WO2013136369A1 - Photoconductive substrate and electromagnetic wave generating apparatus provided with same - Google Patents

Photoconductive substrate and electromagnetic wave generating apparatus provided with same Download PDF

Info

Publication number
WO2013136369A1
WO2013136369A1 PCT/JP2012/001823 JP2012001823W WO2013136369A1 WO 2013136369 A1 WO2013136369 A1 WO 2013136369A1 JP 2012001823 W JP2012001823 W JP 2012001823W WO 2013136369 A1 WO2013136369 A1 WO 2013136369A1
Authority
WO
WIPO (PCT)
Prior art keywords
photoconductive
substrate
psec
layer
photoconductive layer
Prior art date
Application number
PCT/JP2012/001823
Other languages
French (fr)
Japanese (ja)
Inventor
喜彦 加茂
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Priority to JP2014504463A priority Critical patent/JP5925294B2/en
Priority to PCT/JP2012/001823 priority patent/WO2013136369A1/en
Publication of WO2013136369A1 publication Critical patent/WO2013136369A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/26Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole with folded element or elements, the folded parts being spaced apart a small fraction of operating wavelength
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3581Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using far infrared light; using Terahertz radiation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/636Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited using an arrangement of pump beam and probe beam; using the measurement of optical non-linear properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors

Abstract

The present invention addresses the problem of providing a photoconductive substrate, which can improve the S/N ratio or the dynamic range of electromagnetic waves to be generated, and an electromagnetic wave generating apparatus that is provided with the photoconductive substrate. A photoconductive substrate (2) is characterized in that: the photoconductive substrate is provided with a substrate (11), and a photoconductive layer (13), which is configured of a III-V compound semiconductor that is epitaxially grown on the substrate (11); and in the photoconductive layer (13), the lifetime of a carrier generated due to photoelectric effects is within a range wherein the lower limit is higher than a subpicosecond, and the upper limit maintains presence of a cluster of the group V atoms, specifically, the carrier lifetime is 2-50 psec.

Description

光伝導基板およびこれを備えた電磁波発生装置Photoconductive substrate and electromagnetic wave generating apparatus having the same
 本発明は、テラヘルツ波等の電磁波の発生に好適な光伝導基板およびこれを備えた電磁波発生装置に関するものである。 The present invention relates to a photoconductive substrate suitable for the generation of electromagnetic waves such as terahertz waves, and an electromagnetic wave generator provided with the same.
 従来、半導体単結晶基板と、半導体単結晶基板上にエピタキシャル成長させ、表面に向かうに従ってIII族原子の濃度に対するV族原子の濃度の割合を増加させ、表面近傍においてV族原子の濃度をIII族原子の濃度より高くしたIII-V族化合物半導体層と、を備えた光伝導基板が知られている(特許文献1参照)。
 この光伝導基板では、表面近傍におけるV族原子クラスターが、光励起キャリアの捕捉に大きく寄与することを利用して、フェムト秒レーザパルスの照射によってIII-V族化合物半導体層内に発生する光励起キャリアのキャリア寿命を短寿命化している。これにより、残留キャリアによる、テラヘルツ波の検出および発生のS/N比が低下することを防止している。
Conventionally, a semiconductor single crystal substrate is epitaxially grown on the semiconductor single crystal substrate, the ratio of the group V atom concentration to the group III atom concentration is increased toward the surface, and the group V atom concentration is increased in the vicinity of the surface to the group III atom. There is known a photoconductive substrate provided with a III-V compound semiconductor layer having a higher concentration than the above (see Patent Document 1).
In this photoconductive substrate, utilizing the fact that group V atom clusters in the vicinity of the surface greatly contribute to the capture of photoexcited carriers, photoexcited carriers generated in the group III-V compound semiconductor layer by irradiation with femtosecond laser pulses are utilized. Carrier life is shortened. This prevents a decrease in the S / N ratio of detection and generation of terahertz waves due to residual carriers.
特許第4095486号公報Japanese Patent No. 4095486
 ところで、光伝導基板に一対のアンテナを設けた光伝導アンテナ素子は、一対のアンテナ(電極)間に電圧を印加することで、テラヘルツ波発生装置として利用され、また一対のアンテナ(電極)間に流れる瞬時電流を検出することで、テラヘルツ波検出装置として利用される。
 このため、上記従来の光伝導基板等においては、常にテラヘルツ波の発生および検出に好適な兼用(共用)基板を構成すべく、キャリア寿命を短寿命化(例えば、1psec以下)を図るようにしている。
 この点において、本出願人は、発生専用の光伝導基板、或いは検出専用の光伝導基板の存在を肯定し、その開発過程で、発生専用の光伝導基板においては、キャリア寿命の短寿命化が、必ずしもS/N比またはダイナミックレンジの向上に相関しないことを見出した。
By the way, a photoconductive antenna element provided with a pair of antennas on a photoconductive substrate is used as a terahertz wave generator by applying a voltage between a pair of antennas (electrodes), and between a pair of antennas (electrodes). By detecting the flowing instantaneous current, it is used as a terahertz wave detection device.
For this reason, in the conventional photoconductive substrate and the like, the carrier life is shortened (for example, 1 psec or less) so that a dual-purpose (shared) substrate suitable for generation and detection of terahertz waves is always configured. Yes.
In this regard, the present applicant affirms the existence of a photoconductive substrate dedicated to generation or a photoconductive substrate dedicated to detection, and in the development process, in the photoconductive substrate dedicated to generation, the carrier life is shortened. It has been found that it does not necessarily correlate with an improvement in the S / N ratio or dynamic range.
 本発明は、上記の知見にかんがみて為されたものであり、発生する電磁波のS/N比またはダイナミックレンジを向上させることができる光伝導基板およびこれを備えた電磁波発生装置を提供することを課題としている。 The present invention has been made in view of the above knowledge, and provides a photoconductive substrate capable of improving the S / N ratio or dynamic range of generated electromagnetic waves and an electromagnetic wave generating apparatus including the same. It is an issue.
 本発明の光伝導基板は、基板と、基板上にエピタキシャル成長させたIII-V族化合物半導体から成る光伝導層と、を備え、光伝導層は、光電効果によって生ずるキャリア寿命が、下限においてサブピコ秒を越え、上限においてV族原子のクラスターの存在が維持される範囲内であることを特徴とする。 The photoconductive substrate of the present invention comprises a substrate and a photoconductive layer made of a III-V group compound semiconductor epitaxially grown on the substrate, and the photoconductive layer has a carrier lifetime caused by the photoelectric effect of sub-picosecond at the lower limit. And the upper limit is within a range in which the existence of the cluster of the group V atom is maintained.
 具体的には、キャリア寿命が、2psec以上、50psec以下であることが好ましく、さらにキャリア寿命が、6psec以上、35psec以下であることがより好ましい。 Specifically, the carrier life is preferably 2 psec or more and 50 psec or less, and the carrier life is more preferably 6 psec or more and 35 psec or less.
 この構成によれば、発生させた電磁時間波形をフーリエ変換して得た電磁波スペクトルにおいて評価される、S/N比またはダイナミックレンジが、光伝導層におけるキャリア寿命がサブピコ秒のものに比して、全周波数帯域で向上することが確認された。電磁波の発生において、キャリア寿命が2psec以上のものであると、S/N比またはダイナミックレンジが向上するが、50psecを越えると、V族原子のクラスターが存在しなくなる。これにより、キァリアー(光励起キャリア)の捕捉ができなくなり、残留キャリアに起因するノイズが大きくなる。また、キャリア寿命が50psecを越えると、V族原子のクラスターが存在しなくなると共に結晶性の高い層となるため、アンテナ(電極)における絶縁破壊が生じ易くなる。したがって、キャリア寿命が2psec以上、50psec以下となる光伝導層とすることにより、高い結晶性とV族原子クラスターが存在する構成とし、キャリアの高い移動度(高い電磁波発生効率)を実現すると共に、ノイズの抑制と耐絶縁破壊性の向上を図った。
 この2psec~50psecのキャリア寿命は、例えばMBE(分子線エピタキシー)装置において、III-V族化合物半導体を低温成長させた後、V族原子クラスターを析出させるべく、分子線を照射した状態で熱処理を行うことで実現される。なお、この場合の電磁波は、数十GHz~数百THzの電磁波を対象とするものである。
According to this configuration, the S / N ratio or dynamic range, which is evaluated in the electromagnetic spectrum obtained by Fourier transforming the generated electromagnetic time waveform, is higher than that of the carrier lifetime in the photoconductive layer is sub-picoseconds. It was confirmed that it improved in all frequency bands. In the generation of electromagnetic waves, if the carrier lifetime is 2 psec or more, the S / N ratio or the dynamic range is improved. However, if it exceeds 50 psec, clusters of group V atoms do not exist. As a result, the carrier (photoexcited carrier) cannot be captured, and noise caused by the residual carrier increases. Further, when the carrier lifetime exceeds 50 psec, a cluster of group V atoms does not exist and a layer with high crystallinity is formed, so that dielectric breakdown in the antenna (electrode) is likely to occur. Therefore, by adopting a photoconductive layer having a carrier lifetime of 2 psec or more and 50 psec or less, it is configured to have high crystallinity and a group V atom cluster, realizing high carrier mobility (high electromagnetic wave generation efficiency), Noise suppression and dielectric breakdown resistance were improved.
The carrier lifetime of 2 psec to 50 psec is, for example, in MBE (Molecular Beam Epitaxy) equipment after III-V group compound semiconductor is grown at low temperature and then subjected to heat treatment in the state of irradiation with molecular beam to precipitate V group atomic clusters. It is realized by doing. Note that the electromagnetic wave in this case is an electromagnetic wave of several tens GHz to several hundreds THz.
 この場合、光伝導層は、GaAs化合物半導体層であることが好ましい。 In this case, the photoconductive layer is preferably a GaAs compound semiconductor layer.
 この構成によれば、光伝導層の高い結晶性が維持されるため、電磁波の発生効率(キャリアの移動度)を高めることができる。 According to this configuration, since the high crystallinity of the photoconductive layer is maintained, electromagnetic wave generation efficiency (carrier mobility) can be increased.
 本発明の電磁波発生装置は、上記した光伝導基板と、光伝導基板上に形成された平行伝送線路と、を備えたことを特徴とする。 An electromagnetic wave generator of the present invention is characterized by comprising the above-described photoconductive substrate and a parallel transmission line formed on the photoconductive substrate.
 この構成によれば、電磁波の発生において、S/N比またはダイナミックレンジを向上させることができ、電磁波の発生に好適な電磁波発生装置を提供することができる。 According to this configuration, the S / N ratio or dynamic range can be improved in the generation of electromagnetic waves, and an electromagnetic wave generator suitable for the generation of electromagnetic waves can be provided.
第1実施形態に係る光伝導アンテナ素子の斜視図である。It is a perspective view of the photoconductive antenna element which concerns on 1st Embodiment. 光伝導層のキャリア寿命が10psecと1psec未満との場合における、テラヘルツ波スペクトルの図である。It is a figure of the terahertz wave spectrum in case the carrier lifetime of a photoconductive layer is 10 psec and less than 1 psec. 光伝導層のキャリア寿命を可変として測定した、キャリア寿命とダイナミックレンジと関係を表した図(a)、およびそのキャリア寿命を対数表示とした図(b)である。It is the figure (a) showing the relationship between a carrier lifetime and a dynamic range measured as the carrier lifetime of a photoconductive layer was variable, and the figure (b) which made the carrier lifetime logarithm display. 光伝導層の成長温度を可変として測定した、成長温度とダイナミックレンジとの関係を表した図である。It is the figure showing the relationship between the growth temperature and dynamic range which measured the growth temperature of the photoconductive layer as variable. 光伝導層の成長温度を可変として測定した、成長温度とキャリア寿命との関係を表した図である。It is the figure showing the relationship between growth temperature and carrier lifetime which measured the growth temperature of the photoconductive layer as variable. 第2実施形態に係る光伝導アンテナ素子の断面構成図である。It is a cross-sectional block diagram of the photoconductive antenna element which concerns on 2nd Embodiment. 第3実施形態に係る光伝導アンテナ素子の断面構成図である。It is a cross-sectional block diagram of the photoconductive antenna element which concerns on 3rd Embodiment.
 以下、添付の図面を参照して、本発明の一実施形態の係る光伝導基板および電磁波発生装置を適用した光伝導アンテナ素子について説明する。この光伝導アンテナ素子は、これに電圧を印加することにより、テラヘルツ波を発生させる発生専用の素子として開発されたものである。また、ここで規定するテラヘルツ波とは、狭義のテラヘルツ波(0.1THz~10THzの電磁波)は元より、広義のテラヘルツ波(数十GHz~数百THzの電磁波)も含む概念である。 Hereinafter, a photoconductive antenna element to which a photoconductive substrate and an electromagnetic wave generator according to an embodiment of the present invention are applied will be described with reference to the accompanying drawings. This photoconductive antenna element has been developed as a generation-only element that generates a terahertz wave by applying a voltage thereto. The terahertz wave defined here is a concept that includes not only a narrowly defined terahertz wave (electromagnetic wave of 0.1 THz to 10 THz) but also a broadly defined terahertz wave (electromagnetic wave of several tens of GHz to several hundred THz).
 図1は、光伝導アンテナ素子を模式的に表した斜視図である。同図に示すように、光伝導アンテナ素子1は、主体を為す光伝導基板2と、光伝導基板2上に成膜され、電圧を印加するための平行伝送線路3と、により構成されている。
 光伝導基板2は、基板11と、基板11上に形成されたバッファ層12と、バッファ層12上に形成された光伝導層13と、を備えている。また、平行伝送線路3は、一対のアンテナ21,21を備えている。なお、バッファ層12は省略してもよい。
FIG. 1 is a perspective view schematically showing a photoconductive antenna element. As shown in the figure, the photoconductive antenna element 1 is composed of a photoconductive substrate 2 that forms the main body, and a parallel transmission line 3 that is formed on the photoconductive substrate 2 and applies a voltage. .
The photoconductive substrate 2 includes a substrate 11, a buffer layer 12 formed on the substrate 11, and a photoconductive layer 13 formed on the buffer layer 12. The parallel transmission line 3 includes a pair of antennas 21 and 21. Note that the buffer layer 12 may be omitted.
 基板11は、化合物半導体の単結晶基板であり、SI-GaAs(半絶縁性ガリウム砒素)により構成されている。基板11の材料としては、SI-GaAsの他、バッファ層12や光伝導層13の材料(の格子定数)に応じて、例えばSi、Ge、InP等の単結晶半導体を用いることもできる。 The substrate 11 is a compound semiconductor single crystal substrate and is made of SI-GaAs (semi-insulating gallium arsenide). As a material of the substrate 11, a single crystal semiconductor such as Si, Ge, InP, or the like can be used according to the material (lattice constant) of the buffer layer 12 and the photoconductive layer 13 in addition to SI-GaAs.
 バッファ層12は、基板11の格子定数以上、光伝導層13の格子定数以下もしくは基板11の格子定数以下、光伝導層13の格子定数以上となる材料を用いて、基板11上にエピタキシャル成長させた薄膜であり、実施形態のものは、GaAs(ガリウム砒素)により構成されている。バッファ層12は、この上に積層する光伝導層13の結晶性を制御するために設けられている。このため、バッファ層12を構成する半導体材料は、Si、AlGaAs(LT-AlGaAs)、InGaP、AlAs、InP、InAlAs、InGaAs(LT-InGaAs)、GaAsSb、InGaAsP、InAs(LT-InAs)、InSb等を、基板11および光伝導層13の材料(の格子定数)に応じて任意に選択して用いることができる。また、これらを複数層としてもよい。 The buffer layer 12 was epitaxially grown on the substrate 11 using a material having a lattice constant greater than or equal to that of the substrate 11 and less than or equal to that of the photoconductive layer 13 or less than or equal to that of the substrate 11 and greater than or equal to that of the photoconductive layer 13. It is a thin film, and the thing of embodiment is comprised by GaAs (gallium arsenide). The buffer layer 12 is provided for controlling the crystallinity of the photoconductive layer 13 laminated thereon. Therefore, the semiconductor material constituting the buffer layer 12 is Si, AlGaAs (LT-AlGaAs), InGaP, AlAs, InP, InAlAs, InGaAs (LT-InGaAs), GaAsSb, InGaAsP, InAs (LT-InAs), InSb, and the like. Can be arbitrarily selected and used according to the material (lattice constant thereof) of the substrate 11 and the photoconductive layer 13. Moreover, these may be a plurality of layers.
 光伝導層13は、LT-GaAs(低温成長ガリウム砒素)を、バッファ層12を介して基板11上にエピタキシャル成長させたものであり、表面(上面)に垂直に入射した励起光(フェムト秒パルスレーザ等)により、キャリア(電子)を発生させる(詳細は後述する)。この場合、光伝導層13は、キャリアの応答速度(移動度)の高速化に鑑み、III-V族化合物半導体であるGaAsを材料として低温でエピタキシャル成長(LT-GaAs)させて形成されている。 The photoconductive layer 13 is obtained by epitaxially growing LT-GaAs (low-temperature gallium arsenide) on the substrate 11 via the buffer layer 12, and pumping light (femtosecond pulse laser incident perpendicularly to the surface (upper surface). Etc.) to generate carriers (electrons) (details will be described later). In this case, the photoconductive layer 13 is formed by epitaxial growth (LT-GaAs) at a low temperature using GaAs, which is a III-V group compound semiconductor, in view of increasing the response speed (mobility) of carriers.
 そして、光伝導層13は、このエピタキシャル成長の過程で、光電効果によって生ずるキャリア寿命が、下限においてサブピコ秒を越え、上限においてV族原子のクラスターの存在が維持される時間範囲内となるように、構成されている。すなわち、LT-GaAsの光伝導層13は、電圧の印加により発生するキャリア(光励起キャリア)のキャリア寿命が、2psec以上、50psec以下となるように、より好ましくはキャリア寿命が、6psec以上、35psec以下となるように、構成されている。 In the process of this epitaxial growth, the photoconductive layer 13 has a carrier lifetime caused by the photoelectric effect within a time range in which the lower limit exceeds subpicoseconds and the upper limit maintains the presence of a group V atom cluster. It is configured. That is, the LT-GaAs photoconductive layer 13 has a carrier lifetime of 2 psec or more and 50 psec or less, more preferably a carrier lifetime of 6 psec or more and 35 psec or less. It is comprised so that it may become.
 なお、光伝導層13を構成するIII-V族化合物半導体は、上記のLT-GaAsの他、基板11がGaAsやGeの場合には、GaAs、AlGaAs(LT-AlGaAs)、InGaP、AlAsであってもよいし、基板11がInPの場合には、InP、InAlAs、InGaAs(LT-InGaAs)、GaAsSb、InGaAsPであってもよい。さらに、光伝導層13が、InAs(LT-InAs)、InSb等であってもよい。 The III-V compound semiconductor constituting the photoconductive layer 13 is GaAs, AlGaAs (LT-AlGaAs), InGaP, or AlAs when the substrate 11 is GaAs or Ge in addition to the above-described LT-GaAs. Alternatively, when the substrate 11 is InP, it may be InP, InAlAs, InGaAs (LT-InGaAs), GaAsSb, or InGaAsP. Furthermore, the photoconductive layer 13 may be InAs (LT-InAs), InSb, or the like.
 一方、平行伝送線路3は、光伝導層13上に形成したダイポール型の一対のアンテナ21,21で構成されている。各アンテナ21は、線状に延びるライン部22と、ライン部22の中央から内側に延設した電極部(電極)23と、を有しており、ライン部22の少なくとも一方の端部が電極パッド24として機能する。一対のアンテナ21,21は、そのライン部22,22同士が平行に配置され、且つ相互の電極部23,23が所定のギャップを存して対向配置されている。 On the other hand, the parallel transmission line 3 includes a pair of dipole antennas 21 and 21 formed on the photoconductive layer 13. Each antenna 21 has a line portion 22 extending linearly and an electrode portion (electrode) 23 extending inward from the center of the line portion 22, and at least one end of the line portion 22 is an electrode. It functions as a pad 24. The pair of antennas 21 and 21 have their line portions 22 and 22 arranged in parallel to each other, and the mutual electrode portions 23 and 23 are arranged to face each other with a predetermined gap.
 すなわち、相互の電極部23,23の対向端部間には、数μmの幅(実施形態のものは、5μm程度)のギャップ部25が構成されている。実施形態の各アンテナ21は、Au(金)で構成されているが、Al、Ti、Cr、Pd、Pt、Au-Ge合金、Al-Ti合金等の導電性材料であってもよい。なお、平行伝送線路(アンテナ21)3の形式は、ボウタイ型、ストリップライン型、スパイラル型等であってもよい。 That is, a gap portion 25 having a width of several μm (in the embodiment, about 5 μm) is formed between the opposing end portions of the mutual electrode portions 23 and 23. Each antenna 21 of the embodiment is made of Au (gold), but may be a conductive material such as Al, Ti, Cr, Pd, Pt, Au—Ge alloy, Al—Ti alloy. The form of the parallel transmission line (antenna 21) 3 may be a bow tie type, a strip line type, a spiral type, or the like.
 このように構成された光伝導アンテナ素子1を、テラヘルツ波発生素子として機能させるには、一対の電極パッド24,24を介して、相互の電極部23,23間に所定のバイアス電圧を印加しておいて、ギャップ部25に、フェムト秒パルスレーザ等の励起光(パルス光)を照射する。すなわち、電極部23,23間に電界を発生させておいて、励起光によりギャップ部25の光伝導層13を励起する。これにより、光伝導層13にキャリア(電子および正孔)が生成され、且つ電極部23,23間の電圧(電界)でキャリアが加速されて瞬時電流が流れる。このパルス状電流の時間変動(超高速電流変調)によりテラヘルツ波(厳密にはテラヘルツパルス波)が発生し、誘電率の大きい基板11側に強く放射される。 In order for the photoconductive antenna element 1 configured as described above to function as a terahertz wave generating element, a predetermined bias voltage is applied between the electrode portions 23 and 23 via the pair of electrode pads 24 and 24. In this case, the gap portion 25 is irradiated with excitation light (pulse light) such as a femtosecond pulse laser. That is, an electric field is generated between the electrode portions 23 and 23, and the photoconductive layer 13 in the gap portion 25 is excited by excitation light. As a result, carriers (electrons and holes) are generated in the photoconductive layer 13, and the carriers are accelerated by the voltage (electric field) between the electrode portions 23 and 23 so that an instantaneous current flows. A terahertz wave (strictly speaking, a terahertz pulse wave) is generated by the time variation (ultra-fast current modulation) of the pulsed current, and is strongly radiated toward the substrate 11 having a large dielectric constant.
 ここで、キャリア寿命が2psec~50psecの光伝導層13を有する光伝導アンテナ素子1の製造方法について、簡単に説明する。この製造方法では、先ずMBE(分子線エピタキシー)装置に基板11をセットし、このSI-GaAsの基板11上に、0.1μm~0.5μm厚程度のGaAsのバッファ層12をエピタキシャル成長させる(バッファ層成膜工程)。具体的には、基板11の温度を500℃~600℃、成長速度約1μm/hour、Ga分子線強度に対するAs分子線強度の比(Ga/As供給比)を約5~30に設定し、バッファ層12を0.1μm~0.5μm程度の膜厚にエピタキシャル成長させる。 Here, a method for manufacturing the photoconductive antenna element 1 having the photoconductive layer 13 having a carrier lifetime of 2 psec to 50 psec will be briefly described. In this manufacturing method, first, a substrate 11 is set in an MBE (molecular beam epitaxy) apparatus, and a GaAs buffer layer 12 having a thickness of about 0.1 μm to 0.5 μm is epitaxially grown on the SI-GaAs substrate 11 (buffer). Layer deposition step). Specifically, the temperature of the substrate 11 is set to 500 ° C. to 600 ° C., the growth rate is about 1 μm / hour, the ratio of As molecular beam intensity to Ga molecular beam intensity (Ga / As supply ratio) is set to about 5 to 30, The buffer layer 12 is epitaxially grown to a thickness of about 0.1 μm to 0.5 μm.
 次に、バッファ層12上に、1μm~2μm厚程度のLT-GaAsの光伝導層13をエピタキシャル成長させる(光伝導層成膜工程)。具体的には、MBE装置にセットした基板11の温度を、400℃以下(実施形態のものは、約300±50℃)に降温させ、成長速度をバッファ層12と同様に約1μm/hとし、Ga/As供給比をバッファ層12の供給比以上として、光伝導層13を1μm~2μm程度の膜厚にエピタキシャル成長させる。これにより、基板11、バッファ層12および光伝導層13から成る光伝導基板2が形成される。 Next, an LT-GaAs photoconductive layer 13 having a thickness of about 1 μm to 2 μm is epitaxially grown on the buffer layer 12 (photoconductive layer forming step). Specifically, the temperature of the substrate 11 set in the MBE apparatus is lowered to 400 ° C. or less (in the embodiment, about 300 ± 50 ° C.), and the growth rate is set to about 1 μm / h similarly to the buffer layer 12. The Ga / As supply ratio is set to be equal to or higher than the supply ratio of the buffer layer 12, and the photoconductive layer 13 is epitaxially grown to a thickness of about 1 μm to 2 μm. Thereby, the photoconductive substrate 2 including the substrate 11, the buffer layer 12, and the photoconductive layer 13 is formed.
 次に、この光伝導基板2に対し、熱処理を行う(アニール工程)。具体的には、MBE装置内において、光伝導基板2に対しAs分子線を照射した状態のまま、基板11の温度を約600℃とし(昇温)、約5分間の熱処理を行う。このアニール工程により、光伝導層13のAsがAsクラスターとして、GaAsの結晶中に析出する。 Next, heat treatment is performed on the photoconductive substrate 2 (annealing step). Specifically, in the MBE apparatus, the temperature of the substrate 11 is set to about 600 ° C. (temperature increase) while the photoconductive substrate 2 is irradiated with the As molecular beam, and heat treatment is performed for about 5 minutes. As a result of this annealing step, As in the photoconductive layer 13 is deposited as As clusters in the GaAs crystal.
 このようにして、光伝導基板2が完成したら、光伝導基板2上に真空蒸着により一対のアンテナ21,21を成膜する(アンテナ成膜工程)。具体的には、光伝導基板2(光伝導層13)上にレジスト膜を形成した後、フォトリソグラフィ法により、平行伝送線路(一対のアンテナ21,21)3の形状のレジストパターンを形成し、アンテナ材料のAuを真空蒸着により成膜し、不要部分を剥離除去する。 Thus, when the photoconductive substrate 2 is completed, a pair of antennas 21 and 21 are formed on the photoconductive substrate 2 by vacuum deposition (antenna film forming step). Specifically, after forming a resist film on the photoconductive substrate 2 (photoconductive layer 13), a resist pattern in the shape of parallel transmission lines (a pair of antennas 21, 21) 3 is formed by photolithography, The antenna material Au is deposited by vacuum deposition, and unnecessary portions are peeled off.
 次に、図2ないし図5を参照して、キャリア寿命が2psec~50psecの光伝導層13を有する光伝導アンテナ素子1の評価結果等について説明する。この評価は、いわゆる時間領域分光法やポンプ・プローブ法を用い、光伝導アンテナ素子1から発生したテラヘルツ波の波形を、フーリエ変換することにより得られた、テラヘルツ波スペクトルに基づいて、行っている。 Next, the evaluation results of the photoconductive antenna element 1 having the photoconductive layer 13 having a carrier lifetime of 2 psec to 50 psec will be described with reference to FIGS. This evaluation is performed based on the terahertz wave spectrum obtained by Fourier transforming the waveform of the terahertz wave generated from the photoconductive antenna element 1 using so-called time domain spectroscopy or pump-probe method. .
 図2は、光伝導層13のキャリア寿命が10psecと1psec未満との場合における、テラヘルツ波スペクトルの図である。縦軸はテラヘルツ波の強度、横軸はテラヘルツ波の周波数を表している。同図に示すように、キャリア寿命が1psec未満(サブピコ秒)の光伝導アンテナ素子1に対し、キャリア寿命が10psecの光伝導アンテナ素子1は、全ての周波数帯域において、ダイナミックレンジの向上が確認された。 FIG. 2 is a diagram of a terahertz wave spectrum when the carrier lifetime of the photoconductive layer 13 is 10 psec and less than 1 psec. The vertical axis represents the intensity of the terahertz wave, and the horizontal axis represents the frequency of the terahertz wave. As shown in the figure, the photoconductive antenna element 1 having a carrier lifetime of less than 1 psec (sub-picosecond) is improved in the dynamic range in the photoconductive antenna element 1 having a carrier lifetime of 10 psec in all frequency bands. It was.
 図3は、テラヘルツ波2.5THz付近において、光伝導層13のキャリア寿命を可変として測定した、キャリア寿命とダイナミックレンジと関係を表した図(図3(a))、およびそのキャリア寿命を対数表示とした図(図3(b))である。同図に示すように、規格化したダイナミックレンジ0.6以上を、従来のものに比して明らかに「効果あり」とした場合、キャリア寿命が2psec~50psecであることが好ましいことが確認される。さらに、測定数や測定誤差等を考慮する(確実性担保)とキャリア寿命が6psec~35psecであることが好ましく、製品的には、10psec~20psecであることが好ましい。 FIG. 3 is a graph showing the relationship between the carrier lifetime and the dynamic range (FIG. 3 (a)) measured with the carrier lifetime of the photoconductive layer 13 being variable near the terahertz wave of 2.5 THz, and the carrier lifetime is logarithmically. It is the figure (FIG.3 (b)) made into a display. As shown in the figure, when the standardized dynamic range of 0.6 or more is clearly “effective” compared to the conventional one, it is confirmed that the carrier life is preferably 2 to 50 psec. The Furthermore, considering the number of measurements, measurement error, etc. (assurance of certainty), the carrier life is preferably 6 psec to 35 psec, and in terms of product, it is preferably 10 psec to 20 psec.
 図4は、テラヘルツ波2.5THz付近において、光伝導層13の成長温度を可変として測定した、成長温度とダイナミックレンジとの関係を表した図である。この場合の横軸は、LT-GaAs(光伝導層13)の低温成長で使用される、一般的な最低温度を基準温度「0度」としたときの相対温度である。この場合、製造方法で説明した「約300±50℃」の「約300℃」は、横軸の相対温度では約100度に相当する。同図に示すように、規格化したダイナミックレンジ0.6以上を、従来のものに比して明らかに「効果あり」とした場合、光伝導層13の成長温度は、相対温度で75度~130度が好ましいことが分かる。より好ましくは、100度前後である。すなわち、光伝導層13を300℃近辺の温度で低温成長させることが好ましい。 FIG. 4 is a diagram showing the relationship between the growth temperature and the dynamic range, measured by varying the growth temperature of the photoconductive layer 13 in the vicinity of the terahertz wave of 2.5 THz. The horizontal axis in this case is the relative temperature when the general minimum temperature used in the low-temperature growth of LT-GaAs (photoconductive layer 13) is the reference temperature “0 degree”. In this case, “about 300 ° C.” in “about 300 ± 50 ° C.” described in the manufacturing method corresponds to about 100 degrees in the relative temperature on the horizontal axis. As shown in the figure, when the normalized dynamic range of 0.6 or more is clearly “effective” as compared with the conventional one, the growth temperature of the photoconductive layer 13 is 75 ° C. or more in relative temperature. It can be seen that 130 degrees is preferable. More preferably, it is around 100 degrees. That is, it is preferable to grow the photoconductive layer 13 at a low temperature around 300 ° C.
 図5は、光伝導層13の成長温度を可変として測定した、成長温度とキャリア寿命との関係を表した図である。すなわち、図5は、成長温度を図4のダイナミックレンジに代えて、キャリア寿命で評価したものである。同図に示すように、キャリア寿命2psec~50psecを達成するためには、成長温度が相対温度で70度~130度であることが好ましい。この点においても、光伝導層13を300℃近辺の温度で低温成長させることが好ましいことが分かる。 FIG. 5 is a diagram showing the relationship between the growth temperature and the carrier lifetime, measured with the growth temperature of the photoconductive layer 13 being variable. That is, FIG. 5 shows the growth temperature evaluated by the carrier life instead of the dynamic range of FIG. As shown in the figure, in order to achieve a carrier lifetime of 2 to 50 psec, the growth temperature is preferably 70 to 130 degrees relative temperature. Also in this respect, it can be seen that it is preferable to grow the photoconductive layer 13 at a low temperature around 300.degree.
 以上のように、第1実施形態によれば、テラヘルツ波発生における光伝導層13を、キャリア寿命2psec~50psecのものとすることにより、テラヘルツ波の全ての周波数帯域において、ダイナミックレンジの向上を図ることができる。 As described above, according to the first embodiment, the photoconductive layer 13 for generating terahertz waves has a carrier lifetime of 2 psec to 50 psec, thereby improving the dynamic range in all frequency bands of terahertz waves. be able to.
 次に、図6を参照して、第2実施形態に係る光伝導アンテナ素子1につき、主に第1実施形態と異なる部分について説明する。この実施形態では、光伝導基板2において、バッファ層12と光伝導層13との間に、キャリア移動阻止層15を有している。この場合の基板11は、そのバンドギャップが、光伝導層13のバンドギャップよりも小さいSiで構成されている(Geでもよい)。また、キャリア移動阻止層15は、そのバンドギャップが、基板11のバンドギャップよりも大きく且つ光伝導層13のバンドギャップよりも大きくなる半導体材料、例えばAlGaAs(アルミニウムガリウム砒素)で構成されている。 Next, with reference to FIG. 6, with respect to the photoconductive antenna element 1 according to the second embodiment, parts different from the first embodiment will be mainly described. In this embodiment, the photoconductive substrate 2 has a carrier movement blocking layer 15 between the buffer layer 12 and the photoconductive layer 13. The substrate 11 in this case is made of Si (which may be Ge) whose band gap is smaller than the band gap of the photoconductive layer 13. The carrier movement blocking layer 15 is made of a semiconductor material such as AlGaAs (aluminum gallium arsenide) whose band gap is larger than the band gap of the substrate 11 and larger than the band gap of the photoconductive layer 13.
 このような、第2実施形態の光伝導アンテナ素子1では、キャリア移動阻止層15と光伝導層13との界面の光伝導層13側に、2次元電子ガスが発生する。この2次元電子ガスは、光伝導層13で発生したキャリアを閉じ込め、キャリアの基板11側への移動を阻止する。このため、発生したキャリアが基板11に吸収されることがなく、キャリアをテラヘルツ波の発生に効率良く使用することができる。また、Siの基板11は、安価で強度が高いだけでなく、発生したテラヘルツ波をほとんど吸収することがなく、この点でもテラヘルツ波の発生効率を高めることができる。 In such a photoconductive antenna element 1 of the second embodiment, a two-dimensional electron gas is generated on the photoconductive layer 13 side of the interface between the carrier movement blocking layer 15 and the photoconductive layer 13. This two-dimensional electron gas confines the carriers generated in the photoconductive layer 13 and prevents the carriers from moving to the substrate 11 side. For this reason, the generated carrier is not absorbed by the substrate 11, and the carrier can be efficiently used for generating the terahertz wave. Further, the Si substrate 11 is not only inexpensive and high in strength, but also hardly absorbs the generated terahertz wave, and in this respect, the generation efficiency of the terahertz wave can be increased.
 次に、図7を参照して、第3実施形態に係る光伝導アンテナ素子1につき、主に第1実施形態と異なる部分について説明する。この実施形態は、テラヘルツ応答が、一対のアンテナの電極部23間における光伝導層13で行われることに着目したものであり、ギャップ部25にのみ光伝導層13を形成している。具体的には、各電極部23を、光伝導層13およびバッファ層12の厚みに相当する分、基板11から立ち上げるように形成し、この立ち上げた一対の電極部23間に、バッファ層12および光伝導層13を形成(成膜)している(同図(a)参照)。 Next, with reference to FIG. 7, a description will be given mainly of the differences from the first embodiment in the photoconductive antenna element 1 according to the third embodiment. In this embodiment, attention is paid to the fact that the terahertz response is performed in the photoconductive layer 13 between the electrode portions 23 of the pair of antennas, and the photoconductive layer 13 is formed only in the gap portion 25. Specifically, each electrode portion 23 is formed so as to rise from the substrate 11 by an amount corresponding to the thickness of the photoconductive layer 13 and the buffer layer 12, and the buffer layer is interposed between the pair of raised electrode portions 23. 12 and a photoconductive layer 13 are formed (film formation) (see FIG. 5A).
 同様に、図7(b)の光伝導アンテナ素子1では、各電極部23を、光伝導層13の厚みに相当する分、バッファ層12から立ち上げるように形成し、この立ち上げた一対の電極部23間に、光伝導層13を形成(成膜)している。 Similarly, in the photoconductive antenna element 1 of FIG. 7B, each electrode portion 23 is formed to rise from the buffer layer 12 by an amount corresponding to the thickness of the photoconductive layer 13, and this pair of raised A photoconductive layer 13 is formed (deposited) between the electrode portions 23.
 このような、第3実施形態の光伝導アンテナ素子1では、発生するテラヘルツ波のS/N比またはダイナミックレンジを向上させることができる。 In such a photoconductive antenna element 1 of the third embodiment, it is possible to improve the S / N ratio or dynamic range of the generated terahertz wave.
 1 光伝導アンテナ素子、2 光伝導基板、3 平行伝送線路、11 基板、12 バッファ層、13 光伝導層 1 Photoconductive antenna element, 2 Photoconductive substrate, 3 Parallel transmission line, 11 Substrate, 12 Buffer layer, 13 Photoconductive layer

Claims (5)

  1.  基板と、
     前記基板上にエピタキシャル成長させたIII-V族化合物半導体から成る光伝導層と、を備え、
     前記光伝導層は、光電効果によって生ずるキャリア寿命が、下限においてサブピコ秒を越え、上限においてV族原子のクラスターの存在が維持される時間範囲内であることを特徴とする光伝導基板。
    A substrate,
    A photoconductive layer made of a III-V group compound semiconductor epitaxially grown on the substrate,
    The photoconductive substrate is characterized in that the carrier lifetime generated by the photoelectric effect is within a time range in which the lower limit exceeds subpicoseconds and the presence of a cluster of V group atoms is maintained at the upper limit.
  2.  前記キャリア寿命が、2psec以上、50psec以下であることを特徴とする請求項1に記載の光伝導基板。 2. The photoconductive substrate according to claim 1, wherein the carrier lifetime is 2 psec or more and 50 psec or less.
  3.  前記キャリア寿命が、6psec以上、35psec以下であることを特徴とする請求項2に記載の光伝導基板。 The photoconductive substrate according to claim 2, wherein the carrier lifetime is 6 psec or more and 35 psec or less.
  4.  前記光伝導層は、GaAs化合物半導体層であることを特徴とする請求項2に記載の光伝導基板。 The photoconductive substrate according to claim 2, wherein the photoconductive layer is a GaAs compound semiconductor layer.
  5.  請求項2に記載の光伝導基板と、
     前記光伝導基板上に形成された平行伝送線路と、を備えたことを特徴とする電磁波発生装置。
    A photoconductive substrate according to claim 2;
    An electromagnetic wave generator comprising: a parallel transmission line formed on the photoconductive substrate.
PCT/JP2012/001823 2012-03-15 2012-03-15 Photoconductive substrate and electromagnetic wave generating apparatus provided with same WO2013136369A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014504463A JP5925294B2 (en) 2012-03-15 2012-03-15 Electromagnetic wave generator
PCT/JP2012/001823 WO2013136369A1 (en) 2012-03-15 2012-03-15 Photoconductive substrate and electromagnetic wave generating apparatus provided with same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/001823 WO2013136369A1 (en) 2012-03-15 2012-03-15 Photoconductive substrate and electromagnetic wave generating apparatus provided with same

Publications (1)

Publication Number Publication Date
WO2013136369A1 true WO2013136369A1 (en) 2013-09-19

Family

ID=49160345

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/001823 WO2013136369A1 (en) 2012-03-15 2012-03-15 Photoconductive substrate and electromagnetic wave generating apparatus provided with same

Country Status (2)

Country Link
JP (1) JP5925294B2 (en)
WO (1) WO2013136369A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104167656A (en) * 2014-06-20 2014-11-26 上海师范大学 Terahertz photoconductive antenna and manufacture thereof
JP2020036037A (en) * 2019-11-07 2020-03-05 パイオニア株式会社 Photoconductive element and measurement device
JP2020092265A (en) * 2018-12-05 2020-06-11 光寶光電(常州)有限公司 Light emitting package structure and method of manufacturing the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005311310A (en) * 2004-03-26 2005-11-04 Canon Inc Structure for electromagnetic wave generation/detection, optical semiconductor equipment, and manufacturing method of the structure for electromagnetic wave generation/detection

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4095486B2 (en) * 2003-04-18 2008-06-04 浜松ホトニクス株式会社 Terahertz electromagnetic wave compatible wafer, terahertz generation detecting device and manufacturing method thereof
JP4708002B2 (en) * 2004-11-18 2011-06-22 パナソニック株式会社 Electromagnetic wave generator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005311310A (en) * 2004-03-26 2005-11-04 Canon Inc Structure for electromagnetic wave generation/detection, optical semiconductor equipment, and manufacturing method of the structure for electromagnetic wave generation/detection

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
DARMO, J. ET AL.: "New Generation of Photoconductive Terahertz Emitters", PROCEEDINGS GME FORUM, vol. 2003, 2003, pages 85 - 88 *
GREGORY, I.S. ET AL.: "High resistivity annealed low-temperature GaAs with 100 fs lifetimes", APPLIED PHYSICS LETTERS, vol. 83, no. 20, 17 November 2003 (2003-11-17), pages 4199 - 4201, XP001191723, DOI: doi:10.1063/1.1628389 *
HAJIME ABE ET AL.: "Effects of Carrler lifetime on Spectral Response of THz Optical Devices made on LT-GaAs", THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS SOGO TAIKAI KOEN RONBUNSHU, ELECTRONICS (1), 6 March 1998 (1998-03-06), pages 485 - 486 *
YOUN, DOO-HYEB ET AL.: "Structural Change and Its Electrooptical Effects on Terahertz Radiation with Post-Growth Annealing of Low- Temperature-Grown GaAs", JAPANESE JOURNAL OF APPLIED PHYSICS, vol. 46, no. 10A, 9 October 2007 (2007-10-09), pages 6514 - 6518 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104167656A (en) * 2014-06-20 2014-11-26 上海师范大学 Terahertz photoconductive antenna and manufacture thereof
JP2020092265A (en) * 2018-12-05 2020-06-11 光寶光電(常州)有限公司 Light emitting package structure and method of manufacturing the same
JP7005578B2 (en) 2018-12-05 2022-01-21 光寶光電(常州)有限公司 Luminous package structure and its manufacturing method
US11522109B2 (en) 2018-12-05 2022-12-06 Lite-On Opto Technology (Changzhou) Co., Ltd. Light emitting package structure and method of manufacturing the same
JP2020036037A (en) * 2019-11-07 2020-03-05 パイオニア株式会社 Photoconductive element and measurement device
JP2021184488A (en) * 2019-11-07 2021-12-02 パイオニア株式会社 Photoconductive element and measurement device

Also Published As

Publication number Publication date
JPWO2013136369A1 (en) 2015-07-30
JP5925294B2 (en) 2016-06-01

Similar Documents

Publication Publication Date Title
JP4785392B2 (en) Method for manufacturing terahertz electromagnetic wave generating element
US8835853B2 (en) Photoconductive element
JP6332980B2 (en) Photoconductive element, photoconductive element manufacturing method, and terahertz time domain spectroscopic device
US9018646B2 (en) Fast photoconductor
Hou et al. An LT-GaAs terahertz photoconductive antenna with high emission power, low noise, and good stability
Yano et al. Terahertz wave detection performance of photoconductive antennas: Role of antenna structure and gate pulse intensity
JP5925294B2 (en) Electromagnetic wave generator
Kim et al. Fabrication and characterization of InAs/InGaAs sub-monolayer quantum dot solar cell with dot-in-a-well structure
Sotome et al. Terahertz emission spectroscopy of ultrafast exciton shift current in the noncentrosymmetric semiconductor CdS
Adhikary et al. Spectral broadening due to post-growth annealing of a long-wave InGaAs/GaAs quantum dot infrared photodetector with a quaternary barrier layer
US9618823B2 (en) Photo mixer and method for manufacturing same
Galiev et al. Terahertz-radiation generation and detection in low-temperature-grown GaAs epitaxial films on GaAs (100) and (111) A substrates
Buryakov et al. An advanced approach to control the electro-optical properties of LT-GaAs-based terahertz photoconductive antenna
Missous et al. Long wavelength low temperature grown GaAs and InP-based terahertz photoconductors devices
JP5738022B2 (en) Semiconductor substrate, semiconductor substrate manufacturing method, and electromagnetic wave generator
JP6332993B2 (en) PHOTOCONDUCTION SUBSTRATE, ELECTROMAGNETIC GENERATION DETECTION DEVICE, AND PHOTOCONDUCTION SUBSTRATE MANUFACTURING METHOD
US20120236307A1 (en) Photoconductive element
JP2013062658A (en) Antenna element and manufacturing method therefor
US10453680B2 (en) Terahertz antenna and method for producing a terahertz antenna
Ghadi et al. Comparison of three design architectures for quantum dot infrared photodetectors: InGaAs-capped dots, dots-in-a-well, and submonolayer quantum dots
JP6705672B2 (en) Electromagnetic wave measuring device
JP2013002995A (en) Light conducting substrate and electromagnetic wave generating and detecting device using the same
Khandozhko et al. Effect of low-temperature annealing on the quality of InSe layered single crystals and the characteristics of n-InSe/p-InSe heterojunctions
JP2015152430A (en) Time-domain spectroscopic device
Yavorskiy et al. Terahertz Sources Based on Emission from a Ga As/(Al, Ga) As Heterostructure at Cryogenic Temperatures

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12871395

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014504463

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12871395

Country of ref document: EP

Kind code of ref document: A1