WO2013132811A1 - Two-wire load control device - Google Patents

Two-wire load control device Download PDF

Info

Publication number
WO2013132811A1
WO2013132811A1 PCT/JP2013/001288 JP2013001288W WO2013132811A1 WO 2013132811 A1 WO2013132811 A1 WO 2013132811A1 JP 2013001288 W JP2013001288 W JP 2013001288W WO 2013132811 A1 WO2013132811 A1 WO 2013132811A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch element
relay
power supply
power
conductive state
Prior art date
Application number
PCT/JP2013/001288
Other languages
French (fr)
Japanese (ja)
Inventor
齋藤 裕
東浜 弘忠
陽子 谷利
豊田 一郎
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN201380011776.7A priority Critical patent/CN104145531A/en
Publication of WO2013132811A1 publication Critical patent/WO2013132811A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/395Linear regulators
    • H05B45/397Current mirror circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/30Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED]

Definitions

  • the present invention relates to a two-wire load control device for controlling on and off of a load such as a lighting device.
  • a load control device using a semiconductor switching element such as a triac is known.
  • the two-wire load control device is connected in series between the AC power source and the load, so that the wiring work is simple.
  • the off power supply unit is a constant voltage circuit (bootstrap circuit) composed of, for example, a resistor that limits current, a Zener diode (constant voltage diode) that clamps voltage, and a transistor, and is full-wave rectified by a rectifier circuit.
  • the pulsating flow is input. Part of the current output from the off power supply unit flows to the control unit and is used to drive the CPU and the like. The remaining current charges the buffer capacitor.
  • the buffer capacitor is a power source, and therefore the buffer capacitor is repeatedly charged and discharged. Thus, even when the load is originally off as described above, a current flows through the load via the Zener diode and the rectifier circuit.
  • a drive signal is input from the control unit to the gate of the semiconductor switch element to turn on the semiconductor switch element.
  • the rectified voltage of the rectifier circuit becomes substantially zero, and the on power supply unit and the off power supply unit become non-conductive.
  • the on power supply unit and the off power supply unit are non-conducting, power is supplied to the control unit from the buffer capacitor, and the terminal voltage of the buffer capacitor gradually decreases.
  • the semiconductor switch element becomes non-conductive due to self-extinguishing, and a voltage is generated in the rectifier circuit.
  • the self-circuit power supply securing of the load control device and the conduction / non-conduction operation of the semiconductor switch element are repeated every half cycle of the alternating current.
  • Semiconductor switch elements such as triac require relatively little power to control their conduction and non-conduction. Therefore, the semiconductor switch element can be driven by the electric power charged in the buffer capacitor as described above.
  • the load current that can flow through the semiconductor switch element is relatively small, so it is suitable for loads that require large currents, such as lighting devices with many incandescent bulbs and multiple lighting devices connected in series or in parallel.
  • a switch element hereinafter referred to as a relay type switch element
  • a mechanically driven contact such as a latch relay
  • incandescent bulbs but also bulb-type fluorescent lamps and LED bulbs have a lifetime, and so-called bulb breaks such as filament breakage and lighting circuit failure occur. Therefore, in a two-wire load control device using a relay type switch element, when a ball break occurs or an LED bulb is used, a drive signal is not obtained until sufficient power can be secured to drive the electromagnet device. Is output, the electromagnet device is not driven, the relay switch element is not switched from the conductive state to the non-conductive state, or vice versa, and the load is not turned on / off. When the user replaces the bulb that has broken the bulb while the load is turned on in this way, the voltage may be applied to the terminal of the luminaire, and the user may get an electric shock.
  • the present invention has been made in order to solve the above-described problems of the conventional example, and in a two-wire load control device using a relay type switch element, when a bulb break or the like occurs, a relay type is surely provided. It is an object of the present invention to provide a two-wire load control device that can replace a light bulb in a state where a switch element is switched to non-conduction.
  • a two-wire load control device includes: Two input terminals respectively connected to an AC power source and a load; A series circuit of a relay-type switching element and a current transformer connected between the two input terminals; Off, which is connected in parallel to both ends of the open / close portion of the relay type switch element and outputs DC power when the relay type switch element is in a non-conduction state using an AC current flowing from the AC power source through the load.
  • a power supply An on-power supply unit that is connected to the secondary side of the current transformer and outputs DC power when the relay switch element is in a conductive state using an alternating current flowing through the secondary side of the current transformer;
  • An off power supply power detection unit for detecting a physical quantity indicating a direct current power output from the off power supply unit;
  • An on-power-supply detection unit that detects a physical quantity indicating DC power output from the on-power supply unit; Based on operation information input from the outside, which is driven by DC power output from the off-power supply unit and the on-power supply unit, the conduction and non-conduction of the relay type switch element are controlled, and the on-power supply power detection
  • the relay And a control unit that controls to switch the type switch element from the conductive state to the non-conductive state.
  • the relay type switching element Is switched from the conductive state to the non-conductive state, so that the illumination device as the load is automatically turned off. Since the light bulb is exchanged in a state where the lighting device is off, the user does not get an electric shock.
  • FIG. 1 is a block diagram showing a basic configuration of a two-wire load control apparatus according to an embodiment of the present invention.
  • FIG. 2 is a circuit diagram showing a specific configuration of the two-wire load control apparatus.
  • FIG. 3 is a flowchart showing the basic operation of the two-wire load control apparatus.
  • FIG. 4 is a flowchart showing the operation of the first modification of the two-wire load control apparatus.
  • FIG. 5 is a flowchart showing the operation of the second modification of the two-wire load control apparatus.
  • FIG. 6 is a flowchart showing the operation of the third modification of the two-wire load control device.
  • FIG. 7 is a flowchart showing another operation of the third modified example of the two-wire load control device.
  • FIG. 8 is a flowchart showing the operation of the fourth modification of the two-wire load control apparatus.
  • FIG. 9 is a flowchart showing a continuation of the flowchart of FIG.
  • FIG. 1 shows a basic block configuration of a two-wire load control apparatus 1 according to this embodiment
  • FIG. 2 shows a specific circuit configuration.
  • the two-wire load control device 1 includes two input terminals 11a and 11b connected to an AC power supply 2 and a load 3, respectively, and a relay type switching element 12 and current connected between the two input terminals 11a and 11b.
  • a series circuit of the transformer 13 is provided.
  • the relay type switch element 12 is a switch element provided with a mechanically driven contact such as a latch type relay.
  • a first bidirectional semiconductor switch element 32 such as a triac is connected in parallel with the relay type switch element 12, and a second bidirectional semiconductor such as a phototriac coupler is connected to the gate of the first bidirectional semiconductor switch element 32.
  • a semiconductor switch element 33 is connected.
  • the second bidirectional semiconductor switch element 33 an element whose turn-on current value and holding current value are smaller than the turn-on current value and holding current value of the first bidirectional semiconductor switch element 32 is selected.
  • the “switch element” refers to any or all of the relay type switch element 12, the first bidirectional semiconductor switch element 32, and the second bidirectional semiconductor switch element 33 provided on the AC side. DC side transistors are excluded.
  • both switch elements such as the relay type switch element 12 are in a non-conductive state
  • the AC current flowing from the AC power source 2 through the load 3 is used for both terminals 12a and 12b of the open / close portion of the relay type switch element 12.
  • An off power supply unit 14 that outputs DC power is connected. More specifically, both terminals 12a and 12b of the opening / closing part of the relay type switch element 12 are constituted by diode bridges or the like, and the alternating current flowing from the alternating current power source 2 through the load 3 is converted into a direct current (pulsating current).
  • a first rectifier circuit 15 to be converted is connected in parallel.
  • the off power supply unit 14 has two voltage systems, for example, a high voltage system with a drive voltage of 24V and a low voltage system with a drive voltage of 12V.
  • the first rectifier circuit 15 is connected to both terminals 12a and 12b of the opening / closing part of the relay type switch element 12 even when all the switch elements such as the relay type switch element 12 are non-conductive and the load 3 is in the OFF state. Therefore, a weak current flows through the series circuit of the AC power source 2, the load 3, and the first rectifier circuit 15. The current at this time is a minute current that does not cause the load 3 to malfunction, and is set so that the impedance of the off-power supply unit 14 becomes high.
  • a full-wave rectified pulsating current is input from the first rectifier circuit 15, the voltage waveform of the output from the off power supply unit 14 becomes substantially trapezoidal due to the Zener voltage of the Zener diode.
  • Part of the current output from the off power supply unit 14 is stepped down by the regulator and supplied to the first control unit 21.
  • the buffer capacitor of the auxiliary power supply unit for CPU operation (first auxiliary power supply unit) 23 is charged.
  • the buffer capacitor of the auxiliary power supply unit 23 becomes a power source and supplies power to the first control unit 21 via the regulator. To do. Therefore, when the load 3 is in the off state, the buffer capacitor of the auxiliary power supply unit 23 is repeatedly charged and discharged.
  • a part of the current output from the off power supply unit 14 is supplied to the second control unit 22, and in parallel therewith, the buffer of the auxiliary power supply unit for opening / closing contacts (second auxiliary power supply unit) 24. Charge the capacitor.
  • the first rectifier circuit 15 of the off power supply unit 14 is connected to an off power supply power detection unit 30 composed of a diode, resistor, capacitor, transistor, and the like for half-wave rectification.
  • an off power supply power detection unit 30 composed of a diode, resistor, capacitor, transistor, and the like for half-wave rectification.
  • the first control unit 21 can determine that all the switch elements are non-conductive when the pulse signal from the off power supply power detection unit 30 is input. On the other hand, when any one of the switch elements such as the relay type switch element 12 is turned on, the voltage applied to the first rectifier circuit 15 of the off power supply unit 14 is lowered, and the off power supply unit 14 does not operate. Further, the voltage applied to the off power supply power detection unit 30 also decreases, and the pulse signal is not output from the off power supply power detection unit 30. When the pulse signal from the off power supply power detection unit 30 is not input, the first control unit 21 can infer that any one of the switch elements such as the relay type switch element 12 is conductive.
  • An on power supply unit 17 is connected to the secondary side of the current transformer 13. More specifically, a second rectifier circuit 18 configured by a diode bridge or the like and converting an alternating current flowing from the alternating current power supply 2 via the load 3 into a direct current (pulsating flow) is connected. The second rectifier circuit 18 is connected to a constant voltage circuit 19 composed of a capacitor and a Zener diode.
  • the on power supply unit 17 also has two voltage systems, for example, a high voltage system with a drive voltage of 24V and a low voltage system with a drive voltage of 12V.
  • the output terminal of the high voltage system of the off power supply unit 14 and the output terminal of the high voltage system of the on power supply unit 17 are connected to each other via a backflow prevention diode.
  • the output terminal of the low voltage system of the off power supply unit 14 and the output terminal of the low voltage system of the on power supply unit 17 are connected to each other through a backflow preventing diode.
  • the output terminal of the high voltage system of the on power supply unit 17 is connected to the on power supply power detection unit 31 configured by a resistor and a capacitor, and the voltage between terminals of the capacitor (higher or lower than the threshold voltage). Is input to the first control unit 21. Even when all switch elements such as the relay type switch element 12 are non-conductive, a current flows from the first rectifier circuit 15 of the off power supply unit 14 to the primary side of the current transformer 13. However, the current flowing at this time is a weak current that does not cause the load 3 to malfunction, and the amount of current that flows on the secondary side of the current transformer 13 is further small and almost negligible.
  • the voltage between the terminals of the capacitor is lower than the threshold value, and the first control unit 21 can determine that all the switch elements such as the relay type switch element 12 are non-conductive.
  • the first control unit 21 can determine that all the switch elements such as the relay type switch element 12 are non-conductive.
  • any one of the switching elements such as the relay type switching element 12 is turned on, that is, when the load 3 is turned on, a current sufficient to drive the load flows to the primary side of the current transformer 13, and the current is accordingly increased.
  • the amount of current flowing on the secondary side of the transformer 13 also increases.
  • the current flowing on the secondary side of the current transformer 13 is full-wave rectified by the second rectifier circuit 18 and charges the capacitor of the on-power supply unit 17.
  • the first control unit 21 can determine that any one of the switch elements such as the relay type switch element 12 is conductive.
  • the control unit 20 when the user operates an input unit 25 such as an operation handle or a wireless remote control device provided on a wall surface, the control unit 20 conducts and does not conduct a switch element such as the relay switch element 12 according to the operation information.
  • the control unit 20 includes, for example, a CPU and includes a first control unit 21 that is driven at a low voltage (for example, 3V) and a second control unit 22 that is driven at a high voltage (for example, 24V).
  • the first control unit 21 is connected to output terminals of the low voltage system of the off power supply unit 14 and the on power supply unit 17 through a regulator.
  • the regulator is for stepping down the drive voltage 12V of the low voltage system to a lower voltage, for example, about 3V.
  • the second control unit 22 outputs a large electric power for driving the electromagnet device of the relay type switching element 12.
  • the control unit 20 includes an automatic switch-off display device composed of an LED element, a speaker, and the like, and the relay switch element 12 is automatically switched from a conductive state to a non-conductive state as will be described later. The user can be notified of this.
  • an auxiliary power supply unit 23 for operating the CPU is connected between the output terminals of the low voltage system of the off power supply unit 14 and the on power supply unit 17 and the first control unit 21 via a regulator.
  • an auxiliary power supply unit 24 for opening and closing the contacts of the relay type switch element 12 is connected between the output terminals of the high voltage system of the off power supply unit 14 and the on power supply unit 17 and the second control unit 22.
  • Each of the auxiliary power supply unit 23 for operating the CPU and the auxiliary power supply unit 24 for opening and closing the contacts is composed of a buffer capacitor or the like.
  • the buffer capacitor of the auxiliary power supply unit 24 for opening and closing the contacts switches the relay switch element 12 from the non-conducting state to the conducting state, and further switches from the conducting state to the non-conducting state continuously, that is, a predetermined amount that is driven at least twice. It has a capacity capable of charging the power.
  • the load 3 When the load 3 is off, that is, when the relay type switch element 12, the first bidirectional semiconductor switch element 32, and the second bidirectional semiconductor switch element 33 are all non-conductive, the load 3 is turned on from the input unit 25.
  • the first control unit 21 inputs a drive signal to the transistor connected to the primary light emitting element of the second bidirectional semiconductor switch element 33.
  • the second bidirectional semiconductor switch element 33 becomes conductive, and a load current starts to flow through the load 3.
  • the load 3 is a lighting device using, for example, a low-brightness LED bulb, and the load current is small and less than the turn-on current of the first bidirectional semiconductor switch element 32, the first bidirectional semiconductor switch element 32 is used.
  • the first bidirectional semiconductor switch element 32 is The second bidirectional semiconductor switch element 33 becomes non-conductive.
  • the first control unit 21 outputs a drive signal for turning on the relay type switch element 12 to the second control unit 22, and the relay type switch element 12 becomes conductive, and the first bidirectional semiconductor switch element 32 becomes non-conductive. That is, the control unit 20 always switches the relay switch element 12 from the non-conductive state to the conductive state after switching the first bidirectional semiconductor switch element 32 from the non-conductive state to the conductive state.
  • FIG. 3 is a flowchart showing the operation when an illumination device using an incandescent bulb is connected as the load 3.
  • the incandescent bulb is normal and does not run out of bulb.
  • the description of the conduction sequence of the relay type switch element 12, the first bidirectional semiconductor switch element 32, and the second bidirectional semiconductor switch element 33 is omitted.
  • the first control unit 21 turns the relay type switch element 12 on.
  • a drive signal is output (# 3).
  • the second control unit 22 receives this drive signal and outputs drive power for driving the electromagnet device of the relay type switching element 12 (# 4).
  • This driving power is supplied, for example, by discharging the buffer capacitor of the auxiliary power supply unit 24. Thereby, the switching contact of the relay type switch element 12 is switched from the non-conductive state to the conductive state (# 5).
  • the on-power-supply power detection unit 31 is connected to the output terminal of the high-voltage system of the on-power supply unit 17. In the first control unit 21, the output voltage of the on-power supply power detection unit 31 is at a high level.
  • the first control unit 21 determines that the open / close contact of the relay type switch element 12 is conductive and the load 3 is in an ON state.
  • the relay type switch element 12 since the relay type switch element 12 remains conductive, no DC power is output from the off power supply unit 14. At this stage, the buffer capacitor of the contact opening / closing auxiliary power supply unit 24 is still charged with sufficient power to drive the relay switch element 12. Similarly, the buffer capacitor of the CPU operation auxiliary power supply unit 23 is charged with sufficient power to drive the control unit 20. However, as time passes, the electric power charged in the contact opening / closing auxiliary power supply unit 24 and the CPU operation auxiliary power supply unit 23 is gradually discharged.
  • the first control unit 21 monitors the output voltage from the on-power supply power detection unit 31. When the output voltage from the on-power supply power detection unit 31 becomes lower than the threshold voltage (NO in # 6), the load 3. It is determined that a trouble such as running out of the ball has occurred in No. 3 (# 7). If the first control unit 21 determines that a trouble such as a broken ball has occurred in the load 3, the first control unit 21 outputs a drive signal in order to switch the relay-type switch element 12 from the conductive state to the non-conductive state (# 8).
  • the second control unit 22 receives this drive signal and outputs drive power for driving the electromagnet device of the relay type switch element 12 (# 9). Thereby, the switching contact of the relay type switch element 12 is switched from the conductive state to the non-conductive state (# 10). Since the first bidirectional semiconductor switch element 32 and the second bidirectional semiconductor switch element 33 are self-extinguishing semiconductor switch elements, the relay type switch element 12 and the first bidirectional semiconductor switch element 32 are in conduction. The self-extinguishing is done at the time. Therefore, unless the drive signal is input from the first control unit 21 to the transistor connected to the primary side light emitting element of the second bidirectional semiconductor switch element (phototriac coupler) 33, re-ignition is not performed.
  • FIG. 4 is a flowchart showing an operation when the load 3 is frequently turned on and off, for example.
  • Electric power for switching between conduction and non-conduction of the relay type switch element 12 is supplied from the contact opening / closing auxiliary power supply unit 24.
  • the contact opening / closing auxiliary power supply unit 24 has a capacity capable of charging predetermined power sufficient to continuously drive the relay type switching element 12 at least twice.
  • the contact opening / closing auxiliary power supply unit 24 may not have enough power to drive the relay switch element 12.
  • the first control unit 21 is connected to the contact opening / closing auxiliary power supply unit. It is determined whether or not the electric power sufficient to drive the relay type switch element 12 is charged to 24 (# 13).
  • the charge state of the contact opening / closing auxiliary power supply unit 24 is obtained by, for example, counting the number of pulse signals output from the off power supply power detection unit 30 between the previous driving of the relay type switch element 12 and the present time. If this is the case, the charging time is obtained, and thereby the power charged in the buffer capacitor of the contact switching auxiliary power supply unit 24 can be estimated.
  • the first control unit 21 opens the contact opening / closing auxiliary power supply unit. It is determined whether or not the battery can be charged (# 14). For example, when the load 3 is out of sphere and no DC power is output from the off power supply unit 14 and the on power supply unit 17, the contact opening / closing auxiliary power supply unit 24 cannot be charged. Accordingly, when the contact opening / closing auxiliary power supply unit 24 cannot be charged (NO in # 14), the first control unit 21 maintains the relay switch element 12 in the non-conductive state regardless of the operation information.
  • Step # 13 when it is determined that the contact switching auxiliary power supply 24 is charged with enough power to drive the relay switch element 12, the first controller 21 determines that the relay switch element 12 In order to switch the non-conducting state to the conducting state, a drive signal is immediately output (# 15).
  • the operations from step # 16 to # 22 are the same as steps # 4 to # 10 in the flowchart of FIG.
  • FIG. 5 is a flowchart showing an operation when a lighting device using a plurality of light bulbs, for example, is connected as the load 3.
  • steps # 1 to # 10 are the same as steps # 1 to # 10 in the flowchart shown in FIG.
  • the relay type switch element 12 becomes non-conductive in step # 10
  • all the light bulbs are turned off, and it becomes impossible to know which light bulb has caused the bulb to break.
  • the input unit 25 such as an operation handle or a wireless remote controller provided on the wall surface for the time being. Therefore, when operation information for turning on the load 3 is newly input from the input unit 25 (# 30), the first control unit 21 can only drive the relay switch element 12 to the contact opening / closing auxiliary power supply unit 24. It is determined whether or not the electric power is charged (# 31).
  • the first controller 21 When it is determined that the contact opening / closing auxiliary power source 24 is charged with power sufficient to drive the relay switch element 12 (YES in # 31), the first controller 21 turns the relay switch element 12 on. In order to switch from the non-conductive state to the conductive state, a drive signal is output (# 32), whereby the relay switch element 12 is made conductive (# 33, # 34). When the relay type switch element 12 is turned on, the live bulb is turned on, so that the user can know which bulb has run out. Then, the first control unit 21 outputs a drive signal again to switch the relay type switch element 12 from the conductive state to the nonconductive state (# 35), thereby making the relay type switch element 12 nonconductive (#). 36, # 37), the light is turned off again.
  • the first control unit 21 cancels the non-conduction state of the relay type switch element 12 and switches to the conduction state (# 39), the load 3 is turned on.
  • the relay switch element 12 may be switched from the conductive state to the non-conductive state again. In this case, the operation is based on the operation of a fourth modification described later.
  • the input unit 25 is not limited to an operation handle or a wireless remote controller provided on a wall surface, and may be a human body sensor installed in a toilet, an entrance, a hallway, or the like. Further, the human body sensor may be connected to the first control unit 21 by wire or may be connected wirelessly. In the latter case, it is preferable that the receiver of the wireless remote controller included in the first control unit 21 is also used. Further, between steps # 1 and # 2 in FIG. 5, it is determined whether or not the contact opening / closing auxiliary power supply unit 24 shown in FIG. 4 is charged with power sufficient to drive the relay switch element 12. Step # 14 for determining whether or not # 13 and the contact opening / closing auxiliary power supply 24 can be charged may be provided. Furthermore, step # 14 may be provided between steps # 31 and # 32 to determine whether or not the contact opening / closing auxiliary power supply unit 24 can be charged.
  • 6 and 7 show that when the relay switch element 12 is switched from the conductive state to the nonconductive state due to a shortage of DC power output from the on-power supply unit 17, the relay switch element 12 is automatically set to the user. It is a flowchart which shows operation
  • an automatic switch-off display device 26 composed of an element that visually displays information, such as an LED element, or an element that auditorily displays information, such as a chime, is provided in the control unit 20.
  • these LED elements When the type switch element 12 becomes non-conductive, these LED elements may be turned on or blinked, or a chime or the like may be driven (# 40). As a result, the user can know that the switch has been automatically turned off due to a ball break. Since these LED elements and chimes are driven by the power charged in the auxiliary power source 23 for CPU operation, they cannot be driven for a long time. Therefore, when the user operates the operation handle or the wireless remote control device and the operation information for turning on the load 3 is input (# 41), the driving of these LED elements and chimes is stopped to automatically The switch-off display may be canceled (# 42). Alternatively, as shown in FIG. 7, when the user operates the operation handle or the wireless remote control device to input operation information for turning on the load 3 (# 43), these LED elements and chimes are driven. Then, an automatic switch-off may be displayed (# 44).
  • FIG. 8 and FIG. 9 are flowcharts showing the operation when a load having a load current value close to the holding current value of the first bidirectional semiconductor switch element 32 such as a high-intensity LED bulb or a bulb-type fluorescent lamp is used.
  • the load 3 having a small load current value is connected, the direct-current power output from the on power supply unit 17 is less than a predetermined threshold power even if the load 3 itself is not blown out. There is a possibility that the relay-type switch element 12 is switched to non-conduction.
  • the light bulb When the relay-type switch element 12 is switched to non-conduction, the light bulb is extinguished, so that the user may misunderstand that the ball has run out.
  • the load 3 is an illuminating device that uses a plurality of light bulbs, all the light bulbs are extinguished even if some of the light bulbs are broken.
  • the first control unit 21 When the operation information for turning on the load 3 is input from the input unit 25 (# 52) while all the switch elements 12, 32 and 33 are non-conductive (# 51), the first control unit 21 The bidirectional semiconductor switch element 33 is turned on (# 53), whereby a load current starts to flow through the load 3.
  • the load current value is less than the turn-on current value of the first bidirectional semiconductor switch element 32
  • the first bidirectional semiconductor switch element 32 is not conducted (NO in # 54)
  • the load 3 is A current is passed only by the two-way semiconductor switch element 33.
  • the load current value is equal to or greater than the turn-on current value of the first bidirectional semiconductor switch element 32, the first bidirectional semiconductor switch element 32 becomes conductive (YES in # 54).
  • the first control unit 21 determines whether or not the output voltage from the on-power supply detection unit 31 is lower than the threshold voltage, that is, the DC power output from the on-power supply unit 17 is less than the predetermined threshold power. (# 55). When it is determined that the DC power output from the ON power supply unit 17 is less than the predetermined threshold power (NO in # 55), the load current value is not so large and the first bidirectional semiconductor switch element 32 loads the load. Since the current can flow, the first control unit 21 does not conduct the relay switch element 12 and maintains the non-conduction state.
  • the first control unit 21 determines whether or not the relay-type switch element 12 is set to be non-conductive (# 56).
  • the load 3 is first connected to the two-wire load control device 1, since the non-conducting setting is not made in the relay type switch element 12 (YES in # 56), the first control unit 21 is connected to the relay type switch element 12.
  • the switch element 12 is turned on (# 57).
  • the first control unit 21 monitors the output voltage from the on-power supply power detection unit 31, and based on the value of the DC power output from the on-power supply unit 17, It is monitored whether or not a trouble such as a broken ball has occurred in the load 3 (# 58).
  • step # 55 when the load current is not so large and the DC power output from the ON power supply unit 17 slightly exceeds the predetermined threshold power, the other loads connected to the same AC power supply 2 are turned on, etc. If a voltage drop occurs, the DC power output from the on-power supply unit 17 may be lower than a predetermined threshold power (NO in # 58).
  • the first control unit 21 switches the relay type switch element 12 from the conductive state to the nonconductive state (# 59), and switches the relay type switch element 12 to the nonconductive state due to power shortage. The number of times is counted (# 60).
  • the relay switch element 12 when the load current is not so large, the relay switch element 12 is frequently switched to the non-conductive state by turning on another load connected to the same AC power supply 2, thereby turning on the load 3. And is expected to be repeated off. If the switching contacts of the relay type switch element 12 are frequently opened and closed or the load 3 is frequently turned on / off, the relay type switch element 12 and the load 3 will be deteriorated.
  • the relay type switching element 12 is not conducted thereafter.
  • the non-conduction setting is performed for the relay type switch element 12 (# 62).
  • the first control unit 21 performs non-conduction setting for the relay type switch element 12, and then returns to step # 53 to conduct the second bidirectional semiconductor switch element 33 and turn on the load 3.
  • each of the first bidirectional semiconductor switch element 32 and the second bidirectional semiconductor switch element 33 is a self-extinguishing semiconductor switch element, and automatically becomes non-conductive at the zero-cross point of the AC voltage. Accordingly, the first control unit 21 turns on the load 3 and makes the relay switch element 12 non-conductive, the 1st of the second bidirectional semiconductor switch element 33 every 1/2 cycle of the AC power supply 2. A gate drive signal is input to the next side.
  • the load current is stopped due to, for example, the bulb being blown, and the DC power output from the on power supply unit 17 is less than the predetermined threshold power.
  • the relay switch element 12 is quickly switched from the conductive state to the non-conductive state, the bulb can be replaced while the load 3 is off, and the user is not shocked.
  • the first bidirectional semiconductor switch element 32 does not necessarily need to be a triac, and may be an IGBT or FET that is connected in antiparallel.
  • the second bidirectional semiconductor switch element 33 is not necessarily required.
  • a thyristor or a diac may be connected to the triac gate to input a gate signal. Good.
  • the two-wire load control device does not need to have all of the configuration of the above embodiment, at least, Two input terminals respectively connected to an AC power source and a load; A series circuit of a relay-type switching element and a current transformer connected between the two input terminals; Off, which is connected in parallel to both ends of the open / close portion of the relay type switch element and outputs DC power when the relay type switch element is in a non-conduction state using an AC current flowing from the AC power source through the load.
  • An off power supply power detection unit for detecting a physical quantity indicating a direct current power output from the off power supply unit;
  • An on-power-supply detection unit that detects a physical quantity indicating DC power output from the on-power supply unit; Based on operation information input from the outside, which is driven by DC power output from the off-power supply unit and the on-power supply unit, the conduction and non-conduction of the relay type switch element are controlled, and the on-power supply power detection
  • the relay It is only necessary to include a control unit that controls the type switch element to switch from the conductive state to the non-conductive state.
  • the power supply device further includes an auxiliary power supply unit for driving the relay type switch element, and the auxiliary power supply unit switches the relay type switch element from a non-conductive state to a conductive state, and continuously from the conductive state to the nonconductive state. It is preferable to be able to charge a predetermined amount of electric power for switching to.
  • control unit estimates a charging state of the auxiliary power supply unit from a physical quantity detected by the off power supply power detection unit when the relay type switching element is in a non-conductive state.
  • control unit determines that the relay switch element is in a non-conductive state, operation information for turning on the load is input from the outside, and the predetermined power is charged in the auxiliary power unit. In this case, it is preferable to immediately switch the relay type switch element from the non-conductive state to the conductive state in accordance with the operation information.
  • control unit determines that the relay switch element is in a non-conductive state, operation information for turning on the load is input from the outside, and the predetermined power is not charged in the auxiliary power unit.
  • operation information is temporarily suspended, when it is determined that the auxiliary power supply unit has been charged with enough power to drive the relay switch element, the relay type is determined according to the operation information. It is preferable to switch the switch element from the non-conductive state to the conductive state.
  • control unit determines that the relay switch element is in a non-conductive state
  • operation information for turning on the load is input from the outside, and the auxiliary power unit cannot be charged with the predetermined power Regardless of the operation information, it is preferable to maintain the relay type switching element in a non-conductive state.
  • an operation member that is operated by a user and for inputting the operation information is further provided,
  • the control unit determines that the DC power output from the ON power supply unit is less than the predetermined threshold power, thereby switching the relay switch element from a conductive state to a non-conductive state, and then performing the operation.
  • the relay-type switch element is turned off according to the operation information. It is preferable that the state is switched from the state to the conductive state, and the relay-type switch element is continuously switched from the conductive state to the non-conductive state, whereby the load can be temporarily turned on.
  • it further comprises a receiving unit for receiving a human body sensing signal transmitted by radio from a human body sensor provided in a place away from the two-wire load control device,
  • the control unit determines that the DC power output from the ON power supply unit is less than the predetermined threshold power, thereby switching the relay switch element from a conductive state to a non-conductive state, and then the human body
  • the relay switch element is turned off according to the human body sensing signal. It is preferable that the relay-type switching element is continuously switched from the conductive state to the non-conductive state so that the load can be temporarily turned on.
  • the control unit determines that the DC power output from the ON power supply unit is less than a predetermined threshold power, thereby switching the relay switch element from a conductive state to a non-conductive state, and then automatically Preferably, the switch-off display means is driven to notify that the relay type switch element is automatically switched from the conductive state to the non-conductive state.
  • the control unit determines that the DC power output from the ON power supply unit is less than a predetermined threshold power, thereby switching the relay switch element from a conductive state to a non-conductive state, and then externally
  • the automatic switch-off display means is driven, and the relay switch element is automatically switched from the conductive state to the non-conductive state by the user. It is preferable to notify this.
  • control unit determines that the DC power output from the ON power supply unit is less than a predetermined threshold power, thereby switching the relay switch element from the conductive state to the non-conductive state, and then automatically
  • the relay type switching element is switched from the non-conducting state to the conducting state, and the number of times the relay type switching element is switched from the conducting state to the non-conducting state is counted. It is preferable to stop the function of switching the relay switch element from the non-conductive state to the conductive state and maintain the relay switch element in the non-conductive state.
  • control unit cancels the maintenance of the non-conducting state of the relay switch element when the operation member is operated in a specific manner.
  • the receiving unit receives a signal transmitted from a wireless remote control device operated by a user, It is preferable that the control unit cancels the maintenance of the non-conducting state of the relay switch element when the receiving unit receives a specific operation signal transmitted from the wireless remote control signal.
  • control unit stops driving the automatic switch-off display means when the operation member is operated in a specific manner.
  • the receiving unit receives a signal transmitted from a wireless remote control device operated by a user
  • the control unit preferably stops driving the automatic switch-off display means when the receiving unit receives a specific operation signal transmitted from the wireless remote control signal.
  • control unit determines that the DC power output from the ON power supply unit is less than a predetermined threshold power, and drives the relay switch element to the auxiliary power supply unit also by the OFF power supply unit. When it is determined that as much power as possible cannot be charged, it is preferable to maintain the relay type switching element in a non-conductive state.
  • At least one bidirectional semiconductor switching element connected in parallel with the relay type switching element.
  • control unit switches the relay type switch element from the non-conduction state to the conduction state after switching the bidirectional semiconductor switch element from the non-conduction state to the conduction state first.
  • control unit estimates a load current value when the load is on from the physical quantity detected by the on-power supply power detection unit, and the estimated load current value is less than a predetermined current threshold value It is preferable to conduct only the bidirectional semiconductor switch element.

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Rectifiers (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Abstract

Provided is a two-wire load control device that uses a relay-type switch element, wherein, if a bulb burns out and so on, bulb replacement can be carried out with the relay-type switch element having been reliably switched to a non-conductive state. The two-wire load control device is equipped with: a series circuit of a relay-type switch element (12) and a current converter (13) connected between an alternating-current power source (2) and a load (3); an ON power source unit (17) that is connected to a secondary side of the current converter (13), and outputs direct-current power when the relay-type switch element (12) is in a conductive state; an ON power-source power detection unit (31) that detects a physical quantity indicating direct-current power that is output from the ON power source unit (17); and a control unit (20) that controls the conduction and non-conduction of the relay-type switch element (12). If it is determined that the direct-current power output from the ON power source unit (17) is less than a predetermined threshold power due to a bulb burning out for example, the relay-type switch element (12) is switched to a non-conductive state.

Description

2線式負荷制御装置Two-wire load control device
 本発明は、照明装置などの負荷のオン及びオフを制御するための2線式負荷制御装置に関する。 The present invention relates to a two-wire load control device for controlling on and off of a load such as a lighting device.
 従来、トライアックなどの半導体スイッチ素子を用いた負荷制御装置が知られている。このような半導体スイッチ素子を用いた負荷制御装置のうち、2線式負荷制御装置は、交流電源と負荷の間に直列に接続されるため、配線工事が簡単である。その反面、負荷がオフされているときでも半導体スイッチ素子や制御回路(CPUなど)を駆動するための電源を確保する必要がある。そのため、半導体スイッチ素子に並列に整流回路を接続し、負荷をオフするときでも、実際には負荷がオン又は誤動作しない程度の微弱電流を負荷に流し、整流された電流をバッファコンデンサに充電し、負荷がオフしているときの電源(オフ電源部)を確保している。また、負荷がオンしているときも、整流回路により整流された電流を用いて、負荷がオンしているときの電源(オン電源部)を確保している(例えば、JP2008-97535A参照)。 Conventionally, a load control device using a semiconductor switching element such as a triac is known. Among the load control devices using such semiconductor switch elements, the two-wire load control device is connected in series between the AC power source and the load, so that the wiring work is simple. On the other hand, it is necessary to secure a power source for driving the semiconductor switch element and the control circuit (CPU or the like) even when the load is turned off. Therefore, even when a rectifier circuit is connected in parallel to the semiconductor switch element and the load is turned off, a weak current that does not actually turn on or malfunction is passed through the load, and the buffered capacitor is charged with the rectified current, The power supply when the load is off (off power supply unit) is secured. Further, even when the load is on, a power source (on power supply unit) when the load is on is secured by using the current rectified by the rectifier circuit (see, for example, JP 2008-97535A).
 オフ電源部は、例えば電流を制限する抵抗と、電圧をクランプするツェナーダイオード(定電圧ダイオード)と、トランジスタなどで構成された定電圧回路(ブートストラップ回路)であり、整流回路により全波整流された脈流が入力される。オフ電源部から出力される電流の一部は制御部に流れ、CPUなどを駆動するために用いられる。また、残りの電流は、バッファコンデンサを充電する。整流回路により全波整流された脈流の電圧がツェナー電圧よりも低いときは、バッファコンデンサが電源となるため、バッファコンデンサは充放電を繰り返す。このように、上記のように本来負荷がオフの状態であっても、ツェナーダイオード及び整流回路を介して負荷に電流が流れる。 The off power supply unit is a constant voltage circuit (bootstrap circuit) composed of, for example, a resistor that limits current, a Zener diode (constant voltage diode) that clamps voltage, and a transistor, and is full-wave rectified by a rectifier circuit. The pulsating flow is input. Part of the current output from the off power supply unit flows to the control unit and is used to drive the CPU and the like. The remaining current charges the buffer capacitor. When the voltage of the pulsating current rectified by the rectifier circuit is lower than the Zener voltage, the buffer capacitor is a power source, and therefore the buffer capacitor is repeatedly charged and discharged. Thus, even when the load is originally off as described above, a current flows through the load via the Zener diode and the rectifier circuit.
 一方、負荷をオンさせるには、例えば、制御部から半導体スイッチ素子のゲートに駆動信号を入力し、半導体スイッチ素子をオンさせる。それによって、整流回路の整流電圧がほぼ零になり、オン電源部及びオフ電源部が非導通となる。オン電源部及びオフ電源部が非導通の間、制御部にはバッファコンデンサから電力が供給され、バッファコンデンサの端子電圧が徐々に低下する。そして、交流電源の電流が零になると、自己消弧により半導体スイッチ素子が非導通になり、整流回路に電圧が発生する。このように、交流の1/2周期ごとに、負荷制御装置の自己回路電源確保、半導体スイッチ素子の導通/非導通動作が繰り返される。 On the other hand, in order to turn on the load, for example, a drive signal is input from the control unit to the gate of the semiconductor switch element to turn on the semiconductor switch element. As a result, the rectified voltage of the rectifier circuit becomes substantially zero, and the on power supply unit and the off power supply unit become non-conductive. While the on power supply unit and the off power supply unit are non-conducting, power is supplied to the control unit from the buffer capacitor, and the terminal voltage of the buffer capacitor gradually decreases. When the current of the AC power supply becomes zero, the semiconductor switch element becomes non-conductive due to self-extinguishing, and a voltage is generated in the rectifier circuit. Thus, the self-circuit power supply securing of the load control device and the conduction / non-conduction operation of the semiconductor switch element are repeated every half cycle of the alternating current.
 トライアックなどの半導体スイッチ素子は、その導通及び非導通を制御するために必要な電力は比較的少ない。そのため、上記のようにバッファコンデンサに充電された電力によって半導体スイッチ素子を駆動することができる。その反面、半導体スイッチ素子によって流しうる負荷電流は比較的少ないため、多数の白熱電球を備えた照明装置や、直列又は並列接続された複数の照明装置など、大電流を必要とする負荷には適していない。そのため、大電流を必要とする負荷のオン及びオフを制御するために、例えばラッチ式リレーなど、機械的に駆動される接点を備えたスイッチ素子(以下、リレー式スイッチ素子とする)の使用が考えられる。ところが、このような機械的な接点を導通及び非導通させるには、例えば電磁石装置などを駆動する必要があり、大きな電力が必要となる。 Semiconductor switch elements such as triac require relatively little power to control their conduction and non-conduction. Therefore, the semiconductor switch element can be driven by the electric power charged in the buffer capacitor as described above. On the other hand, the load current that can flow through the semiconductor switch element is relatively small, so it is suitable for loads that require large currents, such as lighting devices with many incandescent bulbs and multiple lighting devices connected in series or in parallel. Not. Therefore, in order to control on and off of a load that requires a large current, a switch element (hereinafter referred to as a relay type switch element) having a mechanically driven contact, such as a latch relay, is used. Conceivable. However, in order to turn on and off such a mechanical contact, for example, an electromagnet device or the like needs to be driven, and a large amount of power is required.
 ところで、白熱電球に限らず、電球型蛍光灯やLED電球には寿命があり、フィラメントの破断や点灯回路の故障など、いわゆる球切れが発生する。そのため、リレー式スイッチ素子を用いた2線式負荷制御装置において、球切れが発生したり、LED電球が使用されたりすると、電磁石装置を駆動するために十分な電力が確保できないうちに、駆動信号が出力されると、電磁石装置が駆動されず、リレー式スイッチ素子が導通状態から非導通状態に又はその逆に切り替えられず、負荷がオン/オフされなくなる。このように負荷がオンされたままの状態でユーザが球切れを起こした電球を交換したりすると、照明器具の端子に電圧が印加されているため、ユーザが感電する虞がある。 By the way, not only incandescent bulbs but also bulb-type fluorescent lamps and LED bulbs have a lifetime, and so-called bulb breaks such as filament breakage and lighting circuit failure occur. Therefore, in a two-wire load control device using a relay type switch element, when a ball break occurs or an LED bulb is used, a drive signal is not obtained until sufficient power can be secured to drive the electromagnet device. Is output, the electromagnet device is not driven, the relay switch element is not switched from the conductive state to the non-conductive state, or vice versa, and the load is not turned on / off. When the user replaces the bulb that has broken the bulb while the load is turned on in this way, the voltage may be applied to the terminal of the luminaire, and the user may get an electric shock.
 本発明は、上記従来例の問題を解決するためになされたものであり、リレー式スイッチ素子を用いた2線式負荷制御装置において、電球の球切れなどが発生した場合に、確実にリレー式スイッチ素子を非導通に切り替えた状態で電球交換を行えるようにした2線式負荷制御装置を提供することを目的とする。 The present invention has been made in order to solve the above-described problems of the conventional example, and in a two-wire load control device using a relay type switch element, when a bulb break or the like occurs, a relay type is surely provided. It is an object of the present invention to provide a two-wire load control device that can replace a light bulb in a state where a switch element is switched to non-conduction.
 上記目的を達成するために本発明に係る2線式負荷制御装置は、
 交流電源及び負荷にそれぞれ接続される2つの入力端子と、
 前記2つの入力端子の間に接続されたリレー式スイッチ素子及び電流変成器の直列回路と、
 前記リレー式スイッチ素子の開閉部の両端に並列に接続され、前記交流電源から前記負荷を介して流れる交流電流を用いて、前記リレー式スイッチ素子が非導通状態のときの直流電力を出力するオフ電源部と、
 前記電流変成器の2次側に接続され、前記電流変成器の2次側に流れる交流電流を用いて、前記リレー式スイッチ素子が導通状態のときの直流電力を出力するオン電源部と、
 前記オフ電源部から出力される直流電力を示す物理量を検出するオフ電源電力検出部と、
 前記オン電源部から出力される直流電力を示す物理量を検出するオン電源電力検出部と、
 前記オフ電源部及び前記オン電源部から出力される直流電力によって駆動され、外部から入力される操作情報に基づいて、前記リレー式スイッチ素子の導通及び非導通を制御すると共に、前記オン電源電力検出部により検出された物理量から前記オン電源部から出力される直流電力を推定し、推定した前記オン電源部から出力される直流電力が前記所定の閾値電力よりも少ないと判断したときに、前記リレー式スイッチ素子を導通状態から非導通状態に切り替えるように制御する制御部とを備えたことを特徴とする。
In order to achieve the above object, a two-wire load control device according to the present invention includes:
Two input terminals respectively connected to an AC power source and a load;
A series circuit of a relay-type switching element and a current transformer connected between the two input terminals;
Off, which is connected in parallel to both ends of the open / close portion of the relay type switch element and outputs DC power when the relay type switch element is in a non-conduction state using an AC current flowing from the AC power source through the load. A power supply,
An on-power supply unit that is connected to the secondary side of the current transformer and outputs DC power when the relay switch element is in a conductive state using an alternating current flowing through the secondary side of the current transformer;
An off power supply power detection unit for detecting a physical quantity indicating a direct current power output from the off power supply unit;
An on-power-supply detection unit that detects a physical quantity indicating DC power output from the on-power supply unit;
Based on operation information input from the outside, which is driven by DC power output from the off-power supply unit and the on-power supply unit, the conduction and non-conduction of the relay type switch element are controlled, and the on-power supply power detection When the DC power output from the on-power supply unit is estimated from the physical quantity detected by the unit and the estimated DC power output from the on-power supply unit is less than the predetermined threshold power, the relay And a control unit that controls to switch the type switch element from the conductive state to the non-conductive state.
 本発明によれば、例えば電球の球切れなどによって負荷電流が停止し、オン電源部から出力される直流電力が急激に低下し、所定の閾値電力よりも少なくなったときに、リレー式スイッチ素子を導通状態から非導通状態に切り替えるので、負荷である照明装置が自動的にオフになる。照明装置がオフの状態で電球の交換を行うことになるので、ユーザが感電することはない。 According to the present invention, when the load current stops due to, for example, the bulb being blown out, and the DC power output from the ON power supply unit suddenly decreases and becomes less than a predetermined threshold power, the relay type switching element Is switched from the conductive state to the non-conductive state, so that the illumination device as the load is automatically turned off. Since the light bulb is exchanged in a state where the lighting device is off, the user does not get an electric shock.
図1は本発明の一実施形態に係る2線式負荷制御装置の基本構成を示すブロック図である。FIG. 1 is a block diagram showing a basic configuration of a two-wire load control apparatus according to an embodiment of the present invention. 図2は上記2線式負荷制御装置の具体的構成を示す回路図である。FIG. 2 is a circuit diagram showing a specific configuration of the two-wire load control apparatus. 図3は上記2線式負荷制御装置の基本動作を示すフローチャートである。FIG. 3 is a flowchart showing the basic operation of the two-wire load control apparatus. 図4は上記2線式負荷制御装置の第1変形例の動作を示すフローチャートである。FIG. 4 is a flowchart showing the operation of the first modification of the two-wire load control apparatus. 図5は上記2線式負荷制御装置の第2変形例の動作を示すフローチャートである。FIG. 5 is a flowchart showing the operation of the second modification of the two-wire load control apparatus. 図6は上記2線式負荷制御装置の第3変形例の動作を示すフローチャートである。FIG. 6 is a flowchart showing the operation of the third modification of the two-wire load control device. 図7は上記2線式負荷制御装置の第3変形例の他の動作を示すフローチャートである。FIG. 7 is a flowchart showing another operation of the third modified example of the two-wire load control device. 図8は上記2線式負荷制御装置の第4変形例の動作を示すフローチャートである。FIG. 8 is a flowchart showing the operation of the fourth modification of the two-wire load control apparatus. 図9は図8のフローチャートの続きを示すフローチャートである。FIG. 9 is a flowchart showing a continuation of the flowchart of FIG.
 本発明の一実施形態に係る2線式負荷制御装置について、図面を参照しつつ説明する。図1は、本実施形態に係る2線式負荷制御装置1の基本的なブロック構成を示し、図2は具体的な回路構成を示す。この2線式負荷制御装置1は、交流電源2及び負荷3にそれぞれ接続される2つの入力端子11a,11bと、2つの入力端子11a,11bの間に接続されたリレー式スイッチ素子12及び電流変成器13の直列回路を備えている。リレー式スイッチ素子12は、ラッチ式リレーなど、機械的に駆動される接点を備えたスイッチ素子である。また、リレー式スイッチ素子12と並列に、例えばトライアックなどの第1双方向半導体スイッチ素子32が接続され、第1双方向半導体スイッチ素子32のゲートには、例えばフォトトライアックカプラなどの第2双方向半導体スイッチ素子33が接続されている。第2双方向半導体スイッチ素子33としては、そのターンオン電流値及び保持電流値が、第1双方向半導体スイッチ素子32のターンオン電流値及び保持電流値よりも小さいものが選択されている。なお、以下の説明において、「スイッチ素子」とは、交流側に設けられたリレー式スイッチ素子12、第1双方向半導体スイッチ素子32及び第2双方向半導体スイッチ素子33のいずれか又は全てを指し、直流側のトランジスタなどは除くものとする。 A two-wire load control apparatus according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows a basic block configuration of a two-wire load control apparatus 1 according to this embodiment, and FIG. 2 shows a specific circuit configuration. The two-wire load control device 1 includes two input terminals 11a and 11b connected to an AC power supply 2 and a load 3, respectively, and a relay type switching element 12 and current connected between the two input terminals 11a and 11b. A series circuit of the transformer 13 is provided. The relay type switch element 12 is a switch element provided with a mechanically driven contact such as a latch type relay. Further, a first bidirectional semiconductor switch element 32 such as a triac is connected in parallel with the relay type switch element 12, and a second bidirectional semiconductor such as a phototriac coupler is connected to the gate of the first bidirectional semiconductor switch element 32. A semiconductor switch element 33 is connected. As the second bidirectional semiconductor switch element 33, an element whose turn-on current value and holding current value are smaller than the turn-on current value and holding current value of the first bidirectional semiconductor switch element 32 is selected. In the following description, the “switch element” refers to any or all of the relay type switch element 12, the first bidirectional semiconductor switch element 32, and the second bidirectional semiconductor switch element 33 provided on the AC side. DC side transistors are excluded.
 リレー式スイッチ素子12の開閉部の両端子12a,12bには、交流電源2から負荷3を介して流れる交流電流を用いて、リレー式スイッチ素子12など全てのスイッチ素子が非導通状態のときに、直流電力を出力するオフ電源部14が接続されている。より具体的には、リレー式スイッチ素子12の開閉部の両端子12a,12bには、ダイオードブリッジなどで構成され、交流電源2から負荷3を介して流れる交流電流を直流電流(脈流)に変換する第1整流回路15が並列に接続されている。第1整流回路15には、例えば、電流を制限する抵抗と、電圧をクランプするツェナーダイオード(定電圧ダイオード)と、トランジスタなどで構成された定電圧回路(ブートストラップ回路)16が接続されている。これら第1整流回路15と定電圧回路16とでオフ電源部14を構成する。図2に示す回路構成では、オフ電源部14は、例えば駆動電圧が24Vの高電圧系統と、駆動電圧が12Vの低電圧系統の、2つの電圧系統を有している。 When both switch elements such as the relay type switch element 12 are in a non-conductive state, the AC current flowing from the AC power source 2 through the load 3 is used for both terminals 12a and 12b of the open / close portion of the relay type switch element 12. An off power supply unit 14 that outputs DC power is connected. More specifically, both terminals 12a and 12b of the opening / closing part of the relay type switch element 12 are constituted by diode bridges or the like, and the alternating current flowing from the alternating current power source 2 through the load 3 is converted into a direct current (pulsating current). A first rectifier circuit 15 to be converted is connected in parallel. For example, a resistor that limits current, a Zener diode (constant voltage diode) that clamps a voltage, and a constant voltage circuit (bootstrap circuit) 16 that includes transistors are connected to the first rectifier circuit 15. . The first rectifier circuit 15 and the constant voltage circuit 16 constitute an off power supply unit 14. In the circuit configuration shown in FIG. 2, the off power supply unit 14 has two voltage systems, for example, a high voltage system with a drive voltage of 24V and a low voltage system with a drive voltage of 12V.
 リレー式スイッチ素子12など全てのスイッチ素子が非導通であり、負荷3がオフ状態であっても、リレー式スイッチ素子12の開閉部の両端子12a,12bには、第1整流回路15が接続されているので、交流電源2、負荷3、第1整流回路15の直列回路には微弱な電流が流れる。このときの電流は、負荷3が誤動作しない程度の微小電流であり、オフ電源部14のインピーダンスが高くなるように設定されている。第1整流回路15から全波整流された脈流が入力されると、ツェナーダイオードのツェナー電圧により、オフ電源部14からの出力の電圧波形は略台形状となる。オフ電源部14から出力される電流の一部はレギュレータによって降圧され、第1制御部21に供給される。それと平行して、CPU動作用の補助電源部(第1補助電源部)23のバッファコンデンサが充電される。第1整流回路15により全波整流された脈流の電圧がツェナー電圧よりも低いときは、補助電源部23のバッファコンデンサが電源となって、レギュレータを介して第1制御部21に電力を供給する。そのため、負荷3がオフ状態のとき、補助電源部23のバッファコンデンサは充放電を繰り返す。同様に、オフ電源部14から出力される電流の一部は、第2制御部22に供給されると共に、それと平行して、接点開閉用の補助電源部(第2補助電源部)24のバッファコンデンサを充電する。 The first rectifier circuit 15 is connected to both terminals 12a and 12b of the opening / closing part of the relay type switch element 12 even when all the switch elements such as the relay type switch element 12 are non-conductive and the load 3 is in the OFF state. Therefore, a weak current flows through the series circuit of the AC power source 2, the load 3, and the first rectifier circuit 15. The current at this time is a minute current that does not cause the load 3 to malfunction, and is set so that the impedance of the off-power supply unit 14 becomes high. When a full-wave rectified pulsating current is input from the first rectifier circuit 15, the voltage waveform of the output from the off power supply unit 14 becomes substantially trapezoidal due to the Zener voltage of the Zener diode. Part of the current output from the off power supply unit 14 is stepped down by the regulator and supplied to the first control unit 21. In parallel with this, the buffer capacitor of the auxiliary power supply unit for CPU operation (first auxiliary power supply unit) 23 is charged. When the voltage of the pulsating current rectified by the first rectifier circuit 15 is lower than the Zener voltage, the buffer capacitor of the auxiliary power supply unit 23 becomes a power source and supplies power to the first control unit 21 via the regulator. To do. Therefore, when the load 3 is in the off state, the buffer capacitor of the auxiliary power supply unit 23 is repeatedly charged and discharged. Similarly, a part of the current output from the off power supply unit 14 is supplied to the second control unit 22, and in parallel therewith, the buffer of the auxiliary power supply unit for opening / closing contacts (second auxiliary power supply unit) 24. Charge the capacitor.
 オフ電源部14の第1整流回路15には、半波整流用のダイオード、抵抗、コンデンサ及びトランジスタなどで構成されたオフ電源電力検出部30が接続されている。リレー式スイッチ素子12など全てのスイッチ素子が非導通のとき、すなわち、負荷3がオフ状態であり、オフ電源部14から直流電力が出力されている状態では、ダイオードにより半波整流された直流電流(脈流)がオフ電源電力検出部30に入力される。半波整流された直流電流の電圧(物理量)変化に応じてトランジスタがオン/オフされ、オフ電源電力検出部30からパルス信号が出力され、このパルス信号が第1制御部21に入力される。第1制御部21は、オフ電源電力検出部30からのパルス信号が入力されていると、全てのスイッチ素子が非導通であると判断することができる。一方、リレー式スイッチ素子12などのいずれかのスイッチ素子が導通すると、オフ電源部14の第1整流回路15に印加される電圧が低下し、オフ電源部14が動作しなくなる。また、オフ電源電力検出部30に印加される電圧も低下し、オフ電源電力検出部30からパルス信号が出力されなくなる。第1制御部21は、オフ電源電力検出部30からのパルス信号が入力されていないとき、リレー式スイッチ素子12などいずれかのスイッチ素子が導通していると推測することができる。 The first rectifier circuit 15 of the off power supply unit 14 is connected to an off power supply power detection unit 30 composed of a diode, resistor, capacitor, transistor, and the like for half-wave rectification. When all switch elements such as the relay type switch element 12 are non-conductive, that is, when the load 3 is in an off state and DC power is output from the off power supply unit 14, the DC current rectified by a half wave by a diode (Pulsating flow) is input to the off power supply power detection unit 30. The transistor is turned on / off in accordance with the voltage (physical quantity) change of the DC current that has been half-wave rectified, a pulse signal is output from the off power supply power detection unit 30, and this pulse signal is input to the first control unit 21. The first control unit 21 can determine that all the switch elements are non-conductive when the pulse signal from the off power supply power detection unit 30 is input. On the other hand, when any one of the switch elements such as the relay type switch element 12 is turned on, the voltage applied to the first rectifier circuit 15 of the off power supply unit 14 is lowered, and the off power supply unit 14 does not operate. Further, the voltage applied to the off power supply power detection unit 30 also decreases, and the pulse signal is not output from the off power supply power detection unit 30. When the pulse signal from the off power supply power detection unit 30 is not input, the first control unit 21 can infer that any one of the switch elements such as the relay type switch element 12 is conductive.
 電流変成器13の2次側には、電流変成器13の2次側に流れる交流電流を用いて、リレー式スイッチ素子12などいずれかのスイッチ素子が導通しているときの直流電力を出力するオン電源部17が接続されている。より具体的には、ダイオードブリッジなどで構成され、交流電源2から負荷3を介して流れる交流電流を直流電流(脈流)に変換する第2整流回路18が接続されている。第2整流回路18には、コンデンサ及びツェナーダイオードなどで構成された定電圧回路19が接続されている。オン電源部17も、例えば駆動電圧が24Vの高電圧系統と、駆動電圧が12Vの低電圧系統の、2つの電圧系統を有している。オフ電源部14の高電圧系統の出力端子とオン電源部17の高電圧系統の出力端子は、それぞれ逆流防止用のダイオードを介して接続されている。同様に、オフ電源部14の低電圧系統の出力端子とオン電源部17の低電圧系統の出力端子は、それぞれ逆流防止用のダイオードを介して接続されている。 To the secondary side of the current transformer 13, DC power when any switch element such as the relay type switch element 12 is conducted is output using the alternating current flowing through the secondary side of the current transformer 13. An on power supply unit 17 is connected. More specifically, a second rectifier circuit 18 configured by a diode bridge or the like and converting an alternating current flowing from the alternating current power supply 2 via the load 3 into a direct current (pulsating flow) is connected. The second rectifier circuit 18 is connected to a constant voltage circuit 19 composed of a capacitor and a Zener diode. The on power supply unit 17 also has two voltage systems, for example, a high voltage system with a drive voltage of 24V and a low voltage system with a drive voltage of 12V. The output terminal of the high voltage system of the off power supply unit 14 and the output terminal of the high voltage system of the on power supply unit 17 are connected to each other via a backflow prevention diode. Similarly, the output terminal of the low voltage system of the off power supply unit 14 and the output terminal of the low voltage system of the on power supply unit 17 are connected to each other through a backflow preventing diode.
 オン電源部17の高電圧系統の出力端子には、抵抗及びコンデンサなどで構成されたオン電源電力検出部31が接続されており、コンデンサの端子間電圧(閾値電圧よりもハイレベル又はローレベル)が第1制御部21に入力される。リレー式スイッチ素子12など全てのスイッチ素子が非導通のときでも、オフ電源部14の第1整流回路15から電流変成器13の1次側に電流が流れる。しかしながら、このときに流れる電流は負荷3を誤動作させない程度の微弱電流であり、電流変成器13の2次側に流れる電流量はさらに少なく、ほとんど無視しうる程度である。従って、コンデンサの端子間電圧は閾値よりもローレベルであり、第1制御部21は、リレー式スイッチ素子12など全てのスイッチ素子が非導通であると判断することができる。一方、リレー式スイッチ素子12などいずれかのスイッチ素子が導通すると、すなわち、負荷3がオンすると、負荷を駆動するために十分な電流が電流変成器13の1次側に流れ、それに伴って電流変成器13の2次側に流れる電流量も増加する。電流変成器13の2次側に流れる電流は、第2整流回路18によって全波整流され、オン電源部17のコンデンサを充電する。そして、オン電源部17の高電圧系統の出力端子の電圧が所定の電圧になり、オン電源電力検出部31のコンデンサの端子間電圧(物理量)は閾値電圧よりもハイレベルになる。それによって、第1制御部21は、リレー式スイッチ素子12などいずれかのスイッチ素子が導通していると判断することができる。 The output terminal of the high voltage system of the on power supply unit 17 is connected to the on power supply power detection unit 31 configured by a resistor and a capacitor, and the voltage between terminals of the capacitor (higher or lower than the threshold voltage). Is input to the first control unit 21. Even when all switch elements such as the relay type switch element 12 are non-conductive, a current flows from the first rectifier circuit 15 of the off power supply unit 14 to the primary side of the current transformer 13. However, the current flowing at this time is a weak current that does not cause the load 3 to malfunction, and the amount of current that flows on the secondary side of the current transformer 13 is further small and almost negligible. Therefore, the voltage between the terminals of the capacitor is lower than the threshold value, and the first control unit 21 can determine that all the switch elements such as the relay type switch element 12 are non-conductive. On the other hand, when any one of the switching elements such as the relay type switching element 12 is turned on, that is, when the load 3 is turned on, a current sufficient to drive the load flows to the primary side of the current transformer 13, and the current is accordingly increased. The amount of current flowing on the secondary side of the transformer 13 also increases. The current flowing on the secondary side of the current transformer 13 is full-wave rectified by the second rectifier circuit 18 and charges the capacitor of the on-power supply unit 17. Then, the voltage at the output terminal of the high voltage system of the on-power supply unit 17 becomes a predetermined voltage, and the inter-terminal voltage (physical quantity) of the capacitor of the on-power supply power detection unit 31 becomes higher than the threshold voltage. Accordingly, the first control unit 21 can determine that any one of the switch elements such as the relay type switch element 12 is conductive.
 制御部20は、例えば壁面に設けられた操作ハンドルや無線リモコン装置などの入力部25をユーザが操作したときに、その操作情報に応じてリレー式スイッチ素子12などのスイッチ素子の導通及び非導通を制御する。制御部20は、例えばCPUなどで構成され、低電圧(例えば3V)で駆動される第1制御部21と、高電圧(例えば24V)で駆動される第2制御部22を備えている。第1制御部21は、レギュレータを介して、オフ電源部14及びオン電源部17の低電圧系統の出力端子に接続されている。レギュレータは、低電圧系統の駆動電圧12Vをさらに低電圧の例えば3V程度に降圧させるためのものである。第2制御部22は、リレー式スイッチ素子12の電磁石装置を駆動するための大電力を出力する。また、制御部20は、LED素子やスピーカなどで構成された自動的スイッチオフ表示装置を備えており、後述するように、リレー式スイッチ素子12が自動的に導通状態から非導通状態に切り替えられたときに、ユーザにそのことを告知することができる。 For example, when the user operates an input unit 25 such as an operation handle or a wireless remote control device provided on a wall surface, the control unit 20 conducts and does not conduct a switch element such as the relay switch element 12 according to the operation information. To control. The control unit 20 includes, for example, a CPU and includes a first control unit 21 that is driven at a low voltage (for example, 3V) and a second control unit 22 that is driven at a high voltage (for example, 24V). The first control unit 21 is connected to output terminals of the low voltage system of the off power supply unit 14 and the on power supply unit 17 through a regulator. The regulator is for stepping down the drive voltage 12V of the low voltage system to a lower voltage, for example, about 3V. The second control unit 22 outputs a large electric power for driving the electromagnet device of the relay type switching element 12. In addition, the control unit 20 includes an automatic switch-off display device composed of an LED element, a speaker, and the like, and the relay switch element 12 is automatically switched from a conductive state to a non-conductive state as will be described later. The user can be notified of this.
 さらに、レギュレータを介して、オフ電源部14及びオン電源部17の低電圧系統の出力端子と第1制御部21の間には、CPU動作用の補助電源部23が接続されている。また、オフ電源部14及びオン電源部17の高電圧系統の出力端子と第2制御部22の間には、リレー式スイッチ素子12の接点開閉用の補助電源部24が接続されている。CPU動作用の補助電源部23及び接点開閉用の補助電源部24は、いずれも、バッファコンデンサなどで構成されている。接点開閉用の補助電源部24のバッファコンデンサは、リレー式スイッチ素子12を非導通状態から導通状態に切り替え、さらに連続して導通状態から非導通状態に切り替える、すなわち少なくとも2回駆動するだけの所定の電力を充電しうる容量を有している。 Furthermore, an auxiliary power supply unit 23 for operating the CPU is connected between the output terminals of the low voltage system of the off power supply unit 14 and the on power supply unit 17 and the first control unit 21 via a regulator. In addition, an auxiliary power supply unit 24 for opening and closing the contacts of the relay type switch element 12 is connected between the output terminals of the high voltage system of the off power supply unit 14 and the on power supply unit 17 and the second control unit 22. Each of the auxiliary power supply unit 23 for operating the CPU and the auxiliary power supply unit 24 for opening and closing the contacts is composed of a buffer capacitor or the like. The buffer capacitor of the auxiliary power supply unit 24 for opening and closing the contacts switches the relay switch element 12 from the non-conducting state to the conducting state, and further switches from the conducting state to the non-conducting state continuously, that is, a predetermined amount that is driven at least twice. It has a capacity capable of charging the power.
 負荷3がオフの状態において、すなわち、リレー式スイッチ素子12、第1双方向半導体スイッチ素子32及び第2双方向半導体スイッチ素子33がいずれも非導通の状態において、入力部25から負荷3をオンさせるための操作情報が入力されると、第1制御部21は第2双方向半導体スイッチ素子33の1次側発光素子に接続されたトランジスタに駆動信号を入力する。それによって、第2双方向半導体スイッチ素子33が導通し、負荷3に負荷電流が流れ始める。負荷3が、例えば低輝度のLED電球などを用いた照明装置であって、負荷電流が小さく、第1双方向半導体スイッチ素子32のターンオン電流未満であるときは、第1双方向半導体スイッチ素子32は導通せず、第2双方向半導体スイッチ素子33によって負荷電流が流される。一方、負荷3が、例えば蛍光灯や白熱電球を用いた照明装置であって、負荷電流が第1双方向半導体スイッチ素子32のターンオン電流以上であるときは、第1双方向半導体スイッチ素子32が導通し、第2双方向半導体スイッチ素子33は非導通となる。さらに、第1双方向半導体スイッチ素子32が導通した後、第1制御部21は、第2制御部22に対してリレー式スイッチ素子12を導通させるための駆動信号を出力し、リレー式スイッチ素子12が導通し、第1双方向半導体スイッチ素子32が非導通となる。すなわち、制御部20は、必ず、第1双方向半導体スイッチ素子32を非導通状態から導通状態に切り替えた後に、リレー式スイッチ素子12を非導通状態から導通状態に切り替える。 When the load 3 is off, that is, when the relay type switch element 12, the first bidirectional semiconductor switch element 32, and the second bidirectional semiconductor switch element 33 are all non-conductive, the load 3 is turned on from the input unit 25. When the operation information is input, the first control unit 21 inputs a drive signal to the transistor connected to the primary light emitting element of the second bidirectional semiconductor switch element 33. As a result, the second bidirectional semiconductor switch element 33 becomes conductive, and a load current starts to flow through the load 3. When the load 3 is a lighting device using, for example, a low-brightness LED bulb, and the load current is small and less than the turn-on current of the first bidirectional semiconductor switch element 32, the first bidirectional semiconductor switch element 32 is used. Is not conducted, and a load current is caused to flow by the second bidirectional semiconductor switch element 33. On the other hand, when the load 3 is a lighting device using, for example, a fluorescent lamp or an incandescent lamp, and the load current is greater than or equal to the turn-on current of the first bidirectional semiconductor switch element 32, the first bidirectional semiconductor switch element 32 is The second bidirectional semiconductor switch element 33 becomes non-conductive. Further, after the first bidirectional semiconductor switch element 32 is turned on, the first control unit 21 outputs a drive signal for turning on the relay type switch element 12 to the second control unit 22, and the relay type switch element 12 becomes conductive, and the first bidirectional semiconductor switch element 32 becomes non-conductive. That is, the control unit 20 always switches the relay switch element 12 from the non-conductive state to the conductive state after switching the first bidirectional semiconductor switch element 32 from the non-conductive state to the conductive state.
 次に、本実施形態に係る2線式負荷制御装置1の基本動作について説明する。図3は、負荷3として白熱電球を用いた照明装置が接続されている場合の動作を示すフローチャートである。はじめに、白熱電球は球切れを起こしておらず正常であるものとする。また、上記リレー式スイッチ素子12、第1双方向半導体スイッチ素子32及び第2双方向半導体スイッチ素子33の導通の順序の説明は省略する。 Next, the basic operation of the two-wire load control device 1 according to this embodiment will be described. FIG. 3 is a flowchart showing the operation when an illumination device using an incandescent bulb is connected as the load 3. First, it is assumed that the incandescent bulb is normal and does not run out of bulb. The description of the conduction sequence of the relay type switch element 12, the first bidirectional semiconductor switch element 32, and the second bidirectional semiconductor switch element 33 is omitted.
 リレー式スイッチ素子12が非導通の状態において(#1)、入力部25から負荷3をオンさせる操作情報が入力されると(#2)、第1制御部21は、リレー式スイッチ素子12を非導通状態から導通状態に切り替えるために、駆動信号を出力する(#3)。第2制御部22は、この駆動信号を受けて、リレー式スイッチ素子12の電磁石装置を駆動するための駆動電力を出力する(#4)。この駆動電力は、例えば補助電源部24のバッファコンデンサを放電することによって供給される。それによって、リレー式スイッチ素子12の開閉接点が非導通状態から導通状態に切り替えられる(#5)。リレー式スイッチ素子12が導通すると、負荷電流は、交流電源2、負荷3、リレー式スイッチ素子12、電流変成器13、交流電源2の順に流れる。このとき、電流変成器13の2次側に流れる電流は比較的大きく、オン電源部17の第2整流回路18により整流され、オン電源部17の高電圧系統の出力端子及び定電圧系統の出力端子からそれぞれ電圧の異なる2系統の直流電力が出力される。オン電源部17の高電圧系統の出力端子には、オン電源電力検出部31が接続されており、第1制御部21は、オン電源電力検出部31の出力電圧はハイレベルである。また、リレー式スイッチ素子12の開閉接点に並列に接続されたオフ電源部14の第1整流回路15には電流が流れないので、オフ電源電力検出部30には半波整流された脈流は流れず、オフ電源電力検出部30からパルス信号は出力されない。それによって、第1制御部21は、リレー式スイッチ素子12の開閉接点が導通し、負荷3がオン状態であると判断する。 When the operation information for turning on the load 3 is input from the input unit 25 (# 2) when the relay type switch element 12 is non-conductive (# 1), the first control unit 21 turns the relay type switch element 12 on. In order to switch from the non-conductive state to the conductive state, a drive signal is output (# 3). The second control unit 22 receives this drive signal and outputs drive power for driving the electromagnet device of the relay type switching element 12 (# 4). This driving power is supplied, for example, by discharging the buffer capacitor of the auxiliary power supply unit 24. Thereby, the switching contact of the relay type switch element 12 is switched from the non-conductive state to the conductive state (# 5). When the relay type switch element 12 becomes conductive, the load current flows in the order of the AC power source 2, the load 3, the relay type switch element 12, the current transformer 13, and the AC power source 2. At this time, the current flowing to the secondary side of the current transformer 13 is relatively large and is rectified by the second rectifier circuit 18 of the on-power supply unit 17, and the output terminal of the high-voltage system and the output of the constant-voltage system of the on-power supply unit 17. Two systems of DC power with different voltages are output from the terminals. The on-power-supply power detection unit 31 is connected to the output terminal of the high-voltage system of the on-power supply unit 17. In the first control unit 21, the output voltage of the on-power supply power detection unit 31 is at a high level. In addition, since no current flows through the first rectifier circuit 15 of the off power supply unit 14 connected in parallel to the open / close contact of the relay type switch element 12, the half-wave rectified pulsating current is not supplied to the off power supply power detection unit 30. No pulse signal is output from the off power supply power detector 30. Accordingly, the first control unit 21 determines that the open / close contact of the relay type switch element 12 is conductive and the load 3 is in an ON state.
 白熱電球を用いた照明装置の場合、負荷電流として比較的大きな電流が流れる。そのため、オン電源部17からは、リレー式スイッチ素子12を駆動させるのに十分な直流電力が出力される。ところが、白熱電球を1個だけ使用する照明装置の場合、白熱電球のフィラメントが断線し、球切れを起こすと、突然負荷電流が流れなくなり、オン電源部17から直流電力が出力されなくなる。あるいは複数の白熱電球を使用する照明装置の場合、いずれかの白熱電球の球切れにより、負荷電流値が低下し、オン電源部17から出力される直流電力量が低下する。また、リレー式スイッチ素子12が導通したままであるため、オフ電源部14から直流電力は出力されない。この段階では、接点開閉用補助電源部24のバッファコンデンサには、まだリレー式スイッチ素子12を駆動させるのに十分な電力が充電されている。同様に、CPU動作用補助電源部23のバッファコンデンサにも制御部20を駆動させるだけの十分な電力が充電されている。しかしながら、時間の経過と共に、これら接点開閉用補助電源部24及びCPU動作用補助電源部23に充電された電力は徐々に放電される。 In the case of a lighting device using an incandescent bulb, a relatively large current flows as a load current. Therefore, the DC power sufficient to drive the relay type switch element 12 is output from the ON power supply unit 17. However, in the case of an illuminating device that uses only one incandescent bulb, if the filament of the incandescent bulb breaks and the bulb breaks, the load current does not flow suddenly, and DC power is not output from the on power supply unit 17. Or in the case of the illuminating device which uses a some incandescent lamp, the load electric current value falls by the bulb | ball breakage of one of incandescent lamps, and the direct-current electric power output from the ON power supply part 17 falls. Further, since the relay type switch element 12 remains conductive, no DC power is output from the off power supply unit 14. At this stage, the buffer capacitor of the contact opening / closing auxiliary power supply unit 24 is still charged with sufficient power to drive the relay switch element 12. Similarly, the buffer capacitor of the CPU operation auxiliary power supply unit 23 is charged with sufficient power to drive the control unit 20. However, as time passes, the electric power charged in the contact opening / closing auxiliary power supply unit 24 and the CPU operation auxiliary power supply unit 23 is gradually discharged.
 オン電源部17から直流電力が出力されなくなると、あるいは、オン電源部17から出力される直流電力量が低下すると、オン電源電力検出部31からの出力電圧が閾値電圧よりもローレベルになる。第1制御部21は、オン電源電力検出部31からの出力電圧をモニタしており、オン電源電力検出部31からの出力電圧が閾値電圧よりもローレベルになると(#6でNO)、負荷3に球切れなどのトラブルが発生したものと判断する(#7)。第1制御部21は、負荷3に球切れなどのトラブルが発生したものと判断すると、リレー式スイッチ素子12を導通状態から非導通状態に切り替えるために、駆動信号を出力する(#8)。第2制御部22は、この駆動信号を受けて、リレー式スイッチ素子12の電磁石装置を駆動するための駆動電力を出力する(#9)。それによって、リレー式スイッチ素子12の開閉接点が導通状態から非導通状態に切り替えられる(#10)。なお、第1双方向半導体スイッチ素子32及び第2双方向半導体スイッチ素子33は、自己消弧型の半導体スイッチ素子であるので、それぞれリレー式スイッチ素子12や第1双方向半導体スイッチ素子32が導通した時点で自己消弧している。そのため、第1制御部21から第2双方向半導体スイッチ素子(フォトトライアックカプラ)33の1次側発光素子に接続されたトランジスタに駆動信号を入力しない限り、再点弧することはない。 When DC power is no longer output from the on power supply unit 17 or when the amount of DC power output from the on power supply unit 17 decreases, the output voltage from the on power supply power detection unit 31 becomes lower than the threshold voltage. The first control unit 21 monitors the output voltage from the on-power supply power detection unit 31. When the output voltage from the on-power supply power detection unit 31 becomes lower than the threshold voltage (NO in # 6), the load 3. It is determined that a trouble such as running out of the ball has occurred in No. 3 (# 7). If the first control unit 21 determines that a trouble such as a broken ball has occurred in the load 3, the first control unit 21 outputs a drive signal in order to switch the relay-type switch element 12 from the conductive state to the non-conductive state (# 8). The second control unit 22 receives this drive signal and outputs drive power for driving the electromagnet device of the relay type switch element 12 (# 9). Thereby, the switching contact of the relay type switch element 12 is switched from the conductive state to the non-conductive state (# 10). Since the first bidirectional semiconductor switch element 32 and the second bidirectional semiconductor switch element 33 are self-extinguishing semiconductor switch elements, the relay type switch element 12 and the first bidirectional semiconductor switch element 32 are in conduction. The self-extinguishing is done at the time. Therefore, unless the drive signal is input from the first control unit 21 to the transistor connected to the primary side light emitting element of the second bidirectional semiconductor switch element (phototriac coupler) 33, re-ignition is not performed.
 次に、本実施形態に係る2線式負荷制御装置1の第1変形例の動作について説明する。図4は、例えば負荷3が頻繁にオン及びオフされた場合の動作を示すフローチャートである。リレー式スイッチ素子12の導通と非導通を切り替えるための電力は、接点開閉用補助電源部24から供給される。そして、前述のように、接点開閉用補助電源部24は、リレー式スイッチ素子12を少なくとも2回続けて駆動するだけの所定の電力を充電しうる容量を有している。ところが、ユーザが立て続けに負荷3のオンとオフを繰り返したとすると、接点開閉用補助電源部24にはリレー式スイッチ素子12を駆動するだけの電力が残っていないこともあり得る。あるいは、最初から停電や負荷3の球切れなどにより、オフ電源部14及びオン電源部17から直流電力が出力されず、接点開閉用補助電源部24が充電されない場合もあり得る。 Next, the operation of the first modification of the two-wire load control device 1 according to this embodiment will be described. FIG. 4 is a flowchart showing an operation when the load 3 is frequently turned on and off, for example. Electric power for switching between conduction and non-conduction of the relay type switch element 12 is supplied from the contact opening / closing auxiliary power supply unit 24. As described above, the contact opening / closing auxiliary power supply unit 24 has a capacity capable of charging predetermined power sufficient to continuously drive the relay type switching element 12 at least twice. However, if the user repeatedly turns on and off the load 3 in a row, the contact opening / closing auxiliary power supply unit 24 may not have enough power to drive the relay switch element 12. Alternatively, there may be a case where the DC power is not output from the off power supply unit 14 and the on power supply unit 17 and the contact opening / closing auxiliary power supply unit 24 is not charged due to a power failure or a break of the load 3 from the beginning.
 リレー式スイッチ素子12が非導通の状態において(#11)、入力部25から負荷3をオンさせる操作情報が入力されると(#12)、第1制御部21は、接点開閉用補助電源部24にリレー式スイッチ素子12を駆動しうるだけの電力が充電されているか否かを判断する(#13)。ここで、接点開閉用補助電源部24の充電状態は、例えば前回リレー式スイッチ素子12を駆動してから現時点までの間にオフ電源電力検出部30から出力されるパルス信号の数をカウントしておけば充電時間が求められ、それによって、接点開閉用補助電源部24のバッファコンデンサに充電されている電力を推測することができる。そして、接点開閉用補助電源部24にリレー式スイッチ素子12を駆動しうるだけの電力が充電されていないと判断すると(#13でNO)、第1制御部21は、接点開閉用補助電源部24に充電可能か否かを判断する(#14)。例えば、負荷3に球切れなどが生じており、オフ電源部14及びオン電源部17から直流電力が出力されていない場合、接点開閉用補助電源部24に充電は不可能である。従って、接点開閉用補助電源部24に充電不可能なときは(#14でNO)、第1制御部21は、操作情報にかかわらず、リレー式スイッチ素子12を非導通状態のまま維持する。実際には、CPU動作用補助電源部23のバッファコンデンサに充電されている電力もいずれは放電してしまい、第1制御部21が機能しなくなる。一方、接点開閉用補助電源部24に充電が可能であるときは(#14でYES)、制御部21は、接点開閉用補助電源部24にリレー式スイッチ素子12を駆動しうるだけの電力が充電されるのを待って、駆動信号を出力する(#15)。また、ステップ#13において、接点開閉用補助電源部24にリレー式スイッチ素子12を駆動しうるだけの電力が充電されていると判断したときは、第1制御部21は、リレー式スイッチ素子12を非導通状態から導通状態に切り替えるために、直ちに駆動信号を出力する(#15)。なお、ステップ#16から#22までの動作は、図3のフローチャートにおけるステップ#4から#10までと同じであるため、その説明を省略する。 When the relay type switch element 12 is in a non-conductive state (# 11), when the operation information for turning on the load 3 is input from the input unit 25 (# 12), the first control unit 21 is connected to the contact opening / closing auxiliary power supply unit. It is determined whether or not the electric power sufficient to drive the relay type switch element 12 is charged to 24 (# 13). Here, the charge state of the contact opening / closing auxiliary power supply unit 24 is obtained by, for example, counting the number of pulse signals output from the off power supply power detection unit 30 between the previous driving of the relay type switch element 12 and the present time. If this is the case, the charging time is obtained, and thereby the power charged in the buffer capacitor of the contact switching auxiliary power supply unit 24 can be estimated. If it is determined that the contact opening / closing auxiliary power supply unit 24 is not charged with enough power to drive the relay-type switch element 12 (NO in # 13), the first control unit 21 opens the contact opening / closing auxiliary power supply unit. It is determined whether or not the battery can be charged (# 14). For example, when the load 3 is out of sphere and no DC power is output from the off power supply unit 14 and the on power supply unit 17, the contact opening / closing auxiliary power supply unit 24 cannot be charged. Accordingly, when the contact opening / closing auxiliary power supply unit 24 cannot be charged (NO in # 14), the first control unit 21 maintains the relay switch element 12 in the non-conductive state regardless of the operation information. Actually, the electric power charged in the buffer capacitor of the auxiliary power supply unit 23 for CPU operation is eventually discharged, and the first control unit 21 does not function. On the other hand, when the contact opening / closing auxiliary power supply unit 24 can be charged (YES in # 14), the control unit 21 has enough power to drive the relay switch element 12 in the contact opening / closing auxiliary power supply unit 24. After being charged, a drive signal is output (# 15). In Step # 13, when it is determined that the contact switching auxiliary power supply 24 is charged with enough power to drive the relay switch element 12, the first controller 21 determines that the relay switch element 12 In order to switch the non-conducting state to the conducting state, a drive signal is immediately output (# 15). The operations from step # 16 to # 22 are the same as steps # 4 to # 10 in the flowchart of FIG.
 次に、本実施形態に係る2線式負荷制御装置1の第2変形例の動作について説明する。図5は、例えば複数の電球を用いた照明装置が負荷3として接続された場合の動作を示すフローチャートである。図5中、ステップ#1から#10は図3に示すフローチャートにおけるステップ#1から#10と同じであるため、その説明を省略する。 Next, the operation of the second modification of the two-wire load control device 1 according to this embodiment will be described. FIG. 5 is a flowchart showing an operation when a lighting device using a plurality of light bulbs, for example, is connected as the load 3. In FIG. 5, steps # 1 to # 10 are the same as steps # 1 to # 10 in the flowchart shown in FIG.
 この場合、仮に1つの電球が球切れを起こしたとしても、他の電球は活きている。一方、ステップ#10においてリレー式スイッチ素子12が非導通になると、全ての電球が消灯してしまい、どの電球が球切れを起こしたのかわからなくなってしまう。一般的に、全ての電球が消灯してしまうと、ユーザは、とりあえず壁面に設けられた操作ハンドルや無線リモコン装置などの入力部25を操作してみようとする傾向が強い。そこで、新たに入力部25から負荷3をオンさせる操作情報が入力されると(#30)、第1制御部21は、接点開閉用補助電源部24にリレー式スイッチ素子12を駆動しうるだけの電力が充電されているか否かを判断する(#31)。接点開閉用補助電源部24にリレー式スイッチ素子12を駆動しうるだけの電力が充電されていると判断したときは(#31でYES)、第1制御部21は、リレー式スイッチ素子12を非導通状態から導通状態に切り替えるために駆動信号を出力し(#32)、それによってリレー式スイッチ素子12が導通される(#33,#34)。リレー式スイッチ素子12が導通されると、活きている電球が点灯されるので、ユーザはどの電球が球切れを起こしたかを知ることができる。そして、第1制御部21は、再びリレー式スイッチ素子12を導通状態から非導通状態に切り替えるために駆動信号を出力し(#35)、それによってリレー式スイッチ素子12が非導通にされ(#36,#37)、再び消灯される。そして、入力部25から負荷3をオンさせる操作情報が入力されると(#38)、第1制御部21は、リレー式スイッチ素子12の非導通状態を解除して、導通状態に切り替え(#39)、負荷3をオンする。ユーザが、球切れを起こした電球を交換せずに、入力部25から負荷3をオンさせる操作情報が入力された場合、再びリレー式スイッチ素子12が導通状態から非導通状態に切り替えられる可能性があるが、その場合は後述する第4変形例の動作による。 In this case, even if one bulb breaks down, the other bulb is still alive. On the other hand, if the relay type switch element 12 becomes non-conductive in step # 10, all the light bulbs are turned off, and it becomes impossible to know which light bulb has caused the bulb to break. Generally, when all the light bulbs are extinguished, the user tends to try to operate the input unit 25 such as an operation handle or a wireless remote controller provided on the wall surface for the time being. Therefore, when operation information for turning on the load 3 is newly input from the input unit 25 (# 30), the first control unit 21 can only drive the relay switch element 12 to the contact opening / closing auxiliary power supply unit 24. It is determined whether or not the electric power is charged (# 31). When it is determined that the contact opening / closing auxiliary power source 24 is charged with power sufficient to drive the relay switch element 12 (YES in # 31), the first controller 21 turns the relay switch element 12 on. In order to switch from the non-conductive state to the conductive state, a drive signal is output (# 32), whereby the relay switch element 12 is made conductive (# 33, # 34). When the relay type switch element 12 is turned on, the live bulb is turned on, so that the user can know which bulb has run out. Then, the first control unit 21 outputs a drive signal again to switch the relay type switch element 12 from the conductive state to the nonconductive state (# 35), thereby making the relay type switch element 12 nonconductive (#). 36, # 37), the light is turned off again. When the operation information for turning on the load 3 is input from the input unit 25 (# 38), the first control unit 21 cancels the non-conduction state of the relay type switch element 12 and switches to the conduction state (# 39), the load 3 is turned on. When the user inputs operation information for turning on the load 3 from the input unit 25 without replacing the bulb that has broken the bulb, the relay switch element 12 may be switched from the conductive state to the non-conductive state again. In this case, the operation is based on the operation of a fourth modification described later.
 なお、入力部25は、壁面に設けられた操作ハンドルや無線リモコン装置に限られず、トイレ、玄関、廊下などに設置される人体感知センサであってもよい。また、人体感知センサは、第1制御部21に有線で接続されていてもよいし、無線で接続されていてもよい。後者の場合、第1制御部21に含まれる無線リモコン装置の受信器を兼用することが好ましい。また、図5におけるステップ#1と#2の間に、図4に示す接点開閉用補助電源部24にリレー式スイッチ素子12を駆動しうるだけの電力が充電されているか否かを判断するステップ#13及び接点開閉用補助電源部24に充電可能か否かを判断するステップ#14を設けてもよい。さらに、ステップ#31と#32の間に、接点開閉用補助電源部24に充電可能か否かを判断するステップ#14を設けてもよい。 Note that the input unit 25 is not limited to an operation handle or a wireless remote controller provided on a wall surface, and may be a human body sensor installed in a toilet, an entrance, a hallway, or the like. Further, the human body sensor may be connected to the first control unit 21 by wire or may be connected wirelessly. In the latter case, it is preferable that the receiver of the wireless remote controller included in the first control unit 21 is also used. Further, between steps # 1 and # 2 in FIG. 5, it is determined whether or not the contact opening / closing auxiliary power supply unit 24 shown in FIG. 4 is charged with power sufficient to drive the relay switch element 12. Step # 14 for determining whether or not # 13 and the contact opening / closing auxiliary power supply 24 can be charged may be provided. Furthermore, step # 14 may be provided between steps # 31 and # 32 to determine whether or not the contact opening / closing auxiliary power supply unit 24 can be charged.
 次に、本実施形態に係る2線式負荷制御装置1の第3変形例の動作について説明する。図6及び図7は、オン電源部17から出力される直流電力の不足によってリレー式スイッチ素子12が導通状態から非導通状態に切り替えられたときに、ユーザにリレー式スイッチ素子12が自動的に導通状態から非導通状態に切り替えられたことを通知する場合の動作を示すフローチャートである。図6及び図7中、ステップ#1から#10は図3に示すフローチャートにおけるステップ#1から#10と同じであるため、その説明を省略する。 Next, the operation of the third modification of the two-wire load control device 1 according to this embodiment will be described. 6 and 7 show that when the relay switch element 12 is switched from the conductive state to the nonconductive state due to a shortage of DC power output from the on-power supply unit 17, the relay switch element 12 is automatically set to the user. It is a flowchart which shows operation | movement in the case of notifying that it switched from the conduction | electrical_connection state to the non-conduction state. 6 and 7, steps # 1 to # 10 are the same as steps # 1 to # 10 in the flowchart shown in FIG.
 ユーザが不在のときに電球の球切れが発生し、リレー式スイッチ素子12が自動的に導通状態から非導通状態に切り替えられたとすると、ユーザは、誰か他の人が負荷3をオフしたと考え、改めて操作ハンドルや無線リモコン装置を操作して負荷3をオンしようとする。ところが、球切れによって、補助電源部17からも直流電力が出力されず、接点開閉用補助電源部24に充電できなくなっている可能性が高い。そこで、制御部20にLED素子など視覚的に情報を表示する素子や、チャイムなど聴覚的に情報を表示する素子で構成された自動的スイッチオフ表示装置26を設けておき、ステップ#10においてリレー式スイッチ素子12が非導通になったときに、これらLED素子を点灯又は点滅させたり、チャイムなどを駆動させてもよい(#40)。それによって、ユーザは球切れによって自動的にスイッチオフしたことを知ることができる。これらLED素子やチャイムなどはCPU動作用補助電源部23に充電されている電力によって駆動されるため、長時間駆動することはできない。そこで、ユーザが操作ハンドルや無線リモコン装置を操作して、負荷3をオンさせるための操作情報が入力されたときに(#41)、これらLED素子やチャイムなどの駆動を停止して、自動的スイッチオフ表示を解除するようにしてもよい(#42)。あるいは、図7に示すように、ユーザが操作ハンドルや無線リモコン装置を操作して、負荷3をオンさせるための操作情報が入力されたときに(#43)、これらLED素子やチャイムなどを駆動して、自動的スイッチオフを表示するようにしてもよい(#44)。 If a bulb break occurs when the user is absent and the relay-type switch element 12 is automatically switched from a conductive state to a non-conductive state, the user thinks that someone else has turned off the load 3. The load 3 is turned on again by operating the operation handle or the wireless remote controller. However, there is a high possibility that the DC power is not output from the auxiliary power supply unit 17 due to the broken ball, and the contact opening / closing auxiliary power supply unit 24 cannot be charged. Therefore, an automatic switch-off display device 26 composed of an element that visually displays information, such as an LED element, or an element that auditorily displays information, such as a chime, is provided in the control unit 20. When the type switch element 12 becomes non-conductive, these LED elements may be turned on or blinked, or a chime or the like may be driven (# 40). As a result, the user can know that the switch has been automatically turned off due to a ball break. Since these LED elements and chimes are driven by the power charged in the auxiliary power source 23 for CPU operation, they cannot be driven for a long time. Therefore, when the user operates the operation handle or the wireless remote control device and the operation information for turning on the load 3 is input (# 41), the driving of these LED elements and chimes is stopped to automatically The switch-off display may be canceled (# 42). Alternatively, as shown in FIG. 7, when the user operates the operation handle or the wireless remote control device to input operation information for turning on the load 3 (# 43), these LED elements and chimes are driven. Then, an automatic switch-off may be displayed (# 44).
 次に、本実施形態に係る2線式負荷制御装置1の第4変形例の動作について説明する。図8及び図9は、例えば高輝度LED電球や電球型蛍光灯など、負荷電流値が第1双方向半導体スイッチ素子32の保持電流値に近い負荷を用いた場合の動作を示すフローチャートである。これら負荷電流値が小さい負荷3が接続されている場合、負荷3自体に球切れなどが発生していなくても、オン電源部17から出力される直流電力が所定の閾値電力よりも少なくなり、リレー式スイッチ素子12が非導通に切り替えられてしまう可能性がある。リレー式スイッチ素子12が非導通に切り替えられると、電球が消灯されるので、ユーザは球切れが生じたものと誤解してしまう虞がある。あるいは、負荷3が複数の電球を使用する照明装置である場合に、一部の電球に球切れが生じた場合も、全ての電球が消灯されてしまう。 Next, the operation of the fourth modification of the two-wire load control device 1 according to this embodiment will be described. FIG. 8 and FIG. 9 are flowcharts showing the operation when a load having a load current value close to the holding current value of the first bidirectional semiconductor switch element 32 such as a high-intensity LED bulb or a bulb-type fluorescent lamp is used. When the load 3 having a small load current value is connected, the direct-current power output from the on power supply unit 17 is less than a predetermined threshold power even if the load 3 itself is not blown out. There is a possibility that the relay-type switch element 12 is switched to non-conduction. When the relay-type switch element 12 is switched to non-conduction, the light bulb is extinguished, so that the user may misunderstand that the ball has run out. Alternatively, when the load 3 is an illuminating device that uses a plurality of light bulbs, all the light bulbs are extinguished even if some of the light bulbs are broken.
 全てのスイッチ素子12、32及び33が非導通の状態で(#51)、入力部25から負荷3をオンさせる操作情報が入力されると(#52)、第1制御部21は、第2双方向半導体スイッチ素子33を導通させ(#53)、それによって負荷3に負荷電流が流れ始める。ここで、負荷電流値が第1双方向半導体スイッチ素子32のターンオン電流値未満であれば、第1双方向半導体スイッチ素子32は導通せず(#54でNO)、負荷3に対しては第2双方向半導体スイッチ素子33のみで電流を流す。一方、負荷電流値が第1双方向半導体スイッチ素子32のターンオン電流値以上であれば、第1双方向半導体スイッチ素子32が導通する(#54でYES)。そして、第1制御部21は、オン電源電力検出部31からの出力電圧が閾値電圧よりもローレベルか否か、すなわち、オン電源部17から出力される直流電力が所定の閾値電力よりも少ないかどうかを判断する(#55)。そして、オン電源部17から出力される直流電力が所定の閾値電力よりも少ないと判断したときは(#55でNO)、負荷電流値がそれほど大きくなく、第1双方向半導体スイッチ素子32によって負荷電流を流しうるので、第1制御部21は、リレー式スイッチ素子12を導通させず、非導通状態を維持する。一方、オン電源部17から出力される直流電力が所定の閾値電力以上であると判断したときは(#55でYES)、負荷電流値が大きく、リレー式スイッチ素子12により負荷電流を流した方が好ましいと考えられる。そこで、第1制御部21は、リレー式スイッチ素子12に非導通設定がなされているか否かを判断する(#56)。最初に負荷3がこの2線式負荷制御装置1に接続された段階では、リレー式スイッチ素子12に非導通設定がなされていないので(#56でYES)、第1制御部21は、リレー式スイッチ素子12を導通させる(#57)。リレー式スイッチ素子12を導通させた後、第1制御部21は、オン電源電力検出部31からの出力電圧をモニタしており、オン電源部17から出力される直流電力の値に基づいて、負荷3に球切れなどのトラブルが発生したか否かを監視する(#58)。 When the operation information for turning on the load 3 is input from the input unit 25 (# 52) while all the switch elements 12, 32 and 33 are non-conductive (# 51), the first control unit 21 The bidirectional semiconductor switch element 33 is turned on (# 53), whereby a load current starts to flow through the load 3. Here, if the load current value is less than the turn-on current value of the first bidirectional semiconductor switch element 32, the first bidirectional semiconductor switch element 32 is not conducted (NO in # 54), and the load 3 is A current is passed only by the two-way semiconductor switch element 33. On the other hand, if the load current value is equal to or greater than the turn-on current value of the first bidirectional semiconductor switch element 32, the first bidirectional semiconductor switch element 32 becomes conductive (YES in # 54). Then, the first control unit 21 determines whether or not the output voltage from the on-power supply detection unit 31 is lower than the threshold voltage, that is, the DC power output from the on-power supply unit 17 is less than the predetermined threshold power. (# 55). When it is determined that the DC power output from the ON power supply unit 17 is less than the predetermined threshold power (NO in # 55), the load current value is not so large and the first bidirectional semiconductor switch element 32 loads the load. Since the current can flow, the first control unit 21 does not conduct the relay switch element 12 and maintains the non-conduction state. On the other hand, when it is determined that the DC power output from the ON power supply unit 17 is equal to or higher than the predetermined threshold power (YES in # 55), the load current value is large and the load current is caused to flow by the relay type switch element 12. Is considered preferable. Accordingly, the first control unit 21 determines whether or not the relay-type switch element 12 is set to be non-conductive (# 56). When the load 3 is first connected to the two-wire load control device 1, since the non-conducting setting is not made in the relay type switch element 12 (YES in # 56), the first control unit 21 is connected to the relay type switch element 12. The switch element 12 is turned on (# 57). After the relay switch element 12 is turned on, the first control unit 21 monitors the output voltage from the on-power supply power detection unit 31, and based on the value of the DC power output from the on-power supply unit 17, It is monitored whether or not a trouble such as a broken ball has occurred in the load 3 (# 58).
 ステップ#55において、負荷電流がさほど大きくなく、オン電源部17から出力される直流電力が所定の閾値電力を僅かに上回るような場合、同じ交流電源2に接続されている他の負荷のオンなどによって電圧降下が生じた場合、オン電源部17から出力される直流電力が所定の閾値電力よりも少なくなってしまうことがある(#58でNO)。この第4変形例においては、第1制御部21は、リレー式スイッチ素子12を導通状態から非導通状態に切り替える(#59)と共に、電力不足によりリレー式スイッチ素子12を非導通状態に切り替えた回数をカウントする(#60)。すなわち、このように負荷電流がさほど大きくない場合、同じ交流電源2に接続されている他の負荷のオンなどによって頻繁にリレー式スイッチ素子12が非導通状態に切り替えられ、それによって負荷3がオン及びオフを繰り返されることが予想される。リレー式スイッチ素子12の開閉接点が頻繁に開閉されたり、負荷3が頻繁にオン/オフされたりすると、リレー式スイッチ素子12や負荷3が劣化してしまう。 In step # 55, when the load current is not so large and the DC power output from the ON power supply unit 17 slightly exceeds the predetermined threshold power, the other loads connected to the same AC power supply 2 are turned on, etc. If a voltage drop occurs, the DC power output from the on-power supply unit 17 may be lower than a predetermined threshold power (NO in # 58). In the fourth modification, the first control unit 21 switches the relay type switch element 12 from the conductive state to the nonconductive state (# 59), and switches the relay type switch element 12 to the nonconductive state due to power shortage. The number of times is counted (# 60). That is, when the load current is not so large, the relay switch element 12 is frequently switched to the non-conductive state by turning on another load connected to the same AC power supply 2, thereby turning on the load 3. And is expected to be repeated off. If the switching contacts of the relay type switch element 12 are frequently opened and closed or the load 3 is frequently turned on / off, the relay type switch element 12 and the load 3 will be deteriorated.
 そこで、一定期間内に電力不足によりリレー式スイッチ素子12を非導通状態に切り替えた回数Kが所定回数nに達したときは(#61でYES)、それ以後、リレー式スイッチ素子12が導通されないように、リレー式スイッチ素子12に非導通設定を行う(#62)。第1制御部21は、リレー式スイッチ素子12に非導通設定を行った後、ステップ#53に戻って、第2双方向半導体スイッチ素子33を導通させ、負荷3をオンさせる。なお、第1双方向半導体スイッチ素子32及び第2双方向半導体スイッチ素子33は、いずれも、自己消弧型の半導体スイッチ素子であり、交流電圧のゼロクロス点において自動的に非導通となる。従って、第1制御部21は、負荷3をオンさせ、且つ、リレー式スイッチ素子12を非導通とするときは、交流電源2の1/2周期毎に第2双方向半導体スイッチ素子33の1次側にゲート駆動信号を入力している。 Therefore, when the number K of switching the relay type switching element 12 to the non-conducting state due to power shortage within a certain period reaches the predetermined number n (YES in # 61), the relay type switching element 12 is not conducted thereafter. As described above, the non-conduction setting is performed for the relay type switch element 12 (# 62). The first control unit 21 performs non-conduction setting for the relay type switch element 12, and then returns to step # 53 to conduct the second bidirectional semiconductor switch element 33 and turn on the load 3. Note that each of the first bidirectional semiconductor switch element 32 and the second bidirectional semiconductor switch element 33 is a self-extinguishing semiconductor switch element, and automatically becomes non-conductive at the zero-cross point of the AC voltage. Accordingly, the first control unit 21 turns on the load 3 and makes the relay switch element 12 non-conductive, the 1st of the second bidirectional semiconductor switch element 33 every 1/2 cycle of the AC power supply 2. A gate drive signal is input to the next side.
 以上に説明したように、本実施形態の構成によれば、例えば電球の球切れなどによって負荷電流が停止し、オン電源部17から出力される直流電力が所定の閾値電力よりも少なくなったときに、リレー式スイッチ素子12を速やかに導通状態から非導通状態に切り替えるので、負荷3がオフの状態で電球の交換などを行うことができ、ユーザが感電することはない。また、リレー式スイッチ素子12の開閉接点を導通状態から非導通状態に切り替えるために電磁石装置を駆動する必要があるが、接点開閉用補助電源部24のバッファコンデンサに充電された電力が比較的たくさん残っている段階で電磁石装置を駆動するので、確実にリレー式スイッチ素子12の開閉接点を非導通にさせることができる。 As described above, according to the configuration of the present embodiment, when the load current is stopped due to, for example, the bulb being blown, and the DC power output from the on power supply unit 17 is less than the predetermined threshold power. In addition, since the relay switch element 12 is quickly switched from the conductive state to the non-conductive state, the bulb can be replaced while the load 3 is off, and the user is not shocked. Further, it is necessary to drive the electromagnet device in order to switch the open / close contact of the relay type switch element 12 from the conductive state to the non-conductive state. Since the electromagnet device is driven at the remaining stage, the switching contact of the relay type switch element 12 can be surely made non-conductive.
 なお、本発明は、上記実施形態の説明に限定されるものではなく、発明の趣旨を逸脱しない範囲で様々な変形が可能である。例えば、第1双方向半導体スイッチ素子32は、必ずしもトライアックである必要はなく、IGBTやFETなどを逆並列接続したものであってもよい。また、第2双方向半導体スイッチ素子33は必ずしも必要ではなく、フォトトライアックの代わりに、トライアックのゲートにサイリスタやダイアック(トリガーダイオード)などを接続して、ゲート信号を入力するように構成してもよい。 It should be noted that the present invention is not limited to the description of the above embodiment, and various modifications can be made without departing from the spirit of the invention. For example, the first bidirectional semiconductor switch element 32 does not necessarily need to be a triac, and may be an IGBT or FET that is connected in antiparallel. The second bidirectional semiconductor switch element 33 is not necessarily required. Instead of the photo triac, a thyristor or a diac (trigger diode) may be connected to the triac gate to input a gate signal. Good.
 また、本発明に係る2線式負荷制御装置は、上記実施形態の構成を全て備えている必要はなく、少なくとも、
 交流電源及び負荷にそれぞれ接続される2つの入力端子と、
 前記2つの入力端子の間に接続されたリレー式スイッチ素子及び電流変成器の直列回路と、
 前記リレー式スイッチ素子の開閉部の両端に並列に接続され、前記交流電源から前記負荷を介して流れる交流電流を用いて、前記リレー式スイッチ素子が非導通状態のときの直流電力を出力するオフ電源部と、
 前記電流変成器の2次側に接続され、前記電流変成器の2次側に流れる交流電流を用いて、前記リレー式スイッチ素子が導通状態のときの直流電力を出力するオン電源部と、
 前記オフ電源部から出力される直流電力を示す物理量を検出するオフ電源電力検出部と、
 前記オン電源部から出力される直流電力を示す物理量を検出するオン電源電力検出部と、
 前記オフ電源部及び前記オン電源部から出力される直流電力によって駆動され、外部から入力される操作情報に基づいて、前記リレー式スイッチ素子の導通及び非導通を制御すると共に、前記オン電源電力検出部により検出された物理量から前記オン電源部から出力される直流電力を推定し、推定した前記オン電源部から出力される直流電力が前記所定の閾値電力よりも少ないと判断したときに、前記リレー式スイッチ素子を導通状態から非導通状態に切り替えるように制御する制御部とを備えていればよい。
In addition, the two-wire load control device according to the present invention does not need to have all of the configuration of the above embodiment, at least,
Two input terminals respectively connected to an AC power source and a load;
A series circuit of a relay-type switching element and a current transformer connected between the two input terminals;
Off, which is connected in parallel to both ends of the open / close portion of the relay type switch element and outputs DC power when the relay type switch element is in a non-conduction state using an AC current flowing from the AC power source through the load. A power supply,
An on-power supply unit that is connected to the secondary side of the current transformer and outputs DC power when the relay switch element is in a conductive state using an alternating current flowing through the secondary side of the current transformer;
An off power supply power detection unit for detecting a physical quantity indicating a direct current power output from the off power supply unit;
An on-power-supply detection unit that detects a physical quantity indicating DC power output from the on-power supply unit;
Based on operation information input from the outside, which is driven by DC power output from the off-power supply unit and the on-power supply unit, the conduction and non-conduction of the relay type switch element are controlled, and the on-power supply power detection When the DC power output from the on-power supply unit is estimated from the physical quantity detected by the unit and the estimated DC power output from the on-power supply unit is less than the predetermined threshold power, the relay It is only necessary to include a control unit that controls the type switch element to switch from the conductive state to the non-conductive state.
 また、前記リレー式スイッチ素子を駆動するための補助電源部をさらに備え、前記補助電源部は、前記リレー式スイッチ素子を非導通状態から導通状態に切り替え、さらに連続して導通状態から非導通状態に切り替えるだけの所定の電力を充電しうることが好ましい。 In addition, the power supply device further includes an auxiliary power supply unit for driving the relay type switch element, and the auxiliary power supply unit switches the relay type switch element from a non-conductive state to a conductive state, and continuously from the conductive state to the nonconductive state. It is preferable to be able to charge a predetermined amount of electric power for switching to.
 また、前記制御部は、前記リレー式スイッチ素子が非導通状態のときに、前記オフ電源電力検出部により検出された物理量から前記補助電源部の充電状態を推定することが好ましい。 Further, it is preferable that the control unit estimates a charging state of the auxiliary power supply unit from a physical quantity detected by the off power supply power detection unit when the relay type switching element is in a non-conductive state.
 また、前記制御部は、前記リレー式スイッチ素子が非導通状態であり、外部から前記負荷をオンさせる操作情報が入力され、且つ、前記補助電源部に前記所定の電力が充電されていると判断したときは、前記操作情報に応じて、直ちに前記リレー式スイッチ素子を非導通状態から導通状態に切り替えることが好ましい。 In addition, the control unit determines that the relay switch element is in a non-conductive state, operation information for turning on the load is input from the outside, and the predetermined power is charged in the auxiliary power unit. In this case, it is preferable to immediately switch the relay type switch element from the non-conductive state to the conductive state in accordance with the operation information.
 また、前記制御部は、前記リレー式スイッチ素子が非導通状態であり、外部から前記負荷をオンさせる操作情報が入力され、且つ、前記補助電源部に前記所定の電力が充電されていないと判断したときは、前記操作情報を一時的に保留し、前記補助電源部に前記リレー式スイッチ素子を駆動しうるだけの電力が充電されたと判断したときに、前記操作情報に応じて、前記リレー式スイッチ素子を非導通状態から導通状態に切り替えることが好ましい。 Further, the control unit determines that the relay switch element is in a non-conductive state, operation information for turning on the load is input from the outside, and the predetermined power is not charged in the auxiliary power unit. When the operation information is temporarily suspended, when it is determined that the auxiliary power supply unit has been charged with enough power to drive the relay switch element, the relay type is determined according to the operation information. It is preferable to switch the switch element from the non-conductive state to the conductive state.
 または、前記制御部は、前記リレー式スイッチ素子が非導通状態であり、外部から前記負荷をオンさせる操作情報が入力され、且つ、前記補助電源部に前記所定の電力を充電できないと判断したときは、前記操作情報にかかわらず、前記リレー式スイッチ素子を非導通状態のまま維持することが好ましい。 Alternatively, when the control unit determines that the relay switch element is in a non-conductive state, operation information for turning on the load is input from the outside, and the auxiliary power unit cannot be charged with the predetermined power Regardless of the operation information, it is preferable to maintain the relay type switching element in a non-conductive state.
 また、ユーザによって操作され、前記操作情報を入力するための操作部材をさらに備え、
 前記制御部は、前記オン電源部から出力される直流電力が前記所定の閾値電力よりも少ないと判断し、それによって、前記リレー式スイッチ素子を導通状態から非導通状態に切り替えた後、前記操作部材により前記負荷をオンさせる操作情報が入力され、且つ、前記補助電源部に前記所定の電力が充電されていると判断したときは、前記操作情報に応じて、前記リレー式スイッチ素子を非導通状態から導通状態に切り替え、さらに連続して前記リレー式スイッチ素子を導通状態から非導通状態に切り替え、それによって、一時的に前記負荷をオンさせうることが好ましい。
Further, an operation member that is operated by a user and for inputting the operation information is further provided,
The control unit determines that the DC power output from the ON power supply unit is less than the predetermined threshold power, thereby switching the relay switch element from a conductive state to a non-conductive state, and then performing the operation. When the operation information for turning on the load is input by the member and it is determined that the predetermined power is charged in the auxiliary power supply unit, the relay-type switch element is turned off according to the operation information. It is preferable that the state is switched from the state to the conductive state, and the relay-type switch element is continuously switched from the conductive state to the non-conductive state, whereby the load can be temporarily turned on.
 または、この2線式負荷制御装置とは離れた場所に設けられた人体感知センサから無線により送信される人体感知信号を受信する受信部をさらに備え、
 前記制御部は、前記オン電源部から出力される直流電力が前記所定の閾値電力よりも少ないと判断し、それによって、前記リレー式スイッチ素子を導通状態から非導通状態に切り替えた後、前記人体感知センサからの人体感知信号を受信し、且つ、前記補助電源部に前記所定の電力が充電されていると判断したときは、前記人体感知信号に応じて、前記リレー式スイッチ素子を非導通状態から導通状態に切り替え、さらに連続して前記リレー式スイッチ素子を導通状態から非導通状態に切り替え、それによって、一時的に前記負荷をオンさせうることが好ましい。
Alternatively, it further comprises a receiving unit for receiving a human body sensing signal transmitted by radio from a human body sensor provided in a place away from the two-wire load control device,
The control unit determines that the DC power output from the ON power supply unit is less than the predetermined threshold power, thereby switching the relay switch element from a conductive state to a non-conductive state, and then the human body When the human body sensing signal from the sensing sensor is received and it is determined that the predetermined power is charged in the auxiliary power supply unit, the relay switch element is turned off according to the human body sensing signal. It is preferable that the relay-type switching element is continuously switched from the conductive state to the non-conductive state so that the load can be temporarily turned on.
 また、視覚的に又は聴覚的に前記リレー式スイッチ素子を導通状態から非導通状態に切り替えられたことを表示する自動的スイッチオフ表示手段をさらに備え、
 前記制御部は、前記オン電源部から出力される直流電力が所定の閾値電力よりも少ないと判断し、それによって、前記リレー式スイッチ素子を導通状態から非導通状態に切り替えた後、前記自動的スイッチオフ表示手段を駆動して、前記リレー式スイッチ素子が自動的に導通状態から非導通状態に切り替えられたことを通知することが好ましい。
Further, it further comprises automatic switch-off display means for visually or audibly displaying that the relay-type switch element has been switched from the conductive state to the non-conductive state,
The control unit determines that the DC power output from the ON power supply unit is less than a predetermined threshold power, thereby switching the relay switch element from a conductive state to a non-conductive state, and then automatically Preferably, the switch-off display means is driven to notify that the relay type switch element is automatically switched from the conductive state to the non-conductive state.
 または、視覚的に又は聴覚的に前記リレー式スイッチ素子を導通状態から非導通状態に切り替えられたことを表示する自動的スイッチオフ表示手段をさらに備え、
 前記制御部は、前記オン電源部から出力される直流電力が所定の閾値電力よりも少ないと判断し、それによって、前記リレー式スイッチ素子を導通状態から非導通状態に切り替えた後、外部から前記負荷をオンさせるための新たな操作情報が入力されたときに、前記自動的スイッチオフ表示手段を駆動して、ユーザに前記リレー式スイッチ素子が自動的に導通状態から非導通状態に切り替えられたことを通知することが好ましい。
Or further comprising automatic switch-off display means for visually or audibly indicating that the relay-type switch element has been switched from the conductive state to the non-conductive state,
The control unit determines that the DC power output from the ON power supply unit is less than a predetermined threshold power, thereby switching the relay switch element from a conductive state to a non-conductive state, and then externally When new operation information for turning on the load is inputted, the automatic switch-off display means is driven, and the relay switch element is automatically switched from the conductive state to the non-conductive state by the user. It is preferable to notify this.
 また、前記制御部は、前記オン電源部から出力される直流電力が所定の閾値電力よりも少ないと判断し、それによって、前記リレー式スイッチ素子を導通状態から非導通状態に切り替えた後、自動的に、前記リレー式スイッチ素子を非導通状態から導通状態に切り替えると共に、前記リレー式スイッチ素子を導通状態から非導通状態に切り替えた回数をカウントし、そのカウント値が所定回数に達したときに、前記リレー式スイッチ素子を非導通状態から導通状態に切り替える機能を停止し、前記リレー式スイッチ素子を非導通状態に維持することが好ましい。 In addition, the control unit determines that the DC power output from the ON power supply unit is less than a predetermined threshold power, thereby switching the relay switch element from the conductive state to the non-conductive state, and then automatically In addition, the relay type switching element is switched from the non-conducting state to the conducting state, and the number of times the relay type switching element is switched from the conducting state to the non-conducting state is counted. It is preferable to stop the function of switching the relay switch element from the non-conductive state to the conductive state and maintain the relay switch element in the non-conductive state.
 また、前記制御部は、前記操作部材が特定の操作をされたときに、前記リレー式スイッチ素子の非導通状態の維持を解除することが好ましい。 Further, it is preferable that the control unit cancels the maintenance of the non-conducting state of the relay switch element when the operation member is operated in a specific manner.
 または、前記受信部は、ユーザによって操作される無線リモコン装置から送信される信号を受信し、
 前記制御部は、前記受信部が前記無線リモコン信号から送信された特定の操作信号を受信したときに、前記リレー式スイッチ素子の非導通状態の維持を解除することが好ましい。
Alternatively, the receiving unit receives a signal transmitted from a wireless remote control device operated by a user,
It is preferable that the control unit cancels the maintenance of the non-conducting state of the relay switch element when the receiving unit receives a specific operation signal transmitted from the wireless remote control signal.
 また、前記制御部は、前記操作部材が特定の操作をされたときに、前記自動的スイッチオフ表示手段の駆動を停止することが好ましい。 Further, it is preferable that the control unit stops driving the automatic switch-off display means when the operation member is operated in a specific manner.
 または、前記受信部は、ユーザによって操作される無線リモコン装置から送信される信号を受信し、
 前記制御部は、前記受信部が前記無線リモコン信号から送信された特定の操作信号を受信したときに、前記自動的スイッチオフ表示手段の駆動を停止することが好ましい。
Alternatively, the receiving unit receives a signal transmitted from a wireless remote control device operated by a user,
The control unit preferably stops driving the automatic switch-off display means when the receiving unit receives a specific operation signal transmitted from the wireless remote control signal.
 また、前記制御部は、前記オン電源部から出力される直流電力が所定の閾値電力よりも少ないと判断し、且つ、前記オフ電源部によっても前記補助電源部に前記リレー式スイッチ素子を駆動しうるだけの電力を充電し得ない判断したときは、前記リレー式スイッチ素子を非導通状態に維持することが好ましい。 Further, the control unit determines that the DC power output from the ON power supply unit is less than a predetermined threshold power, and drives the relay switch element to the auxiliary power supply unit also by the OFF power supply unit. When it is determined that as much power as possible cannot be charged, it is preferable to maintain the relay type switching element in a non-conductive state.
 また、前記リレー式スイッチ素子と並列に接続された少なくとも1つの双方向半導体スイッチ素子をさらに備えたことが好ましい。 Further, it is preferable to further include at least one bidirectional semiconductor switching element connected in parallel with the relay type switching element.
 また、前記制御部は、前記双方向半導体スイッチ素子を先に非導通状態から導通状態に切り替えた後、前記リレー式スイッチ素子を非導通状態から導通状態に切り替えることが好ましい。 Further, it is preferable that the control unit switches the relay type switch element from the non-conduction state to the conduction state after switching the bidirectional semiconductor switch element from the non-conduction state to the conduction state first.
 また、前記制御部は、前記オン電源電力検出部により検出された物理量から、前記負荷がオンしているときの負荷電流値を推定し、推定された負荷電流値が所定の電流閾値未満のときは、前記双方向半導体スイッチ素子のみを導通させることが好ましい。 In addition, the control unit estimates a load current value when the load is on from the physical quantity detected by the on-power supply power detection unit, and the estimated load current value is less than a predetermined current threshold value It is preferable to conduct only the bidirectional semiconductor switch element.
 本願は日本国特許出願2012-047819に基づいており、その内容は、上記特許出願の明細書及び図面を参照することによって結果的に本願発明に合体されるべきものである。また、本願発明は、添付した図面を参照した実施の形態により十分に記載されているけれども、さまざまな変更や変形が可能であることは、この分野の通常の知識を有するものにとって明らかであろう。それゆえ、そのような変更及び変形は、本願発明の範囲を逸脱するものではなく、本願発明の範囲に含まれると解釈されるべきである。 This application is based on Japanese Patent Application No. 2012-047819, and the contents thereof should be incorporated into the present invention as a result by referring to the specification and drawings of the above patent application. Further, although the present invention has been fully described by the embodiments with reference to the accompanying drawings, it is apparent to those skilled in the art that various changes and modifications are possible. . Therefore, such changes and modifications do not depart from the scope of the present invention and should be construed as being included in the scope of the present invention.
 1 2線式負荷制御装置
 2 交流電源
 3 負荷
 11a,11b 入力端子
 12 リレー式スイッチ素子
 13 電流変成器
 14 オフ電源部
 15 第1整流回路
 16 定電圧回路
 17 オン電源部
 18 第2整流回路
 19 定電圧回路
 20 制御部
 21 第1制御部
 22 第2制御部
 23 CPU動作用の補助電源部(第1補助電源部)
 24 接点開閉用の補助電源部(第2補助電源部)
 30 オフ電源電力検出部
 31 オン電源電力検出部
 32 第1双方向半導体スイッチ素子(トライアック)
 33 第2双方向半導体スイッチ素子(フォトトライアックカプラ)
DESCRIPTION OF SYMBOLS 1 2 wire type load control apparatus 2 AC power supply 3 Load 11a, 11b Input terminal 12 Relay type switch element 13 Current transformer 14 Off power supply part 15 1st rectifier circuit 16 Constant voltage circuit 17 On power supply part 18 2nd rectifier circuit 19 Constant Voltage circuit 20 Control unit 21 First control unit 22 Second control unit 23 Auxiliary power supply unit for CPU operation (first auxiliary power supply unit)
24 Auxiliary power supply for opening and closing contacts (second auxiliary power supply)
30 off power supply power detection unit 31 on power supply power detection unit 32 first bidirectional semiconductor switch element (triac)
33 Second Bidirectional Semiconductor Switch Element (Phototriac Coupler)

Claims (19)

  1.  交流電源及び負荷にそれぞれ接続される2つの入力端子と、
     前記2つの入力端子の間に接続されたリレー式スイッチ素子及び電流変成器の直列回路と、
     前記リレー式スイッチ素子の開閉部の両端に並列に接続され、前記交流電源から前記負荷を介して流れる交流電流を用いて、前記リレー式スイッチ素子が非導通状態のときの直流電力を出力するオフ電源部と、
     前記電流変成器の2次側に接続され、前記電流変成器の2次側に流れる交流電流を用いて、前記リレー式スイッチ素子が導通状態のときの直流電力を出力するオン電源部と、
     前記オフ電源部から出力される直流電力を示す物理量を検出するオフ電源電力検出部と、
     前記オン電源部から出力される直流電力を示す物理量を検出するオン電源電力検出部と、
     前記オフ電源部及び前記オン電源部から出力される直流電力によって駆動され、外部から入力される操作情報に基づいて、前記リレー式スイッチ素子の導通及び非導通を制御すると共に、前記オン電源電力検出部により検出された物理量から前記オン電源部から出力される直流電力を推定し、推定した前記オン電源部から出力される直流電力が前記所定の閾値電力よりも少ないと判断したときに、前記リレー式スイッチ素子を導通状態から非導通状態に切り替えるように制御する制御部とを備えたことを特徴とする2線式負荷制御装置。
    Two input terminals respectively connected to an AC power source and a load;
    A series circuit of a relay-type switching element and a current transformer connected between the two input terminals;
    Off, which is connected in parallel to both ends of the open / close portion of the relay type switch element and outputs DC power when the relay type switch element is in a non-conduction state using an AC current flowing from the AC power source through the load. A power supply,
    An on-power supply unit that is connected to the secondary side of the current transformer and outputs DC power when the relay switch element is in a conductive state using an alternating current flowing through the secondary side of the current transformer;
    An off power supply power detection unit for detecting a physical quantity indicating a direct current power output from the off power supply unit;
    An on-power-supply detection unit that detects a physical quantity indicating DC power output from the on-power supply unit;
    Based on operation information input from the outside, which is driven by DC power output from the off-power supply unit and the on-power supply unit, the conduction and non-conduction of the relay type switch element are controlled, and the on-power supply power detection When the DC power output from the on-power supply unit is estimated from the physical quantity detected by the unit and the estimated DC power output from the on-power supply unit is less than the predetermined threshold power, the relay A two-wire load control device comprising: a control unit configured to control the type switch element to switch from a conductive state to a non-conductive state.
  2.  前記リレー式スイッチ素子を駆動するための補助電源部をさらに備え、前記補助電源部は、前記リレー式スイッチ素子を非導通状態から導通状態に切り替え、さらに連続して導通状態から非導通状態に切り替えるだけの所定の電力を充電しうることを特徴とする請求項1に記載の2線式負荷制御装置。 An auxiliary power supply unit for driving the relay-type switch element is further provided, and the auxiliary power supply unit switches the relay-type switch element from a non-conductive state to a conductive state, and continuously switches from a conductive state to a non-conductive state. The two-wire load control device according to claim 1, wherein only predetermined power can be charged.
  3.  前記制御部は、前記リレー式スイッチ素子が非導通状態のときに、前記オフ電源電力検出部により検出された物理量から前記補助電源部の充電状態を推定することを特徴とする請求項2に記載の2線式負荷制御装置。 The said control part estimates the charge state of the said auxiliary power supply part from the physical quantity detected by the said off power supply electric power detection part, when the said relay type switch element is a non-conduction state. 2-wire load control device.
  4.  前記制御部は、前記リレー式スイッチ素子が非導通状態であり、外部から前記負荷をオンさせる操作情報が入力され、且つ、前記補助電源部に前記所定の電力が充電されていると判断したときは、前記操作情報に応じて、直ちに前記リレー式スイッチ素子を非導通状態から導通状態に切り替えることを特徴とする請求項3に記載の2線式負荷制御装置。 When the control unit determines that the relay switch element is in a non-conductive state, operation information for turning on the load is input from the outside, and the predetermined power is charged in the auxiliary power source unit The two-wire load control device according to claim 3, wherein the relay type switching element is immediately switched from a non-conducting state to a conducting state in accordance with the operation information.
  5.  前記制御部は、前記リレー式スイッチ素子が非導通状態であり、外部から前記負荷をオンさせる操作情報が入力され、且つ、前記補助電源部に前記所定の電力が充電されていないと判断したときは、前記操作情報を一時的に保留し、前記補助電源部に前記リレー式スイッチ素子を駆動しうるだけの電力が充電されたと判断したときに、前記操作情報に応じて、前記リレー式スイッチ素子を非導通状態から導通状態に切り替えることを特徴とする請求項3又は請求項4に記載の2線式負荷制御装置。 When the control unit determines that the relay switch element is in a non-conductive state, operation information for turning on the load is input from the outside, and the predetermined power is not charged in the auxiliary power source unit Temporarily holds the operation information, and when it is determined that the auxiliary power supply unit has been charged with power sufficient to drive the relay switch element, according to the operation information, the relay switch element The two-wire load control device according to claim 3 or 4, wherein the switch is switched from a non-conductive state to a conductive state.
  6.  前記制御部は、前記リレー式スイッチ素子が非導通状態であり、外部から前記負荷をオンさせる操作情報が入力され、且つ、前記補助電源部に前記所定の電力を充電できないと判断したときは、前記操作情報にかかわらず、前記リレー式スイッチ素子を非導通状態のまま維持することを特徴とする請求項3又は請求項4に記載の2線式負荷制御装置。 When the control unit determines that the relay switch element is in a non-conductive state, operation information for turning on the load is input from the outside, and the auxiliary power unit cannot be charged with the predetermined power, 5. The two-wire load control device according to claim 3, wherein the relay-type switch element is maintained in a non-conductive state regardless of the operation information.
  7.  ユーザによって操作され、前記操作情報を入力するための操作部材をさらに備え、
     前記制御部は、前記オン電源部から出力される直流電力が前記所定の閾値電力よりも少ないと判断し、それによって、前記リレー式スイッチ素子を導通状態から非導通状態に切り替えた後、前記操作部材により前記負荷をオンさせる操作情報が入力され、且つ、前記補助電源部に前記所定の電力が充電されていると判断したときは、前記操作情報に応じて、前記リレー式スイッチ素子を非導通状態から導通状態に切り替え、さらに連続して前記リレー式スイッチ素子を導通状態から非導通状態に切り替え、それによって、一時的に前記負荷をオンさせうることを特徴とする請求項3に記載の2線式負荷制御装置。
    An operation member that is operated by a user and for inputting the operation information is further provided.
    The control unit determines that the DC power output from the ON power supply unit is less than the predetermined threshold power, thereby switching the relay switch element from a conductive state to a non-conductive state, and then performing the operation. When the operation information for turning on the load is input by the member and it is determined that the predetermined power is charged in the auxiliary power supply unit, the relay-type switch element is turned off according to the operation information. 4. The switch according to claim 3, wherein the load can be temporarily turned on by switching the relay-type switch element from the conductive state to the non-conductive state continuously. Linear load control device.
  8.  この2線式負荷制御装置とは離れた場所に設けられた人体感知センサから無線により送信される人体感知信号を受信する受信部をさらに備え、
     前記制御部は、前記オン電源部から出力される直流電力が前記所定の閾値電力よりも少ないと判断し、それによって、前記リレー式スイッチ素子を導通状態から非導通状態に切り替えた後、前記人体感知センサからの人体感知信号を受信し、且つ、前記補助電源部に前記所定の電力が充電されていると判断したときは、前記人体感知信号に応じて、前記リレー式スイッチ素子を非導通状態から導通状態に切り替え、さらに連続して前記リレー式スイッチ素子を導通状態から非導通状態に切り替え、それによって、一時的に前記負荷をオンさせうることを特徴とする請求項3に記載の2線式負荷制御装置。
    A receiving unit for receiving a human body sensing signal transmitted by radio from a human body sensor provided at a location apart from the two-wire load control device;
    The control unit determines that the DC power output from the ON power supply unit is less than the predetermined threshold power, thereby switching the relay switch element from a conductive state to a non-conductive state, and then the human body When the human body sensing signal from the sensing sensor is received and it is determined that the predetermined power is charged in the auxiliary power supply unit, the relay switch element is turned off according to the human body sensing signal. 4. The two-wire according to claim 3, wherein the relay-type switching element is continuously switched from a conduction state to a non-conduction state, whereby the load can be temporarily turned on. Type load control device.
  9.  視覚的に又は聴覚的に前記リレー式スイッチ素子を導通状態から非導通状態に切り替えられたことを表示する自動的スイッチオフ表示手段をさらに備え、
     前記制御部は、前記オン電源部から出力される直流電力が所定の閾値電力よりも少ないと判断し、それによって、前記リレー式スイッチ素子を導通状態から非導通状態に切り替えた後、前記自動的スイッチオフ表示手段を駆動して、前記リレー式スイッチ素子が自動的に導通状態から非導通状態に切り替えられたことを通知することを特徴とする請求項1乃至請求項8のいずれか一項に記載の2線式負荷制御装置。
    Further comprising automatic switch-off display means for visually or audibly indicating that the relay-type switch element has been switched from a conductive state to a non-conductive state;
    The control unit determines that the DC power output from the ON power supply unit is less than a predetermined threshold power, thereby switching the relay switch element from a conductive state to a non-conductive state, and then automatically 9. The switch-off display means is driven to notify that the relay type switch element is automatically switched from a conductive state to a non-conductive state. The two-wire load control device described.
  10.  視覚的に又は聴覚的に前記リレー式スイッチ素子を導通状態から非導通状態に切り替えられたことを表示する自動的スイッチオフ表示手段をさらに備え、
     前記制御部は、前記オン電源部から出力される直流電力が所定の閾値電力よりも少ないと判断し、それによって、前記リレー式スイッチ素子を導通状態から非導通状態に切り替えた後、外部から前記負荷をオンさせるための新たな操作情報が入力されたときに、前記自動的スイッチオフ表示手段を駆動して、ユーザに前記リレー式スイッチ素子が自動的に導通状態から非導通状態に切り替えられたことを通知することを特徴とする請求項1乃至請求項8のいずれか一項に記載の2線式負荷制御装置。
    Further comprising automatic switch-off display means for visually or audibly indicating that the relay-type switch element has been switched from a conductive state to a non-conductive state;
    The control unit determines that the DC power output from the ON power supply unit is less than a predetermined threshold power, thereby switching the relay switch element from a conductive state to a non-conductive state, and then externally When new operation information for turning on the load is inputted, the automatic switch-off display means is driven, and the relay switch element is automatically switched from the conductive state to the non-conductive state by the user. The two-wire load control device according to any one of claims 1 to 8, wherein notification is made.
  11.  前記制御部は、前記オン電源部から出力される直流電力が所定の閾値電力よりも少ないと判断し、それによって、前記リレー式スイッチ素子を導通状態から非導通状態に切り替えた後、自動的に、前記リレー式スイッチ素子を非導通状態から導通状態に切り替えると共に、前記リレー式スイッチ素子を導通状態から非導通状態に切り替えた回数をカウントし、そのカウント値が所定回数に達したときに、前記リレー式スイッチ素子を非導通状態から導通状態に切り替える機能を停止し、前記リレー式スイッチ素子を非導通状態に維持することを特徴とする請求項2、請求項3、請求項3に従属する請求項9又は請求項3に従属する請求項10に記載の2線式負荷制御装置。 The control unit determines that the DC power output from the ON power supply unit is less than a predetermined threshold power, and automatically switches the relay switch element from the conductive state to the non-conductive state, and then automatically The relay switch element is switched from a non-conductive state to a conductive state, and the number of times the relay switch element is switched from a conductive state to a non-conductive state is counted, and when the count value reaches a predetermined number, A function dependent on claim 2, claim 3, or claim 3, wherein the function of switching the relay type switch element from the non-conducting state to the conducting state is stopped and the relay type switching element is maintained in the nonconductive state. The two-wire load control device according to claim 10 that is dependent on item 9 or claim 3.
  12.  前記制御部は、前記操作部材が特定の操作をされたときに、前記リレー式スイッチ素子の非導通状態の維持を解除することを特徴とする請求項7に記載の2線式負荷制御装置。 The two-wire load control device according to claim 7, wherein the controller releases the maintenance of the non-conducting state of the relay switch element when the operation member is operated in a specific manner.
  13.  前記受信部は、ユーザによって操作される無線リモコン装置から送信される信号を受信し、
     前記制御部は、前記受信部が前記無線リモコン信号から送信された特定の操作信号を受信したときに、前記リレー式スイッチ素子の非導通状態の維持を解除することを特徴とする請求項8に記載の2線式負荷制御装置。
    The receiving unit receives a signal transmitted from a wireless remote control device operated by a user,
    9. The control unit according to claim 8, wherein when the receiving unit receives a specific operation signal transmitted from the wireless remote control signal, the control unit releases the maintenance of the non-conducting state of the relay switch element. The two-wire load control device described.
  14.  前記制御部は、前記操作部材が特定の操作をされたときに、前記自動的スイッチオフ表示手段の駆動を停止することを特徴とする請求項7に従属する請求項9に記載の2線式負荷制御装置。 The two-wire system according to claim 9, which is dependent on claim 7, wherein the control unit stops driving the automatic switch-off display means when the operation member performs a specific operation. Load control device.
  15.  前記受信部は、ユーザによって操作される無線リモコン装置から送信される信号を受信し、
     前記制御部は、前記受信部が前記無線リモコン信号から送信された特定の操作信号を受信したときに、前記自動的スイッチオフ表示手段の駆動を停止することを特徴とする請求項8に従属する請求項10に記載の2線式負荷制御装置。
    The receiving unit receives a signal transmitted from a wireless remote control device operated by a user,
    9. The control unit according to claim 8, wherein the control unit stops driving the automatic switch-off display means when the receiving unit receives a specific operation signal transmitted from the wireless remote control signal. The two-wire load control device according to claim 10.
  16.  前記制御部は、前記オン電源部から出力される直流電力が所定の閾値電力よりも少ないと判断し、且つ、前記オフ電源部によっても前記補助電源部に前記リレー式スイッチ素子を駆動しうるだけの電力を充電し得ない判断したときは、前記リレー式スイッチ素子を非導通状態に維持することを特徴とする請求項3乃至請求項15のいずれか一項に記載の2線式負荷制御装置。 The control unit can determine that the DC power output from the ON power supply unit is less than a predetermined threshold power, and can only drive the relay switch element to the auxiliary power supply unit by the OFF power supply unit. The two-wire load control device according to any one of claims 3 to 15, wherein the relay-type switch element is maintained in a non-conducting state when it is determined that the power of the power cannot be charged. .
  17.  前記リレー式スイッチ素子と並列に接続された少なくとも1つの双方向半導体スイッチ素子をさらに備えたことを特徴とする請求項1乃至請求項16のいずれか一項に記載の2線式負荷制御装置。 The two-wire load control device according to any one of claims 1 to 16, further comprising at least one bidirectional semiconductor switch element connected in parallel with the relay type switch element.
  18.  前記制御部は、前記双方向半導体スイッチ素子を先に非導通状態から導通状態に切り替えた後、前記リレー式スイッチ素子を非導通状態から導通状態に切り替えることを特徴とする請求項17に記載の2線式負荷制御装置。 The said control part switches the said relay type switch element from a non-conduction state to a conduction | electrical_connection state after switching the said bidirectional | two-way semiconductor switch element from a non-conduction state first to a conduction | electrical_connection state of Claim 17 characterized by the above-mentioned. Two-wire load control device.
  19.  前記制御部は、前記オン電源電力検出部により検出された物理量から、前記負荷がオンしているときの負荷電流値を推定し、推定された負荷電流値が所定の電流閾値未満のときは、前記双方向半導体スイッチ素子のみを導通させることを特徴とする請求項17又は請求項18に記載の2線式負荷制御装置。 The control unit estimates a load current value when the load is on from the physical quantity detected by the on-power supply power detection unit, and when the estimated load current value is less than a predetermined current threshold, The two-wire load control device according to claim 17 or 18, wherein only the bidirectional semiconductor switch element is made conductive.
PCT/JP2013/001288 2012-03-05 2013-03-04 Two-wire load control device WO2013132811A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201380011776.7A CN104145531A (en) 2012-03-05 2013-03-04 Two-wire load control device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-047819 2012-03-05
JP2012047819A JP5903673B2 (en) 2012-03-05 2012-03-05 Two-wire load control device

Publications (1)

Publication Number Publication Date
WO2013132811A1 true WO2013132811A1 (en) 2013-09-12

Family

ID=49116307

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/001288 WO2013132811A1 (en) 2012-03-05 2013-03-04 Two-wire load control device

Country Status (4)

Country Link
JP (1) JP5903673B2 (en)
CN (1) CN104145531A (en)
TW (1) TWI488019B (en)
WO (1) WO2013132811A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021048020A (en) * 2019-09-17 2021-03-25 パナソニックIpマネジメント株式会社 Load control device

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6363432B2 (en) 2013-09-04 2018-07-25 株式会社ユポ・コーポレーション Electrostatic adsorption sheet and display using the same
CN105375488B (en) * 2015-11-26 2017-12-26 黎辉 A kind of tandem AC power supply system
CN105591435A (en) * 2016-01-29 2016-05-18 易事特集团股份有限公司 Charging pile auxiliary power supply system
JP6830204B2 (en) * 2016-12-27 2021-02-17 パナソニックIpマネジメント株式会社 Load control device
WO2020048861A1 (en) * 2018-09-03 2020-03-12 Signify Holding B.V. Activating a light source in dependence on previous power cycle duration
JP7199011B2 (en) * 2018-11-30 2023-01-05 パナソニックIpマネジメント株式会社 load controller
JP7458015B2 (en) * 2019-05-28 2024-03-29 パナソニックIpマネジメント株式会社 Load control device, load control method and program
JPWO2021010007A1 (en) * 2019-07-17 2021-01-21
DE102019212377A1 (en) * 2019-08-14 2021-02-18 Vitesco Technologies GmbH Circuit arrangement for discharging at least one energy store charged to a high voltage

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03222255A (en) * 1990-01-25 1991-10-01 Zeniraito V:Kk Detection of broken bulb filament
JP2000357443A (en) * 1999-06-15 2000-12-26 Matsushita Electric Works Ltd Automatic switch with heat ray sensor
JP2008225574A (en) * 2007-03-08 2008-09-25 Matsushita Electric Works Ltd Two-wire switching device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5473202A (en) * 1992-06-05 1995-12-05 Brian Platner Control unit for occupancy sensor switching of high efficiency lighting
JP3436158B2 (en) * 1998-10-30 2003-08-11 松下電工株式会社 2-wire wiring device
CN101316039B (en) * 2007-05-30 2012-07-25 松下电器产业株式会社 Circuit apparatus
KR101258028B1 (en) * 2008-12-22 2013-04-24 파나소닉 주식회사 Load control device
JP5447969B2 (en) * 2010-03-31 2014-03-19 東芝ライテック株式会社 LED lighting device and LED lighting apparatus
CN202058989U (en) * 2011-03-23 2011-11-30 深圳市阿达电子有限公司 Energy saving socket

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03222255A (en) * 1990-01-25 1991-10-01 Zeniraito V:Kk Detection of broken bulb filament
JP2000357443A (en) * 1999-06-15 2000-12-26 Matsushita Electric Works Ltd Automatic switch with heat ray sensor
JP2008225574A (en) * 2007-03-08 2008-09-25 Matsushita Electric Works Ltd Two-wire switching device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021048020A (en) * 2019-09-17 2021-03-25 パナソニックIpマネジメント株式会社 Load control device
JP7308409B2 (en) 2019-09-17 2023-07-14 パナソニックIpマネジメント株式会社 load controller

Also Published As

Publication number Publication date
TW201346480A (en) 2013-11-16
JP5903673B2 (en) 2016-04-13
TWI488019B (en) 2015-06-11
JP2013182856A (en) 2013-09-12
CN104145531A (en) 2014-11-12

Similar Documents

Publication Publication Date Title
JP5903673B2 (en) Two-wire load control device
JP5679197B2 (en) Fluorescent lamp type LED lighting device
CN110024259B (en) Operating device with test switch and status indicator
KR101794581B1 (en) Emergency lighting apparatus with sensor lighting
US9693434B2 (en) Dimming device and illumination system using same
US10070492B2 (en) Dimming device
KR20080088016A (en) Sensor lamp using led
KR101306021B1 (en) Driving device for led lighting operatable using low voltage battery in case of emergency
JP2017513184A (en) Fluorescent lamp compatible type LED lighting device and electric shock protection device therefor
JP4797886B2 (en) Load control circuit
TWI604753B (en) Switch apparatus and switch system
US20200146124A1 (en) Solid-State Lighting With Multiple Controls And Tests
US10660184B2 (en) Solid-state lighting with multiple time delays
JP5909634B2 (en) Two-wire load control device
CN104467786A (en) Switch
JP5874029B2 (en) Two-wire load control device
JP5853148B2 (en) Two-wire load control device
US20220312560A1 (en) Linear Solid-State Lighting With A Pulse Train Control
US20230389154A1 (en) Linear Solid-State Lighting With Low Emergency Power And Auto-Tests
KR20090001199U (en) Illumination apparatus with Emergency Light function
US20220235907A1 (en) Linear Solid-State Lighting With Bidirectional Circuits
JP2017004653A (en) Lighting control device and luminaire
CN110058540A (en) Switching device
JP2020191657A (en) Electronic switch device and electronic switch system
KR20130136236A (en) Charging & discharging circuit for led emergency lamp with battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13758580

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13758580

Country of ref document: EP

Kind code of ref document: A1