WO2013131466A1 - 虚拟小区测量方法、用户设备、基站及通信系统 - Google Patents

虚拟小区测量方法、用户设备、基站及通信系统 Download PDF

Info

Publication number
WO2013131466A1
WO2013131466A1 PCT/CN2013/072173 CN2013072173W WO2013131466A1 WO 2013131466 A1 WO2013131466 A1 WO 2013131466A1 CN 2013072173 W CN2013072173 W CN 2013072173W WO 2013131466 A1 WO2013131466 A1 WO 2013131466A1
Authority
WO
WIPO (PCT)
Prior art keywords
virtual cell
base station
user equipment
virtual
cell
Prior art date
Application number
PCT/CN2013/072173
Other languages
English (en)
French (fr)
Inventor
李永茂
杨晓
张姝
杜林奇
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2013131466A1 publication Critical patent/WO2013131466A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/12Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel

Definitions

  • the present invention relates to the field of wireless communication technologies, and in particular, to a virtual cell measurement method and a communication system.
  • the commonly used expansion methods are: 1) Physical cell splitting for macro stations; by using narrow beam antennas or multi-beam technologies, The area originally covered by a wide beam becomes an area covered by a plurality of narrow beams; 2) A micro station is added to the side of the macro station.
  • the above methods can achieve the purpose of capacity expansion.
  • the network KPI Key Performance Indicator
  • the current solution is: the cell ID (cell identifier) of the newly added physical cell is consistent with the cell ID of the original physical cell, and different virtual cells are set in the physical cell to distinguish the area covered by the beam, thereby The number of physical cells remains the same, only the number of virtual cells is increased.
  • the base station of the virtual cell For the downlink transmission in the LTE (Long Term Evolution) system, the base station of the virtual cell needs to know which virtual cell the terminal is actually located in and the CQI (Channel Quality Indicator) corresponding to the terminal of the virtual cell.
  • the channel quality indicator is configured to determine the time-frequency resource of the corresponding virtual cell to be allocated to the terminal, and allocate the appropriate time-frequency resource to the terminal according to the quality of the current wireless channel.
  • the approximation can be used.
  • the method for example, the base station determines, by the uplink measurement, which virtual cell the terminal is located, and then the base station indicates the uplink measurement result to the terminal) to determine the virtual cell where the terminal is located, and performs downlink CQI measurement by using the cell-level pilot. Since all measurements for the virtual cell are approximate, it is easy to cause a virtual cell selection error, or the CQI measurement is not accurate, thereby affecting the downlink scheduling performance.
  • the embodiments of the present invention provide a method for measuring a virtual cell, a user equipment, a base station, and a communication system, and adding a virtual cell-level pilot for a virtual cell can solve the problem of inaccurate downlink measurement, thereby improving downlink scheduling performance.
  • An embodiment of the present invention provides a virtual cell measurement method, including:
  • a downlink pilot signal receives, by the base station, a downlink pilot signal, where the downlink pilot signal includes multiple virtual cell level pilots of multiple virtual cells;
  • An embodiment of the present invention further provides another virtual cell measurement method, including:
  • the downlink pilot signal includes multiple virtual cell level pilots of multiple virtual cells
  • the user equipment And receiving, by the user equipment, a signal quality of the plurality of virtual cells that are fed back by the user equipment; the signal quality is obtained by the user equipment measuring the plurality of virtual cell-level pilots.
  • An embodiment of the present invention provides a user equipment, including:
  • a downlink pilot signal receiving unit configured to receive a downlink pilot signal sent by the base station;
  • the downlink pilot signal includes multiple virtual cell level pilots of multiple virtual cells;
  • a virtual cell quality measuring unit configured to measure the plurality of virtual cell level pilots, obtain signal quality of the multiple virtual cells, and send signal quality of the multiple virtual cells to the Base station.
  • An embodiment of the present invention provides a base station, including:
  • a downlink pilot transmitting unit configured to send a downlink pilot signal to the user equipment, where the downlink pilot signal includes multiple virtual cell level pilots of multiple virtual cells;
  • a signal quality receiving unit configured to receive a signal quality of the plurality of virtual cells fed back by the user equipment, where the signal quality is obtained by the user equipment measuring the plurality of virtual cell-level pilots.
  • Embodiments of the present invention provide a communication system, including a base station and a user equipment.
  • the virtual cell measurement method, the user equipment, the base station, and the communication system provided by the embodiment of the present invention add pilots for the virtual cell in the LTE downlink transmission; when the base station performs resource scheduling, the user equipment may target the virtual The cell performs measurement reporting to solve the problem of inaccurate downlink measurement, thereby improving downlink scheduling performance.
  • FIG. 1 is a structural diagram of an LTE system according to an embodiment of the present invention.
  • FIG. 2 is a schematic flowchart of a method for measuring a virtual cell according to an embodiment of the present invention
  • FIG. 3 is a schematic flowchart of a method for measuring a virtual cell according to another embodiment of the present invention
  • FIG. 4 is a schematic diagram of a virtual cell according to another embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a downlink pilot signal pattern according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of another downlink pilot signal pattern according to an embodiment of the present invention
  • FIG. 7 is a schematic structural diagram of a user equipment according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a base station according to an embodiment of the present invention.
  • FIG. 1 is an architectural diagram of an LTE system according to an embodiment of the present invention.
  • the LTE system includes a base station, a physical cell, a virtual cell, and a user equipment (User
  • a plurality of virtual cells having the same cell identification code constitute one physical cell.
  • one base station has three physical cells, and one physical cell may have multiple virtual cells, and the user equipment may be located in any one physical cell or virtual cell.
  • the solid coil shown in Figure 1 is a physical cell, and the virtual coil is a virtual cell. Fig. 1 only shows the physical cell 1, the virtual cell 1 and the virtual cell 2 as an example.
  • the evolved Node B may allocate a cell-specific reference signal (CRS) for each physical cell, and allocate virtual cell-level pilots for each virtual cell.
  • CRS Cell-specific reference signal
  • VCRS Virtual-Cell-specific Reference Signal
  • URS user-level pilot signals
  • DMRS Demodulation Reference Signal
  • the time-frequency resources occupied by the virtual cell-level pilots are different from the time-frequency resources occupied by the cell-level pilots and the user-level pilots.
  • the virtual cell level pilots of each virtual cell may be orthogonally multiplexed by time division, frequency division or code division.
  • the pilot and the data are sent together. Since the pilots of different levels occupy different time-frequency resources, the UE can distinguish different pilot signals.
  • the terminal cannot perform measurement reporting on the virtual cell. Only the approximate method can be used to determine the virtual cell in which the user equipment is located, and the CQI of the virtual cell in which the user equipment is located, which may cause the virtual cell selection error or the CQI measurement to be inaccurate, thereby affecting the downlink scheduling performance.
  • the virtual d and the area-level pilot are added to the LTE system, and the LTE downlink transmission is performed.
  • the base station performs resource scheduling
  • the user equipment can perform measurement reporting on different virtual cells, so that the base station can accurately determine.
  • the virtual cell in which the user equipment is located and the CQI of the virtual cell in which the user equipment is located can solve the problem of inaccurate downlink measurement, thereby improving downlink scheduling performance.
  • FIG. 2 is a schematic flowchart diagram of a virtual cell measurement method according to an embodiment of the present invention.
  • the virtual cell measurement method provided by the embodiment of the present invention includes the following steps:
  • 5102. Perform measurement on the multiple virtual cell-level pilots, obtain signal quality of the multiple virtual cells, and send signal quality of the multiple virtual cells to the base station.
  • the multiple virtual cell-level pilots are orthogonally multiplexed by time division, frequency division, or code division.
  • the downlink pilot signal further includes a plurality of cell-level pilots of the plurality of physical cells, and user-level pilots of the user equipment; time-frequency resources occupied by the plurality of virtual cell-level pilots, and the The time-frequency resources occupied by the plurality of cell-level pilots and the user-level pilots are different.
  • S103 Receive a virtual cell selection result sent by the base station; the virtual cell selection result includes virtual cell information that is specified by the base station to the user equipment after performing virtual cell selection according to the signal quality;
  • the channel quality indicator of the virtual cell specified by the base station is measured according to the result of the virtual cell selection, and the measured virtual cell channel quality indicator is sent to the base station, so that the base station performs downlink resource scheduling.
  • the downlink resource scheduling result includes, by the base station, performing downlink resource scheduling according to the virtual cell channel quality indication, and is a user equipment. Allocated time-frequency resources and modulation and coding methods;
  • the data sent by the base station is received according to the time-frequency resource allocated by the base station;
  • FIG. 3 is a schematic flow chart of a virtual cell measurement method according to another embodiment of the present invention.
  • S201 Send a downlink pilot signal to the user equipment, where the downlink pilot signal includes multiple virtual cell level pilots of multiple virtual cells.
  • S202 Receive a signal quality of multiple virtual cells that are fed back by the user equipment, where the signal quality is obtained by the user equipment after measuring the multiple virtual cell-level pilots.
  • the multiple virtual cell-level pilots are orthogonally multiplexed by time division, frequency division, or code division.
  • the downlink pilot signal further includes a plurality of cell-level pilots of the plurality of physical cells, and user-level pilots of the user equipment; time-frequency resources occupied by the plurality of virtual cell-level pilots, and the The time-frequency resources occupied by the plurality of cell-level pilots and the user-level pilots are different.
  • S203 Perform virtual cell selection according to the signal quality of the user equipment, and send a virtual cell selection result to the user equipment; the virtual cell selection result includes virtual cell information that is specified to the user equipment.
  • S204 Receive a virtual cell channel quality indicator sent by the user equipment, where the virtual cell channel quality indicator is obtained by the user equipment, after performing measurement on a channel quality indicator of the specified virtual cell according to the virtual cell selection result;
  • S205 Perform downlink resource scheduling according to the virtual cell channel quality indication.
  • the downlink resource scheduling The result includes a time-frequency resource and a modulation and coding mode allocated by the base station to the user equipment after performing downlink resource scheduling according to the virtual cell channel quality indication;
  • the foregoing steps S101 to S107 may be performed by the user equipment, and the foregoing steps S201 to S206 may be performed by the base station.
  • FIG. 4 it is a schematic flowchart of a virtual cell measurement method according to another embodiment of the present invention.
  • the LTE system includes a base station and a user equipment, and the virtual cell measurement method provided by the embodiment of the present invention includes the following steps:
  • the base station sends a downlink pilot signal to the user equipment;
  • the downlink pilot signal includes multiple virtual cell level pilots of multiple virtual cells;
  • the user equipment measures, according to the downlink pilot signal, a plurality of virtual cell-level pilots in a current physical cell, obtains signal quality of multiple virtual cells, and feeds back the signal quality to the base station. ;
  • the base station performs virtual cell selection according to the signal quality fed back by the user equipment, and indicates a virtual cell selection result to the user equipment;
  • the virtual cell selection result includes the base station performing virtual cell selection according to the signal quality. , virtual cell information assigned to the user equipment;
  • the user equipment performs channel quality indication (CQI) measurement according to the virtual cell specified by the base station, and feeds back the channel quality indication of the virtual cell to the base station;
  • CQI channel quality indication
  • the base station performs downlink resource scheduling according to the channel quality indicator of the virtual cell.
  • the downlink pilot signal further includes a plurality of cell-level pilots of the plurality of physical cells, and user-level pilots of the user equipment; time-frequency resources occupied by the plurality of virtual cell-level pilots, and the many The time-frequency resources occupied by the cell-level pilots and the user-level pilots are different.
  • the virtual cell level pilots of each virtual cell are orthogonally multiplexed by time division, frequency division or code division.
  • the resource scheduling refers to allocating appropriate resources to the UE to ensure that the cell throughput meets certain requirements.
  • the resource scheduling is independently scheduled according to the physical cell, and if one physical cell includes multiple virtual cells, these The virtual cell needs to be jointly scheduled.
  • the downlink scheduling requires the eNB to perform dynamic resource allocation according to the radio channel quality of the UE, and the channel quality is uplinked to the eNB after downlink measurement by the UE.
  • the method may further include:
  • the base station indicates the downlink resource scheduling result to the user equipment, and sends the data.
  • the downlink resource scheduling result includes the downlink resource scheduling performed by the base station according to the virtual cell channel quality indication, and is allocated to the user equipment. Time-frequency resources and modulation and coding methods;
  • the user equipment receives data sent by the base station according to the time-frequency resource allocated by the base station; according to the virtual cell-level pilot or user-level pilot of the virtual cell specified by the base station, according to the modulation and coding
  • the method demodulates data sent by the base station.
  • the UE may obtain information such as a time-frequency resource and a modulation and coding mode allocated by the base station, so that the data sent by the base station may be received according to the downlink resource scheduling result, and the data is solved. Tune.
  • the virtual cell-level pilot for the virtual cell is added to the LTE system, and the virtual cell-level pilots are orthogonally divided by time division, frequency division or code division.
  • the architecture of the virtual cell-level pilot pattern including the virtual cell-level pilots will be exemplified below with reference to FIG. 5 and FIG. It should be noted that the architecture of the virtual cell level pilot pattern is not limited thereto.
  • FIG. 5 is a schematic diagram of a downlink pilot signal pattern according to an embodiment of the present invention.
  • the virtual cell level pilot is used for both measurement and demodulation, and the virtual cell level pilot density is similar to user level pilot.
  • Specific Implementation Mode Referring to FIG. 5, all virtual cell level pilots in the same cell can be multiplexed by code division.
  • FIG. 6 is a schematic diagram of another downlink pilot signal pattern provided by an embodiment of the present invention.
  • the LTE system in the downlink signal of the physical cell, in addition to the cell level pilot, there are virtual cell level pilot and user level pilot.
  • the virtual cell level pilot is used for measurement, and the user level pilot is used for demodulation.
  • the virtual cell level pilot density can be lower than the user level pilot density by more than 4 ⁇ .
  • All virtual cell level pilots in the same cell can be multiplexed by code division.
  • the embodiment of the present invention further provides a user equipment, a base station, and a communication system, which can implement the foregoing method for measuring a virtual cell.
  • FIG. 7 is a schematic structural diagram of a user equipment according to an embodiment of the present invention.
  • An embodiment of the present invention provides a user equipment, including:
  • the downlink pilot signal receiving unit 11 is configured to receive a downlink pilot signal sent by the base station, where the downlink pilot signal includes multiple virtual cell level pilots of multiple virtual cells;
  • the virtual cell quality measuring unit 12 is configured to measure the plurality of virtual cell level pilots, obtain signal quality of the multiple virtual cells, and send signal quality of the multiple virtual cells to the base station.
  • the downlink pilot signal further includes a plurality of cell-level pilots of the plurality of physical cells, and user-level pilots of the user equipment; time-frequency resources occupied by the plurality of virtual cell-level pilots, and the The time-frequency resources occupied by the plurality of cell-level pilots and the user-level pilots are different.
  • the virtual cell level pilots of each virtual cell are orthogonally multiplexed by time division, frequency division or code division.
  • the user equipment may further include:
  • the virtual cell selection result receiving unit 13 is configured to receive a virtual cell selection result sent by the base station, where the virtual cell selection result includes virtual cell information that is allocated to the user equipment after the base station performs virtual cell selection according to the signal quality. ;
  • the channel quality indicator measuring unit 14 is configured to measure, according to the virtual cell selection result, a channel quality indicator of the virtual cell specified by the base station, and send the measured virtual cell channel quality indicator to the base station, so that The base station performs downlink resource scheduling;
  • the scheduling result receiving unit 15 is configured to receive a downlink resource scheduling result sent by the base station, where the downlink resource scheduling result includes a time frequency allocated by the base station to the user equipment after performing downlink resource scheduling according to the virtual cell channel quality indication Resource and modulation coding method;
  • the data receiving unit 16 is configured to receive data sent by the base station according to the time-frequency resource allocated by the base station;
  • the data demodulation unit 17 is configured to demodulate the data sent by the base station according to the modulation and coding mode according to the virtual cell level pilot or the user level pilot of the virtual cell specified by the base station.
  • FIG. 8 is a schematic structural diagram of a base station according to an embodiment of the present invention.
  • An embodiment of the present invention provides a base station, including:
  • the downlink pilot transmitting unit 21 is configured to send a downlink pilot signal to the user equipment, where the downlink pilot signal includes multiple virtual cell level pilots of multiple virtual cells;
  • the signal quality receiving unit 22 is configured to receive signal quality of the plurality of virtual cells fed back by the user equipment, where the signal quality is obtained by the user equipment measuring the plurality of virtual cell level pilots.
  • the downlink pilot signal further includes a plurality of cell-level pilots of the plurality of physical cells, and user-level pilots of the user equipment; time-frequency resources occupied by the plurality of virtual cell-level pilots, and the The time-frequency resources occupied by the plurality of cell-level pilots and the user-level pilots are different.
  • the virtual cell-level pilots of each virtual cell pass the time division, Frequency division or code division orthogonal multiplexing.
  • the base station may further include:
  • the virtual cell selection unit 23 is configured to perform virtual cell selection according to the signal quality fed back by the user equipment, and send a virtual cell selection result to the user equipment; the virtual cell selection result includes virtual cell information that is specified to the user equipment. ;
  • the channel quality indication receiving unit 24 is configured to receive a virtual cell channel quality indicator sent by the user equipment, where the virtual cell channel quality indicator is a channel quality of the specified virtual cell according to the virtual cell selection result of the user equipment. Instructed to obtain after the measurement;
  • a resource scheduling unit 25 configured to perform downlink resource scheduling according to the virtual cell channel quality indication
  • the data sending unit 26 is configured to send a downlink resource scheduling result and data to the user equipment, where the downlink resource scheduling result is allocated by the base station to the user equipment after performing downlink resource scheduling according to the virtual cell channel quality indication.
  • Time-frequency resources and modulation and coding methods are configured to send a downlink resource scheduling result and data to the user equipment, where the downlink resource scheduling result is allocated by the base station to the user equipment after performing downlink resource scheduling according to the virtual cell channel quality indication.
  • the present invention further provides a communication system, including a user equipment and a base station, where the user equipment is the user equipment provided by the foregoing embodiment; and the base station is the base station provided by the foregoing embodiment.
  • the virtual cell measurement method, the user equipment, the base station, and the communication system provided by the embodiment of the present invention add pilots for the virtual cell in the LTE downlink transmission; when the base station performs resource scheduling, the user equipment may target the virtual The cell performs measurement reporting to solve the problem of inaccurate downlink measurement, thereby improving downlink scheduling performance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种虚拟小区测量方法、用户设备、基站及通信系统,所述方法包括:接收基站发送的下行导频信号;所述下行导频信号包括多个虚拟小区的多个虚拟小区级导频;对所述多个虚拟小区级导频进行测量,获得所述多个虚拟小区的信号质量,并将所述多个虚拟小区的信号质量发送给所述基站。本发明实施例在LTE系统中加入针对虚拟小区的虚拟小区级导频,用户设备可以针对虚拟小区进行测量上报,可以解决下行测量不准的问题,从而提高下行调度性能。

Description

虚拟小区测量方法、 用户设备、 基站及通信系统
本申请要求于 2012 年 3 月 5 日提交中国专利局、 申请号为 201210055095.8、 发明名称为"虚拟小区测量方法、 用户设备、 基站及通信系 统"的中国专利申请的优先权, 其全部内容通过引用结合在本申请中。
技术领域
本发明涉及无线通信技术领域,尤其涉及一种虚拟小区测量方法及通信系 统。
背景技术
随着移动互联网的发展, 对蜂窝通信的容量要求越来越高, 目前普 遍釆用的扩容方法有: 1 ) 、 对宏站进行物理小区分裂; 通过使用窄波束 天线或多波束技术, 可以将原来由一个宽波束覆盖的区域变成由多个窄 波束来分别覆盖的区域; 2 ) 、 在宏站边上增设微站。
上述方法都能达到扩容的目的, 但是由于物理小区数目的增加, 会 带来网络 KPI ( Key Performance Indicator, 关键性能指示)的下降。 目前 的解决办法是: 使新增的物理小区的 cell ID (小区识别码) 和原来的物 理小区的 cell ID保持一致, 且在物理小区内设置不同的虚拟小区来区分 波束覆盖的区域, 从而使物理小区的数目保持不变, 只是增加了虚拟小 区数目。
针对 LTE ( Long Term Evolution, 长期演进) 系统中的下行传输, 釆 用虚拟小区的基站在进行资源调度时, 需要知道终端实际位于哪个虚拟 小区以及该虚拟小区下终端对应的 CQI ( Channel Quality Indicator, 信道 质量指示) , 才能确定给终端分配对应虚拟小区的时频资源, 并根据当 时的无线信道质量给终端分配合适的时频资源。 但是, 由于目前基站发 送的下行导频信号中只有小区级导频和用户级导频, 所以只能使用近似 的办法 (例如, 基站通过上行测量判断出终端位于哪个虚拟小区, 然后 基站再将上行测量结果指示给终端) 来判断终端所处的虚拟小区, 以及 通过小区级导频进行下行 CQI测量。 因为所有针对虚拟小区的测量都是 近似的, 所以容易引起虚拟小区选择错误, 或者 CQI测量不准, 从而影 响下行调度性能。
发明内容
本发明实施例提出一种虚拟小区测量方法、 用户设备、 基站及通信系统, 加入针对虚拟小区的虚拟小区级导频, 可以解决下行测量不准的问题,从而提 高下行调度性能。
本发明实施例提供一种虚拟小区测量方法, 包括:
接收基站发送的下行导频信号;所述下行导频信号包括多个虚拟小区的多 个虚拟小区级导频;
对所述多个虚拟小区级导频进行测量, 获得所述多个虚拟小区的信号质 量, 并将所述多个虚拟小区的信号质量发送给所述基站。
本发明实施例还提供另一种虚拟小区测量方法, 包括:
向用户设备发送下行导频信号,所述下行导频信号包含多个虚拟小区的多 个虚拟小区级导频;
接收所述用户设备反馈的多个虚拟小区的信号质量;所述信号质量是所述 用户设备对所述多个虚拟小区级导频进行测量后获得的。
本发明实施例提供一种用户设备, 包括:
下行导频信号接收单元, 用于接收基站发送的下行导频信号; 所述下行导 频信号包括多个虚拟小区的多个虚拟小区级导频;
虚拟小区质量测量单元, 用于对所述多个虚拟小区级导频进行测量, 获得 所述多个虚拟小区的信号质量,并将所述多个虚拟小区的信号质量发送给所述 基站。
本发明实施例提供一种基站, 包括:
下行导频发送单元, 用于向用户设备发送下行导频信号, 所述下行导频信 号包含多个虚拟小区的多个虚拟小区级导频;
信号质量接收单元,用于接收所述用户设备反馈的多个虚拟小区的信号质 量;所述信号质量是所述用户设备对所述多个虚拟小区级导频进行测量后获得 的。
本发明实施例提供一种通信系统, 包括基站和用户设备。
本发明实施例提供的虚拟小区测量方法、 用户设备、基站及通信系统, 在 长期演进系统中, 增加了针对虚拟小区的导频; 在 LTE下行传输, 基站进行 资源调度时, 用户设备可以针对虚拟小区进行测量上报, 解决下行测量不准的 问题, 从而提高下行调度性能。
附图说明
图 1是本发明一个实施例提供的 LTE系统的架构图;
图 2是本发明一个实施例提供的虚拟小区测量方法的流程示意图; 图 3是本发明另一个实施例提供的虚拟小区测量方法的流程示意图; 图 4是本发明又一个实施例提供的虚拟小区测量方法的流程示意图; 图 5是本发明实施例提供的一种下行导频信号图案的示意图;
图 6是本发明实施例提供的另一种下行导频信号图案的示意图; 图 7是本发明一个实施例提供的用户设备的结构示意图;
图 8是本发明一个实施例提供的基站的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清 楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是 全部的实施例。基于本发明中的实施例, 本领域普通技术人员在没有作出创造 性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
参见图 1 , 是本发明一个实施例提供的 LTE系统的架构图。
本实施例提供的 LTE系统包括基站、物理小区、虚拟小区和用户设备 ( User
Equipment, UE )。具有相同小区识别码的若干个虚拟小区组成一个物理小区。 在一个可选的实施方式中, 一个基站有三个物理小区,一个物理小区内可以有 多个虚拟小区, 用户设备可以位于任何一个物理小区或虚拟小区。如图 1所示 的实线圈内为物理小区, 虚线圈内为虚拟小区。 图 1仅画出物理小区 1、 虚拟 小区 1和虚拟小区 2作为例子进行说明。
本发明实施例在 LTE系统中, 演进型基站( evolved Node B , eNB )可以 为各个物理小区分配小区级导频( Cell-specific Reference Signal, 简称 CRS ) , 为各个虚拟小区分配虚拟小区级导频( VirtualCell-specific Reference Signal, 简 称 VCRS ) , 为用户设备分配用户级导频( UE-specific Reference Signal, 简称 URS ) ; 。 由于用户级导频都用于解调, 因此用户级导频又称为解调导频 ( Demodulation Reference Signal , 简称 DMRS )。 其中, 虚拟小区级导频所占 用的时频资源, 与小区级导频、 用户级导频所占用的时频资源不相同。 各虚拟 小区的虚拟小区级导频之间可以通过时分、 频分或码分正交复用。
具体实施时,各级导频和数据都是一起发送的, 由于各级导频占用不同的 时频资源, 因此 UE能够区分出不同的导频信号。
现有技术中,由于基站发送的下行导频信号中只有小区级导频和用户级导 频, 并没有针对虚拟小区的导频, 所以用于终端无法针对虚拟小区进行测量上 报。 只能使用近似的办法来判断用户设备所处的虚拟小区, 以及用户设备所处 虚拟小区的 CQI, 容易引起虚拟小区选择错误, 或者 CQI测量不准, 从而影 响下行调度性能。 本发明实施例在 LTE系统中加入针对虚拟小区的虚拟 d、区级导频,在 LTE 下行传输,基站进行资源调度时, 用户设备可以针对不同的虚拟小区进行测量 上报,使基站能够准确地判断用户设备所处的虚拟小区, 以及用户设备所处虚 拟小区的 CQI, 可以解决下行测量不准的问题, 从而提高下行调度性能。
下面结合图 2〜图 6,对本发明实施例提供的虚拟小区测量方法进行详细说 明。
参见图 2, 是本发明一个实施例提供的虚拟小区测量方法的流程示意图。 本发明实施例提供的虚拟小区测量方法, 包括以下步骤:
5101、接收基站发送的下行导频信号; 所述下行导频信号包括多个虚拟小 区的多个虚拟小区级导频;
5102、对所述多个虚拟小区级导频进行测量,获得所述多个虚拟小区的信 号质量, 并将所述多个虚拟小区的信号质量发送给所述基站;
其中, 可选的, 所述多个虚拟小区级导频之间通过时分、 频分或码分正交 复用。
而且, 所述下行导频信号还包括多个物理小区的多个小区级导频, 以及用 户设备的用户级导频; 所述多个虚拟小区级导频所占用的时频资源, 与所述多 个小区级导频、 所述用户级导频所占用的时频资源不相同。
5103、接收所述基站发送的虚拟小区选择结果; 所述虚拟小区选择结果包 括所述基站根据所述信号质量进行虚拟小区选择后,指定给用户设备的虚拟小 区信息;
5104、根据所述虚拟小区选择结果,对所述基站指定的虚拟小区的信道质 量指示进行测量, 并将测量到的虚拟小区信道质量指示发送给所述基站,使得 所述基站进行下行资源调度。
5105、接收所述基站发送的下行资源调度结果; 所述下行资源调度结果包 括所述基站根据所述虚拟小区信道质量指示进行下行资源调度后,为用户设备 分配的时频资源和调制编码方式;
5106、 根据所述基站分配的时频资源, 接收所述基站下发的数据;
5107、根据所述基站指定的虚拟小区的虚拟小区级导频或用户级导频,按 照所述调制编码方式对所述基站下发的数据进行解调。 参见图 3 , 是本发明另一个实施例提供的虚拟小区测量方法的流程示意 图。
本发明实施例提供的虚拟小区测量方法, 包括以下步骤:
5201、向用户设备发送下行导频信号, 所述下行导频信号包含多个虚拟小 区的多个虚拟小区级导频;
5202、接收所述用户设备反馈的多个虚拟小区的信号质量; 所述信号质量 是所述用户设备对所述多个虚拟小区级导频进行测量后获得的;
其中, 可选的, 所述多个虚拟小区级导频之间通过时分、 频分或码分正交 复用。
而且, 所述下行导频信号还包括多个物理小区的多个小区级导频, 以及用 户设备的用户级导频; 所述多个虚拟小区级导频所占用的时频资源, 与所述多 个小区级导频、 所述用户级导频所占用的时频资源不相同。
5203、根据所述用户设备反馈的信号质量进行虚拟小区选择, 向所述用户 设备发送虚拟小区选择结果;所述虚拟小区选择结果包括指定给所述用户设备 的虚拟小区信息;
5204、接收所述用户设备发送的虚拟小区信道质量指示; 所述虚拟小区信 道质量指示是所述用户设备根据所述虚拟小区选择结果,对指定的虚拟小区的 信道质量指示进行测量后获得的;
5205、 根据所述虚拟小区信道质量指示, 进行下行资源调度。
S206、向所述用户设备发送下行资源调度结果和数据; 所述下行资源调度 结果包括所述基站根据所述虚拟小区信道质量指示进行下行资源调度后,为用 户设备分配的时频资源和调制编码方式;
所述用户设备根据所述时频资源接收基站下发的数据,并根据指定的虚拟 小区的虚拟小区级导频或用户级导频,按照所述调制编码方式对接收的数据进 行解调。 在一个可选的实施方式中, 上述步骤 S101 S107 可以由用户设备执行, 上述步骤 S201~S206可以由基站执行。
参见图 4 , 是本发明又一个实施例提供的虚拟小区测量方法的流程示意 图。
LTE系统包括基站和用户设备, 本发明实施例提供的虚拟小区测量方法, 包括以下步骤:
Sl、基站向用户设备发送下行导频信号; 所述下行导频信号包括多个虚拟 小区的多个虚拟小区级导频;
S2、用户设备根据所述下行导频信号,对当前所处物理小区里的多个虚拟 小区级导频进行测量, 获得多个虚拟小区的信号质量, 并将所述信号质量反馈 给所述基站;
53、所述基站根据所述用户设备反馈的信号质量进行虚拟小区选择, 向所 述用户设备指示虚拟小区选择结果;所述虚拟小区选择结果包括所述基站根据 所述信号质量进行虚拟小区选择后, 指定给用户设备的虚拟小区信息;
54、所述用户设备根据所述基站指定的虚拟小区进行信道质量指示(简称 CQI )测量, 将虚拟小区的信道质量指示反馈给所述基站;
55、 所述基站根据所述虚拟小区的信道质量指示, 进行下行资源调度。 其中, 所述下行导频信号还包括多个物理小区的多个小区级导频, 以及用 户设备的用户级导频; 所述多个虚拟小区级导频所占用的时频资源, 与所述多 个小区级导频、 所述用户级导频所占用的时频资源不相同。
在一个可选的实施方式中, 各虚拟小区的虚拟小区级导频之间通过时分、 频分或码分正交复用。
具体的, 资源调度是指给 UE分配合适的资源, 保证小区吞吐量达到一定 的要求,通常资源调度都是按物理小区为单位各自进行独立调度,如果一个物 理小区中包含多个虚拟小区, 这些虚拟小区需要进行联合调度。 下行调度需要 eNB根据 UE的无线信道质量, 进行动态的资源分配, 而信道质量是通过 UE 下行测量后上艮给 eNB。
可选的,如图 2所示,在所述基站根据所述虚拟小区的信道质量指示进行 下行资源调度之后, 还可以包括:
56、 所述基站向所述用户设备指示下行资源调度结果, 并下发数据; 所述 下行资源调度结果包括所述基站根据所述虚拟小区信道质量指示进行下行资 源调度后, 为用户设备分配的时频资源和调制编码方式;
57、所述用户设备根据所述基站分配的时频资源,接收所述基站下发的数 据; 根据所述基站指定的虚拟小区的虚拟小区级导频或用户级导频,按照所述 调制编码方式对所述基站下发的数据进行解调。
具体的, UE接收到基站指示的下行资源调度结果后, 可获知基站分配的 时频资源、调制编码方式等信息,从而可根据所述下行资源调度结果接收基站 下发的数据, 对数据进行解调。
为了使用户设备能精确的针对虚拟小区进行测量, 本发明实施例在当前
LTE系统中加入针对虚拟小区的虚拟小区级导频,虚拟小区级导频之间通过时 分、 频分或码分正交。 下面结合图 5和图 6, 对包含虚拟小区级导频的虚拟小 区级导频图案的架构进行举例说明。 需要说明的是,虚拟小区级导频图案的架 构并不局限于此。
参见图 5, 是本发明实施例提供的一种下行导频信号图案的示意图。 在 LTE系统中, 在物理小区的下行信号中, 除了小区级导频, 只有虚拟 小区级导频, 没有用户级导频。 在这种情况下, 虚拟小区级导频既用于测量也 用于解调, 虚拟小区级导频密度类似于用户级导频 。 具体实现方式参考图 5 , 同一小区中所有虚拟小区级导频都可通过码分进行复用。
参见图 6, 是本发明实施例提供的另一种下行导频信号图案的示意图。 在 LTE系统中, 在物理小区的下行信号中, 除了小区级导频, 还有虚拟 小区级导频和用户级导频。 其中, 虚拟小区级导频用于测量, 用户级导频用于 解调,虚拟小区级导频密度可以比用户级导频密度低 4艮多。具体实现方式参考 图 6, 同一小区中所有虚拟小区级导频都可通过码分进行复用。 相应地, 本发明实施例还提供一种用户设备、基站及通信系统, 能够实现 上述的虚拟小区测量方法的流程。
参见图 7 , 是本发明一个实施例提供的用户设备的结构示意图。
本发明实施例提供一种用户设备, 包括:
下行导频信号接收单元 11 , 用于接收基站发送的下行导频信号; 所述下 行导频信号包括多个虚拟小区的多个虚拟小区级导频;
虚拟小区质量测量单元 12 , 用于对所述多个虚拟小区级导频进行测量, 获得所述多个虚拟小区的信号质量,并将所述多个虚拟小区的信号质量发送给 所述基站。
其中, 所述下行导频信号还包括多个物理小区的多个小区级导频, 以及用 户设备的用户级导频; 所述多个虚拟小区级导频所占用的时频资源, 与所述多 个小区级导频、 所述用户级导频所占用的时频资源不相同。
在一个可选的实施方式中, 各虚拟小区的虚拟小区级导频之间通过时分、 频分或码分正交复用。
可选的, 如图 7所示, 用户设备还可以包括: 虚拟小区选择结果接收单元 13 , 用于接收所述基站发送的虚拟小区选择 结果;所述虚拟小区选择结果包括所述基站根据所述信号质量进行虚拟小区选 择后, 指定给用户设备的虚拟小区信息;
信道质量指示测量单元 14 , 用于根据所述虚拟小区选择结果, 对所述基 站指定的虚拟小区的信道质量指示进行测量,并将测量到的虚拟小区信道质量 指示发送给所述基站, 使得所述基站进行下行资源调度;
调度结果接收单元 15 , 用于接收所述基站发送的下行资源调度结果; 所 述下行资源调度结果包括所述基站根据所述虚拟小区信道质量指示进行下行 资源调度后, 为用户设备分配的时频资源和调制编码方式;
数据接收单元 16 , 用于根据所述基站分配的时频资源, 接收所述基站下 发的数据;
数据解调单元 17 , 用于根据所述基站指定的虚拟小区的虚拟小区级导频 或用户级导频, 按照所述调制编码方式对所述基站下发的数据进行解调。 参见图 8, 是本发明一个实施例提供的基站的结构示意图。
本发明实施例提供一种基站, 包括:
下行导频发送单元 21 , 用于向用户设备发送下行导频信号, 所述下行导 频信号包含多个虚拟小区的多个虚拟小区级导频;
信号质量接收单元 22 , 用于接收所述用户设备反馈的多个虚拟小区的信 号质量;所述信号质量是所述用户设备对所述多个虚拟小区级导频进行测量后 获得的。
其中, 所述下行导频信号还包括多个物理小区的多个小区级导频, 以及用 户设备的用户级导频; 所述多个虚拟小区级导频所占用的时频资源, 与所述多 个小区级导频、 所述用户级导频所占用的时频资源不相同。
在一个可选的实施方式中, 各虚拟小区的虚拟小区级导频之间通过时分、 频分或码分正交复用。
可选的, 如图 8所示, 基站还可以包括:
虚拟小区选择单元 23 , 用于根据所述用户设备反馈的信号质量进行虚拟 小区选择, 向所述用户设备发送虚拟小区选择结果; 所述虚拟小区选择结果包 括指定给所述用户设备的虚拟小区信息;
信道质量指示接收单元 24 , 用于接收所述用户设备发送的虚拟小区信道 质量指示;所述虚拟小区信道质量指示是所述用户设备根据所述虚拟小区选择 结果, 对指定的虚拟小区的信道质量指示进行测量后获得的;
资源调度单元 25 , 用于根据所述虚拟小区信道质量指示, 进行下行资源 调度;
数据下发单元 26 , 用于向所述用户设备发送下行资源调度结果和数据; 所述下行资源调度结果包括所述基站根据所述虚拟小区信道质量指示进行下 行资源调度后, 为用户设备分配的时频资源和调制编码方式;
所述用户设备根据所述时频资源接收基站下发的数据,并根据指定的虚拟 小区的虚拟小区级导频或用户级导频,按照所述调制编码方式对接收的数据进 行解调。
其中, 具有相同小区识别码的若干个虚拟小区组成一个物理小区。 本发明实施还提供一种通信系统, 包括用户设备和基站; 其中, 所述用户 设备是上述实施例提供的用户设备; 所述基站是上述实施例提供的基站。 本发明实施例提供的虚拟小区测量方法、 用户设备、基站及通信系统, 在 长期演进系统中, 增加了针对虚拟小区的导频; 在 LTE下行传输, 基站进行 资源调度时, 用户设备可以针对虚拟小区进行测量上报, 解决下行测量不准的 问题, 从而提高下行调度性能。 以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技 术人员来说, 在不脱离本发明原理的前提下, 还可以做出若干改进和润饰, 这 些改进和润饰也视为本发明的保护范围。

Claims

权 利 要 求
1、 一种虚拟小区测量方法, 其特征在于, 包括:
接收基站发送的下行导频信号; 所述下行导频信号包括多个虚拟小 区的多个虚拟小区级导频;
对所述多个虚拟小区级导频进行测量, 获得所述多个虚拟小区的信 号质量, 并将所述多个虚拟小区的信号质量发送给所述基站。
2、 如权利要求 1所述的虚拟小区测量方法, 其特征在于, 所述多个 虚拟小区级导频之间通过时分、 频分或码分正交复用。
3、 如权利要求 1所述的虚拟小区测量方法, 其特征在于, 所述下行 导频信号还包括多个物理小区的多个小区级导频, 以及用户设备的用户 级导频; 所述多个虚拟小区级导频所占用的时频资源, 与所述多个小区 级导频、 所述用户级导频所占用的时频资源不相同。
4、 如权利要求 3所述的虚拟小区测量方法, 其特征在于, 所述方法 还包括:
接收所述基站发送的虚拟小区选择结果; 所述虚拟小区选择结果包 括所述基站根据所述信号质量进行虚拟小区选择后, 指定给用户设备的 虚拟小区信息;
根据所述虚拟小区选择结果, 对所述基站指定的虚拟小区的信道质 量指示进行测量, 并将测量到的虚拟小区信道质量指示发送给所述基站, 使得所述基站进行下行资源调度。
5、 如权利要求 4所述的虚拟小区测量方法, 其特征在于, 在所述将 测量到的虚拟小区信道质量指示发送给所述基站之后, 所述方法还包括: 接收所述基站发送的下行资源调度结果; 所述下行资源调度结果包 括所述基站根据所述虚拟小区信道质量指示进行下行资源调度后, 为用 户设备分配的时频资源和调制编码方式;
根据所述基站分配的时频资源, 接收所述基站下发的数据;
根据所述基站指定的虚拟小区的虚拟小区级导频或用户级导频, 按 照所述调制编码方式对所述基站下发的数据进行解调。
6、 如权利要求 1至 5中任意一项所述的虚拟小区测量方法, 其特征 在于, 具有相同小区识别码的若干个虚拟小区组成一个物理小区。
7、 一种虚拟小区测量方法, 其特征在于, 包括:
向用户设备发送下行导频信号, 所述下行导频信号包含多个虚拟小 区的多个虚拟小区级导频;
接收所述用户设备反馈的多个虚拟小区的信号质量; 所述信号质量 是所述用户设备对所述多个虚拟小区级导频进行测量后获得的。
8、 如权利要求 7所述的虚拟小区测量方法, 其特征在于, 所述多个 虚拟小区的虚拟小区级导频之间通过时分、 频分或码分正交复用。
9、 如权利要求 7所述的虚拟小区测量方法, 其特征在于, 所述下行 导频信号还包括为多个物理小区的多个小区级导频, 以及用户设备的用 户级导频;
所述多个虚拟小区级导频所占用的时频资源, 与所述多个小区级导 频、 所述用户级导频所占用的时频资源不相同。
10、 如权利要求 9 所述的虚拟小区测量方法, 其特征在于, 所述方 法还包括:
根据所述用户设备反馈的信号质量进行虚拟小区选择, 向所述用户 设备发送虚拟小区选择结果; 所述虚拟小区选择结果包括指定给所述用 户设备的虚拟小区信息;
接收所述用户设备发送的虚拟小区信道质量指示; 所述虚拟小区信 道质量指示是所述用户设备根据所述虚拟小区选择结果, 对指定的虚拟 小区的信道质量指示进行测量后获得的;
根据所述虚拟小区信道质量指示, 进行下行资源调度。
11、 如权利要求 10所述的虚拟小区测量方法, 其特征在于, 根据所 述虚拟小区信道质量指示, 进行下行资源调度之后, 还包括:
向所述用户设备发送下行资源调度结果和数据; 所述下行资源调度 结果包括所述基站根据所述虚拟小区信道质量指示进行下行资源调度 后, 为用户设备分配的时频资源和调制编码方式;
所述用户设备根据所述时频资源接收基站下发的数据, 并根据指定 的虚拟小区的虚拟小区级导频或用户级导频, 按照所述调制编码方式对 接收的数据进行解调。
12、 如权利要求 7至 11 中任意一项所述的虚拟小区测量方法, 其特 征在于, 具有相同小区识别码的若干个虚拟小区组成一个物理小区。
13、 一种用户设备, 其特征在于, 包括:
下行导频信号接收单元, 用于接收基站发送的下行导频信号; 所述 下行导频信号包括多个虚拟小区的多个虚拟小区级导频;
虚拟小区质量测量单元, 用于对所述多个虚拟小区级导频进行测量, 获得所述多个虚拟小区的信号质量, 并将所述多个虚拟小区的信号质量 发送给所述基站。
14、 如权利要求 13所述的用户设备, 其特征在于, 所述多个虚拟小 区级导频之间通过时分、 频分或码分正交复用。
15、 如权利要求 14所述的用户设备, 其特征在于, 所述下行导频信 号还包括多个物理小区的多个小区级导频, 以及用户设备的用户级导频; 所述多个虚拟小区级导频所占用的时频资源, 与所述多个小区级导频、 所述用户级导频所占用的时频资源不相同。
16、 如权利要求 14所述的用户设备, 其特征在于, 所述用户设备还 包括
虚拟小区选择结果接收单元, 用于接收所述基站发送的虚拟小区选 择结果; 所述虚拟小区选择结果包括所述基站根据所述信号质量进行虚 拟小区选择后, 指定给用户设备的虚拟小区信息;
信道质量指示测量单元, 用于根据所述虚拟小区选择结果, 对所述 基站指定的虚拟小区的信道质量指示进行测量, 并将测量到的虚拟小区 信道质量指示发送给所述基站, 使得所述基站进行下行资源调度。
17、 如权利要求 16所述的用户设备, 其特征在于, 所述用户设备还 包括:
调度结果接收单元, 用于接收所述基站发送的下行资源调度结果; 所述下行资源调度结果包括所述基站根据所述虚拟小区信道质量指示进 行下行资源调度后, 为用户设备分配的时频资源和调制编码方式;
数据接收单元, 用于根据所述基站分配的时频资源, 接收所述基站 下发的数据;
数据解调单元, 用于根据所述基站指定的虚拟小区的虚拟小区级导 频或用户级导频, 按照所述调制编码方式对所述基站下发的数据进行解 调。
18、 如权利要求 13~17 中任意一项所述的用户设备, 其特征在于, 具有相同小区识别码的若干个虚拟小区组成一个物理小区。
19、 一种基站, 其特征在于, 包括:
下行导频发送单元, 用于向用户设备发送下行导频信号, 所述下行 导频信号包含多个虚拟小区的多个虚拟小区级导频;
信号质量接收单元, 用于接收所述用户设备反馈的多个虚拟小区的 信号质量; 所述信号质量是所述用户设备对所述多个虚拟小区级导频进 行测量后获得的。
20、 如权利要求 19所述的基站, 其特征在于, 所述多个虚拟小区的 虚拟小区级导频之间通过时分、 频分或码分正交复用。
21、 如权利要求 20所述的基站, 其特征在于, 所述下行导频信号还 包括为多个物理小区的多个小区级导频, 以及用户设备的用户级导频; 所述多个虚拟小区级导频所占用的时频资源, 与所述多个小区级导 频、 所述用户级导频所占用的时频资源不相同。
22、 如权利要求 20所述的基站, 其特征在于, 所述基站还包括: 虚拟小区选择单元, 用于根据所述用户设备反馈的信号质量进行虚 拟小区选择, 向所述用户设备发送虚拟小区选择结果; 所述虚拟小区选 择结果包括指定给所述用户设备的虚拟小区信息;
信道质量指示接收单元, 用于接收所述用户设备发送的虚拟小区信 道质量指示; 所述虚拟小区信道质量指示是所述用户设备根据所述虚拟 小区选择结果, 对指定的虚拟小区的信道质量指示进行测量后获得的; 资源调度单元, 用于根据所述虚拟小区信道质量指示, 进行下行资 源调度。
23、 如权利要求 22所述的基站, 其特征在于, 所述基站还包括: 数据下发单元, 用于向所述用户设备发送下行资源调度结果和数据; 所述下行资源调度结果包括所述基站根据所述虚拟小区信道质量指示进 行下行资源调度后, 为用户设备分配的时频资源和调制编码方式;
所述用户设备根据所述时频资源接收基站下发的数据, 并根据指定 的虚拟小区的虚拟小区级导频或用户级导频, 按照所述调制编码方式对 接收的数据进行解调。
24、 如权利要求 19~23 中任意一项所述的基站, 其特征在于, 具有 相同小区识别码的若干个虚拟小区组成一个物理小区。
25、 一种通信系统, 其特征在于, 包括用户设备和基站;
所述用户设备为如权利要求 13〜: 17中任意一项所述的用户设备; 所述基站为如权利要求 19~23中任意一项所述的基站。
PCT/CN2013/072173 2012-03-05 2013-03-05 虚拟小区测量方法、用户设备、基站及通信系统 WO2013131466A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210055095.8 2012-03-05
CN201210055095.8A CN103298002B (zh) 2012-03-05 2012-03-05 虚拟小区测量方法、用户设备、基站及通信系统

Publications (1)

Publication Number Publication Date
WO2013131466A1 true WO2013131466A1 (zh) 2013-09-12

Family

ID=49098176

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/072173 WO2013131466A1 (zh) 2012-03-05 2013-03-05 虚拟小区测量方法、用户设备、基站及通信系统

Country Status (2)

Country Link
CN (1) CN103298002B (zh)
WO (1) WO2013131466A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016041496A1 (zh) * 2014-09-17 2016-03-24 中兴通讯股份有限公司 一种动态构建虚拟小区的方法和装置
CN105430672A (zh) * 2015-10-27 2016-03-23 东莞酷派软件技术有限公司 一种导频设计的方法及基站
EP3573385B1 (en) 2017-03-09 2023-07-12 Huawei Technologies Co., Ltd. Wireless communication method, control device, node, and terminal device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1997217A (zh) * 2006-01-05 2007-07-11 上海原动力通信科技有限公司 无线移动通信系统的资源管理方法及切换方法
CN101090286A (zh) * 2006-06-12 2007-12-19 清华大学 无线系统、基站装置及终端装置
CN102026208A (zh) * 2010-12-14 2011-04-20 大唐移动通信设备有限公司 一种对频谱资源进行处理的方法及设备

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100933155B1 (ko) * 2002-09-30 2009-12-21 삼성전자주식회사 주파수분할다중접속 이동통신시스템에서 가상 셀의 자원할당장치 및 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1997217A (zh) * 2006-01-05 2007-07-11 上海原动力通信科技有限公司 无线移动通信系统的资源管理方法及切换方法
CN101090286A (zh) * 2006-06-12 2007-12-19 清华大学 无线系统、基站装置及终端装置
CN102026208A (zh) * 2010-12-14 2011-04-20 大唐移动通信设备有限公司 一种对频谱资源进行处理的方法及设备

Also Published As

Publication number Publication date
CN103298002B (zh) 2017-02-15
CN103298002A (zh) 2013-09-11

Similar Documents

Publication Publication Date Title
JP7222959B2 (ja) 基準信号を送受信するための方法及び装置
US10841818B2 (en) Method, apparatus, and system for terminal for measurement configuration of different reference signals and cell measurement report mechanism
US9385853B2 (en) Method and apparatus for coordinated multi-node transmission
EP2575404B1 (en) Communication method using spatial division multiple access (sdma), and base station
US20190230580A1 (en) Method and apparatus for transmitting setting information of resource for control channel, method and apparatus for transmitting setting information of resource for uplink drs, method and apparatus for transmitting indicator indicating type of subframe/slot, and method and apparatus for transmitting number of downlink symbols
EP1806884B1 (en) Method and system for transmitting/receiving data in a communication system
KR101487375B1 (ko) 간섭을 측정하는 방법, 시스템 및 장치
JP5555246B2 (ja) 基地局装置及びユーザ装置
USRE49823E1 (en) Apparatus and method for transmitting and receiving signal in a mobile communication system
US9544795B2 (en) Methods and devices of interference channel measurement in radio network
RU2648688C1 (ru) Система беспроводной связи, базовая станция, мобильная станция и способ беспроводной связи
WO2013166932A1 (zh) 参考信号接收功率的上报方法和设备
WO2013107389A1 (zh) 测量方法,csi-rs资源共享方法和装置
EP3783986A1 (en) Method and apparatus for reducing interference caused to positioning signals in a wireless communication system
WO2011043394A1 (ja) ユーザ装置、基地局装置及び移動通信方法
WO2013131466A1 (zh) 虚拟小区测量方法、用户设备、基站及通信系统
US20120008639A1 (en) System and Method for Operating with Groups of Communications Devices in a Wireless Communications System
CN109075924B (zh) 无线电接入网络中移动性测量的方法、装置和存储介质
WO2011043395A1 (ja) 基地局装置及び移動通信方法
JP2011521487A (ja) 干渉コーディネーションのために隣接する基地局からの信号を測定してそれ自体の位置を計算するマルチキャリア移動体
KR101502136B1 (ko) 무선 통신 시스템 및 그 시스템에서의 무선 자원 스케줄링 방법
US20240163909A1 (en) Method and apparatus for sensing and selection of sidelink reference signal in a wireless communication system
AU2015258201B2 (en) Wireless communication system, base station, mobile station, and wireless communication method
KR101445840B1 (ko) 무선 통신 시스템에서의 무선 자원 스케줄링 방법 및 그 장치
KR20110115883A (ko) 무선통신 시스템에서 위치 기반 서비스를 위한 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13757364

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13757364

Country of ref document: EP

Kind code of ref document: A1