WO2013132582A1 - Exercise index computation device, exercise index computation method, exercise index computation program, and recording medium on which exercise index computation program is recordable - Google Patents

Exercise index computation device, exercise index computation method, exercise index computation program, and recording medium on which exercise index computation program is recordable Download PDF

Info

Publication number
WO2013132582A1
WO2013132582A1 PCT/JP2012/055598 JP2012055598W WO2013132582A1 WO 2013132582 A1 WO2013132582 A1 WO 2013132582A1 JP 2012055598 W JP2012055598 W JP 2012055598W WO 2013132582 A1 WO2013132582 A1 WO 2013132582A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
relational expression
index value
power
exercise
Prior art date
Application number
PCT/JP2012/055598
Other languages
French (fr)
Japanese (ja)
Inventor
隆真 亀谷
隆二郎 藤田
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Priority to PCT/JP2012/055598 priority Critical patent/WO2013132582A1/en
Priority to JP2014503311A priority patent/JP5857120B2/en
Publication of WO2013132582A1 publication Critical patent/WO2013132582A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M3/00Construction of cranks operated by hand or foot
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62JCYCLE SADDLES OR SEATS; AUXILIARY DEVICES OR ACCESSORIES SPECIALLY ADAPTED TO CYCLES AND NOT OTHERWISE PROVIDED FOR, e.g. ARTICLE CARRIERS OR CYCLE PROTECTORS
    • B62J45/00Electrical equipment arrangements specially adapted for use as accessories on cycles, not otherwise provided for
    • B62J45/20Cycle computers as cycle accessories
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62JCYCLE SADDLES OR SEATS; AUXILIARY DEVICES OR ACCESSORIES SPECIALLY ADAPTED TO CYCLES AND NOT OTHERWISE PROVIDED FOR, e.g. ARTICLE CARRIERS OR CYCLE PROTECTORS
    • B62J45/00Electrical equipment arrangements specially adapted for use as accessories on cycles, not otherwise provided for
    • B62J45/40Sensor arrangements; Mounting thereof
    • B62J45/41Sensor arrangements; Mounting thereof characterised by the type of sensor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62JCYCLE SADDLES OR SEATS; AUXILIARY DEVICES OR ACCESSORIES SPECIALLY ADAPTED TO CYCLES AND NOT OTHERWISE PROVIDED FOR, e.g. ARTICLE CARRIERS OR CYCLE PROTECTORS
    • B62J50/00Arrangements specially adapted for use on cycles not provided for in main groups B62J1/00 - B62J45/00
    • B62J50/20Information-providing devices
    • B62J50/21Information-providing devices intended to provide information to rider or passenger
    • B62J50/22Information-providing devices intended to provide information to rider or passenger electronic, e.g. displays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C22/00Measuring distance traversed on the ground by vehicles, persons, animals or other moving solid bodies, e.g. using odometers, using pedometers
    • G01C22/002Measuring distance traversed on the ground by vehicles, persons, animals or other moving solid bodies, e.g. using odometers, using pedometers for cycles

Definitions

  • the present invention relates to an index value calculation device for exercise, an index value calculation method for exercise, an index value calculation program for exercise, and a recording medium capable of recording the index value calculation program for exercise.
  • the personal navigation device As a measuring device used during exercise, there is a so-called personal navigation device that is attached to a bicycle and can search a plurality of routes from the current location to the destination when the bicycle is running.
  • the personal navigation device disclosed in Patent Document 1 measures travel time and travel distance based on GPS signals transmitted from GPS satellites, and based on past performance data and the like in addition to these measured values. An index (estimate) such as expected arrival time is calculated.
  • the above-mentioned personal navigation device calculates an index based on past performance data such as “it takes 2 minutes 30 seconds per km”, for example. However, since such average speed varies depending on the travel distance and travel environment, the index may be different from the actual one. Therefore, it is necessary to improve the accuracy of the index.
  • the present invention has been made in view of the above-described circumstances, and is intended to solve the above-described problems as an example, and an index value calculation device and an index that can solve these problems
  • An object is to provide a value calculation method, an index value calculation program, and a recording medium capable of recording the index value calculation program.
  • an index value calculation apparatus for exercise is based on specific information acquisition means for acquiring specific information related to a predetermined exercise, and specific information acquired by the specific information acquisition means.
  • a first calculating means for calculating a first work rate-time relational expression that is a relational expression between the time required for the exercise and the work rate based on the work required for the exercise; and a predetermined time for the exerciser Predetermined information acquisition means for acquiring predetermined information for calculating a second work rate-time relational expression, which is a relational expression between the interval and the work rate in the time interval, and the predetermined information acquired by the predetermined information acquisition means
  • the index value calculation method for exercise is based on unique information acquired by unique information acquisition means for acquiring specific information related to a predetermined exercise, and the time required for the exercise
  • a first calculation step of calculating a first work rate-time relational expression that is a relational expression between the work rate based on the work required for the exercise and the work amount, a predetermined time interval for the exerciser, and work in the time interval Based on the predetermined information acquired by the predetermined information acquisition means for acquiring the predetermined information for calculating the second power-time relational expression that is a relational expression with the rate, the second power-time relational expression Based on the second calculation step of calculating the first power, the first power-time relational expression calculated in the first calculation step, and the second power-time relational expression calculated in the second calculation step Of these relations
  • having the index value calculation step for calculating work rate constitutes a point and one or both any time as an index value.
  • an index value calculation program for exercise is based on the unique information acquired by the specific information acquisition means for acquiring specific information related to a predetermined exercise in a computer.
  • a first calculation function for calculating a first work rate-time relational expression which is a relational expression between the time required for the exercise and the work based on the work required for the exercise, and a predetermined time interval for the exerciser of the exercise
  • FIG. 1A is a side view of the bicycle to which the cycle computer is attached
  • FIG. 1B shows a state where the left power detection device of FIG. 1 is attached to the left crank.
  • FIG. 1A is a plan view of the right pedal acting force detector
  • (b) is a rear view of the right pedal acting force detector
  • (c) is a partial sectional view of the right pedal acting force detector.
  • (A) is a perspective view schematically showing a state where a propulsive force strain sensor unit is attached to the right crankshaft, and (b) is a loss force strain sensor unit attached to the right crankshaft. It is the perspective view which represented the mode that it is showing typically.
  • (A) is a bridge circuit for propulsive force of the right pedal acting force detector, and (b) is a bridge circuit for loss force of the right pedal acting force detector.
  • FIG. 1A is a side view showing a state in which a cycle computer 100 that calculates and displays an optimum time (best time) and optimum work rate required to travel a predetermined course is attached to the bicycle B.
  • FIG. 1B is a front view showing a state in which the cycle computer 100 is attached to the bicycle B.
  • the bicycle B has a frame B1 as a base, and two wheels B2 (front wheel B21 and rear wheel B22) that support the frame B1 movably by being rotatably supported by the frame B1 before and after the bicycle B. And a drive mechanism B3 for transmitting a propulsive force for propelling the bicycle B to the rear wheel B22, a handle B4 for the driver to steer, and a saddle B5 for the driver to sit on.
  • the drive mechanism B3 has a rotating shaft (crankshaft) at one end, and the rotating shaft is rotatably supported at the other end of the crank B31 by an aluminum crank B31 that is rotatably supported with respect to the frame B1.
  • a chain ring that is pivotally supported by the driver and connected to the crank B31 with the crankshaft at the one end of the pedal B32 and the crank B31 as a common turning shaft, and rotates integrally with the crank B31.
  • B34 and a rear sprocket (not shown) arranged so as to rotate integrally with the rear wheel B22 using the rotation axis of the rear wheel B22 as a common rotation axis, and the chain ring B34 are connected to the pedal.
  • a chain B33 for transmitting a force acting on B32 (hereinafter referred to as “pedal acting force”) to the rear wheel B22 is provided.
  • the crank B31 has a right crankshaft B311 disposed on the right side facing the traveling direction of the bicycle B, and a left crankshaft B312 disposed on the left side facing the traveling direction of the bicycle B, and these left and right crankshafts. B311 and B312 are fixed at a point-symmetrical position with the crankshaft as a symmetric point.
  • the pedal B32 includes a right pedal B321 that is rotatably supported by the distal end portion of the right crankshaft B311 and a left pedal B322 that is rotatably supported by the distal end portion of the left crankshaft B312.
  • the cycle computer 100 includes a crank rotation angle detection device 2 that detects the rotation angle of the crank B31, a right pedal action force detection device 3 that detects a force acting on the right crankshaft B311 (hereinafter referred to as “right pedal action force”), A left pedal acting force detecting device 4 that detects a force acting on the left crankshaft B312 (hereinafter referred to as “left pedal acting force”), a cadence detecting device 5 that detects a rotation speed of the crank B31, and a temperature sensor 8 are provided.
  • the right pedal acting force detection device 3 and the left pedal acting force detection device 4 each have a force that contributes to the rotation of the crank B31 (hereinafter referred to as “propulsion force”) and a force that does not contribute to the rotation of the crank B31 (hereinafter, “ It is detected separately.
  • the cycle computer 100 also detects the driver based on detection signals indicating detection values output by the crank rotation angle detection device 2, the right pedal action force detection device 3, the left pedal action force detection device 4, and the cadence detection device 5.
  • the right work rate detection device 6 for calculating the work rate by the right pedal working force (hereinafter referred to as “right work rate”), and the work rate by the left pedal working force of the driver (hereinafter referred to as “left work rate”).
  • the left-side power detection device 7 and the main body 1 that controls and controls the entire cycle computer 100 are provided.
  • the detection devices 2, 3, 5 and the right power detection device 6 and the detection devices 2, 4, 5 and the left power detection device 7 are connected in a wired manner.
  • the left work rate detection device 7 transmits left work rate data indicating the calculated left work rate to the right work rate detection device 6.
  • the right-side power detection device 6 adds up the left-side power shown by the left-side power data received from the left-side power detection device 7 and the calculated right-side power to obtain the overall power (hereinafter referred to as “total power”).
  • the total work rate data indicating the total work rate is transmitted to the main body 1.
  • the main body 1 calculates the average of the work rates from the start of running to the present time (hereinafter referred to as “average work rate”) based on the total work rate data received from the right work rate detection device 6, Based on the average work rate, the time required to travel the course (hereinafter referred to as “expected time”) is calculated and displayed.
  • average work rate the average of the work rates from the start of running to the present time
  • expected time the time required to travel the course
  • the main body 1 is fixed to the handle B4, and as shown in FIG. 3 (a), the right power detection device 6 is fixed to the chain ring B34, as shown in FIG. 3 (b).
  • the left power detection device 7 is fixed to the left crankshaft B312.
  • the main body 1, the right-side power detection device 6 and the left-side power detection device 7 include a transmitter (not shown) and are connected to each other by a wireless method.
  • the temperature sensor 8 is attached to a predetermined position of the bicycle B and is connected to the main body 1 in a wired manner.
  • the crank rotation angle detection device 2 includes a sensed part 21 provided with a magnet group in which a plurality of magnets 21a to 21n are arranged circumferentially at predetermined intervals, and a sensed part. And a sensing unit 22 capable of detecting the magnets 21a to 21n constituting the member 21.
  • the sensed part 21 is fixed to the end of the bottom bracket (not shown) of the frame B1 facing the chain ring B34 so as to face the chain ring B34, and is coaxially fixed to the crankshaft.
  • the part 22 is fixed to the chain ring B34 and rotates together with the crank B31. Therefore, when the crank B31 rotates, the sensing unit 22 turns outside the magnet group (magnets 21a to 21n) of the sensed unit 21.
  • the sensing unit 22 is integrated into the right-side power detection device 6 and integrated.
  • the sensed part 21 is composed of 14 magnets 21a to 21n.
  • 11 magnets 21a to 21k are arranged at intervals of 30 degrees, and 10 o'clock to 0 o'clock.
  • five magnets 21k to 21a are arranged at intervals of 7.5 degrees.
  • the magnets 21a to 21n are arranged so that the respective axial directions (magnetic poles) are directed in the radial direction, and the magnetic poles are arranged so that the directions of the magnetic poles are alternately outward and inward in the circumferential direction. Yes.
  • the sensing unit 22 includes a magnetic sensor capable of detecting the S pole and the N pole, and the sensing unit 22 can detect the magnets 21a to 21n of the magnet group while rotating. When the sensing unit 22 detects the magnets 21a to 21n, it transmits a crank rotation angle detection signal indicating the strength of the magnetic field and the direction of the magnetic field to the right power detection device 6 and the left power detection device 7.
  • the right pedal acting force detection device 3 has a sheet shape as a whole, and is attached so as to wind around the right crankshaft B311 as shown in FIG.
  • the left pedal acting force detection device 4 also has a sheet shape as a whole, and is attached so as to be wound around the left crankshaft B312 as shown in FIG. Since the configuration of the right pedal acting force detection device 3 and the configuration of the left pedal acting force detection device 4 are the same, the right pedal acting force detection device 3 will be described below.
  • the right pedal acting force detection device 3 is directly attached to the right crankshaft B311 as an underlay of the strain sensor units 30 to 33 for detecting the strain to be detected and the respective strain sensor units 30 to 33.
  • the upper waterproof sheet 38 that covers the underlying sheets 34 to 37 and the strain sensor units 30 to 33 collectively from the surface side of the strain sensor units 30 to 33, and the bottom surface of the upper waterproof sheet 38 and the surface of the right crankshaft B311
  • the lower waterproof sheet 39 is provided to block the gap formed between and the strain sensor units 30 to 33.
  • the underlay sheets 34 to 37 are made of an aluminum plate having elasticity (elasticity), and are bonded to the strain sensor units 30 to 33 on one side (hereinafter referred to as “surface”), and the other side (hereinafter referred to as “surface”). It is adhered to the strain detection location of the right crankshaft B311. Note that the surface of each of the underlying sheets 34 to 37 is larger than the corresponding strain sensor unit 30 to 33, and when the strain sensor units 30 to 33 are attached, a part of the surface is exposed.
  • the lower waterproof sheet 39 is bonded to the exposed portion.
  • the upper waterproof sheet 38 is adhered to the lower waterproof sheet 39 in a state of covering the strain sensor units 30 to 33 and the lower waterproof sheet 39.
  • the right pedal acting force detection device 3 is formed by integrating the strain sensor units 30 to 33, the underlay sheets 34 to 37, the upper waterproof sheet 38 and the lower waterproof sheet 39, and the underlay sheets 34 to 37 are on the back surface.
  • the right crankshaft B311 is attached to the right crankshaft B311 in a state where it is adhered to a strain detection portion (a front surface, a rear surface, an outer surface, and an inner surface described later).
  • the right pedal acting force detection device 3 and the left pedal acting force detection device 4 separately detect the propulsive force and the loss force.
  • the strain sensor units 30 and 31 are used for detecting the propulsive force
  • the strain sensor units 32 and 33 are used for detecting the loss force.
  • the strain sensor units 30 and 31 are attached to the front and rear surfaces of the right crankshaft B311 corresponding to the rotation direction of the crank B31.
  • the strain sensor units 32 and 33 are affixed to the outer side surface and the inner side surface of the right crankshaft B311 orthogonal to the rotation direction of the crank B31.
  • the strain sensor units 30 to 33 transmit a strain detection signal corresponding to the strain to the right-side power detection device 6.
  • the strain sensor unit 30 is arrow-shaped and is composed of a pair of strain sensors 30a and 30b.
  • the strain sensor unit 31 also has an arrow feather shape, and is composed of a pair of strain sensors 31a and 31b, and is similarly attached to a rear-facing surface (hereinafter referred to as “rear surface”).
  • each strain sensor unit 30, 31 is affixed with the direction of the arrow-shaped arrow feathers facing the right pedal B 321 along the length direction of the right crankshaft B 311.
  • the propulsive force that is the rotational direction component of the pedal action force is applied by the strain sensor units 30 and 31 that are attached to the front and rear surfaces of the right crankshaft B311, that is, the surface that receives the force in the rotational direction of the right crankshaft B311 Is detected.
  • the pair of strain sensors 30a and 30b and the pair of strain sensors 31a and 31b constitute a propulsive force bridge circuit 3A shown in FIG.
  • the pair of strain sensors 30a and 30b and the strain sensors 31a and 31b constituting the strain sensor units 30 and 31 are respectively arranged on opposite sides of the propulsive force bridge circuit 3A.
  • the strain sensor unit 32 has an arrow feather shape and is composed of a pair of strain sensors 32a and 32b, and the bicycle B with respect to the direction perpendicular to the traveling direction of the right crankshaft B311. Is attached to the surface facing the outside (hereinafter referred to as “outer surface”).
  • the strain sensor unit 33 is also arrow-shaped and is composed of a pair of strain sensors 33a and 33b, and is a surface facing the inside of the bicycle B with respect to the direction orthogonal to the traveling direction (hereinafter referred to as "inner surface”).
  • Each strain sensor unit 32, 33 is affixed with the direction of the arrow-shaped arrow feathers facing the right pedal B321 along the length direction of the right crankshaft B311.
  • the loss force which is the radial direction component of the pedal action force by the strain sensor units 32 and 33 attached to the inner and outer surfaces of the right crankshaft B311, that is, the surface orthogonal to the rotation direction of the right crankshaft B311.
  • the pair of strain sensors 32a and 32b and the pair of strains 33a and 33b constitute a loss force bridge circuit 3B shown in FIG.
  • a pair of strain sensors 32a and 32b and strain sensors 33a and 33b constituting the strain sensor units 32 and 33 are respectively disposed on opposite sides of the loss force bridge circuit 3B.
  • the propulsive force bridge circuit 3A composed of the strain sensor units 30 and 31 is connected to the right-side power detection device 6, and the right-side power detection device 6 is based on the output value X1 from the propulsion force bridge circuit 3A.
  • a propulsive force (rotational direction component) Fx1 related to the right pedal acting force is calculated.
  • the loss power bridge circuit 3B configured by the strain sensor units 32 and 33 is also connected to the right power detection device 6, and the right power detection device 6 is based on the output value Y1 from the loss power bridge circuit 3B.
  • the loss force (radial component) Fy1 of the right pedal acting force is calculated.
  • the left pedal acting force (rotational direction component) Fx2 is calculated, and the left pedal acting force loss force (radial direction component) Fy2 is calculated.
  • the cadence detection device 5 includes a magnet fixed to the left crankshaft B312 and a magnet detector mounted at a predetermined position of the frame B1, and the magnet is a magnet detector per unit time (1 minute). By detecting the number n (rpm) of passing the front, the number of rotations of the crank B31 per unit time is detected. Then, the cadence detection device 5 transmits a cadence detection signal corresponding to the rotation speed of the crank B31 per unit time to each of the power detection devices 6 and 7.
  • the temperature sensor 8 is composed of, for example, a platinum resistance thermometer, detects the temperature T (° C.), and transmits a temperature detection signal corresponding to the temperature to the main body detection signal receiving unit 17 of the main body 1.
  • the cycle computer 100 includes the detection devices 2 to 5, the temperature sensor 8, the right power detection device 6 that calculates the right power based on the detection signals output from the detection devices 2 to 5, and each detection.
  • a left-side power detection device 7 for calculating a left-side power based on detection signals output from the devices 2 to 5 and a main body 1 that controls and controls the entire cycle computer 100 are provided.
  • the left work rate detection device 7 includes a left detection signal receiving unit 71, a left control unit 72, a left information storage unit 73, and a left work rate data transmission unit 74.
  • the left detection signal receiving unit 71 is an interface that receives each detection signal transmitted from the crank rotation angle detection device 2, the left pedal acting force detection device 4, and the cadence detection device 5.
  • the left control unit 72 includes a microcomputer including a CPU 72a, a ROM 72b, a RAM 72c, and the like, and calculates the left work rate based on the detection signal received by the left detection signal receiving unit 71. Specifically, the left control unit 72 calculates the left pedal operating force, calculates the rotation speed of the crank B31 based on the cadence detection signal from the cadence detection device 5, and calculates the left work rate based on these. To do. Further, the left control unit 72 detects the crank rotation angle based on the crank rotation angle detection signal.
  • the ROM 72b of the left control unit 72 stores in advance program codes for executing detection of the left power and crank rotation angle executed by the CPU 72a.
  • the RAM 72c functions as a working area for data and the like in arithmetic processing performed when the CPU 72a executes left-side power calculation processing.
  • the left side information storage unit 73 includes a RAM and stores predetermined information such as left side work rate data indicating the left side work rate calculated by the left side control unit 72.
  • the left work rate data transmitting unit 74 is an interface that transmits left work rate data indicating the left work rate calculated by the left control unit 72 to the left work rate data receiving unit 64 of the right work rate detecting device 6.
  • the right power detection device 6 includes a right detection signal receiver 61, a right controller 62, a right information storage unit 63, a left power data receiver 64, and an overall power data transmitter 65.
  • the right detection signal receiving unit 61 is an interface that receives each detection signal transmitted from the crank rotation angle detection device 2, the right pedal acting force detection device 3, and the cadence detection device 5.
  • the right control unit 62 includes a microcomputer including a CPU 62a, a ROM 62b, a RAM 62c, and the like, and calculates the right power based on various detection signals. Specifically, the right control unit 62 calculates the right pedal action force based on the output value X1 from the propulsive force bridge circuit 3A and the output value Y1 from the loss force bridge circuit 3B, and also detects a cadence detection device. 5 calculates the rotation speed of the crank B31 based on the cadence detection signal from 5, and calculates the right power on the basis of these. The right control unit 62 also detects the crank rotation angle based on the crank rotation angle detection signal.
  • the ROM 62b of the right control unit 62 stores in advance program codes for executing the calculation of the right power and the detection of the crank rotation angle executed by the CPU 62a.
  • the RAM 62c functions as a working area for data and the like in arithmetic processing performed when the CPU 62a executes right-side power calculation processing.
  • the left work rate data receiving unit 64 is an interface for receiving the left work rate data transmitted from the left work rate detecting device 7.
  • the right information storage unit 63 includes a RAM, and stores predetermined information such as right work rate data indicating the right work rate calculated by the right control unit 62 and left work rate data received by the left work rate data receiving unit 64.
  • the right control unit 62 calculates the total work rate by adding the right work rate indicated by the right work rate data stored in the right information storage unit 63 and the left work rate indicated by the left work rate data.
  • the total power data transmitting unit 65 is an interface that transmits the total power data indicating the total power calculated by the right control unit 62 to the total power data receiving unit 11 of the main body 1.
  • the main body 1 includes an overall power data receiving unit 11, a main body control unit 12, a main body information storage unit 13, an information input unit 14, an information display unit 15, a warning notification unit 16, a main body detection signal receiving unit 17, and a GPS signal receiving unit 18.
  • the total power data receiving unit 11 is an interface that receives the total power data transmitted from the total power data transmitting unit 65 of the right-side power detection device 6.
  • the main body control unit 12 includes a microcomputer including a CPU 12a, a ROM 12b, a RAM 13c, and the like, and calculates a representative value of the work rate from the start of traveling to the present time based on the received whole work rate data. In the present embodiment, the main body control unit 12 calculates, as a representative value, a work rate from the start of traveling to the current time.
  • the information input unit 14 includes operable operation units 14a to 14c (see FIG. 2), converts input signals accompanying operations received by the operation units 14a to 14c into control information corresponding to the operations, and controls the main body control unit 12. Send to.
  • the operation units 14a and 14c have a button structure that can be pressed, and 14b has a cross key structure.
  • the driver can input predetermined information by combining the operations of the operation units 14a to 14c.
  • the main body control unit 12 is an average that is a relational expression between a predetermined time interval for the driver and an average of the maximum work rate that can be exhibited in the time interval based on the predetermined information input by the information input unit 14.
  • a work rate curve (second work rate-time relational expression) is calculated and displayed on the information display unit 15 in a graph. Further, the main body control unit 12 determines, based on the predetermined information input by the information input unit 14, the time required for the driver to travel on the course by the bicycle B and the work rate based on the work amount required for the travel.
  • An expected time curve (first work rate-time relational expression), which is a relational expression, is calculated and displayed in a graph on the information display unit 15.
  • the main body control unit 12 uses the calculated average work rate curve and the predicted time curve to determine an optimum work rate P best (hereinafter referred to as “optimal work”) that is an index value when the driver travels the course.
  • Rate P best a work rate that is an index value when the driver travels the course.
  • best time t best a time t best required to travel the course are calculated and displayed on the information display unit 15.
  • the main body control unit 12 calculates an average work rate, calculates an expected time based on the calculated value and an expected time curve, and displays it on the information display unit 15. Further, the main body control unit 12 determines the difference between the current average work rate (the calculated value of the latest average work rate) and the optimum work rate P best which is an index value (reference value) of the average work rate (hereinafter referred to as “average work rate”).
  • the absolute value of “rate difference” is equal to or greater than a preset threshold value, that is, when the current average power is far from the optimal power, warning notification is performed in a predetermined manner.
  • ROM 12b of the main body control unit 12 program code for executing basic processing as the cycle computer 100 executed by the CPU 12a, the above-described predicted time curve, and the calculation of the predicted time based on the predicted time curve are stored in advance. It is remembered.
  • the RAM 12c functions as a working area for data and the like in arithmetic processing performed when the CPU 12a executes basic processing or the like as the cycle computer 100.
  • the main body information storage unit 13 includes a RAM, information for calculating the average power curve input by the information input unit 14, information for calculating the expected time curve, and average work calculated by the main body control unit 12.
  • the average work rate curve data indicating the rate curve, the expected time curve data indicating the expected time curve, and the expected time data indicating the expected time are stored.
  • the information display unit 15 is configured by a liquid crystal display, and is a graph representing an average power curve (hereinafter referred to as “average power graph”) and a graph representing an expected time curve (hereinafter referred to as “expected time curve graph”). And the optimum work rate and the best time are displayed.
  • the information display unit 15 may be integrated with the information input unit 14 in a touch panel system.
  • the warning notification unit 16 is configured by a speaker and, as described above, sounds a predetermined alert when the absolute value of the difference between the calculated average power and the index value is equal to or greater than a threshold value.
  • the main body detection signal receiving unit 17 is an interface that receives the temperature detection signal transmitted from the temperature sensor 8.
  • the GPS signal receiving unit 18 is an interface for receiving a warm GPS signal transmitted from a predetermined GPS satellite.
  • the main process is applied when traveling on a course that continues to climb.
  • the main body control unit 12 determines predetermined information (hereinafter referred to as “average power curve”) for calculating an average power curve in step S1. "Information”) is received.
  • the average power curve information is composed of the maximum power that can be sustained in a predetermined period.
  • the main body control unit 12 accepts input of predetermined information (hereinafter referred to as “expected time curve information”) for calculating an expected time curve in step S2.
  • the expected time curve information includes a user profile unique to the driver and the bicycle B and a course profile unique to the course to be run.
  • the user profile includes the driver's weight M r [kg], the total weight M b [kg] of the bicycle B including the equipment, a predetermined coefficient (air resistance coefficient ⁇ front projection area) CdA [m 2 ], and rolling of the tire B2. Includes resistance coefficient Crr.
  • the course profile includes a course travel distance (distance from the start point to the goal point along the course) D [m], and an elevation difference from the start point to the goal point (elevation of the goal point ⁇ elevation of the start point) h [M] and course temperature T [° C.] are included.
  • step S1 and step S2 When the input processing of step S1 and step S2 is completed, for example, by performing an operation indicating completion of the predetermined information input processing in step S2, the main body control unit 12 is input in step S1 in step S3. Based on the average power factor curve information, an average power factor curve is calculated and stored in the main body information storage unit 13 and displayed on the information display unit 15 in a graph.
  • the main body control unit 12 calculates the average power curve as follows. First, as shown in FIG. 10A, the maximum work W 1 to W 3 obtained by multiplying each of the maximum work ratios P 1 to P 3 that are average power ratio curve information by the corresponding predetermined periods t 1 to t 3 , respectively. Is a W component, and points on the Wt coordinate ⁇ W AE1 (t 1 , W 1 ), W AE2 (t 2 , W 2 ) and W AE3 (t 3 , W 3 ), where t is a predetermined period t 1 to t 3 are t components. ) ⁇ , An approximate straight line representing the relationship between the maximum work W and the predetermined period t is calculated by the least square method.
  • the slope of the approximate line is CP [W] and the intercept is AWC [J]
  • the relational expression is given by the following expression (1). [Equation 1]
  • step S4 the main body control unit 12 calculates an expected time curve based on the predicted time curve information input in step S2, stores it in the main body information storage unit 13, and displays it in the information display unit 15 as a graph. To do.
  • the main body control unit 12 calculates an expected time curve as follows. First, the total work amount W required to travel the course is calculated.
  • the total work W is the amount of change in potential energy due to the difference in elevation from the start point to the goal point (W1), the work against the air resistance (W2), and the work against the rolling resistance (W3). Calculated by adding. W1 to W3 are given by the following equations (3) to (5).
  • the main body control unit 12 displays the average power rate curve and the expected time curve in a graph on the information display unit 15, the vertical axis is the work rate P [W] and the horizontal axis is the time on the information display unit 15. Coordinates composed of logarithms of t [sec] are displayed, and both curves are displayed as graphs on the coordinates (see FIG. 12).
  • step S6 the main body control unit 12 starts measurement for calculating the expected time to travel to the goal point. Specifically, measurement is started by a timer counter provided in the RAM 12c. In the present embodiment, the timer counter is updated every 4 milliseconds.
  • the main body control unit 12 stores the total power data received by the total power data receiving unit 11 in the main body information storage unit 13 in step S7.
  • step S8 the main body control unit 12 confirms the counter value indicated by the timer counter, acquires the counter value as time data, displays it on the information display unit 15, and from the start of travel (start of measurement) to the present time. Is calculated and stored in the main body information storage unit 13.
  • step S9 the main body control unit 12 calculates an expected time t exp (time to arrive at the goal point) based on the average work rate P now calculated in step S8. Specifically, the main body control unit 12 calculates the predicted time t exp by substituting the average work rate P now calculated in step S8 into the predicted time curve.
  • step S10 the main body control unit 12 displays the expected time t exp calculated in step S9 on the information display unit 15. Specifically, the main body control unit 12 displays the expected time t exp in a predetermined area of the information display unit 15 (see FIG. 12, “Predicted goal time at current pace” in FIG. 12), and the current time The average power Pnow is represented by a horizontal line, and a vertical line passing through the intersection of the horizontal line and the expected time curve is shown as an expected time. In addition, in step S10, the main body control unit 12 displays predetermined information such as the optimum power P best and the current average power P now on the information display unit 15 (see FIG. 12).
  • step S11 the main body control unit 12 calculates the power difference by subtracting the optimum power P best from the current average power P now, and the absolute value of the power difference is equal to or greater than a preset threshold value. It is determined whether or not there is. If the main body control unit 12 determines that the threshold value is not equal to or greater than the threshold value, the process proceeds to step S13.
  • the warning notification is generated by the warning notification unit 16 including a speaker, but the warning notification mode is not limited to this.
  • the main body control unit 12 determines whether or not a predetermined measurement end operation has been performed in step S13. If it is determined that there is no predetermined measurement end operation, the main body control unit 12 moves the process to step S7, and if it is determined that there is a predetermined measurement end operation, the main process ends.
  • the average work rate curve is calculated based on the average work rate curve information unique to the driver, and the expected time curve is obtained based on the expected time curve information related to the exercise (information on the course, the driver, and the bicycle B). Since the optimal work rate and the best time are calculated based on these curves, the accuracy of the index value of the driver for the course is improved. As a result, the driver can exercise efficiently or appropriately train. Furthermore, both the expected time and the best time at the current average work rate (pace) are calculated and displayed, thereby providing the driver with a gap between the ideal and the current state. As a result, the driver can adjust the pace distribution, and can perform exercise or appropriate training more efficiently.
  • a warning notification is made by sounding an alert sound, so the driver can distribute the pace while concentrating on running (exercise). Can be adjusted.
  • the expected time curve is constant.
  • the predicted time curve can be changed based on predetermined information relating to the non-running portion of the course at the present time after starting running.
  • the main process by the main body control unit 12 in this case will be described with reference to FIG. Although the number of “Step S” is different, the description of Step S1 to Step S2, Step S4 to Step S6, Step S13 to Step S14, and Step S17 to Step S19 having the same contents as Embodiment 1 is omitted. .
  • step S3 the main body control unit 12 determines predetermined information (hereinafter referred to as “determination value information”) relating to a determination value (hereinafter referred to as “predicted time curve change determination value”) used in determining whether or not to change the predicted time curve. ”).
  • the main body control unit 12 stores determination value data indicating the determination value information in the determination value information data area of the main body information storage unit 13.
  • the predicted time curve change determination value is configured by a distance from the start point to the current time (D j: hereinafter referred to as “determination distance D j ”), and the determination value information is also configured by the determination distance D j . .
  • the predetermined information input process of S1 to S3 is completed, for example, by performing an operation indicating the completion of the predetermined information input process in S3, the main body control unit 12 moves the process to S4.
  • step S8 the main body control unit 12 acquires expected time update determination data.
  • the predicted time update determination data is an actual measurement value for comparison with determination value information in order to determine whether or not to change the predicted time curve. Since the main body 1 includes the GPS signal receiving unit 18 and can receive GPS signals from GPS satellites, the current position information P n (Px n , Py n ) is measured as an actual measurement value.
  • Main control unit 12 determines in step S9, the travel distance D is expected time curve change determination value to become determined distance D j above, i.e., whether or not to update the expected time curve.
  • the determination distance D j determined to be “YES” in S9 can be determined by a predetermined flag or the like, and the determination distance used this time based on the flag Select D j .
  • the main body control unit 12 determines predetermined information (hereinafter referred to as “predicted”) for updating the predicted time curve in step S10.
  • predetermined information hereinafter referred to as “predicted”
  • Time curve update information is acquired and stored in a predetermined area of the main body information storage unit 13.
  • the predicted time curve is updated based on the acquired predicted time curve update information.
  • the predicted time curve update information includes the altitude difference h from the local point to the goal point, the current temperature T, and the travel distance D from the local point to the goal point.
  • the altitude difference h from the local point to the goal point and the travel distance D from the local point to the goal point are calculated based on, for example, GPS signals.
  • the main body control unit 12 can update the predicted time curve by newly substituting the predicted time curve update information acquired in step S10 into the predicted time curve.
  • step S12 the main body control unit 12 calculates the intersection between the new predicted time curve and the average power curve updated in step S11, and updates the optimal power and the best time.
  • step S15 the main body control unit 12 calculates the predicted time by substituting the average power into the new predicted time curve based on the average power calculated in step S14, and calculates the predicted time.
  • the predicted time data shown is stored in the predicted time data storage area of the main body information storage unit 13.
  • step S16 the main body control unit 12 updates or calculates and stores the new predicted time curve, the optimum work rate / best time, the predicted time and the predicted remaining time until the goal stored in the main body information storage unit 13 as an information display unit. 15 is newly displayed.
  • the expected time curve is updated and displayed based on the predetermined information related to the non-running portion of the course at the current time
  • a static index value corresponding to the current time can be provided to the driver.
  • the effect is effective when the running pace is likely to change due to the change in the course gradient.
  • the predetermined information related to the predicted time curve change determination value is configured by the distance from the starting point along the course, but may be configured by position information.
  • step S9 it is possible to determine whether or not to change the predicted time curve depending on whether or not the position information indicated by the GPS signal is position information as the predicted time curve change determination value.
  • the predicted time curve change determination value is acquired by the main body control unit 12 when the driver inputs a specific number, but the information display unit 15 is configured with a touch panel, and at least the information display unit 15 is in the step S3.
  • the main body control unit 12 detects the position information by displaying a map of the course and the driver touches the displayed map, and stores it in the main body information storage unit 13 as an estimated time curve change determination value. It is also possible to do.
  • whether or not the expected time curve can be changed is determined by comparing the predicted time curve change determination value and the predicted time update determination data, but a preset operation unit (for example, Whether or not the expected time curve can be changed is determined based on whether or not the operation unit 14c is operated, that is, the expected time curve can be changed when the player operates a preset operation unit.
  • the average power curve is constant, but can be changed according to the actual measurement value.
  • P 1 to P 3 are input as the average power curve information, and the average power for a predetermined time according to P 1 to P 3 is calculated and based on the calculated value.
  • the average power curve can be updated or newly calculated and displayed. Thereby, an accurate index value can be presented to the driver.
  • the average work rate curve information, the maximum work rate The average P 1 ⁇ P 3 is set for a predetermined time period t 1 ⁇ t 3, the contents of the predetermined time period which Not limited to. It is also possible to set different predetermined periods or change the number of predetermined periods. It is also possible to freely set the contents of the predetermined period.
  • the average power curve information is acquired by receiving the input of the average power curve information in step S1 of the main process.
  • the method for acquiring the average power curve information is not limited to this. For example, each time the main process is executed (every time the bicycle B is run), the average power for a plurality of predetermined periods is calculated and stored, and in step S1, a plurality of past predetermined periods are stored. It is also possible to use the average power as average power curve information in the main process. Thus, by acquiring the average power factor curve information based on the past performance, the calculated index value becomes more accurate.
  • the maximum power for a plurality of predetermined periods is set as the average power curve information.
  • critical power CP: Theoretically, the maximum work rate (power) sustained without causing fatigue) and the non-renewable oxygen-free working capacity (AWC) can be set.
  • the main process is applied when traveling on a course that continues to climb, but it can also be applied to a course in which a descent is present.
  • an expected time curve dedicated to climbing and an expected time curve dedicated to descending are stored in the ROM 12b and the like, and are automatically operated by operation of the operation units 14a to 14c or automatically by an inclination or a position measured from a GPS signal. You can also switch the expected time curve.
  • the index value calculation device of the present invention is configured by the cycle computer 100 and applied to the bicycle B.
  • the present invention is not limited to this, and is applied to a stationary training bicycle or swan boat. It is also possible to do.
  • an average work rate can be detected, it can also be applied to swimming and marathon.
  • processing such as calculation of the average power and calculation of the specific period difference is executed based on a program built in the ROM 12b of the main body control unit 12 of the main body 1 of the cycle computer 100.
  • the recorded recording medium can be inserted, and a recording medium card can be inserted for use.
  • the program can be stored in the ROM 12b in advance, or can be downloaded and acquired. Furthermore, it is possible to make the main body 1 communicable with a predetermined server and execute processing such as calculation of average work rate and calculation of expected time using a program on the server.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

Provided are an index computation device, an index computation method, an index computation program, and a recording medium on which the index computation program is recorded, with which it is possible to improve exercise index precision. An optimal power and/or best time, which is an index of exercise, is/are computed on the basis of a power curve which represents a relation between a prescribed time interval and the maximum power in the time interval, and a forecast time curve which represents a relation between time required for exercise and a power based on the degree of work required for the exercise.

Description

運動用の指標値算出装置、運動用の指標値算出方法、運動用の指標値算出プログラム及び運動用の指標値算出プログラムを記録可能な記録媒体Index value calculation device for exercise, index value calculation method for exercise, index value calculation program for exercise, and recording medium capable of recording index value calculation program for exercise
 本発明は、運動用の指標値算出装置、運動用の指標値算出方法、運動用の指標値算出プログラム及び運動用の指標値算出プログラムを記録可能な記録媒体に関する。 The present invention relates to an index value calculation device for exercise, an index value calculation method for exercise, an index value calculation program for exercise, and a recording medium capable of recording the index value calculation program for exercise.
 従来、運動時に使用する計測装置として、自転車に装着され、自転車の走行時に現在地から目的地までの複数の経路を検索することが可能なパーソナルナビゲーションデバイスと称されるものがある。例えば、特許文献1に示すパーソナルナビゲーションデバイスは、GPS衛星から送出されるGPS信号等に基づいて、走行時間及び走行距離を計測すると共に、これらの計測値に加えて過去の実績データ等に基づいて到着予想時刻等などの指標(目安)を算出する。 Conventionally, as a measuring device used during exercise, there is a so-called personal navigation device that is attached to a bicycle and can search a plurality of routes from the current location to the destination when the bicycle is running. For example, the personal navigation device disclosed in Patent Document 1 measures travel time and travel distance based on GPS signals transmitted from GPS satellites, and based on past performance data and the like in addition to these measured values. An index (estimate) such as expected arrival time is calculated.
特開2011-112479号公報JP 2011-112479 A
 上記のパーソナルナビゲーションデバイスは、例えば、「1kmあたり2分30秒かかる」という過去の実績データに基づいて指標を算出する。しかしながら、このような平均速度は、走行距離や走行環境によって変動するため、指標が現実と異なる場合がある。そのため、指標の精度を向上させる必要がある。 The above-mentioned personal navigation device calculates an index based on past performance data such as “it takes 2 minutes 30 seconds per km”, for example. However, since such average speed varies depending on the travel distance and travel environment, the index may be different from the actual one. Therefore, it is necessary to improve the accuracy of the index.
 本発明は、上述した事情に鑑みてなされたものであり、上述のような問題を解決することを課題の一例とするものであり、これらの課題を解決することができる指標値算出装置、指標値算出方法、指標値算出プログラム及び指標値算出プログラムを記録可能な記録媒体を提供することを目的とする。 The present invention has been made in view of the above-described circumstances, and is intended to solve the above-described problems as an example, and an index value calculation device and an index that can solve these problems An object is to provide a value calculation method, an index value calculation program, and a recording medium capable of recording the index value calculation program.
 上記課題を解決するために、本発明に係る運動用の指標値算出装置は、所定の運動に係る固有情報を取得する固有情報取得手段と、前記固有情報取得手段により取得された固有情報に基づいて、当該運動に要する時間と当該運動に要する仕事量に基づく仕事率との関係式である第1の仕事率-時間関係式を算出する第1算出手段と、当該運動者についての所定の時間間隔と当該時間間隔における仕事率との関係式である第2の仕事率-時間関係式を算出するための所定情報を取得する所定情報取得手段と、前記所定情報取得手段により取得された所定情報に基づいて、前記第2の仕事率-時間関係式を算出する第2算出手段と、前記第1算出手段により算出された第1の仕事率-時間関係式と、前記第2算出手段により算出された第2の仕事率-時間関係式とに基づいて、これらの関係式の交点を構成する仕事率及び時間の双方又はいずれか一方を指標値として算出する指標値算出手段と、を有することを特徴とする。
 上記課題を解決するために、本発明に係る運動用の指標値算出方法は、所定の運動に係る固有情報を取得する固有情報取得手段により取得された固有情報に基づいて、当該運動に要する時間と当該運動に要する仕事量に基づく仕事率との関係式である第1の仕事率-時間関係式を算出する第1算出工程と、当該運動者についての所定の時間間隔と当該時間間隔における仕事率との関係式である第2の仕事率-時間関係式を算出するための所定情報を取得する所定情報取得手段により取得された所定情報に基づいて、前記第2の仕事率-時間関係式を算出する第2算出工程と、前記第1算出工程において算出された第1の仕事率-時間関係式と、前記第2算出工程において算出された第2の仕事率-時間関係式とに基づいて、これらの関係式の交点を構成する仕事率及び時間の双方又はいずれか一方を指標値として算出する指標値算出工程と、を有することを特徴とする。
 上記課題を解決するために、本発明に係る運動用の指標値算出プログラムは、コンピュータに、所定の運動に係る固有情報を取得する固有情報取得手段により取得された固有情報に基づいて、当該運動に要する時間と当該運動に要する仕事量に基づく仕事率との関係式である第1の仕事率-時間関係式を算出する第1算出機能と、当該運動の運動者についての所定の時間間隔と当該時間間隔における仕事率との関係式である第2の仕事率-時間関係式を算出するための所定情報を取得する所定情報取得手段により取得された所定情報に基づいて、前記第2の仕事率-時間関係式を算出する第2算出機能と、前記第1算出機能によって算出された第1の仕事率-時間関係式と、前記第2算出機能によって算出された第2の仕事率-時間関係式とに基づいて、これらの関係式の交点を構成する仕事率及び時間の双方又はいずれか一方を指標値として算出する指標値算出機能と、を実現させることを特徴とする。
In order to solve the above problems, an index value calculation apparatus for exercise according to the present invention is based on specific information acquisition means for acquiring specific information related to a predetermined exercise, and specific information acquired by the specific information acquisition means. A first calculating means for calculating a first work rate-time relational expression that is a relational expression between the time required for the exercise and the work rate based on the work required for the exercise; and a predetermined time for the exerciser Predetermined information acquisition means for acquiring predetermined information for calculating a second work rate-time relational expression, which is a relational expression between the interval and the work rate in the time interval, and the predetermined information acquired by the predetermined information acquisition means Based on the above, the second calculation means for calculating the second power-time relational expression, the first power-time relational expression calculated by the first calculation means, and the second calculation means Second job done - based on the time relationship, and having a the index value calculating means for calculating both or either of the work rate and time constitutes the intersection of these relations as an index value.
In order to solve the above problem, the index value calculation method for exercise according to the present invention is based on unique information acquired by unique information acquisition means for acquiring specific information related to a predetermined exercise, and the time required for the exercise A first calculation step of calculating a first work rate-time relational expression that is a relational expression between the work rate based on the work required for the exercise and the work amount, a predetermined time interval for the exerciser, and work in the time interval Based on the predetermined information acquired by the predetermined information acquisition means for acquiring the predetermined information for calculating the second power-time relational expression that is a relational expression with the rate, the second power-time relational expression Based on the second calculation step of calculating the first power, the first power-time relational expression calculated in the first calculation step, and the second power-time relational expression calculated in the second calculation step Of these relations And having the index value calculation step for calculating work rate constitutes a point and one or both any time as an index value.
In order to solve the above problems, an index value calculation program for exercise according to the present invention is based on the unique information acquired by the specific information acquisition means for acquiring specific information related to a predetermined exercise in a computer. A first calculation function for calculating a first work rate-time relational expression, which is a relational expression between the time required for the exercise and the work based on the work required for the exercise, and a predetermined time interval for the exerciser of the exercise Based on the predetermined information acquired by the predetermined information acquisition means for acquiring the predetermined information for calculating the second power-time relational expression that is a relational expression with the power in the time interval, the second work A second calculation function for calculating a rate-time relational expression, a first work rate-time relational expression calculated by the first calculation function, and a second work rate-time calculated by the second calculation function. Relational expression and Based on, characterized in that to realize the index value calculation function for calculating both or either of the work rate and time constitutes the intersection of these relations as an index value.
(a)はサイクルコンピュータが取り付けられた自転車の側面図、(b)はサイクルコンピュータが取り付けられた自転車の正面図である。(A) is a side view of the bicycle to which the cycle computer is attached, and (b) is a front view of the bicycle to which the cycle computer is attached. 図1のサイクルコンピュータの本体の外観図である。It is an external view of the main body of the cycle computer of FIG. (a)は図1のサイクルコンピュータの右側仕事率検出装置が右クランクに取り付けられている様子を現す図、(b)は図1の左側仕事率検出装置が左クランクに取り付けられている様子を表す図である。1A shows a state where the right power detection device of the cycle computer of FIG. 1 is attached to the right crank, and FIG. 1B shows a state where the left power detection device of FIG. 1 is attached to the left crank. FIG. クランク回転角度検出ユニットの正面図ある。It is a front view of a crank rotation angle detection unit. (a)は右ペダル作用力検出装置の平面図、(b)は右ペダル作用力検出装置の背面図、(c)は右ペダル作用力検出装置の部分断面図である。(A) is a plan view of the right pedal acting force detector, (b) is a rear view of the right pedal acting force detector, and (c) is a partial sectional view of the right pedal acting force detector. (a)は推進力用の歪みセンサユニットが右クランクシャフトに貼り付けられている様子を模式的に表した斜視図、(b)は損失力用の歪みセンサユニットが右クランクシャフトに貼り付けられている様子を模式的に表した斜視図である。(A) is a perspective view schematically showing a state where a propulsive force strain sensor unit is attached to the right crankshaft, and (b) is a loss force strain sensor unit attached to the right crankshaft. It is the perspective view which represented the mode that it is showing typically. (a)は右ペダル作用力検出装置の推進力用ブリッジ回路、(b)は右ペダル作用力検出装置の損失力用ブリッジ回路である。(A) is a bridge circuit for propulsive force of the right pedal acting force detector, and (b) is a bridge circuit for loss force of the right pedal acting force detector. サイクルコンピュータの機能的なブロック図である。It is a functional block diagram of a cycle computer. サイクルコンピュータの本体によるメイン処理を示すフローチャートである。It is a flowchart which shows the main processing by the main body of a cycle computer. 平均仕事率曲線の算出方法を説明するグラフである。It is a graph explaining the calculation method of an average work rate curve. 最適仕事率及びベストタイムの算出方法を説明するグラフである。It is a graph explaining the calculation method of the optimal work rate and the best time. 情報表示部における表示内容の一例を表す図である。It is a figure showing an example of the display content in an information display part. 実施の形態2におけるサイクルコンピュータの本体によるメイン処理を示すフローチャートである。10 is a flowchart showing main processing by the main body of the cycle computer in the second embodiment.
 以下、本発明の実施の形態について図面を参照しながら具体的に説明する。図1(a)は、所定のコースを走行するのに要する最適な時間(ベストタイム)及び最適な仕事率を算出し、表示するサイクルコンピュータ100が自転車Bに取り付けられている様子を表す側面図、図1(b)はサイクルコンピュータ100が自転車Bに取り付けられている様子を表す正面図である。 Hereinafter, embodiments of the present invention will be specifically described with reference to the drawings. FIG. 1A is a side view showing a state in which a cycle computer 100 that calculates and displays an optimum time (best time) and optimum work rate required to travel a predetermined course is attached to the bicycle B. FIG. 1B is a front view showing a state in which the cycle computer 100 is attached to the bicycle B.
 自転車Bは、基体となるフレームB1と、当該自転車Bの前後においてフレームB1で回転自在に軸支されることにより、フレームB1を移動自在に支持する二つの車輪B2(前輪B21及び後輪B22)と、自転車Bを推進させるための推進力を後輪B22に伝える駆動機構B3と、運転者が操縦するためのハンドルB4と、運転者が着座するためのサドルB5とを有する。 The bicycle B has a frame B1 as a base, and two wheels B2 (front wheel B21 and rear wheel B22) that support the frame B1 movably by being rotatably supported by the frame B1 before and after the bicycle B. And a drive mechanism B3 for transmitting a propulsive force for propelling the bicycle B to the rear wheel B22, a handle B4 for the driver to steer, and a saddle B5 for the driver to sit on.
 駆動機構B3は、一端に回動軸(クランク軸)を有し、斯かる回動軸がフレームB1に対して回転自在に軸支されるアルミ製のクランクB31、クランクB31の他端において回転自在に軸支されると共に、運転者等から力を受けるペダルB32、クランクB31の上記一端にあるクランク軸を共通の回動軸としてクランクB31に接続され、クランクB31と一体的に回動するチェーンリングB34、及び、後輪B22の回動軸を共通の回動軸として後輪B22と一体的に回転するように配されたリアスプロケット(図示せず)とチェーンリングB34と連結されることでペダルB32に作用する力(以下、「ペダル作用力」という)を後輪B22に伝達するチェーンB33を具備する。 The drive mechanism B3 has a rotating shaft (crankshaft) at one end, and the rotating shaft is rotatably supported at the other end of the crank B31 by an aluminum crank B31 that is rotatably supported with respect to the frame B1. A chain ring that is pivotally supported by the driver and connected to the crank B31 with the crankshaft at the one end of the pedal B32 and the crank B31 as a common turning shaft, and rotates integrally with the crank B31. B34 and a rear sprocket (not shown) arranged so as to rotate integrally with the rear wheel B22 using the rotation axis of the rear wheel B22 as a common rotation axis, and the chain ring B34 are connected to the pedal. A chain B33 for transmitting a force acting on B32 (hereinafter referred to as “pedal acting force”) to the rear wheel B22 is provided.
 クランクB31は、自転車Bの進行方向を向いて右側に配置される右クランクシャフトB311と、自転車Bの進行方向を向いて左側に配置される左クランクシャフトB312とを有し、これら左右のクランクシャフトB311、B312は、上記クランク軸を対称点とする点対称となる位置で固着されている。また、ペダルB32は、右クランクシャフトB311の先端部で回転自在に支持される右ペダルB321と、左クランクシャフトB312の先端部で回転自在に支持される左ペダルB322とを有する。 The crank B31 has a right crankshaft B311 disposed on the right side facing the traveling direction of the bicycle B, and a left crankshaft B312 disposed on the left side facing the traveling direction of the bicycle B, and these left and right crankshafts. B311 and B312 are fixed at a point-symmetrical position with the crankshaft as a symmetric point. In addition, the pedal B32 includes a right pedal B321 that is rotatably supported by the distal end portion of the right crankshaft B311 and a left pedal B322 that is rotatably supported by the distal end portion of the left crankshaft B312.
 サイクルコンピュータ100は、クランクB31の回転角度を検出するクランク回転角度検出装置2、右クランクシャフトB311に作用する力(以下、「右ペダル作用力」という)を検出する右ペダル作用力検出装置3、左クランクシャフトB312に作用する力(以下、「左ペダル作用力」という)を検出する左ペダル作用力検出装置4、クランクB31の回転速度を検出するケイデンス検出装置5及び温度センサ8を備える。なお、右ペダル作用力検出装置3及び左ペダル作用力検出装置4は、それぞれクランクB31の回転に寄与する力(以下、「推進力」という)とクランクB31の回転に寄与しない力(以下、「損失力」という)とを分けて検出する。 The cycle computer 100 includes a crank rotation angle detection device 2 that detects the rotation angle of the crank B31, a right pedal action force detection device 3 that detects a force acting on the right crankshaft B311 (hereinafter referred to as “right pedal action force”), A left pedal acting force detecting device 4 that detects a force acting on the left crankshaft B312 (hereinafter referred to as “left pedal acting force”), a cadence detecting device 5 that detects a rotation speed of the crank B31, and a temperature sensor 8 are provided. The right pedal acting force detection device 3 and the left pedal acting force detection device 4 each have a force that contributes to the rotation of the crank B31 (hereinafter referred to as “propulsion force”) and a force that does not contribute to the rotation of the crank B31 (hereinafter, “ It is detected separately.
 また、サイクルコンピュータ100は、クランク回転角度検出装置2、右ペダル作用力検出装置3、左ペダル作用力検出装置4及びケイデンス検出装置5により出力される検出値を示す検出信号に基づいて、運転者の右ペダル作用力による仕事率(以下、「右側仕事率」という)を算出する右側仕事率検出装置6、運転者の左ペダル作用力による仕事率(以下、「左側仕事率」)を算出する左側仕事率検出装置7、及び、サイクルコンピュータ100の全体を統括し、制御する本体1を備える。なお、検出装置2、3、5と右側仕事率検出装置6及び検出装置2、4、5と左側仕事率検出装置7は有線形式で接続されている。 The cycle computer 100 also detects the driver based on detection signals indicating detection values output by the crank rotation angle detection device 2, the right pedal action force detection device 3, the left pedal action force detection device 4, and the cadence detection device 5. The right work rate detection device 6 for calculating the work rate by the right pedal working force (hereinafter referred to as “right work rate”), and the work rate by the left pedal working force of the driver (hereinafter referred to as “left work rate”). The left-side power detection device 7 and the main body 1 that controls and controls the entire cycle computer 100 are provided. The detection devices 2, 3, 5 and the right power detection device 6 and the detection devices 2, 4, 5 and the left power detection device 7 are connected in a wired manner.
 左側仕事率検出装置7は、算出した左側仕事率を示す左側仕事率データを右側仕事率検出装置6に送信する。一方、右側仕事率検出装置6は、左側仕事率検出装置7から受信した左側仕事率データが示す左側仕事率と、算出した右側仕事率とを合算して全体の仕事率(以下、「全体仕事率」という)を算出し、全体仕事率を示す全体仕事率データを本体1に送信する。そして、本体1は右側仕事率検出装置6から受信した全体仕事率データに基づいて、走行を開始してから現時点までの仕事率の平均(以下、「平均仕事率」という)を算出し、当該平均仕事率に基づいて当該コースを走行するのに要する時間(以下、「予想タイム」という)を算出し、表示する。 The left work rate detection device 7 transmits left work rate data indicating the calculated left work rate to the right work rate detection device 6. On the other hand, the right-side power detection device 6 adds up the left-side power shown by the left-side power data received from the left-side power detection device 7 and the calculated right-side power to obtain the overall power (hereinafter referred to as “total power”). The total work rate data indicating the total work rate is transmitted to the main body 1. Then, the main body 1 calculates the average of the work rates from the start of running to the present time (hereinafter referred to as “average work rate”) based on the total work rate data received from the right work rate detection device 6, Based on the average work rate, the time required to travel the course (hereinafter referred to as “expected time”) is calculated and displayed.
 なお、図2に示すように、本体1はハンドルB4に固定され、図3(a)に示すように、右側仕事率検出装置6はチェーンリングB34に固定され、図3(b)に示すように左側仕事率検出装置7は左クランクシャフトB312に固定されている。また、本体1、右側仕事率検出装置6及び左側仕事率検出装置7は図示しない発信機を備えており、相互に無線方式で接続されている。 As shown in FIG. 2, the main body 1 is fixed to the handle B4, and as shown in FIG. 3 (a), the right power detection device 6 is fixed to the chain ring B34, as shown in FIG. 3 (b). The left power detection device 7 is fixed to the left crankshaft B312. Further, the main body 1, the right-side power detection device 6 and the left-side power detection device 7 include a transmitter (not shown) and are connected to each other by a wireless method.
 また、温度センサ8は、自転車Bの所定位置に取り付けられており、本体1と有線方式で接続されている。 Further, the temperature sensor 8 is attached to a predetermined position of the bicycle B and is connected to the main body 1 in a wired manner.
 図4に示すように、クランク回転角度検出装置2は、複数の磁石21a~21nが所定間隔をおいて円周状に配された磁石群が設けられている被センシング部21と、被センシング部21を構成する磁石21a~21nを検出可能なセンシング部22とからなる。被センシング部21はチェーンリングB34に対向する様に、具体的には、フレームB1のボトムブラケット(図示なし)のチェーンリングB34に対向する側の端部に、クランク軸と同軸状に固定され、センシング部22はチェーンリングB34に固定され、クランクB31と共に回転する。よって、クランクB31が回転すると、センシング部22が被センシング部21の磁石群(磁石21a~21n)の外側を旋回することとなる。なお、本実施の形態においてセンシング部22は右側仕事率検出装置6の中に組み込まれて、一体化されている。 As shown in FIG. 4, the crank rotation angle detection device 2 includes a sensed part 21 provided with a magnet group in which a plurality of magnets 21a to 21n are arranged circumferentially at predetermined intervals, and a sensed part. And a sensing unit 22 capable of detecting the magnets 21a to 21n constituting the member 21. The sensed part 21 is fixed to the end of the bottom bracket (not shown) of the frame B1 facing the chain ring B34 so as to face the chain ring B34, and is coaxially fixed to the crankshaft. The part 22 is fixed to the chain ring B34 and rotates together with the crank B31. Therefore, when the crank B31 rotates, the sensing unit 22 turns outside the magnet group (magnets 21a to 21n) of the sensed unit 21. In the present embodiment, the sensing unit 22 is integrated into the right-side power detection device 6 and integrated.
 被センシング部21は14個の磁石21a~21nで構成されており、0時~10時方向までの第1範囲においては11個の磁石21a~21kが30度間隔で配され、10時~0時方向までの第2範囲においては5個の磁石21k~21aが7.5度間隔で配されている。また、磁石21a~21nは、各軸方向(磁極)が放射方向を向くように配されており、且つ、周方向に磁極の向きが外向きと内向きとが交互になるように配されている。また、センシング部22は、S極とN極とを検出可能な磁気センサで構成されており、センシング部22は回転しながら、磁石群の各磁石21a~21nを検出することができる。センシング部22は、磁石21a~21nを検出すると、磁界の強さ及び磁界の向きを示すクランク回転角度検出信号を右側仕事率検出装置6及び左側仕事率検出装置7に送信する。 The sensed part 21 is composed of 14 magnets 21a to 21n. In the first range from 0 o'clock to 10 o'clock, 11 magnets 21a to 21k are arranged at intervals of 30 degrees, and 10 o'clock to 0 o'clock. In the second range up to the time direction, five magnets 21k to 21a are arranged at intervals of 7.5 degrees. Further, the magnets 21a to 21n are arranged so that the respective axial directions (magnetic poles) are directed in the radial direction, and the magnetic poles are arranged so that the directions of the magnetic poles are alternately outward and inward in the circumferential direction. Yes. The sensing unit 22 includes a magnetic sensor capable of detecting the S pole and the N pole, and the sensing unit 22 can detect the magnets 21a to 21n of the magnet group while rotating. When the sensing unit 22 detects the magnets 21a to 21n, it transmits a crank rotation angle detection signal indicating the strength of the magnetic field and the direction of the magnetic field to the right power detection device 6 and the left power detection device 7.
 次に、右ペダル作用力検出装置3及び左ペダル作用力検出装置4について説明する。右ペダル作用力検出装置3は、全体的にシート状となっており、図3(a)に示すように、右クランクシャフトB311に巻き付くように取り付けられている。一方、左ペダル作用力検出装置4も、全体的にシート状となっており、図3(b)に示すように、左クランクシャフトB312に巻き付くように取り付けられている。右ペダル作用力検出装置3の構成と左ペダル作用力検出装置4の構成とは同様であるため、以下、右ペダル作用力検出装置3について説明する。 Next, the right pedal acting force detection device 3 and the left pedal acting force detection device 4 will be described. The right pedal acting force detection device 3 has a sheet shape as a whole, and is attached so as to wind around the right crankshaft B311 as shown in FIG. On the other hand, the left pedal acting force detection device 4 also has a sheet shape as a whole, and is attached so as to be wound around the left crankshaft B312 as shown in FIG. Since the configuration of the right pedal acting force detection device 3 and the configuration of the left pedal acting force detection device 4 are the same, the right pedal acting force detection device 3 will be described below.
 右ペダル作用力検出装置3は、図5に示すように、検出対象の歪みを検出する歪みセンサユニット30~33、各歪みセンサユニット30~33の下敷きとなって右クランクシャフトB311に直接貼り付けられる下敷きシート34~37、歪みセンサユニット30~33をまとめて全体的に歪みセンサユニット30~33の表面側から覆う上側防水シート38、及び、上側防水シート38の底面と右クランクシャフトB311の表面との間に形成される隙間と歪みセンサユニット30~33とを遮断する下側防水シート39を具備する。 As shown in FIG. 5, the right pedal acting force detection device 3 is directly attached to the right crankshaft B311 as an underlay of the strain sensor units 30 to 33 for detecting the strain to be detected and the respective strain sensor units 30 to 33. The upper waterproof sheet 38 that covers the underlying sheets 34 to 37 and the strain sensor units 30 to 33 collectively from the surface side of the strain sensor units 30 to 33, and the bottom surface of the upper waterproof sheet 38 and the surface of the right crankshaft B311 The lower waterproof sheet 39 is provided to block the gap formed between and the strain sensor units 30 to 33.
 下敷きシート34~37は伸縮性(弾性)を有するアルミ板で構成され、一方の面(以下、「表面」という)で歪みセンサユニット30~33に接着されており、他方の面(以下、「裏面」という)で右クランクシャフトB311の歪み検出箇所に接着される。なお、各下敷きシート34~37の表面は、それぞれの対応する歪みセンサユニット30~33より大きく、歪みセンサユニット30~33が貼り付けられると、表面の一部が露出する。この露出している部分に下側防水シート39が接着されている。そして、上側防水シート38が歪みセンサユニット30~33及び下側防水シート39を覆った状態で下側防水シート39に接着されている The underlay sheets 34 to 37 are made of an aluminum plate having elasticity (elasticity), and are bonded to the strain sensor units 30 to 33 on one side (hereinafter referred to as “surface”), and the other side (hereinafter referred to as “surface”). It is adhered to the strain detection location of the right crankshaft B311. Note that the surface of each of the underlying sheets 34 to 37 is larger than the corresponding strain sensor unit 30 to 33, and when the strain sensor units 30 to 33 are attached, a part of the surface is exposed. The lower waterproof sheet 39 is bonded to the exposed portion. The upper waterproof sheet 38 is adhered to the lower waterproof sheet 39 in a state of covering the strain sensor units 30 to 33 and the lower waterproof sheet 39.
 このように、右ペダル作用力検出装置3は、歪みセンサユニット30~33、下敷きシート34~37、上側防水シート38及び下側防水シート39が一体化してなり、下敷きシート34~37が裏面で右クランクシャフトB311の歪み検出箇所(後述する前面、後面、外側面及び内側面)に接着された状態で、右クランクシャフトB311に取り付けられる。 As described above, the right pedal acting force detection device 3 is formed by integrating the strain sensor units 30 to 33, the underlay sheets 34 to 37, the upper waterproof sheet 38 and the lower waterproof sheet 39, and the underlay sheets 34 to 37 are on the back surface. The right crankshaft B311 is attached to the right crankshaft B311 in a state where it is adhered to a strain detection portion (a front surface, a rear surface, an outer surface, and an inner surface described later).
 上述したように、右ペダル作用力検出装置3及び左ペダル作用力検出装置4は、それぞれ推進力と損失力とを分けて検出する。ここで、歪みセンサユニット30、31が推進力を検出するために用いられ、歪みセンサユニット32、33が損失力を検出するために用いられている。歪みセンサユニット30、31は、クランクB31の回転方向に対応する右クランクシャフトB311の前面及び後面に貼り付けられている。一方、歪みセンサユニット32、33は、クランクB31の回転方向に直交する右クランクシャフトB311の外側面及び内側面に貼り付けられている。歪みセンサユニット30~33は、ひずみを検出すると、ひずみに応じたひずみ検出信号を右側仕事率検出装置6に送信する。 As described above, the right pedal acting force detection device 3 and the left pedal acting force detection device 4 separately detect the propulsive force and the loss force. Here, the strain sensor units 30 and 31 are used for detecting the propulsive force, and the strain sensor units 32 and 33 are used for detecting the loss force. The strain sensor units 30 and 31 are attached to the front and rear surfaces of the right crankshaft B311 corresponding to the rotation direction of the crank B31. On the other hand, the strain sensor units 32 and 33 are affixed to the outer side surface and the inner side surface of the right crankshaft B311 orthogonal to the rotation direction of the crank B31. When the strain sensor units 30 to 33 detect the strain, the strain sensor units 30 to 33 transmit a strain detection signal corresponding to the strain to the right-side power detection device 6.
 図6(a)に示すように、歪みセンサユニット30は、矢羽型で、一対のひずみセンサ30a・30bで構成されており、右ペダルB321が真下(6時方向)に位置するとき、右クランクシャフトB311の進行方向に対して前方を向く面(以下、「前面」という)に貼り付けられている。一方、歪みセンサユニット31も矢羽型で、一対のひずみセンサ31a・31bで構成されており、同様に後方を向く面(以下、「後面」という)に貼り付けられる。各歪みセンサユニット30、31は矢羽型の矢羽の向きが右クランクシャフトB311の長さ方向に沿って右ペダルB321を向いた状態で貼り付けられている。 As shown in FIG. 6 (a), the strain sensor unit 30 is arrow-shaped and is composed of a pair of strain sensors 30a and 30b. When the right pedal B321 is located directly below (6 o'clock direction), It is affixed to the surface (hereinafter referred to as “front surface”) facing forward with respect to the traveling direction of the crankshaft B311. On the other hand, the strain sensor unit 31 also has an arrow feather shape, and is composed of a pair of strain sensors 31a and 31b, and is similarly attached to a rear-facing surface (hereinafter referred to as “rear surface”). Each strain sensor unit 30, 31 is affixed with the direction of the arrow-shaped arrow feathers facing the right pedal B 321 along the length direction of the right crankshaft B 311.
 このように、右クランクシャフトB311の前後面、すなわち、右クランクシャフトB311の回転方向に力を受ける面に貼り付けられた歪みセンサユニット30、31によって、ペダル作用力の回転方向成分である推進力が検出される。そして、これらの一対のひずみセンサ30a、30b及び一対のひずみセンサ31a、31bにより、図7(a)に示す推進力用ブリッジ回路3Aが構成されている。具体的に、各歪みセンサユニット30、31を構成する一対のひずみセンサ30a、30b及びひずみセンサ31a、31bがそれぞれ推進力用ブリッジ回路3Aの対辺に配置されている。これにより、右クランクシャフトB311のねじれのひずみ(内外方向から受ける力の影響)を相殺(キャンセル)することができる。 In this way, the propulsive force that is the rotational direction component of the pedal action force is applied by the strain sensor units 30 and 31 that are attached to the front and rear surfaces of the right crankshaft B311, that is, the surface that receives the force in the rotational direction of the right crankshaft B311 Is detected. The pair of strain sensors 30a and 30b and the pair of strain sensors 31a and 31b constitute a propulsive force bridge circuit 3A shown in FIG. Specifically, the pair of strain sensors 30a and 30b and the strain sensors 31a and 31b constituting the strain sensor units 30 and 31 are respectively arranged on opposite sides of the propulsive force bridge circuit 3A. Thereby, the distortion of the twist of the right crankshaft B311 (the influence of the force received from the inside and outside direction) can be canceled (cancelled).
 図6(b)に示すように、歪みセンサユニット32は、矢羽型で、一対のひずみセンサ32a・32bで構成されており、右クランクシャフトB311の進行方向に直交する方向に対して自転車Bの外側を向く面(以下、「外側面」という)に貼り付けられている。一方、歪みセンサユニット33も、矢羽型で、一対のひずみセンサ33a・33bで構成されており、進行方向に直交する方向に対して自転車Bの内側を向く面(以下、「内側面」という)に貼り付けられる。各歪みセンサユニット32、33は矢羽型の矢羽の向きが右クランクシャフトB311の長さ方向に沿って右ペダルB321を向いた状態で貼り付けられている。 As shown in FIG. 6 (b), the strain sensor unit 32 has an arrow feather shape and is composed of a pair of strain sensors 32a and 32b, and the bicycle B with respect to the direction perpendicular to the traveling direction of the right crankshaft B311. Is attached to the surface facing the outside (hereinafter referred to as “outer surface”). On the other hand, the strain sensor unit 33 is also arrow-shaped and is composed of a pair of strain sensors 33a and 33b, and is a surface facing the inside of the bicycle B with respect to the direction orthogonal to the traveling direction (hereinafter referred to as "inner surface"). ). Each strain sensor unit 32, 33 is affixed with the direction of the arrow-shaped arrow feathers facing the right pedal B321 along the length direction of the right crankshaft B311.
 このように、右クランクシャフトB311の内外側面、すなわち、右クランクシャフトB311の回転方向に直交する面に貼り付けられた歪みセンサユニット32、33によって、ペダル作用力の動径方向成分である損失力が検出される。そして、これらの一対のひずみセンサ32a、32b及び一対のひずみ33a、33bにより、図7(b)に示す損失力用ブリッジ回路3Bが構成されている。具体的に、各歪みセンサユニット32、33を構成する一対のひずみセンサ32a、32b及びひずみセンサ33a、33bがそれぞれ損失力用ブリッジ回路3Bの対辺に配置されている。これにより、右クランクシャフトB311のねじれのひずみ(回転方向から受ける力の影響)を相殺(キャンセル)することができる。 Thus, the loss force which is the radial direction component of the pedal action force by the strain sensor units 32 and 33 attached to the inner and outer surfaces of the right crankshaft B311, that is, the surface orthogonal to the rotation direction of the right crankshaft B311. Is detected. The pair of strain sensors 32a and 32b and the pair of strains 33a and 33b constitute a loss force bridge circuit 3B shown in FIG. Specifically, a pair of strain sensors 32a and 32b and strain sensors 33a and 33b constituting the strain sensor units 32 and 33 are respectively disposed on opposite sides of the loss force bridge circuit 3B. Thereby, the distortion of the twist of the right crankshaft B311 (the influence of the force received from the rotation direction) can be canceled (cancelled).
 そして、歪みセンサユニット30、31で構成される推進力用ブリッジ回路3Aは右側仕事率検出装置6に接続され、右側仕事率検出装置6は推進力用ブリッジ回路3Aからの出力値X1に基づいて右ペダル作用力に係る推進力(回転方向成分)Fx1を算出する。一方、歪みセンサユニット32、33で構成される損失力用ブリッジ回路3Bも右側仕事率検出装置6に接続され、右側仕事率検出装置6は損失力用ブリッジ回路3Bからの出力値Y1に基づいて、右ペダル作用力の損失力(動径方向成分)Fy1を算出する。なお、左側仕事率検出装置7についても同様に、左ペダル作用力の推進力(回転方向成分)Fx2を算出すると共に、左ペダル作用力の損失力(動径方向成分)Fy2を算出する。 The propulsive force bridge circuit 3A composed of the strain sensor units 30 and 31 is connected to the right-side power detection device 6, and the right-side power detection device 6 is based on the output value X1 from the propulsion force bridge circuit 3A. A propulsive force (rotational direction component) Fx1 related to the right pedal acting force is calculated. On the other hand, the loss power bridge circuit 3B configured by the strain sensor units 32 and 33 is also connected to the right power detection device 6, and the right power detection device 6 is based on the output value Y1 from the loss power bridge circuit 3B. The loss force (radial component) Fy1 of the right pedal acting force is calculated. In the same way, for the left-side power detection device 7, the left pedal acting force (rotational direction component) Fx2 is calculated, and the left pedal acting force loss force (radial direction component) Fy2 is calculated.
 また、ケイデンス検出装置5は、左クランクシャフトB312に固定されたマグネットと、フレームB1の所定位置に装着されたマグネット検出器とで構成され、単位時間当たり(1分間)にマグネットがマグネット検出器の正面を通過する回数n(rpm)を検出することで、単位時間当たりのクランクB31の回転数を検出する。そして、ケイデンス検出装置5は、単位時間当たりのクランクB31の回転数に応じたケイデンス検出信号を各仕事率検出装置6、7に送信する。 The cadence detection device 5 includes a magnet fixed to the left crankshaft B312 and a magnet detector mounted at a predetermined position of the frame B1, and the magnet is a magnet detector per unit time (1 minute). By detecting the number n (rpm) of passing the front, the number of rotations of the crank B31 per unit time is detected. Then, the cadence detection device 5 transmits a cadence detection signal corresponding to the rotation speed of the crank B31 per unit time to each of the power detection devices 6 and 7.
 また、温度センサ8は、例えば、白金測温抵抗体で構成され、気温T(℃)を検出し、気温に応じた温度検出信号を本体1の本体検出信号受信部17に送信する。 The temperature sensor 8 is composed of, for example, a platinum resistance thermometer, detects the temperature T (° C.), and transmits a temperature detection signal corresponding to the temperature to the main body detection signal receiving unit 17 of the main body 1.
 次に、図8を用いて、サイクルコンピュータ100の構成について構成する。上述したように、サイクルコンピュータ100は、検出装置2~5、温度センサ8、各検出装置2~5から出力される検出信号に基づいて右側仕事率を算出する右側仕事率検出装置6、各検出装置2~5から出力される検出信号に基づいて左側仕事率を算出する左側仕事率検出装置7及びサイクルコンピュータ100の全体を統括し、制御する本体1を有する。 Next, the configuration of the cycle computer 100 will be described with reference to FIG. As described above, the cycle computer 100 includes the detection devices 2 to 5, the temperature sensor 8, the right power detection device 6 that calculates the right power based on the detection signals output from the detection devices 2 to 5, and each detection. A left-side power detection device 7 for calculating a left-side power based on detection signals output from the devices 2 to 5 and a main body 1 that controls and controls the entire cycle computer 100 are provided.
 最初に、左側仕事率検出装置7について説明する。左側仕事率検出装置7は、左側検出信号受信部71、左側制御部72、左側情報記憶部73及び左側仕事率データ送信部74を有する。 First, the left work rate detection device 7 will be described. The left work rate detection device 7 includes a left detection signal receiving unit 71, a left control unit 72, a left information storage unit 73, and a left work rate data transmission unit 74.
 左側検出信号受信部71は、クランク回転角度検出装置2、左ペダル作用力検出装置4、及び、ケイデンス検出装置5から送信された各検出信号を受信するインターフェースである。 The left detection signal receiving unit 71 is an interface that receives each detection signal transmitted from the crank rotation angle detection device 2, the left pedal acting force detection device 4, and the cadence detection device 5.
 左側制御部72は、CPU72a、ROM72b及びRAM72c等を具備するマイクロコンピュータからなり、左側検出信号受信部71が受信した検出信号に基づいて左側仕事率を算出する。具体的に、左側制御部72は、左ペダル作用力を算出すると共に、ケイデンス検出装置5からのケイデンス検出信号に基づいてクランクB31の回転数を算出して、これらに基づいて左側仕事率を算出する。また、左側制御部72は、クランク回転角度検出信号に基づいて、クランク回転角度を検出する。なお、左側制御部72のROM72bには、CPU72aが実行する左側仕事率の検出及びクランク回転角度の検出等を実行するためのプログラムコードが予め記憶されている。RAM72cは、CPU72aが左側仕事率の算出処理を実行する際に行う演算処理において、データ等のワーキングエリアとして機能する。 The left control unit 72 includes a microcomputer including a CPU 72a, a ROM 72b, a RAM 72c, and the like, and calculates the left work rate based on the detection signal received by the left detection signal receiving unit 71. Specifically, the left control unit 72 calculates the left pedal operating force, calculates the rotation speed of the crank B31 based on the cadence detection signal from the cadence detection device 5, and calculates the left work rate based on these. To do. Further, the left control unit 72 detects the crank rotation angle based on the crank rotation angle detection signal. The ROM 72b of the left control unit 72 stores in advance program codes for executing detection of the left power and crank rotation angle executed by the CPU 72a. The RAM 72c functions as a working area for data and the like in arithmetic processing performed when the CPU 72a executes left-side power calculation processing.
 左側情報記憶部73は、RAMからなり、左側制御部72によって算出された左側仕事率を示す左側仕事率データ等の所定情報を記憶する。 The left side information storage unit 73 includes a RAM and stores predetermined information such as left side work rate data indicating the left side work rate calculated by the left side control unit 72.
 左側仕事率データ送信部74は、左側制御部72によって算出された左側仕事率を示す左側仕事率データを右側仕事率検出装置6の左側仕事率データ受信部64に送信するインターフェースである。 The left work rate data transmitting unit 74 is an interface that transmits left work rate data indicating the left work rate calculated by the left control unit 72 to the left work rate data receiving unit 64 of the right work rate detecting device 6.
 次に、右側仕事率検出装置6について説明する。右側仕事率検出装置6は、右側検出信号受信部61、右側制御部62、右側情報記憶部63、左側仕事率データ受信部64、及び、全体仕事率データ送信部65を有する。 Next, the right power detection device 6 will be described. The right power detection device 6 includes a right detection signal receiver 61, a right controller 62, a right information storage unit 63, a left power data receiver 64, and an overall power data transmitter 65.
 右側検出信号受信部61は、クランク回転角度検出装置2、右ペダル作用力検出装置3、及び、ケイデンス検出装置5から送信された各検出信号を受信するインターフェースである。 The right detection signal receiving unit 61 is an interface that receives each detection signal transmitted from the crank rotation angle detection device 2, the right pedal acting force detection device 3, and the cadence detection device 5.
 右側制御部62は、CPU62a、ROM62b及びRAM62c等を具備するマイクロコンピュータからなり、各種検出信号に基づいて右側仕事率を算出する。具体的に、右側制御部62は、上述の推進力用ブリッジ回路3Aからの出力値X1及び損失力用ブリッジ回路3Bからの出力値Y1に基づいて右ペダル作用力を算出すると共に、ケイデンス検出装置5からのケイデンス検出信号に基づいてクランクB31の回転数を算出して、これらに基づいて右側仕事率を算出する。また、右側制御部62は、クランク回転角度検出信号に基づいて、クランク回転角度も検出する。なお、右側制御部62のROM62bには、CPU62aが実行する右側仕事率の算出及びクランク回転角度の検出等を実行するためのプログラムコードが予め記憶されている。RAM62cは、CPU62aが右側仕事率の算出処理を実行する際に行う演算処理において、データ等のワーキングエリアとして機能する。 The right control unit 62 includes a microcomputer including a CPU 62a, a ROM 62b, a RAM 62c, and the like, and calculates the right power based on various detection signals. Specifically, the right control unit 62 calculates the right pedal action force based on the output value X1 from the propulsive force bridge circuit 3A and the output value Y1 from the loss force bridge circuit 3B, and also detects a cadence detection device. 5 calculates the rotation speed of the crank B31 based on the cadence detection signal from 5, and calculates the right power on the basis of these. The right control unit 62 also detects the crank rotation angle based on the crank rotation angle detection signal. The ROM 62b of the right control unit 62 stores in advance program codes for executing the calculation of the right power and the detection of the crank rotation angle executed by the CPU 62a. The RAM 62c functions as a working area for data and the like in arithmetic processing performed when the CPU 62a executes right-side power calculation processing.
 左側仕事率データ受信部64は、左側仕事率検出装置7から送信された左側仕事率データを受信するインターフェースである。 The left work rate data receiving unit 64 is an interface for receiving the left work rate data transmitted from the left work rate detecting device 7.
 右側情報記憶部63は、RAMからなり、右側制御部62が算出した右側仕事率を示す右側仕事率データ及び左側仕事率データ受信部64が受信した左側仕事率データ等の所定情報を記憶する。 The right information storage unit 63 includes a RAM, and stores predetermined information such as right work rate data indicating the right work rate calculated by the right control unit 62 and left work rate data received by the left work rate data receiving unit 64.
 また、右側制御部62は、右側情報記憶部63に記憶されている右側仕事率データが示す右側仕事率と左側仕事率データが示す左側仕事率とを合算して、全体仕事率を算出する。 Also, the right control unit 62 calculates the total work rate by adding the right work rate indicated by the right work rate data stored in the right information storage unit 63 and the left work rate indicated by the left work rate data.
 全体仕事率データ送信部65は、右側制御部62によって算出された全体仕事率を示す全体仕事率データを本体1の全体仕事率データ受信部11に送信するインターフェースである。 The total power data transmitting unit 65 is an interface that transmits the total power data indicating the total power calculated by the right control unit 62 to the total power data receiving unit 11 of the main body 1.
 次に、本体1について説明する。本体1は、全体仕事率データ受信部11、本体制御部12、本体情報記憶部13、情報入力部14、情報表示部15、警告報知部16、本体検出信号受信部17及びGPS信号受信部18を有する。 Next, the main body 1 will be described. The main body 1 includes an overall power data receiving unit 11, a main body control unit 12, a main body information storage unit 13, an information input unit 14, an information display unit 15, a warning notification unit 16, a main body detection signal receiving unit 17, and a GPS signal receiving unit 18. Have
 全体仕事率データ受信部11は、右側仕事率検出装置6の全体仕事率データ送信部65から送信された全体仕事率データを受信するインターフェースである。 The total power data receiving unit 11 is an interface that receives the total power data transmitted from the total power data transmitting unit 65 of the right-side power detection device 6.
 本体制御部12は、CPU12a、ROM12b及びRAM13c等を具備するマイクロコンピュータからなり、受信された全体仕事率データに基づいて、走行が開始されてから現時点までの仕事率の代表値を算出する。本実施の形態において、本体制御部12は、代表値として、走行が開始されてから現時点までの仕事率を算出する。 The main body control unit 12 includes a microcomputer including a CPU 12a, a ROM 12b, a RAM 13c, and the like, and calculates a representative value of the work rate from the start of traveling to the present time based on the received whole work rate data. In the present embodiment, the main body control unit 12 calculates, as a representative value, a work rate from the start of traveling to the current time.
 情報入力部14は、操作可能な操作部14a~14cを備え(図2参照)、操作部14a~14cが受けた操作に伴う入力信号を操作に対応する制御情報に変換して本体制御部12へ送信する。なお、本実施の形態において、操作部14a、14cは押下操作可能なボタン構造からなり、14bは十字キー構造からなる。運転者は、これら操作部14a~14cの操作の組み合わせによって、所定の情報の入力が可能となる。 The information input unit 14 includes operable operation units 14a to 14c (see FIG. 2), converts input signals accompanying operations received by the operation units 14a to 14c into control information corresponding to the operations, and controls the main body control unit 12. Send to. In the present embodiment, the operation units 14a and 14c have a button structure that can be pressed, and 14b has a cross key structure. The driver can input predetermined information by combining the operations of the operation units 14a to 14c.
 本体制御部12は、情報入力部14により入力された所定の情報に基づいて、当該運転者についての所定の時間間隔と時間間隔において発揮し得る最大の仕事率の平均との関係式である平均仕事率曲線(第2の仕事率-時間関係式)を算出して情報表示部15にグラフで表示する。また、本体制御部12は、情報入力部14により入力された所定の情報に基づいて、当該運転者が自転車Bによる当該コースの走行に要する時間と当該走行に要する仕事量に基づく仕事率との関係式である予想タイム曲線(第1の仕事率-時間関係式)を算出して情報表示部15にグラフで表示する。さらに、本体制御部12は、算出した平均仕事率曲線と予想タイム曲線とに基づいて、当該運転手が当該コースを走行するのにあたって指標値となる最適な仕事率Pbest(以下、「最適仕事率Pbest」という)及び当該コースを走行するのに要する最適な時間tbest(以下、「ベストタイムtbest」という)を算出して情報表示部15に表示する。 The main body control unit 12 is an average that is a relational expression between a predetermined time interval for the driver and an average of the maximum work rate that can be exhibited in the time interval based on the predetermined information input by the information input unit 14. A work rate curve (second work rate-time relational expression) is calculated and displayed on the information display unit 15 in a graph. Further, the main body control unit 12 determines, based on the predetermined information input by the information input unit 14, the time required for the driver to travel on the course by the bicycle B and the work rate based on the work amount required for the travel. An expected time curve (first work rate-time relational expression), which is a relational expression, is calculated and displayed in a graph on the information display unit 15. Further, the main body control unit 12 uses the calculated average work rate curve and the predicted time curve to determine an optimum work rate P best (hereinafter referred to as “optimal work”) that is an index value when the driver travels the course. Rate P best ) and the optimum time t best (hereinafter referred to as “best time t best ”) required to travel the course are calculated and displayed on the information display unit 15.
 また、本体制御部12は、平均仕事率を算出し、当該算出値と予想タイム曲線とに基づいて、予想タイムを算出し、情報表示部15に表示する。さらに、本体制御部12は、現在の平均仕事率(最新の平均仕事率の算出値)と平均仕事率の指標値(基準値)となる最適仕事率Pbestとの差分(以下、「平均仕事率差分」という)の絶対値が予め設定された閾値以上となる場合、すなわち、現在の平均仕事率が最適仕事率から遠ざかったときに、所定の態様で警告報知を行う。 In addition, the main body control unit 12 calculates an average work rate, calculates an expected time based on the calculated value and an expected time curve, and displays it on the information display unit 15. Further, the main body control unit 12 determines the difference between the current average work rate (the calculated value of the latest average work rate) and the optimum work rate P best which is an index value (reference value) of the average work rate (hereinafter referred to as “average work rate”). When the absolute value of “rate difference” is equal to or greater than a preset threshold value, that is, when the current average power is far from the optimal power, warning notification is performed in a predetermined manner.
 なお、本体制御部12のROM12bには、CPU12aが実行するサイクルコンピュータ100としての基本処理及び上述の予想タイム曲線、及び、予想タイム曲線に基づく予想タイムの算出等を実行するためのプログラムコードが予め記憶されている。RAM12cは、CPU12aがサイクルコンピュータ100としての基本処理等を実行する際に行う演算処理において、データ等のワーキングエリアとして機能する。 In the ROM 12b of the main body control unit 12, program code for executing basic processing as the cycle computer 100 executed by the CPU 12a, the above-described predicted time curve, and the calculation of the predicted time based on the predicted time curve are stored in advance. It is remembered. The RAM 12c functions as a working area for data and the like in arithmetic processing performed when the CPU 12a executes basic processing or the like as the cycle computer 100.
 本体情報記憶部13は、RAMからなり、情報入力部14によって入力された平均仕事率曲線を算出するための情報並びに予想タイム曲線を算出するための情報、本体制御部12によって算出された平均仕事率曲線を示す平均仕事率曲線データ並びに予想タイム曲線を示す予想タイム曲線データ、及び予想タイムを示す予想タイムデータ等を記憶する。 The main body information storage unit 13 includes a RAM, information for calculating the average power curve input by the information input unit 14, information for calculating the expected time curve, and average work calculated by the main body control unit 12. The average work rate curve data indicating the rate curve, the expected time curve data indicating the expected time curve, and the expected time data indicating the expected time are stored.
 情報表示部15は、液晶ディスプレイで構成されており、平均仕事率曲線を表すグラフ(以下、「平均仕事率グラフ」という)並びに予想タイム曲線を表すグラフ(以下、「予想タイム曲線グラフ」という)、及び、最適仕事率並びにベストタイム等を表示する。なお、情報表示部15をタッチパネル方式にして、情報入力部14と一体化することも可能である。 The information display unit 15 is configured by a liquid crystal display, and is a graph representing an average power curve (hereinafter referred to as “average power graph”) and a graph representing an expected time curve (hereinafter referred to as “expected time curve graph”). And the optimum work rate and the best time are displayed. The information display unit 15 may be integrated with the information input unit 14 in a touch panel system.
 警告報知部16は、スピーカーで構成されており、上述の通り、平均仕事率の算出値と指標値との差分の絶対値が閾値以上である場合、所定のアラートを鳴動する。 The warning notification unit 16 is configured by a speaker and, as described above, sounds a predetermined alert when the absolute value of the difference between the calculated average power and the index value is equal to or greater than a threshold value.
 本体検出信号受信部17は、温度センサ8から送信された温度検出信号を受信するインターフェースである。一方、GPS信号受信部18は、所定のGPS衛星から送信された温GPS信号を受信するインターフェースである。 The main body detection signal receiving unit 17 is an interface that receives the temperature detection signal transmitted from the temperature sensor 8. On the other hand, the GPS signal receiving unit 18 is an interface for receiving a warm GPS signal transmitted from a predetermined GPS satellite.
 次に、図9を用いて、本体1の本体制御部12によるメイン処理を説明する。なお、当該メイン処理は登り続けるコースを走行する場合に適用される。 Next, the main process by the main body control unit 12 of the main body 1 will be described with reference to FIG. The main process is applied when traveling on a course that continues to climb.
 まず、本体制御部12は、所定の電源切換スイッチ(図示無し)の操作により電源が投入されると、ステップS1において、平均仕事率曲線を算出するための所定情報(以下、「平均仕事率曲線情報」という)の入力を受け付ける。平均仕事率曲線情報は、所定期間において持続することができる最大の仕事率で構成される。なお、本実施の形態においては、所定期間が180sec(=t)、300sec(=t)及び1200sec(=t)に設定されており、所定期間t~tに対する最大仕事率P~Pが平均仕事率曲線情報として設定されている。 First, when the power is turned on by operating a predetermined power supply selector switch (not shown), the main body control unit 12 determines predetermined information (hereinafter referred to as “average power curve”) for calculating an average power curve in step S1. "Information") is received. The average power curve information is composed of the maximum power that can be sustained in a predetermined period. In the present embodiment, the predetermined period is set to 180 sec (= t 1 ), 300 sec (= t 2 ), and 1200 sec (= t 3 ), and the maximum power P for the predetermined period t 1 to t 3 is set. 1 to P 3 are set as average power curve information.
 本体制御部12は、ステップS2において、予想タイム曲線を算出するための所定情報(以下、「予想タイム曲線情報」という)の入力を受け付ける。予想タイム曲線情報は、当該運転者及び自転車Bに固有のユーザプロフィール及び走行するコースに固有のコースプロフィールで構成される。 The main body control unit 12 accepts input of predetermined information (hereinafter referred to as “expected time curve information”) for calculating an expected time curve in step S2. The expected time curve information includes a user profile unique to the driver and the bicycle B and a course profile unique to the course to be run.
 ユーザプロフィールは、運転者の体重M[kg]、装備品を含む自転車Bの総重量M[kg]、所定係数(空気抵抗係数×前面投影面積)CdA[m]及びタイヤB2の転がり抵抗係数Crrを含む。一方、コースプロフィールは、コースの走行距離(コースに沿ったスタート地点からゴール地点までの距離)D[m]、スタート地点からゴール地点までの標高差(ゴール地点の標高-スタート地点の標高)h[m]及びコースの気温T[℃]を含む。 The user profile includes the driver's weight M r [kg], the total weight M b [kg] of the bicycle B including the equipment, a predetermined coefficient (air resistance coefficient × front projection area) CdA [m 2 ], and rolling of the tire B2. Includes resistance coefficient Crr. On the other hand, the course profile includes a course travel distance (distance from the start point to the goal point along the course) D [m], and an elevation difference from the start point to the goal point (elevation of the goal point−elevation of the start point) h [M] and course temperature T [° C.] are included.
 そして、本体制御部12は、例えばステップS2において所定の情報入力処理の完了を示す操作が行われる等して、ステップS1及びステップS2の入力処理が完了すると、ステップS3において、ステップS1で入力された平均仕事率曲線情報に基づいて平均仕事率曲線を算出して本体情報記憶部13に記憶すると共に、情報表示部15にグラフで表示する。 When the input processing of step S1 and step S2 is completed, for example, by performing an operation indicating completion of the predetermined information input processing in step S2, the main body control unit 12 is input in step S1 in step S3. Based on the average power factor curve information, an average power factor curve is calculated and stored in the main body information storage unit 13 and displayed on the information display unit 15 in a graph.
 ここで、本体制御部12は、平均仕事率曲線を以下のように算出する。まず、図10(a)に示すように、平均仕事率曲線情報である最大仕事率P~Pのそれぞれに各対応する所定期間t~tを掛けた最大仕事W~WをW成分、所定期間t~tをt成分とするWt座標上の点{WAE1(t、W)、WAE2(t、W)及びWAE3(t、W)}に基づいて最小二乗法で最大仕事Wと所定期間tとの関係を表す近似直線を算出する。ここで、近似直線の傾きをCP[W]、切片をAWC[J]とすると、当該関係式は次の式(1)で与えられる。
 
[数1]
 W=F(t)=CP×t+AWC ・・・(1)
 
Here, the main body control unit 12 calculates the average power curve as follows. First, as shown in FIG. 10A, the maximum work W 1 to W 3 obtained by multiplying each of the maximum work ratios P 1 to P 3 that are average power ratio curve information by the corresponding predetermined periods t 1 to t 3 , respectively. Is a W component, and points on the Wt coordinate {W AE1 (t 1 , W 1 ), W AE2 (t 2 , W 2 ) and W AE3 (t 3 , W 3 ), where t is a predetermined period t 1 to t 3 are t components. )}, An approximate straight line representing the relationship between the maximum work W and the predetermined period t is calculated by the least square method. Here, when the slope of the approximate line is CP [W] and the intercept is AWC [J], the relational expression is given by the following expression (1).

[Equation 1]
W = F (t) = CP × t + AWC (1)
 そして、最大仕事Wと所定期間tとの関係を表す関係式(W=F(t))の両辺を時間で微分すると、図10(b)に示すような最大仕事率Pと所定期間tとの関係を表す次の式(2)が得られる。
 
[数2]
 P=F(t)’=f(t)=CP+AWC/t ・・・(2)
 
When both sides of the relational expression (W = F (t)) representing the relationship between the maximum work W and the predetermined period t are differentiated with respect to time, the maximum work rate P and the predetermined period t as shown in FIG. The following equation (2) representing the relationship is obtained.

[Equation 2]
P = F (t) ′ = f (t) = CP + AWC / t (2)
 また、本体制御部12は、ステップS4において、ステップS2で入力された予想タイム曲線情報に基づいて予想タイム曲線を算出し、本体情報記憶部13に記憶すると共に、情報表示部15にグラフで表示する。 In step S4, the main body control unit 12 calculates an expected time curve based on the predicted time curve information input in step S2, stores it in the main body information storage unit 13, and displays it in the information display unit 15 as a graph. To do.
 ここで、本体制御部12は、予想タイム曲線を以下のように算出する。まず、コースを走行するのに必要な全仕事量Wを算出する。全体仕事量Wは、スタート地点からゴール地点までの標高差による位置エネルギーの変化量(W1)と、空気抵抗に逆らってする仕事(W2)と、転がり抵抗に逆らってする仕事(W3)とを加算することで算出される。なお、W1~W3は以下の式(3)~式(5)で与えられる。
 
[数3]
 W1[J]=(M+M)gh ・・・(3)
 
[数4]
 W2[J]=0.5×空気密度(ρ/(1+εT))×CdA×(速度[m/s])×D ・・・(4)
      =0.5×空気密度(ρ/(1+εT))×CdA×D/(時間t[sec])
 
[数5]
 W3[J]=(M+M)g×Crr×D ・・・(5)
 
Here, the main body control unit 12 calculates an expected time curve as follows. First, the total work amount W required to travel the course is calculated. The total work W is the amount of change in potential energy due to the difference in elevation from the start point to the goal point (W1), the work against the air resistance (W2), and the work against the rolling resistance (W3). Calculated by adding. W1 to W3 are given by the following equations (3) to (5).

[Equation 3]
W1 [J] = (M r + M b) gh ··· (3)

[Equation 4]
W2 [J] = 0.5 × air density (ρ 0 / (1 + εT)) × CdA × (speed [m / s]) 2 × D (4)
= 0.5 × air density (ρ 0 / (1 + εT)) × CdA × D 3 / (time t [sec]) 2

[Equation 5]
W3 [J] = (M r + M b ) g × C rr × D (5)
 そして、当該全仕事量W(=W1+W2+W3)と時間tとの関係式の両辺を時間tで微分すると、予想タイム曲線{P=g(t)}となる。なお、式(3)~式(5)で用いられている「g」は重力加速度、「ρ」は空気密度、「ε」は空気の膨張率を表している。 Then, when both sides of the relational expression between the total work amount W (= W1 + W2 + W3) and time t are differentiated by time t, an expected time curve {P = g (t)} is obtained. Note that “g” used in the equations (3) to (5) represents the acceleration of gravity, “ρ 0 ” represents the air density, and “ε” represents the expansion coefficient of the air.
 なお、本体制御部12は、平均仕事率曲線及び予想タイム曲線を情報表示部15にグラフで表示するにあたり、情報表示部15に、縦軸が仕事率P[W]であり、横軸が時間t[sec]の対数からなる座標を表示し、その座標上に両曲線をグラフで表示する(図12参照)。 When the main body control unit 12 displays the average power rate curve and the expected time curve in a graph on the information display unit 15, the vertical axis is the work rate P [W] and the horizontal axis is the time on the information display unit 15. Coordinates composed of logarithms of t [sec] are displayed, and both curves are displayed as graphs on the coordinates (see FIG. 12).
 本体制御部12は、ステップS5において平均仕事率曲線(P=f(t))と予想タイム曲線(P=g(t))との交点の座標、すなわち、平均仕事率曲線情報及び予想タイム曲線情報に基づく当該運転手及びコースに対する最適仕事率Pbestとベストタイムtbestとを算出する(図11参照)。なお、f(t)=g(t)は非線形方程式であり、解析的に求めることが困難であるため、Newton-Raphson法による反復計算などの既存技術を用いて数値的にベストタイムtbestを算出する。そして、算出されたベストタイムtbestを用いて、ベストタイムtbestのときの仕事率である最適仕事率{f(tbest)=g(tbest)=Pbest}が算出される。 In step S5, the main body control unit 12 determines the coordinates of the intersection of the average power curve (P = f (t)) and the predicted time curve (P = g (t)), that is, the average power curve information and the predicted time curve. Based on the information, the optimum work rate P best and the best time t best for the driver and the course are calculated (see FIG. 11). Since f (t) = g (t) is a non-linear equation and difficult to obtain analytically, the best time t best is numerically calculated using an existing technique such as an iterative calculation by the Newton-Raphson method. calculate. Then, using the calculated best time t best, optimum work rate is the job rate when the best time t best {f (t best) = g (t best) = P best} is calculated.
 本体制御部12は、ステップS6において、ゴール地点まで走行する予想タイムを算出するための計測をスタートする。具体的に、RAM12cに設けられたタイマカウンタにより計測を開始させる。なお、本実施の形態において、タイマカウンタは4ミリ秒毎に更新されるものとする。 In step S6, the main body control unit 12 starts measurement for calculating the expected time to travel to the goal point. Specifically, measurement is started by a timer counter provided in the RAM 12c. In the present embodiment, the timer counter is updated every 4 milliseconds.
 本体制御部12は、ステップS7において、全体仕事率データ受信部11により受信された全体仕事率データを本体情報記憶部13に記憶する。 The main body control unit 12 stores the total power data received by the total power data receiving unit 11 in the main body information storage unit 13 in step S7.
 本体制御部12は、ステップS8において、上記タイマカウンタが示すカウンタ値を確認して、当該カウンタ値を時間データとして取得して情報表示部15に表示すると共に、走行開始(計測開始)から現時点までの平均仕事率Pnowを算出し、本体情報記憶部13に記憶する。 In step S8, the main body control unit 12 confirms the counter value indicated by the timer counter, acquires the counter value as time data, displays it on the information display unit 15, and from the start of travel (start of measurement) to the present time. Is calculated and stored in the main body information storage unit 13.
 本体制御部12は、ステップS9において、ステップS8で算出された平均仕事率Pnowに基づいて、予想タイムtexp(ゴール地点に到着する時間)を算出する。具体的に、本体制御部12は、ステップS8で算出された平均仕事率Pnowを予想タイム曲線に代入することで、予想タイムtexpを算出する。 In step S9, the main body control unit 12 calculates an expected time t exp (time to arrive at the goal point) based on the average work rate P now calculated in step S8. Specifically, the main body control unit 12 calculates the predicted time t exp by substituting the average work rate P now calculated in step S8 into the predicted time curve.
 本体制御部12は、ステップS10において、ステップS9で算出された予想タイムtexpを情報表示部15に表示する。具体的に、本体制御部12は、情報表示部15の所定領域に予想タイムtexpを数字で表示する(図12参照、図12において「現在のペースでの予測ゴールタイム」)と共に、現在の平均仕事率Pnowを水平線で表し、当該水平線と予想タイム曲線との交点を通る垂直線を予想タイムとして図示する。また、本体制御部12は、ステップS10において、最適仕事率Pbest及び現在の平均仕事率Pnow等の所定情報も情報表示部15に表示する(図12参照)。 In step S10, the main body control unit 12 displays the expected time t exp calculated in step S9 on the information display unit 15. Specifically, the main body control unit 12 displays the expected time t exp in a predetermined area of the information display unit 15 (see FIG. 12, “Predicted goal time at current pace” in FIG. 12), and the current time The average power Pnow is represented by a horizontal line, and a vertical line passing through the intersection of the horizontal line and the expected time curve is shown as an expected time. In addition, in step S10, the main body control unit 12 displays predetermined information such as the optimum power P best and the current average power P now on the information display unit 15 (see FIG. 12).
 本体制御部12は、ステップS11において、現在の平均仕事率Pnowから最適仕事率Pbestを減算することで仕事率差分を算出し、当該仕事率差分の絶対値が予め設定された閾値以上であるか否かを判定する。本体制御部12は、閾値以上ではないと判定するとステップS13に処理を移し、閾値以上であると判定するとステップS12において警告報知を行い、ステップS13に処理を移す。なお、本実施の形態では、警告報知はスピーカーで構成される警告報知部16によりアラート音が鳴動されるが、警告報知の態様はこれに限られない。 In step S11, the main body control unit 12 calculates the power difference by subtracting the optimum power P best from the current average power P now, and the absolute value of the power difference is equal to or greater than a preset threshold value. It is determined whether or not there is. If the main body control unit 12 determines that the threshold value is not equal to or greater than the threshold value, the process proceeds to step S13. In the present embodiment, the warning notification is generated by the warning notification unit 16 including a speaker, but the warning notification mode is not limited to this.
 本体制御部12は、ステップS13において、所定の計測終了操作があったか否かを判定する。本体制御部12は、所定の計測終了操作がなかったと判定すると、ステップS7に処理を移し、所定の計測終了操作があったと判定すると、当該メイン処理を終了する。 The main body control unit 12 determines whether or not a predetermined measurement end operation has been performed in step S13. If it is determined that there is no predetermined measurement end operation, the main body control unit 12 moves the process to step S7, and if it is determined that there is a predetermined measurement end operation, the main process ends.
 このように運転者に固有な平均仕事率曲線情報に基づいて平均仕事率曲線が算出され、当該運動に係る予想タイム曲線情報(コース、運転者及び自転車Bに関する情報)に基づいて予想タイム曲線が算出され、これらの曲線に基づいて最適仕事率及びベストタイムが算出されるので、当該運転者の当該コースに対する指標値の精度が向上する。これにより、運転者は、効率良く運動又は適切にトレーニングを行うことができる。さらに、現在の平均仕事率(ペース)での予想タイム及びベストタイムの双方が算出され、表示されることで、理想と現状との隔たりが運転者に提供されることとなる。その結果、運転者はペース配分を調整することができ、さらに効率良く運動又は適切にトレーニングを行うことができる。 Thus, the average work rate curve is calculated based on the average work rate curve information unique to the driver, and the expected time curve is obtained based on the expected time curve information related to the exercise (information on the course, the driver, and the bicycle B). Since the optimal work rate and the best time are calculated based on these curves, the accuracy of the index value of the driver for the course is improved. As a result, the driver can exercise efficiently or appropriately train. Furthermore, both the expected time and the best time at the current average work rate (pace) are calculated and displayed, thereby providing the driver with a gap between the ideal and the current state. As a result, the driver can adjust the pace distribution, and can perform exercise or appropriate training more efficiently.
 また、現在の平均仕事率と最適仕事率との差分が所定の閾値以上である場合、アラート音の鳴動により警告報知がなされるので、運転者は走行(運動)に集中しながら、ペース配分を調整することができる。 In addition, when the difference between the current average work rate and the optimum work rate is equal to or greater than a predetermined threshold, a warning notification is made by sounding an alert sound, so the driver can distribute the pace while concentrating on running (exercise). Can be adjusted.
(実施の形態2)
 実施の形態1では、予想タイム曲線が一定であったが、予想タイム曲線を、走行開始後の現時点におけるコースの未走行部分に係る所定情報に基づいて変更させることができる。この場合の本体制御部12によるメイン処理について図13を用いて説明する。なお、「ステップS」の番号は異なるが、実施の形態1と同一内容のステップS1~ステップS2、ステップS4~ステップS6、ステップS13~ステップS14、及びステップS17~ステップS19については説明を省略する。
(Embodiment 2)
In the first embodiment, the expected time curve is constant. However, the predicted time curve can be changed based on predetermined information relating to the non-running portion of the course at the present time after starting running. The main process by the main body control unit 12 in this case will be described with reference to FIG. Although the number of “Step S” is different, the description of Step S1 to Step S2, Step S4 to Step S6, Step S13 to Step S14, and Step S17 to Step S19 having the same contents as Embodiment 1 is omitted. .
 本体制御部12は、ステップS3において、予想タイム曲線を変更させるか否かの判定において用いられる判定値(以下、「予想タイム曲線変更判定値」という)に係る所定情報(以下、「判定値情報」という)の入力を受け付ける。本体制御部12は、判定値情報が入力されると、本体情報記憶部13の判定値情報データ領域に当該判定値情報を示す判定値データを記憶する。本実施の形態において、予想タイム曲線変更判定値はスタート地点から現時点までの距離(Dj:以下、「判定距離D」という)で構成され、判定値情報も判定距離Dで構成される。そして、本体制御部12は、例えばS3において所定の情報入力処理の完了を示す操作が行われる等して、S1~S3の所定情報の入力処理が完了すると、S4に処理を移す。 In step S3, the main body control unit 12 determines predetermined information (hereinafter referred to as “determination value information”) relating to a determination value (hereinafter referred to as “predicted time curve change determination value”) used in determining whether or not to change the predicted time curve. ”). When the determination value information is input, the main body control unit 12 stores determination value data indicating the determination value information in the determination value information data area of the main body information storage unit 13. In the present embodiment, the predicted time curve change determination value is configured by a distance from the start point to the current time (D j: hereinafter referred to as “determination distance D j ”), and the determination value information is also configured by the determination distance D j . . Then, when the predetermined information input process of S1 to S3 is completed, for example, by performing an operation indicating the completion of the predetermined information input process in S3, the main body control unit 12 moves the process to S4.
 本体制御部12は、ステップS8において、予想タイム更新判定データを取得する。予想タイム更新判定データは、予想タイム曲線を変更させるか否かを判定するために、判定値情報と比較するための実測値である。本体1は、GPS信号受信部18を備え、GPS衛星からのGPS信号の受信が可能であるため、現時点の位置情報P(Px、Py)を実測値として計測する。そして、S7における計測開始処理と同時にスタート地点の位置情報Pを取得し、その位置情報を示すスタート地点位置データを本体情報記憶部13のスタート地点位置データ記憶領域に記憶しておき、ステップS8の処理が行われる度に、スタート地点から現地点までの走行距離D(=Σ((Px-Pxk-1+(Py-Pyk-11/2)を算出し、予想タイム更新判定データとして取得する。 In step S8, the main body control unit 12 acquires expected time update determination data. The predicted time update determination data is an actual measurement value for comparison with determination value information in order to determine whether or not to change the predicted time curve. Since the main body 1 includes the GPS signal receiving unit 18 and can receive GPS signals from GPS satellites, the current position information P n (Px n , Py n ) is measured as an actual measurement value. Then, it acquires position information P 0 at the same time the starting point and the measurement starting at S7, stores the start point position data indicating the position information to the start point position data storage area of the main information storage unit 13, step S8 Is calculated, the travel distance D from the start point to the local point (= Σ ((Px k −Px k−1 ) 2 + (Py k −Py k−1 ) 2 ) 1/2 ) And obtained as expected time update determination data.
 本体制御部12は、ステップS9において、走行距離Dが予想タイム曲線変更判定値となる判定距離D以上である、すなわち、予想タイム曲線を更新するか否かを判定する。なお、判定距離Dが複数設定されている場合、例えば、S9で「YES」と判定された判定距離Dを所定のフラグ等で判別可能にしておき、そのフラグに基づいて今回用いる判定距離Dを選択する。 Main control unit 12 determines in step S9, the travel distance D is expected time curve change determination value to become determined distance D j above, i.e., whether or not to update the expected time curve. When a plurality of determination distances D j are set, for example, the determination distance D j determined to be “YES” in S9 can be determined by a predetermined flag or the like, and the determination distance used this time based on the flag Select D j .
 本体制御部12は、予想タイム曲線を更新しないと判定すると、ステップS13に処理を移し、予想タイム曲線を更新すると判定すると、ステップS10において予想タイム曲線を更新するための所定情報(以下、「予想タイム曲線更新情報」という)を取得して本体情報記憶部13の所定領域に記憶し、ステップS11において、取得した予想タイム曲線更新情報に基づいて予想タイム曲線を更新する。 When determining that the predicted time curve is not updated, the main body control unit 12 proceeds to step S13, and when determining that the predicted time curve is to be updated, the main body control unit 12 determines predetermined information (hereinafter referred to as “predicted”) for updating the predicted time curve in step S10. Time curve update information ”is acquired and stored in a predetermined area of the main body information storage unit 13. In step S11, the predicted time curve is updated based on the acquired predicted time curve update information.
 なお、本実施の形態において、予想タイム曲線更新情報は、現地点からゴール地点までの標高差h、現在の気温T及び現地点からゴール地点までの走行距離Dで構成される。現地点からゴール地点までの標高差h及び現地点からゴール地点までの走行距離Dは、例えばGPS信号に基づき算出する。また、本体制御部12は、ステップS10において取得した予想タイム曲線更新情報を新たに予想タイム曲線に代入することで、予想タイム曲線を更新することができる。 In the present embodiment, the predicted time curve update information includes the altitude difference h from the local point to the goal point, the current temperature T, and the travel distance D from the local point to the goal point. The altitude difference h from the local point to the goal point and the travel distance D from the local point to the goal point are calculated based on, for example, GPS signals. Further, the main body control unit 12 can update the predicted time curve by newly substituting the predicted time curve update information acquired in step S10 into the predicted time curve.
 本体制御部12は、ステップS12において、ステップS11で更新した新たな予想タイム曲線と平均仕事率曲線との交点を算出し、最適仕事率及びベストタイムを更新する。 In step S12, the main body control unit 12 calculates the intersection between the new predicted time curve and the average power curve updated in step S11, and updates the optimal power and the best time.
 本体制御部12は、ステップS15において、ステップS14で算出した平均仕事率に基づいて、具体的には、新たな予想タイム曲線に平均仕事率を代入して予想タイムを算出し、当該予想タイムを示す予想タイムデータを本体情報記憶部13の予想タイムデータ記憶領域に記憶する。 In step S15, the main body control unit 12 calculates the predicted time by substituting the average power into the new predicted time curve based on the average power calculated in step S14, and calculates the predicted time. The predicted time data shown is stored in the predicted time data storage area of the main body information storage unit 13.
 本体制御部12は、ステップS16において、更新し又は算出し、本体情報記憶部13に記憶した新たな予想タイム曲線、最適仕事率・ベストタイム、予想タイム及びゴールまでの予測残り時間を情報表示部15に新たに表示する。 In step S16, the main body control unit 12 updates or calculates and stores the new predicted time curve, the optimum work rate / best time, the predicted time and the predicted remaining time until the goal stored in the main body information storage unit 13 as an information display unit. 15 is newly displayed.
 このように、予想タイム曲線が、現時点におけるコースの未走行部分に係る所定情報に基づいて更新され、表示されるため、現時点に応じた静的な指標値を運転者に提供することができる。特に、コースの勾配が変化することで、走行ペースが変化し易い場合には当該効果は有効となる。 As described above, since the expected time curve is updated and displayed based on the predetermined information related to the non-running portion of the course at the current time, a static index value corresponding to the current time can be provided to the driver. In particular, the effect is effective when the running pace is likely to change due to the change in the course gradient.
 なお、本実施の形態では、予想タイム曲線変更判定値に係る所定情報は、コースに沿ったスタート地点からの距離で構成されているが、位置情報で構成させることも可能である。この場合、ステップS9においては、GPS信号が示す位置情報が、予想タイム曲線変更判定値として位置情報であるか否かで予想タイム曲線を変更するか否かを判定することができる。 In the present embodiment, the predetermined information related to the predicted time curve change determination value is configured by the distance from the starting point along the course, but may be configured by position information. In this case, in step S9, it is possible to determine whether or not to change the predicted time curve depending on whether or not the position information indicated by the GPS signal is position information as the predicted time curve change determination value.
 また、予想タイム曲線変更判定値は運転者が具体的に数字で入力することによって本体制御部12が取得するが、情報表示部15をタッチパネルで構成させ、少なくともステップS3において情報表示部15に当該コースの地図を表示させて、運転者が当該表示された地図をタッチすることで本体制御部12がその位置情報を検出し、予想タイム曲線変更判定値として本体情報記憶部13に記憶するようにすることも可能である。 The predicted time curve change determination value is acquired by the main body control unit 12 when the driver inputs a specific number, but the information display unit 15 is configured with a touch panel, and at least the information display unit 15 is in the step S3. The main body control unit 12 detects the position information by displaying a map of the course and the driver touches the displayed map, and stores it in the main body information storage unit 13 as an estimated time curve change determination value. It is also possible to do.
 また、本実施の形態では、予想タイム曲線変更判定値と予想タイム更新判定データとを比較することで、予想タイム曲線の変更の可否を決定しているが、予め設定された操作部(例えば、操作部14c)の操作の有無で予想タイム曲線の変更の可否を決定する、すなわち、遊技者が予め設定された操作部を操作したときに予想タイム曲線を変更するようにすることもできる。 Further, in the present embodiment, whether or not the expected time curve can be changed is determined by comparing the predicted time curve change determination value and the predicted time update determination data, but a preset operation unit (for example, Whether or not the expected time curve can be changed is determined based on whether or not the operation unit 14c is operated, that is, the expected time curve can be changed when the player operates a preset operation unit.
 また、本実施の形態では、平均仕事率曲線が一定であるが、実測値に応じて変更するようにすることも可能である。例えば、本実施の形態のように、平均仕事率曲線情報として、P~Pが入力されるが、P~Pに係る所定時間における平均仕事率を算出し、当該算出値に基づいて平均仕事率曲線を更新、又は、新たに算出し、表示することもできる。これにより、正確な指標値を運転者に提示することができる。 In this embodiment, the average power curve is constant, but can be changed according to the actual measurement value. For example, as in the present embodiment, P 1 to P 3 are input as the average power curve information, and the average power for a predetermined time according to P 1 to P 3 is calculated and based on the calculated value. Thus, the average power curve can be updated or newly calculated and displayed. Thereby, an accurate index value can be presented to the driver.
(その他の実施の形態)
 実施の形態1及び実施の形態2では、平均仕事率差分が閾値以上になると警告報知としてアラート音が鳴動するが、警告報知として情報表示部15の背景色又は所定の文字・グラフ等が通常とはことなる特別な態様に変化するようにすることも可能である。
(Other embodiments)
In the first embodiment and the second embodiment, when the average power difference becomes equal to or greater than the threshold value, an alert sound sounds as a warning notification. However, the background color of the information display unit 15 or a predetermined character / graph or the like is normal as a warning notification. It is also possible to change to a different special embodiment.
 また、実施の形態1及び実施の形態2では、平均仕事率曲線情報として、所定期間t~tに対する最大仕事率平均P~Pが設定されているが、所定期間の内容はこれに限らない。異なる所定期間に設定し、又は、所定期間の数を変更することも可能である。また、所定期間の内容を自由に設定することも可能である。 Further, in the second Embodiment 1 and Embodiment, the average work rate curve information, the maximum work rate The average P 1 ~ P 3 is set for a predetermined time period t 1 ~ t 3, the contents of the predetermined time period which Not limited to. It is also possible to set different predetermined periods or change the number of predetermined periods. It is also possible to freely set the contents of the predetermined period.
 また、実施の形態1及び実施の形態2では、メイン処理のステップS1において平均仕事率曲線情報の入力を受け付けることで平均仕事率曲線情報が取得される。しかしながら、平均仕事率曲線情報の取得方法はこれに限られない。例えば、メイン処理を実行する度に(自転車Bの走行毎に)、複数の所定期間に対する平均仕事率を算出し、記憶しておき、ステップS1において、記憶されている過去の複数の所定期間に対する平均仕事率を当該メイン処理においての平均仕事率曲線情報として用いることも可能である。このように平均仕事率曲線情報を過去の実績に基づいて取得することで、算出される指標値が一層正確になる。 In the first and second embodiments, the average power curve information is acquired by receiving the input of the average power curve information in step S1 of the main process. However, the method for acquiring the average power curve information is not limited to this. For example, each time the main process is executed (every time the bicycle B is run), the average power for a plurality of predetermined periods is calculated and stored, and in step S1, a plurality of past predetermined periods are stored. It is also possible to use the average power as average power curve information in the main process. Thus, by acquiring the average power factor curve information based on the past performance, the calculated index value becomes more accurate.
 また、実施の形態1及び実施の形態2では、平均仕事率曲線情報として複数の所定期間に対する最大仕事率が設定されているが、例えば、平均仕事率曲線を算出するためのクリティカルパワー(CP:理論的に疲労を引き起こさないで持続される仕事率(パワー)の最大値)及び再生不可能な無酸素作業容量(AWC)に設定することもできる。 In the first embodiment and the second embodiment, the maximum power for a plurality of predetermined periods is set as the average power curve information. For example, critical power (CP: Theoretically, the maximum work rate (power) sustained without causing fatigue) and the non-renewable oxygen-free working capacity (AWC) can be set.
 また、実施の形態1及び実施の形態2では、当該メイン処理は登り続けるコースを走行する場合に適用されているが、下りが介在するコースに適用することも可能である。さらに、登り専用の予想タイム曲線と下り専用の予想タイム曲線をROM12b等に記憶しておき、操作部14a~14c等の操作による手動で、又は、GPS信号から計測される傾斜若しくは位置等により自動で、予想タイム曲線を切り換えることもできる。 In the first embodiment and the second embodiment, the main process is applied when traveling on a course that continues to climb, but it can also be applied to a course in which a descent is present. Further, an expected time curve dedicated to climbing and an expected time curve dedicated to descending are stored in the ROM 12b and the like, and are automatically operated by operation of the operation units 14a to 14c or automatically by an inclination or a position measured from a GPS signal. You can also switch the expected time curve.
 また、本実施の形態では、本発明の指標値算出装置がサイクルコンピュータ100で構成され、自転車Bに対して適用されているが、これに限られず、設置式のトレーニング用自転車やスワンボートに適用することも可能である。また、平均仕事率を検出できるのであれば、水泳やマラソンなどに適用することも可能である。 In the present embodiment, the index value calculation device of the present invention is configured by the cycle computer 100 and applied to the bicycle B. However, the present invention is not limited to this, and is applied to a stationary training bicycle or swan boat. It is also possible to do. Moreover, if an average work rate can be detected, it can also be applied to swimming and marathon.
 また、平均仕事率の算出や特定期間差分の算出等の処理はサイクルコンピュータ100の本体1の本体制御部12のROM12bに内蔵されたプログラムに基づいて実行されるが、SDカード等の当該プログラムが記録された記録媒体を挿入可能にしておき、記録媒体カードを挿入して用いることもできる。また、当該プログラムは、予めROM12bに記憶させておくことも、ダウンロードして取得することも可能である。さらに、本体1を所定のサーバと通信可能にさせておき、当該サーバ上のプログラムを利用して平均仕事率の算出や予想タイムの算出等の処理を実行することも可能である。 Further, processing such as calculation of the average power and calculation of the specific period difference is executed based on a program built in the ROM 12b of the main body control unit 12 of the main body 1 of the cycle computer 100. The recorded recording medium can be inserted, and a recording medium card can be inserted for use. The program can be stored in the ROM 12b in advance, or can be downloaded and acquired. Furthermore, it is possible to make the main body 1 communicable with a predetermined server and execute processing such as calculation of average work rate and calculation of expected time using a program on the server.
1     本体
2     クランク回転角度検出装置
3     右ペダル作用力検出装置
4     左ペダル作用力検出装置
5     ケイデンス検出装置
6     右側仕事率検出装置
7     左側仕事率検出装置
12    本体制御部
13    本体情報記憶部
14    情報入力部
15    情報表示部
21    被センシング部
22    センシング部
100   サイクルコンピュータ
B     自転車
B3    駆動機構
B31   クランク
B311  右クランクシャフト
B312  左クランクシャフト
B32   ペダル
B321  右ペダル
B322  左ペダル
B33   チェーン
B34   チェーンリング
B4    ハンドル
DESCRIPTION OF SYMBOLS 1 Main body 2 Crank rotation angle detection device 3 Right pedal action force detection device 4 Left pedal action force detection device 5 Cadence detection device 6 Right side work rate detection device 7 Left side work rate detection device 12 Main body control part 13 Main body information storage part 14 Information input Part 15 Information display part 21 Sensed part 22 Sensing part 100 Cycle computer B Bicycle B3 Drive mechanism B31 Crank B311 Right crankshaft B312 Left crankshaft B32 Pedal B321 Right pedal B322 Left pedal B33 Chain B34 Chain ring B4 Handle

Claims (7)

  1.  所定の運動に係る固有情報を取得する固有情報取得手段と、
     前記固有情報取得手段により取得された固有情報に基づいて、当該運動に要する時間と当該運動に要する仕事量に基づく仕事率との関係式である第1の仕事率-時間関係式を算出する第1算出手段と、
     当該運動者についての所定の時間間隔と当該時間間隔における仕事率との関係式である第2の仕事率-時間関係式を算出するための所定情報を取得する所定情報取得手段と、
     前記所定情報取得手段により取得された所定情報に基づいて、前記第2の仕事率-時間関係式を算出する第2算出手段と、
     前記第1算出手段により算出された第1の仕事率-時間関係式と、前記第2算出手段により算出された第2の仕事率-時間関係式とに基づいて、これらの関係式の交点を構成する仕事率及び時間の双方又はいずれか一方を指標値として算出する指標値算出手段と、を有することを特徴とする運動用の指標値算出装置。
    Specific information acquisition means for acquiring specific information related to a predetermined exercise;
    Based on the unique information acquired by the unique information acquisition means, a first work rate-time relational expression that is a relational expression between the time required for the exercise and the work rate based on the work required for the exercise is calculated. 1 calculating means;
    Predetermined information acquisition means for acquiring predetermined information for calculating a second work rate-time relational expression that is a relational expression between a predetermined time interval for the exerciser and a work rate in the time interval;
    Second calculation means for calculating the second power-time relational expression based on the predetermined information acquired by the predetermined information acquisition means;
    Based on the first power-time relational expression calculated by the first calculation means and the second power-time relational expression calculated by the second calculation means, an intersection of these relational expressions is obtained. An index value calculation device for exercise, comprising: index value calculation means for calculating either or both of the work rate and time to be configured as an index value.
  2.  前記指標値算出手段によって算出された指標値を表示する指標値表示手段を有することを特徴とする請求項1に記載の指標値算出装置。 The index value calculation device according to claim 1, further comprising index value display means for displaying the index value calculated by the index value calculation means.
  3.  前記運動者の仕事率を検出する仕事率検出手段と、
     前記仕事率検出手段によって検出された仕事率と前記指標値算出手段によって算出された指標値としての仕事率とを比較する比較手段と、
     前記比較手段による比較の結果が所定の結果である場合、当該結果を報知する報知手段と、を有することを特徴とする請求項1又は2に記載の指標値算出装置。
    A work rate detecting means for detecting the work rate of the exerciser;
    Comparison means for comparing the power detected by the power detection means with the power as the index value calculated by the index value calculation means;
    The index value calculation apparatus according to claim 1, further comprising: a notifying unit that notifies the result of the comparison by the comparison unit when the comparison result is a predetermined result.
  4.  前記仕事率検出手段によって検出された仕事率に基づいた場合の当該運動に要する時間と、前記指標値算出手段によって算出された指標値としての時間との差分を算出する差分算出手段と、
     前記差分算出手段によって算出された差分を表示する差分表示手段と、を有することを特徴とする請求項3に記載の指標値算出装置。
    A difference calculating means for calculating a difference between the time required for the exercise based on the power detected by the power detecting means and the time as the index value calculated by the index value calculating means;
    The index value calculation apparatus according to claim 3, further comprising difference display means for displaying the difference calculated by the difference calculation means.
  5.  所定の運動に係る固有情報を取得する固有情報取得手段により取得された固有情報に基づいて、当該運動に要する時間と当該運動に要する仕事量に基づく仕事率との関係式である第1の仕事率-時間関係式を算出する第1算出工程と、
     当該運動者についての所定の時間間隔と当該時間間隔における仕事率との関係式である第2の仕事率-時間関係式を算出するための所定情報を取得する所定情報取得手段により取得された所定情報に基づいて、前記第2の仕事率-時間関係式を算出する第2算出工程と、
     前記第1算出工程において算出された第1の仕事率-時間関係式と、前記第2算出工程において算出された第2の仕事率-時間関係式とに基づいて、これらの関係式の交点を構成する仕事率及び時間の双方又はいずれか一方を指標値として算出する指標値算出工程と、を有することを特徴とする運動用の指標値算出方法。
    The first work which is a relational expression between the time required for the exercise and the work rate based on the work required for the exercise based on the unique information acquired by the unique information acquisition means for acquiring the unique information related to the predetermined exercise A first calculation step of calculating a rate-time relational expression;
    The predetermined information acquired by the predetermined information acquisition means for acquiring the predetermined information for calculating the second work rate-time relational expression, which is a relational expression between the predetermined time interval for the exerciser and the work rate in the time interval A second calculation step of calculating the second power-time relational expression based on the information;
    Based on the first power-time relational expression calculated in the first calculation step and the second power-time relational expression calculated in the second calculation step, an intersection of these relational expressions is obtained. An index value calculation method for calculating an index value for exercise, comprising: an index value calculation step of calculating, as an index value, either or both of the work rate and time to be configured.
  6.  コンピュータに、
     所定の運動に係る固有情報を取得する固有情報取得手段により取得された固有情報に基づいて、当該運動に要する時間と当該運動に要する仕事量に基づく仕事率との関係式である第1の仕事率-時間関係式を算出する第1算出機能と、
     当該運動の運動者についての所定の時間間隔と当該時間間隔における仕事率との関係式である第2の仕事率-時間関係式を算出するための所定情報を取得する所定情報取得手段により取得された所定情報に基づいて、前記第2の仕事率-時間関係式を算出する第2算出機能と、
     前記第1算出機能によって算出された第1の仕事率-時間関係式と、前記第2算出機能によって算出された第2の仕事率-時間関係式とに基づいて、これらの関係式の交点を構成する仕事率及び時間の双方又はいずれか一方を指標値として算出する指標値算出機能と、を実現させることを特徴とする運動用の指標値算出プログラム。
    On the computer,
    The first work which is a relational expression between the time required for the exercise and the work rate based on the work required for the exercise based on the unique information acquired by the unique information acquisition means for acquiring the unique information related to the predetermined exercise A first calculation function for calculating a rate-time relational expression;
    Acquired by a predetermined information acquisition means for acquiring predetermined information for calculating a second work rate-time relational expression, which is a relational expression between a predetermined time interval for an exerciser of the exercise and the work rate in the time interval. A second calculation function for calculating the second power-time relational expression based on the predetermined information;
    Based on the first power-time relational expression calculated by the first calculation function and the second power-time relational expression calculated by the second calculation function, an intersection of these relational expressions is obtained. An index value calculation program for exercise, which realizes an index value calculation function for calculating either or both of a work rate and time to be configured as an index value.
  7.  請求項6に記載の計測プログラムを記録した記録媒体。 A recording medium on which the measurement program according to claim 6 is recorded.
PCT/JP2012/055598 2012-03-05 2012-03-05 Exercise index computation device, exercise index computation method, exercise index computation program, and recording medium on which exercise index computation program is recordable WO2013132582A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2012/055598 WO2013132582A1 (en) 2012-03-05 2012-03-05 Exercise index computation device, exercise index computation method, exercise index computation program, and recording medium on which exercise index computation program is recordable
JP2014503311A JP5857120B2 (en) 2012-03-05 2012-03-05 Index value calculation device for exercise, index value calculation method for exercise, index value calculation program for exercise, and recording medium capable of recording index value calculation program for exercise

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/055598 WO2013132582A1 (en) 2012-03-05 2012-03-05 Exercise index computation device, exercise index computation method, exercise index computation program, and recording medium on which exercise index computation program is recordable

Publications (1)

Publication Number Publication Date
WO2013132582A1 true WO2013132582A1 (en) 2013-09-12

Family

ID=49116098

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/055598 WO2013132582A1 (en) 2012-03-05 2012-03-05 Exercise index computation device, exercise index computation method, exercise index computation program, and recording medium on which exercise index computation program is recordable

Country Status (2)

Country Link
JP (1) JP5857120B2 (en)
WO (1) WO2013132582A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021157519A1 (en) * 2020-02-07 2021-08-12 カシオ計算機株式会社 Predicted finish time display device, predicted finish time display control method, program, and predicted finish time display system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4976424A (en) * 1987-08-25 1990-12-11 Schwinn Bicycle Company Load control for exercise device
JPH0323874A (en) * 1989-06-20 1991-01-31 Sanyo Electric Co Ltd Kinetic load device
JPH0796877A (en) * 1993-09-28 1995-04-11 Casio Comput Co Ltd Running condition detecting device
JPH1035567A (en) * 1996-07-19 1998-02-10 Bridgestone Cycle Co Bicycle meter
JP2006116161A (en) * 2004-10-22 2006-05-11 Kyokuko Bussan Kk Method to define suitable intensity of exercise in exercise formulation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4976424A (en) * 1987-08-25 1990-12-11 Schwinn Bicycle Company Load control for exercise device
JPH0323874A (en) * 1989-06-20 1991-01-31 Sanyo Electric Co Ltd Kinetic load device
JPH0796877A (en) * 1993-09-28 1995-04-11 Casio Comput Co Ltd Running condition detecting device
JPH1035567A (en) * 1996-07-19 1998-02-10 Bridgestone Cycle Co Bicycle meter
JP2006116161A (en) * 2004-10-22 2006-05-11 Kyokuko Bussan Kk Method to define suitable intensity of exercise in exercise formulation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021157519A1 (en) * 2020-02-07 2021-08-12 カシオ計算機株式会社 Predicted finish time display device, predicted finish time display control method, program, and predicted finish time display system
JP7371516B2 (en) 2020-02-07 2023-10-31 カシオ計算機株式会社 Predicted goal time display device, predicted goal time display control method, program, and predicted goal time display system

Also Published As

Publication number Publication date
JPWO2013132582A1 (en) 2015-07-30
JP5857120B2 (en) 2016-02-10

Similar Documents

Publication Publication Date Title
US9896154B2 (en) Device and method for regulating the assistance power of an electric power-assisted bicycle
JP6610626B2 (en) Activity status analysis device, activity status analysis method and program
CN205906129U (en) Self -balancing haulage vehicle
JP5025838B2 (en) Measuring device and sensor device for pedaling movement
JP5490916B2 (en) Pedaling state detection device, pedaling state detection method, pedaling state detection program, medium recording pedaling state detection program
JP5570248B2 (en) Electric assist control method and electric assist bicycle
JP5490915B2 (en) Pedaling correction assisting device, pedaling correction assisting method, program for assisting pedaling correction, medium recording program for assisting pedaling correction
CA3108201A1 (en) Method and apparatus for monitoring fluid dynamic drag
JP2012121338A (en) Navigation apparatus
JP2013095306A (en) Electronic system for bicycle, and program
US20150355042A1 (en) Measuring device
JP2017504363A (en) Momentum calculation method, apparatus and mobile phone
JP6645481B2 (en) Activity record data processing device, activity record data processing method, and activity record data processing program
JP5857120B2 (en) Index value calculation device for exercise, index value calculation method for exercise, index value calculation program for exercise, and recording medium capable of recording index value calculation program for exercise
KR101250247B1 (en) System and Method for Bike Simulators
KR101458386B1 (en) Cadence measurement system using bicycle shoes
US10828532B2 (en) Riding posture outputting device
JP5815115B2 (en) Measuring device, measuring method, measuring program, and recording medium capable of recording measuring program
WO2016009536A1 (en) Rotation angle detection device
JP2016179718A (en) Kinetic motion measuring apparatus, kinetic motion measuring method and program
JP2020062997A (en) Control device for man-power drive vehicle and control method for man-power drive vehicle
JP2014134509A (en) Measuring device
WO2007115073A2 (en) Power meter for deriving elevational changes of a bicycle ride
JP5802825B2 (en) Rotation angle detection device and rotation angle detection method
WO2016009538A1 (en) Rotation angle detection device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12870383

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014503311

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12870383

Country of ref document: EP

Kind code of ref document: A1