WO2013132655A1 - Method for manufacturing solar cell module, and solar cell module - Google Patents

Method for manufacturing solar cell module, and solar cell module Download PDF

Info

Publication number
WO2013132655A1
WO2013132655A1 PCT/JP2012/056151 JP2012056151W WO2013132655A1 WO 2013132655 A1 WO2013132655 A1 WO 2013132655A1 JP 2012056151 W JP2012056151 W JP 2012056151W WO 2013132655 A1 WO2013132655 A1 WO 2013132655A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
photoelectric conversion
cell module
nozzle
bus bar
Prior art date
Application number
PCT/JP2012/056151
Other languages
French (fr)
Japanese (ja)
Inventor
司 川上
幸弘 吉嶺
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to PCT/JP2012/056151 priority Critical patent/WO2013132655A1/en
Publication of WO2013132655A1 publication Critical patent/WO2013132655A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0512Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module made of a particular material or composition of materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a method for manufacturing a solar cell module and a solar cell module.
  • Patent Document 1 describes that a solar cell and a wiring material are fixed using a resin adhesive.
  • the main object of the present invention is to improve the yield of solar cell modules.
  • a photoelectric conversion unit is prepared.
  • a photoelectric conversion unit is arranged on the stage.
  • a nozzle is disposed above the photoelectric conversion unit. While moving the nozzle in parallel with the stage, when the distance between the nozzle and the photoelectric conversion unit is increased on the photoelectric conversion unit, the discharge amount of the conductive paste from the nozzle is increased.
  • a solar cell is obtained by forming the electrode containing the bus-bar part on the photoelectric conversion part by drying the conductive paste supplied on the photoelectric conversion part.
  • the resin adhesive is cured while applying pressure while a resin adhesive is interposed between the solar cell and the wiring material, thereby bonding the solar cell and the wiring material and electrically connecting the bus bar portion and the wiring material. To do.
  • a solar cell module includes a photoelectric conversion unit, a solar cell having an electrode including a bus bar unit disposed on the photoelectric conversion unit, a wiring material electrically connected to the bus bar unit, and a wiring material. And a resin adhesive layer adhering the solar cell.
  • the bus bar portion is disposed at a position where the maximum thickness in the width direction of the bus bar portion is relatively large and a position different from the thickness portion in the extending direction of the bus bar portion, and the maximum thickness in the width direction of the electrode portion is relatively Including small thin parts.
  • the bus bar portion is provided so that the difference between the thickness of the region where the thick portion of the solar cell is provided and the thickness of the region where the thin portion is provided is smaller than the difference between the thickness of the thick portion and the thickness of the thin portion. It has been.
  • the yield of solar cell modules can be improved.
  • FIG. 1 is a schematic cross-sectional view of a photoelectric conversion unit according to an embodiment of the present invention.
  • FIG. 2 is a schematic side view of a solar cell in a reference example.
  • FIG. 3 is a schematic side view for explaining an electrode forming step in one embodiment of the present invention.
  • FIG. 4 is a graph showing the relationship between the distance between the photoelectric conversion unit and the nozzle and the ejection amount from the nozzle.
  • FIG. 5 is a schematic side view for explaining an electrode forming step in one embodiment of the present invention.
  • FIG. 6 is a schematic side view of a solar cell in one embodiment of the present invention.
  • FIG. 7 is a schematic cross-sectional view taken along line XII-XII in FIG. FIG.
  • FIG. 8 is a schematic side view for explaining a wiring material connecting step in one embodiment of the present invention.
  • FIG. 9 is a schematic side view of a solar cell in one embodiment of the present invention.
  • FIG. 10 is a schematic plan view of the first main surface of the solar cell in one embodiment of the present invention.
  • FIG. 11 is a schematic plan view of the second main surface of the solar cell in one embodiment of the present invention.
  • FIG. 12 is a schematic cross-sectional view of a solar cell module according to an embodiment of the present invention.
  • a photoelectric conversion unit 10 is prepared as shown in FIG.
  • the photoelectric conversion unit 10 includes a first main surface 10a and a second main surface 10b.
  • the photoelectric conversion unit 10 may generate carriers only when light is received on one of the first and second main surfaces 10a and 10b, or on any of the first and second main surfaces 10a and 10b.
  • a carrier may be generated even when light is received.
  • the 1st main surface 10a comprises the light-receiving surface
  • the 2nd main surface 10b comprises the back surface.
  • the light receiving surface is a main surface that mainly receives light.
  • the photoelectric conversion unit 10 includes a substrate 10c made of a semiconductor material.
  • the substrate 10c includes one conductivity type (for example, n-type) crystalline silicon.
  • the substrate 10c can be manufactured, for example, by slicing an ingot made of a semiconductor material with a wire saw.
  • a texture structure may be provided on at least one surface of the substrate 10c.
  • the “texture structure” refers to a concavo-convex structure formed to suppress surface reflection and increase the amount of light absorption of the photoelectric conversion unit.
  • Specific examples of the texture structure include a pyramidal (quadrangular pyramid or quadrangular frustum-shaped) uneven structure obtained by performing anisotropic etching on the surface of a single crystal silicon substrate having a (100) plane. ing.
  • Semiconductor layers 10d and 10e are formed on the main surface of the substrate 10c.
  • the conductor layers 10d and 10e are formed by, for example, a CVD (Chemical Vapor Deposition) method or the like.
  • a first semiconductor layer 10d including another conductivity type (for example, p-type) is disposed on one main surface of the substrate 10c.
  • a semiconductor layer 10e including one conductivity type (for example, n-type) is disposed on the other main surface of the substrate 10c.
  • the semiconductor layers 10d and 10e can be made of amorphous silicon, for example. At least one of the first and second main surfaces 10a and 10b configured by the surfaces of the semiconductor layers 10d and 10e may be provided with an uneven structure derived from the texture structure provided on the surface of the substrate 10c.
  • a substantially intrinsic i-type semiconductor layer with a thickness that does not substantially contribute to power generation may be disposed between the first semiconductor layer 10d and the substrate 10c.
  • a substantially intrinsic i-type semiconductor layer having a thickness that does not substantially contribute to power generation may be disposed between the first semiconductor layer 10e and the substrate 10c.
  • the photoelectric conversion unit includes a substrate made of a semiconductor material and a semiconductor layer formed on the substrate.
  • the photoelectric conversion unit includes, for example, a p-type dopant diffusion region and an n-type. You may be comprised with the board
  • the photoelectric conversion unit 110 includes uneven thickness.
  • the photoelectric conversion unit 110 includes a relatively thick portion and a relatively thin portion.
  • the thickness of the photoelectric conversion unit 110 may be monotonously decreasing along the x-axis direction or may be monotonically increasing.
  • the photoelectric conversion unit has a substrate made of a semiconductor material obtained by slicing an ingot made of a semiconductor material using a wire saw, the vibration of the wire saw or the traveling direction of the wire saw
  • the thickness of the photoelectric conversion portion is likely to be uneven due to the displacement of the ingot during cutting.
  • the thickness of the electrodes 111 and 112 formed by a printing method such as a screen printing method or a plating method is substantially constant.
  • the solar cell 113 has uneven thickness due to uneven thickness of the photoelectric conversion unit 110. Therefore, when such a solar cell 113 and a wiring material are pressed by a crimping tool with a resin adhesive interposed, stress concentrates on a relatively thick portion of the solar cell 113. As a result, the photoelectric conversion unit 110 is easily damaged.
  • the thickness of the photoelectric conversion part is one of the reasons why the solar cell is damaged in the step of connecting the wiring members described above. Therefore, the electrode formation process explained in full detail below was discovered.
  • the second main surface 10b is arranged on the stage 23 so as to face the stage 23.
  • the conductive paste is supplied from the nozzle 22 onto the first main surface 10 a of the photoelectric conversion unit 10 while moving the nozzle 22 disposed above the photoelectric conversion unit 10 in parallel with the stage 23.
  • the conductive paste layer 21 is formed on the first main surface 10a.
  • the bus-bar part 11b of the 1st electrode 11 is formed by drying the electrically conductive paste layer 21.
  • the distance between the nozzle 22 and the stage 23 is set to the nozzle when the distance between the nozzle 22 and the photoelectric conversion unit 10 is increased.
  • the discharge amount of the conductive paste from the nozzle 22 is increased, and the discharge amount of the conductive paste from the nozzle 22 is decreased when the distance between the nozzle 22 and the photoelectric conversion unit 10 is shortened. For this reason, the conductive paste is applied relatively thinly on the thick portion 10A, and the conductive paste is applied relatively thickly on the thin portion 10B.
  • the distance between the nozzle 22 and the photoelectric conversion unit 10 is close to a certain level or more. It has been found by the present inventors for the first time that the discharge amount of the conductive paste from the nozzle 22 increases as the distance between the photoelectric conversion unit 10 and the nozzle 22 increases. The present inventors use this phenomenon to change the distance between the photoelectric conversion unit 10 and the nozzle 22 and the conductive paste from the nozzle 22 when the distance between the photoelectric conversion unit 10 and the nozzle 22 changes.
  • the thickness unevenness of the solar cell 13 can be made smaller than the thickness unevenness of the photoelectric conversion unit 10 by moving the nozzle 22 in parallel with the stage 23 within a range in which the discharge amount of the liquid crystal changes.
  • the inventors have arrived at a method for manufacturing the solar cell module 1 of the present embodiment.
  • the distance between the photoelectric conversion unit 10 and the nozzle 22 is 0. 0.8 mm or less, more preferably 0.6 mm or less, further preferably 0.5 mm or less, and still more preferably 0.4 mm or less.
  • the distance between the photoelectric conversion unit 10 and the nozzle 22 becomes too short, the discharge amount from the nozzle 22 may become too small.
  • the distance between the photoelectric conversion part 10 and the nozzle 22 is 0.1 mm or more, and it is more preferable that it is 0.2 mm or more.
  • the data indicated by diamonds is data when the scanning speed of the nozzle 22 is 125 mm / second.
  • the data indicated by the square is data when the scanning speed of the nozzle 22 is 100 mm / second.
  • Data indicated by triangles is data when the scanning speed of the nozzle 22 is 150 mm / second.
  • the step of supplying the conductive paste is supplied so that at least a part of the undried conductive paste layer 21 applied on the photoelectric conversion unit 10 is located above the lower end 22a of the nozzle 22 (on the z1 side).
  • the formed raised portion 21a disappears due to the flow of the conductive paste before the conductive paste layer 21 is dried.
  • the nozzle 22 and the stage 23 Is preferably such that the conductive paste is supplied also to the upstream side (x1 side) of the nozzle 22 in the scanning direction from the center line C of the nozzle 22, rather than the front end 22 b of the nozzle 22. More preferably, the distance is such that the conductive paste is supplied to the upstream side (x1 side) of the nozzle 22 in the scanning direction.
  • the solar cells 13 are obtained by forming the electrodes 11 and 12 on the photoelectric conversion unit 10 (electrode formation step).
  • the difference between the thickness of the region where the thick portion 10A of the solar cell 13 is provided and the thickness of the region where the thin portion 10B is provided is based on the difference between the thickness of the thick portion 10A and the thickness of the thin portion 10B. Is also provided to be smaller. Therefore, the thickness unevenness of the portion where the bus bar portion 11b of the solar cell 13 is located is smaller than the thickness unevenness of the portion of the photoelectric conversion portion 10 where the bus bar portion 11b is formed.
  • the step of electrically connecting the wiring member 14 to be described later to the solar cell 13 it is possible to suppress a large stress from being locally applied to the solar cell 13, so that the solar cell 13 can be prevented from being damaged. Therefore, the yield of the solar cell module 1 can be improved.
  • the nozzle 22 is linearly aligned along the x-axis direction. Move to. However, it is not always necessary to move the nozzle 22 linearly. For example, when it is desired to form the bus bar portion 11b in a zigzag shape along the x-axis direction, the nozzle 22 may be moved zigzag along the x-axis direction.
  • the photoelectric conversion unit 10 of this embodiment also includes uneven thickness. Therefore, the portion where the bus bar portion 11b of the photoelectric conversion portion 10 is disposed is the thick portion 10A having a relatively large maximum thickness in the y-axis direction, which is the width direction of the bus bar portion 11b, and the extending direction of the bus bar portion 11b. It is arranged at a position different from the thick portion 10A in the axial direction, and includes a thin portion 10B having a relatively small maximum thickness in the y-axis direction.
  • the surface of the contact portion of the bus bar portion 11 b with the photoelectric conversion portion 10 is inclined with respect to the main surface 10 a of the photoelectric conversion portion 10. Yes.
  • the cross-sectional area of the bus bar portion 11b is reduced and the adhesion area between the photoelectric conversion portion 10 and the bus bar portion 11b is increased.
  • the adhesive force between the photoelectric conversion part 10 and the bus bar part 11b can be improved.
  • the bus bar portion 12b of the second electrode 12 is preferably formed by the same method as the method for forming the bus bar portion 11b described above. By doing so, the thickness unevenness of the solar cell 13 can be made smaller.
  • the thickness of the region where the thick portion 10A of the solar cell 13 is provided and the thin portion 10B are provided.
  • the bus bar portion 11b is preferably provided so that the difference between the thickness of the region and the thickness of the thick portion 10A and the thickness of the thin portion 10B is 0.4 times or less, and 0.2 times or less. It is more preferable to provide the bus bar portion 11b.
  • the resin adhesive 16 is cured while being pressed with the crimping tool 15 in a state where the resin adhesive 16 is interposed between the solar cell 13 and the wiring member 14.
  • the solar cell 13 and the wiring member 14 are bonded, and the bus bar portions 11b and 12b, which are elongated electrode portions, and the wiring member 14 are electrically connected.
  • one wiring member 14 is arranged on the first main surface 10a so as to overlap at least a part of the bus bar portion 11b in the z-axis direction with the resin adhesive 16 interposed.
  • Another wiring member 14 is arranged on the second main surface 10b so as to overlap at least a part of the bus bar portion 12b in the z-axis direction with the resin adhesive 16 interposed.
  • the resin adhesive 16 is cured while pressing the laminated body of the solar cell 13, the wiring material 14 and the resin adhesive 16 using the crimping tool 15.
  • the resin adhesive 16 is composed of a thermosetting resin adhesive
  • the laminate of the solar cell 13, the wiring material 14, and the resin adhesive 16 is heated while being pressed using the crimping tool 15.
  • the resin adhesive 16 is cured.
  • the solar cell 13 and the wiring material 14 are adhered by the resin adhesive layer 17 made of a cured product of the resin adhesive 16, and the wiring material 14 and the bus bar portions 11b and 12b are electrically connected.
  • a solar cell string is produced.
  • a laminate is obtained by laminating a resin sheet, a solar cell string, a resin sheet, and a second protective member in this order on the first protective member.
  • the solar cell module 1 is completed by laminating the obtained laminate in a reduced-pressure atmosphere.
  • the solar cell 13 is formed by supplying a conductive paste on the first main surface 10 a of the photoelectric conversion unit 10 and drying it. Is included.
  • the first electrode 11 includes a plurality of finger portions 11a and at least one bus bar portion 11b.
  • the plurality of finger portions 11a are arranged at intervals from each other along the x-axis direction. Each of the plurality of finger portions 11a extends along the y-axis direction intersecting (typically perpendicularly intersecting) the x-axis direction. The plurality of finger portions 11a are electrically connected to the bus bar portion 11b.
  • the bus bar portion 11b includes an elongated shape extending along the x-axis direction.
  • the bus-bar part 11b is provided in linear form, you may be provided in the zigzag shape extended along an x-axis direction.
  • the solar cell 13 includes a second electrode 12 formed on the second main surface 10b of the photoelectric conversion unit 10.
  • the second electrode 12 includes a plurality of finger portions 12a and at least one bus bar portion 12b.
  • the plurality of finger portions 12a are arranged at intervals from each other along the x-axis direction. Each of the plurality of finger portions 12a extends along the y-axis direction intersecting with the x-axis direction (typically perpendicularly intersecting). The plurality of finger portions 12a are electrically connected to the bus bar portion 12b.
  • the bus bar portion 12b includes an elongated shape extending along the x-axis direction.
  • the bus bar portion 12b is provided in a linear shape, but may be provided in a zigzag shape extending along the x-axis direction.
  • the second electrode 12 located on the back surface side is preferably provided in a larger area than the first electrode 11 located on the light receiving surface side. Specifically, the second electrode 12 preferably has a greater number of finger portions than the first electrode 11.
  • the solar cell module 1 includes a solar cell string 24 sealed with a filler layer 18 between a first protective member 19 and a second protective member 20.
  • the first protective member 19 can be made of, for example, a glass plate.
  • the second protective member 20 can be configured by, for example, a resin sheet or a resin sheet including a metal layer.
  • the filler layer 18 can be made of, for example, an ethylene / vinyl acetate copolymer (EVA), a polyolefin such as polyethylene or polypropylene, or the like.
  • the solar cell string 24 includes a plurality of solar cells 13 arranged in the filler layer 18.
  • the plurality of solar cells 13 are electrically connected by the wiring material 14.
  • the bus bar portion 11 b of the first electrode 11 of one solar cell 13 and the bus bar portion 12 b of the second electrode 12 of another solar cell 13 are electrically connected by a wiring member 14.
  • the wiring member 14 and the solar cell 13 are bonded by a resin adhesive layer 17.
  • the solar cell module 1 may further include a frame disposed outside the first and second protection members 19 and 20.
  • a terminal box in which terminals to which a plurality of solar cells 13 are electrically connected may be provided on the second protective member 20.
  • the solar cell may be a back junction type solar cell in which both the first and second electrodes are provided on one main surface side.
  • the elongated electrode part may be divided into a plurality along the extending direction of the electrode part.

Abstract

To improve the yield of a solar cell module. A photoelectric conversion part (10) is prepared. The photoelectric conversion part (10) is arranged on a stage (23). A nozzle (22) is arranged above the photoelectric conversion part (10). A conductive paste is supplied onto the photoelectric conversion part (10) through the nozzle (22), while moving the nozzle (22) parallel to the stage (23), so that the ejection amount of the conductive paste is increased when the distance between the nozzle (22) and the photoelectric conversion part (10) is large. A solar cell (13) is obtained by forming an electrode (11) that contains a bus bar part (11b) on the photoelectric conversion part (10) by drying the conductive paste that has been supplied on the photoelectric conversion part (10). The solar cell (13) and a wiring material (14) are bonded with each other and the bus bar part (11b) and the wiring material (14) are electrically connected with each other by curing a resin adhesive (16), while pressurizing the solar cell (13) and the wiring material (14) with the resin adhesive (16) interposed therebetween.

Description

太陽電池モジュールの製造方法及び太陽電池モジュールSolar cell module manufacturing method and solar cell module
 本発明は、太陽電池モジュールの製造方法及び太陽電池モジュールに関する。 The present invention relates to a method for manufacturing a solar cell module and a solar cell module.
 特許文献1には、太陽電池と配線材とを樹脂接着剤を用いて固定することが記載されている。 Patent Document 1 describes that a solar cell and a wiring material are fixed using a resin adhesive.
WO2009/011209 A1号公報WO2009 / 011209 A1 Publication
 樹脂接着剤を用いて太陽電池と配線材とを固定する場合、太陽電池と配線材との間に樹脂接着剤を介在させた状態で、圧着ツールによって加圧しながら樹脂接着剤を硬化させる接着工程が行われる。太陽電池モジュールの歩留まりを改善するためには、接着工程において太陽電池が破損しないようにすることが重要である。 When fixing a solar cell and a wiring material using a resin adhesive, an adhesive process in which the resin adhesive is cured while being pressed by a crimping tool with the resin adhesive interposed between the solar cell and the wiring material. Is done. In order to improve the yield of the solar cell module, it is important to prevent the solar cell from being damaged in the bonding process.
 本発明は、太陽電池モジュールの歩留まりを改善することを主な目的とする。 The main object of the present invention is to improve the yield of solar cell modules.
 本発明に係る太陽電池モジュールの製造方法では、光電変換部を用意する。ステージ上に光電変換部を配置する。光電変換部の上方にノズルを配する。ノズルをステージと平行に移動させながら、光電変換部上でノズルと光電変換部との間の距離が長くなったときにノズルからの導電性ペーストの吐出量が増大するように供給する。光電変換部上に供給された導電性ペーストを乾燥することにより光電変換部上にバスバー部を含んだ電極を形成することにより太陽電池を得る。太陽電池と配線材との間に樹脂接着剤を介在させた状態で加圧しながら樹脂接着剤を硬化させることにより太陽電池と配線材とを接着すると共にバスバー部と配線材とを電気的に接続する。 In the method for manufacturing a solar cell module according to the present invention, a photoelectric conversion unit is prepared. A photoelectric conversion unit is arranged on the stage. A nozzle is disposed above the photoelectric conversion unit. While moving the nozzle in parallel with the stage, when the distance between the nozzle and the photoelectric conversion unit is increased on the photoelectric conversion unit, the discharge amount of the conductive paste from the nozzle is increased. A solar cell is obtained by forming the electrode containing the bus-bar part on the photoelectric conversion part by drying the conductive paste supplied on the photoelectric conversion part. The resin adhesive is cured while applying pressure while a resin adhesive is interposed between the solar cell and the wiring material, thereby bonding the solar cell and the wiring material and electrically connecting the bus bar portion and the wiring material. To do.
 本発明に係る太陽電池モジュールは、光電変換部と、光電変換部上に配されたバスバー部を含む電極とを有する太陽電池と、バスバー部と電気的に接続された配線材と、配線材と太陽電池とを接着している樹脂接着層とを備える。バスバー部は、バスバー部の幅方向における最大厚みが相対的に大きな厚部と、バスバー部の延びる方向において厚部とは異なる位置に配されており、電極部の幅方向における最大厚みが相対的に小さな薄部とを含む。バスバー部は、太陽電池の厚部が設けられた領域の厚みと薄部が設けられた領域の厚みとの差が、厚部の厚みと薄部の厚みとの差よりも小さくなるように設けられている。 A solar cell module according to the present invention includes a photoelectric conversion unit, a solar cell having an electrode including a bus bar unit disposed on the photoelectric conversion unit, a wiring material electrically connected to the bus bar unit, and a wiring material. And a resin adhesive layer adhering the solar cell. The bus bar portion is disposed at a position where the maximum thickness in the width direction of the bus bar portion is relatively large and a position different from the thickness portion in the extending direction of the bus bar portion, and the maximum thickness in the width direction of the electrode portion is relatively Including small thin parts. The bus bar portion is provided so that the difference between the thickness of the region where the thick portion of the solar cell is provided and the thickness of the region where the thin portion is provided is smaller than the difference between the thickness of the thick portion and the thickness of the thin portion. It has been.
 本発明によれば、太陽電池モジュールの歩留まりを改善することができる。 According to the present invention, the yield of solar cell modules can be improved.
図1は、本発明の一実施形態における光電変換部の略図的断面図である。FIG. 1 is a schematic cross-sectional view of a photoelectric conversion unit according to an embodiment of the present invention. 図2は、参考例における太陽電池の模式的側面図である。FIG. 2 is a schematic side view of a solar cell in a reference example. 図3は、本発明の一実施形態における電極形成工程を説明するための略図的側面図である。FIG. 3 is a schematic side view for explaining an electrode forming step in one embodiment of the present invention. 図4は、光電変換部とノズルとの間の距離と、ノズルからの吐出量との関係を表すグラフである。FIG. 4 is a graph showing the relationship between the distance between the photoelectric conversion unit and the nozzle and the ejection amount from the nozzle. 図5は、本発明の一実施形態における電極形成工程を説明するための略図的側面図である。FIG. 5 is a schematic side view for explaining an electrode forming step in one embodiment of the present invention. 図6は、本発明の一実施形態における太陽電池の模式的側面図である。FIG. 6 is a schematic side view of a solar cell in one embodiment of the present invention. 図7は、図6の線XII-XIIにおける模式的断面図である。FIG. 7 is a schematic cross-sectional view taken along line XII-XII in FIG. 図8は、本発明の一実施形態における配線材の接続工程を説明するための略図的側面図である。FIG. 8 is a schematic side view for explaining a wiring material connecting step in one embodiment of the present invention. 図9は、本発明の一実施形態における太陽電池の略図的側面図である。FIG. 9 is a schematic side view of a solar cell in one embodiment of the present invention. 図10は、本発明の一実施形態における太陽電池の第1の主面の略図的平面図である。FIG. 10 is a schematic plan view of the first main surface of the solar cell in one embodiment of the present invention. 図11は、本発明の一実施形態における太陽電池の第2の主面の略図的平面図である。FIG. 11 is a schematic plan view of the second main surface of the solar cell in one embodiment of the present invention. 図12は、本発明の一実施形態における太陽電池モジュールの略図的断面図である。FIG. 12 is a schematic cross-sectional view of a solar cell module according to an embodiment of the present invention.
 以下、本発明を実施した好ましい形態の一例について説明する。但し、下記の実施形態は、単なる例示である。本発明は、下記の実施形態に何ら限定されない。 Hereinafter, an example of a preferable embodiment in which the present invention is implemented will be described. However, the following embodiment is merely an example. The present invention is not limited to the following embodiments.
 実施形態等において参照する各図面において、実質的に同一の機能を有する部材は同一の符号で参照することとする。実施形態等において参照する図面は、模式的に記載されたものであり、図面に描画された物体の寸法の比率などは、現実の物体の寸法の比率などとは異なる場合がある。図面相互間においても、物体の寸法比率等が異なる場合がある。具体的な物体の寸法比率等は、以下の説明を参酌して判断されるべきである。 In each drawing referred to in the embodiment or the like, members having substantially the same function are referred to by the same reference numerals. The drawings referred to in the embodiments and the like are schematically described, and the ratio of dimensions of objects drawn in the drawings may be different from the ratio of dimensions of actual objects. The dimensional ratio of the object may be different between the drawings. The specific dimensional ratio of the object should be determined in consideration of the following description.
 本実施形態では、太陽電池モジュール1の製造方法の一例について説明する。 In the present embodiment, an example of a method for manufacturing the solar cell module 1 will be described.
 図1に示すように光電変換部10を用意する。光電変換部10は、第1の主面10aと第2の主面10bとを含んでいる。光電変換部10は、第1及び第2の主面10a、10bの一方において受光したときのみキャリアを発生させるものであってもよいし、第1及び第2の主面10a、10bのいずれにおいて受光したときにもキャリアを発生させるものであってもよい。本実施形態では、第1の主面10aが受光面を構成しており、第2の主面10bが裏面を構成している。受光面とは、主として受光する主面のことである。 A photoelectric conversion unit 10 is prepared as shown in FIG. The photoelectric conversion unit 10 includes a first main surface 10a and a second main surface 10b. The photoelectric conversion unit 10 may generate carriers only when light is received on one of the first and second main surfaces 10a and 10b, or on any of the first and second main surfaces 10a and 10b. A carrier may be generated even when light is received. In this embodiment, the 1st main surface 10a comprises the light-receiving surface, and the 2nd main surface 10b comprises the back surface. The light receiving surface is a main surface that mainly receives light.
 光電変換部10は、半導体材料からなる基板10cを含む。例えば、基板10cは、一の導電型(例えば、n型)の結晶シリコンを含んでいる。 The photoelectric conversion unit 10 includes a substrate 10c made of a semiconductor material. For example, the substrate 10c includes one conductivity type (for example, n-type) crystalline silicon.
 基板10cは、例えば、半導体材料からなるインゴットを、ワイヤーソーでスライスすることにより作製することができる。 The substrate 10c can be manufactured, for example, by slicing an ingot made of a semiconductor material with a wire saw.
 基板10cの少なくとも一方の表面には、テクスチャ構造が設けられていてもよい。「テクスチャ構造」とは、表面反射を抑制し、光電変換部の光吸収量を増大させるために形成されている凹凸構造のことをいう。テクスチャ構造の具体例としては、(100)面を有する単結晶シリコン基板の表面に異方性エッチングを施すことによって得られるピラミッド状(四角錐状や、四角錐台状)の凹凸構造が含まれている。 A texture structure may be provided on at least one surface of the substrate 10c. The “texture structure” refers to a concavo-convex structure formed to suppress surface reflection and increase the amount of light absorption of the photoelectric conversion unit. Specific examples of the texture structure include a pyramidal (quadrangular pyramid or quadrangular frustum-shaped) uneven structure obtained by performing anisotropic etching on the surface of a single crystal silicon substrate having a (100) plane. ing.
 基板10cの主面の上には、半導体層10d、10eが形成されている。導体層10d、10eは、例えば、CVD(ChemicalVapor Deposition)法等により形成される。 Semiconductor layers 10d and 10e are formed on the main surface of the substrate 10c. The conductor layers 10d and 10e are formed by, for example, a CVD (Chemical Vapor Deposition) method or the like.
 基板10cの一主面の上には、他の導電型(例えば、p型)を含む第1の半導体層10dが配されている。 A first semiconductor layer 10d including another conductivity type (for example, p-type) is disposed on one main surface of the substrate 10c.
 基板10cの他主面の上には、一の導電型(例えば、n型)を含む半導体層10eが配されている。 A semiconductor layer 10e including one conductivity type (for example, n-type) is disposed on the other main surface of the substrate 10c.
 半導体層10d、10eは、例えばアモルファスシリコンにより構成することができる。半導体層10d、10eの表面により構成された第1及び第2の主面10a、10bの少なくとも一方は、基板10cの表面に設けられたテクスチャ構造由来の凹凸構造が設けられていてもよい。 The semiconductor layers 10d and 10e can be made of amorphous silicon, for example. At least one of the first and second main surfaces 10a and 10b configured by the surfaces of the semiconductor layers 10d and 10e may be provided with an uneven structure derived from the texture structure provided on the surface of the substrate 10c.
 第1の半導体層10dと基板10cとの間に、実質的に発電に寄与しない厚みの実質的に真性なi型半導体層が配されていてもよい。また、第1の半導体層10eと基板10cとの間に、実質的に発電に寄与しない厚みの実質的に真性なi型半導体層が配されていてもよい。 A substantially intrinsic i-type semiconductor layer with a thickness that does not substantially contribute to power generation may be disposed between the first semiconductor layer 10d and the substrate 10c. In addition, a substantially intrinsic i-type semiconductor layer having a thickness that does not substantially contribute to power generation may be disposed between the first semiconductor layer 10e and the substrate 10c.
 本実施形態では、光電変換部が半導体材料からなる基板と、基板上に形成された半導体層により構成されている例について説明するが、光電変換部は、例えば、p型ドーパント拡散領域とn型ドーパント拡散領域とが設けられた、半導体材料からなる基板により構成されていてもよい。 In the present embodiment, an example in which the photoelectric conversion unit includes a substrate made of a semiconductor material and a semiconductor layer formed on the substrate will be described. The photoelectric conversion unit includes, for example, a p-type dopant diffusion region and an n-type. You may be comprised with the board | substrate which consists of semiconductor materials provided with the dopant diffusion area | region.
 図2に示すように、一般的に光電変換部110は、厚みむらを含んでいる。光電変換部110は、相対的に厚い部分と相対的に薄い部分とを含んでいる。例えば、光電変換部110の厚みが、x軸方向に沿って一旦小さくなった後に厚くなっている場合もある。光電変換部110の厚みが、x軸方向に沿って単調減少している場合や、単調増加している場合もある。特に、本実施形態のように、光電変換部が半導体材料からなるインゴットをワイヤーソーを用いてスライスすることにより得た半導体材料からなる基板を有する場合は、ワイヤーソーの振動やワイヤーソーの進行方向がインゴットの切断時においてずれることに起因して、光電変換部に厚みむらが生じやすい。 As shown in FIG. 2, generally, the photoelectric conversion unit 110 includes uneven thickness. The photoelectric conversion unit 110 includes a relatively thick portion and a relatively thin portion. For example, there is a case where the thickness of the photoelectric conversion unit 110 is increased after it has once decreased along the x-axis direction. The thickness of the photoelectric conversion unit 110 may be monotonously decreasing along the x-axis direction or may be monotonically increasing. In particular, as in this embodiment, when the photoelectric conversion unit has a substrate made of a semiconductor material obtained by slicing an ingot made of a semiconductor material using a wire saw, the vibration of the wire saw or the traveling direction of the wire saw However, the thickness of the photoelectric conversion portion is likely to be uneven due to the displacement of the ingot during cutting.
 また、スクリーン印刷法などの印刷法やめっき法により形成された電極111,112の厚みは略一定である。このため、太陽電池113には、光電変換部110の厚みむらに起因する厚みむらがある。よって、このような太陽電池113と配線材とを樹脂接着剤を介在させた状態で圧着ツールにより加圧すると、太陽電池113の相対的に厚い部分に応力が集中する。その結果、光電変換部110が損傷しやすくなる。 Further, the thickness of the electrodes 111 and 112 formed by a printing method such as a screen printing method or a plating method is substantially constant. For this reason, the solar cell 113 has uneven thickness due to uneven thickness of the photoelectric conversion unit 110. Therefore, when such a solar cell 113 and a wiring material are pressed by a crimping tool with a resin adhesive interposed, stress concentrates on a relatively thick portion of the solar cell 113. As a result, the photoelectric conversion unit 110 is easily damaged.
 本発明者らは、鋭意研究の結果、上述した配線材を接続する工程において太陽電池が損傷する一因が光電変換部の厚みむらにあることを見出した。そのため、下記で詳述する電極形成工程を見出した。 As a result of diligent research, the present inventors have found that the thickness of the photoelectric conversion part is one of the reasons why the solar cell is damaged in the step of connecting the wiring members described above. Therefore, the electrode formation process explained in full detail below was discovered.
 図3に示されるように、電極形成工程において、ステージ23上に第2の主面10bがステージ23に面するように配する。その状態で、光電変換部10の上方に配したノズル22をステージ23と平行に移動させながらノズル22から導電性ペーストを光電変換部10の第1の主面10a上に供給する。これにより、第1の主面10a上に導電性ペースト層21を形成する。そして、導電性ペースト層21を乾燥させることにより、第1の電極11のバスバー部11bを形成する。 3, in the electrode forming step, the second main surface 10b is arranged on the stage 23 so as to face the stage 23. In this state, the conductive paste is supplied from the nozzle 22 onto the first main surface 10 a of the photoelectric conversion unit 10 while moving the nozzle 22 disposed above the photoelectric conversion unit 10 in parallel with the stage 23. Thereby, the conductive paste layer 21 is formed on the first main surface 10a. And the bus-bar part 11b of the 1st electrode 11 is formed by drying the electrically conductive paste layer 21. FIG.
 導電性ペースト層21を形成するための導電性ペーストを供給する工程において、ノズル22とステージ23との間の距離を、ノズル22と光電変換部10との間の距離が長くなったときにノズル22からの導電性ペーストの吐出量が増大し、ノズル22と光電変換部10との間の距離が短くなったときにノズル22からの導電性ペーストの吐出量が減少するような距離とする。このため、厚部10Aの上には導電性ペーストが相対的に薄く塗布され、薄部10Bの上には導電性ペーストが相対的に厚く塗布される。 In the step of supplying the conductive paste for forming the conductive paste layer 21, the distance between the nozzle 22 and the stage 23 is set to the nozzle when the distance between the nozzle 22 and the photoelectric conversion unit 10 is increased. The discharge amount of the conductive paste from the nozzle 22 is increased, and the discharge amount of the conductive paste from the nozzle 22 is decreased when the distance between the nozzle 22 and the photoelectric conversion unit 10 is shortened. For this reason, the conductive paste is applied relatively thinly on the thick portion 10A, and the conductive paste is applied relatively thickly on the thin portion 10B.
 上述のようにノズル22と光電変換部10との間の距離をある程度以上に小さくした場合に、光電変換部10とノズル22との間の距離に応じてノズル22からの導電性ペーストの吐出量が変化することは、本発明者らにより初めて見出されたものである。 When the distance between the nozzle 22 and the photoelectric conversion unit 10 is reduced to a certain extent as described above, the discharge amount of the conductive paste from the nozzle 22 according to the distance between the photoelectric conversion unit 10 and the nozzle 22 This change was first found by the present inventors.
 図4に示すように、ノズル22の走査速度が125mm/s、100mm/sまたは150mm/sと一定であっても、ノズル22と光電変換部10との間の距離がある程度以上に近い場合は、光電変換部10とノズル22との間の距離が増大するに伴い、ノズル22からの導電性ペーストの吐出量が増大することが本発明者らによって初めて見出された。本発明者らは、この現象を利用し、光電変換部10とノズル22との間の距離を、光電変換部10とノズル22との間の距離が変化した場合にノズル22からの導電性ペーストの吐出量が変化するような範囲で、ノズル22をステージ23と平行に移動させることで、太陽電池13の厚みむらを光電変換部10の厚みむらよりも小さくできることを見出した。その結果、本実施形態の太陽電池モジュール1の製造方法に想到した。 As shown in FIG. 4, even when the scanning speed of the nozzle 22 is constant at 125 mm / s, 100 mm / s, or 150 mm / s, the distance between the nozzle 22 and the photoelectric conversion unit 10 is close to a certain level or more. It has been found by the present inventors for the first time that the discharge amount of the conductive paste from the nozzle 22 increases as the distance between the photoelectric conversion unit 10 and the nozzle 22 increases. The present inventors use this phenomenon to change the distance between the photoelectric conversion unit 10 and the nozzle 22 and the conductive paste from the nozzle 22 when the distance between the photoelectric conversion unit 10 and the nozzle 22 changes. It was found that the thickness unevenness of the solar cell 13 can be made smaller than the thickness unevenness of the photoelectric conversion unit 10 by moving the nozzle 22 in parallel with the stage 23 within a range in which the discharge amount of the liquid crystal changes. As a result, the inventors have arrived at a method for manufacturing the solar cell module 1 of the present embodiment.
 光電変換部10とノズル22との間の距離に応じてノズル22からの導電性ペーストの吐出量が変化するようにする観点からは、光電変換部10とノズル22との間の距離は、0.8mm以下であることが好ましく、0.6mm以下であることがより好ましく、0.5mm以下であることがさらに好ましく、0.4mm以下であることがなお好ましい。但し、光電変換部10とノズル22との間の距離が短くなりすぎるとノズル22からの吐出量が少なくなりすぎる場合がある。このため、光電変換部10とノズル22との間の距離は、0.1mm以上であることが好ましく、0.2mm以上であることがより好ましい。 From the viewpoint of changing the discharge amount of the conductive paste from the nozzle 22 according to the distance between the photoelectric conversion unit 10 and the nozzle 22, the distance between the photoelectric conversion unit 10 and the nozzle 22 is 0. 0.8 mm or less, more preferably 0.6 mm or less, further preferably 0.5 mm or less, and still more preferably 0.4 mm or less. However, if the distance between the photoelectric conversion unit 10 and the nozzle 22 becomes too short, the discharge amount from the nozzle 22 may become too small. For this reason, it is preferable that the distance between the photoelectric conversion part 10 and the nozzle 22 is 0.1 mm or more, and it is more preferable that it is 0.2 mm or more.
 菱形で示すデータは、ノズル22の走査速度が125mm/秒である場合のデータである。四角で示すデータは、ノズル22の走査速度が100mm/秒である場合のデータである。三角で示すデータは、ノズル22の走査速度が150mm/秒である場合のデータである。 The data indicated by diamonds is data when the scanning speed of the nozzle 22 is 125 mm / second. The data indicated by the square is data when the scanning speed of the nozzle 22 is 100 mm / second. Data indicated by triangles is data when the scanning speed of the nozzle 22 is 150 mm / second.
 図5に示されるように、光電変換部10とノズル22との間の距離に応じてノズル22からの導電性ペーストの吐出量が変化するようにする観点からは、導電性ペーストを供給する工程において、光電変換部10の上に塗布された未乾燥の導電性ペースト層21の少なくとも一部がノズル22の下端22aよりも上方(z1側)に位置するように導電性ペーストを供給することが好ましい。具体的には、導電性ペースト層21のノズル22の直後に位置する部分に、ノズル22の下端22aよりも上方に隆起する隆起部21aが形成されるように導電性ペーストを供給することが好ましい。通常、形成された隆起部21aは、導電性ペースト層21が乾燥するまでに、導電性ペーストの流動により消失する。 As shown in FIG. 5, from the viewpoint of changing the discharge amount of the conductive paste from the nozzle 22 according to the distance between the photoelectric conversion unit 10 and the nozzle 22, the step of supplying the conductive paste , The conductive paste is supplied so that at least a part of the undried conductive paste layer 21 applied on the photoelectric conversion unit 10 is located above the lower end 22a of the nozzle 22 (on the z1 side). preferable. Specifically, it is preferable to supply the conductive paste so that a protruding portion 21 a that protrudes above the lower end 22 a of the nozzle 22 is formed in a portion located immediately after the nozzle 22 of the conductive paste layer 21. . Usually, the formed raised portion 21a disappears due to the flow of the conductive paste before the conductive paste layer 21 is dried.
 光電変換部10とノズル22との間の距離に応じてノズル22からの導電性ペーストの吐出量が変化するようにする観点からは、導電性ペーストを供給する工程において、ノズル22とステージ23との間の距離をノズル22の中心線Cよりもノズル22の走査方向の上流側(x1側)にも導電性ペーストが供給されるような距離とすることが好ましく、ノズル22の前端22bよりもノズル22の走査方向の上流側(x1側)にも導電性ペーストが供給されるような距離とすることがより好ましい。 From the viewpoint of changing the discharge amount of the conductive paste from the nozzle 22 according to the distance between the photoelectric conversion unit 10 and the nozzle 22, in the step of supplying the conductive paste, the nozzle 22 and the stage 23 Is preferably such that the conductive paste is supplied also to the upstream side (x1 side) of the nozzle 22 in the scanning direction from the center line C of the nozzle 22, rather than the front end 22 b of the nozzle 22. More preferably, the distance is such that the conductive paste is supplied to the upstream side (x1 side) of the nozzle 22 in the scanning direction.
 図6に示されるように、光電変換部10の上に、電極11,12を形成することにより、太陽電池13を得る(電極形成工程)。 As shown in FIG. 6, the solar cells 13 are obtained by forming the electrodes 11 and 12 on the photoelectric conversion unit 10 (electrode formation step).
 バスバー部11bは、太陽電池13の厚部10Aが設けられた領域の厚みと薄部10Bが設けられた領域の厚みとの差が、厚部10Aの厚みと薄部10Bの厚みとの差よりも小さくなるように設けられる。従って、光電変換部10のバスバー部11bが形成された部分の厚みむらよりも、太陽電池13のバスバー部11bが位置している部分の厚みむらの方が小さくなる。その結果、後述する配線材14を太陽電池13に電気的に接続する工程において、太陽電池13の局所に大きな応力が加わることが抑制されるので、太陽電池13の損傷を抑制することができる。よって、太陽電池モジュール1の歩留まりを改善することができる。 In the bus bar portion 11b, the difference between the thickness of the region where the thick portion 10A of the solar cell 13 is provided and the thickness of the region where the thin portion 10B is provided is based on the difference between the thickness of the thick portion 10A and the thickness of the thin portion 10B. Is also provided to be smaller. Therefore, the thickness unevenness of the portion where the bus bar portion 11b of the solar cell 13 is located is smaller than the thickness unevenness of the portion of the photoelectric conversion portion 10 where the bus bar portion 11b is formed. As a result, in the step of electrically connecting the wiring member 14 to be described later to the solar cell 13, it is possible to suppress a large stress from being locally applied to the solar cell 13, so that the solar cell 13 can be prevented from being damaged. Therefore, the yield of the solar cell module 1 can be improved.
 本実施形態ではバスバー部11bがx軸方向に沿って直線状に延びているため、バスバー部11bを形成するために導電性ペーストを供給する工程において、ノズル22をx軸方向に沿って直線的に移動させる。しかしながら、ノズル22を直線状に移動させる必要は必ずしもない。例えば、バスバー部11bをx軸方向に沿ったジグザグ状に形成したい場合は、ノズル22をx軸方向に沿ってジグザグに移動させてもよい。 In the present embodiment, since the bus bar portion 11b extends linearly along the x-axis direction, in the step of supplying the conductive paste to form the bus bar portion 11b, the nozzle 22 is linearly aligned along the x-axis direction. Move to. However, it is not always necessary to move the nozzle 22 linearly. For example, when it is desired to form the bus bar portion 11b in a zigzag shape along the x-axis direction, the nozzle 22 may be moved zigzag along the x-axis direction.
 本実施形態の光電変換部10も厚みむらを含んでいる。そのため、光電変換部10のバスバー部11bが配された部分は、バスバー部11bの幅方向であるy軸方向における最大厚みが相対的に大きな厚部10Aと、バスバー部11bの延びる方向であるx軸方向において厚部10Aとは異なる位置に配されており、y軸方向における最大厚みが相対的に小さな薄部10Bとを含んでいる。 The photoelectric conversion unit 10 of this embodiment also includes uneven thickness. Therefore, the portion where the bus bar portion 11b of the photoelectric conversion portion 10 is disposed is the thick portion 10A having a relatively large maximum thickness in the y-axis direction, which is the width direction of the bus bar portion 11b, and the extending direction of the bus bar portion 11b. It is arranged at a position different from the thick portion 10A in the axial direction, and includes a thin portion 10B having a relatively small maximum thickness in the y-axis direction.
 図7に示されるように、本実施形態では、バスバー部11bの横断面において、バスバー部11bの光電変換部10との接触部の表面が光電変換部10の主面10aに対して傾斜している。このため、バスバー部11bの断面積が小さくなるとともに光電変換部10とバスバー部11bとの接着面積が大きくなる。この結果、光電変換部10とバスバー部11bとの接着力を向上させることができる。 As shown in FIG. 7, in the present embodiment, in the cross section of the bus bar portion 11 b, the surface of the contact portion of the bus bar portion 11 b with the photoelectric conversion portion 10 is inclined with respect to the main surface 10 a of the photoelectric conversion portion 10. Yes. For this reason, the cross-sectional area of the bus bar portion 11b is reduced and the adhesion area between the photoelectric conversion portion 10 and the bus bar portion 11b is increased. As a result, the adhesive force between the photoelectric conversion part 10 and the bus bar part 11b can be improved.
 第2の電極12のバスバー部12bに関しても、上述したバスバー部11bの形成方法と同様の方法で形成することが好ましい。そうすることによって、太陽電池13の厚みむらをより小さくすることができる。 The bus bar portion 12b of the second electrode 12 is preferably formed by the same method as the method for forming the bus bar portion 11b described above. By doing so, the thickness unevenness of the solar cell 13 can be made smaller.
 後述する配線材14を電気的に接続する工程における太陽電池13の損傷をより効果的に抑制する観点からは、太陽電池13の厚部10Aが設けられた領域の厚みと薄部10Bが設けられた領域の厚みとの差が、厚部10Aの厚みと薄部10Bの厚みとの差の0.4倍以下となるようにバスバー部11bを設けることが好ましく、0.2倍以下となるようにバスバー部11bを設けることがより好ましい。 From the viewpoint of more effectively suppressing damage to the solar cell 13 in the step of electrically connecting the wiring member 14 described later, the thickness of the region where the thick portion 10A of the solar cell 13 is provided and the thin portion 10B are provided. The bus bar portion 11b is preferably provided so that the difference between the thickness of the region and the thickness of the thick portion 10A and the thickness of the thin portion 10B is 0.4 times or less, and 0.2 times or less. It is more preferable to provide the bus bar portion 11b.
 図8に示されるように、太陽電池13と配線材14との間に樹脂接着剤16を介在させた状態で、圧着ツール15を用いて加圧しながら樹脂接着剤16を硬化させる。これにより、太陽電池13と配線材14とを接着すると共に、細長形状の電極部であるバスバー部11b、12bと配線材14とを電気的に接続する。
 具体的には、一の配線材14を第1の主面10aの上に、樹脂接着剤16を介在させた状態で、バスバー部11bの少なくとも一部とz軸方向において重なるように配する。他の配線材14を第2の主面10bの上に、樹脂接着剤16を介在させた状態で、バスバー部12bの少なくとも一部とz軸方向において重なるように配する。
As shown in FIG. 8, the resin adhesive 16 is cured while being pressed with the crimping tool 15 in a state where the resin adhesive 16 is interposed between the solar cell 13 and the wiring member 14. Thus, the solar cell 13 and the wiring member 14 are bonded, and the bus bar portions 11b and 12b, which are elongated electrode portions, and the wiring member 14 are electrically connected.
Specifically, one wiring member 14 is arranged on the first main surface 10a so as to overlap at least a part of the bus bar portion 11b in the z-axis direction with the resin adhesive 16 interposed. Another wiring member 14 is arranged on the second main surface 10b so as to overlap at least a part of the bus bar portion 12b in the z-axis direction with the resin adhesive 16 interposed.
 太陽電池13、配線材14及び樹脂接着剤16との積層体を、圧着ツール15を用いて加圧しながら樹脂接着剤16を硬化させる。樹脂接着剤16が熱硬化性樹脂接着剤により構成されている場合は、太陽電池13、配線材14及び樹脂接着剤16との積層体を、圧着ツール15を用いて加圧しながら加熱することにより樹脂接着剤16を硬化させる。これにより、太陽電池13と配線材14とが、樹脂接着剤16の硬化物からなる樹脂接着層17で接着されており、且つ配線材14とバスバー部11b、12bとが電気的に接続された太陽電池ストリングを作製する。 The resin adhesive 16 is cured while pressing the laminated body of the solar cell 13, the wiring material 14 and the resin adhesive 16 using the crimping tool 15. When the resin adhesive 16 is composed of a thermosetting resin adhesive, the laminate of the solar cell 13, the wiring material 14, and the resin adhesive 16 is heated while being pressed using the crimping tool 15. The resin adhesive 16 is cured. Thereby, the solar cell 13 and the wiring material 14 are adhered by the resin adhesive layer 17 made of a cured product of the resin adhesive 16, and the wiring material 14 and the bus bar portions 11b and 12b are electrically connected. A solar cell string is produced.
 第1の保護部材の上に、樹脂シート、太陽電池ストリング、樹脂シート、第2の保護部材の順で積層させて積層体を得る。 A laminate is obtained by laminating a resin sheet, a solar cell string, a resin sheet, and a second protective member in this order on the first protective member.
 そして、得られた積層体を、減圧雰囲気中においてラミネートすることにより太陽電池モジュール1を完成させる。 Then, the solar cell module 1 is completed by laminating the obtained laminate in a reduced-pressure atmosphere.
 図9及び図10に示されるように、太陽電池13は、光電変換部10の第1の主面10aの上に、導電性ペーストを供給し、乾燥させることによって形成された第1の電極11を含んでいる。第1の電極11は、複数のフィンガー部11aと、少なくともひとつのバスバー部11bとを含んでいる。 As shown in FIGS. 9 and 10, the solar cell 13 is formed by supplying a conductive paste on the first main surface 10 a of the photoelectric conversion unit 10 and drying it. Is included. The first electrode 11 includes a plurality of finger portions 11a and at least one bus bar portion 11b.
 複数のフィンガー部11aは、x軸方向に沿って相互に間隔をおいて配列されている。複数のフィンガー部11aのそれぞれは、x軸方向に対して交差した(典型的には垂直に交差)y軸方向に沿って延びている。複数のフィンガー部11aは、バスバー部11bに電気的に接続されている。 The plurality of finger portions 11a are arranged at intervals from each other along the x-axis direction. Each of the plurality of finger portions 11a extends along the y-axis direction intersecting (typically perpendicularly intersecting) the x-axis direction. The plurality of finger portions 11a are electrically connected to the bus bar portion 11b.
 バスバー部11bは、x軸方向に沿って延びる細長形状を含む。なお、本実施形態では、バスバー部11bは、直線状に設けられているが、x軸方向に沿って延びるジグザグ形状に設けられていてもよい。 The bus bar portion 11b includes an elongated shape extending along the x-axis direction. In addition, in this embodiment, although the bus-bar part 11b is provided in linear form, you may be provided in the zigzag shape extended along an x-axis direction.
 図9及び図11に示されるように、太陽電池13は光電変換部10の第2の主面10bの上に形成された第2の電極12を含んでいる。第2の電極12は、複数のフィンガー部12aと、少なくともひとつのバスバー部12bとを含む。 9 and 11, the solar cell 13 includes a second electrode 12 formed on the second main surface 10b of the photoelectric conversion unit 10. The second electrode 12 includes a plurality of finger portions 12a and at least one bus bar portion 12b.
 複数のフィンガー部12aは、x軸方向に沿って相互に間隔をおいて配列されている。複数のフィンガー部12aのそれぞれは、x軸方向に対して交差した(典型的には垂直に交差)y軸方向に沿って延びている。複数のフィンガー部12aは、バスバー部12bに電気的に接続されている。 The plurality of finger portions 12a are arranged at intervals from each other along the x-axis direction. Each of the plurality of finger portions 12a extends along the y-axis direction intersecting with the x-axis direction (typically perpendicularly intersecting). The plurality of finger portions 12a are electrically connected to the bus bar portion 12b.
 バスバー部12bは、x軸方向に沿って延びる細長形状を含む。なお、本実施形態では、バスバー部12bは、直線状に設けられているが、x軸方向に沿って延びるジグザグ形状に設けられていてもよい。 The bus bar portion 12b includes an elongated shape extending along the x-axis direction. In the present embodiment, the bus bar portion 12b is provided in a linear shape, but may be provided in a zigzag shape extending along the x-axis direction.
 裏面側に位置する第2の電極12は、受光面側に位置する第1の電極11よりも大面積に設けられていることが好ましい。具体的には、第2の電極12は、第1の電極11よりも多くの本数のフィンガー部を有することが好ましい。 The second electrode 12 located on the back surface side is preferably provided in a larger area than the first electrode 11 located on the light receiving surface side. Specifically, the second electrode 12 preferably has a greater number of finger portions than the first electrode 11.
 図12に示されるように、太陽電池モジュール1は、第1の保護部材19と第2の保護部材20との間にある充填材層18により封止された太陽電池ストリング24を含んでいる。 As shown in FIG. 12, the solar cell module 1 includes a solar cell string 24 sealed with a filler layer 18 between a first protective member 19 and a second protective member 20.
 第1の保護部材19は、例えばガラス板などにより構成することができる。第2の保護部材20は、例えば、樹脂シートや金属層を含む樹脂シートなどにより構成することができる。充填材層18は、例えばエチレン・酢酸ビニル共重合体(EVA)やポリエチレンやポリプロピレンなどのポリオレフィンなどにより構成することができる。 The first protective member 19 can be made of, for example, a glass plate. The second protective member 20 can be configured by, for example, a resin sheet or a resin sheet including a metal layer. The filler layer 18 can be made of, for example, an ethylene / vinyl acetate copolymer (EVA), a polyolefin such as polyethylene or polypropylene, or the like.
 太陽電池ストリング24は、充填材層18中に配された複数の太陽電池13を含んでいる。複数の太陽電池13は、配線材14によって電気的に接続されている。一の太陽電池13の第1の電極11のバスバー部11bと、他の太陽電池13の第2の電極12のバスバー部12bとが配線材14によって電気的に接続されている。配線材14と太陽電池13とは樹脂接着層17によって接着されている。 The solar cell string 24 includes a plurality of solar cells 13 arranged in the filler layer 18. The plurality of solar cells 13 are electrically connected by the wiring material 14. The bus bar portion 11 b of the first electrode 11 of one solar cell 13 and the bus bar portion 12 b of the second electrode 12 of another solar cell 13 are electrically connected by a wiring member 14. The wiring member 14 and the solar cell 13 are bonded by a resin adhesive layer 17.
 太陽電池モジュール1は、第1及び第2の保護部材19,20の外側に配されたフレームをさらに含んでいてもよい。第2の保護部材20の上に、複数の太陽電池13が電気的に接続された端子が配された端子ボックスが設けられていてもよい。 The solar cell module 1 may further include a frame disposed outside the first and second protection members 19 and 20. A terminal box in which terminals to which a plurality of solar cells 13 are electrically connected may be provided on the second protective member 20.
 尚、太陽電池は、一主面側に第1及び第2の電極の両方が設けられた裏面接合型の太陽電池であってもよい。
 細長形状の電極部は、電極部の延びる方向に沿って複数に分割されていてもよい。
The solar cell may be a back junction type solar cell in which both the first and second electrodes are provided on one main surface side.
The elongated electrode part may be divided into a plurality along the extending direction of the electrode part.
 以上のように、本発明はここでは記載していない様々な実施形態を含む。従って、本発明の技術的範囲は上記の説明から妥当な特許請求の範囲に係る発明特定事項によってのみ定められるものである。 As described above, the present invention includes various embodiments not described herein. Therefore, the technical scope of the present invention is defined only by the invention specifying matters according to the scope of claims reasonable from the above description.
1…太陽電池モジュール
10…光電変換部
10A…厚部
10B…薄部
10c…半導体材料からなる基板
11…第1の電極
12…第2の電極
11a、12a…フィンガー部
11b、12b…バスバー部
13…太陽電池
14…配線材
16…樹脂接着剤
17…樹脂接着層
21…導電性ペースト層
22…ノズル
22a…下端
22b…前端
23…ステージ
24…太陽電池ストリング
DESCRIPTION OF SYMBOLS 1 ... Solar cell module 10 ... Photoelectric conversion part 10A ... Thick part 10B ... Thin part 10c ... Substrate 11 which consists of semiconductor materials ... 1st electrode 12 ... 2nd electrode 11a, 12a ... Finger part 11b, 12b ... Bus-bar part 13 ... solar cell 14 ... wiring material 16 ... resin adhesive 17 ... resin adhesive layer 21 ... conductive paste layer 22 ... nozzle 22a ... lower end 22b ... front end 23 ... stage 24 ... solar cell string

Claims (9)

  1.  光電変換部を用意し、
     ステージ上に前記光電変換部を配置し、
     前記光電変換部の上方にノズルを配し、
     前記ノズルを前記ステージと平行に移動させながら、前記光電変換部上で前記ノズルと前記光電変換部との間の距離が長くなったときに前記ノズルからの導電性ペーストの吐出量が増大するように供給し、
     前記光電変換部上に供給された導電性ペーストを乾燥することにより前記光電変換部上にバスバー部を含んだ電極を形成することにより太陽電池を得、
     前記太陽電池と配線材との間に樹脂接着剤を介在させた状態で加圧しながら前記樹脂接着剤を硬化させることにより前記太陽電池と前記配線材とを接着すると共に前記バスバー部と前記配線材とを電気的に接続する、太陽電池モジュールの製造方法。
    Prepare a photoelectric converter,
    Arranging the photoelectric conversion unit on the stage,
    A nozzle is disposed above the photoelectric conversion unit,
    While the nozzle is moved in parallel with the stage, the discharge amount of the conductive paste from the nozzle is increased when the distance between the nozzle and the photoelectric conversion unit is increased on the photoelectric conversion unit. To supply
    A solar cell is obtained by forming an electrode including a bus bar part on the photoelectric conversion part by drying the conductive paste supplied on the photoelectric conversion part,
    Bonding the solar cell and the wiring material by curing the resin adhesive while applying pressure with a resin adhesive interposed between the solar cell and the wiring material, and the bus bar portion and the wiring material And a method for manufacturing a solar cell module.
  2.  請求項1に記載の太陽電池モジュールの製造方法において、
     前記ノズルと前記ステージとの間の距離を0.8mm以下とする、太陽電池モジュールの製造方法。
    In the manufacturing method of the solar cell module according to claim 1,
    A method for manufacturing a solar cell module, wherein a distance between the nozzle and the stage is 0.8 mm or less.
  3.  請求項1または2に記載の太陽電池モジュールの製造方法において、
     前記光電変換部の上に供給された未乾燥の導電性ペースト層が前記ノズルの下端よりも上方に位置するように前記導電性ペーストを供給する、太陽電池モジュールの製造方法。
    In the manufacturing method of the solar cell module of Claim 1 or 2,
    The manufacturing method of the solar cell module which supplies the said electrically conductive paste so that the undried electrically conductive paste layer supplied on the said photoelectric conversion part may be located above the lower end of the said nozzle.
  4.  請求項1~3のいずれか一項に記載の太陽電池モジュールの製造方法において、
     前記ノズルと前記ステージとの間の距離を、前記ノズルの中心線よりも前記ノズルの走査方向の上流側にも前記導電性ペーストが供給されるような距離とする、太陽電池モジュールの製造方法。
    In the method for manufacturing a solar cell module according to any one of claims 1 to 3,
    A method for manufacturing a solar cell module, wherein a distance between the nozzle and the stage is set such that the conductive paste is supplied to an upstream side in a scanning direction of the nozzle from a center line of the nozzle.
  5.  請求項1~4のいずれか一項に記載の太陽電池モジュールの製造方法において、
     半導体材料からなるインゴットをワイヤーソーを用いてスライスすることにより半導体材料からなる基板を作製し、前記基板を用いて前記光電変換部を作製する、太陽電池モジュールの製造方法。
    In the method for manufacturing a solar cell module according to any one of claims 1 to 4,
    A method for manufacturing a solar cell module, wherein a substrate made of a semiconductor material is prepared by slicing an ingot made of a semiconductor material using a wire saw, and the photoelectric conversion unit is prepared using the substrate.
  6.  光電変換部と、前記光電変換部上に配されたバスバー部を含む電極とを有する太陽電池と、
     前記バスバー部と電気的に接続された配線材と、
     前記配線材と前記太陽電池とを接着している樹脂接着層と、
    を備え、
     前記バスバー部は、前記バスバー部の幅方向における最大厚みが相対的に大きな厚部と、前記バスバー部の延びる方向において前記厚部とは異なる位置に配されており、前記電極部の幅方向における最大厚みが相対的に小さな薄部とを含み、
     前記バスバー部は、前記太陽電池の前記厚部が設けられた領域の厚みと前記薄部が設けられた領域の厚みとの差が、前記厚部の厚みと前記薄部の厚みとの差よりも小さくなるように設けられている、太陽電池モジュール。
    A solar cell having a photoelectric conversion unit and an electrode including a bus bar unit disposed on the photoelectric conversion unit;
    A wiring material electrically connected to the bus bar portion;
    A resin adhesive layer bonding the wiring member and the solar cell;
    With
    The bus bar portion is disposed at a position different from the thick portion in the extending direction of the bus bar portion, and a thick portion having a relatively large maximum thickness in the width direction of the bus bar portion, and in the width direction of the electrode portion. Including a thin portion having a relatively small maximum thickness,
    In the bus bar portion, the difference between the thickness of the region where the thick portion of the solar cell is provided and the thickness of the region where the thin portion is provided is based on the difference between the thickness of the thick portion and the thickness of the thin portion. A solar cell module provided to be smaller.
  7.  請求項6に記載の太陽電池モジュールにおいて、
     前記バスバー部は、前記太陽電池の前記厚部が設けられた領域の厚みと前記薄部が設けられた領域の厚みとの差が、前記厚部の厚みと前記薄部の厚みとの差の0.4倍以下となるように設けられている、太陽電池モジュール。
    In the solar cell module according to claim 6,
    The bus bar portion has a difference between the thickness of the solar cell in the region where the thick portion is provided and the thickness of the region in which the thin portion is provided, and the difference between the thickness of the thick portion and the thickness of the thin portion. A solar cell module provided to be 0.4 times or less.
  8.  請求項6または7に記載の太陽電池モジュールにおいて、
     前記光電変換部は、半導体材料からなるインゴットをワイヤーソーを用いてスライスすることにより得た半導体材料からなる基板を含む、太陽電池モジュール。
    In the solar cell module according to claim 6 or 7,
    The photoelectric conversion unit is a solar cell module including a substrate made of a semiconductor material obtained by slicing an ingot made of a semiconductor material using a wire saw.
  9.  請求項6~8のいずれか一項に記載の太陽電池モジュールにおいて、
     横断面において前記バスバー部の前記光電変換部との接触部の表面が前記光電変換部の主面に対して傾斜している、太陽電池モジュール。
     
    The solar cell module according to any one of claims 6 to 8,
    The solar cell module in which the surface of the contact part with the said photoelectric conversion part of the said bus-bar part inclines with respect to the main surface of the said photoelectric conversion part in a cross section.
PCT/JP2012/056151 2012-03-09 2012-03-09 Method for manufacturing solar cell module, and solar cell module WO2013132655A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/056151 WO2013132655A1 (en) 2012-03-09 2012-03-09 Method for manufacturing solar cell module, and solar cell module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/056151 WO2013132655A1 (en) 2012-03-09 2012-03-09 Method for manufacturing solar cell module, and solar cell module

Publications (1)

Publication Number Publication Date
WO2013132655A1 true WO2013132655A1 (en) 2013-09-12

Family

ID=49116167

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/056151 WO2013132655A1 (en) 2012-03-09 2012-03-09 Method for manufacturing solar cell module, and solar cell module

Country Status (1)

Country Link
WO (1) WO2013132655A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108470790A (en) * 2017-02-20 2018-08-31 优若特恩有限公司 Multiple solar cells are assemblied in equipment on carrier and its assembly line and method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009011209A1 (en) * 2007-07-13 2009-01-22 Sanyo Electric Co., Ltd. Solar cell module manufacturing method
JP2012043876A (en) * 2010-08-17 2012-03-01 Dainippon Screen Mfg Co Ltd Pattern formation method, pattern formation device, photoelectric conversion device manufacturing method, and photoelectric conversion device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009011209A1 (en) * 2007-07-13 2009-01-22 Sanyo Electric Co., Ltd. Solar cell module manufacturing method
JP2012043876A (en) * 2010-08-17 2012-03-01 Dainippon Screen Mfg Co Ltd Pattern formation method, pattern formation device, photoelectric conversion device manufacturing method, and photoelectric conversion device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108470790A (en) * 2017-02-20 2018-08-31 优若特恩有限公司 Multiple solar cells are assemblied in equipment on carrier and its assembly line and method
CN108470790B (en) * 2017-02-20 2023-11-17 优若特恩有限公司 Apparatus for mounting a plurality of solar cells on a carrier, and assembly line and method therefor

Similar Documents

Publication Publication Date Title
WO2012102122A1 (en) Solar cell and solar cell module
WO2012102188A1 (en) Solar cell and solar cell module
JP5891375B2 (en) Photovoltaic module
JP5458485B2 (en) Method for manufacturing solar cell and method for manufacturing solar cell module
JP6145884B2 (en) Solar cell module
JP5089456B2 (en) Crimping apparatus and solar cell module manufacturing method
JP5084133B2 (en) Photovoltaic element, photovoltaic module, and method for producing photovoltaic module
US10374108B2 (en) Photovoltaic device, photovoltaic module, and method for fabricating the photovoltaic device
JPWO2013031297A1 (en) Manufacturing method of solar cell module
JP6037175B2 (en) Solar cell module
WO2013132655A1 (en) Method for manufacturing solar cell module, and solar cell module
WO2012165001A1 (en) Solar cell module and method for manufacturing same
WO2014132282A1 (en) Solar cell module
JP6249368B2 (en) Solar cell module and method for manufacturing solar cell module
WO2013114555A1 (en) Solar cell module, and method for manufacturing solar cell module
JP5942136B2 (en) Solar cell module and manufacturing method thereof
JP2013051339A (en) Solar cell module and manufacturing method of the same
WO2013183148A1 (en) Solar cell, solar cell module, method of manufacturing solar cell, and method of manufacturing solar cell module
US20120260971A1 (en) Iii-v solar cell package and method of fabricating the same
JP5906422B2 (en) Solar cell and solar cell module
JPWO2018181817A1 (en) Solar cell module
WO2017002887A1 (en) Solar cell module
WO2013140597A1 (en) Solar cell, solar cell module, and solar cell manufacturing method
JP6083685B2 (en) Solar cell module and method for manufacturing solar cell module
WO2013121558A1 (en) Solar cell, solar cell module, and method for producing solar cell module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12870697

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12870697

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP