WO2013131236A1 - 供电电路及电气设备 - Google Patents

供电电路及电气设备 Download PDF

Info

Publication number
WO2013131236A1
WO2013131236A1 PCT/CN2012/071942 CN2012071942W WO2013131236A1 WO 2013131236 A1 WO2013131236 A1 WO 2013131236A1 CN 2012071942 W CN2012071942 W CN 2012071942W WO 2013131236 A1 WO2013131236 A1 WO 2013131236A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
voltage
control unit
output end
limit value
Prior art date
Application number
PCT/CN2012/071942
Other languages
English (en)
French (fr)
Inventor
杨军
Original Assignee
华为终端有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为终端有限公司 filed Critical 华为终端有限公司
Priority to CN201280000213.3A priority Critical patent/CN102687358B/zh
Priority to PCT/CN2012/071942 priority patent/WO2013131236A1/zh
Publication of WO2013131236A1 publication Critical patent/WO2013131236A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/30Means for acting in the event of power-supply failure or interruption, e.g. power-supply fluctuations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/28Supervision thereof, e.g. detecting power-supply failure by out of limits supervision
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/20Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess voltage
    • H02H3/207Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess voltage also responsive to under-voltage

Definitions

  • the present invention relates to circuit technology, and in particular, to a power supply circuit and an electrical device. Background technique
  • the invention provides a power supply circuit and an electrical device for solving the problem of data loss caused by a sudden power failure of the main board.
  • An embodiment of the present invention provides a power supply circuit, including: an adapter, a motherboard circuit, and a voltage detection circuit;
  • the input end of the adapter is connected to the output end of the AC power source, and the output end of the adapter is connected to the motherboard circuit, and the adapter is configured to process the input AC voltage and output DC power to supply power to the motherboard circuit;
  • An input end of the voltage detecting circuit is connected to the output end of the alternating current power source, a first output end of the voltage detecting circuit is connected to the main board circuit, and a second output end of the voltage detecting circuit is connected to the adapter.
  • the voltage detecting circuit is configured to sample the input AC voltage, calculate an AC voltage according to the AC voltage sampling value, provide the AC voltage to the motherboard circuit, and receive a shutdown command sent by the motherboard circuit, according to The closing command passes the second output Controlling the adapter to stop the adapter from supplying power to the mainboard circuit;
  • the mainboard circuit is configured to use the AC voltage provided by the voltage detecting circuit with a preset early warning upper limit value or a preset early warning lower limit value Comparing, when the AC voltage is greater than the warning upper limit value or less than the early warning lower limit value, saving current data, and outputting the current to the voltage detection circuit through a first output end of the voltage detection circuit Close the command.
  • An embodiment of the present invention provides an electrical device, including: a power supply circuit;
  • the power supply circuit includes: an adapter, a motherboard circuit, and a voltage detection circuit;
  • the input end of the adapter is connected to the output end of the AC power source, and the output end of the adapter is connected to the motherboard circuit, and the adapter is configured to process the input AC voltage and output DC power to supply power to the motherboard circuit;
  • An input end of the voltage detecting circuit is connected to the output end of the alternating current power source, a first output end of the voltage detecting circuit is connected to the main board circuit, and a second output end of the voltage detecting circuit is connected to the adapter.
  • the voltage detecting circuit is configured to sample the input AC voltage, calculate an AC voltage according to the AC voltage sampling value, provide the AC voltage to the motherboard circuit, and receive a shutdown command sent by the motherboard circuit, according to The closing command controls the adapter through the second output terminal to stop the adapter from supplying power to the motherboard circuit;
  • the mainboard circuit is configured to compare an AC voltage provided by the voltage detecting circuit with a preset early warning upper limit value or a preset early warning lower limit value, where the AC voltage is greater than the early warning upper limit value or less than When the lower limit value is alerted, the current data is saved, and the closing command is output to the voltage detecting circuit through the first output end of the voltage detecting circuit.
  • the voltage detecting circuit in the power supply circuit samples the AC voltage outputted from the output end of the AC power source, calculates the AC voltage according to the AC voltage sampling value, and then supplies the AC voltage to the power supply circuit.
  • the motherboard circuit compares the AC voltage with the upper warning limit value or the warning lower limit value, and judges whether a sudden power failure of the motherboard circuit occurs according to the comparison result, and determines that the motherboard circuit may suddenly appear.
  • the current data is saved in advance, and a shutdown command is sent to the voltage detection circuit, thereby turning off the output of the adapter through the voltage detection circuit to prevent damage to the motherboard circuit caused by sudden power failure.
  • FIG. 1 is a schematic structural diagram of a circuit for supplying power using a commercial power or an industrial power grid in the prior art
  • FIG. 2 is a schematic structural diagram of a power supply circuit according to an embodiment of the present invention
  • FIG. 3A is a schematic structural diagram of a power supply circuit according to another embodiment of the present invention.
  • FIG. 3B is a schematic diagram of voltage overvoltage fluctuation according to another embodiment of the present invention.
  • FIG. 3C is a schematic diagram of voltage undervoltage fluctuation according to another embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of an implementation of an AC sampling circuit according to an embodiment of the present invention
  • FIG. 5 is a schematic structural diagram of an implementation of a control unit according to an embodiment of the present invention
  • FIG. 6 is a schematic structural diagram of an implementation of a backup power supply circuit according to an embodiment of the present invention
  • FIG. 7 is a schematic structural diagram of an implementation of an optocoupler circuit according to an embodiment of the present invention.
  • FIG. 8 is a flowchart of a power supply method according to an embodiment of the present invention.
  • FIG. 9 is a flowchart of a power supply method according to another embodiment of the present invention.
  • the technical solutions in the embodiments of the present invention are clearly and completely described in the following with reference to the accompanying drawings in the embodiments of the present invention.
  • the embodiments are a part of the embodiments of the invention, and not all of the embodiments. All other embodiments obtained by those skilled in the art based on the embodiments of the present invention without creative efforts are within the scope of the present invention.
  • FIG. 2 is a schematic structural diagram of a power supply circuit according to an embodiment of the present invention.
  • the power supply circuit of this embodiment includes: an adapter 10, a main board circuit 20, and a voltage detecting circuit 30.
  • the input end of the adapter 10 is connected to the AC power output terminal, and the output end of the adapter 10 is connected to the motherboard circuit 20.
  • the adapter 10 is configured to process the input AC voltage and output DC power to supply power to the motherboard circuit 20.
  • the processing of the input AC voltage by the adapter 10 mainly refers to a process of rectifying the input AC voltage and converting the AC power into DC power.
  • the connection of the output of the adapter 10 to the motherboard circuit 20 specifically means that the output of the adapter 10 is coupled to a power management circuit on the motherboard circuit 20 for powering the motherboard circuit 20 under the control of the power management circuitry.
  • the input end of the voltage detecting circuit 30 is connected to the AC power output terminal, the first output end of the voltage detecting circuit 30 is connected to the main board circuit 20, and the second output end of the voltage detecting circuit 30 is connected to the adapter 10.
  • the voltage detecting circuit 30 is configured to sample the input AC voltage, calculate an AC voltage according to the AC voltage sampling value, provide the AC voltage to the motherboard circuit 20, and receive a shutdown command sent by the motherboard circuit 20, and pass the voltage detection according to the shutdown command.
  • the second output of circuit 30 controls adapter 10 to cause adapter 10 to stop supplying power to motherboard circuit 20.
  • the first output end of the voltage detecting circuit 30 mainly refers to a communication interface in which the voltage detecting circuit 30 and the main board circuit 20 communicate.
  • the first output end may be a serial interface, for example, a 2-wire universal asynchronous transceiver. (Universal Asynchronous Receiver/Transmitter, UART) interface or 3-wire Serial Peripheral Interface (SPI).
  • the second output of the voltage detection circuit 30 is actually a control interface for controlling the adapter 10 to turn its DC output on and off, for example, an input/output (I/O) interface.
  • the second output end of the voltage detecting circuit 30 can be specifically connected to the output enable end of the adapter 10, and the output of the adapter 10 can be realized by outputting the turn-off level or the enable level to the output enable end of the adapter 10. control.
  • the motherboard circuit 20 is configured to compare the AC voltage provided by the voltage detecting circuit 30 with a preset early warning upper limit value or a preset early warning lower limit value, and save the current when the AC voltage is greater than the early warning upper limit value or less than the early warning lower limit value.
  • the data is outputted to the voltage detecting circuit 30 through the first output terminal of the voltage detecting circuit 30 to control the voltage detecting circuit 30 to control the adapter 10 to turn off its DC output to stop supplying power to the motherboard circuit 20.
  • the current data mainly refers to all data that the CPU is processing, running, transceiving, and saving, such as personal information, transmitted documents, wirelessly received and transmitted data, and the like.
  • the early warning upper limit value and the early warning lower limit value are preset in the storage space of the mainboard circuit 20, for example, in the flash memory of the mainboard circuit 20.
  • the upper warning upper limit value and the lower warning upper limit value can be adaptively configured according to the output capacity of the actual AC power source and the voltage range supported by the motherboard circuit 20. For example, for an AC power supply with weak output capability, the upper warning upper limit value and the lower warning upper limit value can be set to 320VAC and 90VAC respectively. For AC power with strong output capability, the upper warning upper limit value and the early warning lower limit value can be set separately. It is 400VAC and 90VAC.
  • the main board circuit 20 first saves the current data to prevent data loss, and then controls the adapter 10 to turn off its DC output through the voltage detecting circuit 30 to stop the main board. Circuit 20 supplies power to prevent motherboard circuit 20 from being damaged.
  • the main board circuit 20 If the AC voltage sampling value is less than the warning lower limit value, it indicates that the AC power fluctuates, the AC voltage fluctuation trend is reduced, and the AC voltage has been reduced to the possibility that if the AC power continues to be used for the entire system including the main board circuit 20, The main board circuit 20 suddenly stops working due to insufficient voltage, resulting in data loss. Therefore, when it is judged that the AC voltage sampling value is smaller than the warning lower limit value, the main board circuit 20 first saves the current data to prevent data loss, and then controls the adapter 10 to turn off its DC output through the voltage detecting circuit 30 to prevent sudden The current surge caused by the power failure causes damage to the motherboard circuit 20.
  • mainboard circuit 20 in the embodiments of the present invention mainly refers to a central processing unit (CPU) on the mainboard circuit 20.
  • CPU central processing unit
  • the output of the AC power source described in the embodiments of the present invention mainly refers to the output end of the commercial power or industrial power grid when the power is supplied by the commercial power or the industrial power grid.
  • the AC power output is indicated by the text "AC input” in the drawings provided by the various embodiments of the present invention.
  • the power supply circuit of the embodiment adds a voltage detecting circuit, samples the alternating current outputted by the output end of the alternating current power source through the voltage detecting circuit, calculates the current alternating current voltage according to the sampled value of the alternating current voltage, and then supplies the alternating current voltage to the main board circuit, the main board circuit By comparing the AC voltage with the upper warning limit value or the early warning lower limit value, it is judged based on the comparison result whether or not a sudden power failure occurs, and when it is determined that a sudden power failure may occur, the current data is saved in time to prevent The data is lost, and the power supply detection circuit controls the adapter to turn off its output to stop supplying power to the motherboard circuit to prevent damage to the motherboard circuit caused by sudden power failure.
  • FIG. 3A is a schematic structural diagram of a power supply circuit according to another embodiment of the present invention. This embodiment is implemented based on the embodiment shown in Fig. 2. As shown in FIG. 3A, the power supply circuit of this embodiment also includes: an adapter 10, a main board circuit 20, and a voltage detecting circuit 30.
  • the mainboard circuit 20 has the following functions:
  • the mainboard circuit 20 can also be used for warning that the AC voltage is not greater than (ie, less than or equal to).
  • the limit value is not less than (ie, greater than or equal to) the lower warning limit value
  • the AC voltage is compared with the preset normal range upper limit value or the preset normal range lower limit value, and the AC voltage is greater than the normal range.
  • the upper limit value that is, when the AC voltage is greater than the upper limit of the normal range and not greater than the upper limit of the warning, or when the AC voltage is lower than the lower limit of the normal range, that is, the AC voltage is less than the lower limit of the normal range and not less than the lower limit of the warning.
  • the mainboard circuit 20 can report the unstable AC voltage information to the management center through the radio frequency (RF) circuit.
  • RF radio frequency
  • the mainboard circuit 20 may also be in the AC voltage greater than the upper limit of the normal range and not greater than the upper warning limit value, or the AC voltage is less than the lower limit of the normal range but not less than
  • a shutdown command is sent to the voltage detecting circuit 30 to control the voltage detecting circuit 30 to control the adapter 10 to turn off its DC output to stop supplying power to the motherboard circuit 20.
  • the upper limit value of the normal range and the lower limit of the normal range are preset in the storage space of the main board circuit 20, for example, in the flash of the main board circuit 20.
  • the upper limit of the normal range and the lower limit of the normal range can be adaptively configured according to the output capacity of the actual AC power source and the voltage range supported by the motherboard circuit 20.
  • the upper limit of the normal range and the lower limit of the normal range can be set to 260 VAC and 180 VAC, respectively.
  • the motherboard circuit 20 is After determining that the AC voltage is greater than the upper limit of the normal range, the current data is first saved to prevent data loss. Further, the mainboard circuit 20 reports the unstable current supply current to the management center, that is, reports the unstable AC voltage to the management center, so that the management center records the information. Subsequently, the manager or staff member or user can perform maintenance operations based on the recorded information.
  • the motherboard circuit 20 can also send a shutdown command to the voltage detection circuit 30 to cause the voltage detection circuit 30 to control the adapter 10 to stop supplying power to the motherboard circuit 20.
  • Figure 3B shows a schematic diagram of voltage overvoltage fluctuations.
  • the upper limit of the normal range is set to 260VAC and the upper limit of the warning is 400VAC.
  • the main board circuit 20 After confirming that the AC voltage is lower than the lower limit of the normal range, the current data is first saved to prevent data loss. Further, the motherboard circuit 20 reports the unstable power supply voltage to the management center, that is, reports the unstable AC voltage to the management center. In order for the management center to record this information. Subsequently, the manager or staff member or user can perform maintenance operations based on the recorded information.
  • the motherboard circuit 20 can also send a shutdown command to the voltage detection circuit 30 to cause the voltage detection circuit 30 to control the adapter 10 to stop supplying power to the motherboard circuit 20.
  • Figure 3C shows a schematic diagram of voltage undervoltage fluctuations.
  • the lower limit of the normal range is set to 180VAC and the lower limit of the warning is 90VAC.
  • the management center of this embodiment differs depending on the motherboard circuit 20.
  • the mainboard circuit 20 may be a home electrical circuit such as a mainboard circuit in a refrigerator, a washing machine, etc.
  • the management center may be a monitoring device set up at home for monitoring various household electrical devices in the home, such as a personal computer.
  • the mainboard circuit 20 can be a mainboard circuit in the server, and the management center can be a service center that monitors and manages each server.
  • the motherboard circuit 20 can be a motherboard circuit in the power gateway, and the management center can be a service center in the cell where the power gateway is located.
  • the motherboard circuit 20 in this embodiment has an AC voltage greater than the upper limit of the normal range. If the AC voltage is less than the lower limit of the normal range and not less than the lower limit of the warning, the time when the AC voltage is greater than the upper limit of the normal range or lower than the lower limit of the normal range is further determined. If the specified time is reached, if the specified time is reached, it indicates that the fluctuation is likely to cause the motherboard circuit 20 to be suddenly powered off. Therefore, the motherboard circuit 20 needs to save the current data and report the unstable AC voltage to the management center. As shown in FIG.
  • the mainboard circuit 20 performs an operation of saving the current data and reporting the AC voltage unstable information to the management center.
  • the mainboard circuit 20 performs an operation of saving the current data and reporting the AC voltage unstable information to the management center.
  • the specified time when the AC voltage is greater than the upper limit of the normal range may be the same as the specified time when the AC voltage is less than the lower limit of the normal range, or may be different, and the difference is recorded as the first designated time and the second specified time respectively.
  • the first designated time and the second specified time may be pre-configured in the motherboard circuit 20, for example, in the flash of the motherboard circuit 20.
  • the first designated time and the second designated time may be 30 seconds, 1 minute, etc., but are not limited thereto.
  • the mainboard circuit 20 can be specifically used after the AC voltage is greater than the upper limit of the normal range, and continues to be greater than the upper limit of the normal range for the first specified time, or the AC voltage is less than the lower limit of the normal range, and continues to be lower than the lower limit of the normal range.
  • the operation of saving the current data and reporting the information with unstable AC voltage to the management center is performed to reduce the waste of resources caused by the misjudgment.
  • the motherboard circuit 20 can save the current data to the Flash of the motherboard circuit 20, but is not limited thereto.
  • the voltage detecting circuit 30 of the present embodiment includes: an AC sampling circuit 301, an AC/DC converting circuit 302, and a control unit 303.
  • the control unit 303 may be a Micro Control Unit (MCU), but is not limited thereto.
  • the input of the AC sampling circuit 301 is connected to the AC power output, and the output of the AC sampling circuit 301 is connected to the input of the control unit 303 (V+ and V- as shown in FIG. 3A).
  • the AC sampling circuit 301 is configured to sample the input AC voltage and provide the AC voltage sampling value to the control unit 303.
  • the input end of the AC sampling circuit 301 is the input end of the voltage detecting circuit 30.
  • the input end of the AC/DC conversion circuit 302 is connected to the output end of the AC power source, and the AC/DC conversion circuit
  • the output of 302 is connected to control unit 303, specifically to the power input of control unit 303 (VCC as shown in Figure 3A).
  • the AC/DC conversion circuit 302 is configured to convert the input AC voltage into DC power and output it to the control unit 303 to supply power to the control unit 303.
  • the first output of the control unit 303 ( ⁇ and Rx as shown in FIG. 3A) is the first output of the voltage detecting circuit 30, and the second output of the control unit 303 (I/O as shown in FIG. 3A) That is, the second output terminal of the voltage detecting circuit 30.
  • the first output of the control unit 303 is coupled to the motherboard circuit 20, and the second output of the control unit 303 is coupled to the adapter 10.
  • the control unit 303 is configured to calculate an AC voltage according to the AC voltage sample value, and then provide the AC voltage to the motherboard circuit 20 through the first output end of the control unit 303, and receive the shutdown command sent by the motherboard circuit 20, and control according to the shutdown command.
  • the second output of unit 303 controls adapter 10 to cause adapter 10 to stop supplying power to motherboard circuit 20.
  • control unit 303 can output the shutdown level to the output enable end of the adapter 10 through one of its I/O interfaces, and the control adapter 10 cannot output.
  • control unit 303 of the embodiment may further re-turn on the output of the enable level control adapter 10 by outputting the enable level to the enable output end of the adapter 10 after the AC voltage outputted from the output end of the AC power source returns to normal. Circuit 20 is powered. At this time, the motherboard circuit 20 can also resume normal operation.
  • the control unit 303 can directly supply the AC voltage calculated according to the AC voltage sampling value provided by the AC acquisition circuit 301 to the mainboard circuit 20, so that the control unit 303 does not need to perform additional processing on the AC voltage, and the processing load thereof Lighter.
  • control unit 303 may further compare the AC voltage calculated according to the AC voltage sampling value provided by the AC sampling circuit 301 with a preset normal range upper limit value or a preset normal range lower limit value, where the AC voltage is greater than
  • the control unit 303 only supplies the AC voltage that fluctuates outside the normal range to the mainboard circuit 20.
  • the control unit 303 can reduce the amount of data processed by the mainboard circuit 20 by filtering the AC voltage, thereby facilitating the processing of the mainboard circuit 20. burden. For AC voltages within the normal range, control unit 303 can discard them and not provide them to motherboard circuit 20.
  • control unit 303 can also send the alarm information to the mainboard circuit 20 when the AC voltage is greater than the upper limit of the normal range or less than the lower limit of the normal range.
  • the control unit 303 can send the alarm information to the mainboard circuit 20 to prompt the mainboard circuit 20 to further process the AC voltage, which is beneficial to improving the timeliness of processing the AC voltage by the mainboard circuit 20, and further reducing the probability of data loss.
  • the normal range upper limit value and the normal range lower limit value may also be pre-configured in the storage space of the control unit 303, for example, in the Flash of the control unit 303.
  • the normal range upper limit value and the normal range lower limit value pre-configured on the control unit 303 are the same as the pre-configured normal range upper limit value and the normal range lower limit value on the main board circuit 20, and are not described here.
  • the mainboard circuit 20 can also be When the AC voltage is within the normal range, that is, when the AC voltage is not greater than the upper limit of the normal range and not less than the lower limit of the normal range, the first output end of the control unit 303 sends a sample value acquisition command to the control unit 303 to obtain an AC. Voltage sample value.
  • the control unit 303 can also receive the sample value acquisition instruction sent by the motherboard circuit 20 through its first output terminal, and acquire an instruction according to the sample value, and send an AC voltage to the motherboard circuit 20 through the first output end of the control unit 303.
  • the adapter 10 of the present embodiment mainly includes two parts, a primary 101 and a secondary 102.
  • the primary 101 is primarily connected to the AC power output for receiving the input AC voltage.
  • Secondary 102 is coupled to primary 101.
  • the adapter 10 can be implemented by using a common switching power supply, and the implementation cost is low.
  • control unit 303 Since the control unit 303 is on the primary 101 side and the main circuit board 20 is on the secondary 102 side, noise interference between the two is severe.
  • the first output end of the control unit 303 can be connected to the mainboard circuit 20 through the optocoupler circuit to realize signal transmission and noise isolation between the control unit 303 and the main board circuit 20, as shown in FIG. 3A.
  • the power supply circuit of this embodiment may further include: an overvoltage protection circuit 40.
  • the input of the overvoltage protection circuit 40 is connected to the output of the AC power supply, and the output of the overvoltage protection circuit 40 is connected to the input of the adapter 10 and the input of the AC sampling circuit 301, respectively. That is, the AC power output terminals are respectively connected to the input terminals of the primary adapter 101 and the AC sampling circuit 301 of the adapter 10 via the overvoltage protection circuit 40.
  • the overvoltage protection circuit 40 Based on the presence of the overvoltage protection circuit 40, when the AC voltage is too high, for example, much larger than the upper warning limit value, the overvoltage protection circuit 40 blocks the high voltage to protect the main board circuit 20 and the voltage detection circuit 30. At this time, both the main board circuit 20 and the voltage detecting circuit 30 are stopped. In addition, when the AC power output terminal suddenly loses power, the voltage detecting circuit 30 and the main board circuit 20 also stop working. At this point, save the current data. In order to prevent data loss from occurring in such an extreme situation, the power supply circuit of this embodiment further includes a standby power supply circuit 50 (shown in broken lines in Fig. 3A). The backup power supply circuit 50 is mainly used to supply power to the motherboard circuit 20 after the overvoltage protection circuit 40 blocks the output of the AC power supply output or when the AC power supply suddenly loses power, so that the motherboard circuit 20 can save the current data.
  • the standby power circuit 50 does not normally operate, but can be charged through the output of the adapter 10. Based on this, the input of the backup power circuit 50 is coupled to the adapter 10 for charging, as shown in Figure 3A. It is explained here that the backup power supply circuit 50 of the present embodiment may also be a non-charging power source.
  • main board circuit 20 in each embodiment of the present invention can perform information transmission in addition to the current data.
  • the power supply circuit of the embodiment adds a voltage detecting circuit, and the voltage detecting circuit samples the alternating current outputted from the output end of the alternating current power source, calculates the alternating current voltage by sampling the alternating voltage, and then supplies the alternating current voltage to the mainboard circuit, and the main board circuit passes AC voltage and warning upper limit or pre- The lower limit of the police is compared. According to the comparison result, it is judged whether a sudden power failure occurs, and when it is judged that a sudden power failure may occur, the current data is saved in time to prevent data loss, and the adapter is controlled by the power supply detecting circuit. Turn off the output to prevent sudden power failure from damaging the motherboard circuitry.
  • the AC sampling circuit 301 can be implemented in various ways, for example, by using an existing integrated chip, or by using a common circuit device (such as a resistor, a capacitor, etc.).
  • An embodiment of the present invention provides an implementation structure of an AC sampling circuit, as shown in FIG.
  • the AC sampling circuit provided in this embodiment is composed of a resistor R1 - a resistor R8 and a capacitor C1 - a capacitor C3.
  • the resistor R1 - the resistor R8 constitutes a voltage dividing circuit.
  • Capacitor C3 leads to the output of AC sampling circuit 301, denoted as V+ and V-.
  • the output terminals V+ and V- are used to transmit the AC voltage sample value to the control unit 303 for the control unit 303 to process the AC voltage sample value to obtain an AC voltage.
  • the control unit 303 can calculate the AC voltage by the voltage division ratio.
  • the circuit structure is simple to implement and low in cost.
  • control unit 303 can be implemented in a variety of ways.
  • the control unit 303 can be directly implemented by using various integrated chips.
  • it can be implemented by using a chip of the MSP430x series of TI, a chip of the BL6523x series of BL, etc., but is not limited thereto.
  • the embodiment of the present invention provides a structure of a control unit 303 implemented by an integrated chip, as shown in FIG.
  • V+ and V- are the input pins responsible for receiving the AC voltage sample value; RST is the reset pin; AVCC is the analog power supply pin; DVCC is the digital power supply pin; AVSS is the analog ground pin; DVSS is the digital ground lead RXD and TXD are serial interfaces, that is, the first output; ENABLE is an I/O interface, that is, the second output; XO-OUT and XO-IN are the clock pins of the chip, in which the crystal oscillator XI, the capacitor C1 and capacitor C2 form a clock circuit that provides the master clock to the chip.
  • the output terminals V+ and V- in Figure 4 are connected to the input pins V+ and V- in Figure 5, respectively.
  • the AC/DC conversion circuit 302 can be implemented by a plurality of implementations, for example, by a power chip, or by a separate device, which is not limited herein.
  • the backup power supply circuit 50 in the power supply circuit can be implemented by a capacitor scheme or a battery scheme. Moreover, due to the presence of the voltage detecting circuit 30, the frequency of use of the backup power source circuit 50 is not very high, and is only used for the motherboard circuit 20 to save data usage, so the energy storage capability of the capacitor or the battery is not high.
  • a normal lithium battery can be used, but not Limited to this.
  • This embodiment provides a structure of a standby power supply circuit 50 implemented using a capacitor, as shown in FIG.
  • the standby power supply circuit 50 of this embodiment is mainly composed of a diode D1-D4, a current limiting resistor R, and a super capacitor group C.
  • the super capacitor group can be a Farad capacitor group.
  • the capacity of the supercapacitor can be appropriately selected according to the power consumption of the motherboard circuit 20, for example, two capacitors can be connected in series.
  • the input terminal can be connected to the output of the adapter 10, and the output terminal is connected to the power management circuit of the motherboard circuit 20.
  • the output of the adapter 10 supplies power to the motherboard circuit 20 on the one hand, and the super capacitor group through the current limiting resistor on the other hand; when the power supply circuit needs to turn off the output, the super capacitor group continues to the motherboard circuit. 20 power supply, and will not be poured back into adapter 10.
  • the standby power supply circuit provided in this embodiment has a simple implementation structure, is easy to implement, has low cost, and has a long service life.
  • the optocoupler circuit used by the control unit 303 in connection with the main board circuit 20 can be implemented in various ways.
  • Embodiments of the present invention provide a specific implementation structure of an optocoupler circuit, as shown in FIG. 7.
  • the optocoupler circuit of this embodiment mainly includes: an optocoupler device D1 and an optocoupler device D2, and a peripheral circuit structure of the optocoupler device D1 and the optocoupler device D2.
  • the specific implementation is shown in FIG. 7 and will not be described in detail herein.
  • the TXD and RXD shown in FIG. 7 are respectively connected to the serial interfaces TXD and RXD in FIG. 5, and the CPU-RX and CPU-TX in FIG. 7 are respectively connected to the serial interface on the motherboard circuit 20.
  • VCC in Fig. 7 is the power source of the control unit 303, and VddIO is the power source of the 20-side of the motherboard circuit.
  • the embodiment of the present invention can easily realize intelligent management of power supply, timely data storage and information transmission, and is applicable to terminal products or devices directly powered by commercial power or industrial power grid, such as home terminals, power equipment, etc. Power protection and data protection. When the voltage of the mains or industrial power grid is abnormal, it can be early warning and make corresponding actions. It is not necessary to wait until the danger comes.
  • the power supply circuit provided by the embodiment of the present invention only needs to add an AC sampling circuit and a control unit capable of processing AC voltage sampling, a low power AC/DC conversion circuit to supply power to the control unit, several common optocoupler circuits, and one standby power supply. Circuit, low cost, but high reliability, using industrial grade devices, the life of the whole machine can reach more than 10 years, cost-effective; 4 small, the power consumption is not much increased.
  • FIG. 8 is a flowchart of a power supply method according to an embodiment of the present invention.
  • the power supply method of this embodiment can be implemented by using the power supply circuit shown in Fig. 1 or Fig. 2, that is, the working principle of the power supply circuit.
  • the power supply method of this embodiment includes:
  • Step 801 The voltage detecting circuit samples the AC voltage input by the input end of the voltage detecting circuit, calculates an AC voltage according to the AC voltage sampling value, and then supplies the AC voltage to the motherboard circuit.
  • Step 802 The motherboard circuit compares the AC voltage with a preset early warning upper limit value or a preset early warning lower limit value, and saves the current data when the AC voltage is greater than the early warning upper limit value or less than the early warning lower limit value, and passes the voltage detection.
  • a first output of the circuit sends a shutdown command to the voltage detection circuit.
  • Step 803 The voltage detecting circuit receives the shutdown command, and controls the adapter through the second output end of the voltage detecting circuit to stop the adapter from supplying power to the motherboard circuit.
  • the adapter converts the AC power outputted from the AC power output to DC power and outputs it to the mainboard circuit to supply power to the motherboard circuit.
  • the input of the voltage detection circuit is connected to the output of the AC power source for supplying AC power to the voltage detection circuit.
  • the input AC voltage is sampled by the voltage detecting circuit, the AC voltage is calculated according to the AC voltage sampling value, and then the AC voltage is supplied to the main board circuit.
  • the motherboard circuit compares the AC voltage provided by the voltage detecting circuit with a preset early warning upper limit value or an early warning lower limit value, and judges according to the comparison result whether a sudden power failure of the main board circuit may occur, and judges that there may be
  • the motherboard circuit is suddenly powered off, save the current data in time, and send a shutdown command to the voltage detection circuit, so that the voltage detection circuit controls the adapter to stop the adapter from supplying power to the motherboard circuit, thereby preventing the motherboard circuit from being caused by a sudden power failure. damage.
  • the main circuit determines that the AC voltage is greater than the upper warning limit value or less than the early warning lower limit value, it is determined that a sudden power failure may occur.
  • the power supply method of the embodiment is implemented based on the power supply circuit provided by the embodiment of the present invention.
  • the voltage detection circuit samples the alternating current outputted by the output end of the alternating current power source, calculates the alternating current voltage according to the sampled value of the alternating current voltage, and then supplies the alternating current voltage to the mainboard circuit.
  • the main board circuit compares the AC voltage with the upper warning limit value or the warning lower limit value, and judges whether a sudden power failure occurs due to the comparison result, and saves the current situation when it is determined that a sudden power failure may occur. Data to prevent data loss, and the power supply detection circuit controls the adapter to stop supplying power to the motherboard circuit, in case Sudden power failure caused damage to the motherboard circuit.
  • FIG. 9 is a flowchart of a power supply method according to another embodiment of the present invention. This embodiment can also be implemented based on the power supply circuit shown in Fig. 1 or Fig. 2. As shown in FIG. 9, the method in this embodiment includes:
  • Step 901 The voltage detecting circuit samples the AC voltage input from the input end of the voltage detecting circuit, calculates an AC voltage according to the AC voltage sampling value, and then supplies the AC voltage to the main board circuit.
  • Step 902 The mainboard circuit compares the AC voltage with a preset early warning upper limit value or a preset early warning lower limit value to determine whether the AC voltage is greater than the early warning upper limit value or less than the early warning lower limit value. If the determination result is yes, the step is performed. 903; If the judgment result is no, step 905 is performed.
  • the judgment result is yes, it indicates that the AC voltage is greater than the upper warning limit value or less than the early warning lower limit value; if the judgment result is no, the AC voltage is not greater than the upper warning limit value and not less than the early warning lower limit value.
  • Step 903 The mainboard circuit saves the current data, and sends a shutdown command to the voltage detection circuit through the first output end of the voltage detection circuit, so that the voltage detection circuit controls the adapter to stop supplying power to the motherboard circuit, and step 904 is performed.
  • Step 904 The voltage detecting circuit receives the shutdown command, and controls the adapter through the second output end of the voltage detecting circuit, so that the adapter stops supplying power to the motherboard circuit, and step 907 is performed.
  • Step 905 The motherboard circuit compares the AC voltage with a preset normal range upper limit value or a preset normal range lower limit value to determine whether the AC voltage is greater than a preset normal range upper limit value or d, and a preset normal range lower limit. If the result of the determination is yes, go to step 906; if the result of the judgment is no, go to step 907.
  • the judgment result is yes, it indicates that the AC voltage is greater than the preset normal range upper limit value or less than the preset normal range lower limit value, outside the normal range; if the judgment result is no, the AC voltage is not greater than the preset normal range.
  • the limit is not less than the preset normal range lower limit and is within the normal range.
  • Step 906 The mainboard circuit saves the current data, and reports the unstable AC voltage to the management center, and performs step 907.
  • the mainboard circuit has an AC voltage greater than a normal range upper limit value, and continues to be greater than a normal range upper limit value after a first specified time, or an AC voltage is less than a normal range lower limit value, and continues to be less than a normal range lower limit value.
  • the operation of saving the current data and reporting the information with unstable AC voltage to the management center is performed, which is beneficial to improve the accuracy of determining whether a sudden power failure occurs. Step 907, ending the operation.
  • the voltage detecting circuit may include an AC sampling circuit, an AC/DC converting circuit, and a control unit.
  • the step 901 may specifically be: the AC sampling circuit in the voltage detecting circuit samples the AC voltage input by the input end of the AC sampling circuit, and supplies the AC voltage sampling value to the control unit in the voltage detecting circuit; The AC voltage is calculated based on the AC voltage sample value, and then the AC is supplied to the motherboard circuit through the first output of the control unit.
  • control unit can directly supply the AC voltage calculated according to the AC sampling value provided by the AC sampling circuit to the motherboard circuit through the first output end of the control unit.
  • control unit may further compare the AC voltage with a preset normal range upper limit value or a preset normal range lower limit value, and control when the AC voltage is greater than a normal range upper limit value or less than a normal range lower limit value.
  • the first output of the unit provides an alternating voltage to the mainboard circuitry.
  • control unit may further send the alarm information to the mainboard circuit when the AC voltage is greater than the upper limit of the normal range or less than the lower limit of the normal range.
  • the motherboard circuit sends a shutdown command to the voltage detection circuit through the first output end of the voltage detection circuit.
  • the motherboard circuit may send a shutdown command to the control unit through the first output end of the control unit.
  • Step 904 may specifically be: the control unit receives the shutdown command and controls the adapter through the second output of the control unit to stop the adapter from supplying power to the motherboard circuit.
  • the main board circuit can also pass through the first output end of the control unit.
  • a sample value acquisition instruction is sent to the control unit.
  • the control unit acquires an instruction according to the sampling value, and sends an alternating voltage to the mainboard circuit through the first output end of the control unit.
  • the power supply method of the embodiment is implemented based on the power supply circuit provided by the embodiment of the present invention.
  • the voltage detection circuit samples the alternating current outputted by the output end of the alternating current power source, calculates the alternating current voltage according to the sampled value of the alternating current voltage, and then supplies the alternating current voltage to the mainboard circuit.
  • the main board circuit compares the AC voltage sampling value with the upper warning upper limit value or the early warning lower limit value, and judges whether a sudden power failure occurs due to the comparison result, and when it is determined that a sudden power failure may occur, timely Save the current data to prevent data loss, and control the adapter to turn off the output through the power detection circuit to prevent damage to the motherboard circuit caused by sudden power failure.
  • An electrical device includes: a power supply circuit.
  • the power supply circuit includes: an adapter, a motherboard circuit, and a voltage detection circuit.
  • the input end of the adapter is connected to the output of the AC power source, and the output end of the adapter is connected to the motherboard circuit.
  • An adapter that processes the input AC voltage and outputs DC power to power the motherboard circuitry.
  • the input end of the voltage detecting circuit is connected to the output end of the alternating current power source, the first output end of the voltage detecting circuit is connected to the main board circuit, and the second output end of the voltage detecting circuit is connected to the adapter.
  • the voltage detecting circuit is configured to sample the input AC voltage, calculate an AC voltage according to the AC voltage sampling value, provide the AC voltage to the motherboard circuit, and receive a shutdown command sent by the motherboard circuit, and control the second output terminal according to the shutdown command.
  • Adapter to stop the adapter from supplying power to the motherboard circuitry.
  • the motherboard circuit is configured to compare the AC voltage provided by the voltage detecting circuit with a preset early warning upper limit value or a preset early warning lower limit value, and save the current data when the AC voltage is greater than the early warning upper limit value or less than the early warning lower limit value. And outputting a shutdown command to the voltage detecting circuit through the first output end of the voltage detecting circuit.
  • the electrical equipment of this embodiment may be various terminal products or equipment that are directly powered by a commercial or industrial power grid, such as a home terminal, a power equipment, and the like.
  • a home terminal such as a washing machine, a refrigerator, etc.
  • the electrical device as the power device may be a power gateway or the like.
  • the power supply circuit adds a voltage detecting circuit, and the voltage detecting circuit samples the alternating current outputted from the output end of the alternating current power source, calculates an alternating current voltage according to the sampled value of the alternating current voltage, and then supplies the alternating current voltage to the alternating current voltage.
  • the main circuit circuit compares the AC voltage with the upper warning limit value or the early warning lower limit value, and judges whether a sudden power failure occurs due to the comparison result, and when it is determined that a sudden power failure may occur, timely
  • the current data is saved to prevent data loss, and the power supply detection circuit controls the adapter to turn off its output to stop supplying power to the motherboard circuit to prevent damage to the motherboard circuit caused by sudden power failure.
  • the mainboard circuit in the power supply circuit in the electrical device may be used to set the AC voltage and the preset normal range upper limit value or the preset normal when the AC voltage is not greater than the warning upper limit value and not less than the warning lower limit value.
  • the lower limit of the range is compared.
  • the motherboard circuit finds that the AC voltage fluctuates outside the normal range, it saves the current data and reports the situation in time, which can further reduce the probability of data loss or motherboard circuit damage.
  • the mainboard circuit in the power supply circuit in the electrical device may be specifically used after the AC voltage is greater than the upper limit of the normal range, and continues to be greater than the upper limit of the normal range for the first specified time, or the AC voltage is less than the lower limit of the normal range. The value, and continues to be less than the lower limit of the normal range.
  • the current data is saved, and the information of unstable AC voltage is reported to the management center.
  • Main board circuit This method can improve the accuracy of judging whether the AC voltage is outside the normal range and whether the main circuit circuit is suddenly powered off when the fluctuation occurs within the warning range, so as to reduce the waste of resources caused by misjudgment. Circuit, AC/DC converter circuit and control unit.
  • the input end of the AC sampling circuit is connected to the output end of the AC power supply, the output end of the AC sampling circuit is connected to the input end of the control unit, and the input end of the AC sampling circuit is the input end of the voltage detecting circuit.
  • An AC sampling circuit that samples the input AC voltage and provides an AC voltage sample to the control unit.
  • the input end of the AC/DC conversion circuit is connected to the AC power output end, and the output end of the AC/DC conversion circuit is connected to the control unit.
  • the AC/DC conversion circuit is configured to convert the input AC voltage into DC and output it to the control unit to supply power to the control unit.
  • the first output end of the control unit is connected to the mainboard circuit, and the second output end of the control unit is connected to the adapter.
  • the first output end of the control unit is the first output end of the voltage detecting circuit, and the second output end of the control unit is voltage detecting.
  • the second output of the circuit. a control unit, configured to calculate an AC voltage according to the AC voltage sample value, and then provide an AC voltage to the motherboard circuit through the first output end of the control unit, and receive a shutdown command outputted by the motherboard circuit, and then pass the control unit according to the shutdown command
  • the second output controls the adapter so that the adapter stops supplying power to the motherboard circuitry.
  • first output end of the control unit can be connected to the mainboard circuit through an optocoupler circuit. Further, the first output of the control unit can be a serial interface. The second output of the control unit can be an I/O interface.
  • control unit may be specifically configured to compare the AC voltage with a preset normal range upper limit value or a preset normal range lower limit value, and when the AC voltage is greater than a normal range upper limit value or less than a normal range lower limit value, The first output of the unit provides an alternating voltage to the mainboard circuitry. Since the control unit only supplies the AC voltage that fluctuates outside the normal range to the mainboard circuit, the control unit passes By filtering the AC voltage, the amount of data processed by the motherboard circuit can be reduced, which is beneficial to reducing the processing load of the motherboard circuit. For AC voltages within the normal range, the control unit can discard it and not provide it to the motherboard circuit.
  • control unit may be further configured to send the alarm information to the mainboard circuit when the AC voltage is greater than a normal range upper limit value or less than a normal range lower limit value.
  • the control unit can send the alarm information to the motherboard circuit to prompt the motherboard circuit to further process the AC voltage, which is beneficial to improving the timeliness of processing the AC voltage by the motherboard circuit, and further reducing the probability of data loss.
  • the mainboard circuit can also be configured to send a sample value acquisition instruction to the control unit through the first output end of the control unit. Especially when the AC voltage is not greater than the upper limit of the normal range and not less than the lower limit of the normal range, the main board circuit can send a sampling value acquisition instruction to the control unit through the first output end of the control unit.
  • the control unit is further configured to: according to the sampled value acquisition instruction, send an alternating voltage to the mainboard circuit through the first output end of the control unit.
  • the power supply circuit in the above electrical device may further include: an overvoltage protection circuit.
  • the input of the overvoltage protection circuit is connected to the output of the AC power supply, and the output of the overvoltage protection circuit is respectively connected to the input of the adapter and the input of the AC sampling circuit.
  • the power supply circuit in the above electrical device may further include: a backup power supply circuit.
  • the standby power circuit is configured to supply power to the main board circuit after the overvoltage protection circuit blocks the output of the AC power output, so that the main circuit can save the current data.
  • the standby power circuit of the embodiment is a charging power source, and the input end of the standby power circuit is connected to the output end of the adapter for charging by the adapter.
  • the power supply circuit adds a voltage detecting circuit, and the voltage detecting circuit samples the alternating current outputted from the output end of the alternating current power source, calculates an alternating current voltage according to the sampled value of the alternating current voltage, and then supplies the alternating current voltage to the alternating current voltage.
  • the main circuit circuit compares the AC voltage with the upper warning limit value or the early warning lower limit value, and judges whether a sudden power failure occurs due to the comparison result, and when it is determined that a sudden power failure may occur, timely
  • the current data is saved to prevent data loss, and the power supply detection circuit controls the adapter to turn off its output to stop supplying power to the motherboard circuit to prevent damage to the motherboard circuit caused by sudden power failure.
  • the foregoing program may be stored in a computer readable storage medium, and when executed, the program includes the steps of the foregoing method embodiment; and the foregoing storage medium includes: ROM, RAM , a variety of media that can store program code, such as a disk or an optical disk.

Abstract

提供一种供电电路及电气设备。该供电电路包括适配器(10)、主板电路(20)和电压检测电路(30),适配器用以给主板电路供电,电压检测电路用于向主板电路提供交流电压并接收主板电路的关闭指令,根据关闭指令控制适配器停止向主板电路供电,主板电路用于在交流电压采样值大于预警上限值或小于预警下限值时,保存当前数据,并向电压检测电路输出关闭指令。该供电电路解决了主板因突然断电造成数据丢失的问题。

Description

供电电路及电气设备
技术领域 本发明涉及电路技术, 尤其涉及一种供电电路及电气设备。 背景技术
许多电子产品会直接用市电或工业电网供电, 并通过适配器为电子产品 的主板供电。 由于电网的电压经常不稳定, 所以经常会出现因电压波动造成 主板损坏或数据丟失的情况。 一般的电子产品会设计过压保护电路, 如图 1 所示。 当 AC输入电压超过危险门槛, 例如大于交流(AC ) 380V (可记为 380AC )后, 过压保护电路会阻断高压, 此时主板就会因断电而立即停止工 作。 而对于电压过低, 例如小于 90VAC, 或停电的情况, 主板也会因断电而 停止工作。 电而来不及保护数据, 从而导致数据丟失。 发明内容
本发明提供一种供电电路及电气设备, 用以解决主板因突然断电造成数 据丟失的问题。
本发明实施例提供一种供电电路, 包括: 适配器、 主板电路和电压检测 电路;
所述适配器的输入端与交流电源输出端连接, 所述适配器的输出端与所 述主板电路连接, 所述适配器, 用于对输入的交流电压进行处理并输出直流 电以给所述主板电路供电;
所述电压检测电路的输入端与所述交流电源输出端连接, 所述电压检测 电路的第一输出端与所述主板电路连接, 所述电压检测电路的第二输出端与 所述适配器连接, 所述电压检测电路, 用于对输入的交流电压进行采样, 根 据交流电压采样值计算出交流电压, 将所述交流电压提供给所述主板电路, 并接收所述主板电路发送的关闭指令, 根据所述关闭指令通过所述第二输出 端控制所述适配器, 以使所述适配器停止向所述主板电路供电; 所述主板电路, 用于将所述电压检测电路提供的交流电压与预设预警上 限值或预设预警下限值进行比较, 在所述交流电压大于所述预警上限值或小 于所述预警下限值时, 保存当前数据, 并通过所述电压检测电路的第一输出 端向所述电压检测电路输出所述关闭指令。
本发明实施例提供一种电气设备, 包括: 供电电路;
所述供电电路包括: 适配器、 主板电路和电压检测电路;
所述适配器的输入端与交流电源输出端连接, 所述适配器的输出端 与所述主板电路连接, 所述适配器, 用于对输入的交流电压进行处理并输 出直流电以给所述主板电路供电;
所述电压检测电路的输入端与所述交流电源输出端连接, 所述电压 检测电路的第一输出端与所述主板电路连接, 所述电压检测电路的第二输出 端与所述适配器连接, 所述电压检测电路, 用于对输入的交流电压进行采样, 根据交流电压采样值计算出交流电压,将所述交流电压提供给所述主板电路, 并接收所述主板电路发送的关闭指令, 根据所述关闭指令通过所述第二输出 端控制所述适配器, 以使所述适配器停止向所述主板电路供电;
所述主板电路, 用于将所述电压检测电路提供的交流电压与预设预 警上限值或预设预警下限值进行比较, 在所述交流电压大于所述预警上限值 或小于所述预警下限值时, 保存当前数据, 并通过所述电压检测电路的第一 输出端向所述电压检测电路输出所述关闭指令。
本发明实施例提供的供电电路及电气设备, 供电电路中的电压检测电路 通过对交流电源输出端输出的交流电压进行采样, 根据交流电压采样值计算 出交流电压, 然后将交流电压提供给供电电路中的主板电路, 主板电路将交 流电压与预警上限值或预警下限值进行比较, 根据比较结果判断是否会发生 使主板电路突然断电的情况, 并在判断出可能会出现使主板电路突然断电的 情况时, 预先保存当前数据, 并向电压检测电路发送关闭指令, 从而通过电 压检测电路关闭适配器的输出, 防止突然断电对主板电路造成损伤。 附图说明 为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实 施例或现有技术描述中所需要使用的附图作一简单地介绍, 显而易见地, 下 面描述中的附图是本发明的一些实施例, 对于本领域普通技术人员来讲, 在 不付出创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。
图 1为现有技术中使用市电或工业电网进行供电的电路结构示意图; 图 2为本发明一实施例提供的供电电路的结构示意图;
图 3A为本发明另一实施例提供的供电电路的结构示意图;
图 3B为本发明另一实施例提供的电压过压波动示意图;
图 3C为本发明另一实施例提供电压欠压波动示意图;
图 4为本发明一实施例提供的交流采样电路的实现结构示意图; 图 5为本发明一实施例提供的控制单元的实现结构示意图;
图 6为本发明一实施例提供的备用电源电路的实现结构示意图; 图 7为本发明一实施例提供的光耦电路的实现结构示意图;
图 8为本发明一实施例提供的供电方法的流程图;
图 9为本发明另一实施例提供的供电方法的流程图。 具体实施方式 为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本发 明实施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整地描述, 显然, 所描述的实施例是本发明一部分实施例, 而不是全部的实施例。 基于 本发明中的实施例, 本领域普通技术人员在没有作出创造性劳动前提下所获 得的所有其他实施例, 都属于本发明保护的范围。
图 2为本发明一实施例提供的供电电路的结构示意图。 如图 2所示, 本 实施例的供电电路包括: 适配器 10、 主板电路 20和电压检测电路 30。
其中, 适配器 10的输入端与交流电源输出端连接, 适配器 10的输出端 与主板电路 20连接。 适配器 10, 用于对输入的交流电压进行处理并输出直 流电以给主板电路 20供电。
其中,适配器 10对输入的交流电压进行处理主要是指对输入的交流电压 进行整流, 将交流电变为直流电的过程。 适配器 10的输出端与主板电路 20 连接具体来说是指适配器 10的输出端与主板电路 20上的电源管理电路连接, 用于在电源管理电路的控制下向主板电路 20供电。 电压检测电路 30的输入端与交流电源输出端连接, 电压检测电路 30的 第一输出端与主板电路 20连接, 电压检测电路 30的第二输出端与适配器 10 连接。 电压检测电路 30, 用于对输入的交流电压进行采样, 根据交流电压采 样值计算出交流电压, 将交流电压提供给主板电路 20, 并接收主板电路 20 发送的关闭指令,根据关闭指令通过电压检测电路 30的第二输出端控制适配 器 10, 以使适配器 10停止向主板电路 20供电。 其中, 电压检测电路 30的 第一输出端主要是指电压检测电路 30和主板电路 20进行通信的通信接口, 例如, 第一输出端可以是串行接口, 例如可以是 2 线的通用异步收发器 ( Universal Asynchronous Receiver/Transmitter , UART )接口或 3线的串行夕卜 设接口 ( Serial Peripheral Interface , SPI )。 电压检测电路 30的第二输出端实 际上是一个用于控制适配器 10开启与关闭其直流输出的控制接口,例如可以 是一个输入输出 (Input/Output, I/O )接口。 其中, 电压检测电路 30的第二 输出端具体可以通过与适配器 10的输出使能端连接, 通过向适配器 10的输 出使能端输出关断电平或使能电平实现对适配器 10的输出的控制。主板电路 20,用于将电压检测电路 30提供的交流电压与预设预警上限值或预设预警下 限值进行比较, 在交流电压大于预警上限值或小于预警下限值时, 保存当前 数据, 并通过电压检测电路 30的第一输出端向电压检测电路 30输出关闭指 令, 以控制电压检测电路 30控制适配器 10关闭其直流输出以停止向主板电 路 20供电。
其中, 当前数据主要是指 CPU正在处理、运行、 收发、保存的一切数据, 比如个人信息、 传输的文档、 无线接收和发送的数据等等。
其中, 预警上限值和预警下限值预先设置在主板电路 20的存储空间中, 例如可以设置在主板电路 20的闪存(Flash )中。 预警上限值和预警下限值可 以根据实际交流电源的输出能力以及主板电路 20 所支持的电压范围等进行 适应性配置。 举例说明, 对于输出能力较弱的交流电源, 预警上限值和预警 下限值可分别设置为 320VAC和 90VAC, 对于输出能力较强的交流电源, 预 警上限值和预警下限值可分别设置为 400VAC和 90VAC。
如果交流电压采样值大于预警上限值, 说明交流电发生波动, 交流电压 的波动趋势为增大, 且交流电压已经增大到如果使用该交流电压为主板电路 20在内的整个系统供电就有可能损坏主板电路 20,如果主板电路 20被损坏, 意味着主板电路 20会突然断电或突然停止工作从而发生数据丟失。 因此, 在 判断出交流电压采样值大于预警上限值的这种情况时,主板电路 20首先保存 当前数据以防止数据丟失, 然后通过电压检测电路 30控制适配器 10关闭其 直流输出, 以停止向主板电路 20供电, 进而防止主板电路 20被损坏。
如果交流电压采样值小于预警下限值, 说明交流电发生波动, 交流电压 的波动趋势为减小, 且交流电压已经减小到如果继续使用该交流电为主板电 路 20在内的整个系统供电有可能使主板电路 20因电压不足而突然停止工作 从而导致数据丟失。 因此, 在判断出交流电压采样值小于预警下限值的这种 情况时, 主板电路 20首先保存当前数据以防止数据丟失, 然后通过电压检测 电路 30控制适配器 10关闭其直流输出, 以防止由突然断电引起的电流冲击 对主板电路 20造成损坏。
在此说明, 本发明各实施例中所述主板电路 20主要是指主板电路 20上 的中央处理单元( Central Processing Unit, CPU ) 。
在此说明, 本发明各实施例所述的交流电源输出端主要是指使用市电或 工业电网供电时, 市电或工业电网的输出端。 为了便于图示, 在本发明各实 施例提供的附图中均以文字 "AC输入" 表示交流电源输出端。
本实施例的供电电路增加了电压检测电路, 通过电压检测电路对交流电 源输出端输出的交流电进行采样, 根据交流电压采样值计算出当前的交流电 压, 然后将交流电压提供给主板电路, 主板电路通过将交流电压与预警上限 值或预警下限值进行比较, 根据比较结果判断是否会发生突然断电的情况, 并在判断出有可能发生突然断电的情况时, 及时保存当前数据以防止数据丟 失, 并通过电源检测电路控制适配器关闭其输出停止向主板电路供电, 以防 止突然断电对主板电路造成损坏。
图 3A为本发明另一实施例提供的供电电路的结构示意图。 本实施例基 于图 2所示实施例实现。 如图 3A所示, 本实施例的供电电路也包括: 适配 器 10、 主板电路 20和电压检测电路 30。
在本实施例中,主板电路 20除了具有图 2所示实施例中描述的功能之外, 还具有以下功能: 即主板电路 20还可以用于在交流电压不大于(即小于或等 于)预警上限值而不小于 (即大于或等于)预警下限值时, 将交流电压与预 设正常范围上限值或预设正常范围下限值进行比较, 在交流电压大于正常范 围上限值, 即交流电压大于正常范围上限值且不大于预警上限值时, 或者在 交流电压小于正常范围下限值, 即交流电压小于正常范围下限值而不小于预 警下限值时, 保存当前数据, 并向管理中心上报交流电压不稳定的信息。 其 中 , 主板电路 20可以通过其上的射频( Radio Frequency, RF )电路向管理中 心上报交流电压不稳定的信息。
更进一步, 为了防止突然断电对主板电路 20造成损坏, 主板电路 20还 可以在交流电压大于正常范围上限值且不大于预警上限值, 或者在交流电压 小于正常范围下限值但不小于预警下限值时,向电压检测电路 30发送关闭指 令, 以控制电压检测电路 30控制适配器 10关闭其直流输出, 以停止向主板 电路 20供电。
其中,正常范围上限值和正常范围下限值预先设置在主板电路 20的存储 空间中, 例如可以设置在主板电路 20的 Flash中。 正常范围上限值和正常范 围下限值可以根据实际交流电源的输出能力以及主板电路 20 所支持的电压 范围等进行适应性配置。 举例说明, 正常范围上限值和正常范围下限值可分 别设置为 260 VAC和 180 VAC。
如果交流电压大于正常范围上限值, 说明交流电压发生波动, 交流电压 的波动趋势为增大,为了防止因交流电压增大导致主板电路 20被损坏而突然 断电造成数据丟失,主板电路 20在判断出交流电压大于正常范围上限值后首 先保存当前数据以防止数据丟失。 进一步, 主板电路 20将供电电流不稳定的 情况上报给管理中心, 即向管理中心上报交流电压不稳定的信息, 以使管理 中心记录该信息。 后续, 管理人员或工作人员或用户等可以根据记录的信息 进行检修操作。 更进一步, 主板电路 20还可以向电压检测电路 30发送关闭 指令, 以使电压检测电路 30控制适配器 10停止向主板电路 20供电。 图 3B 给出一种电压过压波动的示意图。 在图 3B 中, 正常范围上限值设置为 260VAC, 预警上限值为 400VAC。
如果交流电压小于正常范围下限值, 说明交流电压发生波动, 交流电压 的波动趋势为减小, 为了防止因交流电压减小导致主板电路 20 因电压不足 (突然断电 )造成数据丟失, 主板电路 20在判断出交流电压小于正常范围下 限值后首先保存当前数据以防止数据丟失。 进一步, 主板电路 20将供电电压 不稳定的情况上报给管理中心, 即向管理中心上报交流电压不稳定的信息, 以使管理中心记录该信息。 后续, 管理人员或工作人员或用户等可以根据记 录的信息进行检修操作。 更进一步, 主板电路 20还可以向电压检测电路 30 发送关闭指令,以使电压检测电路 30控制适配器 10停止向主板电路 20供电。 图 3C给出一种电压欠压波动的示意图。 在图 3C中, 正常范围下限值设置为 180VAC, 预警下限值为 90VAC。
本实施例的管理中心视主板电路 20的不同而不同。 例如, 主板电路 20 可以是家用电气设备, 例如冰箱、 洗衣机等中的主板电路, 则管理中心可以 是家里设置的一台用于负责监控家里各家用电气设备的监控设备, 例如个人 计算机。 又例如, 主板电路 20可以是服务器中的主板电路, 则管理中心可以 是对各服务器进行监控、 管理的服务中心( service centre )。 再例如, 主板电 路 20可以是电力网关中的主板电路,则管理中心可以该电力网关所在小区中 的服务中心。
进一步, 交流电压的波动是比较常见的, 尤其是在正常范围附近发生波 动。 为了能够提高判断交流电压在正常范围之外, 预警范围之内发生波动时 是否会造成主板电路 20突然断电的准确性, 本实施例中的主板电路 20在交 流电压大于正常范围上限值而不大于预警上限值的情况, 或者在交流电压小 于正常范围下限值而不小于预警下限值的情况下, 进一步通过判断交流电压 大于正常范围上限值或小于正常范围下限值的时间是否达到指定的时间, 如 果达到指定时间, 则说明该波动很可能造成主板电路 20突然断电, 故主板电 路 20 需要保存当前数据, 并向管理中心上报交流电压不稳定的信息。 如图 3B所示, 当交流电压超过 260VAC30S之后, 主板电路 20才会执行保存当前 数据, 并向管理中心上报交流电压不稳定的信息的操作。 如图 3C所示, 当交 流电压小于 180VAC30S之后, 主板电路 20才会执行保存当前数据, 并向管 理中心上报交流电压不稳定的信息的操作。 其中, 交流电压大于正常范围上 限值的指定时间与交流电压小于正常范围下限值的指定时间可以相同, 也可 以不相同, 为示区别分别记为第一指定时间和第二指定时间。 其中, 第一指 定时间和第二指定时间可以预先配置在主板电路 20中,例如可以设置在主板 电路 20的 Flash中。 其中, 第一指定时间和第二指定时间可以是 30秒钟、 1 分钟等, 但不限于此。
也就是说,在交流电压不大于预警上限值且不小于预警下限值的情况下, 主板电路 20具体可以用于在交流电压大于正常范围上限值,且持续大于正常 范围上限值第一指定时间后, 或者在交流电压小于正常范围下限值, 且持续 小于正常范围下限值第二指定时间后, 才执行保存当前数据, 并向管理中心 上报交流电压不稳定的信息的操作, 以降低误判造成的资源浪费。
其中,主板电路 20可以将当前数据保存到主板电路 20的 Flash中,但不 限于此。
进一步, 如图 2所示, 本实施例的电压检测电路 30包括: 交流采样电路 301、 交直流转换电路 302和控制单元 303。 其中, 控制单元 303可以是微控 制单元(Micro Control Unit, MCU ) , 但不限于此。
交流采样电路 301 的输入端与交流电源输出端连接, 交流采样电路 301 的输出端与控制单元 303的输入端(如图 3Α所示的 V+和 V- )连接。 交流采 样电路 301 , 用于对输入的交流电压进行采样, 并将交流电压采样值提供给 控制单元 303。 其中, 交流采样电路 301的输入端即为电压检测电路 30的输 入端。
交直流转换电路 302的输入端与交流电源输出端连接, 交直流转换电路
302的输出端与控制单元 303连接, 具体的是与控制单元 303的电源输入端 (如图 3Α所示的 VCC )连接。 交直流转换电路 302, 用于将输入的交流电 压转换为直流, 并输出给控制单元 303 , 以向控制单元 303供电。
控制单元 303的第一输出端 (如图 3Α所示的 Τχ和 Rx ) 即为电压检测 电路 30的第一输出端, 控制单元 303的第二输出端 (如图 3A所示的 I/O ) 即为电压检测电路 30的第二输出端。控制单元 303的第一输出端与主板电路 20连接, 控制单元 303的第二输出端与适配器 10连接。 控制单元 303 , 用于 根据交流电压采样值计算出交流电压, 然后通过控制单元 303的第一输出端 将交流电压提供给主板电路 20, 并接收主板电路 20发送的关闭指令, 根据 关闭指令通过控制单元 303的第二输出端控制适配器 10, 以使适配器 10停 止向主板电路 20供电。 具体的, 控制单元 303可以通过其一 I/O接口向适配 器 10的输出使能端输出关断电平, 控制适配器 10不能输出。 另外, 本实施 例的控制单元 303还可以在交流电源输出端输出的交流电压恢复正常之后, 通过向适配器 10的使能输出端输出使能电平控制适配器 10重新开启其输出 , 即重新向主板电路 20供电。 此时, 主板电路 20也可以恢复正常工作。 在本实施例中, 控制单元 303可以直接将根据交流采集电路 301提供的 交流电压采样值计算出的交流电压提供给主板电路 20, 这样控制单元 303不 需要对交流电压进行额外处理, 其处理负担较轻。
除此之外, 控制单元 303还可以将根据交流采样电路 301提供的交流电 压采样值计算出的交流电压与预设正常范围上限值或预设正常范围下限值进 行比较, 在交流电压大于正常范围上限值或小于正常范围下限值时, 通过控 制单元 303的第一输出端将交流电压提供给主站电路 20。 即控制单元 303仅 将波动到正常范围之外的交流电压提供给主板电路 20, 控制单元 303通过对 交流电压进行筛选, 可以减少主板电路 20所处理的数据量, 有利于减轻主板 电路 20的处理负担。 对于在正常范围之内的交流电压, 控制单元 303可以将 其丟弃, 不提供给主板电路 20。
更进一步, 控制单元 303还可以在交流电压大于正常范围上限值或小于 正常范围下限值时, 向主板电路 20发送告警信息。 控制单元 303通过向主板 电路 20发送告警信息可以提示主板电路 20对该交流电压做进一步处理, 有 利于提高主板电路 20对该交流电压进行处理的及时性,可以进一步降低发生 数据丟失的概率。
其中,正常范围上限值和正常范围下限值也可以预先配置在控制单元 303 的存储空间中,例如可以配置在控制单元 303的 Flash中。控制单元 303上预 先配置的正常范围上限值和正常范围下限值与主板电路 20 上预先配置的正 常范围上限值和正常范围下限值相同, 在此不再细述。
更进一步,本实施例的主板电路 20除了接收控制单元 303在交流电压大 于正常范围上限值或小于正常范围下限值时发送的交流电压和 /或告警信息 之外, 主板电路 20还可以在交流电压处于正常范围之内, 即交流电压不大于 正常范围上限值且不小于正常范围下限值时, 通过控制单元 303的第一输出 端向控制单元 303发送采样值获取指令, 以获取交流电压采样值。 相应地, 控制单元 303还可以通过其第一输出端接收主板电路 20发送的采样值获取指 令, 并根据采样值获取指令, 通过控制单元 303的第一输出端向主板电路 20 发送交流电压。
在此说明, 交流采样电路 301提供给控制单元 303的交流电压采样值是 实时数据, 控制单元 303提供给主板电路 20的交流电压也是实时数据。 进一步, 如图 3A所示, 本实施例的适配器 10主要包括初级 101和次级 102两部分。 其中, 初级 101 主要与交流电源输出端连接, 用于接收输入的 交流电压。 次级 102与初级 101连接。 优选的, 适配器 10可以采用普通的开 关电源来实现, 实现成本较低。
由于控制单元 303的处于初级 101一侧,而主电路板 20处于次级 102— 侧, 两者之间的噪声干扰等较为严重。 为了解决该问题, 控制单元 303的第 一输出端可以通过光耦电路与主板电路 20连接, 实现控制单元 303与主板电 路 20之间的信号传递和噪声隔离, 如图 3A所示。
更进一步, 如图 3A所示, 本实施例的供电电路还可以包括: 过压保护 电路 40。 过压保护电路 40的输入端与交流电源输出端连接, 过压保护电路 40的输出端分别与适配器 10的输入端和交流采样电路 301的输入端连接。 也就是, 交流电源输出端通过过压保护电路 40分别与适配器 10的初级适配 器 101和交流采样电路 301的输入端连接。
基于过压保护电路 40的存在, 当交流电压过高, 例如比预警上限值大很 多时, 过压保护电路 40会阻断高压以保护主板电路 20和电压检测电路 30。 此时, 主板电路 20和电压检测电路 30都会停止工作。 另外, 当交流电源输 出端突然停电时, 电压检测电路 30和主板电路 20也都会停止工作。 此时, 存当前数据。 为了防止在这种极端情况发生数据丟失, 本实施例的供电电路 还包括备用电源电路 50 (如图 3A中虚线部分所示)。 备用电源电路 50主要 用于在过压保护电路 40 阻断交流电源输出端的输出后或者在交流电源突然 停电时, 向主板电路 20供电, 以便于主板电路 20能够保存当前数据。
对备用电源电路 50来说, 其平时不工作, 但可以通过适配器 10的输出 端来充电。 基于此, 备用电源电路 50的输入端与适配器 10连接, 用于充电, 如图 3A所示。在此说明,本实施例的备用电源电路 50还可以是非充电电源。
在此说明, 本发明各实施例中的主板电路 20除了保存当前数据之外, 还 可以进行信息发送。
本实施例的供电电路增加了电压检测电路, 通过电压检测电路对交流电 源输出端输出的交流电进行采样, 根具交流电压采样值计算出交流电压, 然 后将交流电压提供给主板电路, 主板电路通过将交流电压与预警上限值或预 警下限值进行比较, 根据比较结果判断是否会发生突然断电的情况, 并在判 断出有可能发生突然断电的情况时, 及时保存当前数据以防止数据丟失, 并 通过电源检测电路控制适配器关闭输出, 以防止突然断电对主板电路造成损 坏。
在上述实施例中, 交流采样电路 301 可以有很多种实现方式, 例如可以 使用现有的集成芯片来实现, 也可以通过普通电路器件(例如电阻、 电容等) 搭建而成。 本发明实施例给出一种交流采样电路的实现结构, 如图 4所示。 本实施例提供的交流采样电路由电阻 R1-电阻 R8以及电容 C1-电容 C3构成。 其中, 电阻 R1-电阻 R8构成了分压电路。 电容 C3引出交流采样电路 301的 输出端, 记为 V+和 V -。 其中, 输出端 V+和 V-用于把交流电压采样值传递给 控制单元 303 , 以供控制单元 303对交流电压采样值进行处理得到交流电压。 例如, 控制单元 303可以通过分压比例计算得出交流电压。
该电路结构实现简单, 成本较低。
在上述实施例中, 控制单元 303可以由多种实现方式。 较为优选的, 控 制单元 303 可以直接使用各种集成芯片来实现, 例如可以使用 TI公司的 MSP430x系列的芯片、 BL公司的 BL6523x系列的芯片等实现,但不限于此。 本发明实施例给出一种由集成芯片实现的控制单元 303的结构,如图 5所示。 其中, V+和 V-是负责接收交流电压采样值的输入引脚; RST是复位引脚; AVCC是模拟电源引脚; DVCC是数字电源引脚; AVSS是模拟地引脚; DVSS 是数字地引脚; RXD和 TXD是串行接口, 即第一输出端; ENABLE是一 I/O 接口, 即第二输出端; XO— OUT和 XO— IN是该芯片的时钟引脚, 其中晶振 XI、 电容 C1和电容 C2构成了向该芯片提供主时钟的时钟电路。 其中, 图 4 中的输出端 V+和 V-分别与图 5中的输入引脚 V+和 V-连接。
在上述实施例中, 交直流转换电路 302可以由多种实现方式, 例如可以 通过电源芯片实现, 也可以通过分离器件搭建, 此处不做限制。
在上述实施例中, 供电电路中的备用电源电路 50 可以采用电容方案实 现, 也可以采用电池方案实现。 并且由于有电压检测电路 30的存在, 备用电 源电路 50的使用频率不是很高, 并且仅用于供主板电路 20保存数据使用, 所以对电容或电池的储能能力要求不高。
在使用电池方案实现备用电源电路 50时, 可以使用普通的锂电池, 但不 限于此。
其中, 使用电容方案实现备用电源电路 50为更为优选的实现方案。 本实 施例提供一种使用电容实现的备用电源电路 50的结构, 如图 6所示。 本实施 例的备用电源电路 50主要由二极管 Dl-D4、 限流电阻 R和超级电容组 C构 成。 其中, 超级电容组可以是一个法拉级的电容组。 超级电容的容量可根据 主板电路 20功耗的要求做适当选择, 例如可以用 2个电容串联实现。
如图 6所示, 输入端可以与适配器 10的输出端连接, 输出端与主板电路 20的电源管理电路连接。 具体的, 供电电路正常工作时, 适配器 10的输出 一方面给主板电路 20供电, 另一方面通过限流电阻给超级电容组充电; 当供 电电路需要关闭输出时, 超级电容组会继续给主板电路 20供电, 同时不会倒 灌回适配器 10中。
本实施例提供的备用电源电路的实现结构简单, 易于实现, 且成本较低, 使用寿命较长。
在上述实施例中,控制单元 303与主板电路 20连接使用的光耦电路可以 由多种方式实现。 本发明实施例提供一种光耦电路的具体实现结构, 如图 7 所示。 本实施例的光耦电路主要包括: 光耦器件 D1和光耦器件 D2, 以及光 耦器件 D1和光耦器件 D2的外围电路构成, 其具体实现参见图 7所示, 在此 不再详述。
其中, 图 7所示 TXD和 RXD分别与图 5中的串行接口 TXD和 RXD连 接, 图 7中的 CPU— RX和 CPU— TX分别与主板电路 20上的串行接口连接。 图 7中的 VCC是控制单元 303—端的电源, VddIO是主板电路 20—端的电 源。
综上所述, 本发明实施例可以很轻松地实现电源的智能管理, 及时数据 存储和信息传送, 适用于直接由市电或工业电网供电的终端产品或设备, 如 家庭终端、 电力设备等的电源保护和数据保护, 在市电或工业电网电压出现 异常时, 可以提前预警, 并做出相应的动作, 不必等到危险到来后才做出反 应。 另外, 本发明实施例提供的供电电路只需要增加一个可处理交流电压采 样的交流采样电路和控制单元,一个小功率交直流转换电路给控制单元供电, 几个普通的光耦电路, 一个备用电源电路, 实现成本较低, 但可靠性高, 选 用工业级的器件, 整机寿命可达 10年以上, 性价比高; 另外控制单元的功耗 4艮小, 电能消耗增加不多。
图 8为本发明一实施例提供的供电方法的流程图。 本实施例的供电方法 可使用图 1或图 2所示供电电路实现, 也就是供电电路的工作原理。 如图 8 所示, 本实施例的供电方法包括:
步骤 801、 电压检测电路对由电压检测电路的输入端输入的交流电压进 行采样, 根据交流电压采样值计算出交流电压, 然后将交流电压提供给主板 电路。
步骤 802、 主板电路将交流电压与预设预警上限值或预设预警下限值进 行比较, 并在交流电压大于预警上限值或小于预警下限值时, 保存当前数据, 并通过电压检测电路的第一输出端向电压检测电路发送关闭指令。
步骤 803、 电压检测电路接收关闭指令, 并通过电压检测电路的第二输 出端控制适配器, 以使适配器停止向主板电路供电。
其中, 在正常情况下, 适配器将交流电源输出端输出的交流电转换为直 流电并输出给主板电路, 以向主板电路供电。
电压检测电路的输入端与交流电源输出端连接, 用于向电压检测电路提 供交流电。 由电压检测电路对输入的交流电压进行采样, 根据交流电压采样 值计算出交流电压, 然后将交流电压提供给主板电路。 主板电路通过将电压 检测电路提供的交流电压与预设的预警上限值或预警下限值进行比较, 根据 比较结果判断是否可能出现使主板电路突然断电的情况, 并在判断出可能存 在使主板电路突然断电的情况时, 及时保存当前数据, 并通过向电压检测电 路发送关闭指令,使电压检测电路控制适配器使适配器停止向主板电路供电, 这样可以防止因出现突然断电对主板电路造成损坏。
其中,主板电路在判断出交流电压大于预警上限值或小于预警下限值时, 确定可能会发生使其突然断电的情况。
本实施例的供电方法基于本发明实施例提供的供电电路实现, 通过电压 检测电路对交流电源输出端输出的交流电进行采样, 根据交流电压采样值计 算出交流电压, 然后将交流电压提供给主板电路, 主板电路通过将交流电压 与预警上限值或预警下限值进行比较, 根据比较结果判断是否会发生突然断 电的情况, 并在判断出有可能发生突然断电的情况时, 及时保存当前数据以 防止数据丟失, 并通过电源检测电路控制适配器停止向主板电路供电, 以防 止突然断电对主板电路造成损坏。
图 9为本发明另一实施例提供的供电方法的流程图。 本实施例同样可基 于图 1或图 2所示供电电路实现。 如图 9所示, 本实施例的方法包括:
步骤 901、 电压检测电路对由电压检测电路的输入端输入的交流电压进 行采样, 根据交流电压采样值计算出交流电压, 然后将交流电压提供给主板 电路。
步骤 902、 主板电路将交流电压与预设预警上限值或预设预警下限值进 行比较, 以判断交流电压是否大于预警上限值或小于预警下限值; 如果判断 结果为是, 执行步骤 903 ; 如果判断结果为否, 执行步骤 905。
如果判断结果为是, 说明交流电压大于预警上限值或小于预警下限值; 如果判断结果为否, 说明交流电压不大于预警上限值且不小于预警下限值。
步骤 903、 主板电路保存当前数据, 并通过电压检测电路的第一输出端 向电压检测电路发送关闭指令, 以使电压检测电路控制适配器停止向主板电 路供电, 并执行步骤 904。
步骤 904、 电压检测电路接收关闭指令, 并通过电压检测电路的第二输 出端控制适配器, 以使适配器停止向主板电路供电, 并执行步骤 907。
步骤 905、 主板电路将交流电压与预设正常范围上限值或预设正常范围 下限值进行比较, 以判断交流电压是否大于预设正常范围上限值或 d、于预设 正常范围下限值; 如果判断结果为是, 执行步骤 906; 如果判断结果为否, 执行步骤 907。
如果判断结果为是, 说明交流电压大于预设正常范围上限值或小于预设 正常范围下限值, 在以正常范围之外; 如果判断结果为否, 说明交流电压不 大于预设正常范围上限值且不小于预设正常范围下限值, 在正常范围之内。
步骤 906、 主板电路保存当前数据, 并向管理中心上报交流电压不稳定 的信息, 并执行步骤 907。
可选的, 主板电路在交流电压大于正常范围上限值, 且持续大于正常范 围上限值第一指定时间后, 或者在交流电压小于正常范围下限值, 且持续小 于正常范围下限值第二指定时间后, 才执行保存当前数据, 并向管理中心上 报交流电压不稳定的信息的操作, 有利于提高判断是否会发生突然断电的准 确性。 步骤 907、 结束此次操作。
进一步, 电压检测电路可以包括交流采样电路、 交直流转换电路和控制 单元。
基于此, 步骤 901具体可以是: 电压检测电路中的交流采样电路对由交 流采样电路的输入端输入的交流电压进行采样, 并将交流电压采样值提供给 电压检测电路中的控制单元; 控制单元根据交流电压采样值计算交流电压, 然后通过控制单元的第一输出端将交流提供给主板电路。
可选的, 控制单元可以通过控制单元的第一输出端直接将根据交流采样 电路提供的交流采样值计算出的交流电压提供给主板电路。
可选的, 控制单元还可以将交流电压与预设正常范围上限值或预设正常 范围下限值进行比较, 在交流电压大于正常范围上限值或小于正常范围下限 值时, 通过控制单元的第一输出端将交流电压提供给主板电路。
进一步, 控制单元还可以在交流电压大于正常范围上限值或小于正常范 围下限值时, 向主板电路发送告警信息。
步骤 903 中主板电路通过电压检测电路的第一输出端向电压检测电路发 送关闭指令具体可以是: 主板电路通过控制单元的第一输出端向控制单元发 送关闭指令。
步骤 904具体可以是: 控制单元接收关闭指令, 并通过控制单元的第二 输出端控制适配器, 以使适配器停止向主板电路供电。
在上述过程中, 尤其是在交流电压不大于预设正常范围上限值且不小于 预设正常范围下限值, 即在正常范围之内时, 主板电路还可以通过控制单元 的第一输出端向控制单元发送采样值获取指令。 相应的, 控制单元根据采样 值获取指令, 通过控制单元的第一输出端向主板电路发送交流电压。
本实施例的供电方法基于本发明实施例提供的供电电路实现, 通过电压 检测电路对交流电源输出端输出的交流电进行采样, 根据交流电压采样值计 算出交流电压, 然后将交流电压提供给主板电路, 主板电路通过将交流电压 采样值与预警上限值或预警下限值进行比较, 根据比较结果判断是否会发生 突然断电的情况, 并在判断出有可能发生突然断电的情况时, 及时保存当前 数据以防止数据丟失, 并通过电源检测电路控制适配器关闭输出, 以防止突 然断电对主板电路造成损坏。 本发明一实施例提供的一种电气设备, 包括: 供电电路。
其中, 供电电路包括: 适配器、 主板电路和电压检测电路。
其中, 适配器的输入端与交流电源输出端连接, 适配器的输出端与主板 电路连接。 适配器, 用于对输入的交流电压进行处理并输出直流电以给主板 电路供电。
电压检测电路的输入端与交流电源输出端连接, 电压检测电路的第一输 出端与主板电路连接, 电压检测电路的第二输出端与适配器连接。 电压检测 电路, 用于对输入的交流电压进行采样, 根据交流电压采样值计算出交流电 压, 将交流电压提供给主板电路, 并接收主板电路发送的关闭指令, 根据关 闭指令通过第二输出端控制适配器, 以使适配器停止向主板电路供电。
主板电路, 用于将电压检测电路提供的交流电压与预设预警上限值或预 设预警下限值进行比较, 在交流电压大于预警上限值或小于预警下限值时, 保存当前数据, 并通过电压检测电路的第一输出端向电压检测电路输出关闭 指令。
其中, 供电电路的工作原理以及结构可参见图 2所示实施例的描述, 在 此不再赘述。
本实施例的电气设备可以是各种使用市电或工业电网直接供电的终端产 品或设备, 例如家庭终端、 电力设备等。 举例说明, 作为家庭终端的电气设 备可以是洗衣机、 冰箱等; 作为电力设备的电气设备可以是电力网关等。
本实施例的电气设备由于包括供电电路,供电电路增加了电压检测电路, 通过电压检测电路对交流电源输出端输出的交流电进行采样, 根据交流电压 采样值计算出交流电压, 然后将交流电压提供给主板电路, 主板电路通过将 交流电压与预警上限值或预警下限值进行比较, 根据比较结果判断是否会发 生突然断电的情况, 并在判断出有可能发生突然断电的情况时, 及时保存当 前数据以防止数据丟失, 并通过电源检测电路控制适配器关闭其输出停止向 主板电路供电, 以防止突然断电对主板电路造成损坏。
进一步, 上述电气设备中的供电电路中的主板电路还可以用于在交流电 压不大于预警上限值且不小于预警下限值时, 将交流电压与预设正常范围上 限值或预设正常范围下限值进行比较, 在交流电压大于正常范围上限值或小 于正常范围下限值时, 保存当前数据, 并向管理中心上报交流电压不稳定的 信息。 主板电路在发现交流电压波动到正常范围之外时, 及时保存当前数据 并将情况上报, 可以进一步降低数据丟失或主板电路被损坏的概率。
进一步, 上述电气设备中的供电电路中的主板电路可以具体用于在交流 电压大于正常范围上限值, 且持续大于正常范围上限值第一指定时间后, 或 者在交流电压小于正常范围下限值, 且持续小于正常范围下限值第二指定时 间后, 保存当前数据, 并向管理中心上报交流电压不稳定的信息。 主板电路 通过这种方式可以提高判断交流电压在正常范围之外, 预警范围之内发生波 动时是否会造成主板电路突然断电的准确性, 以降低误判造成的资源浪费。 电路、 交直流转换电路和控制单元。
其中, 交流采样电路的输入端与交流电源输出端连接, 交流采样电路的 输出端与控制单元的输入端连接, 交流采样电路的输入端为电压检测电路的 输入端。 交流采样电路, 用于对输入的交流电压进行采样, 并将交流电压采 样值提供给控制单元。
交直流转换电路的输入端与交流电源输出端连接, 交直流转换电路的输 出端与控制单元连接。 交直流转换电路, 用于将输入的交流电压转换为直流, 并输出给控制单元, 以向控制单元供电。
控制单元的第一输出端与主板电路连接, 控制单元的第二输出端与适配 器连接, 控制单元的第一输出端为电压检测电路的第一输出端, 控制单元的 第二输出端为电压检测电路的第二输出端。 控制单元, 用于根据交流电压采 样值计算出交流电压, 然后通过控制单元的第一输出端将交流电压提供给主 板电路, 并接收主板电路输出的关闭指令, 然后根据关闭指令通过控制单元 的第二输出端控制适配器, 以使适配器停止向主板电路供电。
进一步, 控制单元的第一输出端可以通过光耦电路与主板电路连接。 进一步, 控制单元的第一输出端可以为一串行接口。 控制单元的第二输 出端可以为一 I/O接口。
进一步, 控制单元具体可以用于将交流电压与预设正常范围上限值或预 设正常范围下限值进行比较, 在交流电压大于正常范围上限值或小于正常范 围下限值时, 通过控制单元的第一输出端将交流电压提供给主板电路。 由于 控制单元仅将波动到正常范围之外的交流电压提供给主板电路, 控制单元通 过对交流电压进行筛选, 可以减少主板电路所处理的数据量, 有利于减轻主 板电路的处理负担。 而对于在正常范围之内的交流电压, 控制单元可以将其 丟弃, 不提供给主板电路。
进一步, 控制单元还可以用于在交流电压大于正常范围上限值或小于正 常范围下限值时, 向主板电路发送告警信息。 控制单元通过向主板电路发送 告警信息可以提示主板电路对该交流电压做进一步处理, 有利于提高主板电 路对该交流电压进行处理的及时性, 可以进一步降低发生数据丟失的概率。
进一步, 主板电路还可以用于通过控制单元的第一输出端向控制单元发 送采样值获取指令。 尤其在交流电压不大于正常范围上限值且不小于正常范 围下限值时, 主板电路可以通过控制单元的第一输出端向控制单元发送采样 值获取指令。 相应地, 控制单元还可以用于根据采样值获取指令, 通过控制 单元的第一输出端向主板电路发送交流电压。
更进一步, 上述电气设备中的供电电路还可以包括: 过压保护电路。 过压保护电路的输入端与交流电源输出端连接, 过压保护电路的输出端 分别与适配器的输入端和交流采样电路的输入端连接。
更进一步, 上述电气设备中的供电电路还可以包括: 备用电源电路。 备用电源电路, 用于在过压保护电路阻断交流电源输出端的输出后向主 板电路供电, 以使主板电路保存当前数据。
可选的, 本实施例的备用电源电路为充电电源, 备用电源电路的输入端 与适配器的输出端连接, 用以通过适配器进行充电。
上述电气设备中供电电路的结构和工作原理可参见图 3A所示实施例的 描述, 在此不再赘述。
本实施例的电气设备由于包括供电电路,供电电路增加了电压检测电路, 通过电压检测电路对交流电源输出端输出的交流电进行采样, 根据交流电压 采样值计算出交流电压, 然后将交流电压提供给主板电路, 主板电路通过将 交流电压与预警上限值或预警下限值进行比较, 根据比较结果判断是否会发 生突然断电的情况, 并在判断出有可能发生突然断电的情况时, 及时保存当 前数据以防止数据丟失, 并通过电源检测电路控制适配器关闭其输出停止向 主板电路供电, 以防止突然断电对主板电路造成损坏。
本领域普通技术人员可以理解: 实现上述方法实施例的全部或部分步骤 可以通过程序指令相关的硬件来完成, 前述的程序可以存储于一计算机可读 取存储介质中, 该程序在执行时, 执行包括上述方法实施例的步骤; 而前述 的存储介质包括: ROM、 RAM, 磁碟或者光盘等各种可以存储程序代码的介 质。
最后应说明的是: 以上各实施例仅用以说明本发明的技术方案, 而非对 其限制; 尽管参照前述各实施例对本发明进行了详细的说明, 本领域的普通 技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改, 或者对其中部分或者全部技术特征进行等同替换; 而这些修改或者替换, 并 不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims

权 利 要求 书
1、 一种供电电路, 其特征在于, 包括: 适配器、 主板电路和电压检测电 路;
所述适配器的输入端与交流电源输出端连接, 所述适配器的输出端与所 述主板电路连接, 所述适配器, 用于对输入的交流电压进行处理并输出直流 电以给所述主板电路供电;
所述电压检测电路的输入端与所述交流电源输出端连接, 所述电压检测 电路的第一输出端与所述主板电路连接, 所述电压检测电路的第二输出端与 所述适配器连接, 所述电压检测电路, 用于对输入的交流电压进行采样, 根 据交流电压采样值计算出交流电压, 将所述交流电压提供给所述主板电路, 并接收所述主板电路发送的关闭指令, 根据所述关闭指令通过所述第二输出 端控制所述适配器, 以使所述适配器停止向所述主板电路供电;
所述主板电路, 用于将所述电压检测电路提供的交流电压与预设预警上 限值或预设预警下限值进行比较, 在所述交流电压大于所述预警上限值或小 于所述预警下限值时, 保存当前数据, 并通过所述电压检测电路的第一输出 端向所述电压检测电路输出所述关闭指令。
2、 根据权利要求 1所述的供电电路, 其特征在于, 所述主板电路还用于 在所述交流电压不大于所述预警上限值且不小于所述预警下限值时, 将所述 交流电压与预设正常范围上限值或预设正常范围下限值进行比较, 在所述交 流电压大于所述正常范围上限值或小于所述正常范围下限值时, 保存所述当 前数据, 并向管理中心上报交流电压不稳定的信息。
3、 根据权利要求 2所述的供电电路, 其特征在于, 所述主板电路具体用 于在所述交流电压大于所述正常范围上限值, 且持续大于所述正常范围上限 值第一指定时间后, 或者在所述交流电压小于所述正常范围下限值, 且持续 小于所述正常范围下限值第二指定时间后, 保存所述当前数据, 并向所述管 理中心上报交流电压不稳定的信息。
4、 根据权利要求 1或 2或 3所述的供电电路, 其特征在于, 所述电压检 测电路包括: 交流采样电路、 交直流转换电路和控制单元;
所述交流采样电路的输入端与所述交流电源输出端连接, 所述交流采样 电路的输出端与所述控制单元的输入端连接, 所述交流采样电路的输入端为 所述电压检测电路的输入端; 所述交流采样电路, 用于对所述输入的交流电 压进行采样, 并将所述交流电压采样值提供给所述控制单元;
所述交直流转换电路的输入端与所述交流电源输出端连接, 所述交直流 转换电路的输出端与所述控制单元连接, 所述交直流转换电路, 用于将所述 输入的交流电压转换为直流, 并输出给所述控制单元, 以向所述控制单元供 电;
所述控制单元的第一输出端与所述主板电路连接, 所述控制单元的第二 输出端与所述适配器连接, 所述控制单元的第一输出端为所述电压检测电路 的第一输出端, 所述控制单元的第二输出端为所述电压检测电路的第二输出 端; 所述控制单元, 用于根据所述交流电压采样值计算出所述交流电压, 通 过所述控制单元的第一输出端将所述交流电压提供给所述主板电路, 并接收 所述主板电路输出的所述关闭指令, 然后根据所述关闭指令通过所述控制单 元的第二输出端控制所述适配器,以使所述适配器停止向所述主板电路供电。
5、 根据权利要求 4所述的供电电路, 其特征在于, 所述控制单元的第一 输出端通过光耦电路与所述主板电路连接。
6、 根据权利要求 4或 5所述的供电电路, 其特征在于, 所述控制单元的 第一输出端为一串行接口。
7、 根据权利要求 4或 5所述的供电电路, 其特征在于, 所述控制单元具 体用于将所述交流电压与预设正常范围上限值或预设正常范围下限值进行比 较,在所述交流电压大于所述正常范围上限值或小于所述正常范围下限值时, 通过所述控制单元的第一输出端将所述交流电压提供给所述主板电路。
8、 根据权利要求 7所述的供电电路, 其特征在于, 所述控制单元还用于 在所述交流电压大于所述正常范围上限值或小于所述正常范围下限值时, 向 所述主板电路发送告警信息。
9、 根据权利要求 4或 5或 7或 8所述的供电电路, 其特征在于, 所述主 板电路还用于通过所述控制单元的第一输出端向所述控制单元发送采样值获 取指令;
所述控制单元还用于根据所述采样值获取指令, 通过所述控制单元的第 一输出端向所述主板电路发送所述交流电压。
10、 根据权利要求 4或 5或 6或 7或 8或 9所述的供电电路, 其特征在 于, 还包括: 过压保护电路;
所述过压保护电路的输入端与所述交流电源输出端连接, 所述过压保护 电路的输出端分别与所述适配器的输入端和所述交流采样电路的输入端连 接。
1 1、 根据权利要求 10所述的供电电路, 其特征在于, 还包括: 备用电源 电路;
所述备用电源电路, 用于在所述过压保护电路阻断所述交流电源输出端 的输出后向所述主板电路供电, 以使所述主板电路保存所述当前数据。
12、 一种电气设备, 其特征在于, 包括: 供电电路;
所述供电电路包括: 适配器、 主板电路和电压检测电路;
所述适配器的输入端与交流电源输出端连接, 所述适配器的输出端 与所述主板电路连接, 所述适配器, 用于对输入的交流电压进行处理并 输出直流电以给所述主板电路供电;
所述电压检测电路的输入端与所述交流电源输出端连接, 所述电压 检测电路的第一输出端与所述主板电路连接, 所述电压检测电路的第二 输出端与所述适配器连接, 所述电压检测电路, 用于对输入的交流电压 进行采样, 根据交流电压采样值计算出交流电压, 将所述交流电压提供 给所述主板电路, 并接收所述主板电路发送的关闭指令, 根据所述关闭 指令通过所述第二输出端控制所述适配器, 以使所述适配器停止向所述 主板电路供电;
所述主板电路, 用于将所述电压检测电路提供的交流电压与预设预 警上限值或预设预警下限值进行比较, 在所述交流电压大于所述预警上 限值或小于所述预警下限值时, 保存当前数据, 并通过所述电压检测电 路的第一输出端向所述电压检测电路输出所述关闭指令。
13、 根据权利要求 12所述的电气设备, 其特征在于, 所述主板电路还用 于在所述交流电压不大于所述预警上限值且不小于所述预警下限值时, 将所 述交流电压与预设正常范围上限值或预设正常范围下限值进行比较, 在所述 交流电压大于所述正常范围上限值或小于所述正常范围下限值时, 保存所述 当前数据, 并向管理中心上报交流电压不稳定的信息。
14、 根据权利要求 13所述的电气设备, 其特征在于, 所述主板电路具体 用于在所述交流电压大于所述正常范围上限值, 且持续大于所述正常范围上 限值第一指定时间后, 或者在所述交流电压小于所述正常范围下限值, 且持 续小于所述正常范围下限值第二指定时间后, 保存所述当前数据, 并向所述 管理中心上报交流电压不稳定的信息。
15、 根据权利要求 12或 13或 14所述的电气设备, 其特征在于, 所述电 压检测电路包括: 交流采样电路、 交直流转换电路和控制单元;
所述交流采样电路的输入端与所述交流电源输出端连接, 所述交流采样 电路的输出端与所述控制单元的输入端连接, 所述交流采样电路的输入端为 所述电压检测电路的输入端; 所述交流采样电路, 用于对所述输入的交流电 压进行采样, 并将所述交流电压采样值提供给所述控制单元;
所述交直流转换电路的输入端与所述交流电源输出端连接, 所述交直流 转换电路的输出端与所述控制单元连接, 所述交直流转换电路, 用于将所述 输入的交流电压转换为直流, 并输出给所述控制单元, 以向所述控制单元供 电;
所述控制单元的第一输出端与所述主板电路连接, 所述控制单元的第二 输出端与所述适配器连接, 所述控制单元的第一输出端为所述电压检测电路 的第一输出端, 所述控制单元的第二输出端为所述电压检测电路的第二输出 端; 所述控制单元, 用于根据所述交流电压采样值计算所述交流电压, 通过 所述控制单元的第一输出端将所述交流电压提供给所述主板电路, 并接收所 述主板电路输出的所述关闭指令, 然后根据所述关闭指令通过所述控制单元 的第二输出端控制所述适配器, 以使所述适配器停止向所述主板电路供电。
16、 根据权利要求 15所述的电气设备, 其特征在于, 所述控制单元的第 一输出端通过光耦电路与所述主板电路连接。
17、 根据权利要求 15或 16所述的电气设备, 其特征在于, 所述控制单 元的第一输出端为一串行接口。
18、 根据权利要求 15或 16所述的电气设备, 其特征在于, 所述控制单 元具体用于将所述交流电压与预设正常范围上限值或预设正常范围下限值进 行比较, 在所述交流电压大于所述正常范围上限值或小于所述正常范围下限 值时,通过所述控制单元的第一输出端将所述交流电压提供给所述主板电路。
19、 根据权利要求 18所述的电气设备, 其特征在于, 所述控制单元还用 于在所述交流电压大于所述正常范围上限值或小于所述正常范围下限值时, 向所述主板电路发送告警信息。
20、 根据权利要求 15或 16或 18或 19所述的电气设备, 其特征在于, 所述主板电路还用于通过所述控制单元的第一输出端向所述控制单元发送采 样值获取指令;
所述控制单元还用于根据所述采样值获取指令, 通过所述控制单元的第 一输出端向所述主板电路发送所述交流电压。
21、 根据权利要求 15或 16或 17或 18或 19或 20所述的电气设备, 其 特征在于, 所述供电电路还包括: 过压保护电路;
所述过压保护电路的输入端与所述交流电源输出端连接, 所述过压保护 电路的输出端分别与所述适配器的输入端和所述交流采样电路的输入端连 接。
22、 根据权利要求 21所述的电气设备, 其特征在于, 所述供电电路还包 括: 备用电源电路;
所述备用电源电路, 用于在所述过压保护电路阻断所述交流电源输出端 的输出后向所述主板电路供电, 以使所述主板电路保存所述当前数据。
23、 根据权利要求 12-22任一项所述的电气设备, 其特征在于, 所述电 气设备为电力网关。
PCT/CN2012/071942 2012-03-05 2012-03-05 供电电路及电气设备 WO2013131236A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201280000213.3A CN102687358B (zh) 2012-03-05 2012-03-05 供电电路及电气设备
PCT/CN2012/071942 WO2013131236A1 (zh) 2012-03-05 2012-03-05 供电电路及电气设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/071942 WO2013131236A1 (zh) 2012-03-05 2012-03-05 供电电路及电气设备

Publications (1)

Publication Number Publication Date
WO2013131236A1 true WO2013131236A1 (zh) 2013-09-12

Family

ID=46817250

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/071942 WO2013131236A1 (zh) 2012-03-05 2012-03-05 供电电路及电气设备

Country Status (2)

Country Link
CN (1) CN102687358B (zh)
WO (1) WO2013131236A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140104617A (ko) * 2013-02-20 2014-08-29 삼성전자주식회사 서든 파워 오프 가능성 정보를 사용하는 모바일 장치 및 그것의 동작 방법
CN106451798A (zh) * 2016-09-20 2017-02-22 宁德时代新能源科技股份有限公司 一种启动方法和装置
US10038370B2 (en) * 2016-09-27 2018-07-31 Fairchild Semiconductor Corporation Reduction of electrical size of bulk capacitors in mobile power supplies
CN108199340A (zh) * 2018-01-22 2018-06-22 珠海格力电器股份有限公司 状态监控装置和方法及空调
CN108494084A (zh) * 2018-04-13 2018-09-04 联想(北京)有限公司 一种服务器电源、服务器、供电方法及装置
CN112234690A (zh) * 2020-12-15 2021-01-15 鹏城实验室 电源保护电路、设备以及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2896292Y (zh) * 2005-12-08 2007-05-02 兆日科技(深圳)有限公司 一种检测外部电压的电路
CN201499011U (zh) * 2009-09-16 2010-06-02 青岛海信智能商用设备有限公司 一种网络税控器
CN201639344U (zh) * 2009-12-31 2010-11-17 富比国际有限公司 能在异常断电后保护车载电子设备的装置
CN201758389U (zh) * 2010-08-23 2011-03-09 华为终端有限公司 移动终端供电设备和移动终端

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7269522B2 (en) * 2004-08-27 2007-09-11 Itron, Inc. Firmware power cycle routine
JP2006304437A (ja) * 2005-04-18 2006-11-02 Showa Dengyosha:Kk 電源瞬停発生装置
KR20110018991A (ko) * 2009-08-19 2011-02-25 엘지전자 주식회사 전원 공급 장치 및 전원 공급 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2896292Y (zh) * 2005-12-08 2007-05-02 兆日科技(深圳)有限公司 一种检测外部电压的电路
CN201499011U (zh) * 2009-09-16 2010-06-02 青岛海信智能商用设备有限公司 一种网络税控器
CN201639344U (zh) * 2009-12-31 2010-11-17 富比国际有限公司 能在异常断电后保护车载电子设备的装置
CN201758389U (zh) * 2010-08-23 2011-03-09 华为终端有限公司 移动终端供电设备和移动终端

Also Published As

Publication number Publication date
CN102687358B (zh) 2014-06-11
CN102687358A (zh) 2012-09-19

Similar Documents

Publication Publication Date Title
WO2013131236A1 (zh) 供电电路及电气设备
CN103000964B (zh) 电池管理系统控制器
US20160336779A1 (en) Charging Method, Alternating Current Adaptor, Charging Management Device and Terminal
CN102280924B (zh) 一种继电保护装置持续供电系统
CN110336354A (zh) 电池管理系统的电源控制电路
CN102148529B (zh) 向断路器控制单元智能供电的控制装置及其控制方法
JP2012023656A (ja) 端末網制御装置およびテレメータシステム
EP3872602A1 (en) Sleep of power supply, sleep determination method and device, sleep device
EP3226179B1 (en) Electronic device
CN103178601A (zh) 电源管理系统及方法
US9236766B2 (en) Control of a power adapter with energy storage elements based on output voltage thresholds
CN201414022Y (zh) 一种蓄电池充放电控制系统
CN103501024B (zh) 一种基于铝电解电容和超级电容组合的电源系统
CN209895304U (zh) 一种服务器供电系统及数据机房
CN200987068Y (zh) 一种电压自适应的直流低电压脱扣控制器
CN103064495B (zh) 一种微服务器及其供电系统
US10440667B2 (en) Access terminal
CN106532907B (zh) 一种微型直流ups电源及其使用方法
CN110867060A (zh) 分体式电力数据传输系统
CN206251117U (zh) 一种失电状态下持续运行的物联网网关
CN110829578A (zh) 具有掉电保护与报警功能的远程终端单元及其使用方法
CN210534230U (zh) 一种非侵入式负荷监测装置及终端
CN104393685A (zh) 一种移动储能系统的主动安全监测系统
CN205081807U (zh) 一种基于zigbee和GPRS的智能家居网关
CN212162911U (zh) 一种智能一体化ups不间断电源

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280000213.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12870756

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12870756

Country of ref document: EP

Kind code of ref document: A1