WO2013135977A1 - Système pour déterminer l'identification d'un appareil photographique a partir d'une photographie et procédé mis en oeuvre dans un tel système - Google Patents
Système pour déterminer l'identification d'un appareil photographique a partir d'une photographie et procédé mis en oeuvre dans un tel système Download PDFInfo
- Publication number
- WO2013135977A1 WO2013135977A1 PCT/FR2012/052357 FR2012052357W WO2013135977A1 WO 2013135977 A1 WO2013135977 A1 WO 2013135977A1 FR 2012052357 W FR2012052357 W FR 2012052357W WO 2013135977 A1 WO2013135977 A1 WO 2013135977A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- photograph
- camera
- identification
- image
- noise
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/80—Recognising image objects characterised by unique random patterns
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/90—Identifying an image sensor based on its output data
Definitions
- the invention relates to the identification of a camera in particular, the invention relates to a system for determining the identification of a camera from a digital photograph.
- the invention also relates to a method implemented in such a system. These systems find important applications for determining the provenance of a photograph.
- the identification methods of a camera can be passive or active.
- the digital data representing the content of the image are modified to insert an identifier (so-called tattoo or watermarking method).
- tattoo or watermarking method When the inspected image does not contain a tattoo, the identification of the acquisition device must be done from the image data.
- NUPS non-uniformity of photosensitivity
- the method proposed in the invention can be used to passively identify a camera model. This method is based on the heteroscedasticity of the noise present in an image. It is known that the noise that disturbs the pixels of a digital photograph is linearly dependent on the light intensity incident on the pixel as was modeled in the article "Radiometric CCD camera calibration and noise estimation", Healey, GE; Kondepudy, R, IEEE Transaction on Pattern Analysis and Machine Intelligence, vol.16, no.3, pp 267-276, 1994, [Healey 1994]. In addition a method has been proposed in the article "Practical Poissonian-Gaussian Noise Modeling and Fitting for Single-Image Raw-Data", Faith, A.; Trimeche, M.
- the proposed identification method consists of a likelihood ratio in order to statistically test whether a given image comes from a camera A or a camera B.
- the statistical properties of the The likelihood ratio has been theoretically established, which makes it possible to set a priori the decision threshold making it possible to respect a prescribed probability of error (decide A when B is true or vice versa).
- the invention aims to solve the problem of passive identification of a model of acquisition camera from a given image.
- Passive identification means decision-making in the case where the image is not supposed to contain information identifying the source. More specifically, the invention envisages solving the following problems: 1) to ensure that a photograph has not been taken by a given apparatus when the latter is compromising, or (2) to guarantee that an inspected photograph has been taken by one camera model and not by another.
- the object of the invention is to provide a system for determining the identification of a first photographic camera from a photograph, comprising a photograph analysis device for processing said photograph and a photographic analysis device. processing device for establishing statistics from said analysis, the system operating said identification on the basis of parameters "a" and "b" defining a camera and corresponding to the relation below: where z m, n is representative of the value of a pixel of coordinates (m, n) of a photograph, N (..) represents an inequality of space , and n, where n is the expectation mathematician of the pixel located at the position (m, n).
- the system is characterized in that it further comprises an output member that operates by statistical comparison with a second camera to determine whether the photograph was taken by said first apparatus or second apparatus.
- the output member provides an indication on the identification of a camera by certifying the accuracy of the identification according to a previously defined accuracy.
- the invention allows the identification of a camera by certifying the accuracy of the identification, with a previously defined accuracy.
- the invention also relates to a method implemented in such a system, characterized in that it comprises the following steps:
- step (K26) the statistical tests are executed according to the probability of error required, and a decision is made.
- the photograph is in an uncompressed format or in a compressed format without losses.
- the invention further relates to the use of the above method for detecting, in a supervised manner, the falsification of a zone in an image.
- the invention also relates to the use of the method above in the search for evidence from a compromising image.
- the invention relates to the application of the above method in specialized software, in the search for evidence from digital media.
- FIG. 1 shows a system for determining the identification of a camera according to the invention
- FIG. 2 shows a flowchart explaining the method implemented in the system according to the invention
- FIGS. 3 and 4 show a series of parameters characterizing the heteroscedasticity properties of the noise of some models of apparatus
- FIG. 5 shows the comparison of the noise properties of three different cameras
- FIG. 6 shows the performance of the identification system according to which only a potential camera model is known. These performances can be seen in the C o R ("Operational Characteristic of the Receiver") and offer a comparison between the theoretically calculated power, the empirical power obtained on real images and the empirical power obtained by simulation;
- FIG. 7 shows the performance of the identification system according to which none of the cameras is known. These performances are presented in the form of COR curves ("Operational Characteristic of the Receiver") and offer a comparison between the power theoretically calculated, the power obtained on real images and the empirical power obtained by simulation; and
- FIG. 8 shows the values of the likelihood ratio (statistic on which the identification system is based) calculated on the columns of a pattern image (gray strip from black to white) when the camera is unknown.
- FIG. 1 represents a system for determining the identification of a photographic camera.
- the reference 1 indicates the system and the reference 2 the camera that took a photograph 3.
- the system 1 will determine the camera 2 which took this photograph.
- This system consists of a photo analyzer that will examine this photograph 3.
- the photograph is in the form of uncompressed file (or compressed without losses) suitable for the treatment that follows.
- the RAW format file format for digital images
- the system 1 can be implemented on a PC type computer. This system 1 is provided with an input member 10 to accommodate the data of the photograph 3. These data are processed by a processing member 12 which implements a treatment which will be explained below. An output member 14 will provide an indication of the identification of the camera responsible for the origin of said photograph.
- Figure 2 is an organigram explaining the process according to the invention.
- the digital photograph 2 is seen as one or more matrices whose elements represent the value of each of the pixels.
- ⁇ 1 ⁇ 2, "with l ⁇ m ⁇ M e tl ⁇ n ⁇ N
- the second step, box K12 consists in separating the different color channels, when the analyzed image is in color.
- the sequence of operations being carried out identically with each of the matrices representing the color channels, we consider that the image is represented by a single matrix (the index k is omitted).
- the noise present in digital photographs has the property of being heteroscedastic:
- the stochastic (random) noise properties are not constant over all the pixels of the image. More precisely, the value of each pixel depends linearly on the number of incident photons noted
- N Pm, n N Pm, n.
- the photoelectric conversion can be likened to a Poisson counting process. Also, the number of electrons collected within each of the pixels is given by:
- a is a sensitivity parameter linearly dependent on the ISO factor of the camera and defined by the user.
- the third step, box K14 consists of a separation of the content, box K16, and the noise of the image, box K18. It should be noted that this problem is the subject of research and that several solutions have been proposed. In the case of the works presented, a method published in the specialized literature has been implemented (see [Fait2008]).
- the principle of this method is to use a decomposition of the image on a wavelet basis using the low frequency coefficients as content estimators, that is to say the mathematical expectation of each pixel noted here ⁇ p and, at conversely, using the high frequency coefficients, or details, as noise estimators noted here 3 ⁇ 4 " and .
- content estimators that is to say the mathematical expectation of each pixel noted here ⁇ p and, at conversely, using the high frequency coefficients, or details, as noise estimators noted here 3 ⁇ 4 " and .
- the fourth step shown in box K22 concerns the estimation of the pixel variance by estimated intensity levels of the content.
- the vectors z TM app 1 ⁇ l ⁇ L containing pixels whose estimated expectations are close.
- Each of the vectors z app contains pixels:
- the estimator of the maximum of expectation is given by:
- the estimation of parameters a and b characterizing the affine relation between the average of the pixels and the variance of the noise is developed.
- the statistical test is performed according to the probability of error required and a decision is made (see box K26).
- the user wishes to decide whether the digital photograph inspected comes from the first camera (also called “camera 1" in the rest of this text) or the second camera (also called “camera 2" in the rest of this text) whose noise properties are known for each of the apparatuses (the coefficients denoted a1, b1, a2 and b2).
- a likelihood ratio test is performed whose decision function is given by:
- ⁇ "1 is the reciprocal of the reduced centered Gaussian distribution function which makes it possible to guarantee that asymptotically (when the total number of pixels MN ⁇ ) the probability of error of the first kind of the test (7) satisfies
- the error of the first kind is characterized by the decision "Apparatus No. 2" when the image inspected comes from the apparatus No. 1. Nevertheless, by interverting the role of the cameras, it is possible to guarantee the probability of the second kind of error (reciprocally decide "Apparatus No. 1" when the image inspected comes from the apparatus No. 2).
- the power of the test is defined as the probability that the test takes the decision "Device No. 2" when the image inspected actually comes from the device No. 2.
- the user is likely to decide whether the digital photograph inspected can come from a photographic camera No. 1 whose noise properties are known (the parameters noted ai and b-i).
- the parameters a * and b * of the camera potentially at the origin of the photograph are not known. However, it is assumed later that they satisfy a1 ⁇ a * and b1 ⁇ b * or a1> a * and b1> b *. We then proceed to a test, based on the previous report, whose decision function is given by
- a 2 z j J is distributed, when the apparatus n ° 1 is at the origin of the photograph inspected, according to the following law of distribution: wapp n 2 ⁇ 2 v 2
- the power of the test that is to say the probability of rejecting the assumption that the photograph inspected comes from the apparatus No. 1 when it is indeed the case, depends on the parameters a * and b * from the camera (unknown) to the light source inspected.
- the purpose of the test is to check whether a noisy image has been taken by the device 0 when the parameters of the image are unknown.
- the problem is made more complicated because the alternative hypothesis becomes complex when the presence of nuisance parameters is taken into account.
- RVG Generalized Likelihood Ratio
- the two alternative hypotheses H 0 and H- are rewritten for one observation.
- the image comes from the apparatus n ° 1 and under the hypothesis H- , the image comes from the apparatus n ° 2.
- ) is given by:
- DD is the standard 2D wavelet scaling function
- EMV of the expectation y D in each set of level k can be defined by:
- the distribution of k can thus be defined by: y k ⁇ Af ⁇ k ' c k ° k, o) in the case j3 ⁇ 4 ⁇ ⁇ ( ⁇ , 3 ⁇ 4 ⁇ * 1 in the case
- the estimates k are distributed, to a scale factor close, according to a distribution law of x 2 with n k -1 degrees of freedom. This distribution can asymptotically, for n k sufficiently large, be approximated, with good precision, by the following normal distribution law:
- 3 ⁇ 4 3 ⁇ 4 ( ⁇ 3 ⁇ 4 + ⁇ ) - ac k (ay k + b) the residuals 3 ⁇ 4 are independent and identically distributed as a standard normal distribution.
- Heteroscedasticity in the model is governed by the different 3 ⁇ 4.
- the weighted least squares approach can be used to minimize weighted residuals and provide a suitable model.
- a well-known strategy for estimating (a, b) is to obtain, at first, the estimated
- the WLS estimators can be used to estimate the weights k .
- the WLS gives an estimate using ⁇ 1 ⁇ 2 which becomes asymptotically equivalent to the EMV (maximum likelihood) estimates. ) for a large sample.
- the WLS and EMV estimates share the same asymptotic normal distribution.
- a 2 is in the form of a Gaussian distribution with expectancy and variance such that:
- the covariance between the two estimates can be defined by:
- RVG Likelihood Ratio
- the identification system of a camera in order to determine, in a supervised manner, whether an area of the image has not been falsified ( copy / paste from another photograph or delete an item).
- the term "supervised the fact that the user wishes to ensure the integrity of a previously defined zone the principle is then to apply the identification method to the two" sub-images "respectively from the user-targeted area and its complementary (the rest of the image). If the item inspected comes from another photograph and has been added by copy / paste, the noise properties will be different from what the proposed system will be able to identify (assuming the photographs were not taken with under the same conditions of acquisition and with the same model of camera, which seems reasonable).
- Figures 3 and 4 show a series of parameters characterizing the properties of heteroscedasticity of the noise of some models of apparatus; these results are obtained with the method proposed in [Fait2008] and illustrate the differentiation of models of cameras.
- Figure 5 illustrates the comparison of noise properties between the following three cameras: Canon EOS7D, Nikon D60 and Nikon D3000. It presents the variance of the acquisition noise (between 0 and 0.0025) according to the mathematical expectation of the value of the pixels (between 0 and 1), see relations (3) and (5). It can be seen that the three different camera models for which the parameters a and b, characterizing this relationship, have been estimated have very different heteroscedastic properties. This figure makes it possible to visualize the difference that exists between the properties of the noises present in images captured by different camera models.
- FIG. 6 shows the performance of the identification system in the second case, described above, in which only a potential camera model is known and it is desired to test whether the photograph comes from another camera. whatever. This figure offers a comparison between the theoretically calculated detection power (solid lines) and that obtained during empirical simulations (fine and medium dashed lines).
- Figure 7 shows the performance of the identification system in the third case, described above, in which none of the cameras is known which requires to estimate the parameters for identification.
- FIG. 8 shows the results obtained in the case where the camera 2 is unknown.
- the result is simulated with increasing "y" intensity from left to right, image of a pattern of gray bands from black to white, photographed with two different camera models. It was considered that the properties of one of the two cameras are known.
- This model of camera was used to obtain the results presented in figure 6.
- Figure 7 shows in abscissa the line number inspected and ordered the value of the likelihood ratio calculated without knowledge of the properties of camera No. 2.
- the figure shows that (1) within a scale factor, the likelihood ratio is normalized so that its distribution remains the same for the No. 1 camera and, 2) for the No. 2 camera, the The likelihood ratio, on which the proposed identification system is based, takes much higher values, which allows for decision-making.
- the identification method of the proposed camera model meets the two disadvantages and weaknesses of the methods briefly presented in the state of the art.
- performance is not established and these methods can be are failed by calibrating the camera.
- the method proposed according to the invention is based on the property of heteroscedasticity of the noise, a characteristic inherent in the acquisition of photographs. The latter is generally applicable regardless of the post-acquisition treatments applied by a user (in particular to improve the visual quality).
- the parametric modeling of the relationship between mean and variance of the pixel value makes it possible to analytically provide the performance of the proposed test. This advantage allows in particular to ensure compliance with a prescribed constraint on the probability of error.
- the main fields of application of the invention are, on the one hand, the search for evidence from a "compromising" image and, on the other hand, the guarantee that a photograph has been acquired by a given apparatus. .
- the proposed method can be extended to the control of the integrity of a photograph.
- the goal is to guarantee that a photograph has not been modified / falsified since its acquisition. This allows for example to detect photographs with elements from a different camera, ie imported after the acquisition, or to ensure the integrity of a document scanned or photographed (a legal document for example).
- the method of the invention may be developed in specialized logels, in the search for evidence from digital media.
- the method according to the invention can be used with the courts as a decision support tool.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Multimedia (AREA)
- Theoretical Computer Science (AREA)
- Image Analysis (AREA)
- Studio Devices (AREA)
Abstract
L'invention concerne un système pour déterminer l'identification d'un premier appareil photographique à partir d'une photographie ainsi que le procédé mis en œuvre dans un tel système. Ce système comporte un dispositif (10) d'analyse de photographies pour traiter ladite photographie et un dispositif de traitement (12) pour établir des statistiques à partir de ladite analyse, le système opérant ladite identification sur la base de paramètres «a» et «b» définissant un appareil photographique.Selon l'invention le système comporte un organe de sortie (14) qui opère par comparaison statistique avec un deuxième appareil photographique pour déterminer si la photographie a été prise par ledit premier appareil ou ledit deuxième appareil.
Description
SYSTEME POUR DETERMINER L'IDENTIFICATION D'UN APPAREIL PHOTOGRAPHIQUE A PARTIR D'UNE PHOTOGRAPHIE ET PROCEDE MIS EN
OEUVRE DANS UN TEL SYSTEME
DOMAINE TECHNIQUE DE L'INVENTION
L'invention se rapporte à l'identification d'un appareil photographique plus particulièrement, l'invention concerne un système pour déterminer l'identification d'un appareil photographique à partir d'une photographie numérique. L'invention concerne aussi un procédé mis en œuvre dans un tel système. Ces systèmes trouvent des applications importantes pour déterminer la provenance d'une photographie.
[001] La criminalistique numérique ou la recherche de preuves dans un média numérique a conn u un développement important au cou rs de la dern ière décennie. Dans ce domaine les méthodes proposées se distinguent en deux catégories selon que l'on souhaite identifier le modèle d'appareil photographique ou l'appareil lui même (une instance d'un certain modèle).
[002] De manière générale les méthodes d'identification d'un appareil photo peuvent être passives ou actives. Dans le cas des méthodes actives, les données numériques représentant le contenu de l'image sont modifiées afin d'insérer un identifiant (méthode dites de tatouage ou de watermarking). Lorsque l'image inspectée ne contient pas de tatouage, l'identification de l'appareil d'acquisition doit se faire à partir des données de l'image.
ETAT DE LA TECHNIQUE ANTERIEURE
[003] De nom breuses méthodes d ' identification pass ives d ' u n apparei l photographique ont été proposées. La plupart de ces méthodes sont basées sur la présence d'un bruit de non-uniformité de la photosensibilité (NUPS). Ces bruits de NUPS sont utilisés pour identifier l'appareil d'acquisition d'une image au travers d'une analyse comparative par corrélation dans l'article "Digital caméra identification from sensor pattern noise", Lukas, J.; Fridrich, J.; Goljan, M.; Information Forensics and Security, IEEE Transactions on , vol.1, no.2, pp. 205-
214, June 2006 [Lukas2006, Sutcu2007, LI2010] ou encore avec une approche de reconnaissance de formes dans l'article "Determining Image Origin and Integrity Using Sensor Noise", Chen, M.; Fridrich, J.; Goljan, M.; Lukas, J.; Information Forensics and Security, IEEE Transactions on, vol .3, no.1 , pp.74-90, March 2008 [Chen2008, Filler2008].
[004] De même, les méthodes d'apprentissage supervisées ont également été appliquées à la problématique dans l'article "Image Steganography : Concept and Practice", M. Kharrazi, H. T. Sencar, N. Memon, Lecture Notes Séries, Institute for Mathematical Sciences, National University of Singapore, 2004 [Kharrazi2004, Choi2006]. Cependant, ces méthodes possèdent des inconvénients majeurs tels que: 1 ) leur performances ne sont pas établies mais uniquement mesurées empiriquement en utilisant de grandes bases de données images et, 2) le bruit (NUPS) résulte de la présence de pixels dits « chauds » ou « morts » dans la matrice du capteur et la présence de ces derniers peut être facilement corrigée, ou au moins compensée par la calibration de l'appareil (photographie d'une mire par exemple).
[005] La méthode proposée dans l ' invention a pou r but d' identifier de façon passive un modèle d'appareil photographique. Cette méthode est basée sur l'hétéroscédasticité du bruit présent dans une image. On sa it que le bru it q u i perturbe les pixels d'une photographie numérique dépend linéairement de l'intensité lumineuse incidente sur le pixel comme cela a été modélisé dans l'article "Radiometric CCD caméra calibration and noise estimation", Healey, G.E.; Kondepudy, R, IEEE Transaction on Pattern Analysis and Machine Intelligence, vol .16, no.3, pp 267-276, 1994, [Healey 1994]. En outre une méthode été proposé dans l'article "Practical Poissonian-Gaussian Noise Modeling and Fitting for Single-Image Raw-Data", Foi, A. ; Trimeche, M . ; Katkovn ik, V. ; Eg iazarian , K. ; IEEE Transactions on Image Processing, vol .17, no.10, pp.1737-1754, Oct. 2008 [Foi 08], pour estimer les paramètres caractérisant cette dépendance entre la valeur moyenne des pixels et la variance du bruit d'acquisition. Les paramètres d'hétéroscédasticité du bruit, dépendent du modèle d'appareil photographique utilisé et peuvent donc servir à l ' identification de ce dern ier. En util isant ce
modèle paramétrique de l'hétéroscédasticité du bruit des images, la méthode d'identification proposée consiste en un rapport de vraisemblance afin de tester statistiquement si une image donnée provient d'un appareil photographique A ou d'un appareil photographique B. Les propriétés statistiques du rapport de vraisemblance ont été théoriquement établies ce qui permet de fixer à priori le seuil de décision permettant de respecter u ne probabil ité d'erreur prescrite (décider A quand B est vraie ou inversement).
[006] Il faut noter que cette propriété d'hétéroscédasticité du bruit des images a déjà été utilisée de façon ad-hoc, sans exploitation statistique du modèle paramétrique. A titre d'exemple dans l'article "Détection of digital processing of images through a realistic model of CCD noise", Maillard, J.-B.; Levesque, D.; Deschenes, F. International Conférence on Pattern Récognition, ICPR, 8-1 1 Dec. 2008 [Maillard 2008], cette propriété est utilisée afin d'identifier dans une vidéo (succession d'images) les objets qui auraient éventuellement été ajoutés après l'acquisition.
[007] L'article « Détection of digital processing of Images through a real istic model of CCD noise », [Maillard2008], décrit un processus pour détecter si une séquence vidéo a été prise par une ou au moins deux caméras. Cependant ce qui est décrit dans cet article ne correspond pas exactement à la détermination de l'identification d'un appareil photographique. Le procédé qui y est appliqué est par essence distinct de ce que propose l'invention.
[008] L'article « Digital caméra identification from sensor pattern noise », [Lukas 2006], propose une méthode pour identifier des appareils numériques à partir d'images fondées sur des bruits de modèle de capteur. Pour chaque appareil (caméra), on détermine d'abord le bruit de motif de référence, qui sert comme une identification des empreintes digitales uniques. Ce résultat est obtenu en faisant la moyenne du bruit obtenu à partir de plusieurs images en utilisant un filtre de débruitage. Pour identifier l'appareil à partir d'une image donnée, on considère le bruit de modèle de référence en tant que filigrane à étalement de spectre ; la présence de l'image est établie en utilisant un détecteur de corrélation.
[009] L'article « Determining Image Origin and Integrity Using Sensor Noise », [Chen2008], décrit un cadre pour identifier un appareil photo numérique à partir d'images numériques et pour révéler des images retouchées à l'aide du bruit non- uniformité photo-réponse (NUPS). Le principe de cette méthode est d'utiliser ce bruit de NUPS comme une empreinte stochastique unique pour chaque capteur d'image. Le NUPS est obtenu en utilisant un estimateur du maximum de vraisemblance dérivé d'un modèle simplifié de la sortie du capteur d'image.
[0010] L'invention a pour but de résoudre le problème de l'identification passive d'un modèle d'appareil photographique d'acquisition à partir d'une image donnée. Par identification passive, on entend une prise de décision dans le cas où l'image n'est pas supposée contenir d'information identifiant la source. Plus précisément, l'invention envisage de résoudre les problèmes suivants: 1 ) assurer qu'une photographie n'a pas été prise par un appareil donné lorsque cette dernière est compromettante ou, 2) à l'inverse garantir qu'une photographie inspectée a bien été prise par un modèle d'appareil photographique et non par un autre.
[0011] Ces procédés sont caractérisés par le fait que les probabilités d'erreurs du système sont garanties et peuvent être prédéfinies par un utilisateur, ce qui permet de certifier les résultats. Les exemples possibles d'application pratiques sont nombreux. EXPOSE DE L'INVENTION
[0012] Le but de l'invention est de fou rn ir u n système pou r déterm iner l'identification d'un premier appareil photographique à partir d'une photographie, comportant un dispositif d'analyse de photographies pour traiter ladite photographie et un dispositif de traitement pour établir des statistiques à partir de ladite analyse, le système opérant ladite identification sur la base de paramètres « a » et « b » définissant un appareil photographique et répondant à la relation ci- dessous :
où zm,n est représentatif de la valeur d'un pixel de coordonnées (m,n) d'une photographie, N ( .. ) représente u ne d istri bution ga uss ien ne et ym,n est l'espérance mathématique du pixel situé à la position (m,n). Le système est caractérisé en ce qu'il comprend en outre un organe de sortie qui opère par comparaison statistique avec un deuxième appareil photographique pour déterminer si la photographie a été prise par ledit premier appareil ou ledit deuxième appareil.
[0013] De plus, l'organe de sortie fournit une indication sur l'identification d'un appareil photographique en certifiant l'exactitude de l'identification suivant une précision préalablement définie. Ainsi l'invention permet l'identification d'un appareil photographique en certifiant l'exactitude de l'identification, avec une précision préalablement définie.
[0014] L'invention concerne encore un procédé, mis en œuvre dans un tel système, caractérisé en ce qu'il comporte les étapes suivantes :
- lecture de la photographie en vue de déterminer les matrices descriptives (K12),
- estimation du contenu et du bruit de l'image (K14),
- estimation de la variance des pixels par niveaux d'intensité estimée du contenu (K22),
- estimation des paramètres caractérisant la relation moyenne variance du bruit (K24),
- exécution de tests statistiques en vue de donner l'identification. (K26).
[0015] Avantageusement, à l'étape (K26) les tests statistiques sont exécutés en fonction de la probabilité d'erreur exigée, et une décision est prise.
[0016] Selon un mode de réalisation de l'invention, la photographie est en un format non compressé ou en un format compressé sans pertes.
[0017] L'invention concerne en outre l'utilisation du procédé ci-dessus pour la détection, de façon supervisée, de la falsification d'une zone dans une image.
[0018] L'invention concerne encore l'utilisation du procédé ci-dessus dans la recherche de preuves à partir d'une image compromettante. [0019] L'invention concerne l'application du procédé ci-dessus dans des logiciels spécialisés, dans la recherche de preuves à partir de média numériques.
BREVE DESCRIPTION DES FIGURES
[0020] D'autres caractéristiques, détails et avantages de l'invention ressortiront à la lecture de la description qui suit, en référence aux figures annexées, qui illustrent:
- la figure 1 montre un système pour déterminer l'identification d'un appareil photographique conforme à l'invention ;
- la figure 2 montre un organigramme explicitant le procédé mis en œuvre dans le système conforme à l'invention ;
- les figures 3 et 4 présentent une série des paramètres caractérisant les propriétés d'hétéroscédasticité du bruit de quelques modèles d'appareils ;
- la figure 5 montre la comparaison des propriétés du bruit de trois appareils photographiques distincts ;
- la figure 6 montre les performances du système d'identification selon lequel seul un modèle d'appareil photographique potentiel est connu. Ces performances s o n t p ré s e n t é e s s o u s l a fo r m e d e c o u r b e s C O R ("Caractéristique de Opérationnelle du Récepteur") et offrent une comparaison entre la puissance théoriquement calculée, la puissance empirique obtenue sur des images réelles et la puissance empirique obtenue par simulation ;
- la figure 7 montre les performances du système d'identification selon lequel aucun des appareils photographique n'est connu. Ces performances sont présentées sous la forme de courbes COR ("Caractéristique de Opérationnelle du Récepteur") et offre une comparaison entre la puissance
théoriquement calculée, la puissance obtenue sur des images réelles et la puissance empirique obtenue par simulation ; et
- la figure 8 montre les valeurs du rapport de vraisemblance (statistique sur laquelle est fondé le système d'identification) calculé sur les colonnes d'une image de mire (bande grise allant du noir au blanc) lorsque l'appareil photographique est inconnu.
[0021] Pour plus de clarté, les éléments identiques ou similaires sont repérés par des signes de référence identiques sur l'ensemble des figures.
DESCRIPTION DETAILLEE
[0022] La figure 1 , représente un système pour déterminer l'identification d'un appareil photographique. La référence 1 indique le système et la référence 2 l'appareil photographique qui a pris une photographie 3.
[0023] C'est à partir de cette photographie que le système 1 va déterm iner l'appareil photographique 2 qui a pris cette photographie. Ce système se compose d'un analyseur de photo qui va examiner cette photographie 3. De préférence la photographie se présente sous forme de fichier non compressé (ou compressé sans pertes) apte au traitement qui va suivre. Le format du type RAW (format de fichier pour les images numériques) est un format apte à ce traitement.
[0024] Le système 1 peut être mis en œuvre sur un ordinateur du type PC. Ce système 1 est muni d'un organe d'entrée 10 pour pouvoir accueillir les données de la photographie 3. Ces données sont traitées par un organe de traitement 12 qui met en œuvre un traitement qui sera explicité ci-dessous. Un organe de sortie 14 fournira une indication sur l'identification de l'appareil photographique responsable à l'origine de ladite photographie. [0025] La figure 2 est un organ igramme explicitant le procédé conforme à l'invention. A la première étape, montrée à la case K10, la photographie numérique 2 est vue comme une ou plusieurs matrices dont les éléments représentent la valeur de chacun des pixels. Dans le cas d'une image en niveau
de gris (parfois appelée « noir et blanc ») la photographie peut être représentée par une unique matrice : ^ = ½,« avec l≤m≤M et l≤n≤N
Pour les images en couleurs, trois couleurs distinctes sont usuellement utilisées: le rouge, le vert et le bleu. Dans ce cas, une image est assimilable à 3 matrices distinctes : z = zïi,n avec 1≤ k≤ 3 une matrice par canal de couleurs.
[0026] La seconde étape, case K12, consiste à séparer les différents canaux de couleurs, lorsque l'image analysée est en couleurs. La suite des opérations étant réalisée de manière identique avec chacune des matrices représentant les canaux de couleurs, nous considérons que l'image est représentée par une unique matrice (l'indice k est omis).
[0027] Lors de l'acquisition d'une photographie numérique, des erreurs de mesure d'origine distincte corrompent légèrement l'intensité enregistrée pour chacun des pixels. La valeur de chacun des pixels peut être considérée comme la somme d'un bruit aléatoire (représentant l'ensemble des erreurs de mesures) et d'un contenu déterministe : = ym
[0028] Le bruit présent dans les photographies numériques, présente la propriété d'être hétéroscédastique : Les propriétés stochastiques (aléatoires) de bruit ne sont pas constantes sur l'ensemble des pixels de l'image. Plus précisément, la valeur de chaque pixel dépend linéairement du nombre de photons incidents noté
NPm,n . La conversion photo-électrique peut être assimilée à un processus de comptage de Poisson. Aussi, le nombre d'électrons collectés au sein de chacun des pixels est donné par :
avec rm,„ qui est le facteur de conversion représentant, entre autre, la transmittance des filtres optiques et la sensibilité quantique (nombre moyen d'électrons générés par photon incident) et avec Ntm, n le nombre moyen d'électrons d'origine thermique collectés.
[0029] On peut considérer, en première approximation, que la photo-sensibilité rm,„ ainsi que le bruit thermique Ntm, n sont constants pour l'ensemble des pixels d'un appareil photographique donné (voir [Healey1998]). Par conséquent on omettra les indices m et n de ces quantités. Les électrons collectés dans chacun des pixels sont ensuite transférés à une unité de lecture de charge. Durant ces phases de transfert et de lecture, plusieurs sources de phénomènes parasites interviennent ; ces dernières peuvent être modélisées comme une variable aléatoire Gaussienne (voir [Healey1998]). Ainsi, la valeur enregistrée d'un pixel zm;n est donnée par : ζ^η Ώ α^ (Νε^η ,σ2 ) (2)
où a est un paramètre de sensibilité linéairement dépendant du facteur ISO de l'appareil photographique et défini par l'utilisateur.
[0030] En raison du grand nombre de photons incidents sur les capteurs, il est possible d'approximer avec une grande précision le processus de comptage par une variable aléatoire Gaussienne.
En notant dans la suite ym;„ = a(r Npm;n +Nt) l'espérance mathématique (moyenne) du pixel à la position (m; n), les équations (1 ) et (2) permettent d'écrire la valeur zm;n comme suit, voir [Healey94,Foi2008]:
avec b = a¾2
[0031] Il est à noter que les paramètres a et b varient pour différents modèles d'appareils photographiques et peuvent donc être utilisés pour permettre une identification de ces derniers. [0032] La troisième étape, case K14, consiste en une séparation du contenu, case K16, et du bruit de l'image, case K18. Il faut préciser que ce problème fait l'objet de travaux de recherche et que plusieurs solutions ont été proposées. Dans le cas des travaux présentés, une méthode publiée dans la littérature spécialisée à été implémentée (voir [Foi2008]). Brièvement, le principe de cette méthode est
d'utiliser une décomposition de l'image sur une base d'ondelettes en utilisant les coefficients de basses fréquences comme estimateurs de contenu, c'est-à-dire de l'espérance mathématique de chacun des pixels notée ici ^ p et, à l'inverse, en utilisant les coefficients de hautes fréquences, ou de détails, comme estimateurs du bruit notés ici ¾ «et . Dans le document [Foi2008], on suggère de réaliser une étape de segmentation préalable afin de n'appliquer cette opération que dans les zones d'intensité approximativement constante de l'image. Cette opération préalable permet d'estimer l'espérance mathématique et la variance des pixels par zone. [0033] La quatrième étape montrée à la case K22 concerne l'estimation de la variance des pixels par niveaux d'intensité estimée du contenu.
[0034] À partir de la « sous-image » du contenu ½^ , on construit, à la case K20,
L vecteurs z™app , 1 ≤ l≤ L contenant des pixels dont les espérances estimées sont proches. Chacun des vecteurs z app contient pixels:
wapp _ wapp . , · ,
zi - ¾· - 1 s 1 s vi . Il est montré dans le document [Foi2008] que chacun des vecteurs z^^ suit la loi de distribution suivante :
où 1 est un vecteur constitué de 1 (de la dimension * I ) Lv{ est la matrice identité de taille D i * D i et \φ\2 est la norme de la fonction d'échelle de rondelette utilisée. Par ailleurs, compte tenu de la relation (3), la variance est donnée
et est statistiquement distribué suivant la loi Gaussienne suivante
(4)
Enfin, en utilisant la relation (3), l'estimation de la variance des pixels du vecteur ζγαρρ est donnée par :
&/ = ay} + b (5) ; lorsque les paramètres a et b des appareils photographiques sont connus.
[0035] Lorsq ue les paramètres a et b ne sont pas conn us et obten us par le maximum de vraisemblance, la variance est caractérisée par l'équation (4) :
[0036] Suivant la méthode proposée dans l'article [Foi2008], l'estimation de la variance est réalisée en tenant compte du phénomène de quantification des pixels permettant que la valeur de ces derniers soit un entier positif ou nul . Ce phénomène n'étant pas nécessairement pris en compte, les détails techniques sont révélés dans [Foi2008].
[0037] A la cinquième étape, montrée à la case K24, on élabore l'estimation des paramètres a et b caractérisant la relation affine entre la moyenne des pixels et la variance du bruit.
[0038] À partir de l'estimation de la variance des pixels de même n iveau d'intensité et à partir de la relation entre espérance et variance des pixels (3), il est possible de fournir des estimations statistiques a et b des paramètres a et b. Cette estimation statistique est réalisée par maximum de vraisemblance en tenant compte du phénomène de quantification. Il est important de préciser que cette étape n'est pas nécessaire à l'exécution du test statistique visant à décider si une photographie numérique donnée provient d'un premier appareil photographique ou d'un deuxième appareil photographique.
[0039] Enfin, le test statistique est exécuté en fonction de la probabilité d'erreur exigée et une décision est prise (voir case K26). À ce niveau, plusieurs cas peuvent être envisagés. Ils sont listés ci-dessous et accompagnés d'une description de leur mise en œuvre :
[0040] Dans le premier cas, l'utilisateur souhaite décider si la photograph ie numérique inspectée provient du premier appareil photographique (encore appelé « appareil 1 » dans la suite de ce texte) ou du deuxième appareil photographique (encore appelé « appareil 2 » dans la suite de ce texte) dont les propriétés du bruit sont connues pour chacun des appareils (les coefficients notés a1 , b1 , a2 et b2). Dans ce cas, on procède à un test du rapport de vraisemblance dont la fonction de décision est donnée par :
App areil n° l si A j (Z ) =∑ A / i z app \ < τ cc O
1 = 1
App areil n°2 si A l (Z ) =∑ A / z app ^≥ T cc O
1 = 1 où le seuil de décision est défini a priori selon l'équation (10) de sorte que la probabilité d'erreur exigée soit garantie asymptotiquement (lorsque le nombre de pixels est très élevé). Après quelques calculs, le logarithme du rapport de vraisemblance est donné ar
où est l'estimation de la variance donnée par l'équation (5) en utilisant les paramètres a1 et b1 de l'appareil photographique 1 (respectivement, 8 ,2 pour l'appareil photographique 2). Quelques calculs permettent de montrer que les deux premiers moments (espérance mathématique et variance) du rapport de vraisemblance A/
sont donnés, dans le cas où l'appareil photographique n°1 est utilisé, par:
Var0 [À<¾
[0041] Dans le cas où l'appareil n°2 est utilisé, les mêmes calculs permettent de
wapp montrer que les deux premiers moments du rapport de vraisemblance (zi sont donnés, par :
[0042] En définissant les deux équations ci-dessus, les deux premiers moments du rapport de vraisemblance Λ/ (ζ) sont donnés, dans le cas où l'appareil photographique j = {1 ,2} est utilisé, par : m , log Αι ( ζΓΡΡ ) log (z7app )
_ wapp wapp
s ; = Yar; ∑Varj logA i Vi (9)
[0043] En prenant le théorème de la limite centrale de Lindeberg [Lehmann2005, Théorème 1 1 .2.5], les propriétés des variables aléatoires Gaussiennes permettent d'obtenir la valeur du seuil de décision suivante : τ«0 = ¾Φ_1 (1 - α0) + ¾ (10)
où Φ"1 est la réciproque de la fonction de répartition Gaussienne centrée réduite qui permet de garantir que asymptotiquement (lorsque le nombre total de pixels MN □□) la probabilité d'erreur de première espèce du test (7) vérifie
«o (¾ (z))≤«o .
L'erreur de première espèce est caractérisée par la prise de décision « Appareil n°2 » lorsque l'image inspectée provient de l'appareil n°1 . Néanmoins en intervertissant le rôle des appareils photographiques, il est possible de garantir la
probabilité de l'erreur de seconde espèce (réciproquement décider « Appareil n°1 » lorsque l'image inspectée provient de l'appareil n°2).
[0044] La puissance du test est définie comme la probabilité que le test prenne la décision « Appareil n°2 » lorsque l'image inspectée provient effectivement de l'appareil n°2. En utilisant le théorème de la limite centrale de Lindeberg [Lehmann2005, Théorème 1 1 .2.5], les propriétés des variables aléatoires Gaussiennes permettent d'obtenir la puissance du test proposé :
[0045] Dans ce second cas, l 'util isateu r sou haite décider si la photograph ie numérique inspectée peut provenir d'un appareil photographique n°1 dont les propriétés du bruit sont connues (les paramètres notés ai et b-i). Les paramètres a* et b* de l'appareil photographique potentiellement à l'origine de la photographie ne sont pas connus. Cependant, on suppose dans la suite que ces derniers vérifient a1 < a* et b1 < b* ou bien a1 > a* et b1 > b*. [0046] On procède alors à u n test, basé su r l e ra pport d e vra isem bl a nce précédent, dont la fonction de décision est donnée par
Appareil 1 si Λ2 (Z) =∑Λ2 \ z™p j â .mm max
a 0 ' ~a 0
(12)
Sinon Appareil différent
où le seuil de décision est défini a priori par l'équation (14) de sorte que la probabilité d'erreur exigée soit garantie. Après quelques calculs, le logarithme du rap ort de vraisemblance Λ2 (ζ ) est donné par:
où B- est l'estimation de la variance donnée par l'équation (5) en utilisant les paramètres a1 et b1 de l'appareil photographique n°1 (seul appareil considéré comme étant connu dans ce second cas).
[0047] En utilisant les propriétés de la loi Gaussienne centrée réduite, la quantité wapp
A2 zj J est distribuée, lorsque l'appareil n°1 est à l'origine de la photographie inspectée, suivant la loi de distribution suivante : wapp n 2 Λ 2 v 2
A2 zj J u l où ,l représente la loi de distribution du (« chi2 ») à vi degrés de liberté. Ainsi, il en découle que la quantité A2 (z) est distribuée suivant la loi de distribution suivante : Λ2 (Ζ)□ m
[0048] Finalement, quelque soit le nombre MN de pixels, les propriétés de la loi de distribution du 2 permettent d'établir que les seuils de décision donnés par:
où Γ est la réciproque de la fonction de répartition du ^ 2, permettant de garantir que la probabilité d'erreur de première espèce du test (12) vérifie :
αθ(δι (ζ))≤αΟ
[0049] Enfin, la puissance du test, c'est-à-dire la probabilité de rejeter l'hypothèse que la photographie inspectée provient de l'appareil n°1 lorsque c'est effectivement le cas, dépend des paramètres a* et b* de l'appareil photographique (inconnu) à la source de lumière inspectée.
[0050] Dans ce troisième cas, le test vise à vérifier si une image bru itée a été prise par l'appareil 0 lorsque les paramètres de l'image sont inconnus. Le problème est rendu plus compliqué parce que l'hypothèse alternative devient complexe lorsque l'on tient compte de la présence de paramètres de nuisance. Pour surmonter cette sorte de problème le test RVG (Rapport de Vraisemblance Généralisé) est utilisé.
On réécrit les deux hypothèses alternatives H0 et H-, pour une observation. Selon l'hypothèse H0 l'image provient de l'appareil n°1 et sous l'hypothèse H-,, l'image provient de l'appareil n°2.
Dans cette équation : = <* . +*
Les paramètres (a,b) et y, sont inconnus. En utilisant leur EMV (Estimateur du Maximum de Vraisemblance), le test RVG devient :
M
H0 [ΐλ3 (Ζ) = ΥΙλ3 (Ζί) <τα0
i=l
où RVG Λ3 (Z| ) est donné par :
Λ f \ - SUp a^ suPyi, a,b Pyi,a ,b _ Fyi,â,b
Fyi,a0,b0
[0051] Il est particulièrement important de calculer d'une manière analytique les performances statistiques du RVG afin de garantir une probabilité d'erreur prescrite.
Estimation des paramètres de l'image.
[0052] L'algorithme d'estimation est clairement indiqué dans le document [Foi2008]. Cette étape, montrée à la case K22, a été brièvement décrite au paragraphe [0032] et est ici présentée plus en détails. Tout d'abord l'image bruitée est traitée dans le domaine des « ondelettes » en vue de faciliter l'analyse du bruit. Elle est ensuite segmentée en K ensembles de niveaux sans chevauchements ; les données sont donc « adoucies ». Il est considéré d'une manière raisonnable que chaque ensemble de même niveau d'intensité forme une région uniforme. Par conséquent, les pixels de chaque ensemble de même niveau partagent la même moyenne et la même variance, les pixels sont statistiquement indépendants et identiquement distribués.
Soit : ùl ' V IA l
le vecteur des coefficients d'approximations de l'ondelette représentant l'ensemble de niveau k qui contient nk pixels. Ces coefficients sont distribués comme suit:
wapp
où DDest la fonction d'échelle d'ondelette normalisé en 2D.
Il en découle que le EMV de l'espérance yD dans chaque ensemble de niveau k, peut être défini par :
La distribution de k peut donc être définie par : yk ~ Af{ k' ck°k,o) dans le cas j¾ ~ ΛΓ(Λ,¾Ο*1 dans le cas
10
|2
Estimation des paramètres d'un appareil photographique.
[0053] On va présenter comment estimer les paramètres d'un appareil photographique au moyen d'une image donnée bruitée.
wdet ί wdet)
15 Soit : ¾ ={zk,i ]■ l le vecteur des coefficients de détail de rondelette représentant l'ensemble de niveau « k ». En considérant l'hypothèse Dnnnnsa distribution peut être déterminée par :
wdet
zk □ Ν (θ,σ )
Une estimation non biaisée de ok est alors donnée par :
[0054] Les estimées âk sont distribuées, à un facteur d'échelle près, suivant une loi de distribution du x2 avec nk-1 degrés de liberté. Cette distribution peut asymptotiquement, pour nk suffisamment grand, être approchée, avec une bonne précision, par la loi de distribution normale suivante :
Alors la variance âk peut être traitée comme un modèle hétéroscédastique de l'espérance /¾ qui peut s'écrire :
b + ayk + skek (k=l,...,K) ou . ¾ = ¾ (ΰ ¾ +ώ) - a ck (a yk +b) les résidus ¾ sont indépendants et identiquement distribués comme une distribution normale standard.
[0055] L'hétéroscédasticité dans le modèle est régie par les différents ¾ . Il est possible d'exploiter l'approche des moindres carrés pondérés dans le but de minimiser les résidus pondérés et de fournir un modèle convenable. Une stratégie bien connue pour estimer (a, b) est d'obtenir, dans un premier temps les estimées
¾ et dans un deuxième temps d'appliquer les moindres carrés pondérés en utilisant une pondération telle que k .
estimation préliminaire sont définis par :
être calculés par : xTwx\ 1 XTWV où : W = diag(wl , ..., wk )
[0057] Il est montré dans le document [Shao1989] que compte tenu de la normalité et de la forme connue de sk , le WLS donne une estimation en utilisant τ½ qui devient d'une manière asymptotique équivalente aux estimations EMV (maximum de vraisemblance) pour un grand échantillonnage. En outre les estimations WLS et EMV partagent la même distribution normale asymptotique.
Variance des estimées WLS.
[0058] Comme les estimées des moindres carrés ont la propriété d'être non biaisées, il s'en suit que: E sk et que :
-2
En conséquence, on peut calculer d'une manière approximative sk et par :
~2 2
wk
On peut réécrire les estimées WLS :
. 4
où
K κ k=l et =1
K
K k=\
y ∑ ¾
wk k = \
[0059] On peut observer que y et <r2se présentent sous forme de distributions gaussiennes ayant respectivement les espérances et les variances :
[0060] En application de la méthode du Delta [Lehmann2005, Théorème 11.2.14], il découle que pour deux variables aléatoires X et Y indépendantes, si on définit
2 2
respectivement, mx,sx Qtmy,sy ! l'espérance et la variance des variables
D x
[0061] Il découle également de la méthode du Delta [Lehmann2005, Théorème 11.2.14], que l'espérance et la variance de la variable aléatoire S = l°g— peuvent être calculées d'une manière approximative par :
E[S] = log
mx m
En considérant l'équation (4) il s'en suit :
yk-y~M(yk-y,ckol+Var(y))
dont il découle finalement :
En tenant compte du théorème de la limite centrale de Linderberg [Lehmann2005, Théorème 11.2.5] : A-, est une valeur de type gaussien présentant une espérance et une variance :
K
K k=l 1
On peut alors écrire :
(yk - f ) = 4wk 2 (¾ - yf [ck4 + Var {y) + o{4))
En conséquence, et compte tenu du théorème de la limite centrale de Lindeberg [Lehmann2005, Théorème 11.2.5], A2 se présente sous la forme d'une distribution gaussienne ayant une espérance et une variance telles que :
De la méthode du Delta, il en découle :
_ ar [4] + a2Var[A2]
ar[âw]
Var = Var[n2 + a2Var{y)+y2Var[âw]
En outre la covariance entre les deux estimées peut se définir par :
Cov w w = Cov σ2 w
Performance statistique du test.
[0062] Le test RVG (Rapport de Vraisemblance Généralisé) peut être réécrit sous la forme :
où T«o est la solution de l'équation :
wapp
ou
La variance de ok>0 peut être donnée par :
r 1-Z pu ¾J
b i
-_, , w, ,^, , , ,^, , ,^, § Α3 | ¾ I sous
l'hypothèse Ηο , selon laquelle l'image provient de l'appareil n°1 , sont donnés par
Va
wapp
On peut aussi écrire la vraisemblance en logarithme de Λ3 1 ¾, i
Les deux premiers moments de i og A3 1 ¾· I sous l'hypothèse Ηι , selon laquelle l'image provient de l'appareil °2, sont donnés par les formules suivantes :
[0063] Enfin, il est possible d'envisager un quatrième cas d'utilisation du système d'identification d'un appareil photographique en vue de déterminer, de façon supervisée, si une zone de l'image n'a pas été falsifiée (par copier/coller depuis une autre photographie ou par suppression d'une élément). On entend ici par " supervisé le fait que l'utilisateur souhaite s'assurer de l'intégrité d'une zone préalablement définie. Le principe est alors d'appliquer la méthode d'identification aux deux " sous-images " issues respectivement de la zone ciblée par l'utilisateur et de son complémentaire (le reste de l'image).
Si l'élément inspecté provient d'une autre photographie et a été ajouté par copier/coller, les propriétés de bruit seront différentes de ce que le système proposé sera capable d'identifier (en supposant que les photographies n'ont pas été prises avec dans les mêmes conditions d'acquisition et avec le même modèle d'appareil photographique, ce qui semble raisonnable).
[0064] Les figures 3 et 4 présentent une série des paramètres caractérisant les propriétés d'hétéroscédasticité du bruit de quelques modèles d'appareils ; ces résultats sont obtenus avec la méthode proposée dans [Foi2008] et illustrent la différentiation des modèles d'appareils photographiques.
[0065] La figure 5 illustre la comparaison des propriétés du bruit entre les trois appareils photographiques suivants : Canon EOS7D, Nikon D60 et Nikon D3000. Elle présente la variance du bruit d'acquisition (entre 0 et 0,0025) en fonction de l'espérance mathématique de la valeur des pixels (entre 0 et 1 ), voir relations (3) et (5). On constate que les trois modèles d'appareils photographiques distincts pour lesquels les paramètres a et b, caractérisant cette relation, ont été estimés présentent des propriétés d'hétéroscédasticité fort différentes. Cette figure permet de visualiser la différence qui existe entre les propriétés des bruits présents dans des images capturées par des modèles d'appareils photographiques distincts. [0066] La figure 6, montre les performances du système d'identification dans le second cas, décrit précédemment, dans lequel seul un modèle d'appareil photographique potentiel est connu et l'on souhaite tester si la photographie provient d'un autre appareil quel qu'il soit. Cette figure offre une comparaison entre la puissance de détection théoriquement calculée (traits pleins) et celle obtenue lors de simulations empiriques (traits pointillés fins et moyens).
[0067] La figure 7 montre les performances du système d'identification dans le troisième cas, décrit précédemment, dans lequel aucun des appareils photographique n'est connu ce qui nécessite d'estimer les paramètres permettant l'identification. Ces performances offrent une comparaison entre la puissance théoriquement calculée (traits pleins) et la puissance empirique obtenue sur des
images réelles (traits pointillés fins), et la puissance empirique obtenue par simulation.
[0068] Les résultats présentés dans les figures 6 et 7 ont été obtenus à partir d'une base d'images naturelles provenant de deux modèles d'appareil photographique distincts. Les paramètres de bruit, a-ι, bi et a2, b2 de chaque appareil ont été calculés sur l'ensemble des images de cette base de données (les appareils utilisées sont les NikonD60 et NikonD3000 présentés sur la figure 5. On constate enfin dans les figures 6 et 7 que, outre la puissance de détection (axe des ordonnés) très importante il est possible d'obtenir pour une probabilité de fausse-alarme très faible (axe des abscisses). De plus, les résultats théoriques et empiriques sont en très bonne adéquation.
[0069] La figure 8 montre l es résu ltats obten u s d ans le cas où l 'appare il photographique 2 est inconnu. Le résultat est simulé avec l'intensité « y » croissante de la gauche vers la droite, image d'une mire constituée de bandes grises allant du noir au blanc, photographiée avec deux modèles d'appareil photographique distincts. Il a été considéré que les propriétés de l'un des deux appareils photographique sont connues Ce modèle d'appareil photographique a été utilisé pour obtenir les résultats présentés dans la figure 6. La figure 7 présente en abscisse le numéro de ligne inspecté et en ordonné la valeur du rapport de vraisemblance calculé sans connaissance sur les propriétés de l'appareil photographique n°2. Ladite figure montre que 1 ) à un facteur d'échelle près, le rapport de vraisemblance est normalisé de sorte que sa distribution reste identique pour l'appareil photographique n°1 et, 2) que pour l'appareil photographique n°2, le rapport de vraisemblance, sur lequel est fondé le système d'identification proposé, prend des valeurs largement supérieures ce qui permet une prise de décision.
[0070] La méthode d'identification du modèle d'appareil photographique proposée répond aux deux inconvénients et faiblesses des méthodes brièvement présentées dans l'état de l'art. Premièrement, dans les méthodes de l'état de l'art, les performances ne sont pas établies et de plus ces méthodes peuvent être
m ises en échec par la calibration de l'appareil photographique. La méthode proposée selon l'invention repose sur la propriété d'hétéroscédasticité du bruit, caractéristique inhérente à l'acquisition des photographies. Cette dernière est applicable de façon générale quels que soient les traitements post-acquisition appliqués par un utilisateur (notamment en vue d'améliorer la qualité visuelle). En outre la modélisation paramétrique de la relation entre moyenne et variance de la valeur des pixels permet de fournir de façon analytique les performances du test proposé. Cet avantage permet notamment d'assurer le respect d'une contrainte prescrite sur la probabilité d'erreur. [0071] Les principaux domaines d'applications de l'invention sont d'une part, la recherche de preuve à partir d'une image « compromettante » et d'autre part la garantie qu'une photographie a été acquise par un appareil donné.
[0072] La méthode proposée peut être étendue au contrôle de l'intégrité d'une photographie. Le but est alors de garantir qu'une photographie n'a pas été modifiée/falsifiée depuis son acquisition. Cela permet par exemple de détecter les photographies comportant des éléments provenant d'un appareil photographique différent, i.e. importés après l'acquisition, ou encore d'assurer l'intégrité d'un document scanné ou photographié (un document juridique par exemple).
[0073] Le procédé de l'invention pourra être développé dans des log iciels spécialisés, dans la recherche de preuve à partir de média numériques. Le procédé selon l'invention peut être utilisé auprès des tribunaux comme un outil d'aide à la décision.
Bibliographie:
[Shao1989] "Asymptotic distribution of the weighted least squares estimator", Shao, J., Annals of the Institute of Statistical Mathematics, vol .41 , no.2, pp 365-382, 1989. [Healey1994] "Radiometric CCD caméra calibration and noise estimation", Healey, G.E.; Kondepudy, R, IEEE Transaction on Pattern Analysis and Machine Intelligence, vol.16 , no.3, pp 267-276, 1994
[Lehmann2005] "Testing Statistical Hypothèses", Lehmann, E.L. ; Romano, J.P. , 3ième édition, ISBN 0-387-98864-5, Spinger, 2005. [Lukas2006] "Digital caméra identification from sensor pattern noise", Lukas, J.; Fridrich, J.; Goljan, M.; Information Forensics and Security, IEEE Transactions on , vol.1 , no.2, pp. 205- 214, June 2006
[Chen2008] "Determining Image Origin and Integrity Using Sensor Noise", Chen, M.; Fridrich, J.; Goljan, M.; Lukas, J.; Information Forensics and Security, IEEE Transactions on, vol.3, no.1 , pp.74-90, March 2008
[Foi2008] "Practical Poissonian-Gaussian Noise Modeling and Fitting for Single-Image Raw-Data", Foi, A.; Trimeche, M.; Katkovnik, V.; Egiazarian, K.; IEEE Transactions on Image Processing, vol.17, no.10, pp.1737-1754, Oct. 2008 [Maillard2008] "Détection of digital processing of images through a realistic model of CCD noise", Maillard, J.-B.; Levesque, D.; Deschenes, F. International Conférence on Pattern Récognition, ICPR, 8-1 1 Dec. 2008
[M. Kharrazi] "Image Steganography : Concept and Practice", M. Kharrazi, H. T. Sencar, N. Memon, Lecture Notes Séries, Institute for Mathematical Sciences, National University of Singapore, 2004.
Claims
1 . Système pour déterminer l'identification d'un premier appareil photographique (2) à partir d'une photographie (3), système comportant un dispositif d'analyse de photographies (10) pour traiter ladite photographie et un dispositif de traitement (12) pour établir des statistiques à partir de ladite analyse, le système opérant ladite identification sur la base de paramètres « a » et « b » définissant un appareil photographique et répondant à la relation ci-dessous :
où zm,n est représentatif de la valeur d'un pixel de coordonnées m et n d'une photographie,,
N (..) représente une distribution gaussienne
ym,n est l'espérance mathématique du pixel situé à la position m,n.
caractérisé en ce qu'il comprend en outre un organe de sortie (14) qui opère par comparaison statistique avec un deuxième appareil photographique pour déterminer si la photographie a été prise par ledit premier appareil ou ledit deuxième appareil.
2. Système selon la revendication 1 , caractérisé en ce que l'organe de sortie (14) fournit une indication sur l'identification d'un appareil photographique en certifiant l'exactitude de l'identification suivant une précision préalablement définie.
3. Procédé mis en œuvre dans le système de la revendication 1 caractérisé en ce qu'il comporte les étapes suivantes :
- lecture de la photographie en vue de déterminer les matrices descriptives (K12),
- estimation du contenu et du bruit de l'image (K14),
- estimation de la variance des pixels par niveaux d'intensité estimée du contenu (K22), - estimation des paramètres caractérisant la relation moyenne variance du bruit (K24),
- exécution de tests statistiques en vue de donner l'identification. (K26).
4. Procédé selon la revendication 3, caractérisé en ce que à l'étape(K26) les tests statistiques sont exécutés en fonction de la probabilité d'erreur exigée, et une décision est prise.
5. Procédé selon la revendication 3 caractérisé en ce que la photographie est en un format non compressé ou en un format compressé sans pertes.
6. Utilisation du procédé selon l'une des revendications 3 à 5 pour la détection, de façon supervisée, de la falsification d'une zone dans une image.
7. Utilisation du procédé selon l'une des revendications 3 à 5 dans la recherche de preuves à partir d'une image compromettante.
8. Application du procédé selon l'une des revendications 3 à 5 dans des logiciels spécialisés, dans la recherche de preuves à partir de média numériques.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP12787770.2A EP2825995B1 (fr) | 2012-03-12 | 2012-10-16 | Système pour déterminer l'identification d'un appareil photographique a partir d'une photographie et procédé mis en oeuvre dans un tel système |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1252209A FR2987923B1 (fr) | 2012-03-12 | 2012-03-12 | Systeme pour determiner l'identification d'un appareil photographique a partir d'une photographie et procede mis en oeuvre dans un tel systeme |
FR1252209 | 2012-03-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013135977A1 true WO2013135977A1 (fr) | 2013-09-19 |
Family
ID=47172730
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/FR2012/052357 WO2013135977A1 (fr) | 2012-03-12 | 2012-10-16 | Système pour déterminer l'identification d'un appareil photographique a partir d'une photographie et procédé mis en oeuvre dans un tel système |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP2825995B1 (fr) |
FR (1) | FR2987923B1 (fr) |
WO (1) | WO2013135977A1 (fr) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015145091A1 (fr) * | 2014-03-28 | 2015-10-01 | Universite De Technologie De Troyes | Système d'identification d'un modèle d'appareil photographique associe a une image compressée au format jpeg, procédé, utilisations et applications associes |
JP2017517222A (ja) * | 2014-03-28 | 2017-06-22 | ユニベルシテ・ドゥ・テクノロジー・ドゥ・トロワUniversite De Technologie De Troyes | Jpeg圧縮画像に関連付けられる写真カメラモデルを特定するためのシステム、ならびにこのようなシステムにおいて実行される関連の方法、その使用およびアプリケーション |
-
2012
- 2012-03-12 FR FR1252209A patent/FR2987923B1/fr active Active
- 2012-10-16 EP EP12787770.2A patent/EP2825995B1/fr not_active Not-in-force
- 2012-10-16 WO PCT/FR2012/052357 patent/WO2013135977A1/fr active Application Filing
Non-Patent Citations (15)
Title |
---|
CHEN M ET AL: "Determining Image Origin and Integrity Using Sensor Noise", IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, IEEE, PISCATAWAY, NJ, US, vol. 2, no. 1, 1 March 2008 (2008-03-01), pages 74 - 90, XP011204150, ISSN: 1556-6013 * |
CHEN, M.; FRIDRICH, J.; GOLJAN, M.; LUKAS, J.: "Determining Image Origin and Integrity Using Sensor Noise", INFORMATION FORENSICS AND SECURITY, IEEE TRANSACTIONS ON, vol. 3, no. 1, March 2008 (2008-03-01), pages 74 - 90, XP011204150 |
FOI A ET AL: "Practical Poissonian-Gaussian Noise Modeling and Fitting for Single-Image Raw-Data", IEEE TRANSACTIONS ON IMAGE PROCESSING, IEEE SERVICE CENTER, PISCATAWAY, NJ, US, vol. 17, no. 10, 1 October 2008 (2008-10-01), pages 1737 - 1754, XP011248121, ISSN: 1057-7149 * |
FOI, A.; TRIMECHE, M.; KATKOVNIK, V.; EGIAZARIAN, K.: "Practical Poissonian-Gaussian Noise Modeling and Fitting for Single-Image Raw-Data", IEEE TRANSACTIONS ON IMAGE PROCESSING, vol. 17, no. 10, October 2008 (2008-10-01), pages 1737 - 1754, XP011234201, DOI: doi:10.1109/TIP.2008.2001399 |
HEALEY, G.E.; KONDEPUDY, R: "Radiometric CCD camera calibration and noise estimation", IEEE TRANSACTION ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, vol. 16, no. 3, 1994, pages 267 - 276, XP002694372 * |
HEALEY, G.E.; KONDEPUDY, R: "Radiometric CCD camera calibration and noise estimation", IEEE TRANSACTION ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, vol. 16, no. 3, 1994, pages 267 - 276, XP002694372, DOI: doi:10.1109/34.276126 |
LEHMANN, E.L.; ROMANO, J.P: "Testing Statistical Hypotheses", 2005, SPINGER |
LUKAS, J.; FRIDRICH, J.; GOLJAN, M.: "Digital camera identification from sensor pattern noise", INFORMATION FORENSICS AND SECURITY, IEEE TRANSACTIONS ON, vol. 1, no. 2, June 2006 (2006-06-01), pages 205 - 214, XP002694371 * |
LUKAS, J.; FRIDRICH, J.; GOLJAN, M.: "Digital camera identification from sensor pattern noise", INFORMATION FORENSICS AND SECURITY, IEEE TRANSACTIONS ON, vol. 1, no. 2, June 2006 (2006-06-01), pages 205 - 214, XP002694371, DOI: doi:10.1109/TIFS.2010.2046268 |
M. GOLJAN: "Large Scale Test of Sensor Fingerprint Camera Identification", SPIE-IS&T, MEDIA FORENSICS AND SECURITY, vol. 7254, 2009, pages 72540I-1 - *-12, XP002692615 * |
M. KHARRAZI; H. T. SENCAR; N. MEMON: "Image Steganography : Concept and Practice", LECTURE NOTES SERIES, INSTITUTE FOR MATHEMATICAL SCIENCES, 2004 |
M. KHARRAZI; H. T. SENCAR; N. MEMON: "Image Steganography : Concept and Practice", LECTURE NOTES SERIES, INSTITUTE FOR MATHEMATICAL SCIENCES, NATIONAL UNIVERSITY OF SINGAPORE, 2004 |
MAILLARD, J.-B.; LEVESQUE, D.; DESCHENES, F.: "Detection of digital processing of images through a realistic model of CCD noise", INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, ICPR, 8 December 2008 (2008-12-08) |
SHAO, J.: "Asymptotic distribution of the weighted least squares estimator", ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, vol. 41, no. 2, 1989, pages 365 - 382 |
TRAN VAN LANH ET AL: "A Survey on Digital Camera Image Forensic Methods", MULTIMEDIA AND EXPO, 2007 IEEE INTERNATIONAL CONFERENCE ON, IEEE, PI, 1 July 2007 (2007-07-01), pages 16 - 19, XP031123550, ISBN: 978-1-4244-1016-3 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015145091A1 (fr) * | 2014-03-28 | 2015-10-01 | Universite De Technologie De Troyes | Système d'identification d'un modèle d'appareil photographique associe a une image compressée au format jpeg, procédé, utilisations et applications associes |
FR3019352A1 (fr) * | 2014-03-28 | 2015-10-02 | Univ Troyes Technologie | Systeme d'identification d'un modele d'appareil photographique associe a une image compressee au format jpeg, procede, utilisations et applications associes |
JP2017511674A (ja) * | 2014-03-28 | 2017-04-20 | ユニベルシテ・ドゥ・テクノロジー・ドゥ・トロワUniversite De Technologie De Troyes | Jpeg圧縮画像に関連付けられる写真カメラモデルを特定するためのシステム、ならびに関連付けられる方法、使用およびアプリケーション |
JP2017517222A (ja) * | 2014-03-28 | 2017-06-22 | ユニベルシテ・ドゥ・テクノロジー・ドゥ・トロワUniversite De Technologie De Troyes | Jpeg圧縮画像に関連付けられる写真カメラモデルを特定するためのシステム、ならびにこのようなシステムにおいて実行される関連の方法、その使用およびアプリケーション |
Also Published As
Publication number | Publication date |
---|---|
EP2825995B1 (fr) | 2017-03-15 |
EP2825995A1 (fr) | 2015-01-21 |
FR2987923B1 (fr) | 2014-12-05 |
FR2987923A1 (fr) | 2013-09-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Yao et al. | Detecting image splicing based on noise level inconsistency | |
Chen et al. | Determining image origin and integrity using sensor noise | |
Villalba et al. | Smartphone image clustering | |
EP3608834A1 (fr) | Procede d'analyse d'une empreinte | |
WO2015145091A1 (fr) | Système d'identification d'un modèle d'appareil photographique associe a une image compressée au format jpeg, procédé, utilisations et applications associes | |
WO2019091787A1 (fr) | Procédé d'estimation de pose d'une caméra dans le référentiel d'une scène tridimensionnelle, dispositif, système de réalite augmentée et programme d'ordinateur associé | |
Qiao et al. | Individual camera device identification from JPEG images | |
WO2015145092A1 (fr) | Systeme d'identification d'un modele d'appareil photographique associe a une image compressee au format jpeg et procede mise en œuvre dans un tel systeme, utilisations et applications associes | |
EP2364490A1 (fr) | Dispositif a architecture pipeline de flot de donnees pour la reconnaissance et la localisation d'objets dans une image par balayage de fenetres de detection | |
CN111709930A (zh) | 基于模式噪声的图片出处与窜改认定方法 | |
FR3088755A1 (fr) | Procede de defloutage d’une image | |
Mehrish et al. | Robust PRNU estimation from probabilistic raw measurements | |
Ahmed et al. | Temporal image forensic analysis for picture dating with deep learning | |
EP2825995B1 (fr) | Système pour déterminer l'identification d'un appareil photographique a partir d'une photographie et procédé mis en oeuvre dans un tel système | |
Quintanar-Reséndiz et al. | Capture device identification from digital images using Kullback-Leibler divergence | |
WO2007077175A1 (fr) | Procede de classification d'images par reseaux neuroniques et classifieur d'images prealablement appris, dispositif et programme d'ordinateur correspondants | |
Ahmed et al. | The ‘northumbria temporal image forensics’ database: description and analysis | |
Bondi et al. | Design of projection matrices for PRNU compression | |
FR3102324A1 (fr) | Procédé d’acquisition d’une image couleur et d’une image infra-rouge et système mettant en œuvre ledit procédé | |
FR3061786A1 (fr) | Traitement a la volee de donnees dans un systeme d'acquisition | |
Rodríguez-Santos et al. | Identifying the Digital Camera from Natural Images Using Residual Noise and the Jensen–Shannon Divergence | |
FR3095064A1 (fr) | Procédés et dispositifs de levée de doute biométrique | |
Akshatha et al. | Source camera identification using noise residual | |
Debiasi et al. | PRNU enhancement effects on biometric source sensor attribution | |
Zunaed et al. | A Novel Hierarchical-Classification-Block Based Convolutional Neural Network for Source Camera Model Identification |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12787770 Country of ref document: EP Kind code of ref document: A1 |
|
REEP | Request for entry into the european phase |
Ref document number: 2012787770 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012787770 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |