WO2013131343A1 - 具有监测系统的液流电池堆 - Google Patents

具有监测系统的液流电池堆 Download PDF

Info

Publication number
WO2013131343A1
WO2013131343A1 PCT/CN2012/078119 CN2012078119W WO2013131343A1 WO 2013131343 A1 WO2013131343 A1 WO 2013131343A1 CN 2012078119 W CN2012078119 W CN 2012078119W WO 2013131343 A1 WO2013131343 A1 WO 2013131343A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate
plate member
flow battery
probe
measuring
Prior art date
Application number
PCT/CN2012/078119
Other languages
English (en)
French (fr)
Inventor
汤浩
谢光有
殷聪
张占奎
王荣贵
练勇
Original Assignee
中国东方电气集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国东方电气集团有限公司 filed Critical 中国东方电气集团有限公司
Priority to US14/382,642 priority Critical patent/US9640816B2/en
Publication of WO2013131343A1 publication Critical patent/WO2013131343A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/20Indirect fuel cells, e.g. fuel cells with redox couple being irreversible
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to the field of liquid flow energy storage batteries, and more particularly to a flow battery stack having a monitoring system.
  • An all-vanadium redox flow battery is referred to as a vanadium battery, which is a kind of redox flow battery, which has the advantages of long service life, high energy conversion efficiency, high safety and environmental friendliness, and can be used for wind power generation and photovoltaic power generation.
  • the large-scale energy storage system is one of the main choices for grid peaking and valley filling and balancing load.
  • the vanadium battery is mainly composed of three parts: electrode material, battery separator and electrolyte.
  • the electrolyte is the core of the vanadium battery. It is a multivalent system of vanadium, which realizes the storage and release of vanadium battery energy.
  • the vanadium ion solution of different vanadium batteries is used as the positive and negative active materials respectively, and the electrolyte storage tank and the battery stack are circulated by an external driving pump, and the positive and negative electrolytes are in the ion exchange membrane of the battery stack. A redox reaction occurs on the side electrodes to complete the charge and discharge process.
  • the battery stack is formed by stacking a plurality of single cells in series and pressing them in series. The typical composition of a single battery is shown in Figure 1.
  • is a liquid flow frame
  • 2' is a current collecting plate
  • 3' is an electrode
  • 4' is a diaphragm
  • each electrode plate constitutes a single battery 5'
  • the battery stack 6' is composed of a stack of N single cells 5'.
  • these performance parameters are usually obtained by simulations such as fluid mechanics, or by indirect methods, such as monitoring outside the battery for monitoring. Obtaining the true values and their distributions of the relevant parameters inside the stack is of great significance for verifying and guiding the operation control, system design and optimization of the battery.
  • the present invention is directed to a flow battery stack having a monitoring system to solve the technical problems existing in the prior art that are difficult to directly acquire the true values of the internal related parameters and their distribution during the operation of the flow battery stack. .
  • a flow battery stack having a monitoring system comprising: a battery stack device including a plate having a measuring port; and a monitoring device including a measuring probe
  • the measuring probe extends to the inside of the stack device and is disposed corresponding to the measuring port on the electrode plate, and the monitoring device is used to monitor the flow pressure and temperature at the measuring port.
  • the electrode plate is further provided with a probe mounting portion, and the probe mounting portion is correspondingly connected with the measuring port; the measuring probe is installed inside the probe mounting portion, and the top end of the measuring probe is matched with the measuring port.
  • the measuring probe comprises: a probe member mounted on an inner side of the probe mounting portion; and a connecting portion connected to a side of the probe member away from the measuring port and screwed to an inner wall of the probe mounting portion.
  • the plate is composed of a plate member, wherein the plate member comprises: a groove plate member, the groove plate member is provided with a groove portion, and the measurement port is disposed on the bottom wall of the groove portion; The plate member is adapted to be coupled to the grooved plate member.
  • the grooved plate member comprises a long straight grooved plate member, a right angled grooved plate member, a ⁇ -shaped grooved plate member, and a cross-shaped grooved plate member;
  • the boss plate member comprises a long Straight boss plate, right angle boss plate,
  • a sealing portion is provided at the junction of the adjacent plate members. Further, the sealing portion comprises: a set of sealing grooves correspondingly disposed on the adjacent plate members; and a sealing member installed inside the group of the sealing grooves.
  • fixing means are further disposed at the joint of the adjacent plate members, and the fixing device comprises a positioning groove and a positioning pin, and the positioning groove and the positioning pin are correspondingly disposed on the adjacent plate members, and the structure is matched. Further, the fixing device further includes a positioning plate disposed on one side of the electrode plate assembled by the electrode plates to fix the electrode plates; the positioning plate is provided with a through hole corresponding to the measuring port. Further, the positioning plate is a grid-like positioning plate.
  • the present invention provides a flow battery stack having a monitoring system, by which a measuring probe of a monitoring device is introduced inside the liquid flow battery stack, and the true value and distribution of relevant parameters inside the battery stack can be directly obtained.
  • the condition provides a basis for reliability in optimizing battery system performance.
  • FIG. 3 is a schematic structural view of a plate with a measuring port assembled with a liquid flow frame according to an exemplary embodiment of the present invention
  • FIG. 4 shows a length with a measuring port according to an exemplary embodiment of the present invention.
  • Figure 5 is a corresponding cross-sectional view of Figure 4;
  • Figure 6 is a corresponding end view of Figure 4, showing the positional structure of the measuring probe in the probe mounting portion;
  • Figure 7 shows FIG. 8a is a schematic structural view of a long straight grooved plate member according to an embodiment of the present invention;
  • FIG. 8b illustrates a structure according to the present invention;
  • FIG. 8c is a schematic structural view of a T-shaped grooved plate member according to an embodiment of the present invention;
  • FIG. 8d shows a cross-shaped groove according to an embodiment of the present invention.
  • Structure of the plate Figure 9a is a schematic view showing the structure of a long straight boss plate member according to an embodiment of the present invention;
  • Figure 9b is a schematic view showing the structure of a right angle type boss plate member according to an embodiment of the present invention;
  • FIG. 9d is a schematic structural view of a cross-shaped boss plate member according to an embodiment of the present invention;
  • FIG. 10d shows a schematic structural view of a cross-shaped boss plate member according to an embodiment of the present invention;
  • FIG. 10a-2 is a schematic top view of the structure of the long straight grooved plate member of the embodiment;
  • FIG. 10a-2 is a front view of the structure of FIG. FIG.
  • FIG. 10b-1 is a top plan view showing the arrangement of three measuring ports on a long straight grooved plate member according to an embodiment of the present invention
  • FIG. 10b-2 is a front view of FIG. 10b-1
  • FIG. 1 is a top plan view showing a measuring port provided on a right-angled grooved plate member according to an embodiment of the present invention
  • FIG. 10c-2 is a front view of FIG. 10c-1
  • FIG. 10d-1 shows FIG. 10d-2 is a schematic view of a front view of FIG. 10d-1
  • FIG. 10d-1 shows a schematic view of a top view of the measuring unit according to the embodiment of the present invention
  • FIG. 10e-2 is a schematic view of the front view of FIG. 10e-1
  • FIG. 10e-1 shows a T-shaped concave shape according to an embodiment of the present invention
  • FIG. 10f-2 is a schematic front view of FIG. 10f-1
  • FIG. 10g-1 shows a T-shaped groove plate member according to an embodiment of the invention.
  • FIG. Set up a schematic view of the top view of the four measuring ports
  • Figure 10g-2 is a schematic view of the front view of Figure 10g-1
  • Figure 10h -1 shows a schematic top view of a configuration of three measuring ports on a T-shaped groove plate member according to an embodiment of the present invention
  • FIG. 10h-2 is a schematic front view of FIG. 10H-1
  • FIG. 10i-2 is a schematic front view of the structure of the cross-shaped groove plate member according to the embodiment of the present invention
  • FIG. 10j-1 is a top plan view showing the arrangement of five measuring ports on a cross-shaped groove plate member according to an embodiment of the present invention
  • FIG. 10j-2 is a schematic view of the front view of FIG. 10j-1
  • FIG. 10k-2 is a schematic front view of the structure of the cross-shaped groove plate member according to the embodiment of the present invention
  • FIG. 10k-2 is a schematic view of the front view of FIG. 10k-1
  • FIG. FIG. 12 is a schematic structural view showing a grooved plate member provided with a sealing groove according to an embodiment of the present invention
  • FIG. 12 is a schematic structural view showing a grooved plate member provided with a positioning groove and a slightly positioned portion according to an embodiment of the present invention
  • FIG. 14 shows an end face structure of a combined plate with a grid-like backing plate according to an embodiment of the present invention.
  • a flow battery stack having a monitoring system including a battery stack device and a monitoring device, as shown in Figures 2-6, wherein the battery stack device includes a plate 2, a plate 2 is provided with a measuring port 20; the monitoring device comprises a measuring probe 23 extending to the inside of the stack device and corresponding to the measuring port 20 on the plate 2 for monitoring the liquid at the measuring port 20 Flow pressure and temperature.
  • the electrode plate referred to in the present invention is a current collecting plate.
  • the invention introduces a monitoring device inside the liquid flow battery stack, and the monitoring device can directly obtain the true value and the distribution state of the internal related parameters of the liquid flow battery stack during operation, and verify and guide the operation control and structure of the liquid flow battery.
  • the electrode plate 2 is further provided with a probe mounting portion 24, and the probe mounting portion 24 is correspondingly connected to the measuring port 20; the measuring probe 23 is mounted inside the probe mounting portion 24, and the top end of the measuring probe 23 is The measuring port 20 is adapted.
  • the probe mounting portion 24 mounted on the bottom wall of the recess 211 of the grooved plate member 21, as shown in Fig. 4-6, which shows the measuring probe 23 in the probe mounting portion 24. Bit Since the measuring probe 23 is a sensitive device, it is easily damaged, and it is placed in the probe mounting portion 24 to ensure the safety of use without affecting its function. As shown in FIG.
  • the measuring probe 23 includes a probe member 231 and a connecting portion 232.
  • the probe member 231 is mounted inside the probe mounting portion 24, and the connecting portion 232 is connected to the side of the probe member 231 away from the measuring port 20, and is mounted with the probe.
  • the inner wall threads 25 of the portion 24 are connected.
  • the probe member 231 of the measuring probe 23 is located inside the probe mounting portion 24 and preferably has a tip end that does not protrude into the interior of the battery, that is, is flush with the measuring port 20.
  • the connecting portion 232 is connected to the inner wall screw 25 of the probe mounting portion 24, and the inner wall screw 25 has a function of fixing the measuring probe and preventing leakage.
  • the plate 2 of the flow battery stack of the present invention comprises both an integral plate and, as shown in Fig. 7, a combined plate, as long as the measuring port 20 can be provided on the plate 2 and a monitoring device can be introduced.
  • the plate 2 is a combined plate
  • the plate 2 is composed of a plate member, wherein the plate member comprises a grooved plate member 21 and a boss plate member 22, wherein the grooved plate member 21 is provided There is a groove 211, and the measuring port 20 is disposed on the bottom wall of the groove 211; the boss plate member 22 is fitted to the grooved plate member 21.
  • the plate member comprises a grooved plate member 21 and a boss plate member 22
  • the measuring port 20 is disposed on the bottom wall of the groove 211
  • the boss plate member 22 is fitted to the grooved plate member 21.
  • the measuring port 20 can be placed at any position of the plate 2 as long as the measuring probe 23 can be mounted to monitor the relevant performance parameters inside the flow cell stack. If it is provided on the grooved plate member 21 or on the boss plate member 22, the measurement port 20 is disposed on the boss plate member 22 to measure the relevant parameter condition of the electrode portion in contact with the electrode plate 2. Preferably, the measuring port 20 is disposed on the bottom wall of the recess 211, and the pressure of the electrolyte flowing through the recess 211 can be accurately monitored.
  • This pressure value is also the contact between the uppermost end of the recess 211 and the electrode. pressure.
  • the present invention is preferably, but not limited to, the above two types of plate members, as long as the plates are obtained by mutual cooperation between the plate members.
  • the combination of the grooved plate member 21 and the boss plate member 22 is selected to obtain different types of plates 2, which are combined with the corresponding flow frame 1 to be assembled into a flow battery device of different flow field design.
  • the ratio of the plate, the flow path depth, the flow path width and the flow path spacing are all parameters that characterize the different flow field design of the plate 2.
  • the grooved plate member 21 comprises a long straight grooved plate member, a right angled grooved plate member, a T-shaped grooved plate member, And a cross-shaped groove plate member; as shown in Figures 9a-9d, the boss plate member 22 includes a long straight boss plate member, a right angle boss plate member, a T-shaped boss plate member, and Cross-shaped boss plate.
  • the invention is preferably, but not limited to, a plate member of the type described above, by designing different plates Types, which in turn give flow cell stacks with different flow field designs, so that it is not necessary to prepare and process each type of plate design, saving a lot of time and money for the development of flow battery performance.
  • the measuring port 20 may be provided on the above-mentioned plate member, and at least one. Taking the grooved plate member 21 as an example, as shown in FIG. 10, the measuring port 20 can be disposed at the following position: the middle position of the long straight grooved plate member or sequentially arranged; the right angle of the right angle grooved plate member At the ends of the two right-angled edges or at the ends of the right-angled and right-angled sides; the middle position of the T-shaped grooved plates is set at three end points or at the same time at the middle and three end points ; The middle position of the cross-shaped groove plate, at the four end points or at the same time in the middle and at the four end points.
  • a seal is provided at the junction of adjacent plate members. After the groove plate member 21 and the boss plate member 22 are assembled into the plates 2 of various specifications, there are gaps at the joints between the respective plate members, and the existence of these slits causes the assembled flow. The inside and outside of the stack are not completely isolated, and liquid leakage may occur. Therefore, it is necessary to provide a seal at the joint of each plate member.
  • the sealing portion has a plurality of structures. Preferably, as shown in FIG.
  • the sealing portion includes a set of sealing grooves 4 and a sealing member, and the sealing groove 4 is correspondingly disposed on the adjacent plate member, and the sealing member is installed in the corresponding arrangement.
  • the position of the seal groove 4 is not limited, but it is adapted to the seal groove 4 of the plate member to which it is connected.
  • the sealing member referred to herein is preferably a sealing ring, and the provision of the sealing groove 4 and the sealing ring ensures a good sealing effect of the combined plate.
  • the flow battery stack is further provided with fixing means at the junction of the adjacent plate members, the fixing device including the positioning groove 5 and the positioning pin 6 The positioning groove 5 and the positioning pin 6 are correspondingly disposed on the adjacent plate members, and the structure is adapted. As shown in FIG.
  • the positioning groove 5 and the positioning pin 6 are evenly disposed under the sealing groove 4, which facilitates the positioning during the assembly process, and the positioning groove 5 is respectively disposed on the corresponding surface of the adjacent plate member.
  • the positioning pin 6, preferably, a positioning groove 5 and a positioning pin 6 are arranged on each of the connected faces, so that the opposite positioning groove 5 and the positioning pin 6 are used together to make the assembled electrode plate 2 stronger and firmer, and convenient for the later liquid. Assembly of the flow battery.
  • the fixing device further includes a positioning plate disposed on one side of the plate 2 formed by assembling the various plate members to fix the plate members; and the positioning plate is provided with The through hole corresponding to the port 20 is measured.
  • the positioning plate can keep the assembled electrode plate 2 from being deformed, and the positioning plate is provided with a through hole corresponding to the measuring port 20, which does not affect the insertion of the measuring probe 23, and is easy to assemble.
  • the positioning plate can be selected to have good Conductive materials, such as copper, stainless steel, etc., so that after assembling different plates 2 into batteries, good electrical conductivity can be achieved between adjacent positive and negative plates, so that the measured parameters can be closer to the battery.
  • the conductivity of the conductive positioning plate can also be adjusted by changing the material and increasing the thickness of the positioning plate, so that the conductivity and the stack of the electrode plate can be conveniently inspected without changing the material of the electrode plate. The relationship between the operating parameter states.
  • the positioning plate is a grid-like positioning plate 7, as shown in FIGS. 13-14
  • FIG. 13 is a schematic structural view of the combined plate 2 with the grid-like positioning plate 7
  • FIG. 14 is a schematic view of FIG. Schematic diagram of the end face structure.
  • the positioning plate and the combined plate 2 are inserted into the liquid flow frame 1, and the liquid flow frame 1 is provided with a lead port 9 for guiding the wire of the measuring probe 23 to the outside of the battery.
  • the present invention is preferably, but not limited to, the structure as long as the positioning plate can fix the combined plate without affecting the insertion of the measuring probe.
  • the positioning plate can be designed not to be inserted into the flow frame together with the combined plate, but arranged side by side on the outside of the flow frame. The following is a detailed description of the relationship between the efficiency of the stack, the true value of the relevant parameters inside the stack and its distribution and the design of the combined plates in combination with the combined plates:
  • the efficiency of the stack includes voltage efficiency. , Coulomb efficiency and energy efficiency, this monitoring provides a reliable basis for optimizing the performance of the battery system.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)
  • Secondary Cells (AREA)

Abstract

本发明公开了一种具有监测系统的液流电池堆。该具有监测系统的液流电池堆包括:电池堆装置以及监测装置,电池堆装置包括极板,极板上设有测量口;监测装置包括测量探头,测量探头延伸至电池堆装置的内部,且与极板上的测量口对应设置,监测装置用以监测测量口处的液流压力和温度。根据本发明的技术方案,在液流电池堆内部引入监测装置,通过该监测装置能够直接获取电池堆内部相关参数的真实数值及其分布状况,为液流电池堆系统性能的优化提供了可靠性依据。

Description

具有监测系统的液流电池堆 技术领域 本发明涉及液流储能电池领域, 具体涉及一种具有监测系统的液流电池堆。 背景技术 全钒氧化还原液流电池简称钒电池, 是氧化还原液流电池的一种, 具有使用寿命 长、 能量转化效率和安全性高以及环境友好等优点, 能用于风能发电和光伏发电配套 的大规模储能系统, 是电网削峰填谷、 平衡负载的主要选择之一。 钒电池主要由三部分组成: 电极材料、 电池隔膜和电解液, 其中电解液是钒电池 的核心, 它是一个钒的多价态体系, 实现着钒电池能量的储存和释放。 钒电池以不同 价态的钒离子溶液分别作为正负极活性物质, 通过外接驱动泵让电解液的储液槽与电 池堆内循环流动, 正负极电解液在电池堆内的离子交换膜两侧的电极上分别发生氧化 还原反应, 以此完成充放电过程。 其反应式如下: 负极反应: V2+ - e = V3+ E0=-0.26V 正极反应: V02 + +2H++e = V02++H20 在整个全钒氧化还原液流电池储能系统中, 电池堆性能的好坏决定着整个系统的 充放电性能, 尤其是充放电功率。 电池堆是由多片单电池依次叠放压紧, 串联而成。 其中单片电池通常的组成如图 1所示。 Γ为液流框, 2'为集流板, 3'为电极, 4'为隔膜, 各极板件组成单体电池 5',通过 N个单体电池 5'的堆叠组成电池堆 6'。在使用过程中, 液流电池堆内部温度、 压力、 荷电状态等相应参数的数值和分布对电池系统的性能有 极为重要的影响。在现有技术中,这些性能参数通常是通过流体力学等的模拟所获得, 或者通过间接方法获得, 如在电池外部监测进行监测。 获得电池堆内部相关参数的真 实数值及其分布对验证和指导电池的运行控制、 系统设计及优化等具有重要意义, 但 目前尚无原位观测电池堆内部相关参数的技术和设备。 现有技术中要实现不同的流场 设计下电池性能参数的监测也很难。 发明内容 本发明旨在提供一种具有监测系统的液流电池堆, 以解决现有技术中存在的难以 在液流电池堆运行过程中直接获取其内部相关参数的真实数值及其分布的技术问题。 为了实现上述目的, 根据本发明的一个方面, 提供了一种具有监测系统的液流电 池堆, 包括: 电池堆装置, 包括极板, 极板上设有测量口; 以及监测装置, 包括测量 探头, 测量探头延伸至电池堆装置的内部, 且与极板上的测量口对应设置, 监测装置 用以监测测量口处的液流压力和温度。 进一步地, 极板还设置有探头安装部, 探头安装部与测量口对应相连; 测量探头 安装在探头安装部的内侧, 且测量探头的顶端与测量口相适配。 进一步地, 测量探头包括: 探头件, 安装在探头安装部的内侧; 连接部, 与探头 件远离测量口的一侧相连, 且与探头安装部的内壁螺纹连接。 进一步地, 极板由极板件组成, 其中极板件包括: 凹槽极板件, 凹槽极板件上设 有凹槽部, 测量口设置在凹槽部的底壁上; 凸台极板件, 与凹槽极板件适配相连。 进一步地, 凹槽极板件包括长直型凹槽极板件、 直角型凹槽极板件、 τ 型凹槽极 板件、和十字型凹槽极板件; 凸台极板件包括长直型凸台极板件、直角型凸台极板件、
T型凸台极板件、 和十字型凸台极板件。 进一步地, 在相邻极板件的连接处设有密封部。 进一步地, 密封部包括: 一组密封槽, 对应地设置在相邻的极板件上; 密封件, 安装在一组密封槽的内部。 进一步地, 在相邻极板件的连接处还设置有固定装置, 固定装置包括定位槽和定 位销, 定位槽和定位销对应地设置在相邻的极板件上, 且结构相适配。 进一步地, 固定装置还包括定位板, 定位板设置在由各极板件组装形成的极板的 一侧以固定各极板件; 定位板上设有与测量口相对应的通孔。 进一步地, 定位板为栅网状定位板。 本发明的有益效果: 本发明提供了一种具有监测系统的液流电池堆, 通过在该液 流电池堆内部引入监测装置的测量探头, 能够直接获取电池堆内部相关参数的真实数 值及其分布状况, 为电池系统性能的优化提供了可靠性依据。 附图说明 构成本申请的一部分的说明书附图用来提供对本发明的进一步理解, 本发明的示 意性实施例及其说明用于解释本发明, 并不构成对本发明的不当限定。 在附图中: 图 1示出了现有技术中全钒氧化还原液流电池及其构成电池堆的结构示意图; 图 2示出了根据本发明典型实施例的带有测量口的极板的结构示意图; 图 3示出了根据本发明典型实施例的带有测量口的极板与液流框装配后的结构示 意图; 图 4示出了根据本发明典型实施例的带有测量口的长直型凹槽极板件的结构示意 图; 图 5为图 4的相应剖面图; 图 6为图 4的相应端面图, 示出了测量探头在探头安装部内的位置结构示意图; 图 7示出了根据本发明实施例的整体式极板上设置测量口的结构示意图; 图 8a示出了根据本发明实施例的长直型凹槽极板件的结构示意图; 图 8b示出了根据本发明实施例的直角型凹槽极板件的结构示意图; 图 8c示出了根据本发明实施例的 T型凹槽极板件的结构示意图; 图 8d示出了根据本发明实施例的十字型凹槽极板件的结构示意图; 图 9a示出了根据本发明实施例的长直型凸台极板件的结构示意图; 图 9b示出了根据本发明实施例的直角型凸台极板件的结构示意图; 图 9c示出了根据本发明实施例的 T型凸台极板件的结构示意图; 图 9d示出了根据本发明实施例的十字型凸台极板件的结构示意图; 图 lOa-1 示出了根据本发明实施例的长直型凹槽极板件上设置一个测量口的俯视 结构示意图; 图 10a-2为图 lOa-1的主视结构示意图; 图 lOb-1示出了根据本发明实施例的长直型凹槽极板件上设置三个测量口的俯视 结构示意图; 图 10b-2为图 lOb-1的主视结构示意图; 图 lOc-1 示出了根据本发明实施例的直角型凹槽极板件上设置一个测量口的俯视 结构示意图; 图 lOc-2为图 lOc-1的主视结构示意图; 图 10d-l示出了根据本发明实施例的直角型凹槽极板件上设置三个测量口的俯视 结构示意图; 图 10d-2为图 10d-l的主视结构示意图; 图 lOe-1 示出了根据本发明实施例的直角型凹槽极板件上设置两个测量口的俯视 结构示意图; 图 10e-2为图 lOe-1的主视结构示意图; 图 lOf-1示出了根据本发明实施例的 T型凹槽极板件上设置一个测量口的俯视结 构示意图; 图 10f-2为图 lOf-1的主视结构示意图; 图 IOg-1示出了根据本发明实施例的 T型凹槽极板件上设置四个测量口的俯视结 构示意图; 图 10g-2为图 IOg-1的主视结构示意图; 图 lOh-1示出了根据本发明实施例的 T型凹槽极板件上设置三个测量口的俯视结 构示意图; 图 10h-2为图 lOh-1的主视结构示意图; 图 lOi-1 示出了根据本发明实施例的十字型凹槽极板件上设置一个测量口的俯视 结构示意图; 图 10i-2为图 lOi-1的主视结构示意图; 图 10j-l 示出了根据本发明实施例的十字型凹槽极板件上设置五个测量口的俯视 结构示意图; 图 10j-2为图 10j-l的主视结构示意图; 图 10k-l示出了根据本发明实施例的十字型凹槽极板件上设置四个测量口的俯视 结构示意图; 图 10k-2为图 10k-l的主视结构示意图; 图 11示出了根据本发明实施例的设置有密封槽的凹槽极板件的主视结构示意图; 图 12 示出了根据本发明实施例的设置有定位槽和定位稍的凹槽极板件的结构示 意图; 图 13示出了根据本发明实施例的带有栅网状背板的组合式极板的结构示意图; 图 14 示出了根据本发明实施例的带有栅网状背板的组合式极板的端面结构示意 图; 具体实施方式 需要说明的是, 在不冲突的情况下, 本申请中的实施例及实施例中的特征可以相 互组合。 下面将参考附图并结合实施例来详细说明本发明。 根据本发明的一种典型实施方式, 提供了一种具有监测系统的液流电池堆, 包括 电池堆装置和监测装置, 如图 2-6所示, 其中电池堆装置包括极板 2, 极板 2上设有测 量口 20; 监测装置包括测量探头 23, 测量探头 23延伸至电池堆装置的内部且与极板 2上的测量口 20对应设置, 该监测装置用以监测测量口 20处的液流压力和温度。 本 发明中所说的极板, 即现有技术中的集流板。 本发明通过在液流电池堆内部引入监测 装置, 该监测装置能够直接获取液流电池堆运行时其内部相关参数的真实数值及其分 布状况,对验证和指导液流电池的运行控制、结构及系统的设计和优化具有重要意义。 根据本发明的优选实施方式, 极板 2上还设置有探头安装部 24, 探头安装部 24 与测量口 20对应相连; 测量探头 23安装在探头安装部 24的内侧, 且测量探头 23的 顶端与测量口 20相适配。现以探头安装部 24安装在凹槽极板件 21的凹槽 211的底壁 上的情况进行说明, 如图 4-6所示, 图 6示出了测量探头 23在探头安装部 24内的位 置结构示意图, 由于测量探头 23 属于灵敏器件, 很容易损坏, 将其置于探头安装部 24内, 在不影响其功能的前提下保证了使用的安全性。 如图 6所示, 测量探头 23包括探头件 231和连接部 232, 探头件 231安装在探头 安装部 24的内侧, 连接部 232与探头件 231远离测量口 20的一侧相连, 且与探头安 装部 24的内壁螺纹 25连接。 为了避免引入测量装置后对运行状态造成影响, 测量探 头 23的探头件 231位于探头安装部 24的内部且其顶端刚好不伸入电池内部的位置为 佳, 即与测量口 20相平齐。连接部 232与探头安装部 24的内壁螺纹 25连接, 内壁螺 纹 25具有固定测量探头并预防漏液的作用。 本发明的液流电池堆的极板 2既包括整体式极板, 如图 7所示, 又包括组合式极 板, 只要能在该极板 2上设置测量口 20并引入监测装置即可。优选地, 极板 2为组合 式极板, 该极板 2由极板件组成, 其中极板件包括凹槽极板件 21和凸台极板件 22, 其中凹槽极板件 21上设有凹槽 211, 测量口 20设置在凹槽 211的底壁上; 凸台极板 件 22与凹槽极板件 21适配相连。 如图 2-3所示, 分别示出了由凹槽极板件 21和凸台 极板件 22组合而成的组合式极板的结构示意图及该组合式极板与液流框 1装配后的结 构示意图。 测量口 20可以设置在极板 2的任何位置, 只要能够安装测量探头 23进而 监测出液流电池堆内部的相关性能参数即可。如可设在凹槽极板件 21上或凸台极板件 22上, 将测量口 20设置在凸台极板件 22上可以测量到与极板 2接触的电极部分的相 关参数状况。优选将测量口 20设置在凹槽 211的底壁上, 可以准确地监测出流过凹槽 211内的电解液的压力, 此压力数值也即是凹槽 211的最上端与电极相接触处的压力。 本发明优选但不限于上述两种极板件, 只要通过极板件之间的相互配合得到极板 即可。 选择凹槽极板件 21和凸台极板件 22组合得到不同型号的极板 2, 配合相应型 号的液流框 1进而组装成不同流场设计的液流电池装置。 在考察不同参数的并行流场 设计时, 通过调整凹槽极板件 21和凸台极板件 22的比例, 可以在维持流道深度不变 的情况下, 获得不同流道宽度和流道间距比值的极板, 这里所说的流道深度、 流道宽 度及流道间距都是表征极板 2不同流场设计的参数。 将上述的极板 2装入电池中进行 运行和测试, 就可以获得不同的流场设计下响应性能的比较结果, 从而更加全面地监 测出不同流场设计的液流电池内部性能参数及分布情况。 根据本发明的一种优选实施方式, 如图 8a-8d所示, 凹槽极板件 21包括长直型凹 槽极板件、 直角型凹槽极板件、 T 型凹槽极板件、 和十字型凹槽极板件; 如图 9a-9d 所示, 凸台极板件 22包括长直型凸台极板件、 直角型凸台极板件、 T型凸台极板件、 和十字型凸台极板件。 本发明优选但不限于上述类型的极板件, 通过设计不同的极板 类型, 进而得到不同流场设计的液流电池堆, 这样无需将每一个极板的设计类型都进 行制备和加工, 为液流电池性能的研发节约了大量的时间和资金。 测量口 20可以设置在上述的极板件上, 且至少为一个。现以凹槽极板件 21为例, 如图 10所示, 测量口 20可以设置在如下位置: 长直型凹槽极板件的中间位置或依次 排列; 直角型凹槽极板件的直角处、 两个直角边的端点处或同时设置在直角处和直角 边的端点处; T 型凹槽极板件的中间位置、 分别设置在三个端点处或同时设置在中间 和三个端点处; 十字型凹槽极板件的中间位置、 四个端点处或同时设置在中间和四个 端点处。将测量口 20均匀地设置上述位置可以更准确地得到液流电池堆内部性能参数 的真实值。 根据本发明的一种优选实施方式, 在相邻极板件的连接处设有密封部。 由凹槽极 板件 21和凸台极板件 22组装成各种规格的极板 2后, 在各个极板件之间的相连接处 会存在缝隙, 这些缝隙的存在使得组装后的液流电池堆内部和外部没有完全隔离, 会 出现漏液现象, 所以需要在各个极板件的相连处设置密封部。 密封部有多种结构, 优 选地, 如图 11所示, 密封部包括一组密封槽 4和密封件, 密封槽 4对应地设置在相邻 的极板件上, 密封件安装在对应设置的一组密封槽 4的内部。 当密封槽 4设置在凹槽 极板件 21上时, 则开设位置要低于凹槽极板件 21内的凹槽部 211的位置, 因为凹槽 部 211对应的外壁面较薄, 若再开设密封槽 4会使凹槽极板件 21发生变形, 不利于极 板 2的组装及组装后的使用, 所以优选密封槽 4的位置低于凹槽部 211的位置。 当开 设在凸台极板件 22上时,密封槽 4的位置不受限制,但要和与其相连接的极板件上密 封槽 4相适配。 这里所说的密封件优选为密封圈, 设置密封槽 4和密封圈能够确保组 合式极板实现良好的密封效果。 根据本发明的另一种典型实施方式, 该液流电池堆除了包括上述的密封部外, 在 相邻极板件的连接处还设置有固定装置, 该固定装置包括定位槽 5和定位销 6, 定位 槽 5和定位销 6对应地设置在相邻的极板件上, 且结构相适配。 如图 11-12所示, 定 位槽 5和定位销 6均匀地设置在密封槽 4的下方, 方便组装过程中的定位, 在相邻的 极板件相对应的面上分别设置有定位槽 5和定位销 6, 优选在每一个相连接的面上设 置一个定位槽 5和定位销 6, 这样相对的定位槽 5和定位销 6配合使用使组装后的极 板 2更结实牢固, 方便后期液流电池的装配。 根据本发明的一种优选实施方式, 固定装置还包括定位板, 该定位板设置在各种 极板件组装形成的极板 2的一侧以固定各极板件;且定位板上设有与测量口 20相对应 的通孔。定位板能够保持组装后的极板 2不变形, 定位板上设置有与测量口 20相对应 的通孔, 不会影响测量探头 23的插入, 易于装配。 优选地, 定位板可以选择具有良好 导电性的材料, 如铜、 不锈钢等, 这样将不同的极板 2组装成电池后, 相邻正负极极 板间可以实现良好的导电性能, 从而使所测量的相关参数能够更加接近电池的实际运 行状态, 还可通过改变材料、 增加定位板的厚度等方式调整这种导电性定位板的导电 性能, 这样可以在不改变极板材料的情况下, 方便地考察极板导电性能和电池堆的运 行参数状况之间的关系。 优选地, 定位板为栅网状定位板 7, 如图 13-14所示, 图 13示出了带有栅网状定 位板 7的组合式极板 2的结构示意图, 图 14为图 13的端面结构示意图。 定位板与组 合式极板 2—并装入液流框 1内,液流框 1上留有将测量探头 23的导线引出到电池外 部的引线口 9。 本发明优选但并不局限于该结构, 只要该定位板能够将组合式极板固 定且不影响测量探头的插入即可。 如该定位板可以设计成不和组合式极板一起装入液 流框内, 而是并列地设置在液流框的外侧。 下面结合组合式极板详细说明电池堆的效率、 电池堆内部相关参数的真实数值及 其分布状况与组合式极板的设计之间的关系:
( 1 )首先在组合式极板上开取相应的测量口并设置监测装置,将该组合式极板组 装成液流电池堆, 准备对其内部电解液的相关参数进行测量;
(2)监测出不同类型的电池堆的效率, 在监测电池堆效率的同时, 可以对该效率 下的电池内部的相关参数 (如压力) 进行测量; 根据监测到的电池堆效率的大小, 可 以直观地判定出该组合式极板的结构设计是否合理;
(3 ) 当电池堆的效率不合理时, 对该电池堆对应的极板的结构设计进行改进; (4)对极板的结构设计的改进(如对流道的宽深比、流道的宽度和流道间距的比 值, 流道的条数等) 是在对电池堆内部的参数进行分析后得出的。 综上所述, 电解液的各种参数 (如压力等) 和极板的结构设计是直接相关的, 极 板的结构设计、 电池堆内部参数分布状况以及电池堆效率三者间是相互密切关联的。 一定的结构设计下, 电池堆内部的电解液相关参数则呈现出相应的分布, 电池堆也表 现出相应的效率, 不同结构设计下可能对应不同的电池堆效率, 一般电池堆的效率包 括电压效率、 库伦效率和能量效率, 该监测为电池系统性能的优化提供了可靠依据。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本领域的技 术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则之内, 所作的 任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权 利 要 求 书
1. 一种具有监测系统的液流电池堆, 其特征在于, 包括:
电池堆装置, 包括极板 (2), 所述极板 (2) 上设有测量口 (20); 以及 监测装置, 包括测量探头(23 ), 所述测量探头(23 )延伸至所述电池堆装 置的内部, 且与所述极板(2)上的测量口 (20)对应设置, 所述监测装置用以 监测所述测量口 (20) 处的液流压力和温度。
2. 根据权利要求 1所述的液流电池堆, 其特征在于, 所述极板(2)上还设置有探 头安装部 (24), 所述探头安装部 (24) 与所述测量口 (20)对应相连; 所述测 量探头 (23 ) 安装在所述探头安装部 (24) 的内侧, 且所述测量探头 (23 ) 的 顶端与所述测量口 (20) 相适配。
3. 根据权利要求 2所述的液流电池堆, 其特征在于, 所述测量探头 (23 ) 包括: 探头件 (231 ), 安装在所述探头安装部 (24) 的内侧;
连接部 (232), 与所述探头件 (231 ) 远离所述测量口 (20) 的一侧相连, 且与所述探头安装部 (24) 的内壁螺纹 (25 ) 连接。
4. 根据权利要求 1所述的液流电池堆,其特征在于,所述极板(2)由极板件组成, 其中极板件包括:
凹槽极板件(21 ), 所述凹槽极板件(21 )上设有凹槽部(211 ), 所述测量 口 (20) 设置在所述凹槽部 (211 ) 的底壁上;
凸台极板件 (22), 与所述凹槽极板件 (21 ) 适配相连。
5. 根据权利要求 4所述的液流电池堆, 其特征在于,
所述凹槽极板件 (21 ) 包括长直型凹槽极板件、 直角型凹槽极板件、 T型 凹槽极板件、 和十字型凹槽极板件;
所述凸台极板件 (22) 包括长直型凸台极板件、 直角型凸台极板件、 T型 凸台极板件、 和十字型凸台极板件。
6. 根据权利要求 4所述的液流电池堆, 其特征在于, 在相邻极板件的连接处设有 密封部。 根据权利要求 6所述的液流电池堆, 其特征在于, 所述密封部包括: 一组密封槽 (4), 对应地设置在相邻的极板件上;
密封件, 安装在一组所述密封槽 (4) 的内部。 根据权利要求 6所述的液流电池堆, 其特征在于, 在相邻极板件的连接处还设 置有固定装置, 所述固定装置包括定位槽 (5 ) 和定位销 (6), 定位槽 (5 ) 和 定位销 (6) 对应地设置在相邻的极板件上, 且结构相适配。 根据权利要求 8所述的液流电池堆,其特征在于,所述固定装置还包括定位板, 所述定位板设置在由各极板件组装形成的极板(2)的一侧以固定各极板件; 且 所述定位板上设有与所述测量口 (20) 相对应的通孔。 根据权利要求 9所述的液流电池堆, 其特征在于, 所述定位板为栅网状定位板 (7)。
PCT/CN2012/078119 2012-03-05 2012-07-03 具有监测系统的液流电池堆 WO2013131343A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/382,642 US9640816B2 (en) 2012-03-05 2012-07-03 Flow battery pack with monitoring system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210055264.8 2012-03-05
CN201210055264.8A CN102593489B (zh) 2012-03-05 2012-03-05 具有监测系统的液流电池堆

Publications (1)

Publication Number Publication Date
WO2013131343A1 true WO2013131343A1 (zh) 2013-09-12

Family

ID=46481845

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/078119 WO2013131343A1 (zh) 2012-03-05 2012-07-03 具有监测系统的液流电池堆

Country Status (3)

Country Link
US (1) US9640816B2 (zh)
CN (1) CN102593489B (zh)
WO (1) WO2013131343A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI521768B (zh) * 2014-06-30 2016-02-11 元智大學 內部具有感測片的液流電池堆
DE102016213135A1 (de) * 2016-07-19 2018-01-25 Robert Bosch Gmbh Verfahren und Montagesystem zur Herstellung von Elektrodenstapeln
CN108933270A (zh) * 2017-05-25 2018-12-04 神华集团有限责任公司 液流电池和液流电池堆
CN108565468B (zh) * 2018-04-13 2019-05-24 西安交通大学 插槽式集流结构、测量系统及其测量方法
CN109301289B (zh) * 2018-11-20 2023-08-22 安徽明天氢能科技股份有限公司 一种大面积燃料电池内部温度与压力分布的测试装置
CN110137544B (zh) * 2019-04-18 2021-12-24 上海交通大学 质子交换膜燃料电池电堆反应状态在线检测系统及其应用
CN111983482B (zh) * 2019-05-24 2021-05-28 江苏泛宇能源有限公司 环境友好型全钒液流电池的检测方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030015437A1 (en) * 2001-07-09 2003-01-23 University Of Delaware Method for in-situ analysis and flow cell therefor
CN201549547U (zh) * 2009-12-17 2010-08-11 中国电力科学研究院 一种液流电池的自动测温装置
CN201892654U (zh) * 2010-09-15 2011-07-06 浙江省电力试验研究院 一种热力设备停运腐蚀在线检测装置
CN102306814A (zh) * 2011-08-17 2012-01-04 中国东方电气集团有限公司 液流电池系统及其控制方法和装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7235323B2 (en) * 2000-05-08 2007-06-26 Honda Giken Kogyo Kabushiki Kaisha Fuel cell assembly and method for making the same
CN1295804C (zh) * 2003-04-29 2007-01-17 中国科学院上海微系统与信息技术研究所 一种燃料电池用的流场板结构及组装成的燃料电池
CN2828799Y (zh) * 2005-09-30 2006-10-18 郝莉莉 管道粉体传感器
TWI382583B (zh) * 2008-12-03 2013-01-11 Univ Yuan Ze Diagnosis system for internal state of fuel cell
CN202444021U (zh) * 2012-03-05 2012-09-19 中国东方电气集团有限公司 具有监测系统的液流电池堆

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030015437A1 (en) * 2001-07-09 2003-01-23 University Of Delaware Method for in-situ analysis and flow cell therefor
CN201549547U (zh) * 2009-12-17 2010-08-11 中国电力科学研究院 一种液流电池的自动测温装置
CN201892654U (zh) * 2010-09-15 2011-07-06 浙江省电力试验研究院 一种热力设备停运腐蚀在线检测装置
CN102306814A (zh) * 2011-08-17 2012-01-04 中国东方电气集团有限公司 液流电池系统及其控制方法和装置

Also Published As

Publication number Publication date
US9640816B2 (en) 2017-05-02
CN102593489B (zh) 2014-02-19
US20150104723A1 (en) 2015-04-16
CN102593489A (zh) 2012-07-18

Similar Documents

Publication Publication Date Title
WO2013131343A1 (zh) 具有监测系统的液流电池堆
TWI427308B (zh) 多功能固態氧化物燃料電池檢測裝置
TWI274435B (en) Voltage measurement device of fuel cell
CN103018678B (zh) 一种固体氧化物燃料电池的测试系统
CN211603482U (zh) 一种氢燃料电池堆的单体电压检测装置
CN113009401A (zh) 一种电芯化成分容测试设备的集成式校准工装
CN113793944A (zh) 燃料电池夹具及测试装置
CN112903790B (zh) 膜电极参数测量夹具
CN110165258A (zh) 能够监测电流分布的燃料电池堆及燃料电池堆系统
US20150380754A1 (en) Flow battery stack with sensing chip
US20240047772A1 (en) Electrochemical cells and electrochemical cell stacks with series connections, and methods of producing, operating, and monitoring the same
KR101283022B1 (ko) 내부온도 측정이 가능한 연료전지의 스택
CN218938457U (zh) 电堆巡检器、电堆巡检装置及燃料电池
CN112993292B (zh) 集流体和膜电极参数测量夹具
CN110412471A (zh) 一种锂离子电池组复合电化学极化模型的构建方法
CN202444021U (zh) 具有监测系统的液流电池堆
KR101405374B1 (ko) 연료 전지
CN211825820U (zh) 用于燃料电池工作状态下单电极电化学测试的测试装置
CN202444017U (zh) 组合式极板
Somasundaran et al. Feasibility assessment of differential voltage analysis to detect lithium plating in battery modules for electric vehicles
TWI507705B (zh) Battery structure and its power measurement method
KR102642886B1 (ko) 레독스 배터리의 동작 상태를 확인하는 방법 및 장치
KR101309895B1 (ko) 연료전지 스택
CN217404494U (zh) 一种用于双极板的电压巡检装置以及双极板
CN217955920U (zh) 一种固体氧化物燃料电池电堆气流分配的温度监测结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12870395

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14382642

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12870395

Country of ref document: EP

Kind code of ref document: A1