WO2013132572A1 - Drive transmission unit - Google Patents

Drive transmission unit Download PDF

Info

Publication number
WO2013132572A1
WO2013132572A1 PCT/JP2012/055529 JP2012055529W WO2013132572A1 WO 2013132572 A1 WO2013132572 A1 WO 2013132572A1 JP 2012055529 W JP2012055529 W JP 2012055529W WO 2013132572 A1 WO2013132572 A1 WO 2013132572A1
Authority
WO
WIPO (PCT)
Prior art keywords
input
force
input member
drive transmission
rotates
Prior art date
Application number
PCT/JP2012/055529
Other languages
French (fr)
Japanese (ja)
Inventor
雄一 田邉
Original Assignee
キヤノン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノン株式会社 filed Critical キヤノン株式会社
Priority to PCT/JP2012/055529 priority Critical patent/WO2013132572A1/en
Publication of WO2013132572A1 publication Critical patent/WO2013132572A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H55/00Elements with teeth or friction surfaces for conveying motion; Worms, pulleys or sheaves for gearing mechanisms
    • F16H55/02Toothed members; Worms
    • F16H55/17Toothed wheels
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G21/00Arrangements not provided for by groups G03G13/00 - G03G19/00, e.g. cleaning, elimination of residual charge
    • G03G21/16Mechanical means for facilitating the maintenance of the apparatus, e.g. modular arrangements
    • G03G21/1642Mechanical means for facilitating the maintenance of the apparatus, e.g. modular arrangements for connecting the different parts of the apparatus
    • G03G21/1647Mechanical connection means

Definitions

  • the present invention relates to a drive transmission unit that transmits or blocks a driving force input from a driving source to a driven body in accordance with the rotation direction.
  • a plurality of rotating bodies be rotationally driven by a smaller number of motors (driving sources).
  • motors driving sources
  • Patent Document 1 a configuration has been devised in which a one-way unit is arranged in a drive transmission path from a motor to a rotating body and the rotating body is selectively driven by rotating the motor forward and backward.
  • Patent Document 2 proposes a drive transmission unit (one-way unit) having a relatively small number of parts and a simple configuration. Specifically, a configuration is disclosed that includes an input gear, an output gear that includes a ratchet portion, and a spring that is provided on the output gear surface of the input gear and contacts the ratchet portion of the output gear.
  • the claws that have crossed the slope of the ratchet are composed of springs, the claws that have overcome the slope will be restored to their original posture by their own elasticity. Therefore, when the driving force in the reverse rotation direction is continuously input to the input gear, the claw repeats the operation of overcoming the slope and restoring. Each time the claw gets over the slope, the claw (spring) collides with the output gear due to the restoring force, resulting in a periodic impact sound.
  • the purpose of this case is to reduce the sound when the drive is cut off while realizing one-way transmission with a relatively small number of parts.
  • the drive transmission unit of the present invention includes an “input member that can be rotated in both forward and reverse directions by receiving a driving force input from a drive source, an intermediate member that is movable in the rotational axis direction of the input member, and the input member.
  • An output member that rotates by receiving a driving force from the input member via the intermediate member when the input member rotates in the forward direction, and the intermediate member is input to the input member.
  • a first receiving portion that receives a force converted to a force in a direction to move the rotational driving force in the positive direction along the rotational axis direction to a position where the driving force is transmitted to the output member, and is input to the input member.
  • a second receiving portion that receives a force converted from a position where the rotational driving force in the reverse direction is driven to the output member along the rotational axis direction to a force in the retracting direction.
  • FIG. 1 is a cross-sectional view schematically illustrating an image forming apparatus according to an embodiment.
  • 1 is a schematic diagram of a fixing device and a driving path according to an embodiment.
  • FIG. 6 is a diagram for explaining a contact / separation operation of the fixing device according to the embodiment.
  • It is an external view of the drive transmission unit which concerns on an Example.
  • It is the perspective view and sectional drawing of the drive transmission unit which concern on an Example.
  • FIG. 1A is a diagram for explaining a schematic configuration of a printer 1 as an image forming apparatus.
  • the printer 1 as an image forming apparatus includes first to fourth stations S (Bk to Y), and forms images with different toners on the respective photosensitive drums.
  • Each station is substantially the same except for the type (spectral characteristics) of the toner that develops the electrostatic image formed on the photosensitive drum, and therefore, one station (Bk) will be described as a representative.
  • the station S (Bk) as an image forming unit includes a photosensitive drum as an image carrier and a charging device for charging the photosensitive drum.
  • the photosensitive drum charged by the charging device is exposed from the laser scanner LS, and an electrostatic image is formed on the photosensitive drum.
  • the electrostatic image formed on the photosensitive drum is developed into a toner image with black toner accommodated in a developing device.
  • the toner image developed on the photosensitive drum is transferred to an intermediate transfer belt ITB as an intermediate transfer member.
  • a charging device, a developing device, and the like that are involved in forming a toner image on the photosensitive drum are referred to as an image forming unit.
  • the toner images transferred in the order of yellow (Y), magenta (M), cyan (C), and black (Bk) from the photosensitive drum provided in each station S are superimposed on the intermediate transfer belt.
  • the superimposed toner images are transferred to the recording material conveyed from the cassette CA in the secondary transfer portion T.
  • the toner image transferred onto the recording material comes into contact with the toner and is fixed to the recording material by a fixing device F that heats and melts the toner and heat-fixes it on the recording material. Discharged.
  • FIG. 1B is a schematic cross-sectional view of the fixing device F.
  • the fixing device F includes a heating film 1f as a film-shaped (belt-shaped) heating member that is heated in contact with unfixed toner.
  • the heating film 1 f forms a nip portion for heating the pressure roller 4 f as a pressure member and the recording material P.
  • a release layer such as a fluororesin or an elastic layer is provided on the surface of the heating film 1f and the pressure roller 4f in order to realize preferable fixing conditions.
  • a support stay 3f and a plate-like heating element (ceramic heater) 2f that stably form a heating nip are disposed inside the heating film 1f.
  • the support stay 3f and the pressure roller 4f are pressed by a spring 3d at about 300N.
  • FIG. 2A is a perspective view of a driving train D for rotating and driving the fixing device F and the pressure roller 4f of this embodiment and for contacting and separating the heating film 1f and the pressure roller 4f.
  • the rotational driving force transmitted from the motor M is transmitted to the pressure roller via the drive train D (forward rotation).
  • the fixing device F of this embodiment includes a mechanism that enables the heating film 1f and the pressure roller 4f to contact and separate.
  • the pressure roller 4f is rotated and the heating film 1f can be moved in the contact / separation direction. Adopted.
  • FIG. 2B is a schematic diagram for explaining the drive transmission path.
  • the controller CO as a control device controls the motor M so as to rotate forward during image formation and reverse during jamming. Specifically, the controller CO reversely controls the motor M when a sensor (not shown) that detects a jam of the fixing device F detects the jam.
  • the rotation direction of each element when the motor rotates in the forward direction regardless of the rotation direction of each element is referred to as the forward rotation direction
  • the rotation direction of each element when the motor rotates in the reverse direction is referred to as the reverse rotation direction.
  • the drive train D to which the driving force is transmitted from the motor M includes a one-way unit 100 as a drive transmission device (drive transmission unit), a peristaltic gear, in addition to the transmission gear that transmits the drive. 1d and a pressure release cam 2d.
  • a one-way unit 100 transmits driving force to both the first path and the second path. That is, the one-way unit 100 transmits the pressure roller 4f and the swinging gear 1d via the rotational driving force in the positive direction. Further, when the motor M rotates in the reverse direction, the one-way unit 100 transmits the driving force only to the second path without transmitting the driving force to the first path.
  • the oscillating gear 1d provided in the drive train D is configured to oscillate when forward rotation is transmitted and to block the downstream drive transmission, and to transmit the driving force downstream when the reverse rotation is transmitted.
  • a pressure release cam 2d for separating the heating film 1f from the pressure roller 4f is provided on the downstream side along the drive transmission forward direction of the swing gear 1d.
  • FIG. 3A is an external view for explaining the posture and operation of the fixing device F when the motor M is rotated in the forward direction.
  • the one-way unit 100 rotates the pressure roller 4f.
  • the swing gear 1d is misaligned due to the long hole supporting the shaft, and the downstream transmission gear is non-rotating. Therefore, the pressure release cam 2d is not decentered, and the heating film 1f and the pressure roller 4f are brought into contact with each other and pressed by the spring 3d.
  • FIG. 3B is an external view for explaining the posture and operation of the fixing device F when the motor M is rotated in the reverse direction.
  • the one-way unit 100 does not transmit the driving force to the pressure roller 4f on the output gear side (downstream side). Therefore, the pressure roller 4f is in a stopped state.
  • the shaft moves through the elongated hole portion and transmits the driving force to the downstream transmission gear.
  • the pressure release cam 2d is eccentric, and the heating film 1f and the pressure roller 4f are in a separated state.
  • the pressure release cam 2d moves the arm that supports the heating film 1d with a force that exceeds the urging force of the spring 3d to the pressure roller 4f.
  • a separation sensor (not shown) detects the separation state of the fixing device F.
  • the controller CO stops the rotation of the motor M.
  • the controller CO rotates the motor M in the reverse direction until the separation sensor detects contact.
  • the pressure cam rotates in the reverse rotation direction, the arm is pulled by the spring 3d and returns to the pressure position.
  • the present drive train can be applied to various uses such as a portion where a roller for conveying a sheet is selectively rotated, and a rotary developing device is rotationally driven.
  • the one-way unit 100 as a drive transmission unit which is a characteristic mechanical element of a present Example is demonstrated. As described above, it is incorporated in the drive train D and switches between transmission and interruption of the driving force according to the rotation direction of the motor M.
  • FIG. 4A is a perspective view for explaining the appearance of the one-way unit 100 as a drive transmission unit.
  • the one-way unit 100 is provided in a loosely fitted state on the support shaft SH.
  • FIG. 4B is a perspective view for explaining a state in which the one-way unit 100 is disassembled.
  • the one-way unit 100 includes an input gear 100i as a rotatable input member, a cam surface as a first receiving portion, a ratchet surface as a second receiving portion, an intermediate body 100m as an intermediate member, and an output as an output member. It is comprised from the gear 100o.
  • the intermediate body 100m is supported by the support shaft so as to be movable in the axial direction in a closed space between the input gear 100i and the output gear 100o.
  • the one-way unit 100 includes an input gear 100i, an output gear 100i, and an intermediate body 100m interposed between the input gear 100i and the output gear 100o so as to be movable in the axial direction in the axial direction of the support shaft SH. ing.
  • the shape (joint shape) for transmitting drive from the intermediate body 100m to the output gear 100o is not limited to the ratchet shape. That is, any shape may be used as long as it has both a portion that converts the rotational driving force input to the input gear 100i into a force in the rotational axis direction and a portion that transmits the rotational driving force by meshing.
  • FIG. 5A is a perspective view showing a state in which each element (100i, 100m, 100o) constituting the one-way unit 100 is detached from the support shaft SH.
  • FIG. 5B is a cross-sectional view of each element.
  • an input gear 100i as an input member includes a plurality of tooth surfaces (tooth surfaces 101i and 102i). Moreover, the sliding rib 103i which contacts the end surface cam 101m provided in the intermediate body 100m is provided.
  • the input gear 100i includes a guide surface 104i that is guided in a loosely fitted state with the intermediate body 100m, and a guide surface 105i that is guided in a loosely fitted state with the output gear 100o. That is, the input gear 100i has a fitting relationship with a gap (play) in the radial direction of the support shaft SH, and the intermediate body 100m and the output gear 100o have a fitting relationship with a gap (play) in the radial direction. ing.
  • the surface of the intermediate body 100m facing the input gear is provided with an end face cam 101m that contacts the sliding rib 103i.
  • the surface of the intermediate body 100m facing the output gear is provided with a ratchet surface 102m that transmits drive to the output gear.
  • the intermediate body 100m includes a cylindrical projection surface 103m that can be retracted into a space of the guide surface 104i (concave shape) of the input gear 100i and a peripheral surface 104m that is guided by the guide surface 104o of the output gear.
  • the output gear 100o includes a tooth surface 101o for transmitting a driving force transmitted from the input gear 100i through the intermediate body 100m. Further, a ratchet surface 102o is provided as a drive receiving portion that engages with the ratchet surface 102m as a drive transmission portion of the intermediate body 100m and receives a rotational driving force.
  • the outer diameter of the surface 103o of the output gear 100o that contacts the input gear 100i is such that it can idle (relatively rotate) with respect to the input gear 100i.
  • the output gear 100o includes a concave guide surface 104o that guides the peripheral surface 104m of the intermediate body 100m.
  • each tooth surface (101i, 102i, 101o) and another gear will be briefly described. It is the tooth surface 102 i that meshes with the gear provided in the motor M.
  • the input gear 100i rotates by the torque received from the tooth surface 102i.
  • a driving force is transmitted from the tooth surface 101i toward the swing gear 1d (second path: see FIG. 2).
  • the tooth surface 101o provided on the output gear 100o transmits driving force to the pressure roller 4f (first path: see FIG. 2).
  • the cam surface (end face cam) of the intermediate body 100m of the present embodiment has an outer diameter of 8.2 mm, a thickness of 1.6 mm, and rotates about 104 ° around the support shaft SH, whereby the axial direction of the support shaft SH It has an inclination to displace the height of 2.3 mm.
  • At both ends of the end face cam there are two faces substantially parallel to the rotation axis direction.
  • the surface with the shorter length in the axial direction is referred to as the A surface
  • the surface with the longer length is referred to as the B surface (see FIG. 6B).
  • the ratchet shape provided in the output gear 100o and the intermediate body 100m has eight claw shapes arranged at equal intervals around the support shaft SH.
  • Each nail shape has an outer diameter of 14.8 mm, a thickness of 3.5 mm, and the slope of the ratchet surface has a slope of about 12 ° (see FIG. 6B).
  • the abutment surface (drive transmission surface) with which the ratchets come into contact is a slope of 2 mm in the axial direction of the support shaft SH and inclined by 5 ° in the direction of biting each other. That is, drive transmission from the intermediate body 100m to the output gear 100o is performed between slopes having a slope of 5 °.
  • the intermediate body 100m is loosely fitted to the support shaft SH, the intermediate body 100m is parallel to the support shaft SH when the intermediate body 100m meshes with a substantially vertical surface of the ratchet surface of the output gear 100o. Supported. As a result, the driving force input to the input gear from the motor M can be transmitted to the output gear while suppressing loss.
  • the intermediate body 100m of a present Example has an engaging part of 6.5 mm with respect to the support shaft SH in the axial direction of the support shaft SH.
  • the engaging part has a relationship of 1.5 mm at the cam surface side end of the intermediate body 100 m and a fitting part of 211 ° around the support shaft SH, and the other 5 mm having a clearance of 0.1 mm with respect to the support shaft SH. It has become.
  • the intermediate body 100m has a cam surface on the input gear 100i side in the axial direction and a ratchet shape as a joint shape on the output gear 100o side.
  • a sliding rib for pushing up the cam surface of the intermediate body 100m is provided in the input gear 100i, and a ratchet shape for receiving the ratchet shape of the intermediate body 100m is provided in the output gear 100o.
  • the end face cam shape and the ratchet shape are adopted in this embodiment, but this configuration is limited as long as the same function can be ensured. It is not a thing.
  • the one-way unit 100 of this example was made by casting acetal resin (POM).
  • FIG. 6A is a side view of the input gear 100i.
  • the tooth surfaces 101i and 102i are provided concentrically.
  • the sliding rib 103i is provided in a part of recessed part by the side of the intermediate body 100m.
  • FIG. 6B is a side view of the intermediate 100m. It can be seen that an end face cam 101m in which a part of the cylinder is cut out is provided on the surface on the input gear side of the intermediate body 100m. Note that the surface of the sliding rib 103i on the intermediate body 100m side comes into contact with the inclined surface of the end face cam 101m, and pushes the intermediate body 100m toward the output gear 100o. Further, both ends of the cylindrical notch are substantially parallel to the axial direction, and the rotational force in the circumferential direction input to the input gear 100i is good to the intermediate body 100m by contacting the circumferential surface of the sliding rib 103i. To communicate.
  • FIG. 6 is a side view of the output gear 100o. Eight claws that mesh with the ratchet surface 102m are arranged on the surface on the intermediate body 100m side of the output gear 100o in the circumferential direction. When the input gear 100i rotates in the reverse direction, the slope of the output gear 100o releases the role of pushing the intermediate body 100m toward the input gear in the rotation axis direction.
  • the intermediate body 100m can be inclined with respect to the axial direction of the support shaft SH in the gap provided in the radial direction with the support shaft SH. Furthermore, the intermediate body 100m and the output gear 100o are in a fitting relationship in the radial direction of the support shaft SH. Therefore, when the intermediate body 100o is inclined, the frictional resistance between the intermediate body 100o and the output gear 100o becomes very large, and the contact between the input gear 100i and the intermediate body 100m on the cam surface can be reliably separated. Therefore, even if the frictional resistance at the contact portion between the cam surface of the input gear 100i and the intermediate body 100m becomes large, the rotation of the input gear 100i and the intermediate body 100m is suppressed, and a reliable one-way operation is achieved. Drive transmission is possible.
  • FIG. 7A is a diagram for explaining a state in which the intermediate body 100m is in a separated position where the ratchet surface of the intermediate body 100m and the ratchet surface of the output gear 100o do not contact each other.
  • the ratchet surface of the intermediate body 100m and the ratchet surface of the output gear 100o are in a positional relationship such that they do not contact each other.
  • the sliding rib of the input gear 100i is at a deep position (blocking position) of the end face cam.
  • FIG. 7B is a view for explaining a state in which the intermediate body 100m is in a contact position where the ratchet surface of the intermediate body 100m meshes with the ratchet surface of the output gear 100o.
  • the sliding rib of the input gear 100i is in contact with the A surface of the intermediate body.
  • the sliding rib contacts the surface A to transmit the driving force, and the driving force is transmitted to the output gear through the meshing ratchet surface.
  • the sliding rib is in a shallow position (transmission position) of the end face cam. Even if reverse rotation is driven by the input gear from this state, the intermediate body 100m does not move in the axial direction until the sliding rib 103i contacts the B surface of the intermediate body.
  • FIG. 8 is a diagram for explaining how the intermediate body 100m moves when the input gear 100i rotates in the forward direction.
  • (A) of FIG. 8 is a figure which shows the state which the ratchet surface of the intermediate body 100m and the ratchet surface of the output gear 100o have not meshed
  • the sliding rib 103i is positioned at the blocking position of the end face cam, and the peripheral surface of the sliding rib is in contact with the B surface of the intermediate body.
  • the sliding rib 103i moves away from the B surface of the end cam, and the intermediate rib side surface of the sliding rib comes into contact with the cam surface.
  • FIG. 8B is a diagram for explaining what force the sliding rib 103i applies to the end face cam surface as it rotates in the forward direction.
  • the sliding rib 103i rotates integrally with the input gear 100i in the positive direction.
  • the sliding rib applies a force in the direction of a thin arrow in the figure to the end face cam.
  • the intermediate body 100m receives an axial component force (thick arrow in the figure) from the sliding rib and moves from the separated position toward the contact position.
  • (C) of FIG. 8 is a diagram for explaining that the driving force is transmitted from the input gear 100i to the output gear 100o through the intermediate body 100m.
  • the sliding rib 103i comes into contact with the A surface of the intermediate body 100m.
  • the intermediate body 100m that receives the force transmitted from the sliding rib on the A surface transmits the rotational force in the positive direction to the output gear 100o through the ratchet surface.
  • the intermediate body 100m moves to the contact position, and the rotational driving force is transmitted to the downstream side of the output gear.
  • the resultant force of the force applied to the intermediate body by the input gear and the force applied to the intermediate body by the output gear is a direction toward the output gear along the axial direction.
  • FIG. 9 is a diagram for explaining how the intermediate body 100m moves when the input gear 100i rotates in the reverse direction.
  • FIG. 9A is a view showing a state in which the ratchet surface of the intermediate body 100m and the ratchet surface of the output gear 100o are in contact (engaged).
  • the sliding rib 103i is positioned at the transmission position of the end face cam, and the peripheral surface of the sliding rib is in contact with the A surface of the intermediate body.
  • the sliding rib 103i moves away from the B surface of the end cam. Since the intermediate body 100m is not biased by a spring or the like, the intermediate body does not rotate or move until the sliding rib 103i contacts the A surface of the intermediate body.
  • FIG. 9 is a diagram for explaining what force is applied to the intermediate body by the ratchet surface of the output gear 100o.
  • the intermediate body 100m rotates in the reverse direction integrally with the input gear 100i.
  • the ratchet surface of the output gear comes into contact with the inclined surface of the intermediate body ratchet surface.
  • the ratchet surface of the output gear applies a force in the direction of a thin arrow in the figure to the ratchet surface of the intermediate body.
  • the intermediate body 100m receives an axial component force (thick arrow in the figure) from the ratchet surface of the output gear 100o, and moves from the contact position toward the separation position.
  • FIG. 9 is a figure for demonstrating that the intermediate body 100m which moved to the separation position does not move to a contact position during reverse rotation.
  • the intermediate body 100m is not biased so as to move to the contact position by a biasing means such as a spring. Therefore, if the ratchet surfaces move to a position where the ratchet surfaces do not mesh with each other due to the component force from the ratchet surface of the output gear 100o, the inclined surfaces do not collide again.
  • the intermediate body 100m rotates integrally with the input gear 100i in the reverse direction.
  • the resultant force of the force applied to the intermediate body by the input gear and the force applied to the intermediate body by the output gear is in the direction toward the input gear along the axial direction.
  • FIG. 11 is a view for explaining the configuration of a one-way clutch of a comparative example.
  • the ratchet surface provided in the intermediate body 100m of this example was provided on the input side, and was biased by a spring so as to contact the ratchet surface on the output side.
  • the one-way clutch of the comparative example was also pressurized with 1N by a spring using POM as in the present example.
  • the input side and the output side move up on the slope of the ratchet against the spring force (see idle rotation in the figure). And every time it gets over the slope of the ratchet, the input side and the output side collide by the spring, and a periodic impact sound (collision sound) continues to sound.
  • Table 1 compares the sound pressure levels measured in the vicinity of the exterior of the printer 1 when the input side is rotated in the reverse direction (drive cutoff direction) at 220 rpm.
  • the sound generated during reverse rotation from the one-way unit 100 according to the present embodiment is a level (substantially 0 dB) generated by the meshing of the gears.
  • the one-way unit of this embodiment makes the operation noise when the drive is shut down quieter than the configuration (comparative example) in which the pawl that has overcome the ratchet surface by the biasing by the spring is always biased to the meshing position. Can do. In this way, it is possible to reduce the impact noise at the connecting portion while selectively transmitting the drive with a relatively small number of parts.
  • an intermediate body can be comprised with a resin material (POM) compared with a prior art (patent document 2), it becomes possible to transmit high load.
  • POM resin material
  • the configuration of the present embodiment has an advantage that the occupied space can be reduced because a portion for holding the other end is not required for biasing the output side with a spring as compared with the comparative example.
  • FIG. 10 is a diagram for explaining the configuration of the one-way unit of this embodiment.
  • the intermediate body 100m is pushed to the contact position by the sliding rib 103i during the forward rotation, and is pushed toward the separation position by the ratchet surface 102o during the reverse rotation.
  • the one-way unit 100 of the present embodiment employs a configuration in which the sliding rib 103i pulls the intermediate body 100m toward the separation position during reverse rotation (see FIG. 10A).
  • the shape of the drive transmission portion that transmits to the output gear 100o when a positive rotational driving force is transmitted to the input gear 100i has been changed from a ratchet shape having a slope to a protruding shape.
  • the joint shape is not limited to the protrusion shape as long as the circumferential rotational driving force can be transmitted.
  • FIG. 10B is a diagram in which a contact portion between the input gear 100i and the intermediate body 100m is cut in the axial direction and developed in the circumferential direction.
  • the shape for drawing in the intermediate body 100m as in the present embodiment is a relatively complicated shape compared to the configuration of the sliding rib 103i and the end face cam in the first embodiment, and there is a demerit that the manufacturing costs increase.
  • the constraints on the shape of the drive transmission surface are relaxed, a joint shape that can improve the idling distance and drive transmission accuracy can be employed.
  • the number of pins that perform drive transmission is larger than the number of claws (eight) of the drive transmission section of the first embodiment.
  • the sliding rib 103i comes into contact with the A surface of the intermediate body 100m, and the intermediate body 100m moves to the contact position.
  • the sliding rib 103i comes into contact with the B surface of the intermediate body.
  • the shape of the side of the sliding rib 103i that contacts the B surface is a hook shape.
  • the B surface of the intermediate body 100m is tapered in the axial direction, and the intermediate body 100m is drawn toward the input gear by the sliding rib 103i during reverse rotation.
  • the one-way unit of this embodiment produces an operating sound when the drive is cut off, compared to a configuration (comparative example) in which the pawl that has overcome the ratchet surface by the biasing by the spring is always biased to the meshing position. Can be quiet.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Transmission Devices (AREA)

Abstract

The purpose of the invention is to provide a drive transmission unit, which has a small number of parts and a simple configuration and which is capable of limiting the sounds of impact between the input part and the output part in the coupling section. A drive transmission unit in which, when the input member is rotating in the forward direction, the output member receives the driving force from the input member via an intermediate member and rotates. The intermediate member is provided with a first receiving section, which receives a forward rotation driving force that has been input to the input member and has been converted to a force in the direction for moving the intermediate member along the direction of the rotation axis to the position for transmitting the driving force to the output member, and a second receiving section, which receives a reverse rotation driving force that has been input to the input member and has been converted to a force in the direction for withdrawing the intermediate member along the direction of the rotation axis from the position for driving the output member.

Description

駆動伝達ユニットDrive transmission unit
 駆動源から入力される駆動力を回転方向に応じて被駆動体へ伝達又は遮断する駆動伝達ユニットに関する。 The present invention relates to a drive transmission unit that transmits or blocks a driving force input from a driving source to a driven body in accordance with the rotation direction.
 様々な装置において、複数の回転体(被駆動体)をより少ない数のモータ(駆動源)で回転駆動させることが望まれている。例えば電子写真方式の画像形成装置では、1つのモータで複数の現像スリーブを回転させたり、1つのモータで現像スリーブと感光体の両方を回転させたりすることが望まれている。 In various apparatuses, it is desired that a plurality of rotating bodies (driven bodies) be rotationally driven by a smaller number of motors (driving sources). For example, in an electrophotographic image forming apparatus, it is desired to rotate a plurality of developing sleeves with a single motor, or to rotate both a developing sleeve and a photoreceptor with a single motor.
 ここで、1つのモータで複数の回転体を回転させる構成においても、ある回転体を選択的に回転させたいという要望がある。例えば、1つのモータで現像スリーブと感光体の両方を回転させつつも、場合によっては感光体だけを選択的に回転させたいという要望がある。 Here, even in a configuration in which a plurality of rotating bodies are rotated by one motor, there is a demand for selectively rotating a certain rotating body. For example, there is a demand to selectively rotate only the photoconductor while rotating both the developing sleeve and the photoconductor with one motor.
 この要望に対して、モータから回転体に至る駆動伝達路にワンウェイユニットを配置し、モータを正逆回転させて回転体を選択的に駆動する構成が考案されている(特許文献1)。 In response to this demand, a configuration has been devised in which a one-way unit is arranged in a drive transmission path from a motor to a rotating body and the rotating body is selectively driven by rotating the motor forward and backward (Patent Document 1).
 ここで、一般的なワンウェイユニットは複数のボールやニードルを周方向に配列するため、部品点数も多く、構造が複雑なため小型のものは高価になる。それに対して、特許文献2には、比較的少ない部品点数かつ簡単な構成の駆動伝達ユニット(ワンウェイユニット)が提案されている。具体的には、入力ギヤと、ラチェット部を備える出力ギヤと、入力ギヤの出力ギヤ面に設けられ出力ギヤのラチェット部と接触するバネと、を備える構成が開示されている。 Here, since a general one-way unit has a plurality of balls and needles arranged in the circumferential direction, the number of parts is large and the structure is complicated, so that a small one is expensive. On the other hand, Patent Document 2 proposes a drive transmission unit (one-way unit) having a relatively small number of parts and a simple configuration. Specifically, a configuration is disclosed that includes an input gear, an output gear that includes a ratchet portion, and a spring that is provided on the output gear surface of the input gear and contacts the ratchet portion of the output gear.
特開平6-118784号公報JP-A-6-118784 特開2005-163826号公報JP 2005-163826 A
 ここで、特許文献2に記載の駆動伝達ユニットをモータから回転体に至る駆動伝達路に配置し、回転体を選択的に回転させようとした場合に以下の問題が生じた。具体的には、入力ギヤ(入力部材)に出力ギヤ(出力部材)へ駆動力が伝達されない方向(逆回転)の駆動を入力した場合に、周期的な打突音が生じるという課題が生じた。 Here, when the drive transmission unit described in Patent Document 2 is arranged in the drive transmission path from the motor to the rotating body and the rotating body is selectively rotated, the following problems occur. Specifically, when a drive in a direction (reverse rotation) in which the driving force is not transmitted to the output gear (output member) is input to the input gear (input member), there is a problem that periodic impact noise is generated. .
 特許文献2に開示の入力ギヤに正方向の駆動力が入力されると、バネで構成された爪が出力ギヤに設けられたラチェット部の回転抑制面に食い込み、入力ギヤに入力された駆動が出力ギヤへ伝達される。逆に、入力ギヤに逆方向の駆動力が入力されると、バネで構成された爪はラチェット部の斜面を乗り越えるため出力ギヤへ駆動力は伝達されない。 When a driving force in the positive direction is input to the input gear disclosed in Patent Document 2, a pawl constituted by a spring bites into the rotation suppression surface of the ratchet portion provided in the output gear, and the driving input to the input gear is performed. It is transmitted to the output gear. On the contrary, when a driving force in the reverse direction is input to the input gear, the pawl formed by the spring rides over the slope of the ratchet portion, so that the driving force is not transmitted to the output gear.
 ここで、ラチェット部の斜面を乗り越えた爪はバネで構成されているため、斜面を乗り越えた爪は自身の弾性により元の姿勢に復元する。そのため、逆回転方向の駆動力を入力ギヤに継続して入力されると、爪は斜面を乗り越えて復元する動作を繰り返す。爪が斜面を乗り越える毎に、復元力により爪(バネ)が出力ギヤへ衝突し、結果として周期的な打突音が生じてしまう。 Here, since the claws that have crossed the slope of the ratchet are composed of springs, the claws that have overcome the slope will be restored to their original posture by their own elasticity. Therefore, when the driving force in the reverse rotation direction is continuously input to the input gear, the claw repeats the operation of overcoming the slope and restoring. Each time the claw gets over the slope, the claw (spring) collides with the output gear due to the restoring force, resulting in a periodic impact sound.
 そこで、本件は比較的少ない部品点数で一方向伝達を実現しつつも、駆動遮断時の音を低減することを目的とする。 Therefore, the purpose of this case is to reduce the sound when the drive is cut off while realizing one-way transmission with a relatively small number of parts.
 そこで、本発明の駆動伝達ユニットは「駆動源から入力される駆動力を受けて正逆両方向に回転可能な入力部材と、前記入力部材の回転軸線方向に移動可能な中間部材と、前記入力部材が正方向に回転する際に、前記入力部材から前記中間部材を介して駆動力を受けて回転する出力部材と、を備える駆動伝達ユニットであって、前記中間部材は、前記入力部材に入力される正方向の回転駆動力を回転軸線方向に沿って前記出力部材へ駆動力を伝達する位置へ移動する方向の力へ変換された力を受ける第一受け部と、前記入力部材に入力される逆方向の回転駆動力を回転軸線方向に沿って前記出力部材へ駆動力する位置から退避する方向の力へ変換された力を受ける第二受け部と、を備えること」を特徴とする。 Therefore, the drive transmission unit of the present invention includes an “input member that can be rotated in both forward and reverse directions by receiving a driving force input from a drive source, an intermediate member that is movable in the rotational axis direction of the input member, and the input member. An output member that rotates by receiving a driving force from the input member via the intermediate member when the input member rotates in the forward direction, and the intermediate member is input to the input member. A first receiving portion that receives a force converted to a force in a direction to move the rotational driving force in the positive direction along the rotational axis direction to a position where the driving force is transmitted to the output member, and is input to the input member. A second receiving portion that receives a force converted from a position where the rotational driving force in the reverse direction is driven to the output member along the rotational axis direction to a force in the retracting direction.
 これにより、比較的少ない部品点数で一方向伝達を実現しつつも、駆動遮断時の音を低減することができる。 This makes it possible to reduce the noise when the drive is cut off, while achieving one-way transmission with a relatively small number of parts.
実施例に係る画像形成装置の概略を示す断面図である。1 is a cross-sectional view schematically illustrating an image forming apparatus according to an embodiment. 実施例に係る定着装置と駆動経路の概略図である。1 is a schematic diagram of a fixing device and a driving path according to an embodiment. 実施例に係る定着装置の当接離間動作を説明するための図である。FIG. 6 is a diagram for explaining a contact / separation operation of the fixing device according to the embodiment. 実施例に係る駆動伝達ユニットの外観図である。It is an external view of the drive transmission unit which concerns on an Example. 実施例に係る駆動伝達ユニットの斜視図及び断面図である。It is the perspective view and sectional drawing of the drive transmission unit which concern on an Example. 実施例に係る駆動伝達ユニットを成す各要素の詳細図である。It is detail drawing of each element which comprises the drive transmission unit which concerns on an Example. 実施例に係る駆動伝達ユニットの各状態を説明するための図である。It is a figure for demonstrating each state of the drive transmission unit which concerns on an Example. 実施例に係る駆動伝達ユニットの正回転時の作を説明するための図である。It is a figure for demonstrating the operation | movement at the time of forward rotation of the drive transmission unit which concerns on an Example. 実施例に係る駆動伝達ユニットの逆回転時の動作を説明するための図である。It is a figure for demonstrating the operation | movement at the time of reverse rotation of the drive transmission unit which concerns on an Example. 実施例に係る駆動伝達ユニットの構成を説明するための図である。It is a figure for demonstrating the structure of the drive transmission unit which concerns on an Example. 比較例の概略構成と周期的な衝突音の発生原理を説明するための図である。It is a figure for demonstrating the schematic structure of a comparative example, and the generation principle of a periodic collision sound.
 以下、実施例に係る駆動伝達ユニット及び画像形成装置について図を用いて説明する。なお、実施の形態に記載されている構成部品の寸法、材質、形状それらの相対配置などは、その思想が適用される装置の構成や各種条件により適宜変更されるべきものであり、その範囲を以下の実施の形態に限定する趣旨のものではない。 Hereinafter, the drive transmission unit and the image forming apparatus according to the embodiment will be described with reference to the drawings. The dimensions, materials, shapes, and relative arrangements of the components described in the embodiments should be changed as appropriate according to the configuration of the apparatus to which the idea is applied and various conditions. The present invention is not intended to be limited to the following embodiments.
 以下に、駆動伝達ユニットを備える画像形成装置の概略について説明した後、駆動伝達ユニットの構成について詳しく説明する。 Hereinafter, the outline of the image forming apparatus including the drive transmission unit will be described, and then the configuration of the drive transmission unit will be described in detail.
 §1.{画像形成装置の概略構成に関する説明}
 以下に、本実施例に係る画像形成装置の概略構成について簡単に説明する。
§1. {Explanation on schematic configuration of image forming apparatus}
The schematic configuration of the image forming apparatus according to the present embodiment will be briefly described below.
 ■(装置全体の概略構成について)
 図1の(a)は画像形成装置としてのプリンタ1の概略構成を説明するための図である。画像形成装置としてのプリンタ1は第1から第4のステーションS(Bk~Y)を備え、それぞれの感光ドラム上に異なるトナーで画像を形成する。各ステーションは、感光ドラム上に形成された静電像を現像するトナーの種類(分光特性)を除き略同一であるため、一つのステーション(Bk)を代表して説明する。
■ (About the overall configuration of the entire device)
FIG. 1A is a diagram for explaining a schematic configuration of a printer 1 as an image forming apparatus. The printer 1 as an image forming apparatus includes first to fourth stations S (Bk to Y), and forms images with different toners on the respective photosensitive drums. Each station is substantially the same except for the type (spectral characteristics) of the toner that develops the electrostatic image formed on the photosensitive drum, and therefore, one station (Bk) will be described as a representative.
 画像形成部としてのステーションS(Bk)は像担持体としての感光ドラムと、感光ドラムを帯電する帯電装置を備える。帯電装置により帯電された感光ドラムはレーザスキャナLSから露光され、感光ドラム上に静電像が形成される。感光ドラム上に形成された静電像は現像装置に収容されるブラックトナーによりトナー像へ現像される。感光ドラム上に現像されたトナー像は中間転写体としての中間転写ベルトITBへ転写される。なお、感光ドラム上にトナー像を形成するために関与する帯電装置、現像装置などを画像形成部と呼ぶ。 The station S (Bk) as an image forming unit includes a photosensitive drum as an image carrier and a charging device for charging the photosensitive drum. The photosensitive drum charged by the charging device is exposed from the laser scanner LS, and an electrostatic image is formed on the photosensitive drum. The electrostatic image formed on the photosensitive drum is developed into a toner image with black toner accommodated in a developing device. The toner image developed on the photosensitive drum is transferred to an intermediate transfer belt ITB as an intermediate transfer member. A charging device, a developing device, and the like that are involved in forming a toner image on the photosensitive drum are referred to as an image forming unit.
 各ステーションSが備える感光ドラムから、イエロー(Y)、マゼンタ(M)、シアン(C)、ブラック(Bk)の順に転写されたトナー像は中間転写ベルト上に重ねられる。そして、重ねられたトナー像は2次転写部TにおいてカセットCAから搬送された記録材へ転写される。 The toner images transferred in the order of yellow (Y), magenta (M), cyan (C), and black (Bk) from the photosensitive drum provided in each station S are superimposed on the intermediate transfer belt. The superimposed toner images are transferred to the recording material conveyed from the cassette CA in the secondary transfer portion T.
 記録材上に転写されたトナー像はトナーと接触してトナーを加熱溶融させて記録材へ加熱定着する定着装置Fにより記録材へと定着され、画像が定着された記録材は機外へと排出される。 The toner image transferred onto the recording material comes into contact with the toner and is fixed to the recording material by a fixing device F that heats and melts the toner and heat-fixes it on the recording material. Discharged.
 ■(定着装置の構成について)
 続いて、本実施例の定着装置Fの構成について詳しく説明する。図1の(b)は定着装置Fの断面図の模式図である。定着装置Fは未定着のトナーと接触して加熱するフィルム状(ベルト状)の加熱部材としての加熱フィルム1fを備える。加熱フィルム1fは加圧部材としての加圧ローラ4fと記録材Pを加熱するニップ部を形成する。
■ (Fixing device configuration)
Next, the configuration of the fixing device F of this embodiment will be described in detail. FIG. 1B is a schematic cross-sectional view of the fixing device F. The fixing device F includes a heating film 1f as a film-shaped (belt-shaped) heating member that is heated in contact with unfixed toner. The heating film 1 f forms a nip portion for heating the pressure roller 4 f as a pressure member and the recording material P.
 加熱フィルム1fや加圧ローラ4fの表面には、好ましい定着条件を実現するためフッ素樹脂等の離型層、や弾性層などが設けられている。この加熱フィルム1fの内部には、加熱ニップを安定して形成する支持ステー3fや板状発熱体(セラミックヒータ)2fが配置されている。また、支持ステー3fと加圧ローラ4fは約300Nでバネ3dにより加圧されている。 A release layer such as a fluororesin or an elastic layer is provided on the surface of the heating film 1f and the pressure roller 4f in order to realize preferable fixing conditions. Inside the heating film 1f, a support stay 3f and a plate-like heating element (ceramic heater) 2f that stably form a heating nip are disposed. The support stay 3f and the pressure roller 4f are pressed by a spring 3d at about 300N.
 図2の(a)は本実施例の定着装置Fと加圧ローラ4fの回転駆動及び加熱フィルム1fと加圧ローラ4fを接離させる駆動列Dの斜視図である。モータMから伝達される回転駆動力は駆動列Dを介して、加圧ローラに伝達される(正回転)。 FIG. 2A is a perspective view of a driving train D for rotating and driving the fixing device F and the pressure roller 4f of this embodiment and for contacting and separating the heating film 1f and the pressure roller 4f. The rotational driving force transmitted from the motor M is transmitted to the pressure roller via the drive train D (forward rotation).
 ここで、ジャムが発生した際に、加熱フィルム1fと加圧ローラ4fを離間させるのが好ましい。そのため、本実施例の定着装置Fは加熱フィルム1fと加圧ローラ4fを当接離間可能とする機構を備える。なお、本実施例において未定着トナーと接触する側の部材はフィルムであるため回転駆動が困難であるため、加圧ローラ4fを回転駆動し、加熱フィルム1fを接離方向に移動可能な構成を採用している。 Here, it is preferable to separate the heating film 1f and the pressure roller 4f when a jam occurs. For this reason, the fixing device F of this embodiment includes a mechanism that enables the heating film 1f and the pressure roller 4f to contact and separate. In this embodiment, since the member on the side in contact with the unfixed toner is a film and is difficult to rotate, the pressure roller 4f is rotated and the heating film 1f can be moved in the contact / separation direction. Adopted.
 §2.{定着装置の駆動及び当接離間機構について}
 続いて、1つの駆動源(モータ)を画像形成時に正方向に回転させて加圧ローラ4fの回転駆動し、ジャム発生時も逆回転させて加熱フィルム1fと加圧ローラ4fの圧解除する駆動伝達経路について説明する。まず、駆動伝達経路について模式図を用いて接続関係の概略を説明する。続いて、外観図を用いて正逆回転時の加熱フィルム1fと加圧ローラ4fの動作と姿勢について説明する。
§2. {About fixing device drive and contact / separation mechanism}
Subsequently, one drive source (motor) is rotated in the forward direction at the time of image formation to rotate the pressure roller 4f, and is reversely rotated even when a jam occurs, to release the pressure between the heating film 1f and the pressure roller 4f. The transmission path will be described. First, the outline of the connection relationship will be described with reference to the schematic diagram of the drive transmission path. Next, operations and postures of the heating film 1f and the pressure roller 4f during forward and reverse rotation will be described using external views.
 ■(駆動伝達経路について)
 図2の(b)は駆動伝達経路を説明するための模式図である。制御装置としてのコントローラCOは画像形成時に正回転、ジャム時に逆回転をするようにモータMを制御する。具体的には、コントローラCOは定着装置Fのジャムを検知するセンサ(不図示)がジャムを検知した場合にモータMを逆回転制御する。なお、各要素の回転方向に関わらずモータが正方向に回転する際の各要素の回転方向を正回転方向、モータが逆方向に回転する際の各要素の回転方向を逆回転方向と呼ぶ。
■ (About drive transmission path)
FIG. 2B is a schematic diagram for explaining the drive transmission path. The controller CO as a control device controls the motor M so as to rotate forward during image formation and reverse during jamming. Specifically, the controller CO reversely controls the motor M when a sensor (not shown) that detects a jam of the fixing device F detects the jam. The rotation direction of each element when the motor rotates in the forward direction regardless of the rotation direction of each element is referred to as the forward rotation direction, and the rotation direction of each element when the motor rotates in the reverse direction is referred to as the reverse rotation direction.
 図2の(b)に示すように、モータMから駆動力が伝達される駆動列Dは駆動を伝達する伝達ギヤに加えて、駆動伝達装置(駆動伝達ユニット)としてのワンウェイユニット100、搖動ギヤ1d、圧解除カム2dから成る。モータMが正方向に回転する際には、ワンウェイユニット100は駆動力を第一経路と第二経路の両方に伝達する。つまり、ワンウェイユニット100は正方向の回転駆動力を介して加圧ローラ4fと揺動ギヤ1dへ伝達する。また、モータMが逆方向に回転する際には、ワンウェイユニット100は駆動力を第一経路へ伝達することなく、第二経路のみに伝達する。 As shown in FIG. 2B, the drive train D to which the driving force is transmitted from the motor M includes a one-way unit 100 as a drive transmission device (drive transmission unit), a peristaltic gear, in addition to the transmission gear that transmits the drive. 1d and a pressure release cam 2d. When the motor M rotates in the forward direction, the one-way unit 100 transmits driving force to both the first path and the second path. That is, the one-way unit 100 transmits the pressure roller 4f and the swinging gear 1d via the rotational driving force in the positive direction. Further, when the motor M rotates in the reverse direction, the one-way unit 100 transmits the driving force only to the second path without transmitting the driving force to the first path.
 駆動列Dに設けられた揺動ギヤ1dは正回転が伝達された場合に揺動し下流への駆動伝達を遮断し、逆回転が伝達された場合に駆動力を下流へ伝達するように構成されている。揺動ギヤ1dの駆動伝達順路方向に沿って下流側には加熱フィルム1fを加圧ローラ4fから離間させるための圧解除カム2dが設けられている。 The oscillating gear 1d provided in the drive train D is configured to oscillate when forward rotation is transmitted and to block the downstream drive transmission, and to transmit the driving force downstream when the reverse rotation is transmitted. Has been. A pressure release cam 2d for separating the heating film 1f from the pressure roller 4f is provided on the downstream side along the drive transmission forward direction of the swing gear 1d.
 このように、駆動経路を構成することで、1つのモータで画像形成中には加圧ローラ4fを正回転させつつも、ジャム検知時に圧解除カム2dに逆方向の駆動力を伝達して加熱フィルム1fと加圧ローラ4dを離間させことができる。 In this way, by configuring the drive path, while the pressure roller 4f is rotated forward during image formation with one motor, a reverse driving force is transmitted to the pressure release cam 2d during jam detection and heating is performed. The film 1f and the pressure roller 4d can be separated.
 ■(正回転及び逆回転時の定着装置の動作について)
 続いて、図3を用いてモータMを正逆両方向に回転を切り替えて動作させた際の定着装置Fの姿勢と動作について説明する。
■ (Operation of the fixing device during forward rotation and reverse rotation)
Next, the posture and operation of the fixing device F when the motor M is operated by switching the rotation in both forward and reverse directions will be described with reference to FIG.
 A:(正回転時)
 図3の(a)はモータMを正方向に回転した際の定着装置Fの姿勢と動作について説明するための外観図である。モータMから正回転の駆動が伝達された場合、ワンウェイユニット100は加圧ローラ4fを回転駆動させる。他方、揺動ギヤ1dは軸を支持する長穴部により軸芯がズレ、下流側の伝達ギヤは非回転となる。そのため、圧解除カム2dは偏心することなく加熱フィルム1fと加圧ローラ4fはバネ3dによって加圧された当接状態となる。
A: (For forward rotation)
FIG. 3A is an external view for explaining the posture and operation of the fixing device F when the motor M is rotated in the forward direction. When forward rotation drive is transmitted from the motor M, the one-way unit 100 rotates the pressure roller 4f. On the other hand, the swing gear 1d is misaligned due to the long hole supporting the shaft, and the downstream transmission gear is non-rotating. Therefore, the pressure release cam 2d is not decentered, and the heating film 1f and the pressure roller 4f are brought into contact with each other and pressed by the spring 3d.
 B:(逆回転時)
 図3の(b)はモータMを逆方向に回転した際の定着装置Fの姿勢と動作について説明するための外観図である。モータMから逆回転の駆動が伝達された場合、ワンウェイユニット100は駆動力を出力ギヤ側(下流側)の加圧ローラ4fへ伝達しない。そのため、加圧ローラ4fは回転停止した状態となる。他方、揺動ギヤ1dに逆回転が伝達されると、軸が長穴部を移動して下流側の伝達ギヤへ駆動力を伝達する。これにより、圧解除カム2dは偏心し、加熱フィルム1fと加圧ローラ4fは離間状態となる。そして、圧解除カム2dが加熱フィルム1dを支持するアームを加圧ローラ4fへのバネ3dによる付勢力を上回る力で移動させる。アームが図中の下方向に移動すると、離間センサ(不図示)が定着装置Fの離間状態を検知する。離間センサが加熱フィルム1fと加圧ローラ4fが離間したことを検知すると、コントローラCOはモータMの回転を停止する。なお、ジャム処理を完了した場合、(センサにより定着ニップ内にジャム紙が検知されなくなった場合)には、コントローラCOはモータMを離間センサが当接を検知するまで逆回転する。逆回転方向に加圧カムが回転することで、アームはバネ3dにより引っ張られ加圧位置へ戻る。
B: (during reverse rotation)
FIG. 3B is an external view for explaining the posture and operation of the fixing device F when the motor M is rotated in the reverse direction. When the reverse rotation drive is transmitted from the motor M, the one-way unit 100 does not transmit the driving force to the pressure roller 4f on the output gear side (downstream side). Therefore, the pressure roller 4f is in a stopped state. On the other hand, when the reverse rotation is transmitted to the swing gear 1d, the shaft moves through the elongated hole portion and transmits the driving force to the downstream transmission gear. As a result, the pressure release cam 2d is eccentric, and the heating film 1f and the pressure roller 4f are in a separated state. The pressure release cam 2d moves the arm that supports the heating film 1d with a force that exceeds the urging force of the spring 3d to the pressure roller 4f. When the arm moves downward in the figure, a separation sensor (not shown) detects the separation state of the fixing device F. When the separation sensor detects that the heating film 1f and the pressure roller 4f are separated, the controller CO stops the rotation of the motor M. When the jam processing is completed (when the jam paper is not detected in the fixing nip by the sensor), the controller CO rotates the motor M in the reverse direction until the separation sensor detects contact. As the pressure cam rotates in the reverse rotation direction, the arm is pulled by the spring 3d and returns to the pressure position.
 このように、モータMの正逆回転を制御することで1つのモータで画像形成時に加圧ローラ4fを回転させると共に、ジャム処理時の作業性を改善することができる。なお、定着装置を例に挙げて説明したが、シートを搬送するためのローラを選択的に回転させる個所や、ロータリー方式の現像装置の回転駆動等、種々の用途に本件駆動列を適用できる。 In this way, by controlling forward and reverse rotation of the motor M, the pressure roller 4f can be rotated during image formation by one motor, and workability during jam processing can be improved. Although the fixing device has been described as an example, the present drive train can be applied to various uses such as a portion where a roller for conveying a sheet is selectively rotated, and a rotary developing device is rotationally driven.
 §3.{ワンウェイユニットについて}
 以下に、本実施例の特徴的な機械要素である駆動伝達ユニットとしてのワンウェイユニット100について説明する。前述の通り駆動列Dに組み込まれ、モータMの回転方向に応じて駆動力の伝達と遮断を切り換える。
§3. {About one-way unit}
Below, the one-way unit 100 as a drive transmission unit which is a characteristic mechanical element of a present Example is demonstrated. As described above, it is incorporated in the drive train D and switches between transmission and interruption of the driving force according to the rotation direction of the motor M.
 ■(組立て状態の斜視図及び分解状態の斜視図)
 図4の(a)は駆動伝達ユニットとしてのワンウェイユニット100の外観を説明するための斜視図である。ワンウェイユニット100は支持軸SHに遊嵌状態で設けられている。図4の(b)はワンウェイユニット100を分解した状態を説明するための斜視図である。ワンウェイユニット100は回転可能な入力部材としての入力ギヤ100i、第一受け部としてのカム面と、第二受け部としてのラチェット面と、を備える中間部材としての中間体100m、出力部材としての出力ギヤ100oから構成されている。ここで、中間体100mは入力ギヤ100iと出力ギヤ100oの間の閉空間内で支持軸に軸方向に移動可能に支持されている。つまり、ワンウェイユニット100は入力ギヤ100iと、出力ギヤ100iと、支持軸SHの軸方向で入力ギヤ100iと出力ギヤ100oとの間に軸線方向に移動可能に介装された中間体100mから構成されている。続いて各要素について詳しく説明する。なお、本実施例において中間体100mから出力ギヤ100oへ駆動を伝達する形状(継手形状)はラチェット形状に限るものではない。つまり、入力ギヤ100iに入力される回転駆動力を回転軸線方向の力へ変換する部位と、噛み合うことで回転駆動力を伝達する部位とを兼ね備える形状であればよい。
■ (A perspective view in an assembled state and a perspective view in an exploded state)
FIG. 4A is a perspective view for explaining the appearance of the one-way unit 100 as a drive transmission unit. The one-way unit 100 is provided in a loosely fitted state on the support shaft SH. FIG. 4B is a perspective view for explaining a state in which the one-way unit 100 is disassembled. The one-way unit 100 includes an input gear 100i as a rotatable input member, a cam surface as a first receiving portion, a ratchet surface as a second receiving portion, an intermediate body 100m as an intermediate member, and an output as an output member. It is comprised from the gear 100o. Here, the intermediate body 100m is supported by the support shaft so as to be movable in the axial direction in a closed space between the input gear 100i and the output gear 100o. That is, the one-way unit 100 includes an input gear 100i, an output gear 100i, and an intermediate body 100m interposed between the input gear 100i and the output gear 100o so as to be movable in the axial direction in the axial direction of the support shaft SH. ing. Next, each element will be described in detail. In the present embodiment, the shape (joint shape) for transmitting drive from the intermediate body 100m to the output gear 100o is not limited to the ratchet shape. That is, any shape may be used as long as it has both a portion that converts the rotational driving force input to the input gear 100i into a force in the rotational axis direction and a portion that transmits the rotational driving force by meshing.
 ■(各要素の関係について)
 図5の(a)はワンウェイユニット100を構成する各要素(100i、100m、100o)を支持軸SHから取り外した状態を示す斜視図である。また、図5の(b)は各要素の断面図である。
■ (Relationship between each element)
FIG. 5A is a perspective view showing a state in which each element (100i, 100m, 100o) constituting the one-way unit 100 is detached from the support shaft SH. FIG. 5B is a cross-sectional view of each element.
 図5に示すように、入力部材としての入力ギヤ100iは複数の歯面(歯面101i、102i)を備える。また、中間体100mに設けられた端面カム101mと接触する摺動リブ103iを備える。また、入力ギヤ100iは中間体100mと遊嵌状態でガイドするガイド面104iと、出力ギヤ100oと遊嵌状態でガイドするガイド面105iを備える。つまり、入力ギヤ100iは支持軸SHの半径方向に隙間(遊び)がある嵌め合い関係になっていると共に、中間体100mと出力ギヤ100oとも半径方向に隙間(遊び)のある嵌め合い関係になっている。 As shown in FIG. 5, an input gear 100i as an input member includes a plurality of tooth surfaces (tooth surfaces 101i and 102i). Moreover, the sliding rib 103i which contacts the end surface cam 101m provided in the intermediate body 100m is provided. The input gear 100i includes a guide surface 104i that is guided in a loosely fitted state with the intermediate body 100m, and a guide surface 105i that is guided in a loosely fitted state with the output gear 100o. That is, the input gear 100i has a fitting relationship with a gap (play) in the radial direction of the support shaft SH, and the intermediate body 100m and the output gear 100o have a fitting relationship with a gap (play) in the radial direction. ing.
 中間体100mの入力ギヤと対向する面には摺動リブ103iと接触する端面カム101mを備える。また、中間体100mの出力ギヤと対向する面には駆動を出力ギヤへ伝達するラチェット面102mを備える。また、中間体100mは入力ギヤ100iのガイド面104i(凹形状)の空間内に退避可能な円筒状の突起面103mと、出力ギヤのガイド面104oによってガイドされる周面104mを備える。 The surface of the intermediate body 100m facing the input gear is provided with an end face cam 101m that contacts the sliding rib 103i. The surface of the intermediate body 100m facing the output gear is provided with a ratchet surface 102m that transmits drive to the output gear. The intermediate body 100m includes a cylindrical projection surface 103m that can be retracted into a space of the guide surface 104i (concave shape) of the input gear 100i and a peripheral surface 104m that is guided by the guide surface 104o of the output gear.
 出力ギヤ100oは入力ギヤ100iから中間体100mを介して伝達される駆動力を伝達するための歯面101oを備える。また、中間体100mの駆動伝達部としてのラチェット面102mと係合し回転駆動力を受ける駆動受け部としてのラチェット面102oを備える。 The output gear 100o includes a tooth surface 101o for transmitting a driving force transmitted from the input gear 100i through the intermediate body 100m. Further, a ratchet surface 102o is provided as a drive receiving portion that engages with the ratchet surface 102m as a drive transmission portion of the intermediate body 100m and receives a rotational driving force.
 また、出力ギヤ100oの入力ギヤ100iと接触する面103oの外径は入力ギヤ100iに対して空回転(相対回転)できるような外径となっている。加えて、出力ギヤ100oは中間体100mの周面104mをガイドする凹形状のガイド面104oを備える。 Also, the outer diameter of the surface 103o of the output gear 100o that contacts the input gear 100i is such that it can idle (relatively rotate) with respect to the input gear 100i. In addition, the output gear 100o includes a concave guide surface 104o that guides the peripheral surface 104m of the intermediate body 100m.
 ワンウェイユニット100の各要素について簡単に説明した。続いて、各歯面(101i、102i、101o)と他のギヤとの接続関係について簡単に説明する。モータMに設けられたギヤと噛み合うのは歯面102iである。モータMが回転すると、歯面102iから受けたトルクにより入力ギヤ100iは回転する。ここで、入力ギヤ100iが回転すると歯面101iから揺動ギヤ1dに向けて駆動力が伝達される(第二経路:図2参照)。同様に、出力ギヤ100oに設けられた歯面101oは加圧ローラ4fへ駆動力を伝達する(第一経路:図2参照)。 A brief description of each element of the one-way unit 100 was given. Next, the connection relationship between each tooth surface (101i, 102i, 101o) and another gear will be briefly described. It is the tooth surface 102 i that meshes with the gear provided in the motor M. When the motor M rotates, the input gear 100i rotates by the torque received from the tooth surface 102i. Here, when the input gear 100i rotates, a driving force is transmitted from the tooth surface 101i toward the swing gear 1d (second path: see FIG. 2). Similarly, the tooth surface 101o provided on the output gear 100o transmits driving force to the pressure roller 4f (first path: see FIG. 2).
 ここで、本実施例の中間体100mのカム面(端面カム)は、外径8.2mm、厚さ1.6mm、支持軸SHに周りに104°回転することで、支持軸SHの軸方向の高さを2.3mm変位させる傾斜を有している。端面カムの両端部には回転軸方向と略平行な2つの面がある。2つの面のうち、軸線方向の長さが短い方の面をA面、長い方の面をB面と呼ぶ(図6の(b)参照)。A面は正回転する際に、B面は逆回転する際に摺動リブ103iの周方向の面と当接し、入力ギヤから駆動力を受け取る。 Here, the cam surface (end face cam) of the intermediate body 100m of the present embodiment has an outer diameter of 8.2 mm, a thickness of 1.6 mm, and rotates about 104 ° around the support shaft SH, whereby the axial direction of the support shaft SH It has an inclination to displace the height of 2.3 mm. At both ends of the end face cam, there are two faces substantially parallel to the rotation axis direction. Of the two surfaces, the surface with the shorter length in the axial direction is referred to as the A surface, and the surface with the longer length is referred to as the B surface (see FIG. 6B). When the A surface rotates forward, the B surface contacts the circumferential surface of the sliding rib 103 i when rotating reversely, and receives driving force from the input gear.
 また、出力ギヤ100oと中間体100mに設けられたラチェット形状は、支持軸SH周りに等間隔に8つ配置された爪形状を備える。それぞれ爪形状は外径14.8mm、厚さ3.5mm、ラチェット面の斜面は約12°の勾配とした(図6の(b)参照)。ラチェット同士が接触する突き当て面(駆動伝達面)は、支持軸SHの軸方向に2mmの高さで、互いに食い込む方向に5°傾いた斜面になっている。つまり、中間体100mから出力ギヤ100oへの駆動伝達は、5°の勾配を持った斜面同士で行われる。これにより、ラチェット部は互いに食い込む方向に力が作用し、中間体100mは出力ギヤ100oと引き合う。そのため、入力ギヤに正方向の回転が伝達されている間はラチェット部同士の結合が外れることがなく、確実な駆動伝達が行える。 Further, the ratchet shape provided in the output gear 100o and the intermediate body 100m has eight claw shapes arranged at equal intervals around the support shaft SH. Each nail shape has an outer diameter of 14.8 mm, a thickness of 3.5 mm, and the slope of the ratchet surface has a slope of about 12 ° (see FIG. 6B). The abutment surface (drive transmission surface) with which the ratchets come into contact is a slope of 2 mm in the axial direction of the support shaft SH and inclined by 5 ° in the direction of biting each other. That is, drive transmission from the intermediate body 100m to the output gear 100o is performed between slopes having a slope of 5 °. Thereby, a force acts on the ratchet portions in a direction to bite each other, and the intermediate body 100m is attracted to the output gear 100o. Therefore, the ratchet portions are not disconnected from each other while the rotation in the positive direction is transmitted to the input gear, and reliable drive transmission can be performed.
 さらに、中間体100mは支持軸SHに対して遊嵌状態であるため、中間体100mと出力ギヤ100oのラチェット面の略垂直面が噛み合った際に中間体100mが支持軸SHに対して平行に支持される。これにより、モータMからの入力ギヤへ入力される駆動力を出力ギヤへロスを抑えつつ伝達することができる。なお、本実施例の中間体100mは支持軸SHに対して、支持軸SHの軸方向に6.5mmの係合部を有している。係合部は、中間体100mのカム面側端部に1.5mmで支持軸SH周りに211°の嵌合部、それ以外の5mmが支持軸SHに対して0.1mmの隙間を有する関係になっている。 Furthermore, since the intermediate body 100m is loosely fitted to the support shaft SH, the intermediate body 100m is parallel to the support shaft SH when the intermediate body 100m meshes with a substantially vertical surface of the ratchet surface of the output gear 100o. Supported. As a result, the driving force input to the input gear from the motor M can be transmitted to the output gear while suppressing loss. In addition, the intermediate body 100m of a present Example has an engaging part of 6.5 mm with respect to the support shaft SH in the axial direction of the support shaft SH. The engaging part has a relationship of 1.5 mm at the cam surface side end of the intermediate body 100 m and a fitting part of 211 ° around the support shaft SH, and the other 5 mm having a clearance of 0.1 mm with respect to the support shaft SH. It has become.
 上述のように、中間体100mには軸方向の入力ギヤ100i側にカム面、出力ギヤ100o側に継ぎ手形状としてのラチェット形状が形成されている。そして、入力ギヤ100iの内部には、中間体100mのカム面を押し上げるための摺動リブが設けられ、また、出力ギヤ100oの内部には中間体100mのラチェット形状を受け入れるラチェット形状が設けられている。ここで、加圧ローラ4fの駆動負荷や各ギヤの摺動抵抗等の影響を考慮し、本実施例では端面カム形状とラチェット形状を採用したが同様の機能を確保できる限りにおいてこの構成に限るものではない。また、本実施例のワンウェイユニット100はアセタール樹脂(POM)をキャストして作成した。 As described above, the intermediate body 100m has a cam surface on the input gear 100i side in the axial direction and a ratchet shape as a joint shape on the output gear 100o side. A sliding rib for pushing up the cam surface of the intermediate body 100m is provided in the input gear 100i, and a ratchet shape for receiving the ratchet shape of the intermediate body 100m is provided in the output gear 100o. Yes. Here, in consideration of the influence of the driving load of the pressure roller 4f, the sliding resistance of each gear, and the like, the end face cam shape and the ratchet shape are adopted in this embodiment, but this configuration is limited as long as the same function can be ensured. It is not a thing. In addition, the one-way unit 100 of this example was made by casting acetal resin (POM).
 ■(各要素の形状に関する詳しい説明)
 続いて、各要素(100i、100m、100o)について側面図を用いて説明する。図6の(a)は入力ギヤ100iの側面図である。歯面101iと102iは同心円状に設けられている。また、摺動リブ103iは中間体100m側の凹部の一部に設けられている。
■ (Detailed explanation about the shape of each element)
Then, each element (100i, 100m, 100o) is demonstrated using a side view. FIG. 6A is a side view of the input gear 100i. The tooth surfaces 101i and 102i are provided concentrically. Moreover, the sliding rib 103i is provided in a part of recessed part by the side of the intermediate body 100m.
 続いて、図6の(b)は中間体100mの側面図である。中間体100mの入力ギヤ側の面には円筒の一部を切り欠いた端面カム101mが設けられているのが解る。なお、摺動リブ103iの中間体100m側の面は端面カム101mの斜面と接触し、中間体100mを出力ギヤ100o側へ押し出す。また、円筒の切り欠き部の両端は軸線方向と略平行であり、摺動リブ103iの周方向の面と接触することで入力ギヤ100iに入力される周方向の回転力を中間体100mへ良好に伝達する。 Subsequently, FIG. 6B is a side view of the intermediate 100m. It can be seen that an end face cam 101m in which a part of the cylinder is cut out is provided on the surface on the input gear side of the intermediate body 100m. Note that the surface of the sliding rib 103i on the intermediate body 100m side comes into contact with the inclined surface of the end face cam 101m, and pushes the intermediate body 100m toward the output gear 100o. Further, both ends of the cylindrical notch are substantially parallel to the axial direction, and the rotational force in the circumferential direction input to the input gear 100i is good to the intermediate body 100m by contacting the circumferential surface of the sliding rib 103i. To communicate.
 最後に、図6の(c)は出力ギヤ100oの側面図である。出力ギヤ100oの中間体100m側の面にはラチェット面102mと噛み合う爪が周方向に8つ配置される。なお、入力ギヤ100iに逆方向に回転する際に、出力ギヤ100oの斜面は中間体100mを回転軸線方向に入力ギヤ側へ向かって押し出す役割を離す。 Finally, (c) of FIG. 6 is a side view of the output gear 100o. Eight claws that mesh with the ratchet surface 102m are arranged on the surface on the intermediate body 100m side of the output gear 100o in the circumferential direction. When the input gear 100i rotates in the reverse direction, the slope of the output gear 100o releases the role of pushing the intermediate body 100m toward the input gear in the rotation axis direction.
 ここで、入力ギヤ100iと中間体100mのカム面の駆動遮断位置での接触部の摩擦抵抗がグリスの粘性等の影響で大きくなっていた状況について考察を加える。接触部における摩擦抵抗が大きい場合、入力ギヤ100iと中間体100mが連れ回ってしまい、出力ギヤ100oに駆動を伝えることができなくなってしまう可能性がある。しかし、上述したように中間体100mと支持軸SHとの間は、支持軸SHの半径方向において隙間を有する関係になっている。そのため、中間体100mと出力部100oとの間は、支持軸SHの半径方向において嵌合(遊嵌)の関係になっている。具体的には、本実施例の中間体100mと支持軸SHとの間は、0.1mmの隙間を有する関係になっている。 Here, consideration is given to the situation in which the frictional resistance of the contact portion at the drive cutoff position of the cam surface of the input gear 100i and the intermediate body 100m is increased due to the viscosity of the grease. When the frictional resistance at the contact portion is large, the input gear 100i and the intermediate body 100m are rotated together, and there is a possibility that the drive cannot be transmitted to the output gear 100o. However, as described above, the intermediate body 100m and the support shaft SH have a gap in the radial direction of the support shaft SH. For this reason, the intermediate body 100m and the output portion 100o have a fitting (free fitting) relationship in the radial direction of the support shaft SH. Specifically, there is a relationship having a gap of 0.1 mm between the intermediate body 100m of the present embodiment and the support shaft SH.
 これにより、中間体100mが支持軸SHとの半径方向に設けられた隙間の中で、支持軸SHの軸方向に対して傾くことができる。さらに、中間体100mと出力ギヤ100oとの間は、支持軸SHの半径方向において嵌合の関係にある。そのため、中間体100oが傾くことで中間体100oと出力ギヤ100oとの間の摩擦抵抗が非常に大きくなり、入力ギヤ100iと中間体100mのカム面での接触を確実に引き離すことができる。そのため、仮に入力ギヤ100iと中間体100mのカム面の接触部での摩擦抵抗が大きくなってしまった場合においても、入力ギヤ100iと中間体100mとの連れ回りを抑制し、確実な一方向の駆動伝達が可能となる。 Thereby, the intermediate body 100m can be inclined with respect to the axial direction of the support shaft SH in the gap provided in the radial direction with the support shaft SH. Furthermore, the intermediate body 100m and the output gear 100o are in a fitting relationship in the radial direction of the support shaft SH. Therefore, when the intermediate body 100o is inclined, the frictional resistance between the intermediate body 100o and the output gear 100o becomes very large, and the contact between the input gear 100i and the intermediate body 100m on the cam surface can be reliably separated. Therefore, even if the frictional resistance at the contact portion between the cam surface of the input gear 100i and the intermediate body 100m becomes large, the rotation of the input gear 100i and the intermediate body 100m is suppressed, and a reliable one-way operation is achieved. Drive transmission is possible.
 §4.{正逆回転時のワンウェイユニットの動作について}
 まず、ワンウェイユニット100の駆動伝達時と駆動遮断時の各要素の位置関係について図7を用いて説明する。その後、回転方向の切替えに伴う中間体100mの位置変化について図8、図9を用いて説明する。
§4. {Operation of the one-way unit during forward and reverse rotation}
First, the positional relationship of each element at the time of driving transmission and driving interruption of the one-way unit 100 will be described with reference to FIG. Then, the positional change of the intermediate body 100m accompanying switching of a rotation direction is demonstrated using FIG. 8, FIG.
 ■(駆動遮断時と駆動伝達時の各要素の位置関係について)
 まず、中間体100mのラチェット面が出力ギヤのラチェット面と離間している状態と、当接している状態について説明する。
■ (About the positional relationship of each element at the time of drive interruption and drive transmission)
First, the state in which the ratchet surface of the intermediate body 100m is separated from the ratchet surface of the output gear and the state in contact with the ratchet surface will be described.
 A:ラチェット面同士が離間した状態(駆動遮断時)
 図7の(a)は中間体100mのラチェット面と出力ギヤ100oのラチェット面が接触しない離間位置に中間体100mがある状態を説明するための図である。この状態において、中間体100mのラチェット面と出力ギヤ100oのラチェット面は接触しないような位置関係にある。この時、入力ギヤ100iの摺動リブは端面カムの深い位置(遮断位置)ある。この状態において、入力部材が逆方向に回転すると摺動リブは中間体100mのB面と接触し、正方向に回転すると摺動リブは中間体の端面カムと接触して中間体100mを出力ギヤ側(出力部材側)へと移動させる。
A: The ratchet surfaces are separated from each other (when the drive is cut off)
FIG. 7A is a diagram for explaining a state in which the intermediate body 100m is in a separated position where the ratchet surface of the intermediate body 100m and the ratchet surface of the output gear 100o do not contact each other. In this state, the ratchet surface of the intermediate body 100m and the ratchet surface of the output gear 100o are in a positional relationship such that they do not contact each other. At this time, the sliding rib of the input gear 100i is at a deep position (blocking position) of the end face cam. In this state, when the input member rotates in the reverse direction, the sliding rib comes into contact with the B surface of the intermediate body 100m, and when the input member rotates in the forward direction, the sliding rib comes into contact with the end face cam of the intermediate body. Move to the side (output member side).
 B:ラチェット面同士が当接(噛合)した状態(駆動伝達時)
 図7の(b)は中間体100mのラチェット面と出力ギヤ100oのラチェット面が噛合する当接位置に中間体100mがある状態を説明するための図である。この状態において、入力ギヤ100iの摺動リブは中間体のA面と接触している。入力ギヤが正方向に回転すると、摺動リブはA面と接触して駆動力を伝達し、噛合するラチェット面を介して出力ギヤへ駆動力を伝達される。なお、ラチェット面同士が噛合する状態において、摺動リブは端面カムの浅い位置(伝達位置)にある。なお、この状態から入力ギヤに逆回転が駆動されたとしても、摺動リブ103iが中間体のB面へ接触するまで中間体100mは軸線方向に移動することはない。
B: The ratchet surfaces are in contact (meshing) with each other (during drive transmission)
FIG. 7B is a view for explaining a state in which the intermediate body 100m is in a contact position where the ratchet surface of the intermediate body 100m meshes with the ratchet surface of the output gear 100o. In this state, the sliding rib of the input gear 100i is in contact with the A surface of the intermediate body. When the input gear rotates in the forward direction, the sliding rib contacts the surface A to transmit the driving force, and the driving force is transmitted to the output gear through the meshing ratchet surface. In the state where the ratchet surfaces mesh with each other, the sliding rib is in a shallow position (transmission position) of the end face cam. Even if reverse rotation is driven by the input gear from this state, the intermediate body 100m does not move in the axial direction until the sliding rib 103i contacts the B surface of the intermediate body.
 ■(回転方向の切替えに伴う中間体の軸線方向の移動について)
 続いて、回転方向の切替えに伴う中間体の移動について詳しく説明する。
■ (About the movement of the intermediate in the axial direction when the rotation direction is changed)
Subsequently, the movement of the intermediate body accompanying the switching of the rotation direction will be described in detail.
 A:中間体の当接状態への移動(正回転時)
 図8は中間体100mが入力ギヤ100iが正方向に回転する際にどのように移動するかを説明するための図である。図8の(a)は中間体100mのラチェット面と出力ギヤ100oのラチェット面が噛合していない状態を示す図である。この時、摺動リブ103iは端面カムの遮断位置に位置し、摺動リブの周面は中間体のB面と接触している。この状態で入力ギヤ100iが正方向に回転すると、摺動リブ103iは端面カムのB面から離れ、摺動リブの中間体側の面とカム面が接触する。
A: Movement of intermediate body to contact state (during forward rotation)
FIG. 8 is a diagram for explaining how the intermediate body 100m moves when the input gear 100i rotates in the forward direction. (A) of FIG. 8 is a figure which shows the state which the ratchet surface of the intermediate body 100m and the ratchet surface of the output gear 100o have not meshed | engaged. At this time, the sliding rib 103i is positioned at the blocking position of the end face cam, and the peripheral surface of the sliding rib is in contact with the B surface of the intermediate body. When the input gear 100i rotates in the forward direction in this state, the sliding rib 103i moves away from the B surface of the end cam, and the intermediate rib side surface of the sliding rib comes into contact with the cam surface.
 図8の(b)は摺動リブ103iが正方向の回転に伴い端面カム面にどのような力を与えるかを説明するための図である。摺動リブ103iは入力ギヤ100iと一体正方向に回転する。この時、摺動リブは図中の細矢印方向の力を端面カムへ与える。中間体100mは摺動リブからの軸線方向の分力(図中の太矢印)を受け、離間位置から当接位置へ向かって移動する。 FIG. 8B is a diagram for explaining what force the sliding rib 103i applies to the end face cam surface as it rotates in the forward direction. The sliding rib 103i rotates integrally with the input gear 100i in the positive direction. At this time, the sliding rib applies a force in the direction of a thin arrow in the figure to the end face cam. The intermediate body 100m receives an axial component force (thick arrow in the figure) from the sliding rib and moves from the separated position toward the contact position.
 図8の(c)は中間体100mを介して入力ギヤ100iから出力ギヤ100oへ駆動力が伝達されることを説明するための図である。入力ギヤ100iが正方向に回転すると、摺動リブ103iは中間体100mのA面と接触する。摺動リブから伝わる力をA面で受けた中間体100mは正方向の回転力をラチェット面を介して、出力ギヤ100oへと伝達する。このように、入力ギヤ100iが正回転することで中間体100mは当接位置へと移動し、回転駆動力は出力ギヤの下流側へ伝達される。このように、入力ギヤが正方向に回転する際に、入力ギヤが中間体に与える力と出力ギヤが中間体に与える力の合力は、軸線方向に沿って出力ギヤへ向かう方向になる。 (C) of FIG. 8 is a diagram for explaining that the driving force is transmitted from the input gear 100i to the output gear 100o through the intermediate body 100m. When the input gear 100i rotates in the forward direction, the sliding rib 103i comes into contact with the A surface of the intermediate body 100m. The intermediate body 100m that receives the force transmitted from the sliding rib on the A surface transmits the rotational force in the positive direction to the output gear 100o through the ratchet surface. As described above, when the input gear 100i rotates forward, the intermediate body 100m moves to the contact position, and the rotational driving force is transmitted to the downstream side of the output gear. Thus, when the input gear rotates in the forward direction, the resultant force of the force applied to the intermediate body by the input gear and the force applied to the intermediate body by the output gear is a direction toward the output gear along the axial direction.
 B:中間体の退避位置への移動(逆回転時)
 図9は中間体100mが入力ギヤ100iが逆方向に回転する際にどのように移動するかを説明するための図である。
B: Movement of intermediate body to retracted position (during reverse rotation)
FIG. 9 is a diagram for explaining how the intermediate body 100m moves when the input gear 100i rotates in the reverse direction.
 図9の(a)は中間体100mのラチェット面と出力ギヤ100oのラチェット面が当接(噛合)した状態を示す図である。この時、摺動リブ103iは端面カムの伝達位置に位置し、摺動リブの周面は中間体のA面と接触している。この状態で入力ギヤ100iが逆方向に回転すると、摺動リブ103iは端面カムのB面から離れる。なお、中間体100mはバネ等により付勢されていないため、摺動リブ103iが中間体のA面と接触するまでは中間体は回転も移動もしない。 FIG. 9A is a view showing a state in which the ratchet surface of the intermediate body 100m and the ratchet surface of the output gear 100o are in contact (engaged). At this time, the sliding rib 103i is positioned at the transmission position of the end face cam, and the peripheral surface of the sliding rib is in contact with the A surface of the intermediate body. When the input gear 100i rotates in the reverse direction in this state, the sliding rib 103i moves away from the B surface of the end cam. Since the intermediate body 100m is not biased by a spring or the like, the intermediate body does not rotate or move until the sliding rib 103i contacts the A surface of the intermediate body.
 図9の(b)は出力ギヤ100oのラチェット面が中間体へどのような力を与えるかを説明するための図である。摺動リブ103iがB面と接触することにより、中間体100mは入力ギヤ100iと一体に逆方向に回転する。中間体100mが逆回転すると、出力ギヤのラチェット面と中間体のラチェット面の斜面が当接する。この時、出力ギヤのラチェット面は図中の細矢印方向の力を中間体のラチェット面へ与える。中間体100mは出力ギヤ100oのラチェット面から軸線方向の分力(図中の太矢印)を受け、当接位置から離間位置へ向かって移動する。 (B) of FIG. 9 is a diagram for explaining what force is applied to the intermediate body by the ratchet surface of the output gear 100o. When the sliding rib 103i comes into contact with the B surface, the intermediate body 100m rotates in the reverse direction integrally with the input gear 100i. When the intermediate body 100m rotates in the reverse direction, the ratchet surface of the output gear comes into contact with the inclined surface of the intermediate body ratchet surface. At this time, the ratchet surface of the output gear applies a force in the direction of a thin arrow in the figure to the ratchet surface of the intermediate body. The intermediate body 100m receives an axial component force (thick arrow in the figure) from the ratchet surface of the output gear 100o, and moves from the contact position toward the separation position.
 図9の(c)は離間位置へ移動した中間体100mが逆回転中に当接位置へ移動しないことを説明するための図である。本実施例において、中間体100mはバネなどの付勢手段で当接位置へ移動するように付勢されていない。そのため、出力ギヤ100oのラチェット面からの分力によってラチェット面同士が噛み合わない位置に移動すれば、斜面同士が再度衝突することはない。なお、この状態で摺動リブ103iと中間体のB面が接触するため、中間体100mは入力ギヤ100iと一体に逆方向に回転する。このように、入力ギヤが逆方向に回転する際に、入力ギヤが中間体に与える力と出力ギヤが中間体に与える力の合力は、軸線方向に沿って入力ギヤへ向かう方向になる。 (C) of FIG. 9 is a figure for demonstrating that the intermediate body 100m which moved to the separation position does not move to a contact position during reverse rotation. In this embodiment, the intermediate body 100m is not biased so as to move to the contact position by a biasing means such as a spring. Therefore, if the ratchet surfaces move to a position where the ratchet surfaces do not mesh with each other due to the component force from the ratchet surface of the output gear 100o, the inclined surfaces do not collide again. In this state, since the sliding rib 103i and the B surface of the intermediate body are in contact with each other, the intermediate body 100m rotates integrally with the input gear 100i in the reverse direction. Thus, when the input gear rotates in the reverse direction, the resultant force of the force applied to the intermediate body by the input gear and the force applied to the intermediate body by the output gear is in the direction toward the input gear along the axial direction.
 §5.{ワンウェイユニットの逆回転時の動作音について}
 最後に、比較例と本実施例のワンウェイユニットを逆回転(駆動遮断)した際の動作音について比較する。
§5. {Operation sound during reverse rotation of one-way unit}
Finally, the operation sound when the one-way unit of the comparative example and the present embodiment is reversely rotated (drive cut off) is compared.
 ■(比較例について)
 図11は比較例のワンウェイクラッチの構成を説明するための図である。本実施例の中間体100mに設けたラチェット面を入力側に設け、出力側のラチェット面と接触するようにバネで付勢した。ここで、比較例のワンウェイクラッチも本実施例と同様にPOMを用い、バネにより1Nで加圧した。
■ (Comparative example)
FIG. 11 is a view for explaining the configuration of a one-way clutch of a comparative example. The ratchet surface provided in the intermediate body 100m of this example was provided on the input side, and was biased by a spring so as to contact the ratchet surface on the output side. Here, the one-way clutch of the comparative example was also pressurized with 1N by a spring using POM as in the present example.
 比較例のような構成で駆動伝達を遮断する際には、バネ力に逆らってラチェットの斜面を乗り上げ入力側と出力側が離れる(図中の空回転時参照)。そして、ラチェットの斜面を乗り越える都度、バネにより入力側と出力側が衝突することで周期的な打突音(衝突音)が鳴り続けてしまう。 When the drive transmission is cut off in the configuration as in the comparative example, the input side and the output side move up on the slope of the ratchet against the spring force (see idle rotation in the figure). And every time it gets over the slope of the ratchet, the input side and the output side collide by the spring, and a periodic impact sound (collision sound) continues to sound.
 ■(比較結果)
 以下に、本実施例と比較例の比較結果について簡単に示す。表1はそれぞれ入力側が220rpmで逆方向(駆動遮断方向)へ回転させた際のプリンタ1の外装近傍で測定した音圧レベルを比較した表である。
■ (Comparison result)
Below, the comparison result of a present Example and a comparative example is shown briefly. Table 1 compares the sound pressure levels measured in the vicinity of the exterior of the printer 1 when the input side is rotated in the reverse direction (drive cutoff direction) at 220 rpm.
Figure JPOXMLDOC01-appb-T000001

 
Figure JPOXMLDOC01-appb-T000001

 
 表1に示すように、比較例の構成に比べて逆回転時の音圧レベルを低減することができた。なお、比較例の構成を逆回転時することでワンウェイユニットから発生する周期的な打突音による音圧レベルの増加分は約15dBである(残りの35dBは他の要素から発生した音)。つまり、本実施例のワンウェイユニット100から逆回転時になる音はギヤの噛み合いによって生じる程度(実質的に0dB)と言える。 As shown in Table 1, it was possible to reduce the sound pressure level during reverse rotation compared to the configuration of the comparative example. Note that when the configuration of the comparative example is rotated in the reverse direction, the increase in the sound pressure level due to the periodic impact sound generated from the one-way unit is about 15 dB (the remaining 35 dB is a sound generated from other elements). That is, it can be said that the sound generated during reverse rotation from the one-way unit 100 according to the present embodiment is a level (substantially 0 dB) generated by the meshing of the gears.
 このように、バネによる付勢でラチェット面を乗り越えた爪を常に噛合位置へと付勢する構成(比較例)と比べ、本実施例のワンウェイユニットは駆動遮断時の作動音を静かにすることができる。このように、比較的少ない部品点数で選択的に駆動を伝達しつつ、連結部における打突音を低減することができる。なお、従来技術(特許文献2)と比較して中間体を樹脂材(POM)で構成できるため、高負荷を伝達可能となる。これは、従来技術のようにバネ材により回転駆動力を伝達しようとする構成では、高負荷に耐えるバネ材を用いると変形が困難となり選択的に駆動を伝達する機能を損なうためである。また本実施例の構成は比較例と比べ、バネで出力側を付勢するために他端を保持する部位を要しないため占有空間を低減することができるという利点を備える。 In this way, the one-way unit of this embodiment makes the operation noise when the drive is shut down quieter than the configuration (comparative example) in which the pawl that has overcome the ratchet surface by the biasing by the spring is always biased to the meshing position. Can do. In this way, it is possible to reduce the impact noise at the connecting portion while selectively transmitting the drive with a relatively small number of parts. In addition, since an intermediate body can be comprised with a resin material (POM) compared with a prior art (patent document 2), it becomes possible to transmit high load. This is because in the configuration in which the rotational driving force is transmitted by the spring material as in the prior art, if a spring material that can withstand a high load is used, deformation becomes difficult and the function of selectively transmitting the drive is impaired. Further, the configuration of the present embodiment has an advantage that the occupied space can be reduced because a portion for holding the other end is not required for biasing the output side with a spring as compared with the comparative example.
 以下に、本実施例の構成について説明する。なお、実施例1と同様な部分に関しては説明を省略する。 Hereinafter, the configuration of this embodiment will be described. Note that a description of the same parts as those in the first embodiment will be omitted.
 図10は本実施例のワンウェイユニットの構成を説明するための図である。実施例1において、中間体100mは正回転時に摺動リブ103iにより当接位置へ押し出され、逆回転時にラチェット面102oにより離間位置へ向かって押し出される。それに対して、本実施例のワンウェイユニット100は逆回転時に摺動リブ103iが中間体100mを離間位置に向かって引き込む構成を採用した(図10の(a)参照)。 FIG. 10 is a diagram for explaining the configuration of the one-way unit of this embodiment. In the first embodiment, the intermediate body 100m is pushed to the contact position by the sliding rib 103i during the forward rotation, and is pushed toward the separation position by the ratchet surface 102o during the reverse rotation. On the other hand, the one-way unit 100 of the present embodiment employs a configuration in which the sliding rib 103i pulls the intermediate body 100m toward the separation position during reverse rotation (see FIG. 10A).
 また、入力ギヤ100iに正方向の回転駆動力が伝達された際に出力ギヤ100oに伝達する駆動伝達部の形状を斜面を備えるラチェット形状から突起形状へ変更した。当然、本実施例のように中間体100mを引き込む構成を採用するため、周方向の回転駆動力を伝達できる限りにおいて継ぎ手形状は突起形状に限るものではない。 Also, the shape of the drive transmission portion that transmits to the output gear 100o when a positive rotational driving force is transmitted to the input gear 100i has been changed from a ratchet shape having a slope to a protruding shape. Naturally, since the configuration in which the intermediate body 100m is pulled in as in this embodiment is adopted, the joint shape is not limited to the protrusion shape as long as the circumferential rotational driving force can be transmitted.
 続いて、逆回転時に入力部材としての入力ギヤ100iが中間部材としての中間体100mを入力部材側に引き込む構成について詳しく説明する。図10の(b)は入力ギヤ100iと中間体100mの接触部を軸線方向に切断し、周方向に展開した図である。なお、本実施例のように中間体100mを引き込むための形状は、実施例1の摺動リブ103iと端面カムの構成よりも比較的複雑な形状となり、製造に際してコストアップを伴うというデメリットがある。その反面、駆動伝達面の形状の制約条件が緩和されるため空転距離や駆動伝達精度を向上できる継ぎ手形状を採用することができる。具体的には、本実施例において駆動伝達を行うピンは実施例1の駆動伝達部の爪の数(8個)より多くした。 Subsequently, the configuration in which the input gear 100i as the input member pulls in the intermediate body 100m as the intermediate member to the input member side during reverse rotation will be described in detail. FIG. 10B is a diagram in which a contact portion between the input gear 100i and the intermediate body 100m is cut in the axial direction and developed in the circumferential direction. In addition, the shape for drawing in the intermediate body 100m as in the present embodiment is a relatively complicated shape compared to the configuration of the sliding rib 103i and the end face cam in the first embodiment, and there is a demerit that the manufacturing costs increase. . On the other hand, since the constraints on the shape of the drive transmission surface are relaxed, a joint shape that can improve the idling distance and drive transmission accuracy can be employed. Specifically, in the present embodiment, the number of pins that perform drive transmission is larger than the number of claws (eight) of the drive transmission section of the first embodiment.
 実施例1と同様に、入力ギヤ100iが正方向に回転すると摺動リブ103iは中間体100mのA面と接触し、中間体100mは当接位置へ移動する。逆に、入力ギヤ100iが逆方向に回転すると摺動リブ103iは中間体のB面と接触する。本実施例において、摺動リブ103iのB面と接触する側の形状は鉤形状となっている。同様に、中間体100mのB面は軸線方向にテーパが設けられており、逆回転時に摺動リブ103iにより中間体100mは入力ギヤ側へと引き込まれる。このように構成することで、バネによる付勢でラチェット面を乗り越えた爪を常に噛合位置へと付勢する構成(比較例)と比べ、本実施例のワンウェイユニットは駆動遮断時の作動音を静かにすることができる。 As in the first embodiment, when the input gear 100i rotates in the forward direction, the sliding rib 103i comes into contact with the A surface of the intermediate body 100m, and the intermediate body 100m moves to the contact position. On the contrary, when the input gear 100i rotates in the reverse direction, the sliding rib 103i comes into contact with the B surface of the intermediate body. In the present embodiment, the shape of the side of the sliding rib 103i that contacts the B surface is a hook shape. Similarly, the B surface of the intermediate body 100m is tapered in the axial direction, and the intermediate body 100m is drawn toward the input gear by the sliding rib 103i during reverse rotation. By configuring in this way, the one-way unit of this embodiment produces an operating sound when the drive is cut off, compared to a configuration (comparative example) in which the pawl that has overcome the ratchet surface by the biasing by the spring is always biased to the meshing position. Can be quiet.
 本発明は上記実施の形態に制限されるものではなく、本発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、本発明の範囲を公にするために以下の請求項を添付する。 The present invention is not limited to the above embodiment, and various changes and modifications can be made without departing from the spirit and scope of the present invention. Therefore, in order to make the scope of the present invention public, the following claims are attached.
1 プリンタ(画像形成装置)
F 定着装置
1f 加熱フィルム(加熱部材)
4f 加圧ローラ(加圧部材)
M モータ(駆動源)
D ギヤ列(駆動伝達経路)
1d 揺動ギヤ
2d 圧解除カム
100 ワンウェイユニット(駆動伝達ユニット)
100i 入力ギヤ(入力部材)
103i 摺動リブ
100m 中間体(中間部材)
101m 端面カム(周面カム)
102m ラチェット面(駆動伝達部)
100o 出力ギヤ(出力部材)
102o ラチェット面(駆動受け部)
1 Printer (image forming device)
F fixing device 1f heating film (heating member)
4f Pressure roller (pressure member)
M motor (drive source)
D Gear train (drive transmission path)
1d Swing gear 2d Pressure release cam 100 One-way unit (drive transmission unit)
100i input gear (input member)
103i sliding rib 100m intermediate (intermediate member)
101m end face cam (circumferential cam)
102m ratchet surface (drive transmission part)
100o output gear (output member)
102o Ratchet surface (drive receiving part)

Claims (8)

  1.  駆動源から入力される正逆両方向の駆動力を受けて回転可能な入力部材と、
     前記入力部材の回転軸線方向に移動可能な中間部材と、
     前記入力部材が正方向に回転する際に、前記入力部材から前記中間部材を介して駆動力を受けて回転する出力部材と、を備える駆動伝達ユニットであって、
     前記中間部材は、前記入力部材に入力される正方向の回転駆動力を回転軸線方向に沿って前記出力部材へ駆動力を伝達する位置へ移動する方向の力へ変換された力を受ける第一受け部と、前記入力部材に入力される逆方向の回転駆動力を回転軸線方向に沿って前記出力部材へ駆動力する位置から退避する方向の力へ変換された力を受ける第二受け部と、を備えることを特徴とする駆動伝達ユニット。
    An input member that can be rotated by receiving forward and reverse driving forces input from a driving source;
    An intermediate member movable in the rotational axis direction of the input member;
    An output member that rotates by receiving a driving force from the input member via the intermediate member when the input member rotates in the positive direction;
    The intermediate member receives a force converted from a rotational drive force in the positive direction input to the input member into a force in a direction to move the drive force to the output member along the rotational axis direction. A receiving portion, and a second receiving portion that receives a force obtained by converting a rotational driving force in the reverse direction input to the input member into a force in a direction of retreating from a position of driving force to the output member along the rotational axis direction. A drive transmission unit comprising:
  2.  前記入力部材が正方向に回転する際に、前記入力部材が前記中間体に与える力と前記出力部材が前記中間体に与える力の合力は、前記回転軸線方向に沿って前記出力部材側へ向かう方向であることを特徴とする請求項1に記載の駆動伝達ユニット。 When the input member rotates in the forward direction, the resultant force of the force applied by the input member to the intermediate body and the force applied by the output member to the intermediate body is directed toward the output member along the rotational axis direction. The drive transmission unit according to claim 1, wherein the drive transmission unit is a direction.
  3.  前記入力部材が逆方向に回転する際に、前記入力部材が前記中間体に与える力と前記出力部材が前記中間体に与える力の合力は、前記回転軸線方向に沿って前記入力部材側へ向かう方向であることを特徴とする請求項1に記載の駆動伝達ユニット。 When the input member rotates in the reverse direction, the resultant force of the force applied by the input member to the intermediate body and the force applied by the output member to the intermediate body is directed toward the input member along the rotational axis direction. The drive transmission unit according to claim 1, wherein the drive transmission unit is a direction.
  4.  前記第一受け部は前記中間部材の前記入力部材と対向する面に設けられたカムであり、
     前記カムは正方向に回転する前記入力部材から前記中間部材を回転軸線方向に沿って前記出力部材へ駆動力を伝達する位置へ移動する方向の力を受けることを特徴とする請求項1に記載の駆動伝達ユニット。
    The first receiving portion is a cam provided on a surface of the intermediate member facing the input member;
    The said cam receives the force of the direction which moves the said intermediate member to the position which transmits a driving force to the said output member along the rotating shaft direction from the said input member rotated to a positive direction. Drive transmission unit.
  5.  前記第二受け部は前記中間部材の前記出力部材と対向する面に設けられたラチェットであり、
     前記ラチェットは逆方向に回転する前記入力部材と一体で回転した前記中間部材と前記出力部材が相対回転する際に、前記中間部材を回転軸線方向に沿って前記出力部材へ駆動力する位置から退避する方向の力を受けることを特徴とする請求項1に記載の駆動伝達ユニット。
    The second receiving portion is a ratchet provided on a surface of the intermediate member facing the output member;
    The ratchet is retracted from a position where the intermediate member rotated integrally with the input member rotating in the reverse direction and the output member rotate relative to each other, and the intermediate member is driven along the rotational axis direction to the output member. The drive transmission unit according to claim 1, wherein the drive transmission unit receives a force in a direction of moving.
  6.  前記中間部材は、前記入力部材と前記出力部材に囲まれた空間内を移動することを特徴とする請求項1に記載の駆動伝達ユニット。 The drive transmission unit according to claim 1, wherein the intermediate member moves in a space surrounded by the input member and the output member.
  7.  駆動源から入力される正逆両方向の駆動力を受けて回転可能な入力部材と、
     前記入力部材の回転軸線方向に移動可能な中間部材と、
     前記入力部材が正方向に回転する際に、前記入力部材から前記中間部材を介して駆動力を受けて回転する出力部材と、を備える駆動伝達ユニットであって、
     前記入力部材が正方向に回転する際に、前記中間部材は前記入力部材から前記出力部材へ向かって移動する方向の力を前記入力部材から受けると共に、前記出力部材が逆方向に回転する際に、前記中間部材は前記出力部材から前記入力部材へ向かって移動する方向の力を前記出力部材から受けることを特徴とする駆動伝達ユニット。
    An input member that can be rotated by receiving forward and reverse driving forces input from a driving source;
    An intermediate member movable in the rotational axis direction of the input member;
    An output member that rotates by receiving a driving force from the input member via the intermediate member when the input member rotates in the positive direction;
    When the input member rotates in the forward direction, the intermediate member receives a force in the direction of moving from the input member toward the output member from the input member, and when the output member rotates in the reverse direction. The drive transmission unit, wherein the intermediate member receives force from the output member in a direction of moving from the output member toward the input member.
  8.  駆動源から入力される正逆両方向の駆動力を受けて回転可能な入力部材と、
     前記入力部材の回転軸線方向に移動可能な中間部材と、
     前記入力部材が正方向に回転する際に、前記入力部材から前記中間部材を介して駆動力を受けて回転する出力部材と、を備える駆動伝達ユニットであって、
     前記入力部材が正方向に回転する際に、前記中間部材は前記入力部材から前記出力部材へ向かって移動する方向の力を前記入力部材から受けると共に、前記出力部材が逆方向に回転する際に、前記中間部材は前記出力部材から前記入力部材へ向かって移動する方向の力を前記入力部材から受けることを特徴とする駆動伝達ユニット。
    An input member that can be rotated by receiving forward and reverse driving forces input from a driving source;
    An intermediate member movable in the rotational axis direction of the input member;
    An output member that rotates by receiving a driving force from the input member via the intermediate member when the input member rotates in the positive direction;
    When the input member rotates in the forward direction, the intermediate member receives a force in the direction of moving from the input member toward the output member from the input member, and when the output member rotates in the reverse direction. The drive transmission unit, wherein the intermediate member receives a force in a direction of moving from the output member toward the input member from the input member.
PCT/JP2012/055529 2012-03-05 2012-03-05 Drive transmission unit WO2013132572A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/055529 WO2013132572A1 (en) 2012-03-05 2012-03-05 Drive transmission unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/055529 WO2013132572A1 (en) 2012-03-05 2012-03-05 Drive transmission unit

Publications (1)

Publication Number Publication Date
WO2013132572A1 true WO2013132572A1 (en) 2013-09-12

Family

ID=49116088

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/055529 WO2013132572A1 (en) 2012-03-05 2012-03-05 Drive transmission unit

Country Status (1)

Country Link
WO (1) WO2013132572A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015086939A (en) * 2013-10-30 2015-05-07 キヤノン株式会社 Drive transmission device, fixing device, and image formation device
JP2016128703A (en) * 2015-01-09 2016-07-14 コニカミノルタ株式会社 Rotary drive transmission device and image forming apparatus including the same
CN107870545A (en) * 2016-09-26 2018-04-03 京瓷办公信息系统株式会社 One-way clutch, fixing device and image processing system
CN110043578A (en) * 2019-05-14 2019-07-23 许占欣 A kind of high-torque one-way transmission device
JP2020169673A (en) * 2019-04-02 2020-10-15 キヤノン株式会社 Drive transmission unit and recording device
EP3617810A4 (en) * 2017-04-28 2021-01-06 Brother Kogyo Kabushiki Kaisha Development cartridge

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0761619A (en) * 1993-08-27 1995-03-07 Ricoh Co Ltd One-way clutch
JP2005127438A (en) * 2003-10-24 2005-05-19 Mitsui Mining & Smelting Co Ltd Power unit
JP2007239964A (en) * 2006-03-13 2007-09-20 Konica Minolta Business Technologies Inc Clutch device
JP2010090913A (en) * 2008-10-03 2010-04-22 Mitsuba Corp Clutch mechanism and door lock drive assembly
JP2010204384A (en) * 2009-03-03 2010-09-16 Canon Inc Image forming device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0761619A (en) * 1993-08-27 1995-03-07 Ricoh Co Ltd One-way clutch
JP2005127438A (en) * 2003-10-24 2005-05-19 Mitsui Mining & Smelting Co Ltd Power unit
JP2007239964A (en) * 2006-03-13 2007-09-20 Konica Minolta Business Technologies Inc Clutch device
JP2010090913A (en) * 2008-10-03 2010-04-22 Mitsuba Corp Clutch mechanism and door lock drive assembly
JP2010204384A (en) * 2009-03-03 2010-09-16 Canon Inc Image forming device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015086939A (en) * 2013-10-30 2015-05-07 キヤノン株式会社 Drive transmission device, fixing device, and image formation device
JP2016128703A (en) * 2015-01-09 2016-07-14 コニカミノルタ株式会社 Rotary drive transmission device and image forming apparatus including the same
CN107870545B (en) * 2016-09-26 2021-09-07 京瓷办公信息系统株式会社 One-way clutch, fixing device, and image forming apparatus
JP2018053933A (en) * 2016-09-26 2018-04-05 京セラドキュメントソリューションズ株式会社 One-way clutch, fixation device and image formation device
EP3299652A3 (en) * 2016-09-26 2018-05-09 Kyocera Document Solutions Inc. One-way clutch that reduces occurrence of ratchet skip, and fixing device and image forming apparatus
US10837524B2 (en) 2016-09-26 2020-11-17 Kyocera Document Solutions Inc. One-way clutch that reduces occurrence of ratchet skip, and fixing device and image forming apparatus
CN107870545A (en) * 2016-09-26 2018-04-03 京瓷办公信息系统株式会社 One-way clutch, fixing device and image processing system
EP3617810A4 (en) * 2017-04-28 2021-01-06 Brother Kogyo Kabushiki Kaisha Development cartridge
US11126109B2 (en) 2017-04-28 2021-09-21 Brother Kogyo Kabushiki Kaisha Developing cartridge including coupling and clutch for allowing rotation of coupling in first direction and stopping rotation of coupling in second direction
US11740569B2 (en) 2017-04-28 2023-08-29 Brother Kogyo Kabushiki Kaisha Developing cartridge including coupling and clutch for allowing rotation of coupling in first direction and stopping rotation of coupling in second direction
JP2020169673A (en) * 2019-04-02 2020-10-15 キヤノン株式会社 Drive transmission unit and recording device
JP7414400B2 (en) 2019-04-02 2024-01-16 キヤノン株式会社 Drive transmission unit and recording device
CN110043578A (en) * 2019-05-14 2019-07-23 许占欣 A kind of high-torque one-way transmission device

Similar Documents

Publication Publication Date Title
JP6862491B2 (en) Drive transmission device and image forming device
WO2013132572A1 (en) Drive transmission unit
JP6494157B2 (en) One-way clutch and drive transmission unit
JP5147209B2 (en) Drive transmission device and image forming apparatus
US8900088B2 (en) Clutch mechanism and image forming apparatus including same
JP6324022B2 (en) Drive transmission device, fixing device, and image forming apparatus
US10436256B2 (en) Drive transmission device
US10824109B2 (en) Drive transmission device and image forming apparatus including the same
JP5928887B2 (en) Structure and image forming apparatus
US9772599B2 (en) Driving force transmission unit and image forming apparatus including same
US9388000B2 (en) Spacing mechanism for spacing two members, and a fixing device sheet feeding-conveying device and image forming apparatus incorporating same
JP2010107008A (en) Image forming apparatus
JP2010128132A (en) Fixing device and image forming apparatus
JP4564899B2 (en) Drive transmission device, sheet conveying device, and image forming apparatus
JP5659197B2 (en) Drive transmission device and image forming apparatus
JP6739925B2 (en) Drive transmission device and image forming apparatus
JP6570697B2 (en) Fixing apparatus and image forming apparatus
US11106160B2 (en) Drive transmission device and image forming apparatus including the drive transmission device
JP6253322B2 (en) Fixing device
JP2014016432A (en) Drive device and image forming apparatus
JP2004084905A (en) Transmission and image forming device
KR101374223B1 (en) Rotor rotating apparatus, developing apparatus, and image forming apparatus
JP6344202B2 (en) Driving structure, fixing device, and image forming apparatus
JP6278831B2 (en) Fixing device
JP2013213549A (en) Driving force transmission device, driving device and imaging device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12870460

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12870460

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP