処理装置は、さらに、前記一対の静止画像を構成する第1視点画像及び第2視点画像を前記ファイルから読み出して、前記表示部に交互に表示させるファイル再生部を備える
請求項1~4のいずれか1項に記載の立体映像処理装置。 The three-dimensional video processing apparatus further includes a file playback unit that reads out from the file the first viewpoint image and the second viewpoint image that constitute the pair of still images and causes the display unit to alternately display the first viewpoint image and the second viewpoint image. The stereoscopic video processing device according to any one of 4. - 前記第1視点画像は、互いに視差を有する左視点画像及び右視点画像の一方であり、
前記第2視点画像は、前記左視点画像及び前記右視点画像の他方である
請求項1~5のいずれか1項に記載の立体映像処理装置。 The first viewpoint image is one of a left viewpoint image and a right viewpoint image having parallax with each other,
The stereoscopic video processing device according to any one of claims 1 to 5, wherein the second viewpoint image is the other of the left viewpoint image and the right viewpoint image. - 立体映像を構成する第1視点画像及び第2視点画像を交互に表示する表示ステップと、
ユーザからキャプチャ要求の入力を受け付ける入力受付ステップと、
前記入力受付ステップでキャプチャ要求が受け付けられたタイミングで前記表示ステップにおいて表示されている第1視点画像及び当該第1視点画像に対応する第2視点画像を、一対の静止画像として格納したマルチピクチャフォーマット準拠のファイルを生成するファイル生成ステップとを含む
立体映像処理方法。
A display step of alternately displaying a first viewpoint image and a second viewpoint image constituting a stereoscopic video;
An input receiving step of receiving an input of a capture request from a user;
A multi-picture format in which the first viewpoint image displayed in the display step and the second viewpoint image corresponding to the first viewpoint image are stored as a pair of still images at the timing when the capture request is received in the input reception step And a file generating step of generating a compliant file.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2012/001846 WO2013136373A1 (en) | 2012-03-16 | 2012-03-16 | Three-dimensional image processing device and three-dimensional image processing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2012/001846 WO2013136373A1 (en) | 2012-03-16 | 2012-03-16 | Three-dimensional image processing device and three-dimensional image processing method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013136373A1 true WO2013136373A1 (en) | 2013-09-19 |
Family
ID=49160348
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/001846 WO2013136373A1 (en) | 2012-03-16 | 2012-03-16 | Three-dimensional image processing device and three-dimensional image processing method |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2013136373A1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003092303A1 (en) * | 2002-04-25 | 2003-11-06 | Sharp Kabushiki Kaisha | Multimedia information generation method and multimedia information reproduction device |
JP2005184377A (en) * | 2003-12-18 | 2005-07-07 | Sharp Corp | Image conversion apparatus and image recording apparatus using it |
WO2011062015A1 (en) * | 2009-11-17 | 2011-05-26 | ソニー株式会社 | Image transmission method, image reception method, image transmission device, image reception device, and image transmission system |
-
2012
- 2012-03-16 WO PCT/JP2012/001846 patent/WO2013136373A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003092303A1 (en) * | 2002-04-25 | 2003-11-06 | Sharp Kabushiki Kaisha | Multimedia information generation method and multimedia information reproduction device |
JP2005184377A (en) * | 2003-12-18 | 2005-07-07 | Sharp Corp | Image conversion apparatus and image recording apparatus using it |
WO2011062015A1 (en) * | 2009-11-17 | 2011-05-26 | ソニー株式会社 | Image transmission method, image reception method, image transmission device, image reception device, and image transmission system |
Non-Patent Citations (1)
Title |
---|
CAMERA EIZO KIKI KOGYOKAI KIKAKU, CIPA DC-007- 2009 MULTI PICTURE FORMAT, 4 February 2009 (2009-02-04) * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8878836B2 (en) | Method and apparatus for encoding datastream including additional information on multiview image and method and apparatus for decoding datastream by using the same | |
JP6960528B2 (en) | Methods, devices, and computer programs for generating and processing media content | |
JP5519647B2 (en) | Stereoscopic video data stream generation method and apparatus using camera parameters, | |
US8259162B2 (en) | Method and apparatus for generating stereoscopic image data stream for temporally partial three-dimensional (3D) data, and method and apparatus for displaying temporally partial 3D data of stereoscopic image | |
JP7399224B2 (en) | Methods, devices and computer programs for transmitting media content | |
US8538134B2 (en) | Method and apparatus for receiving and generating image data stream including parameters for displaying local three dimensional image | |
JP5022443B2 (en) | Method of decoding metadata used for playback of stereoscopic video content | |
KR101863767B1 (en) | Pseudo-3d forced perspective methods and devices | |
JP5429034B2 (en) | Stereo image data transmitting apparatus, stereo image data transmitting method, stereo image data receiving apparatus, and stereo image data receiving method | |
WO2012017643A1 (en) | Encoding method, display device, and decoding method | |
WO2008054100A1 (en) | Method and apparatus for decoding metadata used for playing stereoscopic contents | |
JP2012186781A (en) | Image processing device and image processing method | |
WO2012111757A1 (en) | Image processing device and image processing method | |
US10205927B2 (en) | Encoding device and encoding method, and decoding device and decoding method | |
US20130070052A1 (en) | Video procesing device, system, video processing method, and video processing program capable of changing depth of stereoscopic video images | |
WO2011083625A1 (en) | Image processing device, information recording medium, image processing medium, and program | |
JPWO2012128069A1 (en) | Image processing apparatus and image processing method | |
WO2013136373A1 (en) | Three-dimensional image processing device and three-dimensional image processing method | |
EP2685730A1 (en) | Playback device, playback method, and program | |
TW201249168A (en) | Operating method of display chip for three-dimensional display system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12871586 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12871586 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |