WO2013133316A1 - Porous resin sheet and method for manufacturing same - Google Patents

Porous resin sheet and method for manufacturing same Download PDF

Info

Publication number
WO2013133316A1
WO2013133316A1 PCT/JP2013/056117 JP2013056117W WO2013133316A1 WO 2013133316 A1 WO2013133316 A1 WO 2013133316A1 JP 2013056117 W JP2013056117 W JP 2013056117W WO 2013133316 A1 WO2013133316 A1 WO 2013133316A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin sheet
porous resin
porous
thermoplastic resin
less
Prior art date
Application number
PCT/JP2013/056117
Other languages
French (fr)
Japanese (ja)
Inventor
紘子 池永
笠置 智之
須藤 剛
請井 博一
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2013133316A1 publication Critical patent/WO2013133316A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/032Organic insulating material consisting of one material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/088Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyamides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/122Hydrogen, oxygen, CO2, nitrogen or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • C08J2201/032Impregnation of a formed object with a gas
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/06CO2, N2 or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/08Supercritical fluid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/04Foams characterised by their properties characterised by the foam pores
    • C08J2205/044Micropores, i.e. average diameter being between 0,1 micrometer and 0,1 millimeter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2207/00Foams characterised by their intended use
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0237High frequency adaptations
    • H05K1/024Dielectric details, e.g. changing the dielectric material around a transmission line
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0104Properties and characteristics in general
    • H05K2201/0116Porous, e.g. foam
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0104Properties and characteristics in general
    • H05K2201/0129Thermoplastic polymer, e.g. auto-adhesive layer; Shaping of thermoplastic polymer

Definitions

  • the present invention relates to a porous resin sheet having a low relative dielectric constant and a dielectric loss tangent and a method for producing the same.
  • This porous resin sheet is used as a wide range of substrate materials such as low dielectric constant materials used in high-frequency circuits such as circuit boards and antennas for band phones, electromagnetic wave control materials such as electromagnetic wave shields and electromagnetic wave absorbers, and heat insulating materials. Is possible.
  • a circuit board using a low dielectric material is required to reduce signal transmission loss.
  • a circuit board using ceramics is used.
  • the ceramic substrate As the ceramic substrate, an alumina substrate made of alumina is used and has heat resistance against solder reflow. However, there is a problem that the substrate is heavy and easily broken, and replacement with a resin is progressing. Furthermore, use in a high frequency region is desired for improving signal transmission. At that time, a circuit board using a low dielectric material is required for reducing transmission loss. In general, the dielectric loss becomes smaller as the relative dielectric constant and the dielectric loss tangent are smaller as shown in the following equation, which is effective in reducing transmission loss.
  • Ad 27.3 ⁇ f / C ⁇ tan ⁇ ⁇ ⁇ r
  • C speed of light tan ⁇ : dielectric loss tangent
  • patch antennas used for mobile phone antennas and the like are becoming important antennas for communication and engineering applications because they are multifunctional, lightweight, compact, and inexpensive to manufacture.
  • Antennas generally have a drawback that their frequency characteristics are narrow.
  • patch antennas have a configuration in which a parasitic radiating patch element is arranged and coupled to the upper part of the microstrip radiating element, or a method of adding a broadband matching circuit to the feeder line is a means to increase the bandwidth. It is being considered.
  • the substrate material used for the patch antenna can also be widened, and there are a method of increasing the substrate thickness and a method of using a low dielectric substrate.
  • the substrate thickness is increased, there is a problem that the dielectric loss is large in a high dielectric substrate such as a ceramic substrate, and the bandwidth is narrowed because the Q value representing the sharpness of resonance becomes high.
  • a fluorine substrate having excellent dielectric characteristics as a high-frequency substrate is useful as a substrate material for patch antennas, but has a high material cost and has problems in workability such as using special chemicals in circuit processing such as plating. Therefore, there has been a demand for a low dielectric and low loss substrate material to replace the fluorine substrate.
  • Patent Document 2 discloses that an open-cell porous body is obtained by a wet coagulation method, but there is no disclosure that a porous body having a thickness of 1 mm or more is obtained.
  • JP 2001-55464 A Japanese Patent Application Laid-Open No. 2004-87638 JP 2000-269616 A
  • An object of the present invention is to provide a single-layer porous resin sheet having a thick film, a low relative dielectric constant and a dielectric loss tangent, and a high tensile elastic modulus, and a method for producing the same.
  • the present invention is a single-layer porous resin sheet containing a thermoplastic resin, having a thickness of 1.0 mm or more, a relative dielectric constant at 1 GHz of 2.00 or less, and a dielectric loss tangent of 0.0050 or less. And providing a porous resin sheet characterized by a tensile elastic modulus of 200 MPa or more.
  • the porous resin sheet of the present invention preferably has bubbles having an average cell diameter of 5.0 ⁇ m or less, a porosity of 40% or more, and a thickness variation of 10 ⁇ m or less. It is.
  • thermoplastic resin constituting the porous resin sheet of the present invention is preferably polyimide or polyetherimide, and the thermoplastic resin is preferably amorphous.
  • the present invention is also a method for producing the porous resin sheet, A porous resin comprising a gas impregnation step of impregnating a thermoplastic resin composition containing at least a thermoplastic resin with a non-reactive gas under pressure, and a foaming step of foaming the thermoplastic resin composition by reducing the pressure after the gas impregnation step A method for manufacturing a sheet is provided.
  • the present invention also provides a porous substrate in which a metal foil layer is provided on at least one surface of the porous resin sheet.
  • the porous resin sheet of the present invention is a low dielectric constant used for high-frequency circuits such as circuit boards and band-phone antennas, taking advantage of the properties of thick film, low relative dielectric constant and dielectric loss tangent, and high tensile elastic modulus. It can be used as a wide range of substrate materials such as materials, electromagnetic wave control materials such as electromagnetic wave shields and electromagnetic wave absorbers, and heat insulating materials.
  • the porous resin sheet of the present invention can be used as a patch antenna element substrate material having a particularly wide bandwidth and high antenna characteristics.
  • FIG. 1 shows a side view of an analysis model for performing a simulation when the porous resin sheet of the present invention is applied to a patch antenna.
  • FIG. 2 shows a three-dimensional view of the analysis model shown in FIG.
  • the porous resin sheet of the present invention is a single-layer porous resin sheet containing a thermoplastic resin, has a thickness of 1.0 mm or more, a relative dielectric constant at 1 GHz of 2.00 or less, and a dielectric loss tangent. It is 0.0050 or less, and the tensile elastic modulus is 200 MPa or more.
  • thermoplastic resin used in the present invention is not particularly limited, it is preferably a thermoplastic resin having heat resistance, and in particular, a resin having a glass transition temperature of 150 ° C. or more is preferably used.
  • thermoplastic resins include polyamide, polycarbonate, polybutylene terephthalate, polyethylene terephthalate, polyphenylene sulfide, polyarylate, polysulfone, polyethersulfone, polyetheretherketone, polyamideimide, polyimide, and polyetherimide.
  • a thermoplastic resin can be used individually or in mixture of 2 or more types.
  • polyimide or polyetherimide is preferably used.
  • the reason why polyimide or polyetherimide is used as the thermoplastic resin in the present invention is that the dimensional stability at high temperature is good.
  • Polyimide can be obtained by a known or conventional method.
  • a polyimide can be obtained by reacting an organic tetracarboxylic dianhydride and a diamino compound (diamine) to synthesize a polyimide precursor (polyamic acid) and dehydrating and ring-closing the polyimide precursor.
  • organic tetracarboxylic dianhydride examples include pyromellitic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, and 2,2-bis (2,3-dicarboxyl).
  • diamino compound examples include m-phenylenediamine, p-phenylenediamine, 3,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl sulfone, and 3,3'-diaminodiphenyl.
  • 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride is used as the organic tetracarboxylic dianhydride
  • p-phenylenediamine and / or 4 is used as the diamino compound.
  • 4,4'-diaminodiphenyl ether is preferably used.
  • the polyimide precursor can be obtained by reacting approximately equimolar organic tetracarboxylic dianhydride and a diamino compound (diamine) usually in an organic solvent at 0 to 90 ° C. for about 1 to 24 hours.
  • organic solvent include polar solvents such as N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, and dimethyl sulfoxide.
  • the dehydration ring-closing reaction of the polyimide precursor is performed, for example, by heating to about 300 to 400 ° C. or by acting a dehydration cyclizing agent such as a mixture of acetic anhydride and pyridine.
  • a dehydration cyclizing agent such as a mixture of acetic anhydride and pyridine.
  • polyimide is a polymer that is insoluble in organic solvents and difficult to mold. Therefore, when producing a porous body made of polyimide, it is common to use the above polyimide precursor as a polymer for the preparation of the polymer composition having the microphase separation structure.
  • the polyimide can be obtained by a method in which a polyamic acid silyl ester obtained by reacting an organic tetracarboxylic dianhydride and an N-silylated diamine is heated and cyclized.
  • the polyetherimide can be obtained by a dehydration ring-closing reaction between the diamino compound and an aromatic bisether anhydride such as 2,2,3,3-tetracarboxydiphenylene ether dianhydride.
  • an aromatic bisether anhydride such as 2,2,3,3-tetracarboxydiphenylene ether dianhydride.
  • Ultem resin manufactured by SABIC
  • Superior resin manufactured by Mitsubishi Plastics
  • the thermoplastic resin used in the present invention is preferably amorphous.
  • an amorphous thermoplastic resin By using an amorphous thermoplastic resin, it is possible to obtain a porous resin sheet excellent in impact resistance and workability and excellent in flexural elasticity in a high temperature range.
  • the amorphous thermoplastic resin is a resin that does not substantially contain a crystalline portion in the thermoplastic resin, and its crystallinity is preferably 2% or less, more preferably 0%. is there.
  • Amorphous thermoplastic resin is also judged from having only a glass transition point and no melting point.
  • the porous resin sheet may contain an additive as required in addition to the thermoplastic resin.
  • the kind of additive is not particularly limited, and various additives that are usually used for foam molding can be used.
  • examples of the additive include a cell nucleating agent, a crystal nucleating agent, a plasticizer, a lubricant, a colorant, an ultraviolet absorber, an antioxidant, a filler, a reinforcing material, a flame retardant, and an antistatic agent.
  • the kind and addition amount are not particularly limited, and can be used as long as the characteristics of the porous resin sheet of the present invention are not impaired.
  • the single layer of the present invention having a thickness of 1.0 mm or more, a relative dielectric constant at 1 GHz of 2.00 or less, a dielectric loss tangent of 0.0050 or less, and a tensile elastic modulus of 200 MPa or more.
  • this porous resin sheet it can be manufactured by using a thermoplastic resin layer containing the thermoplastic resin and making it porous.
  • a porous resin sheet having bubbles with an average bubble diameter of 5.0 ⁇ m or less and a porosity of 40% or more the dielectric constant or dielectric constant is reduced without lowering the insulation or mechanical strength.
  • the tangent can be reduced without variation.
  • thermoplastic resin composition containing at least a thermoplastic resin is impregnated with a non-reactive gas under pressure, a gas impregnation step, and after the gas impregnation step, the pressure is reduced to reduce the thermoplasticity.
  • a foaming step of foaming the resin composition is included.
  • the gas impregnation step is a step of impregnating a thermoplastic resin composition containing at least a thermoplastic resin with a nonreactive gas under pressure.
  • a nonreactive gas include carbon dioxide, nitrogen gas, and air. . These gases may be used alone or in combination.
  • carbon dioxide which has a large amount of impregnation into the thermoplastic resin composition used as a material for the porous resin sheet and has a high impregnation rate.
  • the pressure and temperature when impregnating the non-reactive gas depend on the type of non-reactive gas, the type of thermoplastic resin or thermoplastic resin composition, and the average cell diameter and porosity of the target porous resin sheet. It is necessary to adjust accordingly.
  • the pressure is about 7.4 to 100 MPa, preferably 20 to 50 MPa, and the temperature is about 120 to 350 ° C., preferably about 120 to 300 ° C.
  • a porous resin sheet having an average cell diameter of 5.0 ⁇ m or less and a porosity of 40% or more is produced.
  • the pressure is about 7.4 to 100 MPa, preferably 20 to 50 MPa, and the temperature is about 120 to 260 ° C., preferably about 120 to 220 ° C.
  • the non-reactive gas is preferably in a supercritical state.
  • the critical temperature is 31 ° C.
  • the critical pressure is 7.4 MPa
  • the temperature is 31 ° C. or higher and the pressure is 7.4 MPa or higher
  • the solubility of carbon dioxide in the thermoplastic resin composition Is significantly increased, and high concentration can be mixed.
  • the gas concentration in the thermoplastic resin composition is high. Therefore, when the pressure is suddenly lowered, a large amount of bubble nuclei are generated, and the bubble nuclei grow and the bubble nuclei grow. Even if the density is the same as the porosity, the density increases, and very fine bubbles can be obtained.
  • the foaming step is a step of foaming the thermoplastic resin composition by reducing the pressure after the gas impregnation step. By reducing the pressure, a large amount of bubble nuclei are generated in the thermoplastic resin composition.
  • the degree of pressure reduction is not particularly limited, but is about 5 to 400 MPa / second.
  • a heating step of heating a porous resin sheet made of a thermoplastic resin composition in which cell nuclei are formed by a foaming step at a temperature of 150 ° C. or higher may be provided.
  • the heating temperature is preferably 180 ° C. or higher, more preferably 200 ° C. or higher.
  • the heating temperature is less than 150 ° C., it may be difficult to obtain a porous resin sheet having a high porosity. Note that after the heating step, the porous resin sheet may be rapidly cooled to prevent the growth of bubbles or the shape of the bubbles may be fixed.
  • a gas impregnation step of impregnating a non-reactive gas under pressure into a thermoplastic resin composition containing at least a thermoplastic resin, and a foaming step of foaming the thermoplastic resin composition by reducing the pressure after the gas impregnation step The batch method or the continuous method may be used.
  • the foam can be produced as follows. That is, a sheet containing a thermoplastic resin as a base resin is formed by extruding a thermoplastic resin composition containing at least a thermoplastic resin using an extruder such as a single screw extruder or a twin screw extruder. Alternatively, a thermoplastic resin composition containing at least a thermoplastic resin is uniformly kneaded using a kneading machine provided with blades such as a roller, a cam, a kneader, a banbari type, etc. A sheet containing a thermoplastic resin as a base resin is formed by press molding to a predetermined thickness.
  • the non-foamed sheet thus obtained is put in a high-pressure vessel, and a non-reactive gas composed of carbon dioxide, nitrogen, air, etc. is injected, and the non-reactive gas is impregnated in the non-foamed sheet.
  • a non-reactive gas composed of carbon dioxide, nitrogen, air, etc.
  • the pressure is released (usually up to atmospheric pressure), and bubble nuclei are generated in the base resin.
  • bubble nuclei are generated in the base resin.
  • it cools rapidly with cold water etc., prevents the growth of a bubble, or a heat resistant polymer foam is obtained by fixing a shape.
  • a non-reactive gas is injected while kneading a thermoplastic resin composition containing at least a thermoplastic resin using an extruder such as a single screw extruder or a twin screw extruder, After sufficiently impregnating the non-reactive gas in the resin, the pressure is released by extrusion (usually up to atmospheric pressure) to generate bubble nuclei. And after making a bubble grow by heating, it cools rapidly with cold water etc., the growth of a bubble is prevented or a porous resin sheet can be obtained by fixing a shape.
  • an extruder such as a single screw extruder or a twin screw extruder
  • a non-porous layer substantially free of bubbles may be formed on the outermost surfaces on both sides of the produced porous resin sheet.
  • This non-porous layer is formed in the pressure release process after impregnation with the non-reactive gas.
  • the nonporous layer may be removed by slicing to form a porous resin sheet consisting of only a porous portion, or a porous resin sheet having a nonporous layer may be left leaving the nonporous layer.
  • the porous resin sheet is a single layer and has a thickness of 1.0 mm or more.
  • the single-layer porous resin sheet is composed of the same thermoplastic resin composition throughout the thickness direction of the sheet, and, for example, a plurality of sheets are bonded together with an adhesive or an adhesive sheet made of different materials. Things are not included.
  • the thickness of the porous resin sheet of the present invention is 1.0 mm or more, preferably 1.2 mm or more, more preferably 1.3 mm or more (usually 3.0 mm or less). If the thickness of the porous resin sheet is 1.0 mm or more, for example, when used for an antenna for a band telephone, there is an advantage that the reflection characteristic shifts to a lower direction in the antenna characteristic and the band is broadened. If so, the reflection characteristics cannot be increased and the bandwidth cannot be increased.
  • the variation in the thickness of the porous resin sheet is preferably 10 ⁇ m or less, and more preferably 8 ⁇ m or less.
  • the variation in the thickness of the porous resin sheet exceeds 10 ⁇ m, the porous resin sheet may be easily warped or distorted.
  • the thickness of the porous resin sheet is determined by measuring the film thickness with a dial gauge at 25 points divided in 1 cm 2 in the surface of a 50 mm ⁇ 50 mm sample, and taking the average value as the thickness. The difference between the value and the minimum value is taken as variation.
  • the porous resin sheet of the present invention is characterized in that the relative dielectric constant at 1 GHz is 2.00 or less. If the relative dielectric constant of the porous resin sheet is 2.00 or less, there is an advantage that the broadband width is widened with the same low dielectric thickness, and if it exceeds 2.00, the broadband width is narrowed, so the sheet thickness is increased. Need to do.
  • the dielectric constant at 1 GHz of the porous resin sheet is preferably 1.90 or less, more preferably 1.85 or less (usually 1.40 or more).
  • the porous resin sheet of the present invention is characterized in that the dielectric loss tangent is 0.0050 or less. If the dielectric loss tangent of the porous resin sheet is 0.0050 or less, there is an advantage that the dielectric loss in the high frequency region can be reduced, and if it exceeds 0.0050, the dielectric loss becomes larger than that of a single resin.
  • the dielectric loss tangent of the porous resin sheet is preferably 0.0045 or less, more preferably 0.0042 or less.
  • the relative dielectric constant of the porous resin sheet was measured by measuring the complex dielectric constant at a frequency of 1 GHz by the cavity resonator contact method, and the real part ( ⁇ r ′) was defined as the relative dielectric constant.
  • the dielectric loss tangent (tan ⁇ ) was obtained from the ratio ( ⁇ r ′′ / ⁇ r ′) of the real part ( ⁇ r ′) and the imaginary part ( ⁇ r ′′).
  • the measuring instrument uses a strip-shaped sample (sample size 2 mm ⁇ 70 mm length) by a cylindrical cavity resonator (“Network Analyzer N5230C” manufactured by Agilent Technologies, “Cavity Resonator 1 GHz” manufactured by Kanto Electronics Application Development Co., Ltd.). Can be measured.
  • the porous resin sheet of the present invention is characterized by a tensile elastic modulus of 200 MPa or more. There exists a malfunction that it is easy to deform
  • the tensile elastic modulus of the porous resin sheet is preferably 220 MPa or more, and more preferably 240 MPa or more (usually 400 MPa or less).
  • the tensile elastic modulus of the porous resin sheet is calculated based on IPC-TM-650, Number 2.4.18.3, and is calculated from the slope of the stress curve at a tensile speed of 50 mm / min.
  • the average bubble diameter of the bubbles contained in the porous resin sheet of the present invention is preferably 5.0 ⁇ m or less, more preferably 4.0 ⁇ m or less (usually 0.01 ⁇ m or more). If the average cell diameter of the porous resin sheet is 5.0 ⁇ m or less, there is an advantage that the relative permittivity and the dielectric loss tangent can be lowered without lowering the insulation and mechanical strength. Insulation and mechanical strength may decrease.
  • the average cell diameter of the bubbles contained in the porous resin sheet of the present invention is determined by observing the cut surface of the porous resin sheet with a scanning electron microscope (SEM) (“S-3400N” manufactured by Hitachi, Ltd.) Was binarized with image processing software (“WinROOF” manufactured by Mitani Shoji Co., Ltd.), separated into a bubble portion and a resin portion, and the maximum vertical chord length of the bubbles was measured. The average value of 50 bubbles from the larger bubble diameter was taken as the average bubble diameter.
  • SEM scanning electron microscope
  • the porosity of the porous resin sheet of the present invention is preferably 40% or more, more preferably 50% or more, and particularly preferably 60% or more (usually 80% or less). If the porosity of the porous resin sheet is 40% or more, there is an advantage that uniform pores exist in the sheet and there is no variation in dielectric characteristics. If it is less than 40%, the pore formation state is uneven. In some cases, variations in dielectric characteristics are likely to occur.
  • the porosity of the porous resin sheet of the present invention is calculated by the following formula by measuring the specific gravity of the thermoplastic resin composition before foaming and the porous resin sheet after foaming.
  • Porosity (%) [1 ⁇ (specific gravity of the porous resin sheet after foaming / specific gravity of the thermoplastic resin composition before foaming)] ⁇ 100
  • the porous resin sheet of the present invention desirably has a tensile strength (breaking strength) of 8 to 20 MPa, preferably 10 to 15 MPa. If the tensile strength is in the range of 8 to 20 MPa, the porous resin sheet of the present invention has sufficient strength and stability when used for circuit boards, band phone antennas, electromagnetic wave control materials, heat insulating materials, etc. Dielectric properties can be obtained. On the other hand, if the tensile strength is less than 8 MPa, sufficient strength may not be obtained when used in the above applications, and the dielectric properties may vary due to the increased bubble diameter. On the other hand, if the tensile strength exceeds 20 MPa, pores are not sufficiently formed, and a low relative dielectric constant and dielectric loss tangent may not be obtained.
  • the porous resin sheet of the present invention has a tensile elongation (breaking elongation) of 2.0 to 4.0%, preferably 2.5 to 3.5%. If the tensile elongation is in the range of 2.0 to 4.0%, when the porous resin sheet of the present invention is used for a circuit board, an antenna for a band phone, an electromagnetic wave control material, a heat insulating material, etc., deformation, etc. It has no sufficient shape stability and stable dielectric properties can be obtained. If the tensile elongation is less than 2.0%, pores are not sufficiently formed, and a low relative dielectric constant and dielectric loss tangent may not be obtained. On the other hand, if the tensile elongation exceeds 4.0%, there is a risk of deformation or the like when used in the above applications, and the dielectric properties may vary due to the increased bubble diameter.
  • the tensile strength and tensile elongation of the porous resin sheet were determined based on IPC-TM-650, Number 2.4.18.3, and obtained from the strength and elongation at the breaking point at a tensile speed of 50 mm / min.
  • the porous resin sheet of the present invention can have solder heat resistance by using a thermoplastic resin having heat resistance. Solder heat resistance is evaluated by observing the presence or absence of a change by floating a porous resin sheet for 30 seconds in a solder reflow heated to 260 ° C.
  • the porous resin sheet of the present invention can be made into a porous substrate by forming a metal foil layer on at least one surface thereof.
  • the porous substrate is used as an electromagnetic wave control material such as an antenna for a mobile phone or an antenna substrate, a high-frequency circuit board, an electromagnetic wave shield, or an electromagnetic wave absorber. In particular, it is used as a patch antenna used for mobile phone antennas.
  • the metal foil is not particularly limited, but stainless steel foil, copper foil, aluminum foil, copper-beryllium foil, phosphor bronze foil, iron-nickel alloy foil, etc. are usually used.
  • the method for forming the metal foil layer is not particularly limited, but (1) a method in which a resin layer to be foamed is formed on a base made of metal foil and foamed, and (2) the foamed resin layer is first formed. And a method of metallizing by a known method such as sputtering, electrolytic plating, and electroless plating. Also, two or more techniques can be used in combination.
  • the measuring instrument uses a strip-shaped sample (sample size 2 mm ⁇ 70 mm length) by a cylindrical cavity resonator (“Network Analyzer N5230C” manufactured by Agilent Technologies, “Cavity Resonator 1 GHz” manufactured by Kanto Electronics Application Development Co., Ltd.). Measured.
  • the porous resin sheet was cooled with liquid nitrogen and cut perpendicularly to the sheet surface using a blade to produce an evaluation sample.
  • the cut surface of the sample was subjected to Au vapor deposition, and the cut surface was observed with a scanning electron microscope (SEM) (“S-3400N” manufactured by Hitachi, Ltd.).
  • SEM scanning electron microscope
  • the image was binarized with image processing software (“WinROOF” manufactured by Mitani Corporation), separated into a bubble portion and a resin portion, and the maximum vertical chord length of the bubbles was measured. The average value of 50 bubbles from the larger bubble diameter was taken as the average bubble diameter.
  • the mechanical properties (elastic modulus, tensile strength, tensile elongation) of the porous resin sheet are determined according to IPC-TM-650, 2.4.18.3 using a tensile / compression tester ("Technograph TG-100kN" manufactured by Minebea). It was calculated from a stress curve obtained at a speed of 50 mm / min.
  • solder heat resistance For solder heat resistance, the porous resin sheet was floated for 30 seconds in a solder reflow heated to 260 ° C., and the presence or absence of change was observed. ⁇ : No change ⁇ : Appearance and external shape change such as shrinkage and melting
  • Example 1 A polyetherimide resin (manufactured by SABIC, trade name “Ultem 1000”, Tg: 217 ° C., specific gravity: 1.27, amorphous) was formed into a single-layer sheet having a thickness of 0.8 mm by a twin screw extruder.
  • the unfoamed single layer sheet was put into a 500 cc pressure vessel, and the inside of the tank was kept in a carbon dioxide atmosphere at 120 ° C. and 25 MPa for 5 hours to impregnate carbon dioxide. Thereafter, the sheet was returned to atmospheric pressure at 300 MPa / second, then continuously passed through an oil bath at 210 ° C. for 60 seconds to grow bubbles, quickly removed, and then rapidly cooled with water containing ice.
  • a porous resin sheet made of polyetherimide having a thickness of 1.81 mm was obtained. The surface of the obtained porous resin sheet had a non-porous layer having a thickness of 1 ⁇ m.
  • Example 2 A polyetherimide resin (manufactured by SABIC, trade name “Ultem 1000”, Tg: 217 ° C., specific gravity 1.27, amorphous) was formed into a single-layer sheet having a thickness of 0.8 mm by a twin screw extruder.
  • the unfoamed single layer sheet was put in a 500 cc pressure vessel, and the tank was impregnated with carbon dioxide by holding it in a carbon dioxide atmosphere at 210 ° C. and 25 MPa for 1 hour. Then, after returning this sheet
  • the surface of the obtained porous resin sheet had a non-porous layer having a thickness of 1 ⁇ m.
  • Comparative Example 1 A porous resin sheet made of polyetherimide having a thickness of 0.065 mm was obtained in the same manner as in Example 1 except that a single-layer sheet having a thickness of 0.035 mm was used. Ten porous resin sheets were laminated with an epoxy adhesive sheet (“B-EL10 # 40” manufactured by Nitto Shinko Co., Ltd.), treated with an autoclave at 150 ° C. under conditions of 15 kg / cm 2 for 3 hours. A 01 mm laminated sheet was produced. The surface of the obtained porous resin sheet had a non-porous layer having a thickness of 1 ⁇ m.
  • Example 1 since it is a single-layer porous resin sheet without an adhesive layer, it has a low dielectric constant of 2.00 or less and a dielectric loss tangent of 0.0050 or less, and has high rigidity ( (Elastic modulus) and thickness are not varied, and further, characteristics such as maintaining solder heat resistance can be achieved.
  • Comparative Example 1 although the dielectric constant is small, it is inferior in rigidity and dielectric loss tangent by being laminated through an adhesive layer.
  • FIGS. 1 is a side view, and is an explanatory view when the configuration of a simulated patch antenna is viewed from the side.
  • FIG. 2 is a three-dimensional view, and is a perspective view of the configuration of the simulated patch antenna as viewed obliquely from above, and is an image diagram that is divided at the porous resin sheet portion and floated upward for easy understanding of the positional relationship of the slots. As shown.
  • the patch antenna of the simulation model has a two-layer structure through the slot 3, and the power feeding to the antenna is performed not by direct power feeding but by electromagnetic coupling through the slot 3. .
  • the thickness of the substrate 5 on the microstrip line 4 forming side was 1.2 mm, the relative dielectric constant was 4.3, and the dielectric loss tangent was zero.
  • the conductor of each layer was made of Cu, and its thickness T Cu was 10 ⁇ m.
  • the analysis of bandwidth and antenna characteristics by simulation was performed by changing the substrate material on the patch antenna element 2 side. With respect to the substrate material on each antenna element side, each size is adjusted as follows so that the patch antenna resonates in the vicinity of 2.4 GHz (see Table 2). For reference, simulation results for fluororesins and ceramics conventionally used for patch antenna substrates are also shown.
  • a patch antenna having a wide bandwidth and high antenna characteristics can be manufactured by applying the porous resin sheet of the present invention to a patch antenna element.

Abstract

Provided is a porous resin sheet that is a thick film having a thickness of at least 1 mm, has a low dielectric constant and dielectric loss tangent, and has a high elastic modulus, and a method for manufacturing same. The single-layered porous resin sheet that includes a thermoplastic resin has a thickness of at least 1.0 mm, a relative permittivity of 2.00 or less at 1 GHz, a dielectric loss tangent of 0.0050 or less, and a tensile modulus of at least 200 MPa. Also, the method for manufacturing the porous resin sheet comprises a gas impregnation process in which a non-reactive gas is impregnated under increased pressure into a thermoplastic resin composition containing at least the thermoplastic resin, and a foaming process in which the thermoplastic resin composition is foamed by decreasing the pressure after the gas impregnation process. The porous resin sheet is employed as a patch antenna used particularly in a mobile phone antenna.

Description

多孔質樹脂シート及びその製造方法Porous resin sheet and manufacturing method thereof
 本発明は、低い比誘電率および誘電正接を有する多孔質樹脂シートとその製造方法に関する。この多孔質樹脂シートは、回路用基板、帯電話用アンテナなどの高周波回路に使用される低誘電率材料、電磁波シールドや電磁波吸収体などの電磁波制御材、断熱材等の広範囲な基板材料として利用可能である。 The present invention relates to a porous resin sheet having a low relative dielectric constant and a dielectric loss tangent and a method for producing the same. This porous resin sheet is used as a wide range of substrate materials such as low dielectric constant materials used in high-frequency circuits such as circuit boards and antennas for band phones, electromagnetic wave control materials such as electromagnetic wave shields and electromagnetic wave absorbers, and heat insulating materials. Is possible.
 携帯電話用アンテナなどの高周波用回路基板として、信号伝送損失を低減するために低誘電材料を使用した回路基板が必要とされており、例えばセラミックスを用いた回路基板が使用されている。 As a high-frequency circuit board such as an antenna for a mobile phone, a circuit board using a low dielectric material is required to reduce signal transmission loss. For example, a circuit board using ceramics is used.
 セラミックス基板としてはアルミナを原料としたアルミナ基板が使われており、ハンダリフローに対する耐熱性を有しているが、重量が重く、割れやすいといった課題があり、樹脂による代替化が進んでいる。さらに、信号伝送の向上のため高周波領域での使用が望まれるが、その際、伝送損失低減のために低誘電材料を使用した回路基板が必要となる。一般に誘電損失は下式に示されるように比誘電率、誘電正接が小さいほど小さくなり、伝送損失低減に効果がある。
Ad=27.3×f/C×tanδ×√ε
Ad:誘電損失 
f :周波数(Hz)
ε:比誘電率
C :光速度
tanδ:誘電正接
As the ceramic substrate, an alumina substrate made of alumina is used and has heat resistance against solder reflow. However, there is a problem that the substrate is heavy and easily broken, and replacement with a resin is progressing. Furthermore, use in a high frequency region is desired for improving signal transmission. At that time, a circuit board using a low dielectric material is required for reducing transmission loss. In general, the dielectric loss becomes smaller as the relative dielectric constant and the dielectric loss tangent are smaller as shown in the following equation, which is effective in reducing transmission loss.
Ad = 27.3 × f / C × tan δ × √ε r
Ad: Dielectric loss
f: Frequency (Hz)
ε r : relative dielectric constant C: speed of light tan δ: dielectric loss tangent
 また、携帯電話用アンテナなどに用いられているパッチアンテナは、多機能で軽量、小型、低価格で製作が容易であるため、通信や工学的応用において重要なアンテナになってきている。現在では一つのアンテナでいくつかのアプリケーションを使用する多周波共用アンテナが必要となってきており、この多周波共用アンテナは周波数帯の帯域幅を広帯域化することで実現することができるが、パッチアンテナには一般的に周波数特性が狭いといった難点があった。 Also, patch antennas used for mobile phone antennas and the like are becoming important antennas for communication and engineering applications because they are multifunctional, lightweight, compact, and inexpensive to manufacture. Currently, there is a need for a multi-frequency antenna that uses several applications with a single antenna, and this multi-frequency antenna can be realized by widening the bandwidth of the frequency band. Antennas generally have a drawback that their frequency characteristics are narrow.
 このため、パッチアンテナではアンテナ構成において、無給電放射パッチ素子をマイクロストリップ放射素子の上部に配置結合した構成であったり、給電線に広帯域化整合回路を付加したりする方法が広帯域化する手段として検討されている。また、パッチアンテナに使用される基板材料でも広帯域化が可能であり、その手法としては基板厚さを厚くする方法や低誘電の基板を使用する方法がある。しかしながら基板厚さを厚くした場合、セラミックス基板などの高誘電基板では誘電体損失が大きく、共振の鋭さを表すQ値が高くなるために帯域幅が狭くなるという問題がある。一方、高周波基板として誘電特性の優れるフッ素基板はパッチアンテナの基板材料として有用であるが、材料費が高いうえ、メッキ等の回路加工においても特殊な薬品を使うなど加工性に問題があった。そこで、フッ素基板に替わる低誘電で低損失な基板材料が要望されていた。 For this reason, patch antennas have a configuration in which a parasitic radiating patch element is arranged and coupled to the upper part of the microstrip radiating element, or a method of adding a broadband matching circuit to the feeder line is a means to increase the bandwidth. It is being considered. In addition, the substrate material used for the patch antenna can also be widened, and there are a method of increasing the substrate thickness and a method of using a low dielectric substrate. However, when the substrate thickness is increased, there is a problem that the dielectric loss is large in a high dielectric substrate such as a ceramic substrate, and the bandwidth is narrowed because the Q value representing the sharpness of resonance becomes high. On the other hand, a fluorine substrate having excellent dielectric characteristics as a high-frequency substrate is useful as a substrate material for patch antennas, but has a high material cost and has problems in workability such as using special chemicals in circuit processing such as plating. Therefore, there has been a demand for a low dielectric and low loss substrate material to replace the fluorine substrate.
 一方、低誘電性を保持するため、基板フィルムを多孔化することで誘電率を低下させることが知られている。空孔を有するフィルムとしてポリプロピレン、ポリエチレンなどの熱可塑性樹脂を用いた多孔質フィルムがあり、低誘電化とシート厚手化を達成しているが、耐熱性が十分でなく、強度も十分でない。また高耐熱ポリマーを用いた多孔質フィルムが検討されているが、誘電率は十分に低いものの、シートの厚手化が困難であった(特許文献1、特許文献2参照)。すなわち特許文献1においては、耐熱性ポリマーに二酸化炭素などの非反応性ガスを超臨界状態で含浸させた後、圧力を減少させ、次いで120℃を超える温度で加熱して発泡させる耐熱性ポリマー発泡体の製造方法が開示されているが、含浸時の温度が低いため1mm以上の厚膜化を実現する程度の発泡は達成されていない。また特許文献2においては、湿式凝固法により連続気泡多孔質体を得ることが開示されているが、1mm以上の厚さの多孔質体を得るとの開示はない。 On the other hand, in order to maintain low dielectric properties, it is known to lower the dielectric constant by making the substrate film porous. There is a porous film using a thermoplastic resin such as polypropylene or polyethylene as a film having pores, which achieves low dielectric constant and thick sheet, but has insufficient heat resistance and insufficient strength. Moreover, although the porous film using a high heat-resistant polymer is examined, although the dielectric constant is low enough, it was difficult to increase the thickness of the sheet (see Patent Document 1 and Patent Document 2). That is, in Patent Document 1, after impregnating a heat-resistant polymer with a non-reactive gas such as carbon dioxide in a supercritical state, the pressure is reduced, and then the foam is heated and heated at a temperature exceeding 120 ° C. Although a method for producing a body is disclosed, foaming to the extent that a film thickness of 1 mm or more is realized is not achieved because the temperature during impregnation is low. Patent Document 2 discloses that an open-cell porous body is obtained by a wet coagulation method, but there is no disclosure that a porous body having a thickness of 1 mm or more is obtained.
 さらに薄手のシートを厚手化する方法として、シートと接着剤層を介して積層化することが知られている(特許文献3参照)。これにより多孔質フィルム単体の比誘電率、誘電正接よりも、積層して厚手化したシートは比誘電率、誘電正接が高い値を示す結果になるが、接着剤の誘電率がポリマーの誘電率と大きく異なる場合は、積層時の加圧によって生じる厚みばらつきにより、高周波領域の伝送特性がばらついてしまう問題と、積層化により弾性率が弱く基板加工時に変形しやすいといった欠点を有している。 Further, as a method of thickening a thin sheet, it is known to laminate the sheet via an adhesive layer (see Patent Document 3). As a result, the laminated sheet is thicker than the dielectric constant and dielectric loss tangent of the porous film alone, resulting in higher values of the dielectric constant and dielectric loss tangent, but the dielectric constant of the adhesive is that of the polymer. If the difference is significantly different from the above, there is a problem that the transmission characteristics in the high-frequency region vary due to thickness variations caused by pressurization at the time of lamination, and a defect that the elastic modulus is weak due to the lamination and is easily deformed during substrate processing.
特開2001-55464号公報JP 2001-55464 A 特開2004-87638号公報Japanese Patent Application Laid-Open No. 2004-87638 特開2000-269616号公報JP 2000-269616 A
 本発明の目的は、厚膜で比誘電率および誘電正接が低く、引張弾性率の高い単層の多孔質樹脂シート、およびその製造方法を提供することにある。 An object of the present invention is to provide a single-layer porous resin sheet having a thick film, a low relative dielectric constant and a dielectric loss tangent, and a high tensile elastic modulus, and a method for producing the same.
 すなわち本発明は、熱可塑性樹脂を含む単層の多孔質樹脂シートであって、厚みが1.0mm以上であり、1GHzにおける比誘電率が2.00以下であり、誘電正接が0.0050以下であり、引張弾性率が200MPa以上であることを特徴とする多孔質樹脂シートを提供する。 That is, the present invention is a single-layer porous resin sheet containing a thermoplastic resin, having a thickness of 1.0 mm or more, a relative dielectric constant at 1 GHz of 2.00 or less, and a dielectric loss tangent of 0.0050 or less. And providing a porous resin sheet characterized by a tensile elastic modulus of 200 MPa or more.
 また本発明の多孔質樹脂シートは、平均気泡径が5.0μm以下であり、空孔率が40%以上となる気泡を有することが好適であり、厚みのばらつきが10μm以下であることが好適である。 The porous resin sheet of the present invention preferably has bubbles having an average cell diameter of 5.0 μm or less, a porosity of 40% or more, and a thickness variation of 10 μm or less. It is.
 また本発明の多孔質樹脂シートを構成する熱可塑性樹脂は、ポリイミドまたはポリエーテルイミドであることが好適であり、また熱可塑性樹脂は、非晶性であることが好適である。 The thermoplastic resin constituting the porous resin sheet of the present invention is preferably polyimide or polyetherimide, and the thermoplastic resin is preferably amorphous.
 また本発明は、前記多孔質樹脂シートの製造方法であって、
 少なくとも熱可塑性樹脂を含む熱可塑性樹脂組成物に非反応性ガスを加圧下で含浸させるガス含浸工程、ガス含浸工程後に圧力を減少させて熱可塑性樹脂組成物を発泡させる発泡工程を含む多孔質樹脂シートの製造方法を提供する。
The present invention is also a method for producing the porous resin sheet,
A porous resin comprising a gas impregnation step of impregnating a thermoplastic resin composition containing at least a thermoplastic resin with a non-reactive gas under pressure, and a foaming step of foaming the thermoplastic resin composition by reducing the pressure after the gas impregnation step A method for manufacturing a sheet is provided.
 また本発明の多孔質樹脂シートの製造方法は、前記発泡工程後に、150℃以上の温度で多孔質樹脂シートを加熱する加熱工程を設けることが好適である。 In the method for producing a porous resin sheet of the present invention, it is preferable to provide a heating step of heating the porous resin sheet at a temperature of 150 ° C. or higher after the foaming step.
 また本発明の多孔質樹脂シートの製造方法は、非反応性ガスとして二酸化炭素を用いることが好適である。 In the method for producing a porous resin sheet of the present invention, it is preferable to use carbon dioxide as a non-reactive gas.
 また本発明の多孔質樹脂シートの製造方法は、非反応性ガスを超臨界状態で含浸させることが好適である。 In the method for producing a porous resin sheet of the present invention, it is preferable to impregnate a non-reactive gas in a supercritical state.
 また本発明は、前記多孔質樹脂シートの少なくとも一面に金属箔層を設けた多孔体基板を提供する。 The present invention also provides a porous substrate in which a metal foil layer is provided on at least one surface of the porous resin sheet.
 本発明の多孔質樹脂シートは、厚膜で比誘電率および誘電正接が低く、引張弾性率の高いという特性を生かし、回路用基板、帯電話用アンテナなどの高周波回路に使用される低誘電率材料、電磁波シールドや電磁波吸収体などの電磁波制御材、断熱材等の広範囲な基板材料として利用可能である。本発明の多孔質樹脂シートは、特に広い帯域幅と高いアンテナ特性を有するパッチアンテナ素子基板材料として用いることができる。 The porous resin sheet of the present invention is a low dielectric constant used for high-frequency circuits such as circuit boards and band-phone antennas, taking advantage of the properties of thick film, low relative dielectric constant and dielectric loss tangent, and high tensile elastic modulus. It can be used as a wide range of substrate materials such as materials, electromagnetic wave control materials such as electromagnetic wave shields and electromagnetic wave absorbers, and heat insulating materials. The porous resin sheet of the present invention can be used as a patch antenna element substrate material having a particularly wide bandwidth and high antenna characteristics.
図1は、本発明の多孔質樹脂シートをパッチアンテナに適用した場合のシミュレーションを行う解析モデルの側面図を示す。FIG. 1 shows a side view of an analysis model for performing a simulation when the porous resin sheet of the present invention is applied to a patch antenna. 図2は、図1に示す解析モデルの立体図を示す。FIG. 2 shows a three-dimensional view of the analysis model shown in FIG.
 以下、本発明の実施の形態について説明する。本発明の多孔質樹脂シートは、熱可塑性樹脂を含む単層の多孔質樹脂シートであって、厚みが1.0mm以上であり、1GHzにおける比誘電率が2.00以下であり、誘電正接が0.0050以下であり、引張弾性率が200MPa以上であることを特徴とする。 Hereinafter, embodiments of the present invention will be described. The porous resin sheet of the present invention is a single-layer porous resin sheet containing a thermoplastic resin, has a thickness of 1.0 mm or more, a relative dielectric constant at 1 GHz of 2.00 or less, and a dielectric loss tangent. It is 0.0050 or less, and the tensile elastic modulus is 200 MPa or more.
 本発明に用いられる熱可塑性樹脂としては特に限定されないが、耐熱性を有する熱可塑性樹脂であることが好ましく、特にガラス転移温度が150℃以上の耐熱性を有するものが好適に使用される。このような熱可塑性樹脂としては、ポリアミド、ポリカーボネート、ポリブチレンテレフタレート、ポリエチレンテレフタレート、ポリフェニレンサルファイド、ポリアリレート、ポリスルホン、ポリエーテルスルホン、ポリエーテルエーテルケトン、ポリアミドイミド、ポリイミド、ポリエーテルイミドなどが挙げられる。熱可塑性樹脂は単独で又は2種以上混合して使用できる。 Although the thermoplastic resin used in the present invention is not particularly limited, it is preferably a thermoplastic resin having heat resistance, and in particular, a resin having a glass transition temperature of 150 ° C. or more is preferably used. Examples of such thermoplastic resins include polyamide, polycarbonate, polybutylene terephthalate, polyethylene terephthalate, polyphenylene sulfide, polyarylate, polysulfone, polyethersulfone, polyetheretherketone, polyamideimide, polyimide, and polyetherimide. A thermoplastic resin can be used individually or in mixture of 2 or more types.
 上記のポリマーの中でも、ポリイミドまたはポリエーテルイミドが好適に使用される。本発明において熱可塑性樹脂としてポリイミドまたはポリエーテルイミドを用いる理由として、高温時の寸法安定性がよいことが挙げられる。ポリイミドは公知乃至慣用の方法により得ることができる。例えば、ポリイミドは、有機テトラカルボン酸二無水物とジアミノ化合物(ジアミン)とを反応させてポリイミド前駆体(ポリアミド酸)を合成し、このポリイミド前駆体を脱水閉環することにより得ることができる。 Among the above polymers, polyimide or polyetherimide is preferably used. The reason why polyimide or polyetherimide is used as the thermoplastic resin in the present invention is that the dimensional stability at high temperature is good. Polyimide can be obtained by a known or conventional method. For example, a polyimide can be obtained by reacting an organic tetracarboxylic dianhydride and a diamino compound (diamine) to synthesize a polyimide precursor (polyamic acid) and dehydrating and ring-closing the polyimide precursor.
 上記有機テトラカルボン酸二無水物としては、例えば、ピロメリット酸二無水物、3,3′,4,4′-ビフェニルテトラカルボン酸二無水物、2,2-ビス(2,3-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン二無水物、2,2-ビス(3,4-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン二無水物、3,3′,4,4′-ベンゾフェノンテトラカルボン酸二無水物、ビス(3,4-ジカルボキシフェニル)エーテル二無水物、ビス(3,4-ジカルボキシフェニル)スルホン二無水物等が挙げられる。これらの有機テトラカルボン酸二無水物は単独で又は2種以上混合して用いてもよい。 Examples of the organic tetracarboxylic dianhydride include pyromellitic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, and 2,2-bis (2,3-dicarboxyl). Phenyl) -1,1,1,3,3,3-hexafluoropropane dianhydride, 2,2-bis (3,4-dicarboxyphenyl) -1,1,1,3,3,3-hexa Fluoropropane dianhydride, 3,3 ', 4,4'-benzophenonetetracarboxylic dianhydride, bis (3,4-dicarboxyphenyl) ether dianhydride, bis (3,4-dicarboxyphenyl) sulfone A dianhydride etc. are mentioned. These organic tetracarboxylic dianhydrides may be used alone or in admixture of two or more.
 上記ジアミノ化合物としては、例えば、m-フェニレンジアミン、p-フェニレンジアミン、3,4′-ジアミノジフェニルエーテル、4,4′-ジアミノジフェニルエーテル、4,4′-ジアミノジフェニルスルホン、3,3′-ジアミノジフェニルスルホン、2,2-ビス(4-アミノフェノキシフェニル)プロパン、2,2-ビス(4-アミノフェノキシフェニル)ヘキサフルオロプロパン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、2,4-ジアミノトルエン、2,6-ジアミノトルエン、ジアミノジフェニルメタン、4,4′-ジアミノ-2,2′-ジメチルビフェニル、2,2′-ビス(トリフルオロメチル)-4,4′-ジアミノビフェニル等が挙げられる。 Examples of the diamino compound include m-phenylenediamine, p-phenylenediamine, 3,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl sulfone, and 3,3'-diaminodiphenyl. Sulfone, 2,2-bis (4-aminophenoxyphenyl) propane, 2,2-bis (4-aminophenoxyphenyl) hexafluoropropane, 1,3-bis (4-aminophenoxy) benzene, 1,4-bis (4-aminophenoxy) benzene, 2,4-diaminotoluene, 2,6-diaminotoluene, diaminodiphenylmethane, 4,4'-diamino-2,2'-dimethylbiphenyl, 2,2'-bis (trifluoromethyl) ) -4,4'-diaminobiphenyl and the like.
 なお本発明において用いられるポリイミドとしては、有機テトラカルボン酸二無水物として、3,3′,4,4′-ビフェニルテトラカルボン酸二無水物を用い、ジアミノ化合物としてp-フェニレンジアミン及び/又は4,4′-ジアミノジフェニルエーテルを用いることが好ましい。 As the polyimide used in the present invention, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride is used as the organic tetracarboxylic dianhydride, p-phenylenediamine and / or 4 is used as the diamino compound. 4,4'-diaminodiphenyl ether is preferably used.
 前記ポリイミド前駆体は、略等モルの有機テトラカルボン酸二無水物とジアミノ化合物(ジアミン)とを、通常、有機溶媒中、0~90℃で1~24時間程度反応させることにより得られる。前記有機溶媒として、例えば、N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、ジメチルスルホキシド等の極性溶媒が挙げられる。 The polyimide precursor can be obtained by reacting approximately equimolar organic tetracarboxylic dianhydride and a diamino compound (diamine) usually in an organic solvent at 0 to 90 ° C. for about 1 to 24 hours. Examples of the organic solvent include polar solvents such as N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, and dimethyl sulfoxide.
 ポリイミド前駆体の脱水閉環反応は、例えば、300~400℃程度に加熱したり、無水酢酸とピリジンの混合物などの脱水環化剤を作用させることにより行われる。一般に、ポリイミドは有機溶媒に不溶であり、成形困難なポリマーである。そのため、ポリイミドからなる多孔質体を製造する場合、前記ミクロ相分離構造を有するポリマー組成物の調製には、ポリマーとして上記のポリイミド前駆体を用いるのが一般である。 The dehydration ring-closing reaction of the polyimide precursor is performed, for example, by heating to about 300 to 400 ° C. or by acting a dehydration cyclizing agent such as a mixture of acetic anhydride and pyridine. In general, polyimide is a polymer that is insoluble in organic solvents and difficult to mold. Therefore, when producing a porous body made of polyimide, it is common to use the above polyimide precursor as a polymer for the preparation of the polymer composition having the microphase separation structure.
 なお、ポリイミドは、上記方法のほか、有機テトラカルボン酸二無水物とN-シリル化ジアミンとを反応させて得られるポリアミド酸シリルエステルを加熱閉環させる方法などよっても得ることができる。 In addition to the above method, the polyimide can be obtained by a method in which a polyamic acid silyl ester obtained by reacting an organic tetracarboxylic dianhydride and an N-silylated diamine is heated and cyclized.
 前記ポリエーテルイミドは、前記ジアミノ化合物と、2,2,3,3-テトラカルボキシジフェニレンエーテル二無水物のような芳香族ビスエーテル無水物との脱水閉環反応により得ることができるが、市販品、例えば、ウルテム樹脂(SABIC社製)、スペリオ樹脂(三菱樹脂社製)などを用いてもよい。 The polyetherimide can be obtained by a dehydration ring-closing reaction between the diamino compound and an aromatic bisether anhydride such as 2,2,3,3-tetracarboxydiphenylene ether dianhydride. For example, Ultem resin (manufactured by SABIC), Superior resin (manufactured by Mitsubishi Plastics) or the like may be used.
 また本発明において用いられる熱可塑性樹脂は、非晶性であることが好ましい。非晶性の熱可塑性樹脂を用いることで、耐衝撃性、加工性に優れ、また高温域での曲げ弾性に優れた多孔質樹脂シートを得ることができる。熱可塑性樹脂が非晶性であるとは、熱可塑性樹脂中に結晶部分を実質的に含まない樹脂であって、その結晶化度は2%以下であることが好ましく、より好ましくは0%である。また非晶性の熱可塑性樹脂は、ガラス転移点のみを有し、融点を有さないことからも判断される。 The thermoplastic resin used in the present invention is preferably amorphous. By using an amorphous thermoplastic resin, it is possible to obtain a porous resin sheet excellent in impact resistance and workability and excellent in flexural elasticity in a high temperature range. The amorphous thermoplastic resin is a resin that does not substantially contain a crystalline portion in the thermoplastic resin, and its crystallinity is preferably 2% or less, more preferably 0%. is there. Amorphous thermoplastic resin is also judged from having only a glass transition point and no melting point.
 本発明において、多孔質樹脂シートには、熱可塑性樹脂のほか、必要に応じて添加剤を含んでいてもよい。この添加剤の種類は特に限定されず、通常発泡成形に使用される各種添加剤を用いることができる。 In the present invention, the porous resin sheet may contain an additive as required in addition to the thermoplastic resin. The kind of additive is not particularly limited, and various additives that are usually used for foam molding can be used.
 例えば、前記添加剤として、気泡核剤、結晶核剤、可塑剤、滑剤、着色剤、紫外線吸収剤、酸化防止剤、充填剤、補強材、難燃材、帯電防止剤等が挙げられる。その種類および添加量は特に限定されず、本発明の多孔質樹脂シートの特性を損なわない範囲内で用いることができる。 For example, examples of the additive include a cell nucleating agent, a crystal nucleating agent, a plasticizer, a lubricant, a colorant, an ultraviolet absorber, an antioxidant, a filler, a reinforcing material, a flame retardant, and an antistatic agent. The kind and addition amount are not particularly limited, and can be used as long as the characteristics of the porous resin sheet of the present invention are not impaired.
 厚みが1.0mm以上であり、1GHzにおける比誘電率が2.00以下であり、誘電正接が0.0050以下であり、引張弾性率が200MPa以上であることを特徴とする本発明の単層の多孔質樹脂シートを製造するには、前記熱可塑性樹脂を含む熱可塑性樹脂層を用い、これを多孔質化することにより製造することができる。特にその平均気泡径が5.0μm以下であり、空孔率が40%以上となる気泡を有する多孔質樹脂シートとすることで、絶縁性や機械強度を低下させることなく、比誘電率や誘電正接をバラツキなく低下させることができる。 The single layer of the present invention having a thickness of 1.0 mm or more, a relative dielectric constant at 1 GHz of 2.00 or less, a dielectric loss tangent of 0.0050 or less, and a tensile elastic modulus of 200 MPa or more. In order to manufacture this porous resin sheet, it can be manufactured by using a thermoplastic resin layer containing the thermoplastic resin and making it porous. In particular, by using a porous resin sheet having bubbles with an average bubble diameter of 5.0 μm or less and a porosity of 40% or more, the dielectric constant or dielectric constant is reduced without lowering the insulation or mechanical strength. The tangent can be reduced without variation.
 本発明の多孔質樹脂シートの製造方法においては、少なくとも熱可塑性樹脂を含む熱可塑性樹脂組成物に非反応性ガスを加圧下で含浸させるガス含浸工程、ガス含浸工程後に圧力を減少させて熱可塑性樹脂組成物を発泡させる発泡工程を含む。 In the method for producing a porous resin sheet of the present invention, a thermoplastic resin composition containing at least a thermoplastic resin is impregnated with a non-reactive gas under pressure, a gas impregnation step, and after the gas impregnation step, the pressure is reduced to reduce the thermoplasticity. A foaming step of foaming the resin composition is included.
 ガス含浸工程は、少なくとも熱可塑性樹脂を含む熱可塑性樹脂組成物に非反応性ガスを加圧下に含浸させる工程であり、非反応性ガスとしては、例えば二酸化炭素、窒素ガス、空気等が挙げられる。これらのガスは、単独で使用してもよく、混合して使用してもよい。 The gas impregnation step is a step of impregnating a thermoplastic resin composition containing at least a thermoplastic resin with a nonreactive gas under pressure. Examples of the nonreactive gas include carbon dioxide, nitrogen gas, and air. . These gases may be used alone or in combination.
 これらの非反応性ガスのうち、多孔質樹脂シートの素材として用いる熱可塑性樹脂組成物への含浸量が多く、含浸速度も速い二酸化炭素の使用が特に好ましい。 Of these non-reactive gases, it is particularly preferable to use carbon dioxide which has a large amount of impregnation into the thermoplastic resin composition used as a material for the porous resin sheet and has a high impregnation rate.
 非反応性ガスを含浸させる際の圧力および温度は、非反応性ガスの種類、熱可塑性樹脂または熱可塑性樹脂組成物の種類、および目的とする多孔質樹脂シートの平均気泡径や空孔率によって適宜調整する必要がある。例えば非反応性ガスとして二酸化炭素を用い、熱可塑性樹脂としてポリイミドを用いた場合において、平均気泡径を5.0μm以下、空孔率を40%以上の多孔質樹脂シートを製造するためには、圧力は7.4~100MPa程度、好ましくは20~50MPaであり、温度は120~350℃程度、好ましくは120~300℃程度である。また例えば非反応性ガスとして二酸化炭素を用い、熱可塑性樹脂としてポリエーテルイミドを用いた場合において、平均気泡径を5.0μm以下、空孔率を40%以上の多孔質樹脂シートを製造するためには、圧力は7.4~100MPa程度、好ましくは20~50MPaであり、温度は120~260℃程度、好ましくは120~220℃程度である。 The pressure and temperature when impregnating the non-reactive gas depend on the type of non-reactive gas, the type of thermoplastic resin or thermoplastic resin composition, and the average cell diameter and porosity of the target porous resin sheet. It is necessary to adjust accordingly. For example, when carbon dioxide is used as a non-reactive gas and polyimide is used as a thermoplastic resin, in order to produce a porous resin sheet having an average cell diameter of 5.0 μm or less and a porosity of 40% or more, The pressure is about 7.4 to 100 MPa, preferably 20 to 50 MPa, and the temperature is about 120 to 350 ° C., preferably about 120 to 300 ° C. For example, when carbon dioxide is used as a non-reactive gas and polyetherimide is used as a thermoplastic resin, a porous resin sheet having an average cell diameter of 5.0 μm or less and a porosity of 40% or more is produced. The pressure is about 7.4 to 100 MPa, preferably 20 to 50 MPa, and the temperature is about 120 to 260 ° C., preferably about 120 to 220 ° C.
 また、熱可塑性樹脂組成物中への含浸速度を速めるという観点から、前記非反応性ガスは超臨界状態であることが好ましい。例えば、二酸化炭素の場合、臨界温度が31℃、臨界圧力が7.4MPaであり、温度31℃以上、圧力7.4MPa以上の超臨界状態にすると、熱可塑性樹脂組成物への二酸化炭素の溶解度が著しく増大し、高濃度の混入が可能となる。また、超臨界状態でガスを含浸させると熱可塑性樹脂組成物中のガス濃度が高いため、急激に圧力を降下させると、気泡核が多量に発生し、その気泡核が成長してできる気泡の密度が気孔率が同じであっても大きくなり、非常に微細な気泡を得ることができる。 Further, from the viewpoint of increasing the impregnation rate into the thermoplastic resin composition, the non-reactive gas is preferably in a supercritical state. For example, in the case of carbon dioxide, when the critical temperature is 31 ° C., the critical pressure is 7.4 MPa, and the temperature is 31 ° C. or higher and the pressure is 7.4 MPa or higher, the solubility of carbon dioxide in the thermoplastic resin composition Is significantly increased, and high concentration can be mixed. In addition, when the gas is impregnated in the supercritical state, the gas concentration in the thermoplastic resin composition is high. Therefore, when the pressure is suddenly lowered, a large amount of bubble nuclei are generated, and the bubble nuclei grow and the bubble nuclei grow. Even if the density is the same as the porosity, the density increases, and very fine bubbles can be obtained.
 本発明において発泡工程は、前記ガス含浸工程後に圧力を減少させて熱可塑性樹脂組成物を発泡させる工程である。圧力を減少させることにより、熱可塑性樹脂組成物中に気泡核が多量に発生する。圧力を減少させる程度(減圧速度)は特に制限されないが、5~400MPa/秒程度である。 In the present invention, the foaming step is a step of foaming the thermoplastic resin composition by reducing the pressure after the gas impregnation step. By reducing the pressure, a large amount of bubble nuclei are generated in the thermoplastic resin composition. The degree of pressure reduction (pressure reduction rate) is not particularly limited, but is about 5 to 400 MPa / second.
 本発明においては、発泡工程により気泡核が形成された熱可塑性樹脂組成物からなる多孔質樹脂シートを、150℃以上の温度で加熱する加熱工程を設けてもよい。気泡核が生じた多孔質樹脂シートを加熱することにより、気泡核が成長し、気泡が形成される。加熱温度は180℃以上であることが好ましく、より好ましくは200℃以上である。加熱温度が150℃未満では、空孔率の高い多孔質樹脂シートを得ることが困難な場合がある。なお加熱工程後には、多孔質樹脂シートを急冷して気泡の成長を防止したり、気泡形状を固定してもよい。 In the present invention, a heating step of heating a porous resin sheet made of a thermoplastic resin composition in which cell nuclei are formed by a foaming step at a temperature of 150 ° C. or higher may be provided. By heating the porous resin sheet in which bubble nuclei are generated, the bubble nuclei grow and bubbles are formed. The heating temperature is preferably 180 ° C. or higher, more preferably 200 ° C. or higher. When the heating temperature is less than 150 ° C., it may be difficult to obtain a porous resin sheet having a high porosity. Note that after the heating step, the porous resin sheet may be rapidly cooled to prevent the growth of bubbles or the shape of the bubbles may be fixed.
 本発明において、少なくとも熱可塑性樹脂を含む熱可塑性樹脂組成物に非反応性ガスを加圧下で含浸させるガス含浸工程と、ガス含浸工程後に圧力を減少させて熱可塑性樹脂組成物を発泡させる発泡工程は、バッチ方式、連続方式の何れの方式で行ってもよい。 In the present invention, a gas impregnation step of impregnating a non-reactive gas under pressure into a thermoplastic resin composition containing at least a thermoplastic resin, and a foaming step of foaming the thermoplastic resin composition by reducing the pressure after the gas impregnation step The batch method or the continuous method may be used.
 バッチ方式によれば、例えば以下のようにして発泡体を製造できる。すなわち、少なくとも熱可塑性樹脂を含む熱可塑性樹脂組成物を単軸押出機、二軸押出機等の押出機を使用して押し出すことにより、熱可塑性樹脂を基材樹脂として含むシートが形成される。あるいは、少なくとも熱可塑性樹脂を含む熱可塑性樹脂組成物を、ローラ、カム、ニーダ、バンバリ型等の羽根を設けた混錬機を使用して均一に混錬しておき、熱板のプレスなどを用いて所定の厚みにプレス成形することにより、熱可塑性樹脂を基材樹脂として含むシートが形成される。こうして得られる未発泡シートを高圧容器中に入れて、二酸化炭素、窒素、空気などからなる非反応性ガスを注入し、前記未発泡シート中に非反応性ガスを含浸させる。十分に非反応性ガスを含浸させた時点で圧力を解放し(通常、大気圧まで)、基材樹脂中に気泡核を発生させる。そして、この気泡核を加熱することによって気泡を成長させた後、冷水などで急激に冷却し、気泡の成長を防止したり、形状を固定することにより耐熱性ポリマー発泡体が得られる。 According to the batch method, for example, the foam can be produced as follows. That is, a sheet containing a thermoplastic resin as a base resin is formed by extruding a thermoplastic resin composition containing at least a thermoplastic resin using an extruder such as a single screw extruder or a twin screw extruder. Alternatively, a thermoplastic resin composition containing at least a thermoplastic resin is uniformly kneaded using a kneading machine provided with blades such as a roller, a cam, a kneader, a banbari type, etc. A sheet containing a thermoplastic resin as a base resin is formed by press molding to a predetermined thickness. The non-foamed sheet thus obtained is put in a high-pressure vessel, and a non-reactive gas composed of carbon dioxide, nitrogen, air, etc. is injected, and the non-reactive gas is impregnated in the non-foamed sheet. When the non-reactive gas is sufficiently impregnated, the pressure is released (usually up to atmospheric pressure), and bubble nuclei are generated in the base resin. And after growing a bubble by heating this bubble nucleus, it cools rapidly with cold water etc., prevents the growth of a bubble, or a heat resistant polymer foam is obtained by fixing a shape.
 一方、連続方式によれば、例えば、少なくとも熱可塑性樹脂を含む熱可塑性樹脂組成物を単軸押出機、二軸押出機等の押出機を使用して混練しながら非反応性ガスを注入し、十分に非反応性ガスを樹脂中に含浸させた後、押し出すことにより圧力を解放(通常、大気圧まで)して気泡核を発生させる。そして、加熱することによって気泡を成長させた後、冷水などで急激に冷却し、気泡の成長を防止したり、形状を固定化することにより多孔質樹脂シートを得ることができる。 On the other hand, according to the continuous method, for example, a non-reactive gas is injected while kneading a thermoplastic resin composition containing at least a thermoplastic resin using an extruder such as a single screw extruder or a twin screw extruder, After sufficiently impregnating the non-reactive gas in the resin, the pressure is released by extrusion (usually up to atmospheric pressure) to generate bubble nuclei. And after making a bubble grow by heating, it cools rapidly with cold water etc., the growth of a bubble is prevented or a porous resin sheet can be obtained by fixing a shape.
 本発明の多孔質樹脂シートの製造方法によると、製造される多孔質樹脂シートの両側の最表面に実質的に気泡を含まない無孔層(スキン層)が形成される場合がある。この無孔層は非反応性ガス含浸後の圧力解放過程で形成される。無孔層をスライスにより除去して、多孔質部分のみからなる多孔質樹脂シートとしてもよく、また無孔層を残して、無孔層を有する多孔質樹脂シートとすることもできる。無孔層を有する多孔質樹脂シートとすることにより、機械強度や耐熱性を向上させることもできるという利点がある。 According to the method for producing a porous resin sheet of the present invention, a non-porous layer (skin layer) substantially free of bubbles may be formed on the outermost surfaces on both sides of the produced porous resin sheet. This non-porous layer is formed in the pressure release process after impregnation with the non-reactive gas. The nonporous layer may be removed by slicing to form a porous resin sheet consisting of only a porous portion, or a porous resin sheet having a nonporous layer may be left leaving the nonporous layer. By using a porous resin sheet having a non-porous layer, there is an advantage that mechanical strength and heat resistance can be improved.
 本発明において、多孔質樹脂シートは単層であって、その厚さが1.0mm以上であることを特徴とする。本発明において単層の多孔質樹脂シートとは、シートの厚さ方向全体にわたって同一の熱可塑性樹脂組成物からなるものであり、例えば複数のシートを素材の異なる接着剤や粘着シートにより貼り合わせたものは含まない。 In the present invention, the porous resin sheet is a single layer and has a thickness of 1.0 mm or more. In the present invention, the single-layer porous resin sheet is composed of the same thermoplastic resin composition throughout the thickness direction of the sheet, and, for example, a plurality of sheets are bonded together with an adhesive or an adhesive sheet made of different materials. Things are not included.
 本発明の多孔質樹脂シートの厚さは1.0mm以上であり、好ましくは1.2mm以上、さらに好ましくは1.3mm以上である(通常3.0mm以下)。多孔質樹脂シートの厚さが1.0mm以上であれば、例えば帯電話用アンテナに使用した場合、アンテナ特性において反射特性が低い方向にシフトし広帯域化するという利点があり、1.0mm未満であると反射特性の増大や広帯域化が得られない。 The thickness of the porous resin sheet of the present invention is 1.0 mm or more, preferably 1.2 mm or more, more preferably 1.3 mm or more (usually 3.0 mm or less). If the thickness of the porous resin sheet is 1.0 mm or more, for example, when used for an antenna for a band telephone, there is an advantage that the reflection characteristic shifts to a lower direction in the antenna characteristic and the band is broadened. If so, the reflection characteristics cannot be increased and the bandwidth cannot be increased.
 なお本発明においては、多孔質樹脂シートの厚みのばらつきが10μm以下であることが好ましく、8μm以下であることがより好ましい。多孔質樹脂シートの厚みのばらつきが10μmを超えると、多孔質樹脂シートに反りや歪みを生じやすくなる場合がある。 In the present invention, the variation in the thickness of the porous resin sheet is preferably 10 μm or less, and more preferably 8 μm or less. When the variation in the thickness of the porous resin sheet exceeds 10 μm, the porous resin sheet may be easily warped or distorted.
 本発明において、多孔質樹脂シートの厚みは、50mm×50mmのサンプルにおいて、その面内を1cm毎に分けた25点について、ダイヤルゲージで膜厚を測定し、その平均値を厚さとし、最大値と最小値の差をばらつきとする。 In the present invention, the thickness of the porous resin sheet is determined by measuring the film thickness with a dial gauge at 25 points divided in 1 cm 2 in the surface of a 50 mm × 50 mm sample, and taking the average value as the thickness. The difference between the value and the minimum value is taken as variation.
 また本発明の多孔質樹脂シートは、1GHzにおける比誘電率が2.00以下であることを特徴とする。多孔質樹脂シートの比誘電率が2.00以下であれば、同じ低誘電体の厚みで広帯域幅が広がるという利点があり、2.00を超えると広帯域幅が狭くなるためシートの厚みを厚くする必要がでてくる。本発明においては、多孔質樹脂シートの1GHzにおける比誘電率は、1.90以下、さらに1.85以下であることが好ましい(通常1.40以上)。 The porous resin sheet of the present invention is characterized in that the relative dielectric constant at 1 GHz is 2.00 or less. If the relative dielectric constant of the porous resin sheet is 2.00 or less, there is an advantage that the broadband width is widened with the same low dielectric thickness, and if it exceeds 2.00, the broadband width is narrowed, so the sheet thickness is increased. Need to do. In the present invention, the dielectric constant at 1 GHz of the porous resin sheet is preferably 1.90 or less, more preferably 1.85 or less (usually 1.40 or more).
 また本発明の多孔質樹脂シートは、誘電正接が0.0050以下であることを特徴とする。多孔質樹脂シートの誘電正接が0.0050以下であれば、高周波領域での誘電損失が低減できるという利点があり、0.0050を超えると単体の樹脂よりも誘電損失が大きくなる。本発明においては、多孔質樹脂シートの誘電正接は、0.0045以下、さらに0.0042以下であることが好ましい。 The porous resin sheet of the present invention is characterized in that the dielectric loss tangent is 0.0050 or less. If the dielectric loss tangent of the porous resin sheet is 0.0050 or less, there is an advantage that the dielectric loss in the high frequency region can be reduced, and if it exceeds 0.0050, the dielectric loss becomes larger than that of a single resin. In the present invention, the dielectric loss tangent of the porous resin sheet is preferably 0.0045 or less, more preferably 0.0042 or less.
 本発明において多孔質樹脂シートの比誘電率は、空洞共振器接動法により、周波数1GHzにおける複素誘電率を測定し、その実数部(εr′)を比誘電率とした。誘電正接(tanδ)は、実数部(εr′)と虚数部(εr″)の比(εr″/εr′)から求めた。測定機器は、円筒空洞共振機(アジレント・テクノロジー社製「ネットワークアナライザ N5230C」、関東電子応用開発社製「空洞共振器1GHz」)によって、短冊状のサンプル(サンプルサイズ2mm×70mm長さ)を用いて測定することができる。 In the present invention, the relative dielectric constant of the porous resin sheet was measured by measuring the complex dielectric constant at a frequency of 1 GHz by the cavity resonator contact method, and the real part (εr ′) was defined as the relative dielectric constant. The dielectric loss tangent (tan δ) was obtained from the ratio (εr ″ / εr ′) of the real part (εr ′) and the imaginary part (εr ″). The measuring instrument uses a strip-shaped sample (sample size 2 mm × 70 mm length) by a cylindrical cavity resonator (“Network Analyzer N5230C” manufactured by Agilent Technologies, “Cavity Resonator 1 GHz” manufactured by Kanto Electronics Application Development Co., Ltd.). Can be measured.
 また本発明の多孔質樹脂シートは、引張弾性率が200MPa以上であることを特徴とする。引張弾性率が200MPa未満であると基板加工時に変形しやすいという不具合がある。本発明においては、多孔質樹脂シートの引張弾性率は、220MPa以上、さらに240MPa以上であることが好ましい(通常400MPa以下)。 The porous resin sheet of the present invention is characterized by a tensile elastic modulus of 200 MPa or more. There exists a malfunction that it is easy to deform | transform at the time of board | substrate processing that a tensile elasticity modulus is less than 200 Mpa. In the present invention, the tensile elastic modulus of the porous resin sheet is preferably 220 MPa or more, and more preferably 240 MPa or more (usually 400 MPa or less).
 本発明において多孔質樹脂シートの引張弾性率は、IPC-TM-650、Number2.4.18.3に基づいて行い、引張速度50mm/minにおける応力曲線の傾きより算出する。 In the present invention, the tensile elastic modulus of the porous resin sheet is calculated based on IPC-TM-650, Number 2.4.18.3, and is calculated from the slope of the stress curve at a tensile speed of 50 mm / min.
 本発明の多孔質樹脂シートに含まれる気泡の平均気泡径は、5.0μm以下であることが好ましく、さらに好ましくは4.0μm以下である(通常0.01μm以上)。多孔質樹脂シートの平均気泡径が5.0μm以下であれば、絶縁性や機械強度を低下させることなく比誘電率および誘電正接を低くすることができるという利点があり、5.0μmを超えると絶縁性や機械強度が低下する場合がある。 The average bubble diameter of the bubbles contained in the porous resin sheet of the present invention is preferably 5.0 μm or less, more preferably 4.0 μm or less (usually 0.01 μm or more). If the average cell diameter of the porous resin sheet is 5.0 μm or less, there is an advantage that the relative permittivity and the dielectric loss tangent can be lowered without lowering the insulation and mechanical strength. Insulation and mechanical strength may decrease.
 本発明の多孔質樹脂シートに含まれる気泡の平均気泡径は、多孔質樹脂シートの切断面を走査型電子顕微鏡(SEM)(日立製作所社製「S-3400N」)で観察したのち、その画像を画像処理ソフト(三谷商事社製「WinROOF」)で二値化処理し、気泡部と樹脂部とに分離して気泡の最大垂直弦長を測定した。気泡径の大きいほうから50個の気泡について平均値をとり、平均気泡径とした。 The average cell diameter of the bubbles contained in the porous resin sheet of the present invention is determined by observing the cut surface of the porous resin sheet with a scanning electron microscope (SEM) (“S-3400N” manufactured by Hitachi, Ltd.) Was binarized with image processing software (“WinROOF” manufactured by Mitani Shoji Co., Ltd.), separated into a bubble portion and a resin portion, and the maximum vertical chord length of the bubbles was measured. The average value of 50 bubbles from the larger bubble diameter was taken as the average bubble diameter.
 また本発明の多孔質樹脂シートの空孔率は、40%以上であることが好ましく、さらに好ましくは50%以上であり、特に60%以上であることが好ましい(通常80%以下)。多孔質樹脂シートの空孔率が40%以上であればシート内に均等な空孔が存在する状態となり誘電特性のバラツキがなくなるという利点があり、40%未満であると空孔形成状態が偏より誘電特性のバラツキが発生しやすくなる場合がある。 Further, the porosity of the porous resin sheet of the present invention is preferably 40% or more, more preferably 50% or more, and particularly preferably 60% or more (usually 80% or less). If the porosity of the porous resin sheet is 40% or more, there is an advantage that uniform pores exist in the sheet and there is no variation in dielectric characteristics. If it is less than 40%, the pore formation state is uneven. In some cases, variations in dielectric characteristics are likely to occur.
 本発明の多孔質樹脂シートの空孔率は、発泡前の熱可塑性樹脂組成物、および発泡後の多孔質樹脂シートの比重を測定し、下記式により算出する。
空孔率(%)=[1-(発泡後の多孔質樹脂シートの比重/発泡前の熱可塑性樹脂組成物の比重)]×100
The porosity of the porous resin sheet of the present invention is calculated by the following formula by measuring the specific gravity of the thermoplastic resin composition before foaming and the porous resin sheet after foaming.
Porosity (%) = [1− (specific gravity of the porous resin sheet after foaming / specific gravity of the thermoplastic resin composition before foaming)] × 100
 また本発明の多孔質樹脂シートは、引張強度(破断強度)が8~20MPa、好ましくは10~15MPaであることが望ましい。引張強度が8~20MPaの範囲であれば、本発明の多孔質樹脂シートを回路用基板、帯電話用アンテナ、電磁波制御材、断熱材等に使用する場合に十分な強度を有し、また安定した誘電特性を得ることができる。一方、引張強度が8MPa未満であると前記用途に用いる場合に十分な強度を得ることができない場合があり、また気泡径が大きくなるため誘電特性がばらつく場合がある。また引張強度が20MPaを超えると、十分に空孔形成が出来ておらず、低い比誘電率、誘電正接が得られない場合がある。 In addition, the porous resin sheet of the present invention desirably has a tensile strength (breaking strength) of 8 to 20 MPa, preferably 10 to 15 MPa. If the tensile strength is in the range of 8 to 20 MPa, the porous resin sheet of the present invention has sufficient strength and stability when used for circuit boards, band phone antennas, electromagnetic wave control materials, heat insulating materials, etc. Dielectric properties can be obtained. On the other hand, if the tensile strength is less than 8 MPa, sufficient strength may not be obtained when used in the above applications, and the dielectric properties may vary due to the increased bubble diameter. On the other hand, if the tensile strength exceeds 20 MPa, pores are not sufficiently formed, and a low relative dielectric constant and dielectric loss tangent may not be obtained.
 また本発明の多孔質樹脂シートは、引張伸び(破断伸度)が2.0~4.0%、好ましくは2.5~3.5%であることが望ましい。引張伸びが2.0~4.0%の範囲であれば、本発明の多孔質樹脂シートを回路用基板、帯電話用アンテナ、電磁波制御材、断熱材等に使用する場合に、変形等のない十分な形状安定性を有し、また安定した誘電特性を得ることができる。引張伸びが2.0%未満であると、十分に空孔形成が出来ておらず、低い比誘電率、誘電正接が得られない場合がある。また引張伸びが4.0%を超えると、前記用途に用いる場合に変形等の恐れがあり、また気泡径が大きくなるため誘電特性がばらつく場合がある。 Further, the porous resin sheet of the present invention has a tensile elongation (breaking elongation) of 2.0 to 4.0%, preferably 2.5 to 3.5%. If the tensile elongation is in the range of 2.0 to 4.0%, when the porous resin sheet of the present invention is used for a circuit board, an antenna for a band phone, an electromagnetic wave control material, a heat insulating material, etc., deformation, etc. It has no sufficient shape stability and stable dielectric properties can be obtained. If the tensile elongation is less than 2.0%, pores are not sufficiently formed, and a low relative dielectric constant and dielectric loss tangent may not be obtained. On the other hand, if the tensile elongation exceeds 4.0%, there is a risk of deformation or the like when used in the above applications, and the dielectric properties may vary due to the increased bubble diameter.
 本発明において多孔質樹脂シートの引張強度および引張伸びは、IPC-TM-650、Number2.4.18.3に基づいておこない、引張速度50mm/minにおける破断点の強度および伸びより求めた。 In the present invention, the tensile strength and tensile elongation of the porous resin sheet were determined based on IPC-TM-650, Number 2.4.18.3, and obtained from the strength and elongation at the breaking point at a tensile speed of 50 mm / min.
 本発明の多孔質樹脂シートは、耐熱性を有する熱可塑性樹脂を用いることで、ハンダ耐熱性を有することができる。ハンダ耐熱性は260℃に加熱したハンダリフロー中に多孔質樹脂シートを30秒間浮かべて変化の有無を観察することにより評価される。 The porous resin sheet of the present invention can have solder heat resistance by using a thermoplastic resin having heat resistance. Solder heat resistance is evaluated by observing the presence or absence of a change by floating a porous resin sheet for 30 seconds in a solder reflow heated to 260 ° C.
 本発明の多孔質樹脂シートは、その少なくとも一面に金属箔層を形成することにより、多孔体基板とすることができる。多孔体基板は、携帯電話用のアンテナまたはアンテナ用基板、高周波用の回路基板や電磁波シールドや電磁波吸収体などの電磁波制御材として使用される。特に携帯電話用アンテナなどに用いられているパッチアンテナとして賞用される。 The porous resin sheet of the present invention can be made into a porous substrate by forming a metal foil layer on at least one surface thereof. The porous substrate is used as an electromagnetic wave control material such as an antenna for a mobile phone or an antenna substrate, a high-frequency circuit board, an electromagnetic wave shield, or an electromagnetic wave absorber. In particular, it is used as a patch antenna used for mobile phone antennas.
 金属箔としては特に限定されるものではないが、通常、ステンレス箔、銅箔、アルミニウム箔、銅-ベリリウム箔、リン青銅箔、鉄-ニッケル合金箔等が用いられる。金属箔層を形成する方法としては特に限定されないが、(1)金属箔からなる基材の上に発泡させる樹脂層を形成しておき、これを発泡させる方法、(2)発泡樹脂層を先に作製し、これにスパッタリング、電解メッキ、無電解メッキ等の公知の方法でメタライズする方法等が挙げられる。また、2つ以上の手法を組み合わせて用いることもできる。 The metal foil is not particularly limited, but stainless steel foil, copper foil, aluminum foil, copper-beryllium foil, phosphor bronze foil, iron-nickel alloy foil, etc. are usually used. The method for forming the metal foil layer is not particularly limited, but (1) a method in which a resin layer to be foamed is formed on a base made of metal foil and foamed, and (2) the foamed resin layer is first formed. And a method of metallizing by a known method such as sputtering, electrolytic plating, and electroless plating. Also, two or more techniques can be used in combination.
 以下に実施例をあげて本発明を説明するが、本発明はこれら実施例によりなんら限定されるものではない。 Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited to these examples.
〔測定及び評価方法〕
 (比誘電率、誘電正接)
 比誘電率は、空洞共振器接動法により、周波数1GHzにおける複素誘電率を測定し、その実数部(εr′)を比誘電率とした。誘電正接(tanδ)は、実数部(εr′)と虚数部(εr″)の比(εr″/εr′)から求めた。測定機器は、円筒空洞共振機(アジレント・テクノロジー社製「ネットワークアナライザ N5230C」、関東電子応用開発社製「空洞共振器1GHz」)によって、短冊状のサンプル(サンプルサイズ2mm×70mm長さ)を用いて測定した。
[Measurement and evaluation method]
(Relative permittivity, dielectric loss tangent)
As for the relative dielectric constant, the complex dielectric constant at a frequency of 1 GHz was measured by the cavity resonator contact method, and the real part (εr ′) was defined as the relative dielectric constant. The dielectric loss tangent (tan δ) was obtained from the ratio (εr ″ / εr ′) of the real part (εr ′) and the imaginary part (εr ″). The measuring instrument uses a strip-shaped sample (sample size 2 mm × 70 mm length) by a cylindrical cavity resonator (“Network Analyzer N5230C” manufactured by Agilent Technologies, “Cavity Resonator 1 GHz” manufactured by Kanto Electronics Application Development Co., Ltd.). Measured.
 (厚さ、厚さのばらつき)
 多孔質樹脂シートから50mm×50mmのサンプルを採取し、その面内を1cm毎に分けた25点について、ダイヤルゲージ(尾崎製作所社製「R1-205」)で膜厚を測定し、その平均値を厚さとし、最大値と最小値の差をばらつきとした。
(Thickness, thickness variation)
A sample of 50 mm × 50 mm was taken from the porous resin sheet, and the film thickness was measured with a dial gauge (“R1-205” manufactured by Ozaki Mfg. Co., Ltd.) at 25 points divided in 1 cm 2 within the surface. The value was the thickness, and the difference between the maximum value and the minimum value was regarded as variation.
 (平均気泡径)
 多孔質樹脂シートを液体窒素で冷却し、刃物を用いてシート面に対して垂直に切断して評価サンプルを作製した。サンプルの切断面にAu蒸着処理を施し、該切断面を走査型電子顕微鏡(SEM)(日立製作所社製「S-3400N」)で観察した。その画像を画像処理ソフト(三谷商事社製「WinROOF」)で二値化処理し、気泡部と樹脂部とに分離して気泡の最大垂直弦長を測定した。気泡径の大きいほうから50個の気泡について平均値をとり、平均気泡径とした。
(Average bubble diameter)
The porous resin sheet was cooled with liquid nitrogen and cut perpendicularly to the sheet surface using a blade to produce an evaluation sample. The cut surface of the sample was subjected to Au vapor deposition, and the cut surface was observed with a scanning electron microscope (SEM) (“S-3400N” manufactured by Hitachi, Ltd.). The image was binarized with image processing software (“WinROOF” manufactured by Mitani Corporation), separated into a bubble portion and a resin portion, and the maximum vertical chord length of the bubbles was measured. The average value of 50 bubbles from the larger bubble diameter was taken as the average bubble diameter.
 (空孔率)
 発泡前の熱可塑性樹脂組成物、および発泡後の多孔質樹脂シートの比重を比重計(Alfa Mirage社製「MD-300S」)により測定し、下記式により空孔率を算出した。
空孔率(%)=[1-(発泡後の多孔質樹脂シートの比重/発泡前の熱可塑性樹脂組成物の比重)]×100
(Porosity)
The specific gravity of the thermoplastic resin composition before foaming and the porous resin sheet after foaming was measured with a hydrometer (“MD-300S” manufactured by Alfa Mirage), and the porosity was calculated by the following formula.
Porosity (%) = [1− (specific gravity of the porous resin sheet after foaming / specific gravity of the thermoplastic resin composition before foaming)] × 100
 (機械物性)
 多孔質樹脂シートの機械物性(弾性率、引張強度、引張伸び)は、IPC-TM-650, 2.4.18.3に準じ、引張圧縮試験機(ミネベア社製「テクノグラフ TG‐100kN」)により、引張速度50mm/minで得られる応力曲線より算出した。
(Mechanical properties)
The mechanical properties (elastic modulus, tensile strength, tensile elongation) of the porous resin sheet are determined according to IPC-TM-650, 2.4.18.3 using a tensile / compression tester ("Technograph TG-100kN" manufactured by Minebea). It was calculated from a stress curve obtained at a speed of 50 mm / min.
 (ハンダ耐熱性)
 ハンダ耐熱性は260℃に加熱したハンダリフロー中に多孔質樹脂シートを30秒間浮かべ、変化の有無を観察した。
○:変化なし
×:収縮や溶融などの外観・外形変化あり
(Solder heat resistance)
For solder heat resistance, the porous resin sheet was floated for 30 seconds in a solder reflow heated to 260 ° C., and the presence or absence of change was observed.
○: No change ×: Appearance and external shape change such as shrinkage and melting
 実施例1
 ポリエーテルイミド樹脂(SABIC社製、商品名「ウルテム1000」、Tg:217℃、比重:1.27、非晶性)を二軸押出機により厚さ0.8mmの単層シートとした。未発泡の単層シートを、500ccの耐圧容器に入れ、槽内を120℃、25MPaの二酸化炭素雰囲気中に5時間保持することにより、二酸化炭素を含浸させた。その後、300MPa/秒でこのシートを大気圧に戻した後、連続的に210℃のオイル浴中に60秒間通し、気泡を成長させ、すばやく取り出し、その後氷を入れた水により急激に冷却して、厚さ1.81mmのポリエーテルイミドからなる多孔質樹脂シートを得た。得られた多孔質樹脂シートの表面には、厚さ1μmの無孔層を有していた。
Example 1
A polyetherimide resin (manufactured by SABIC, trade name “Ultem 1000”, Tg: 217 ° C., specific gravity: 1.27, amorphous) was formed into a single-layer sheet having a thickness of 0.8 mm by a twin screw extruder. The unfoamed single layer sheet was put into a 500 cc pressure vessel, and the inside of the tank was kept in a carbon dioxide atmosphere at 120 ° C. and 25 MPa for 5 hours to impregnate carbon dioxide. Thereafter, the sheet was returned to atmospheric pressure at 300 MPa / second, then continuously passed through an oil bath at 210 ° C. for 60 seconds to grow bubbles, quickly removed, and then rapidly cooled with water containing ice. A porous resin sheet made of polyetherimide having a thickness of 1.81 mm was obtained. The surface of the obtained porous resin sheet had a non-porous layer having a thickness of 1 μm.
 実施例2
 ポリエーテルイミド樹脂(SABIC社製、商品名「ウルテム1000」、Tg:217℃、比重1.27、非晶性)を二軸押出機により厚さ0.8mmの単層シートとした。未発泡の単層シートを、500ccの耐圧容器に入れ、槽内を210℃、25MPaの二酸化炭素雰囲気中に1時間保持することにより、二酸化炭素を含浸させた。その後、300MPa/秒でこのシートを大気圧に戻した後、厚さ1.55mmのポリエーテルイミドからなる多孔質樹脂シートを得た。得られた多孔質樹脂シートの表面には、厚さ1μmの無孔層を有していた。
Example 2
A polyetherimide resin (manufactured by SABIC, trade name “Ultem 1000”, Tg: 217 ° C., specific gravity 1.27, amorphous) was formed into a single-layer sheet having a thickness of 0.8 mm by a twin screw extruder. The unfoamed single layer sheet was put in a 500 cc pressure vessel, and the tank was impregnated with carbon dioxide by holding it in a carbon dioxide atmosphere at 210 ° C. and 25 MPa for 1 hour. Then, after returning this sheet | seat to atmospheric pressure at 300 Mpa / sec, the porous resin sheet which consists of a polyetherimide with a thickness of 1.55 mm was obtained. The surface of the obtained porous resin sheet had a non-porous layer having a thickness of 1 μm.
 比較例1
 厚さが0.035mmである単層シートを用いた以外は実施例1と同様にして、厚さ0.065mmのポリエーテルイミドからなる多孔質樹脂シートを得た。この多孔質樹脂シート10枚をエポキシ接着シート(日東シンコー社製、「B-EL10#40」)により積層し、オートクレーブにより150℃、15kg/cmの条件で3時間処理し、厚さ1.01mmの積層シートを作製した。得られた多孔質樹脂シートの表面には、厚さ1μmの無孔層を有していた。
Comparative Example 1
A porous resin sheet made of polyetherimide having a thickness of 0.065 mm was obtained in the same manner as in Example 1 except that a single-layer sheet having a thickness of 0.035 mm was used. Ten porous resin sheets were laminated with an epoxy adhesive sheet (“B-EL10 # 40” manufactured by Nitto Shinko Co., Ltd.), treated with an autoclave at 150 ° C. under conditions of 15 kg / cm 2 for 3 hours. A 01 mm laminated sheet was produced. The surface of the obtained porous resin sheet had a non-porous layer having a thickness of 1 μm.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 実施例1、2では、接着層がない単層の多孔質樹脂シートであることから誘電率が2.00以下、誘電正接が0.0050以下の低誘電率を保持しており、高い剛性(弾性率)と厚みのばらつきがなく、さらにハンダ耐熱性をも維持するといった特性が達成できている。一方、比較例1では、誘電率は小さいながらも、接着層を介して積層することで剛性と誘電正接に劣る。 In Examples 1 and 2, since it is a single-layer porous resin sheet without an adhesive layer, it has a low dielectric constant of 2.00 or less and a dielectric loss tangent of 0.0050 or less, and has high rigidity ( (Elastic modulus) and thickness are not varied, and further, characteristics such as maintaining solder heat resistance can be achieved. On the other hand, in Comparative Example 1, although the dielectric constant is small, it is inferior in rigidity and dielectric loss tangent by being laminated through an adhesive layer.
(アンテナ特性のシミュレーション)
 本発明の多孔質樹脂シートをパッチアンテナに適用した場合の帯域幅とアンテナ特性について、CST社製の「MW STUDIO」によるシミュレーション解析を行った。パッチアンテナの解析モデルは図1および図2に示す構成で行った。図1は側面図であり、シミュレーションしたパッチアンテナの構成を側面から見た時の説明図である。また図2は立体図であり、シミュレーションしたパッチアンテナの構成を斜め上方から見た斜視図であり、スロットの位置関係を分かりやすくするため、多孔質樹脂シートの部分で分断し上方に浮かせたイメージ図として示している。
(Antenna characteristics simulation)
A simulation analysis by “MW STUDIO” manufactured by CST was performed on the bandwidth and antenna characteristics when the porous resin sheet of the present invention was applied to a patch antenna. The analysis model of the patch antenna was performed with the configuration shown in FIGS. FIG. 1 is a side view, and is an explanatory view when the configuration of a simulated patch antenna is viewed from the side. FIG. 2 is a three-dimensional view, and is a perspective view of the configuration of the simulated patch antenna as viewed obliquely from above, and is an image diagram that is divided at the porous resin sheet portion and floated upward for easy understanding of the positional relationship of the slots. As shown.
 給電部分の影響をできるだけ同一にするため、シミュレーションモデルのパッチアンテナはスロット3を介した2層構造としており、アンテナへの給電は直接給電ではなくスロット3を介した電磁気的な結合で行っている。マイクロストリップ線路4形成側の基板5の厚みは1.2mm、比誘電率は4.3、誘電正接を0とした。各層の導体はCuで形成し、その厚さTCuは10μmとした。 
 シミュレーションによる帯域幅とアンテナ特性の解析はパッチアンテナ素子2側の基板材料を変更することで解析を実施した。各アンテナ素子側の基板材料に対して、パッチアンテナが2.4GHz付近で共振を生じるよう以下のように各サイズを調整している(表2参照)。参考のため、従来パッチアンテナの基板に用いられているフッ素樹脂およびセラミックスについてのシミュレーション結果についても、合わせて記載した。
In order to make the influence of the power feeding part as similar as possible, the patch antenna of the simulation model has a two-layer structure through the slot 3, and the power feeding to the antenna is performed not by direct power feeding but by electromagnetic coupling through the slot 3. . The thickness of the substrate 5 on the microstrip line 4 forming side was 1.2 mm, the relative dielectric constant was 4.3, and the dielectric loss tangent was zero. The conductor of each layer was made of Cu, and its thickness T Cu was 10 μm.
The analysis of bandwidth and antenna characteristics by simulation was performed by changing the substrate material on the patch antenna element 2 side. With respect to the substrate material on each antenna element side, each size is adjusted as follows so that the patch antenna resonates in the vicinity of 2.4 GHz (see Table 2). For reference, simulation results for fluororesins and ceramics conventionally used for patch antenna substrates are also shown.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 シミュレーションによりリターンロスから求めた-6dBでの帯域幅、及び各共振周波数でのアンテナ放射特性(1mでの指向性利得、絶対利得)を解析した。結果を表3に示した。 The bandwidth at −6 dB obtained from the return loss by simulation and the antenna radiation characteristics (directivity gain at 1 m, absolute gain) at each resonance frequency were analyzed. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 この結果、本発明の多孔樹脂シートをパッチンテナ素子に適用することで広い帯域幅と高いアンテナ特性をもったパッチアンテナが作製できることが分かる。 As a result, it can be seen that a patch antenna having a wide bandwidth and high antenna characteristics can be manufactured by applying the porous resin sheet of the present invention to a patch antenna element.
1 多孔質樹脂シート
2 パッチアンテナ素子
3 スロット
4 マイクロストリップ線路
5 基板
DESCRIPTION OF SYMBOLS 1 Porous resin sheet 2 Patch antenna element 3 Slot 4 Microstrip line 5 Substrate

Claims (10)

  1.  熱可塑性樹脂を含む単層の多孔質樹脂シートであって、厚みが1.0mm以上であり、1GHzにおける比誘電率が2.00以下であり、誘電正接が0.0050以下であり、引張弾性率が200MPa以上であることを特徴とする多孔質樹脂シート。 A single-layer porous resin sheet containing a thermoplastic resin, having a thickness of 1.0 mm or more, a relative dielectric constant at 1 GHz of 2.00 or less, a dielectric loss tangent of 0.0050 or less, and tensile elasticity A porous resin sheet characterized by a rate of 200 MPa or more.
  2.  平均気泡径が5.0μm以下であり、空孔率が40%以上となる気泡を有することを特徴とする請求項1に記載の多孔質樹脂シート。 2. The porous resin sheet according to claim 1, wherein the porous resin sheet has bubbles having an average cell diameter of 5.0 μm or less and a porosity of 40% or more.
  3.  厚みばらつきが10μm以下であることを特徴とする請求項1または2に記載の多孔質樹脂シート。 The porous resin sheet according to claim 1, wherein the thickness variation is 10 μm or less.
  4.  前記熱可塑性樹脂が、ポリイミドまたはポリエーテルイミドであることを特徴とする請求項1または2に記載の多孔質樹脂シート。 The porous resin sheet according to claim 1 or 2, wherein the thermoplastic resin is polyimide or polyetherimide.
  5.  前記熱可塑性樹脂が、非晶性であることを特徴とする請求項1または2に記載の多孔質樹脂シート。 The porous resin sheet according to claim 1 or 2, wherein the thermoplastic resin is amorphous.
  6.  請求項1に記載の多孔質樹脂シートの製造方法であって、
     少なくとも熱可塑性樹脂を含む熱可塑性樹脂組成物に非反応性ガスを加圧下で含浸させるガス含浸工程、ガス含浸工程後に圧力を減少させて熱可塑性樹脂組成物を発泡させる発泡工程を含む多孔質樹脂シートの製造方法。
    It is a manufacturing method of the porous resin sheet according to claim 1,
    A porous resin comprising a gas impregnation step of impregnating a thermoplastic resin composition containing at least a thermoplastic resin with a non-reactive gas under pressure, and a foaming step of foaming the thermoplastic resin composition by reducing the pressure after the gas impregnation step Sheet manufacturing method.
  7.  前記発泡工程後に、150℃以上の温度で多孔質樹脂シートを加熱する加熱工程を含む請求項6に記載の多孔質樹脂シートの製造方法。 The method for producing a porous resin sheet according to claim 6, further comprising a heating step of heating the porous resin sheet at a temperature of 150 ° C or higher after the foaming step.
  8.  非反応性ガスが二酸化炭素であることを特徴とする請求項6または7に記載の多孔質樹脂シートの製造方法。 The method for producing a porous resin sheet according to claim 6 or 7, wherein the non-reactive gas is carbon dioxide.
  9.  非反応性ガスを超臨界状態で含浸させることを特徴とする請求項6または7に記載の多孔質樹脂シートの製造方法。 The method for producing a porous resin sheet according to claim 6 or 7, wherein the non-reactive gas is impregnated in a supercritical state.
  10.  請求項1または2に記載の多孔質樹脂シートの少なくとも一面に金属箔層を設けた多孔体基板。 A porous substrate provided with a metal foil layer on at least one surface of the porous resin sheet according to claim 1 or 2.
PCT/JP2013/056117 2012-03-09 2013-03-06 Porous resin sheet and method for manufacturing same WO2013133316A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-052728 2012-03-09
JP2012052728 2012-03-09
JP2013042130A JP2013213198A (en) 2012-03-09 2013-03-04 Porous resin sheet and method for manufacturing the same
JP2013-042130 2013-03-04

Publications (1)

Publication Number Publication Date
WO2013133316A1 true WO2013133316A1 (en) 2013-09-12

Family

ID=49116789

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/056117 WO2013133316A1 (en) 2012-03-09 2013-03-06 Porous resin sheet and method for manufacturing same

Country Status (2)

Country Link
JP (1) JP2013213198A (en)
WO (1) WO2013133316A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115873340A (en) * 2021-09-29 2023-03-31 天津莱尔德电子材料有限公司 Low-dielectric and low-loss antenna housing, and material and method for preparing low-dielectric and low-loss antenna housing

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6700846B2 (en) * 2016-02-23 2020-05-27 東京応化工業株式会社 Wiring board laminate, wiring board, and method for manufacturing wiring board laminate
TWI783148B (en) * 2018-06-04 2022-11-11 日商麥克賽爾股份有限公司 Electromagnetic wave absorber
JP6858902B2 (en) * 2020-04-27 2021-04-14 東京応化工業株式会社 A method for manufacturing a laminated body for a wiring board, a wiring board, and a laminated body for a wiring board.

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000269616A (en) * 1999-03-17 2000-09-29 Kuraray Co Ltd High-frequency circuit board
JP2001055464A (en) * 1999-06-07 2001-02-27 Nitto Denko Corp Heat-resistant polymer foam and its production, and foam substrate
JP2004087638A (en) * 2002-08-26 2004-03-18 Hitachi Ltd Heat-resistant porous resin multilayer substrate
JP2006111708A (en) * 2004-10-14 2006-04-27 Inoac Corp Foamed material having low dielectric constant and method for producing the same
JP2008238483A (en) * 2007-03-26 2008-10-09 Furukawa Electric Co Ltd:The Foam sheet or film and circuit board using the same, and manufacturing method of foam sheet or film

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4912021B2 (en) * 2006-04-24 2012-04-04 信越ポリマー株式会社 Method for producing thermoplastic polyimide resin foam
JP5444617B2 (en) * 2008-02-04 2014-03-19 東洋紡株式会社 Method for producing foam molded body
JP2010179289A (en) * 2009-02-09 2010-08-19 Kobe Steel Ltd High-pressure treatment method and high-pressure treatment apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000269616A (en) * 1999-03-17 2000-09-29 Kuraray Co Ltd High-frequency circuit board
JP2001055464A (en) * 1999-06-07 2001-02-27 Nitto Denko Corp Heat-resistant polymer foam and its production, and foam substrate
JP2004087638A (en) * 2002-08-26 2004-03-18 Hitachi Ltd Heat-resistant porous resin multilayer substrate
JP2006111708A (en) * 2004-10-14 2006-04-27 Inoac Corp Foamed material having low dielectric constant and method for producing the same
JP2008238483A (en) * 2007-03-26 2008-10-09 Furukawa Electric Co Ltd:The Foam sheet or film and circuit board using the same, and manufacturing method of foam sheet or film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115873340A (en) * 2021-09-29 2023-03-31 天津莱尔德电子材料有限公司 Low-dielectric and low-loss antenna housing, and material and method for preparing low-dielectric and low-loss antenna housing

Also Published As

Publication number Publication date
JP2013213198A (en) 2013-10-17

Similar Documents

Publication Publication Date Title
WO2012033168A1 (en) Porous resin sheet and method for producing same
JP7206323B2 (en) Film for millimeter wave antenna
JP7179912B2 (en) Film for millimeter wave antenna
KR100665410B1 (en) Process for producing heat-resistant polymer foam, heat-resistant polymer foam produced therefrom, and foam substrate comprising the same
JP6567590B2 (en) Film for millimeter wave antenna
WO2012105678A1 (en) Porous resin molding, porous substrate, and process for production of porous resin molding
TW201420333A (en) Flexible metal laminate
KR20140052942A (en) Electrically insulating resin sheet for motors and process for production thereof
WO2013133316A1 (en) Porous resin sheet and method for manufacturing same
JP2014011769A (en) Radio frequency module board and manufacturing method for the same
JP2020055935A (en) Method for producing porous body
JP2012224692A (en) Porous resin laminate
JP2007197650A (en) Foam, foam substrate, and method for producing them

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13758401

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13758401

Country of ref document: EP

Kind code of ref document: A1