WO2013135917A1 - Method for storing solar energy in the form of environmentally friendly fuels - Google Patents

Method for storing solar energy in the form of environmentally friendly fuels Download PDF

Info

Publication number
WO2013135917A1
WO2013135917A1 PCT/ES2012/070167 ES2012070167W WO2013135917A1 WO 2013135917 A1 WO2013135917 A1 WO 2013135917A1 ES 2012070167 W ES2012070167 W ES 2012070167W WO 2013135917 A1 WO2013135917 A1 WO 2013135917A1
Authority
WO
WIPO (PCT)
Prior art keywords
fermentation
butanol
solution
tanks
ions
Prior art date
Application number
PCT/ES2012/070167
Other languages
Spanish (es)
French (fr)
Inventor
Daniel GONZÁLEZ GONZÁLEZ
Daniel GONZÁLEZ URANGA
Original Assignee
Guradoor, S.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guradoor, S.L. filed Critical Guradoor, S.L.
Publication of WO2013135917A1 publication Critical patent/WO2013135917A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/06Ethanol, i.e. non-beverage
    • C12P7/065Ethanol, i.e. non-beverage with microorganisms other than yeasts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/16Butanols
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/06Ethanol, i.e. non-beverage
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/24Preparation of oxygen-containing organic compounds containing a carbonyl group
    • C12P7/26Ketones
    • C12P7/28Acetone-containing products
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/59Biological synthesis; Biological purification

Definitions

  • the present invention relates to a process for storing energy from the sun in the form of ecological fuels, it being understood in this sense to obtain fuels from solar energy and biomass, the result of which is a biofuel product.
  • Clostridium acetobutylicum (from the Latin acetum, vinegar and butylicum of butyrum, butter, from the Greek boutyron), also called the Weizmann organism (1874-1952), breaks down sugars and starches and uses them as a source of energy according to a fermentation process, giving as main products acetone, butanol and ethanol and a certain amount of hydrogen gas recoverable, in addition to acetic acid, lactic acid, icos propionic acids and isopropanol.
  • These bacteria mainly use molasses as a substrate (Ni Y. and Sun Z. (2009), Recent progress on industrial fermentative production of acetone-butanol-ethanol by Clostridium acetobutylicum in China, App.
  • C. acetobutylicum lacks homeostasis at the pH level, so it depends intimately on the extracellular pH.
  • the presence of acids in the medium can cause a loss of the protonic potential of the cell, inactivating it.
  • the pH is very important during the acetone-butanol fermentation, since the solvent is started at a low pH. However, if it is below 4.5 (before a sufficient amount of organic acids is formed), the solvent will be diminished and unproductive.
  • a simple way to increase growth, the use of carbohydrates as well as the production of butanol is to increase the buffer capacity of the medium.
  • batch fermentations take from 2 to 6 days to complete, reaching the final total concentration of solvents produced from 12 to 20 g / l, being able to separate these by distillation of the fermentation medium (Lee et al., 2008).
  • the group of Ezeji et al. (Ezeji TC, Qureshi N. and Blaschek HP (2004) Acetone Butanol Ethanol (ABE) production from concentrated substrate: Reduction in substrate inhibition by fedbatch technique and product inhibition by gas stripping, Appl. Microbiol Biotechnol., 63: 653-658) obtained productivity of 0.91 g / l / h of butanol by removing it from the active culture medium by means of a carrier gas.
  • acetobutylicum has mixed fermentation, significant amounts of acetone and ethanol were also produced, even in the adapted strain (Lin YL and Blaschek HP, Butanol production by a butanol-tolerant strain of Clostridium acetobutylicum in extruded corn broth, Appl. Environ. Microbiol. 45: 966-973).
  • butanol compared with that of ethanol are essentially that the former better tolerates possible contamination with water and that it is less corrosive than ethanol, which facilitates its use in gasoline distribution facilities, also
  • the mixtures obtained from butanol and fuel are conventional and have a lower tendency to phase separation than ethanol, which is favored by the synergy in the vapor pressure of the butanol mixtures and Gasol inas with ethanol content, which facilitates storage and distribution.
  • n-butanol the octane rating of n-butanol is similar to that of gasoline, presenting a RON (Research Octane Number) of 96 and a MON (Motor Octane Number) of 78, resulting in a number (R + M) / 2 of 87, while t-butanol reaches an RON of 105 and a MON of 89.
  • RON Search Octane Number
  • MON Motor Octane Number
  • WO 2010/000649 A1 "Method for the combined production of butanol and hydrogen” refers to a process for the combined production of butanol and hydrogen from biomass comprising the steps of fermenting the biomass to obtain butanol in a first reaction mixture, removing the butanol and hydrogen from this first mixture to obtain an effluent and subsequently using the effluent as a substrate in a second reaction mixture, in particular in a process for obtaining hydrogen.
  • the object of the invention is to provide a method for the storage of the solar energy captured by a solar collector of parabolic concentration, hereinafter solar collector, to which a tank containing, for example at its base, is coupled saline solution and that acts both supporting the possible efforts to which the solar collector is subjected and to facilitate the temperature and feed one or more anaerobic biomass fermentation tanks that contain a bacterium of the species Clostridium acetobutylicum, to obtain ethanol, butanol and acetone by fermentation of said biomass according to an ABE fermentation, these fermentation by-products being continuously extracted from the fermentation tanks to storage tanks where they are mixed with other fuels, for example petroleum derivatives already known, for obtain industrial fuel mixtures of high octane and energy capacity, being the p Procedure applicable to industrial scale, clean and environmentally friendly and high productivity.
  • solar collector to which a tank containing, for example at its base, is coupled saline solution and that acts both supporting the possible efforts to which the solar collector is subjected and to facilitate the
  • the process of the invention is essentially based on using the energy of the sun concentrated in the said solar collector to heat a tank containing a solution of various salts whose effect is, on the one hand, to avoid the possible mechanical stresses to which the solar collector due to environmental conditions such as high winds, terrain elevations, etc., and, on the other hand, supplement with fermentation-promoting components one or more anaerobic biomass fermentation tanks, where biomass fermentation is carried carried out according to an ABE type process using the bacterium Clostridium acetobutylicum.
  • the result of this fermentation is the obtaining of ethanol, butanol and acetone, and hydrogen in a smaller proportion, these by-products being continuously extracted from the fermentation tanks to storage tanks where they are mixed with other fuels to obtain industrial fuel mixtures.
  • ABE fermentation is influenced by the presence of certain inorganic salts, as well as by the amount of glucose present in the fermentation medium.
  • Frederic Monot et al. in “Acetone and Butanol Production by Clostridium acetobutylicum in a Synthetic Medium", Applied and Environmental Microbiology, 1982, p. 1318-1324 Vol. 44, No. 6) have shown that the presence in the culture medium of Fe 2+ and K + favors bacterial growth and the conversion of sugars in the solvents sought.
  • the process of the invention includes the steps of: i) using the solar energy collected in a solar collector to heat a tank located at the base thereof containing a solution of inorganic salts that include Fe 2+ and K + ions; ii) supplement with this solution that includes Fe 2+ and K + ions anaerobic fermentation tanks containing Clostridium acetobutylicum as well as a source of carbohydrates, carrying out the fermentation process of this type of carbon under conditions of supplementation to the medium of said ions and their conversion to acetone, ethanol and butanol; iii) continuous extraction of solvents and H 2 resulting from the fermentation process to corresponding storage tanks; Y iv) mixing of the solvents obtained with other alcohols or conventional fuels and application of the hydrogen gas obtained for other industrial processes or for storage.
  • the solar collector used in step i) is of the type described in Spanish patent application No. 201031 287, of the same applicant, since it has great advantages in terms of stability and self-orientation
  • a tank is arranged to accommodate a solution of inorganic salts containing Fe 2+ and K + ions, for example a solution of ferrous sulfate and KCI buffered with NaH 2 PO 4 -2H 2 O and Na 2 HPO3-12H 2 O (see Frederic Monot et al., Supra).
  • This tank can be arranged in the base of the solar collector as part of the base of the same, thereby reducing the absorption of the mechanical stresses supported by the solar collector itself or it constitutes an element attached to the base of the solar collector itself.
  • step ii) part of this heated solution is fed to at least one fermentation tank containing the Clostridium acetobutylicum bacteria together with a source of carbohydrates, where fermentation is preferably carried out at 46 ° C.
  • said carbohydrate source is cassava, potato or sweet potato pulp, which is fed directly to the tanks after a previous treatment to facilitate fermentation.
  • step iii) the solvents resulting from the fermentation are continuously extracted, for example by distillation, providing the appropriate temperature from the solar collector itself, so that the deterioration of the bacteria is not produced by its transformation to spore.
  • the hydrogen gas by-product of the fermentation can be reused in multiple industrial processes, for example for use in the formation of alcohols based on synthesis gas, or for storage.

Abstract

The invention relates to a method for storing solar energy captured by a parabolic concentrating solar collector having a tank coupled thereto which contains a saline solution and which both supports possible forces to which the solar collector my be subjected, as well as heating and supplying one or more tanks for anaerobic fermentation of biomass containing a bacterium of the species Clostridium acetobutylicum, in order to obtain ethanol, butanol and acetone by fermentation of said biomass (ABE fermentation), these fermentation by-products being continuously extracted from the fermentation tanks and conveyed to storage tanks where they are mixed with other fuels in order to obtain high-octane industrial fuel mixtures with a high energy capacity. The method, which can be carried out on an industrial scale, is clean and environmentally friendly and provides high production yields.

Description

PROCEDIMIENTO PARA EL ALMACENAMIENTO DE ENERGÍA SOLAR EN FORMA DE COMBUSTIBLES ECOLÓGICOS  PROCEDURE FOR THE STORAGE OF SOLAR ENERGY IN THE FORM OF ECOLOGICAL FUELS
La presente invención se refiere a un procedimiento para el almacenamiento de la energ ía procedente del sol en forma de combustibles ecológicos, entendiéndose en este sentido la obtención de combustibles a partir de energía solar y biomasa, cuyo resultado es un producto biocombustible. The present invention relates to a process for storing energy from the sun in the form of ecological fuels, it being understood in this sense to obtain fuels from solar energy and biomass, the result of which is a biofuel product.
Más concretamente, la presente invención se refiere a un procedimiento para el almacenamiento de la energía solar captada por un colector solar de concentración parabólico al que se acopla en su base un tanque conteniendo una solución salina y que actúa tanto soportando los posibles esfuerzos a los que se ve sometido el colector de concentración solar parabólico como para facilitar la temperatura y alimentar uno o más tanques de fermentación anaerobia de biomasa que contienen una bacteria de la especie Clostridium acetobutylicum, para la obtención de etanol, butanol y acetona por fermentación de dicha biomasa según una fermentación ABE, siendo estos subproductos de la fermentación extraídos en continuo desde los tanques de fermentación hasta unos tanques de almacenam iento donde se mezclan con otros combustibles, por ejemplo derivados del petróleo ya conocidos, para obtener mezclas combustibles industriales de alto octanaje y capacidad energética. More specifically, the present invention relates to a process for the storage of solar energy captured by a parabolic concentration solar collector to which a tank containing a saline solution is attached at its base and that acts both supporting the possible efforts to which The parabolic solar concentration collector is subjected to facilitate temperature and feed one or more anaerobic biomass fermentation tanks containing a bacterium of the species Clostridium acetobutylicum, to obtain ethanol, butanol and acetone by fermentation of said biomass according an ABE fermentation, these fermentation by-products being continuously extracted from the fermentation tanks to storage tanks where they are mixed with other fuels, for example petroleum derivatives already known, to obtain industrial fuel mixtures of high octane and energy capacity .
El Clostridium acetobutylicum (del latín acetum, vinagre y butylicum de butyrum , manteca, del griego boutyron), también denominado organismo Weizmann (1874-1952), rompe los azúcares y almidones y los utiliza como fuente de energ ía según un proceso de fermentación, dando como subproductos principalmente acetona, butanol y etanol y una cierta cantidad de hidrógeno gas recuperable, además de ácido acético, ácido láctico, ácidos propión icos e isopropanol. Estas bacterias principalmente utilizan melazas como sustrato (Ni Y. y Sun Z. (2009), Recent progress on industrial fermentative production of acetona- butanol-ethanol by Clostridium acetobutylicum in China, App. Microbiol. Bitechnol. 83: 415-423) y se trata de una especie anaeróbica obligada con forma de bastón que posee un cromosoma de 3,94 Mpb y un plásmido de 192 Kpb. En cepas silvestres, éste plásmido resulta indispensable para la solventogénesis (Lee S.Y., Park J.H., Jang S.H., Nielsen L.K., Ki m J. y Jung K.S. (2008), Fermentative butanol, production by Clostridia. Biotechnol. Bioeng., 101 : 209-228). C. acetobutylicum tiene la ventaja de ser muy diverso en los sustratos que metaboliza, utilizando glucosa, galactosa, celobiosa, mañosa, xilosa y arabinosa. Además, es también diversa la batería de enzimas que libera al medio, incluyendo a- y β-amilasas, a- y β-glucosidasas, pululanasas, amilopululanasas, entre otras. Durante el proceso de producción de butanol con Clostridium la bacteria sufre un cambio fisiológico importante: los ácidos acético y butírico son liberados al medio durante la fase de crecimiento exponencial, siendo reabsorbidos al interior de la célula para ser metabolizados a butanol, acetona y, aunque en mucho menor medida, en etanol. Clostridium acetobutylicum (from the Latin acetum, vinegar and butylicum of butyrum, butter, from the Greek boutyron), also called the Weizmann organism (1874-1952), breaks down sugars and starches and uses them as a source of energy according to a fermentation process, giving as main products acetone, butanol and ethanol and a certain amount of hydrogen gas recoverable, in addition to acetic acid, lactic acid, icos propionic acids and isopropanol. These bacteria mainly use molasses as a substrate (Ni Y. and Sun Z. (2009), Recent progress on industrial fermentative production of acetone-butanol-ethanol by Clostridium acetobutylicum in China, App. Microbiol. Bitechnol. 83: 415-423) and It is a forced anaerobic species with a cane shape that has a chromosome of 3.94 Mpb and a plasmid of 192 Kpb. In strains wild, this plasmid is indispensable for solventogenesis (Lee SY, Park JH, Jang SH, Nielsen LK, Ki m J. and Jung KS (2008), Fermentative butanol, production by Clostridia. Biotechnol. Bioeng., 101: 209-228 ). C. acetobutylicum has the advantage of being very diverse in the substrates it metabolizes, using glucose, galactose, cellobiose, mannose, xylose and arabinose. In addition, the battery of enzymes that releases the medium, including a- and β-amylases, a- and β-glucosidases, pululanases, amylopululanases, among others, is also diverse. During the production process of butanol with Clostridium the bacterium undergoes an important physiological change: acetic and butyric acids are released into the environment during the exponential growth phase, being reabsorbed into the cell to be metabolized to butanol, acetone and, although to a much lesser extent, in ethanol.
Esto se debe a que C. acetobutylicum carece de homeostasis al nivel de pH, por lo que depende íntimamente del pH extracelular. La presencia de ácidos en el medio puede provocar una pérdida del potencial protónico de la célula, inactivándola. El pH es muy importante durante la fermentación acetona-butanol, ya que la solventogénesis se inicia a un pH bajo. Sin embargo si éste se encuentra por debajo de 4,5 (antes de que se forme una cantidad suficiente de ácidos orgánicos), la solventogénesis será disminuida e improductiva. Una forma sencilla de incrementar el crecimiento, la utilización de los carbohidratos así como la producción de butanol es incrementando la capacidad tampón del medio. Dependiendo de las condiciones de cultivo y del tipo de sustrato empleado, las fermentaciones en lotes (batch) llevan de 2 a 6 días en completarse, alcanzando la concentración final total de solventes producidos de 12 a 20 g/l, pudiéndose separar éstos por destilación del medio de fermentación (Lee y col., 2008). This is because C. acetobutylicum lacks homeostasis at the pH level, so it depends intimately on the extracellular pH. The presence of acids in the medium can cause a loss of the protonic potential of the cell, inactivating it. The pH is very important during the acetone-butanol fermentation, since the solvent is started at a low pH. However, if it is below 4.5 (before a sufficient amount of organic acids is formed), the solvent will be diminished and unproductive. A simple way to increase growth, the use of carbohydrates as well as the production of butanol is to increase the buffer capacity of the medium. Depending on the culture conditions and the type of substrate used, batch fermentations take from 2 to 6 days to complete, reaching the final total concentration of solvents produced from 12 to 20 g / l, being able to separate these by distillation of the fermentation medium (Lee et al., 2008).
La formación de butanol marca el inicio de una fase de esporulación en el Clostridium, causando la inactivación del cultivo. Se ha observado que los cultivos continuos con sistemas integrados de separación in s/íu dan los mayores títulos de butanol. Así, el grupo de Ezeji y col. (Ezeji T.C., Qureshi N. y Blaschek H.P. (2004) Acetone Butanol Ethanol (ABE) production from concentrated substrate: Reduction in substrate inhibition by fedbatch technique and product inhibition by gas stripping, Appl. Microbiol. Biotechnol., 63: 653-658) obtuvo productividades de 0,91 g/l/h de butanol eliminando éste del medio de cultivo activo mediante un gas portador. En 1983 Lin y Blaschek caracterizaron una cepa de C. acetobutylicum que alcanzó títulos de producción de butanol de 7,9 g/l en un medio que contenía extracto de maíz al 6%. En ese trabajo, los autores informaron del desarrollo de mutantes tolerantes al butanol que obtuvieron mediante transferencias consecutivas a medios con cantidades gradualmente mayores de butanol . En efecto, una de sus cepas tolerantes reportó el máximo porcentaje de consumo de ca rboh id rato , e l m ejor rend i m ie nto d e co n v e rs i ó n a b u t a n o l y l a mayor concentración alcanzada (1 8,6 g/l de butanol). Sin embargo, como C. acetobutylicum posee una fermentación mixta, también se produjeron cantidades importantes de acetona y etanol, aún en la cepa adaptada (Lin Y.L. y Blaschek H.P., Butanol production by a butanol-tolerant strain of Clostridium acetobutylicum in extruded corn broth, Appl. Environ. Microbiol. 45: 966-973). Utilizando cultivos lote con un 6% de glucosa y cepas de C. beijerinckii, se alcanzaron títulos de hasta 1 8,6 g/l de butanol (Formanek J., Mackie R., Blaschek H.P. (1997), Enhanced butanol production by Clostridium beijerinckii BA101 grown in semidefined P2 médium containing 6 percent maltodextrin or glucose, Appl. Environ. Microbiol., 63: 2306-2310), aunque también se produjeron 8,6 g/l de acetona. Butanol formation marks the beginning of a sporulation phase in the Clostridium, causing crop inactivation. It has been observed that continuous cultures with integrated separation systems in s / íu give the highest butanol titers. Thus, the group of Ezeji et al. (Ezeji TC, Qureshi N. and Blaschek HP (2004) Acetone Butanol Ethanol (ABE) production from concentrated substrate: Reduction in substrate inhibition by fedbatch technique and product inhibition by gas stripping, Appl. Microbiol Biotechnol., 63: 653-658) obtained productivity of 0.91 g / l / h of butanol by removing it from the active culture medium by means of a carrier gas. In 1983 Lin and Blaschek characterized a strain of C. acetobutylicum that reached butanol production titres of 7.9 g / l in a medium containing 6% corn extract. In that work, the authors reported the development of butanol tolerant mutants that they obtained through consecutive transfers to media with gradually larger amounts of butanol. In fact, one of its tolerant strains reported the highest percentage of consumption of cabobo id id time, the highest yield of consumption and nabutanolyla with the highest concentration achieved (1 8.6 g / l of butanol). However, since C. acetobutylicum has mixed fermentation, significant amounts of acetone and ethanol were also produced, even in the adapted strain (Lin YL and Blaschek HP, Butanol production by a butanol-tolerant strain of Clostridium acetobutylicum in extruded corn broth, Appl. Environ. Microbiol. 45: 966-973). Using batch cultures with 6% glucose and strains of C. beijerinckii, titers of up to 1 8.6 g / l of butanol were achieved (Formanek J., Mackie R., Blaschek HP (1997), Enhanced butanol production by Clostridium beijerinckii BA101 grown in semidefined P2 medium containing 6 percent maltodextrin or glucose, Appl. Environ. Microbiol., 63: 2306-2310), although 8.6 g / l acetone was also produced.
Así, la aplicación industrial de la fermentación ABE es todavía muy limitada, tanto por el elevado costo de recuperación-separación de los productos como por su baja concentración, en particular por los bajos rendimientos de butanol, así como también por la inactivación del microorganismo durante la producción de acetona-butanol-etanol. El interés reciente en la producción de butanol a partir de biomasa ha permitido reexaminar la fermentación ABE para incluir estrategias que permitan reducir o eliminar la toxicidad del butanol en el medio de cultivo o modificar genéticamente el organismo para obtener una mejor especificidad del producto y rendimiento (Chukwuemeka y col ., 2007, BioTecnología, Año 2009, Vol. 13 No. 3). Thus, the industrial application of ABE fermentation is still very limited, both due to the high cost of recovery-separation of the products and their low concentration, in particular due to the low yields of butanol, as well as due to the inactivation of the microorganism during the production of acetone-butanol-ethanol. The recent interest in the production of butanol from biomass has allowed reexamination of ABE fermentation to include strategies that reduce or eliminate the toxicity of butanol in the culture medium or genetically modify the organism to obtain a better product specificity and yield ( Chukwuemeka et al., 2007, BioTechnology, Year 2009, Vol. 13 No. 3).
Por su parte, es sabido que el butanol puede emplearse per se como combustible en motores de combustión interna, aunque habitualmente se emplea en forma de mezcla con los combustibles convencionales. Debido a que se trata de un compuesto no polar, su similitud con la gasolina es mayor en comparación con el etanol. Actualmente la producción industrial de butanol a partir de fuentes naturales se basa en los desarrol los de Du Pont, BP y Butalco, q ue está estudiando la producción de levaduras modificadas genéticamente para obtener bioetanol a partir de materiales celulósicos. Las ventajas del uso de butanol en comparación con el de etanol estriban esencialmente en que el primero tolera mejor una posible contaminación con agua y que es menos corrosivo que el etanol, lo que facilita su empleo en las instalaciones de distribución de gasolinas, Ig ual mente, l as mezcl as obten idas a parti r d e butanol y com bustibl es convencionales tienen una menor tendencia a la separación de fases que el etanol, lo cual se ve favorecido por la sinergia en la presión de vapor de las co- mezclas de butanol y gasol inas con conten ido en etanol , lo cual facil ita su almacenaje y distribución. For its part, it is known that butanol can be used per se as fuel in internal combustion engines, although it is usually used in the form of a mixture with conventional fuels. Because it is a non-polar compound, its similarity with gasoline is greater compared to ethanol. Currently, the industrial production of butanol from natural sources is based on the developments of Du Pont, BP and Butalco, which is studying the production of genetically modified yeasts to obtain bioethanol from cellulosic materials. The advantages of the use of butanol compared with that of ethanol are essentially that the former better tolerates possible contamination with water and that it is less corrosive than ethanol, which facilitates its use in gasoline distribution facilities, also The mixtures obtained from butanol and fuel are conventional and have a lower tendency to phase separation than ethanol, which is favored by the synergy in the vapor pressure of the butanol mixtures and Gasol inas with ethanol content, which facilitates storage and distribution.
En este sentido, el octanaje del n-butanol es similar al de las gasolinas, presentando un RON (Research Octane Number) de 96 y un MON (Motor Octane Number) de 78, lo que resulta en un número (R+M)/2 de 87, mientras que el t- butanol alcanza un RON de 105 y un MON de 89. Igualmente, cuando se desea una mayor viscosidad para el combustible final, las mezclas con butanol permiten obtener una viscosidad similar a la del combustible diesel. En la tabla siguiente se observan distintas características de los combustibles basados en gasolina y alcoholes actualmente empleados. In this sense, the octane rating of n-butanol is similar to that of gasoline, presenting a RON (Research Octane Number) of 96 and a MON (Motor Octane Number) of 78, resulting in a number (R + M) / 2 of 87, while t-butanol reaches an RON of 105 and a MON of 89. Similarly, when a higher viscosity is desired for the final fuel, blends with butanol allow a viscosity similar to that of diesel fuel to be obtained. The following table shows different characteristics of gasoline fuels and alcohols currently used.
Figure imgf000005_0001
Figure imgf000005_0001
En el documento WO 2010/024715, "Strain of Clostridium acetobutylicum and a method of producing organic solvents", se describe un método para producir solventes orgánicos que comprende el cultivo anaerób ico d e l a cepa d e Clostridium acetobutylicum 3108 en un medio suplementado con fuentes de carbono, preferentemente suero lácteo (Ejemplo 3), por fermentación de sacarosa y melaza a 36,5°C. In WO 2010/024715, "Strain of Clostridium acetobutylicum and a method of producing organic solvents", a method for producing organic solvents comprising the anaerobic culture of the strain of Clostridium acetobutylicum 3108 in a medium supplemented with carbon sources, preferably milk whey (Example 3), by fermentation of sucrose and molasses at 36.5 ° C.
La WO 2010/000649 A1 , "Method for the combined production of butanol and hydrogen", se refiere a un proceso para la producción combinada de butanol e hidrógeno a partir de biomasa que comprende los pasos de fermentar la biomasa para obtener butanol en una primera mezcla de reacción, eliminándose el butanol y el hidrógeno de esta primera mezcla para obtener un efluente y posteriormente emplear el efluente como sustrato en una segunda mezcla de reacción, en particular en un proceso de obtención de hidrógeno. WO 2010/000649 A1, "Method for the combined production of butanol and hydrogen", refers to a process for the combined production of butanol and hydrogen from biomass comprising the steps of fermenting the biomass to obtain butanol in a first reaction mixture, removing the butanol and hydrogen from this first mixture to obtain an effluent and subsequently using the effluent as a substrate in a second reaction mixture, in particular in a process for obtaining hydrogen.
El objeto de la invención es proporcionar un procedimiento para el al macenam iento de l a en erg ía sol ar captada por u n colector solar de concentración parabólico, en adelante colector solar, al que se acopla, por ejemplo en su base, un tanque conteniendo una solución salina y que actúa tanto soportando los posibles esfuerzos a los que se ve sometido el colector solar como para facil itar la temperatura y alimentar uno o más tanques de fermentación anaerobia de biomasa que contienen una bacteria de la especie Clostridium acetobutylicum, para la obtención de etanol, butanol y acetona por fermentación de dicha biomasa según una fermentación ABE, siendo estos subproductos de la fermentación extraídos en continuo desde los tanques de fermentación hasta unos tanques de almacenamiento donde se mezclan con otros combustibles, por ejemplo derivados del petróleo ya conocidos, para obtener mezclas combustibles industriales de alto octanaje y capacidad energética, siendo el procedimiento aplicable a escala industrial, limpio y respetuoso con el medioambiente y de alta productividad. The object of the invention is to provide a method for the storage of the solar energy captured by a solar collector of parabolic concentration, hereinafter solar collector, to which a tank containing, for example at its base, is coupled saline solution and that acts both supporting the possible efforts to which the solar collector is subjected and to facilitate the temperature and feed one or more anaerobic biomass fermentation tanks that contain a bacterium of the species Clostridium acetobutylicum, to obtain ethanol, butanol and acetone by fermentation of said biomass according to an ABE fermentation, these fermentation by-products being continuously extracted from the fermentation tanks to storage tanks where they are mixed with other fuels, for example petroleum derivatives already known, for obtain industrial fuel mixtures of high octane and energy capacity, being the p Procedure applicable to industrial scale, clean and environmentally friendly and high productivity.
Para ello, el procedimiento de la invención se basa esencialmente en utilizar la energía del sol concentrada en el colector solar citado para calentar un tanque que contiene una solución de diversas sales cuyo efecto es, por un lado, evitar los posibles esfuerzos mecánicos a los que puede verse sometido el colector solar debido a condiciones ambientales tales como fuertes vientos, elevaciones del terreno, etc., y, por otro lado, suplementar con componentes favorecedores de la fermentación uno o más tanques de fermentación anaerobia de biomasa, donde la fermentación de la biomasa se lleva a cabo según una proceso tipo ABE mediante la bacteria Clostridium acetobutylicum. El resultado de esta fermentación es la obtención de etanol, butanol y acetona, y de hidrógeno en menor proporción, siendo estos subproductos extraídos en continuo desde los tanques de fermentación hasta unos tanques de almacenamiento donde se mezclan con otros combustibles para obtener mezclas combustibles industriales. For this, the process of the invention is essentially based on using the energy of the sun concentrated in the said solar collector to heat a tank containing a solution of various salts whose effect is, on the one hand, to avoid the possible mechanical stresses to which the solar collector due to environmental conditions such as high winds, terrain elevations, etc., and, on the other hand, supplement with fermentation-promoting components one or more anaerobic biomass fermentation tanks, where biomass fermentation is carried carried out according to an ABE type process using the bacterium Clostridium acetobutylicum. The result of this fermentation is the obtaining of ethanol, butanol and acetone, and hydrogen in a smaller proportion, these by-products being continuously extracted from the fermentation tanks to storage tanks where they are mixed with other fuels to obtain industrial fuel mixtures.
La fermentación ABE se ve influida por la presencia de determinadas sales inorgánicas, así como por la cantidad de glucosa presente en el med io de fermentación. A este respecto, Frederic Monot y col. (en "Acetone and Butanol Production by Clostridium acetobutylicum in a Synthetic Médium", Applied and Environmental Microbiology, 1982, p. 1318-1324 Vol. 44, N° 6) han demostrado que la presencia en el medio de cultivo de Fe2+ y de K+ favorece el crecimiento bacteriano y la conversión de los azúcares en los solventes buscados. ABE fermentation is influenced by the presence of certain inorganic salts, as well as by the amount of glucose present in the fermentation medium. In this regard, Frederic Monot et al. (in "Acetone and Butanol Production by Clostridium acetobutylicum in a Synthetic Medium", Applied and Environmental Microbiology, 1982, p. 1318-1324 Vol. 44, No. 6) have shown that the presence in the culture medium of Fe 2+ and K + favors bacterial growth and the conversion of sugars in the solvents sought.
Así, el proceso de la invención incluye las etapas de: i) emplear la energía solar recogida en un colector solar para calentar un tanque situado en la base del mismo que contiene una disolución de sales inorgánicas que incluyen iones Fe2+ y K+; ii) suplementar con esta disolución que incluye iones Fe2+ y K+ unos tanques de fermentación anaerobia que contienen Clostridium acetobutylicum así como una fuente de hidratos de carbono, llevándose a cabo el proceso de fermentación de ta l es h id ratos d e ca rbono bajo cond iciones d e suplementación al medio de los citados iones y su conversión a acetona, etanol y butanol; iii) extracción en continuo de los solventes y del H2 resultado del proceso de fermentación hacia correspondientes tanques de almacenamiento; y iv) mezcla de los solventes obtenidos con otros alcoholes o combustibles convencionales y apl icación del h idrógeno gas obten ido para otros procesos industriales o para su almacenamiento. Thus, the process of the invention includes the steps of: i) using the solar energy collected in a solar collector to heat a tank located at the base thereof containing a solution of inorganic salts that include Fe 2+ and K + ions; ii) supplement with this solution that includes Fe 2+ and K + ions anaerobic fermentation tanks containing Clostridium acetobutylicum as well as a source of carbohydrates, carrying out the fermentation process of this type of carbon under conditions of supplementation to the medium of said ions and their conversion to acetone, ethanol and butanol; iii) continuous extraction of solvents and H 2 resulting from the fermentation process to corresponding storage tanks; Y iv) mixing of the solvents obtained with other alcohols or conventional fuels and application of the hydrogen gas obtained for other industrial processes or for storage.
En un ejemplo de realización del procedimiento de la invención, el colector solar utilizado en la etapa i) es del tipo descrito en la solicitud de patente española n° 201031 287, de la misma solicitante, ya que presenta grandes ventajas en cuanto a estabilidad y auto-orientabilidad. Así, partiendo por ejemplo del colector parabólico mencionado, en la base de éste se dispone un tanque destinado a alojar una disolución de sales inorgánicas conteniendo iones Fe2+ y K+, por ejemplo una disolución de sulfato ferroso y KCI tamponada con NaH2PO4 -2H2O y Na2HPO3- 12H2O (véase Frederic Monot y col., supra). Este tanque puede estar dispuesto en la base del colector solar formando parte de la base del mismo, disminuyendo por este medio la absorción de los esfuerzos mecánicos soportados por el propio colector solar o bien constituye un elemento anexo a la base del propio colector solar. In an exemplary embodiment of the process of the invention, the solar collector used in step i) is of the type described in Spanish patent application No. 201031 287, of the same applicant, since it has great advantages in terms of stability and self-orientation Thus, starting for example from the parabolic collector mentioned, at the base of this one, a tank is arranged to accommodate a solution of inorganic salts containing Fe 2+ and K + ions, for example a solution of ferrous sulfate and KCI buffered with NaH 2 PO 4 -2H 2 O and Na 2 HPO3-12H 2 O (see Frederic Monot et al., Supra). This tank can be arranged in the base of the solar collector as part of the base of the same, thereby reducing the absorption of the mechanical stresses supported by the solar collector itself or it constitutes an element attached to the base of the solar collector itself.
Preferentemente, la temperatura de calentamiento de la etapa i) alcanzada en el tanque conteniendo la disolución de iones Fe2+ y K+ oscila entre 35 y 50°C, siendo especialmente preferente una temperatura de 46°C. Preferably, the heating temperature of stage i) reached in the tank containing the Fe 2+ and K + ion solution ranges between 35 and 50 ° C, with a temperature of 46 ° C being especially preferred.
En la etapa de proceso ii), parte de esta solución calentada se alimenta a al menos u n tanq ue de fermentación q ue contiene la bacteria Clostridium acetobutylicum junto con una fuente de hidratos de carbono, donde se lleva a cabo la fermentación preferentemente a 46°C. En una realización preferente de la invención, dicha fuente de hidratos de carbono es pulpa de yuca, patata o batata, la cual se alimenta directamente a los tanques tras un tratamiento previo para facilitar la fermentación. In process step ii), part of this heated solution is fed to at least one fermentation tank containing the Clostridium acetobutylicum bacteria together with a source of carbohydrates, where fermentation is preferably carried out at 46 ° C. In a preferred embodiment of the invention, said carbohydrate source is cassava, potato or sweet potato pulp, which is fed directly to the tanks after a previous treatment to facilitate fermentation.
En la etapa iii), los solventes resultado de la fermentación se extraen en continuo, por ejemplo por destilación, proporcionándose la temperatura adecuada desde el propio colector solar, de forma que no se llega a producir el deterioro de la bacteria por su transformación a espora. Por su parte, el hidrógeno gas subproducto de la fermentación se puede reutilizar en múltiples procesos industriales, por ejemplo para su empleo en la formación de alcoholes en base a gas de síntesis, o para su almacenamiento. In step iii), the solvents resulting from the fermentation are continuously extracted, for example by distillation, providing the appropriate temperature from the solar collector itself, so that the deterioration of the bacteria is not produced by its transformation to spore. For its part, the hydrogen gas by-product of the fermentation can be reused in multiple industrial processes, for example for use in the formation of alcohols based on synthesis gas, or for storage.

Claims

REIVINDICACIONES
1. Procedimiento para el almacenamiento de la energía solar captada por un colector solar de concentración parabólico caracterizado porque incluye las etapas de: i) emplear la energía solar recogida en el colector solar para calentar un tanque que contiene una disolución de sales inorgánicas que incluyen iones Fe2+ y K+; ii) suplementar con esta disolución que incluye iones Fe2+ y K+ unos tanques de fermentación anaerobia que contienen Clostridium acetobutylicum así como una fuente de hidratos de carbono, llevándose a cabo el proceso de fermentación de tales hidratos de carbono bajo condiciones de suplementación al medio de los citados iones, y su conversión a acetona, etanol y butanol; iii) extracción en continuo de los solventes y del H2 resultado del proceso de fermentación hacia correspondientes tanques de almacenamiento; y iv) mezcla de los solventes obtenidos con otros alcoholes o combustibles convencionales y reutilización del hidrógeno gas obtenido como subpropducto. 1. Procedure for the storage of solar energy captured by a parabolic concentration solar collector characterized in that it includes the steps of: i) using the solar energy collected in the solar collector to heat a tank containing a solution of inorganic salts that include ions Fe 2+ and K + ; ii) supplement with this solution that includes Fe 2+ and K + ions anaerobic fermentation tanks containing Clostridium acetobutylicum as well as a source of carbohydrates, carrying out the process of fermentation of such carbohydrates under supplementation conditions at medium of said ions, and their conversion to acetone, ethanol and butanol; iii) continuous extraction of solvents and H 2 resulting from the fermentation process to corresponding storage tanks; and iv) mixing of the solvents obtained with other alcohols or conventional fuels and reuse of the hydrogen gas obtained as a by-product.
2. Procedimiento según la reivindicación 1, caracterizado porque la disolución empleada en la etapa ii) como fuente de iones Fe2+ y K+ es una disolución de sulfato ferroso y KCI tamponada con NaH2PO4 -2H2O y Na2HPO3-12H2O 2. Method according to claim 1, characterized in that the solution used in step ii) as a source of Fe 2+ and K + ions is a solution of ferrous sulfate and KCI buffered with NaH 2 PO 4 -2H 2 O and Na 2 HPO 3 -12H 2 O
3. Procedimiento según la reivindicación 1 o 2, caracterizado porque la temperatura de calentamiento de la etapa i) alcanzada en el tanque conteniendo la disolución de iones Fe2+ y K+ oscila entre 35 y 50°C. 3. Method according to claim 1 or 2, characterized in that the heating temperature of stage i) reached in the tank containing the Fe 2+ and K + ion solution ranges between 35 and 50 ° C.
4. Procedimiento según la reivindicación 3, caracterizado porque la temperatura es de 46°C. Procedimiento según la reivindicación 1 , caracterizado porque la fuente de hidratos de carbono de la etapa ii) es pulpa de yuca, patata o batata. 4. Method according to claim 3, characterized in that the temperature is 46 ° C. Method according to claim 1, characterized in that the carbohydrate source of stage ii) is cassava, potato or sweet potato pulp.
Procedinniento según la reivindicación 1 , caracterizado porque la extracción en continuo de los solventes de la etapa iii) se lleva a cabo por destilación fraccionada y porque el subproducto de h idrógeno gas se recicla industrialmente. Procedure according to claim 1, characterized in that the continuous extraction of the solvents of step iii) is carried out by fractional distillation and because the by-product of hydrogen gas is recycled industrially.
PCT/ES2012/070167 2012-03-14 2012-03-14 Method for storing solar energy in the form of environmentally friendly fuels WO2013135917A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201230391A ES2425694B1 (en) 2012-03-14 2012-03-14 Procedure for the storage of solar energy in the form of ecological fuels
ESP201230391 2012-03-14

Publications (1)

Publication Number Publication Date
WO2013135917A1 true WO2013135917A1 (en) 2013-09-19

Family

ID=47088577

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2012/070167 WO2013135917A1 (en) 2012-03-14 2012-03-14 Method for storing solar energy in the form of environmentally friendly fuels

Country Status (3)

Country Link
ES (1) ES2425694B1 (en)
UY (1) UY34241A (en)
WO (1) WO2013135917A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008115080A1 (en) * 2007-03-19 2008-09-25 Lanzatech New Zealand Limited Alcohol production process
US20090155864A1 (en) * 2007-12-14 2009-06-18 Alan Joseph Bauer Systems, methods, and devices for employing solar energy to produce biofuels

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008115080A1 (en) * 2007-03-19 2008-09-25 Lanzatech New Zealand Limited Alcohol production process
US20090155864A1 (en) * 2007-12-14 2009-06-18 Alan Joseph Bauer Systems, methods, and devices for employing solar energy to produce biofuels

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PINTO MARIANO, A. ET AL.: "Bioproduction of Butanol in Bioreactors: New insights From Simultaneous", SITU BUTANOL RECOVERY TO ELIMINATE PRODUCTO TOXICITY. BIOTECHNOLOGY AND BIOENGINEERING., 8 August 2011 (2011-08-08) *

Also Published As

Publication number Publication date
ES2425694A1 (en) 2013-10-16
ES2425694B1 (en) 2014-09-29
UY34241A (en) 2012-09-28

Similar Documents

Publication Publication Date Title
Veza et al. Recent advances in butanol production by acetone-butanol-ethanol (ABE) fermentation
Pugazhendhi et al. Biobutanol as a promising liquid fuel for the future-recent updates and perspectives
Qureshi et al. Butanol,‘a superior biofuel’production from agricultural residues (renewable biomass): recent progress in technology
Nanda et al. Fermentative production of butanol: perspectives on synthetic biology
Jang et al. Butanol production from renewable biomass by clostridia
Fernández‐Naveira et al. H‐B‐E (hexanol‐butanol‐ethanol) fermentation for the production of higher alcohols from syngas/waste gas
Kumar et al. Developments in biobutanol production: new insights
Cheng et al. Engineering Clostridium for improved solvent production: recent progress and perspective
Jones et al. Acetone-butanol fermentation revisited
Zverlov et al. Bacterial acetone and butanol production by industrial fermentation in the Soviet Union: use of hydrolyzed agricultural waste for biorefinery
Wang et al. Engineering clostridia for butanol production from biorenewable resources: from cells to process integration
ES2400285T3 (en) Process to produce ethanol
Dürre Biobutanol: an attractive biofuel
KR101312107B1 (en) Microbial alcohol production process
Lee et al. Fermentative butanol production by Clostridia
KR102098843B1 (en) A fermentation and simulated moving bed process
Zhao et al. Biological production of butanol and higher alcohols
Yang et al. Co-fermentation of hemicellulose and starch from barley straw and grain for efficient pentoses utilization in acetone–butanol–ethanol production
US20100105115A1 (en) Alcohol production process
US20120252082A1 (en) Fermentation Process For Controlling Butanediol Production
Bankar et al. Enhanced isopropanol–butanol–ethanol (IBE) production in immobilized column reactor using modified Clostridium acetobutylicum DSM792
Gottumukkala et al. Biobutanol production: microbes, feedstock, and strategies
ES2452069T3 (en) Method for the combined production of butanol and hydrogen
Amiri et al. Biobutanol from lignocellulosic wastes
Panahi et al. Bio-butanol production: scope, significance, and applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12871530

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 03/03/2015)

122 Ep: pct application non-entry in european phase

Ref document number: 12871530

Country of ref document: EP

Kind code of ref document: A1