WO2013134326A1 - Coupling device having a structured reflective surface for coupling input/output of an optical fiber - Google Patents
Coupling device having a structured reflective surface for coupling input/output of an optical fiber Download PDFInfo
- Publication number
- WO2013134326A1 WO2013134326A1 PCT/US2013/029220 US2013029220W WO2013134326A1 WO 2013134326 A1 WO2013134326 A1 WO 2013134326A1 US 2013029220 W US2013029220 W US 2013029220W WO 2013134326 A1 WO2013134326 A1 WO 2013134326A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- optical fiber
- reflective surface
- structured reflective
- coupling device
- optical
- Prior art date
Links
- 239000013307 optical fiber Substances 0.000 title claims abstract description 107
- 230000008878 coupling Effects 0.000 title claims abstract description 91
- 238000010168 coupling process Methods 0.000 title claims abstract description 91
- 238000005859 coupling reaction Methods 0.000 title claims abstract description 91
- 230000003287 optical effect Effects 0.000 claims abstract description 54
- 230000014759 maintenance of location Effects 0.000 claims abstract description 27
- 238000000034 method Methods 0.000 claims description 15
- 239000000463 material Substances 0.000 claims description 13
- 229910052751 metal Inorganic materials 0.000 claims description 3
- 239000002184 metal Substances 0.000 claims description 3
- 239000000835 fiber Substances 0.000 abstract description 34
- 238000004519 manufacturing process Methods 0.000 abstract description 4
- 238000006243 chemical reaction Methods 0.000 description 7
- 239000007769 metal material Substances 0.000 description 6
- 230000005540 biological transmission Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 238000005286 illumination Methods 0.000 description 5
- 239000011241 protective layer Substances 0.000 description 5
- 238000005253 cladding Methods 0.000 description 3
- 230000008054 signal transmission Effects 0.000 description 3
- 238000005476 soldering Methods 0.000 description 3
- 238000003466 welding Methods 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 2
- 229910001374 Invar Inorganic materials 0.000 description 2
- 229910000990 Ni alloy Inorganic materials 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 230000007812 deficiency Effects 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 229910000833 kovar Inorganic materials 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 238000002310 reflectometry Methods 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 230000002463 transducing effect Effects 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 238000001579 optical reflectometry Methods 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 230000014616 translation Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
- G02B6/4201—Packages, e.g. shape, construction, internal or external details
- G02B6/4204—Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
- G02B6/4214—Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical element having redirecting reflective means, e.g. mirrors, prisms for deflecting the radiation from horizontal to down- or upward direction toward a device
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D22/00—Shaping without cutting, by stamping, spinning, or deep-drawing
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/262—Optical details of coupling light into, or out of, or between fibre ends, e.g. special fibre end shapes or associated optical elements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
- G02B6/4201—Packages, e.g. shape, construction, internal or external details
- G02B6/4219—Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
- G02B6/4236—Fixing or mounting methods of the aligned elements
- G02B6/424—Mounting of the optical light guide
- G02B6/4243—Mounting of the optical light guide into a groove
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
- G02B6/4201—Packages, e.g. shape, construction, internal or external details
- G02B6/4256—Details of housings
- G02B6/4262—Details of housings characterised by the shape of the housing
- G02B6/4263—Details of housings characterised by the shape of the housing of the transisitor outline [TO] can type
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
- G02B6/4295—Coupling light guides with opto-electronic elements coupling with semiconductor devices activated by light through the light guide, e.g. thyristors, phototransistors
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
- G02B6/4201—Packages, e.g. shape, construction, internal or external details
- G02B6/4204—Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
- G02B6/4206—Optical features
Definitions
- the present invention relates to fiber optic signal transmission, in particular a device for physically and optically coupling an optical fiber for routing optical signals.
- optical signals are transmitted over optical fibers, through a network of optical fibers and associated connectors and switches.
- the optical fibers demonstrate a significantly higher bandwidth data transmission capacity and lower signal losses compared to copper wires for a given physical size/space.
- optical-to-electrical conversion In fiber optic signal transmission, conversions of optical signals and electrical signals take place beyond the terminating end of the optical fiber. Specifically, at the output end of an optical fiber, light from the optical fiber is detected by a transducing receiver and converted into an electrical signal for further data processing downstream (i.e., optical-to-electrical conversion). At the input end of the optical fiber, electrical signals are converted into light to be input into the optical fiber by a transducing transmitter (i.e., electrical-to-optical conversion).
- optical elements such as lenses are required to collimate and/or focus light from a light source (e.g., a laser) into the input end of the optical fiber, and to collimate and/or focus light from the output end of the optical fiber to a photo diode detector.
- a light source e.g., a laser
- optical fibers must be precisely aligned at high tolerance to the transmitters and receivers, so that the optical fibers are precisely aligned to the optical elements supported with respect to the transmitters and receivers.
- the transmitters and receivers are provided with coupling structures having connection ports to which optical fibers are coupled using connectors terminating the optical fibers.
- connection ports Given optical fibers are brittle, they must be handled with care during and after physical connection to the transmitter and receiver structures.
- the transmitters and receivers and associated structures having the connection ports are therefore generally bulky, which take up significant space, thereby making them not suitable for use in smaller electronic devices.
- the coupling structure for optical fibers and transmitters and receivers are generally quite expensive and comparatively large in size for a given port count.
- the present invention provides a coupling device for physically and optically coupling an input/output end of an optical fiber for routing optical signals.
- the device may be implemented for physically and optically coupling an optical fiber to an optical receiver and/or transmitter, which improves manufacturability, ease of use and reliability at reduced costs, thereby overcomes many of the drawbacks of the prior art structures.
- the coupling device includes a structured surface that functions as an optical element that directs light to/from the input/output ends of the optical fiber by reflection (which may also include deflection and diffraction of incident light).
- the coupling device also includes an optical fiber retention structure, which securely and accurately aligns the optical fiber with respect to the structured reflective surface.
- the fiber retention structure includes at least one groove (or one or more grooves) that positively receives the optical fiber in a manner with the end of the optical fiber at a defined distance to and aligned with the structured reflective surface. The location and orientation of the structured reflective surface is fixed in relation to the fiber retention structure.
- the fiber retention structure and the structured reflective surface are defined on the same (e.g., monolithic) structure of the coupling device. In an alternate embodiment, the fiber retention structure and the structure reflective surface are defined on separate structures that are coupled together to form the coupling device.
- the structured reflective surface may be configured to be flat, concave or convex.
- the structured reflective surface has a smooth surface with mirror finish. It may instead be a textured surface that is reflective.
- the structured reflective surface may have a uniform surface characteristic, or varying surface characteristics, such as varying degree of smoothness and/or textures, or a combination of various regions of smooth and textured surfaces making up the structured reflective surface.
- the structured reflective surface may have a surface profile and/or optical characteristic corresponding to at least one of the following equivalent optical element: mirror, focusing lens, diverging lens, diffraction grating, or a combination of the foregoing.
- the structure reflective surface may have more than one region corresponding to a different equivalent optical element (e.g., a central region that is focusing surrounded by an annular region that is diverging).
- the structured reflective surface is defined on an opaque material that does not transmit light through the surface.
- the structured reflective surface and fiber retention structure are defined by an open structure, which lends itself to mass production processes such as stamping, which are low cost, high throughput processes.
- the structured reflective surface and the fiber retention grooves are formed by stamping a metal material.
- the metal material may be chosen to have high stiffness (e.g., stainless steel), chemical inertness (e.g., titanium), high temperature stability (nickel alloy), low thermal expansion (e.g., Invar), or to match thermal expansion to other materials (e.g., Kovar for matching glass).
- the material may be a hard plastic or other hard polymeric material.
- the coupling device may be attached to an optical transmitter and/or receiver, with the structured reflective surface aligned to the light source (e.g., a laser) in the transmitter or to the detector (e.g., a photo diode) in the receiver.
- the transmitter/receiver may be hermetically sealed to the coupling device.
- the transmitter/receiver may be provided with conductive contact pads for electrical coupling to external circuitry. Given the fixed structured reflective surface and the fiber retention structure are precisely defined on the same coupling device, by aligning the light source in the transmitter or the light detector in the receiver to the structured reflective surface in the coupling device, the light source/detector would be precisely aligned to the input/output end of the optical fiber.
- a method of precise alignment of the transmitter/receiver to the coupling device comprises superimposing complementary alignment marks provided on the transmitter/receiver and the coupling device.
- an optical fiber is structured as an active optical cable (AOC), which is a cable known in the art to have a transmitter at one terminal end of the optical fiber for electrical-to-optical conversion, and a receiver at another terminal end of the optical fiber for optical-to-electrical conversion.
- AOC active optical cable
- the coupling device in accordance with the present invention overcomes many of the deficiencies of the prior art, which provides ease of use and high reliability with low
- the inventive coupling device may be configured to support a single or multiple fibers, for optical input, optical output or both (for bi-directional data communication).
- Fig. 1 is a schematic diagram of the configuration of data transmission over an optical fiber, in which the coupling device of the present invention is implemented.
- Fig. 2 is a schematic diagram illustrating the optical illumination pattern at the input end of the optical fiber.
- Fig. 3 is a schematic diagram illustrating the optical illumination pattern at the output end of the optical fiber.
- Fig. 4 is a schematic diagram illustrating the footprint of illumination on the structured reflective surfaces at the input end and the output end.
- Fig. 5 is a schematic diagram illustrating forming of a flat mirror with a spherical punch having a smooth flat surface.
- Fig. 6 is a perspective view of the punch geometry for stamping a groove and a structured surface profile in the coupling device.
- Fig. 7A is a sectional view along a longitudinal axis of the optical fiber;
- Fig. 7B is a perspective sectional view thereof.
- FIG. 8 is a perspective view of an integrated transmitter/receiver module in accordance with one embodiment of the present invention
- Fig. 8B is a perspective view of the transmitter in accordance with one embodiment of the present invention
- Fig. 8C is a perspective view of the receiver in accordance with one embodiment of the present invention.
- Fig. 9 is a perspective view of an active optical cable (AOC) in accordance with one embodiment of the present invention.
- Fig. 10A is a further embodiment of a coupling device having an alignment mark
- Fig. 10B is a further embodiment of a transmitter/receiver.
- FIG. 11 schematically illustrates an assembly stand and assembling process including alignment, in accordance with one embodiment of the present invention.
- the present invention provides a coupling device for physically and optically coupling an input/output end of an optical fiber for routing optical signals.
- the device may be implemented for physically and optically coupling an optical fiber to an optical receiver and/or transmitter, which improves manufacturability, ease of use and reliability at reduced costs, thereby overcomes many of the drawbacks of the prior art structures.
- the coupling device includes a structured surface that functions as an optical element that directs light to/from the input/output ends of the optical fiber by reflection (which may also include deflection and diffraction of incident light). [NOTE: Ryan: do you want to limit to reflection or expand scope to include deflection and diffraction?)
- FIG. 1 schematically illustrates the configuration of data link for transmitting information over an optical fiber, in which the coupling device of the present invention is implemented. For simplicity, only some of the basic elements are included in Fig. 1 to explain the invention.
- the terminating end sections of the optical fibers 10 are directed at structured reflective surfaces 12 and 14.
- a transmitter 16 having a light source e.g., a laser, such as a VCSEL - Vertical Cavity Surface-Emitting Laser
- the collimated light output of the transmitter is directed at the structured refiective surface 12 of a coupling device in accordance with the present invention, which focuses light at the input end 17 of the optical fiber 10.
- Light signals are transmitted through the optical fiber 10, and output to the structured reflective surface 14 in another coupling device in accordance with the present invention, which focuses the output light to an optical detector (e.g., a PIN photo diode) in a receiver 18.
- the receiver converts optical signals into electrical signals.
- data is transmitted via optical signals over the optical fiber 10, and recovered as electrical signals at the receiver 18 corresponding to the input data.
- the optical fiber may be a 50/125 graded index optical fiber, with a numerical aperture (NA) of 0.2 +/- 0.015.
- the structured reflective surfaces 12 and 14 are configured as concave mirrors, having an aperture width not exceeding 250 ⁇ in order to match the standard pitch between two optical fibers in a ribbon cable.
- the optical axis of the concave mirrors are aligned with the axis of the optical fiber 10.
- the ends 17 and 19 (flat or angled-polished end faces) of the optical fibers are at an effective distance (along the optical axis) of about 0.245 mm from the respective structured reflective surfaces 12 and 14.
- the light source in the transmitter 16 and the optical detector in the receiver 18 are at an effective distance (along the optical axis) of about 0.1 mm from the respective structured reflective surfaces 12 and 14.
- the optical source may be a VCSEL, having 850 nm wavelength, 6mW optical output power, and 20 to 30 degrees beam divergence.
- the optical detector may be a PIN photo diode with an active area of about 70 ⁇ diameter.
- FIGs. 2 and 3 further schematically illustrate the optical illumination pattern at the respective input and output of the optical fiber 10.
- Fig. 4 schematically illustrates the footprint of illumination on the structured reflective surfaces 12 and 14.
- the concave mirrors defined by these reflective surfaces can have the same shape, but the size of both mirrors is set by larger spot size on the mirror at the output/receiver end.
- the mirrors may be 170 ⁇ , with the spot size at the
- Tx input/transmitter
- Rx spot size at the output/receiver
- the structured reflective surface may be formed by precision stamping a metal material.
- Fig. 5 schematically illustrates forming a flat mirror with a spherical punch with a polished flat surface.
- a precision stamping process and apparatus has been disclosed in U.S. Patent No. 7,343,770, which was commonly assigned to the assignee of the present invention. This patent is fully incorporated by reference as if fully set forth herein.
- the process and stamping apparatus disclosed therein may be adapted to precision stamping the features of the coupling device of the present invention (including the structured reflective surface and optical fiber retention structure disclosed below).
- the stamping process and system can produce parts with a tolerance of at least lOOOnm.
- the coupling device includes an optical fiber retention structure, which securely and accurately aligns the optical fiber 10 with respect to the structured reflective surface 13.
- the structured reflective surface and fiber retention structure are defined by an open structure, which lends itself to mass production processes such as stamping, which are low cost, high throughput processes.
- Fig. 7A is a sectional view taken along the longitudinal axis of the optical fiber 10.
- Fig. 7B is a perspective section view taken along the longitudinal axis of the optical fiber 10.
- the fiber retention structure includes a groove 22 that positively receives the optical fiber in a manner with the end of the optical fiber 10 at a defined distance to and aligned with the structured reflective surface 13.
- the location and orientation of the structured reflective surface 13 is fixed in relation to the fiber retention structure.
- the fiber retention structure and the structured reflective surface are defined on the same (e.g., monolithic) base 26 of the coupling device.
- the fiber retention structure and the structure reflective surface are defined on separate structures that are coupled together to form the coupling device.
- the groove 22 has a section 24 defining a space between the end face 15 of the optical fiber 10. In the illustrated embodiment, this section 24 has a similar width but a shallower bottom as the remaining sections of the groove 22.
- the section 24 defines a shoulder 27 that provides a stop against which a portion (end) of the end face 13 of the optical fiber 10 is butted.
- a distance (e.g., 245 ⁇ ) along the optical axis is defined between the end face 15 and the structured reflective surface 13.
- the optical fiber is completely received in the groove 22, with the exterior surface of the optical fiber 22 flush with the top surface 29 of the base 26.
- the distance of the flat surface of the VCSEL from the top surface 29 of the base 26 would be about 37.5 ⁇ .
- the groove 22 is structured to securely retain the fiber 10 (bare section with cladding exposed, without protective buffer and jacket layers) by clamping the fiber 10, e.g., by a mechanical or interference fit (or press fit).
- the interference fit assures that the fiber 10 is clamped in place and consequently the position and orientation of the fiber 10 is set by the location and longitudinal axis of the groove 22.
- the groove 22 has a U-shaped cross-section that snuggly receive the bare optical fiber 10 (i.e., with the cladding exposed, without the buffer and protective layers).
- the sidewalls of the groove 22 are substantially parallel, wherein the opening of the groove may be slightly narrower than the parallel spacing between the sidewalls (i.e., with a slight C-shaped cross-section) to provide additional mechanical or interference fit for the fiber 10.
- the base 26 having the groove 22 is effectively a one-piece open ferrule supporting the optical fiber 10 in precise location and alignment with the structured reflective surface 13.
- the location of the structured reflective surface 13 is fixed with respect to the groove 22 and the shoulder 27, and hence fixed with respect to the end face of the optical fiber 10.
- the structured reflective surface 13 is not supported on a moving part and does not involve any moving part.
- the base 26 of the coupling device is formed of a metal material.
- the metal material may be chosen to have high stiffhess (e.g., stainless steel), chemical inertness (e.g., titanium), high temperature stability (nickel alloy), low thermal expansion (e.g., Invar), or to match thermal expansion to other materials (e.g., Kovar for matching glass).
- the base 26 may be formed of a metal such as aluminum or copper, which offer hier optical reflectivity. The reflectivity can also be achieved by plating materials such as gold, silver, nickel, aluminum, etc. onto the body 26.
- the material may be a hard plastic or other hard polymeric material.
- Fig. 6 illustrates a punch 200 configured for stamping the groove 22 and structured reflective surface 13 in the base 26.
- the punch 200 has a convex surface profile that is essentially the inverse of the structured reflective surface and the groove.
- the surface profile of the punch 200 conforms to the features to be stamped.
- Fig. 8A illustrates an embodiment of an integrated transmitter/receiver module 40 comprising a transmitter/receiver 38 attached to an optical coupling device 39, with the structured refiective surface in the coupling device aligned to the light source/detector in the transmitter/receiver.
- Fig. 8B illustrates an embodiment of a transmitter/receiver 38.
- the transmitter/receiver 38 includes a base 150 supporting a circuit board 51 that on which a light source/detector 52 (e.g., a VCSEL/a photodiode) and associated control circuit (e.g., an IC chip) are mounted.
- a bonding surface 53 is defined at the perimeter of the transmitter/receiver 38.
- Fig. 8C illustrates the internal open structure of the coupling device 39, which is quite similar to the open structure of the coupling device discussed above.
- the coupling device 39 has a base 46 having a groove 42 and structured reflective surface 43 defined therein similar to the groove 22 and structured reflective surface 13 defined in base 26 in the earlier embodiment of Figs. 6 and 7 discussed above.
- the section 44 of the groove 22 is wider, but nonetheless has a depth defining a shoulder 47 to precisely position the end face of the fiber 10.
- a wider groove 34 is provided on the base 46 to receive the thicker section of the fiber having the protective layer 11. Epoxy may be applied to secure the protective layer 11 in the groove 34.
- the base 46 has raised sidewalls 37 defining a cavity 36 in which the structured reflective surface 43 and grooves are located.
- the cavity 36 provides space for accommodating the height of the IC chip mounted on the circuit board 51.
- the height of the sidewalls 37 defines the distance between the light source/detector in the transmitter/receiver 38 and the structured reflective surface 43 in the coupling device 39.
- the height of the sidewalls 37 defines the distance of the flat output surface of the VCSEL from the surface of the cavity 36 (corresponding to the top surface 29 of the base 26 in Fig. 7A) to be about 37.5 ⁇ .
- the above described combination of transmitter/receiver and coupling device may be perceived to be an integrated transmitter/receiver module that includes a structured reflective surface and an integral coupling structure that aligns an optical fiber to the structured reflective surface.
- the coupling device 39 may be stamped from a malleable metal material, as discussed earlier.
- the top surface 33 of the sidewalls 37 provides a bonding area for attaching to the transmitter/receiver 38.
- the transmitter/receiver 38 may be attached to the coupling device 39 by glue, epoxy, solder or welding.
- the transmitter/receiver 38 may be hermetically sealed against the coupling device 39, for example, by laser welding, soldering, or blazing.
- the transmitter/receiver 38 and the coupling device can be manufactured and tested separately prior to assembly.
- an optical fiber is structured as an active optical cable (AOC), which is a cable known in the art to have a transmitter at one terminal end of the optical fiber for electrical-to-optical conversion, and a receiver at another terminal end of the optical fiber for optical-to-electrical conversion.
- Fig. 9 illustrates an embodiment of an AOC 48 that adopts the transmitter/receiver module 50 in accordance with the present invention. (Only one end of the AOC is shown in Fig. 9; the other end is similar in structure, wherein one end is a transmitter module having a laser or light source and another end is a receiver module having a photonic detector.)
- the structure of the module 50 is similar to the structure of the module 40 in the earlier embodiment of Fig. 8, with the exception of electrical contact pads 49 provided on the outside of the transmitter/receiver 39. The electrical contact pads 49 provide external electrical access to the control circuit 54 inside the module 50.
- the AOC 48 essentially includes the components illustrated in Fig. 1.
- the AOC 48 includes an optical fiber (bare fiber 10 and protective layers), a transmitter module 50 corresponding to the combination of transmitter 16 and a coupling device having the structured reflective surface 12 and a fiber retention structure discussed above which supports the end 17 of the fiber 10, a receiver module 50 corresponding to the combination of receiver 18 and a coupling device having the structured reflective surface 14 and a fiber retention structure discussed above which supports the end 19 of the fiber 10.
- FIGs. 10 and 11 illustrates an embodiment of an assembling process, including precise alignment of the transmitter/receiver to the coupling device by superimposing complementary alignment marks provided on the transmitter/receiver and the coupling device.
- Fig. 10A is another embodiment of a coupling device 46' which is similar to Fig. 8C, except omitting raised sidewalls of the coupling device.
- An alignment mark is provided on the top surface of the base 46' of the optical coupling 39'. The base 46 'precisely aligns the optical fiber 10 held in a groove, with respect to the structured reflective surface 43 ' .
- the alignment mark comprises three dots 64 (which may be dimples produced by the stamping process forming the groove and structured reflective surface) arranged in an L-configuration around the structured reflective surface 43', thus providing spatial alignment in two axis/directions.
- the alignment dots 64 are spaced so that they correspond to certain features on the light source/detector on the
- Fig. 1 IB represents the top view of the square top surface 72 of a VCSEL 70.
- the VCSEL 70 has an output area 71 that is offset closer to one corner of the square top surface 72. Accordingly, by placing the three dots 64 on the top surface 66 adjacent to two sides of the structured reflective surface 43', and further with the dots 64 spaced to correspond to the corners of the square top surface 72 of the VCSEL 70, the output area 71 can be aligned to the structured reflective surface 43 ' by aligning the dots 64 to the corners of the square top surface 72 of the VCSEL 70.
- Similar alignment of the photo diode in a receiver to a structured reflective surface defined on a coupling device by providing similar alignment marks on the top surface of the coupling device in a similar manner as discussed above. Referring back to Fig. 8C, similar alignment mark (dots 64) is provided on the bottom of the cavity around the structured reflective surface 43.
- Fig. 10 illustrates another embodiment of the transmitter 38'.
- the base 150' has raised sidewalls having a groove relief 79 to accommodate the extra thickness of the protective layer 11 of the optical fiber 10.
- the VCSEL 70 is mounted on a circuit board 51 ' .
- FIG. 11 A schematically illustrates an assembly stand 80 including an alignment system that adopts the above described alignment marks.
- the assembly 80 stand includes a base 81 supporting an alignment stage 82 (e.g., X-Y translations in the X-Y horizontal plane and orthogonal Z-axis out of plane, and rotation about the Z-axis).
- the assembly stand 80 further includes a rotary arm 83 having a pick-and-place head, which is supported to rotate about a bearing 84to swing the arm onto over the alignment stage 82.
- the coupling device 39' (or the coupling device 39 in Fig. 8 and 9) is supported on the alignment stage 82, with the alignment dots 64 in a horizontal plane.
- the transmitter/receiver 38' (or the transmitter/receiver 38 in Figs. 8 and 9) is support by the pick-and-place head of the rotary arm 83.
- the square top surface 72 of the VCSEL 70 is in a vertical plane.
- the axis orthogonal to the plane of the square top surface 72 of the VCSEL 70 is orthogonal to the axis orthogonal to the plane of the alignment dots 64.
- Using a camera 86 and a beam splitter 85 provides for simultaneous imaging of both the square top surface 72 of the VCSEL 70 and the alignment dots 64.
- the alignment stage 82 By actuating the alignment stage 82, the image of the alignment dots 64 can be brought into alignment with the image of the square top surface 72, as shown in Fig. 1 IB.
- the rotary arm 83 is then swung to place the transmitter 38' on top of the coupling device 39', as shown in Fig. 11C.
- the transmitter 38' and the coupling device 39' are joined by, for example, laser welding, laser assisted soldering, or infrared soldering.
- the coupling device in accordance with the present invention overcomes many of the deficiencies of the prior art, which provides ease of use and high reliability with low
- the inventive coupling device may be configured to support a single or multiple fibers, for optical input, optical output or both (for bi-direction data communication).
- the combination of transmitter/receiver and coupling device may be instead perceived to be an integrated
- transmitter/receiver module that includes one or more light sources/detectors, an integral coupling structure that includes one or more structured reflective surfaces and aligns one or more optical fibers to the structured reflective surfaces.
- the structured reflective surface may be configured to be flat, concave or convex, or a combination of such to structure a compound reflective surface.
- the structured reflective surface has a smooth (polished) mirror surface. It may instead be a textured surface that is reflective.
- the structured reflective surface may have a uniform surface characteristic, or varying surface characteristics, such as varying degree of smoothness and/or textures across the surface, or a combination of various regions of smooth and textured surfaces making up the structured reflective surface.
- the structured reflective surface may have a surface profile and/or optical characteristic corresponding to at least one of the following equivalent optical element: mirror, focusing lens, diverging lens, diffraction grating, or a combination of the foregoing.
- the structure reflective surface may have a compound profile defining more than one region corresponding to a different equivalent optical element (e.g., a central region that is focusing surrounded by an annular region that is diverging).
- the structured reflective surface is defined on an opaque material that does not transmit light through the surface.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Optical Couplings Of Light Guides (AREA)
Abstract
Description
Claims
Priority Applications (11)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP13710737.1A EP2823344B1 (en) | 2012-03-05 | 2013-03-05 | Coupling device having a structured reflective surface for coupling input/output of an optical fiber |
AU2013230056A AU2013230056A1 (en) | 2012-03-05 | 2013-03-05 | Coupling device having a structured reflective surface for coupling input/output of an optical fiber |
CA2865800A CA2865800C (en) | 2012-03-05 | 2013-03-05 | Coupling device having a structured reflective surface for coupling input/output of an optical fiber |
JP2014561062A JP6273217B2 (en) | 2012-03-05 | 2013-03-05 | Coupling device having structured reflective surface for coupling optical fiber input / output |
CN201380019960.6A CN104364689B (en) | 2012-03-05 | 2013-03-05 | For coupling the coupling device with structured reflecting surface of optical fiber input/output |
MX2014010491A MX338930B (en) | 2012-03-05 | 2013-03-05 | Coupling device having a structured reflective surface for coupling input/output of an optical fiber. |
RU2014139853A RU2649034C2 (en) | 2012-03-05 | 2013-03-05 | Optical fiber input and output connection device having a textured reflective surface |
KR1020147027760A KR102116151B1 (en) | 2012-03-05 | 2013-03-05 | Coupling device having a structured refelctive surface for coupling input/output of an optical fiber |
DK13710737.1T DK2823344T3 (en) | 2012-03-05 | 2013-03-05 | CONNECTING DEVICE WHICH HAS A STRUCTURED REFLECTIVE SURFACE TO CONNECT INPUT / OUTPUT OF AN OPTICAL FIBER |
ES13710737T ES2726541T3 (en) | 2012-03-05 | 2013-03-05 | Coupling device that has a structured reflective surface to couple the input / output of an optical fiber |
AU2017200052A AU2017200052B2 (en) | 2012-03-05 | 2017-01-05 | Coupling device having a structured reflective surface for coupling input/output of an optical fiber |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201261606885P | 2012-03-05 | 2012-03-05 | |
US61/606,885 | 2012-03-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013134326A1 true WO2013134326A1 (en) | 2013-09-12 |
Family
ID=47901414
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2013/029220 WO2013134326A1 (en) | 2012-03-05 | 2013-03-05 | Coupling device having a structured reflective surface for coupling input/output of an optical fiber |
Country Status (12)
Country | Link |
---|---|
US (4) | US20130322818A1 (en) |
EP (1) | EP2823344B1 (en) |
JP (1) | JP6273217B2 (en) |
KR (1) | KR102116151B1 (en) |
CN (2) | CN104364689B (en) |
AU (2) | AU2013230056A1 (en) |
CA (1) | CA2865800C (en) |
DK (1) | DK2823344T3 (en) |
ES (1) | ES2726541T3 (en) |
MX (1) | MX338930B (en) |
RU (1) | RU2649034C2 (en) |
WO (1) | WO2013134326A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015179872A1 (en) * | 2014-05-23 | 2015-11-26 | Nanoprecision Products, Inc. | Vision-based passive alignment of an optical fiber subassembly to an optoelectronic device |
CN107533202A (en) * | 2015-03-22 | 2018-01-02 | 纳米精密产品股份有限公司 | Optical bench sub-component with integrated photonic device |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104364689B (en) * | 2012-03-05 | 2016-12-07 | 纳米精密产品股份有限公司 | For coupling the coupling device with structured reflecting surface of optical fiber input/output |
US20160274318A1 (en) | 2012-03-05 | 2016-09-22 | Nanoprecision Products, Inc. | Optical bench subassembly having integrated photonic device |
WO2013155337A1 (en) | 2012-04-11 | 2013-10-17 | Nanoprecision Products, Inc. | Hermetic optical fiber alignment assembly having integrated optical element |
MX2016014892A (en) | 2014-05-15 | 2017-03-07 | Nanoprecision Products Inc | Demountable optical connector for optoelectronic devices. |
WO2015176038A1 (en) | 2014-05-15 | 2015-11-19 | Nanoprecision Products, Inc. | Stamping to form a composite structure of dissimilar materials having structured features |
RU2016149089A (en) * | 2014-05-15 | 2018-06-15 | Нанопресижен Продактс, Инк. | OPTICAL CONNECTION OF OPTICAL FIBERS WITH LATTICE CONNECTING DEVICES |
US10162114B2 (en) * | 2015-01-08 | 2018-12-25 | Corning Incorporated | Reflective optical coherence tomography probe |
CA2978957A1 (en) | 2015-03-22 | 2016-09-29 | Nanoprecision Products, Inc. | Axial preload for demountable connectors |
US10884198B2 (en) | 2015-03-24 | 2021-01-05 | Samtec, Inc | Optical block with textured surface |
US9857542B2 (en) * | 2015-04-24 | 2018-01-02 | Nanoprecision Products, Inc. | Bidirectional optical transceiver module |
WO2017027864A1 (en) | 2015-08-12 | 2017-02-16 | Nanoprecision Products, Inc. | Multiplexer/demultiplexer using stamped optical bench with micro mirrors |
WO2017044534A1 (en) * | 2015-09-11 | 2017-03-16 | Ccs Technology, Inc. | Optical coupler for coupling light in/out of an optical receiving/emitting structure |
US20230296853A9 (en) * | 2015-10-08 | 2023-09-21 | Teramount Ltd. | Optical Coupling |
WO2017070713A1 (en) | 2015-10-23 | 2017-04-27 | Nanoprecision Products, Inc. | Hermetic optical subassembly |
US9880366B2 (en) | 2015-10-23 | 2018-01-30 | Nanoprecision Products, Inc. | Hermetic optical subassembly |
CN109073844B (en) * | 2016-03-15 | 2020-11-24 | 库多广达佛罗里达股份有限公司 | Optical alignment of optical sub-assemblies with optoelectronic devices |
CA3034100A1 (en) | 2016-08-17 | 2018-02-22 | Nanoprecision Products, Inc. | Optical fiber connector ferrule assembly having dual reflective surfaces for beam expansion and expanded beam connector incorporating same |
WO2018035389A1 (en) | 2016-08-17 | 2018-02-22 | Nanoprecision Products, Inc. | Optical fiber connector ferrule assembly having single reflective surface for beam expansion and expanded beam connector incorporating same |
US10830951B2 (en) | 2016-11-02 | 2020-11-10 | National Institute Of Advanced Industrial Science And Technology | Optical circuit and optical device |
KR20210084516A (en) | 2018-10-23 | 2021-07-07 | 쿠도콴타 플로리다, 인크. | Removable connection of optical connectors and optical benches based on connectors using alignment couplers |
JP2023512606A (en) | 2020-02-03 | 2023-03-27 | センコー アドバンスド コンポーネンツ インコーポレイテッド | elastic mean bond |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6456766B1 (en) * | 2000-02-01 | 2002-09-24 | Cornell Research Foundation Inc. | Optoelectronic packaging |
FR2836236A1 (en) * | 2002-02-21 | 2003-08-22 | Framatome Connectors Int | High digital rate information transmission improved optoelectronic coupling mechanism, has optical port receiving optical fibre terminations from mirror with mirror finite distance focussing converting light/electrical signals. |
WO2004017117A2 (en) * | 2002-08-16 | 2004-02-26 | Nanoprecision Products, Inc. | High precision optical fiber alignment components |
US20110182550A1 (en) * | 2010-01-25 | 2011-07-28 | Axsun Technologies, Inc. | Silicon Optical Bench OCT Probe for Medical Imaging |
Family Cites Families (116)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4165914A (en) * | 1978-01-10 | 1979-08-28 | The United States Of America As Represented By The Secretary Of The Navy | Access coupler and duplex coupler for single multimode fiber transmission line |
DE2906227C2 (en) * | 1979-02-17 | 1983-01-05 | Harting Elektronik Gmbh, 4992 Espelkamp | Method and device for coupling electro-optical converters to light guides |
US4413881A (en) * | 1979-07-26 | 1983-11-08 | Northern Telecom Limited | Optical fiber hermetic seal |
DE3514097C2 (en) * | 1985-04-16 | 1996-12-19 | Wago Verwaltungs Gmbh | Connection clamp for electrical conductors |
EP0308604A1 (en) * | 1987-09-25 | 1989-03-29 | Siemens Aktiengesellschaft | Optical coupling device for a laser diode with an optical wave guide |
US4904036A (en) * | 1988-03-03 | 1990-02-27 | American Telephone And Telegraph Company, At&T Bell Laboratories | Subassemblies for optoelectronic hybrid integrated circuits |
EP0335104A3 (en) * | 1988-03-31 | 1991-11-06 | Siemens Aktiengesellschaft | Arrangement to optically couple one or a plurality of optical senders to one or a plurality of optical receivers of one or a plurality of integrated circuits |
US4992704A (en) * | 1989-04-17 | 1991-02-12 | Basic Electronics, Inc. | Variable color light emitting diode |
US5163113A (en) * | 1990-07-19 | 1992-11-10 | Gte Laboratories Incorporated | Laser-to-fiber coupling apparatus |
CA2135758A1 (en) * | 1993-03-31 | 1994-10-01 | Toshiaki Kakii | Optical fiber array |
JP3537881B2 (en) * | 1994-03-29 | 2004-06-14 | 株式会社リコー | LED array head |
US5500910A (en) * | 1994-06-30 | 1996-03-19 | The Whitaker Corporation | Passively aligned holographic WDM |
US5479540A (en) * | 1994-06-30 | 1995-12-26 | The Whitaker Corporation | Passively aligned bi-directional optoelectronic transceiver module assembly |
US5911022A (en) * | 1994-09-29 | 1999-06-08 | Siemens Aktiengesellschaft | Optical coupling arrangement |
DE4440935A1 (en) * | 1994-11-17 | 1996-05-23 | Ant Nachrichtentech | Optical transmitting and receiving device |
US6045270A (en) * | 1995-12-22 | 2000-04-04 | Methode Electronics, Inc. | Massive parallel optical interconnect system |
US5611008A (en) * | 1996-01-26 | 1997-03-11 | Hughes Aircraft Company | Substrate system for optoelectronic/microwave circuits |
KR19980042931A (en) * | 1996-11-29 | 1998-08-17 | 쿠라우찌 노리타카 | Optical module and manufacturing method thereof, optical reflecting member of optical module, positioning method and positioning device |
DE19748989A1 (en) * | 1997-11-06 | 1999-07-15 | Daimler Chrysler Ag | Optical transmit / receive module |
TW414924B (en) * | 1998-05-29 | 2000-12-11 | Rohm Co Ltd | Semiconductor device of resin package |
EP1031859B1 (en) * | 1998-08-07 | 2007-03-07 | Sumitomo Electric Industries, Ltd. | Optical connector ferrule, mold therefor and method of manufacturing an optical connector ferrule |
JP3699852B2 (en) * | 1999-02-17 | 2005-09-28 | シャープ株式会社 | Bidirectional optical communication device and bidirectional optical communication device |
US6285043B1 (en) * | 1999-11-01 | 2001-09-04 | The Boeing Company | Application-specific optoelectronic integrated circuit |
DE10001679C2 (en) * | 2000-01-12 | 2001-11-29 | Infineon Technologies Ag | Optical coupling arrangement |
US6712527B1 (en) * | 2000-01-12 | 2004-03-30 | International Business Machines Corporation | Fiber optic connections and method for using same |
JP2002031747A (en) * | 2000-07-18 | 2002-01-31 | Canon Inc | Planar optical element mounted body, its manufacturing method, and device using it |
JP2002261300A (en) * | 2000-12-25 | 2002-09-13 | Sumitomo Electric Ind Ltd | Light receiver |
US20050201711A1 (en) * | 2001-01-22 | 2005-09-15 | Koh Philip J. | Packaging and interconnect system for fiber and optoelectric components |
US20020110328A1 (en) * | 2001-02-14 | 2002-08-15 | Bischel William K. | Multi-channel laser pump source for optical amplifiers |
US6870976B2 (en) * | 2001-03-13 | 2005-03-22 | Opnext, Inc. | Filter based multiplexer/demultiplexer component |
US6643446B2 (en) * | 2001-11-27 | 2003-11-04 | Jds Uniphase Inc. | Hermetic fiber ferrule and feedthrough |
DE10159093C1 (en) * | 2001-12-01 | 2003-08-14 | Schott Glas | Process for the hermetic injection of an optical fiber into a metal bushing and hermetic injection produced thereafter |
EP1321791A2 (en) * | 2001-12-04 | 2003-06-25 | Matsushita Electric Industrial Co., Ltd. | Optical package substrate, optical device, optical module, and method for molding optical package substrate |
JP2003167175A (en) * | 2001-12-04 | 2003-06-13 | Matsushita Electric Ind Co Ltd | Optical mounted substrate and optical device |
JP4009097B2 (en) * | 2001-12-07 | 2007-11-14 | 日立電線株式会社 | LIGHT EMITTING DEVICE, ITS MANUFACTURING METHOD, AND LEAD FRAME USED FOR MANUFACTURING LIGHT EMITTING DEVICE |
US20030142920A1 (en) * | 2002-01-28 | 2003-07-31 | Dallas Joseph L. | Method and apparatus for optical fiber array assembly |
GB0201969D0 (en) * | 2002-01-29 | 2002-03-13 | Qinetiq Ltd | Integrated optics devices |
US6757308B1 (en) * | 2002-05-22 | 2004-06-29 | Optical Communication Products, Inc. | Hermetically sealed transmitter optical subassembly |
KR100461157B1 (en) * | 2002-06-07 | 2004-12-13 | 한국전자통신연구원 | Parallel optical interconnect module and method for manufacturing thereof |
US20060239612A1 (en) * | 2002-06-19 | 2006-10-26 | Peter De Dobbelaere | Flip-chip devices formed on photonic integrated circuit chips |
US7011768B2 (en) * | 2002-07-10 | 2006-03-14 | Fuelsell Technologies, Inc. | Methods for hydrogen storage using doped alanate compositions |
US7311449B2 (en) * | 2002-08-16 | 2007-12-25 | Nanoprecision Products, Inc. | High precision optoelectronic components |
WO2004017114A1 (en) * | 2002-08-16 | 2004-02-26 | Oz Optics Limited | Stress relief in fibre optic arrays |
EP1394587A3 (en) * | 2002-08-26 | 2005-01-19 | Seikoh Giken Co., Ltd. | Optical fibre assembly having hermetic seal portion and method for making the same |
US20040091268A1 (en) * | 2002-11-01 | 2004-05-13 | Jds Uniphase Corporation | Transmitter optical sub-assembly |
TW594950B (en) * | 2003-03-18 | 2004-06-21 | United Epitaxy Co Ltd | Light emitting diode and package scheme and method thereof |
WO2005033745A2 (en) * | 2003-09-29 | 2005-04-14 | Photodigm, Inc. | Method and apparatus for wavelength division multiplexing |
US7198416B2 (en) * | 2004-02-04 | 2007-04-03 | Omron Network Products, Llc | Optical combiner device |
US7144259B2 (en) * | 2004-02-27 | 2006-12-05 | Finisar Corporation | Optical transceiver module having a dual segment molded lead frame connector |
KR100635375B1 (en) * | 2004-09-14 | 2006-10-17 | 한국전자통신연구원 | The transceiver module and optical bench for passive alignment |
CN100452295C (en) * | 2004-09-22 | 2009-01-14 | 尼康股份有限公司 | Lighting apparatus, exposure apparatus and maicrodevice manufacturing method |
US7189007B2 (en) * | 2005-02-09 | 2007-03-13 | Tektronix, Inc. | Termination for optic fiber |
KR20070110882A (en) * | 2005-02-16 | 2007-11-20 | 어플라이드 머티어리얼스, 인코포레이티드 | Optical coupling to ic chip |
JP4739851B2 (en) * | 2005-07-29 | 2011-08-03 | スタンレー電気株式会社 | Surface mount semiconductor device |
US20070172175A1 (en) * | 2006-01-26 | 2007-07-26 | Talapker Imanbayev | Hermetic fiber optic ferrule |
US20080029720A1 (en) * | 2006-08-03 | 2008-02-07 | Intematix Corporation | LED lighting arrangement including light emitting phosphor |
JP5326229B2 (en) * | 2006-09-08 | 2013-10-30 | 日亜化学工業株式会社 | Light emitting device |
TWI311824B (en) * | 2006-10-02 | 2009-07-01 | Ind Tech Res Inst | Light emitting diode package structure |
EP1986028A3 (en) * | 2007-03-27 | 2008-11-05 | Rohm and Haas Electronic Materials LLC | Optical assemblies and their methods of formation |
DE112007001202B4 (en) * | 2007-04-13 | 2014-10-09 | Finisar Corp. | Active optical cable with electrical connector |
US7959975B2 (en) * | 2007-04-18 | 2011-06-14 | Micron Technology, Inc. | Methods of patterning a substrate |
JP4962144B2 (en) * | 2007-05-31 | 2012-06-27 | 日本電気株式会社 | Optical module |
CN101765798B (en) * | 2007-07-30 | 2011-12-28 | 独立行政法人情报通信研究机构 | Multi-viewpoint aerial image display |
CA2639102A1 (en) * | 2007-08-23 | 2009-02-23 | Oz Optics Ltd. | Method of producing hermetically-sealed optical fibers and cables with highly controlled and complex layers |
JP5186875B2 (en) * | 2007-10-12 | 2013-04-24 | 日亜化学工業株式会社 | Lighting unit |
US7832944B2 (en) * | 2007-11-08 | 2010-11-16 | Finisar Corporation | Optoelectronic subassembly with integral thermoelectric cooler driver |
US8582934B2 (en) * | 2007-11-12 | 2013-11-12 | Lightlab Imaging, Inc. | Miniature optical elements for fiber-optic beam shaping |
JP5178910B2 (en) * | 2008-03-28 | 2013-04-10 | ヒューレット−パッカード デベロップメント カンパニー エル.ピー. | Flexible optical interconnect |
US8168939B2 (en) * | 2008-07-09 | 2012-05-01 | Luxtera, Inc. | Method and system for a light source assembly supporting direct coupling to an integrated circuit |
US8174100B2 (en) * | 2008-09-22 | 2012-05-08 | Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. | Light source using a light-emitting diode |
KR101007131B1 (en) * | 2008-11-25 | 2011-01-10 | 엘지이노텍 주식회사 | Light emitting device package |
US8985865B2 (en) * | 2008-11-28 | 2015-03-24 | Us Conec, Ltd. | Unitary fiber optic ferrule and adapter therefor |
US8101955B2 (en) * | 2009-04-17 | 2012-01-24 | Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. | PLCC package with a reflector cup surrounded by an encapsulant |
JP5089643B2 (en) * | 2009-04-30 | 2012-12-05 | インターナショナル・ビジネス・マシーンズ・コーポレーション | Optical connection element manufacturing method, optical transmission board, optical connection component, connection method, and optical transmission system |
EP2312352B1 (en) * | 2009-09-07 | 2018-04-18 | Electronics and Telecommunications Research Institute | Multi-wavelength optical transmitting and receiving modules |
JP5415887B2 (en) * | 2009-09-30 | 2014-02-12 | セイコーインスツル株式会社 | Head gimbal assembly |
US8342756B2 (en) * | 2009-12-22 | 2013-01-01 | Jds Uniphase Corporation | Hermetic seal between a package and an optical fiber |
US8215850B2 (en) * | 2009-12-29 | 2012-07-10 | Prasad Yalamanchili | Optical module with fiber feedthrough |
GB201003398D0 (en) * | 2010-03-01 | 2010-04-14 | Rue De Int Ltd | Optical device |
US8710525B2 (en) * | 2010-03-15 | 2014-04-29 | Nichia Corporation | Light emitting device |
US8488244B1 (en) * | 2010-07-12 | 2013-07-16 | Alliance Fiber Optic Products, Inc. | Ultra compact optical multiplexer or demultiplexer |
CN103140786A (en) * | 2010-09-12 | 2013-06-05 | 安费诺-图赫尔电子有限公司 | Optoelectronic coupling device, optoelectronic component and optoelectronic transceiver |
US9112330B2 (en) * | 2010-11-03 | 2015-08-18 | Koninklijke Philips N.V. | Optical element for vertical external-cavity surface-emitting laser |
US20120170310A1 (en) * | 2011-01-05 | 2012-07-05 | Qualcomm Mems Technologies, Inc. | Light guide with uniform light distribution |
RU2638965C2 (en) * | 2011-04-05 | 2017-12-19 | Нанопресижен Продактс, Инк. | Connecting clamp for optical fibres with grooves for clamping open fibres |
WO2013048457A1 (en) * | 2011-09-30 | 2013-04-04 | Hewlett-Packard Development Company, L.P. | Optical power splitter including a zig-zag |
TWI511477B (en) * | 2011-12-07 | 2015-12-01 | Hon Hai Prec Ind Co Ltd | Optical transceiver apparatus |
JP2013145356A (en) * | 2011-12-13 | 2013-07-25 | Sumitomo Electric Ind Ltd | Optical communication module |
US9011025B2 (en) * | 2011-12-19 | 2015-04-21 | Avago Technologies General Ip (Singapore) Pte. Ltd. | Modified transistor outline (TO)-can assembly for use in optical communications and a method |
US20150355420A1 (en) * | 2012-03-05 | 2015-12-10 | Nanoprecision Products, Inc. | Coupling device having a stamped structured surface for routing optical data signals |
CN104364689B (en) * | 2012-03-05 | 2016-12-07 | 纳米精密产品股份有限公司 | For coupling the coupling device with structured reflecting surface of optical fiber input/output |
US20160377821A1 (en) * | 2012-03-05 | 2016-12-29 | Nanoprecision Products, Inc. | Optical connection of optical fibers to grating couplers |
US9782814B2 (en) * | 2012-03-05 | 2017-10-10 | Nanoprecision Products, Inc. | Stamping to form a composite structure of dissimilar materials having structured features |
US9851511B2 (en) * | 2012-03-05 | 2017-12-26 | Nanoprecision Products, Inc. | Axial preload for demountable connectors |
US20160274318A1 (en) * | 2012-03-05 | 2016-09-22 | Nanoprecision Products, Inc. | Optical bench subassembly having integrated photonic device |
US20130294732A1 (en) * | 2012-03-05 | 2013-11-07 | Nanoprecision Products, Inc. | Hermetic optical fiber alignment assembly having integrated optical element |
WO2013155337A1 (en) * | 2012-04-11 | 2013-10-17 | Nanoprecision Products, Inc. | Hermetic optical fiber alignment assembly having integrated optical element |
JP6137777B2 (en) * | 2012-04-17 | 2017-05-31 | インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation | Spacer resin pattern design that helps reduce light connection loss between a light-emitting element or light-receiving element on a semiconductor and an optical waveguide |
US9297972B2 (en) * | 2012-07-30 | 2016-03-29 | Glenair, Inc. | Advanced fiber-optic contact and method |
US9983414B2 (en) * | 2012-10-23 | 2018-05-29 | Nanoprecision Products, Inc. | Optoelectronic module having a stamped metal optic |
US9482819B2 (en) * | 2013-03-04 | 2016-11-01 | Alliance Fiber Optic Products, Inc. | WDM Mux/DeMux on cable and methods of making the same |
US20150124336A1 (en) * | 2013-06-25 | 2015-05-07 | Public Service Solutions, Inc. | Wide spectrum optical systems and devices implementing first surface mirrors |
US9235014B2 (en) * | 2013-07-31 | 2016-01-12 | Avago Technologies General Ip (Singapore) Pte. Ltd. | Optics system module for use in an optical communications module, an optical communications system, and a method |
US11133870B2 (en) * | 2013-08-13 | 2021-09-28 | Commscope, Inc. Of North Carolina | Fiber optic connectors and connectorized fiber optic cables that include integrated photonic optical mode field converters and related methods |
KR20160045731A (en) * | 2013-08-21 | 2016-04-27 | 휴렛 팩커드 엔터프라이즈 디벨롭먼트 엘피 | Device including mirrors and filters to operate as a multiplexer or de-multiplexer |
EP3084491B1 (en) * | 2013-12-19 | 2019-09-25 | 3M Innovative Properties Company | Multimode optical connector |
MX2016014892A (en) * | 2014-05-15 | 2017-03-07 | Nanoprecision Products Inc | Demountable optical connector for optoelectronic devices. |
KR20170012339A (en) * | 2014-05-23 | 2017-02-02 | 나노프리시젼 프로덕츠 인코포레이션 | Vision-based passive alignment of an optical fiber subassembly to an optoelectronic device |
WO2017027864A1 (en) * | 2015-08-12 | 2017-02-16 | Nanoprecision Products, Inc. | Multiplexer/demultiplexer using stamped optical bench with micro mirrors |
US20170131532A1 (en) * | 2015-08-12 | 2017-05-11 | Nanoprecision Products, Inc. | Stamped solar collector concentrator system |
US9880366B2 (en) * | 2015-10-23 | 2018-01-30 | Nanoprecision Products, Inc. | Hermetic optical subassembly |
US20180066810A1 (en) * | 2016-01-20 | 2018-03-08 | Telebrands Corp. | Illuminating apparatus |
CN109073844B (en) * | 2016-03-15 | 2020-11-24 | 库多广达佛罗里达股份有限公司 | Optical alignment of optical sub-assemblies with optoelectronic devices |
WO2018035389A1 (en) * | 2016-08-17 | 2018-02-22 | Nanoprecision Products, Inc. | Optical fiber connector ferrule assembly having single reflective surface for beam expansion and expanded beam connector incorporating same |
CA3034100A1 (en) * | 2016-08-17 | 2018-02-22 | Nanoprecision Products, Inc. | Optical fiber connector ferrule assembly having dual reflective surfaces for beam expansion and expanded beam connector incorporating same |
KR20210084516A (en) * | 2018-10-23 | 2021-07-07 | 쿠도콴타 플로리다, 인크. | Removable connection of optical connectors and optical benches based on connectors using alignment couplers |
-
2013
- 2013-03-05 CN CN201380019960.6A patent/CN104364689B/en not_active Expired - Fee Related
- 2013-03-05 WO PCT/US2013/029220 patent/WO2013134326A1/en active Application Filing
- 2013-03-05 CA CA2865800A patent/CA2865800C/en not_active Expired - Fee Related
- 2013-03-05 AU AU2013230056A patent/AU2013230056A1/en not_active Abandoned
- 2013-03-05 EP EP13710737.1A patent/EP2823344B1/en active Active
- 2013-03-05 US US13/786,448 patent/US20130322818A1/en not_active Abandoned
- 2013-03-05 CN CN201611013563.XA patent/CN106842440A/en active Pending
- 2013-03-05 RU RU2014139853A patent/RU2649034C2/en active
- 2013-03-05 MX MX2014010491A patent/MX338930B/en active IP Right Grant
- 2013-03-05 DK DK13710737.1T patent/DK2823344T3/en active
- 2013-03-05 ES ES13710737T patent/ES2726541T3/en active Active
- 2013-03-05 KR KR1020147027760A patent/KR102116151B1/en active IP Right Grant
- 2013-03-05 JP JP2014561062A patent/JP6273217B2/en active Active
-
2016
- 2016-04-21 US US15/135,464 patent/US20160238803A1/en not_active Abandoned
-
2017
- 2017-01-05 AU AU2017200052A patent/AU2017200052B2/en not_active Ceased
- 2017-08-03 US US15/668,670 patent/US20180081132A1/en not_active Abandoned
-
2019
- 2019-06-24 US US16/450,746 patent/US10754107B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6456766B1 (en) * | 2000-02-01 | 2002-09-24 | Cornell Research Foundation Inc. | Optoelectronic packaging |
FR2836236A1 (en) * | 2002-02-21 | 2003-08-22 | Framatome Connectors Int | High digital rate information transmission improved optoelectronic coupling mechanism, has optical port receiving optical fibre terminations from mirror with mirror finite distance focussing converting light/electrical signals. |
WO2004017117A2 (en) * | 2002-08-16 | 2004-02-26 | Nanoprecision Products, Inc. | High precision optical fiber alignment components |
US7343770B2 (en) | 2002-08-16 | 2008-03-18 | Nanoprecision Products, Inc. | Stamping system for manufacturing high tolerance parts |
US20110182550A1 (en) * | 2010-01-25 | 2011-07-28 | Axsun Technologies, Inc. | Silicon Optical Bench OCT Probe for Medical Imaging |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015179872A1 (en) * | 2014-05-23 | 2015-11-26 | Nanoprecision Products, Inc. | Vision-based passive alignment of an optical fiber subassembly to an optoelectronic device |
JP2017517033A (en) * | 2014-05-23 | 2017-06-22 | ナノプレシジョン プロダクツ インコーポレイテッドNanoprecision Products, Inc. | Vision-based passive positioning of fiber optic subassemblies for optoelectronic devices |
US9897769B2 (en) | 2014-05-23 | 2018-02-20 | Nanoprecision Products, Inc. | Vision-based passive alignment of an optical fiber subassembly to an optoelectronic device |
EP3146372B1 (en) * | 2014-05-23 | 2022-07-13 | Cudoquanta Florida, Inc. | Vision-based passive alignment of an optical fiber subassembly to an optoelectronic device |
CN107533202A (en) * | 2015-03-22 | 2018-01-02 | 纳米精密产品股份有限公司 | Optical bench sub-component with integrated photonic device |
Also Published As
Publication number | Publication date |
---|---|
CN104364689A (en) | 2015-02-18 |
AU2017200052A1 (en) | 2017-02-02 |
CN106842440A (en) | 2017-06-13 |
US20160238803A1 (en) | 2016-08-18 |
AU2017200052B2 (en) | 2018-11-01 |
US20200049907A1 (en) | 2020-02-13 |
US10754107B2 (en) | 2020-08-25 |
EP2823344B1 (en) | 2019-02-20 |
KR20140133592A (en) | 2014-11-19 |
RU2649034C2 (en) | 2018-03-29 |
CA2865800C (en) | 2021-06-15 |
MX338930B (en) | 2016-05-06 |
MX2014010491A (en) | 2014-11-14 |
CN104364689B (en) | 2016-12-07 |
ES2726541T3 (en) | 2019-10-07 |
EP2823344A1 (en) | 2015-01-14 |
RU2014139853A (en) | 2016-04-27 |
JP2015509619A (en) | 2015-03-30 |
JP6273217B2 (en) | 2018-01-31 |
DK2823344T3 (en) | 2019-05-20 |
KR102116151B1 (en) | 2020-05-27 |
AU2013230056A1 (en) | 2014-09-18 |
US20180081132A1 (en) | 2018-03-22 |
CA2865800A1 (en) | 2013-09-12 |
US20130322818A1 (en) | 2013-12-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10754107B2 (en) | Coupling device having a structured reflective surface of stamped malleable metal for coupling input/output of an optical fiber | |
US20190391345A1 (en) | Coupling device having a stamped structured surface for routing optical data signals | |
US11892691B2 (en) | Hermetic optical fiber alignment assembly having integrated optical element | |
RU2638979C1 (en) | Hermetic assembly for alignment of optical fibre, which has integrated optical element | |
JP6677654B2 (en) | Vision-based passive positioning of fiber optic subassemblies for optoelectronic devices | |
US7235774B2 (en) | Optical module | |
JP4690963B2 (en) | Manufacturing method of multi-channel optical module | |
KR20180130519A (en) | Optical alignment of optic subassemblies to optoelectronic devices | |
JPH1010373A (en) | Receptacle type optical transmitter-receiver and production therefor | |
JP2003329892A (en) | Optical transmission/reception module and optical communication system using the same | |
CA2948633A1 (en) | Optical connection of optical fibers to grating couplers | |
US20120213527A1 (en) | Optoelectronic device for bidirectionally transporting information through optical fibers and method of manufacturing such a device | |
US9052485B2 (en) | Optical interconnect assembly |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13710737 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2865800 Country of ref document: CA |
|
ENP | Entry into the national phase |
Ref document number: 2014561062 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2014/010491 Country of ref document: MX |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013710737 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2013230056 Country of ref document: AU Date of ref document: 20130305 Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20147027760 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2014139853 Country of ref document: RU Kind code of ref document: A |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112014021973 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112014021973 Country of ref document: BR Kind code of ref document: A2 Effective date: 20140905 |