WO2013130923A1 - Facilitated transport membrane for the separation of aromatics from non-aromatics - Google Patents

Facilitated transport membrane for the separation of aromatics from non-aromatics Download PDF

Info

Publication number
WO2013130923A1
WO2013130923A1 PCT/US2013/028495 US2013028495W WO2013130923A1 WO 2013130923 A1 WO2013130923 A1 WO 2013130923A1 US 2013028495 W US2013028495 W US 2013028495W WO 2013130923 A1 WO2013130923 A1 WO 2013130923A1
Authority
WO
WIPO (PCT)
Prior art keywords
membrane
hydrophilic polymer
stream
aromatic
weight percent
Prior art date
Application number
PCT/US2013/028495
Other languages
French (fr)
Inventor
Garba O. YAHAYA
Original Assignee
Saudi Arabian Oil Company
Aramco Services Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saudi Arabian Oil Company, Aramco Services Company filed Critical Saudi Arabian Oil Company
Priority to JP2014560076A priority Critical patent/JP6188731B2/en
Priority to EP13711492.2A priority patent/EP2819770B8/en
Priority to KR1020147027975A priority patent/KR101811918B1/en
Priority to CN201380012258.7A priority patent/CN104168985B/en
Publication of WO2013130923A1 publication Critical patent/WO2013130923A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/36Pervaporation; Membrane distillation; Liquid permeation
    • B01D61/362Pervaporation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/228Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0093Chemical modification
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/14Dynamic membranes
    • B01D69/141Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes
    • B01D69/142Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes with "carriers"
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/38Polyalkenylalcohols; Polyalkenylesters; Polyalkenylethers; Polyalkenylaldehydes; Polyalkenylketones; Polyalkenylacetals; Polyalkenylketals
    • B01D71/381Polyvinylalcohol
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/76Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74
    • B01D71/82Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74 characterised by the presence of specified groups, e.g. introduced by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/144Purification; Separation; Use of additives using membranes, e.g. selective permeation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/30Cross-linking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/08Polysaccharides

Definitions

  • Embodiments of the invention relate to a facilitated transport membrane (FTM), which is operable for separating aromatics from a hydrocarbon stream having both aromatics and aliphatic compounds.
  • FTM facilitated transport membrane
  • Aromatic hydrocarbons e.g., benzene, toluene, xylenes (BTX)
  • BTX xylenes
  • Typical methods for separating aromatics from petroleum refineries can include liquid/liquid extraction and extractive or azeo tropic distillation.
  • these methods are typically very costly and capital intensive.
  • distillation columns are typically up to 300 feet tall and can contain over 200 trays.
  • the reflux ratios are generally greater than 10 and the process is therefore very energy-intensive. As such, more economical separation processes are needed.
  • Embodiments of the invention are generally directed to a FTM and a method for making and using the FTM.
  • the FTM assists with the separation and recovery of high value aromatics from a hydrocarbon stream containing both aromatics and non-aromatics.
  • the FTM is combined with an extractive distillation process to provide further separation.
  • the FTM is obtained by incorporating complexing agents (i.e., carriers that exhibit a strong affinity for aromatics) on to the backbone or membrane matrix of a polymeric hydrophilic membrane, such that the complexing agents selectively interact with aromatics in the hydrocarbon feed, thereby significantly enhancing separation properties of the membrane compared with conventional polymeric membranes.
  • complexing agents i.e., carriers that exhibit a strong affinity for aromatics
  • the FTM exhibits excellent performance with significantly higher selectivity than convention membranes.
  • the FTM is operable to have a selectivity of at least about 40.
  • the FTM is fabricated from a combination of glassy hydrophilic polymers, such as polyvinyl alcohol (PVA) and sodium alginate (SA).
  • PVA polyvinyl alcohol
  • SA sodium alginate
  • Silver salts, such as silver nitrate (AgNO 3 ) are used as the complexing agent (e.g., carrier) because it has a strong affinity for aromatics rather than aliphatics.
  • an apparatus for separating aromatic hydrocarbons from an aromatic hydrocarbon feed stream includes a membrane support, a hydrophilic polymer membrane matrix disposed on the membrane support, a carrier agent bonded to the hydrophilic polymer membrane matrix using a cross- linking agent, and a membrane housing configured to hold the membrane support.
  • the hydrophilic polymer membrane matrix includes effective amounts of PVA and SA.
  • the carrier agent may exhibit a greater affinity for aromatics compared with aliphatics.
  • the membrane housing includes an inlet, a permeate outlet, and a retentate outlet.
  • the inlet is operable to receive the aromatic hydrocarbon feed stream
  • the permeate outlet is operable to discharge a permeate stream
  • the retentate outlet is operable to discharge a retentate stream.
  • the apparatus is operable to separate aromatic hydrocarbons from non-aromatic hydrocarbons when the aromatic hydrocarbon feed stream is introduced into the membrane housing under membrane operating conditions.
  • the carrier agent is selected from the group consisting of metal salts, amines and combinations thereof.
  • the carrier agent includes AgNO 3 .
  • the AgNO 3 is incorporated into the hydrophilic polymer membrane matrix by creating a carrier solution of AgNO 3 in an amount of about 2 to about 15 weight percent mixed with an effective amount of a cross- linking agent, preferably about 5 weight percent, and water, preferably distilled water, in an amount of about 80 to about 93 weight percent, and then contacting the hydrophilic polymer membrane matrix with the carrier solution for an effective amount of time to bond the carrier agent with the hydrophilic polymer membrane matrix.
  • the membrane support includes polyacrylonitrile.
  • the hydrophilic polymer membrane matrix includes an additional hydrophilic polymer selected from the group consisting of PVA, SA, polyacrylic acid, chitosan, polyacryl amide, polyvinyl amine and combinations thereof.
  • the hydrophilic polymer membrane matrix is formed by obtaining a casting solution including the hydrophilic polymer and distilled water, and coating the membrane support with the casting solution.
  • the hydrophilic polymer includes PVA and SA.
  • the casting solution includes PVA in an amount from about 1 to about S weight percent, SA in an amount from about 1 to about 5 weight percent and the remainder being water.
  • the cross-linking agent includes glutaraldehyde.
  • the membrane housing is any of the following: a spiral wound housing, a plate and frame housing, and a hollow-fiber bundled housing.
  • the method for making the FTM includes the steps of obtaining a casting solution that includes a hydrophilic polymer and distilled water, coating a membrane support with the casting solution to form a hydrophilic polymer membrane, and drying the hydrophilic polymer membrane suppor
  • the method further includes the steps of obtaining the carrier solution that includes a carrier agent, a cross-linking agent, and distilled water; contacting the carrier solution to the hydrophilic polymer membrane support; and drying the membrane support
  • the FTM product is operable to separate aromatic components from non-aromatic components when the hydrocarbon stream having aromatic and non-aromatic hydrocarbons is introduced to the FTM under membrane operating conditions.
  • the step of obtaining the carrier solution includes dissolving AgNO 3 in an amount from about 2 to about 15 weight percent with glutaraldehyde in an amount of about 5 weight percent, with the remainder being distilled water.
  • the hydrophilic polymer is selected from the group consisting of PVA, SA, polyacrylic acid, chitosan, polyacryl amide, polyvinyl amine and combinations thereof.
  • the step of obtaining the casting solution includes dissolving up to 5 weight percent of the hydrophilic polymer in distilled water.
  • the step of obtaining the casting solution includes dissolving PVA in an amount from about 1 to about 5 weight percent with SA in an amount from about 1 to about S weight percent, with the remainder being distilled water.
  • Certain embodiments of the invention further provide a method for using the FTM to separate aromatic components from non-aromatic components in a hydrocarbon stream.
  • the method for using the FTM to separate aromatic components includes the step of feeding the hydrocarbon stream including aromatic components and non-aromatic components into an inlet of any of the apparatuses described herein under membrane operating conditions, such that at least a portion of the aromatic components diffuse across the hydrophilic polymer membrane matrix.
  • the method further includes the steps of withdrawing a permeate stream enriched in aromatic components compared with the hydrocarbon stream through the permeate outlet, and withdrawing a retentate stream enriched in non-aromatic components compared with the hydrocarbon stream through the retentate outlet.
  • the method further includes the step of introducing the retentate stream to a distillation column under distillation conditions to remove additional aromatic components to form a lean, non-aromatic stream and a lean aromatic stream.
  • the membrane operating conditions include operating conditions normally encountered during pervaporation.
  • the hydrocarbon stream is in a liquid phase.
  • Certain embodiments of the invention are directed to a FTM prepared from hydrophilic polymers.
  • the FTM is useful in the separation of aromatic and non-aromatic hydrocarbons from mixtures containing such hydrocarbons.
  • Other embodiments of the invention are directed to a process for preparing the FTM, which includes contacting polymers of the FTM with an effective amount of a cross-linking agent under membrane operating conditions to promote ciOSS-linking of the polymers, thereby forming a cross-linked polymer membrane.
  • the cross- linked polymer membrane exhibits selectivity for aromatic hydrocarbons.
  • suitable hydrophilic polymers that may be used to prepare the FTM include FVA and SA.
  • an additional hydrophilic polymer includes one or more of the following: polyacrylic acid, chitosan, polyacryl amide, and polyvinyl amine.
  • the hydrophilic polymers of the present invention are selected such that the hydrophilic polymers undergo cross-linking in the presence of an effective amount of the cross-linking agent under suitable membrane operating conditions.
  • Certain embodiments focus on the development of the FTM.
  • the FTM membrane is combined with an extractive distillation process for separating and recovering high value aromatics in a more cost effective fashion.
  • aromatic- containing streams from petroleum refineries are used as a hydrocarbon feed.
  • Other acceptable sources for hydrocarbon feed include naphtha cracker feed streams, transportation gasoline fuel mixture feedstock and reformate effluent streams, as non-limiting examples.
  • the FTM is obtained by incorporation of complexing agents or carriers (i.e., that exhibit a strong affinity for aromatics) on to the backbone or membrane matrix of the hydrophilic polymeric membrane.
  • the complexing agents are operable to selectively interact with aromatics in the mixture.
  • the FTM is operable to have a selectivity of at least about 40.
  • the membrane operating conditions includes pervaporation and perstraction.
  • Pervaporation employs a vacuum (i.e., lowered pressure) on the permeate side of the membrane in order to remove permeated compounds, while perstraction employs a liquid or gas sweep stream to carry away the permeate.
  • the separation mechanism in pervaporation or perstraction is not based on the relative volatility of components, rather the separation mechanism is based on the difference between the sorption and diffusion properties of the feed substances and the permselectivity of the FTM.
  • the FTM is useful for the separation of aromatics, including sulfur and nitrogen heteroatom cyclic compounds, from non-aromatics in petroleum and chemical streams, and has been found to be particularly useful for the separation of large substituted aromatics from saturates.
  • Typical feed streams include heavy catalytic naphtha streams, intermediate catalytic naphtha streams, light aromatics content streams, light catalytic cycle oil, jet fuel, diesel and streams in chemical plants that contain recoverable quantities of BTX or other aromatics in combination with saturates.
  • the membrane itself may be in any convenient form utilizing any convenient module design.
  • sheets of membrane material may be used in spiral wound or plate and frame permeation cell modules.
  • Hollow fiber housings of membranes may be used in bundled configurations with either the feed or the sweep liquid (or vacuum) in the internal space of the tube or fiber; the other material being on the other side.
  • the use of the FTM could be integrated before or after a separate extractive distillation process. If used prior to the distillation process, the FTM allows for greater product yields or quality from the existing column due in part to the lower amounts of feedstreams being processed. If used following the distillation process, the FTM acts as polishing step of either the top or bottom product of the distillation column, especially when high purity products are required.
  • the FTM according to various embodiments of the invention provides non- obvious advantages over conventional membranes.
  • the FTM according to at least one embodiment of the invention provides a FTM, which is operable for separating aromatics from a hydrocarbon stream having both aromatics and aliphatic compounds, and a process for making and using the FTM, which reduce investment and operating costs associated with aromatic separation from the hydrocarbon stream due to savings from reduced energy consumption required by the overall process and a reduction of cost for membrane replacement.
  • a hydrocarbon feed containing both aromatic and aliphatic compounds was prepared having a 1:4 ratio of benzene to cyclohexane.
  • Cyclohexane was used as a representative of an aliphatic compound because its size and boiling point are similar to benzene.
  • the membrane housing was created using a cell, separated into two compartments by a porous metal plate (i.e., a membrane support) with the hydrophilic polymer membrane matrix being disposed on the porous metal plate.
  • the membrane housing was attached via a pump through a 5 L reservoir tank filled with a liquid mixture of the benzene-cyclohexane solution.
  • the feed solution of known composition was pumped past the feed side of the membrane cell and then returned back to the reservoir tank at a controlled flow rate.
  • the benzene concentration in the reservoir was measured versus time with a gas chromatograph (e.g., Varian 3300) equipped with a thermal detector and integrator. Transmembrane fluxes were generated by a downstream vacuum pump and the permeation measurement was carried out under vacuum on the downstream side of the membrane. The upstream pressure was maintained at atmospheric pressure.
  • the other side of the membrane housing was normally attached through a liquid nitrogen cold trap to a vacuum pump to condense and collect the permeate vapor.
  • the weight and concentration of the accumulated permeate in the cold trap were also determined with time by measurement of sample weight collected and by gas chromatography analysis, respectively.
  • the casting solutions were then coated on the membrane support (PAN) and left to dry over night
  • the coated membrane was then dipped in the carrier solution for about 5 mins and then taken out to dry over night
  • the composite membrane became dark green upon dipping it in the cross-linking and carrier solution.
  • Table I The compositions of the four membranes are provided in Table I below:
  • q is the flux
  • m is the mass of the permeate fluid (kg)
  • A is the cross sectional area of the effective membrane (m 2 )
  • t is time (hour).
  • the total benzene-cyclohexane flux was determined from the liquid collected in me cold trap, the time of collection, and the membrane surface area in contact with the feed solution.
  • the individual benzene and cyclohexane fluxes were calculated from the total flux and the benzene concentration.
  • [C a ] p is me concentration of benzene in the permeate
  • [C n ] p is the concentration of cyclohexane in the permeate
  • [C a ] f is the concentration of benzene in the feed
  • [C n ] f is the concentration of cyclohexane in the feed.
  • the present invention may suitably comprise, consist or consist essentially of the elements disclosed and may be practiced in the absence of an element not disclosed. For example, it can be recognized by those skilled in the art that certain steps can be combined into a single step. [0036] Unless defined otherwise, all technical and scientific terms used have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs.
  • Ranges may be expressed herein as from about one particular value, and/or to about another particular value. When such a range is expressed, it is to be understood that another embodiment is from the one particular value and/or to the other particular value, along with all combinations within said range.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

Certain embodiments of the invention provide an apparatus for separating aromatic hydrocarbons from an aromatic hydrocarbon feed stream. The apparatus includes a membrane support, and a hydrophilic polymer membrane matrix disposed on the membrane support. The hydrophilic polymer membrane matrix includes an effective amount of polyvinyl alcohol and an effective amount of sodium alginate. The apparatus further includes a carrier agent bonded to the hydrophilic polymer membrane matrix using a cross-linking agent. The carrier agent exhibits a greater affinity for aromatics compared to alipliatics. The apparatus further includes a membrane housing configured to hold the membrane support. The membrane housing includes an inlet, a permeate outlet, and a retentate outlet, the inlet being operable to receive the aromatic hydrocarbon feed, stream, the permeate outlet being operable to discharge a permeate stream, and the retentate outlet being operable to discharge a retentate stream.

Description

PCT PATENT APPLICATION
FACILITATED TRANSPORT MEMBRANE FOR THE SEPARATION OF AROMATICS FROM NON-AROMATICS
BACKGROUND
Field of the Invention
[0001] Embodiments of the invention relate to a facilitated transport membrane (FTM), which is operable for separating aromatics from a hydrocarbon stream having both aromatics and aliphatic compounds.
Description of the Related Art
[0002] Aromatic hydrocarbons (e.g., benzene, toluene, xylenes (BTX)) serve as important precursors in the production of petrochemicals. Additionally, the separation of aromatics is useful in upgrading and conditioning aromatic-containing streams in petroleum refineries. Therefore, it would be helpful to provide a useful and economical method to help recover aromatics from all these streams.
[0003] Typical methods for separating aromatics from petroleum refineries can include liquid/liquid extraction and extractive or azeo tropic distillation. However, these methods are typically very costly and capital intensive. For example, distillation columns are typically up to 300 feet tall and can contain over 200 trays. The reflux ratios are generally greater than 10 and the process is therefore very energy-intensive. As such, more economical separation processes are needed.
[0004] Membrane pervaporation processes have been used to separate various types of hydrocarbons. However, many of these conventional membranes suffer from low selectivity (i.e., 5 to 20) and/or a low flux rate (0.03-0.3 kg/m2/h). Therefore, the commercial viability of conventional membranes is limited, preventing them from competing with conventional membrane pervaporation processes, such as extractive distillation. Therefore, it would be advantageous to have a FTM that has improved flux rates and/or selectivities over conventional membranes. It would also be advantageous if the FTM provided more strength and more stability than conventional membranes.
SUMMARY
[0005] Embodiments of the invention are generally directed to a FTM and a method for making and using the FTM. According to one embodiment, the FTM assists with the separation and recovery of high value aromatics from a hydrocarbon stream containing both aromatics and non-aromatics. In another embodiment, the FTM is combined with an extractive distillation process to provide further separation.
[0006] Various embodiments of the invention relate to the development of the FTM and methods for making and using the FTM to separate and recover high value aromatics hydrocarbon from non-aromatic enriched streams, such as petroleum refinery, aromatic- containing streams, in a cost-effective manner. For example, in one embodiment, the FTM is obtained by incorporating complexing agents (i.e., carriers that exhibit a strong affinity for aromatics) on to the backbone or membrane matrix of a polymeric hydrophilic membrane, such that the complexing agents selectively interact with aromatics in the hydrocarbon feed, thereby significantly enhancing separation properties of the membrane compared with conventional polymeric membranes. The FTM exhibits excellent performance with significantly higher selectivity than convention membranes. In accordance with an embodiment, the FTM is operable to have a selectivity of at least about 40.
[0007] In accordance with another embodiment, the FTM is fabricated from a combination of glassy hydrophilic polymers, such as polyvinyl alcohol (PVA) and sodium alginate (SA). Silver salts, such as silver nitrate (AgNO3) are used as the complexing agent (e.g., carrier) because it has a strong affinity for aromatics rather than aliphatics.
[0008] In accordance with another embodiment, an apparatus for separating aromatic hydrocarbons from an aromatic hydrocarbon feed stream is provided. The apparatus includes a membrane support, a hydrophilic polymer membrane matrix disposed on the membrane support, a carrier agent bonded to the hydrophilic polymer membrane matrix using a cross- linking agent, and a membrane housing configured to hold the membrane support. The hydrophilic polymer membrane matrix includes effective amounts of PVA and SA. The carrier agent may exhibit a greater affinity for aromatics compared with aliphatics. The membrane housing includes an inlet, a permeate outlet, and a retentate outlet. The inlet is operable to receive the aromatic hydrocarbon feed stream, the permeate outlet is operable to discharge a permeate stream, and the retentate outlet is operable to discharge a retentate stream. The apparatus is operable to separate aromatic hydrocarbons from non-aromatic hydrocarbons when the aromatic hydrocarbon feed stream is introduced into the membrane housing under membrane operating conditions.
[0009] In accordance with another embodiment, the carrier agent is selected from the group consisting of metal salts, amines and combinations thereof. In another embodiment, the carrier agent includes AgNO3. In a preferred embodiment, the AgNO3 is incorporated into the hydrophilic polymer membrane matrix by creating a carrier solution of AgNO3 in an amount of about 2 to about 15 weight percent mixed with an effective amount of a cross- linking agent, preferably about 5 weight percent, and water, preferably distilled water, in an amount of about 80 to about 93 weight percent, and then contacting the hydrophilic polymer membrane matrix with the carrier solution for an effective amount of time to bond the carrier agent with the hydrophilic polymer membrane matrix.
[0010] In accordance with another embodiment, the membrane support includes polyacrylonitrile. In another embodiment, the hydrophilic polymer membrane matrix includes an additional hydrophilic polymer selected from the group consisting of PVA, SA, polyacrylic acid, chitosan, polyacryl amide, polyvinyl amine and combinations thereof.
[0011] In accordance with another embodiment, the hydrophilic polymer membrane matrix is formed by obtaining a casting solution including the hydrophilic polymer and distilled water, and coating the membrane support with the casting solution. In one embodiment, the hydrophilic polymer includes PVA and SA. In another embodiment, the casting solution includes PVA in an amount from about 1 to about S weight percent, SA in an amount from about 1 to about 5 weight percent and the remainder being water.
[0012] In accordance with another embodiment, the cross-linking agent includes glutaraldehyde. In another embodiment, the membrane housing is any of the following: a spiral wound housing, a plate and frame housing, and a hollow-fiber bundled housing.
[0013] Certain embodiments of the invention also provide a method of making the FTM. For example, in accordance with an embodiment of the invention, the method for making the FTM includes the steps of obtaining a casting solution that includes a hydrophilic polymer and distilled water, coating a membrane support with the casting solution to form a hydrophilic polymer membrane, and drying the hydrophilic polymer membrane suppor The method further includes the steps of obtaining the carrier solution that includes a carrier agent, a cross-linking agent, and distilled water; contacting the carrier solution to the hydrophilic polymer membrane support; and drying the membrane support The FTM product is operable to separate aromatic components from non-aromatic components when the hydrocarbon stream having aromatic and non-aromatic hydrocarbons is introduced to the FTM under membrane operating conditions.
[0014] In accordance with one embodiment, the step of obtaining the carrier solution includes dissolving AgNO3 in an amount from about 2 to about 15 weight percent with glutaraldehyde in an amount of about 5 weight percent, with the remainder being distilled water. In another embodiment, the hydrophilic polymer is selected from the group consisting of PVA, SA, polyacrylic acid, chitosan, polyacryl amide, polyvinyl amine and combinations thereof.
[0015] In accordance with another embodiment, the step of obtaining the casting solution includes dissolving up to 5 weight percent of the hydrophilic polymer in distilled water. In another embodiment, the step of obtaining the casting solution includes dissolving PVA in an amount from about 1 to about 5 weight percent with SA in an amount from about 1 to about S weight percent, with the remainder being distilled water.
[0016] Certain embodiments of the invention further provide a method for using the FTM to separate aromatic components from non-aromatic components in a hydrocarbon stream. In one embodiment, the method for using the FTM to separate aromatic components includes the step of feeding the hydrocarbon stream including aromatic components and non-aromatic components into an inlet of any of the apparatuses described herein under membrane operating conditions, such that at least a portion of the aromatic components diffuse across the hydrophilic polymer membrane matrix. The method further includes the steps of withdrawing a permeate stream enriched in aromatic components compared with the hydrocarbon stream through the permeate outlet, and withdrawing a retentate stream enriched in non-aromatic components compared with the hydrocarbon stream through the retentate outlet.
[0017] In accordance with another embodiment, the method further includes the step of introducing the retentate stream to a distillation column under distillation conditions to remove additional aromatic components to form a lean, non-aromatic stream and a lean aromatic stream. In another embodiment, the membrane operating conditions include operating conditions normally encountered during pervaporation. In another embodiment, the hydrocarbon stream is in a liquid phase.
DETAILED DESCRIPTION
[0018] Although the following detailed description contains many specific details for purposes of illustration, it is understood that one of ordinary skill in the relevant art will appreciate that many examples, variations, and alterations to the following details are within the scope and spirit of the invention. Accordingly, the exemplary embodiments of the invention described herein are set forth without any loss of generality, and without imposing limitations, relating to the claimed invention.
[0019] Certain embodiments of the invention are directed to a FTM prepared from hydrophilic polymers. The FTM is useful in the separation of aromatic and non-aromatic hydrocarbons from mixtures containing such hydrocarbons. Other embodiments of the invention are directed to a process for preparing the FTM, which includes contacting polymers of the FTM with an effective amount of a cross-linking agent under membrane operating conditions to promote ciOSS-linking of the polymers, thereby forming a cross-linked polymer membrane. In accordance with various embodiments of the invention, the cross- linked polymer membrane exhibits selectivity for aromatic hydrocarbons.
[0020] In accordance with an embodiment, suitable hydrophilic polymers that may be used to prepare the FTM include FVA and SA. In another embodiment, an additional hydrophilic polymer includes one or more of the following: polyacrylic acid, chitosan, polyacryl amide, and polyvinyl amine. Preferably, the hydrophilic polymers of the present invention are selected such that the hydrophilic polymers undergo cross-linking in the presence of an effective amount of the cross-linking agent under suitable membrane operating conditions.
[0021] Certain embodiments focus on the development of the FTM. Optionally, the FTM membrane is combined with an extractive distillation process for separating and recovering high value aromatics in a more cost effective fashion. In one embodiment, aromatic- containing streams from petroleum refineries are used as a hydrocarbon feed. Other acceptable sources for hydrocarbon feed include naphtha cracker feed streams, transportation gasoline fuel mixture feedstock and reformate effluent streams, as non-limiting examples.
[0022] Furthermore, in one embodiment, the FTM is obtained by incorporation of complexing agents or carriers (i.e., that exhibit a strong affinity for aromatics) on to the backbone or membrane matrix of the hydrophilic polymeric membrane. The complexing agents are operable to selectively interact with aromatics in the mixture. In accordance with an embodiment, the FTM is operable to have a selectivity of at least about 40.
[0023] In another embodiment, the membrane operating conditions includes pervaporation and perstraction. Pervaporation employs a vacuum (i.e., lowered pressure) on the permeate side of the membrane in order to remove permeated compounds, while perstraction employs a liquid or gas sweep stream to carry away the permeate. Thus, unlike conventional distillation processes and other conventional extraction processes, the separation mechanism in pervaporation or perstraction is not based on the relative volatility of components, rather the separation mechanism is based on the difference between the sorption and diffusion properties of the feed substances and the permselectivity of the FTM.
[0024] In one embodiment, the FTM is useful for the separation of aromatics, including sulfur and nitrogen heteroatom cyclic compounds, from non-aromatics in petroleum and chemical streams, and has been found to be particularly useful for the separation of large substituted aromatics from saturates. Typical feed streams include heavy catalytic naphtha streams, intermediate catalytic naphtha streams, light aromatics content streams, light catalytic cycle oil, jet fuel, diesel and streams in chemical plants that contain recoverable quantities of BTX or other aromatics in combination with saturates.
[0025] In one embodiment, the membrane itself may be in any convenient form utilizing any convenient module design. Thus, sheets of membrane material may be used in spiral wound or plate and frame permeation cell modules. Hollow fiber housings of membranes may be used in bundled configurations with either the feed or the sweep liquid (or vacuum) in the internal space of the tube or fiber; the other material being on the other side.
[0026] In an additional embodiment, the use of the FTM could be integrated before or after a separate extractive distillation process. If used prior to the distillation process, the FTM allows for greater product yields or quality from the existing column due in part to the lower amounts of feedstreams being processed. If used following the distillation process, the FTM acts as polishing step of either the top or bottom product of the distillation column, especially when high purity products are required.
[0027] The FTM according to various embodiments of the invention provides non- obvious advantages over conventional membranes. For example, the FTM according to at least one embodiment of the invention provides a FTM, which is operable for separating aromatics from a hydrocarbon stream having both aromatics and aliphatic compounds, and a process for making and using the FTM, which reduce investment and operating costs associated with aromatic separation from the hydrocarbon stream due to savings from reduced energy consumption required by the overall process and a reduction of cost for membrane replacement.
EXAMPLES
[0028] The following examples are given for the purpose of illustrating embodiments of the present invention. However, it is to be understood mat these examples are merely illustrative in nature, and that the process embodiments of the present invention are not necessarily limited thereto.
[0029] A hydrocarbon feed containing both aromatic and aliphatic compounds was prepared having a 1:4 ratio of benzene to cyclohexane. Cyclohexane was used as a representative of an aliphatic compound because its size and boiling point are similar to benzene. The membrane housing was created using a cell, separated into two compartments by a porous metal plate (i.e., a membrane support) with the hydrophilic polymer membrane matrix being disposed on the porous metal plate. The membrane housing was attached via a pump through a 5 L reservoir tank filled with a liquid mixture of the benzene-cyclohexane solution. The feed solution of known composition was pumped past the feed side of the membrane cell and then returned back to the reservoir tank at a controlled flow rate. The benzene concentration in the reservoir was measured versus time with a gas chromatograph (e.g., Varian 3300) equipped with a thermal detector and integrator. Transmembrane fluxes were generated by a downstream vacuum pump and the permeation measurement was carried out under vacuum on the downstream side of the membrane. The upstream pressure was maintained at atmospheric pressure. The other side of the membrane housing was normally attached through a liquid nitrogen cold trap to a vacuum pump to condense and collect the permeate vapor. The weight and concentration of the accumulated permeate in the cold trap were also determined with time by measurement of sample weight collected and by gas chromatography analysis, respectively. In a typical pervaporation experiment, membrane fluxes were allowed to stabilize for about two to three hours before permeate samples were collected over a period of about one to three hours. The experiments were performed for permeate pressure of 0.2 mmHg, temperature of 30°C and for different polymeric membrane types. [0030] In order to create the hydrophilic polymer membrane matrix, several casting solutions were prepared by dissolving various amounts of PVA and SA separately in distilled water at about 90° C to make a homogeneous solution for each polymer. A carrier solution was prepared by mixing amounts between 2 to 15 weight percent AgNO3 and 5 weight percent of a glutaraldehyde (GA) cross-linking agent in distilled water. The casting solutions were then coated on the membrane support (PAN) and left to dry over night The coated membrane was then dipped in the carrier solution for about 5 mins and then taken out to dry over night The composite membrane became dark green upon dipping it in the cross-linking and carrier solution. The compositions of the four membranes are provided in Table I below:
Table I: Compositional Make-up of the Membranes
Figure imgf000009_0001
[0031] The prepared FTMs were tested with feed concentration of 1:4 (wt/wt) benzene:cyclohexane in the membrane housing described above with the permeate side kept under vacuum. The results are provided in Table II below:
Table II: Experimental Results for Various Membrane Formulations
Figure imgf000009_0002
Figure imgf000010_0003
[0032] The fhix was calculated based on the following equation:
Figure imgf000010_0002
where q is the flux, m is the mass of the permeate fluid (kg), A is the cross sectional area of the effective membrane (m2), t is time (hour).
[0033] The total benzene-cyclohexane flux was determined from the liquid collected in me cold trap, the time of collection, and the membrane surface area in contact with the feed solution. The individual benzene and cyclohexane fluxes were calculated from the total flux and the benzene concentration.
[0034] The separation factor of the process was determined by the following equation:
Figure imgf000010_0001
where [Ca]p is me concentration of benzene in the permeate, [Cn]p is the concentration of cyclohexane in the permeate, [Ca]f is the concentration of benzene in the feed, and [Cn]f is the concentration of cyclohexane in the feed.
[0035] The present invention may suitably comprise, consist or consist essentially of the elements disclosed and may be practiced in the absence of an element not disclosed. For example, it can be recognized by those skilled in the art that certain steps can be combined into a single step. [0036] Unless defined otherwise, all technical and scientific terms used have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs.
[0037] The singular forms "a", "an," and "the" include plural referents, unless the context clearly dictates otherwise.
[0038] As used herein and in the appended claims, the words "comprise," "has," and "include" and all grammatical variations thereof are each intended to have an open, non- limiting meaning that does not exclude additional elements or steps.
[0039] "Optionally" means that the subsequently described event or circumstances may or may not occur. The description includes instances where the event or circumstance occurs and instances where it does not occur.
[0040] Ranges may be expressed herein as from about one particular value, and/or to about another particular value. When such a range is expressed, it is to be understood that another embodiment is from the one particular value and/or to the other particular value, along with all combinations within said range.
[0041] Although the present invention has been described in detail, it should be understood that various changes, substitutions, and alterations can be made hereupon without departing from the principle and scope of the invention. Accordingly, the scope of the present invention should be determined by me following claims and their appropriate legal equivalents.

Claims

CLAIMS We claim:
1. An apparatus for separating aromatic hydrocarbons from an aromatic hydrocarbon feed stream, the apparatus comprising:
a membrane support;
a hydrophilic polymer membrane matrix disposed on the membrane support, the hydrophilic polymer membrane matrix comprising an effective amount of polyvinyl alcohol and an effective amount of sodium alginate;
a carrier agent bonded to me hydrophilic polymer membrane matrix using a cross- linking agent, the carrier agent exhibiting a greater affinity for aromatics compared to aliphatics; and
a membrane housing configured to hold the membrane support, the membrane housing comprising an inlet, a permeate outlet, and a retentate outlet, the inlet being operable to receive the aromatic hydrocarbon feed stream, the permeate outlet being operable to discharge a permeate stream, and the retentate outlet being operable to discharge a retentate stream,
wherein the apparatus is operable to separate aromatic hydrocarbons from non- aromatic hydrocarbons when the aromatic hydrocarbon feed stream is introduced into the membrane housing.
2. The apparatus as claimed in Claim 1, wherein the carrier agent is selected from the group consisting of metal salts, amines and combinations thereof
3. The apparatus as claimed in either claim 1 or claim 2, wherein the carrier agent is bonded to the hydrophilic polymer membrane matrix by obtaining a carrier solution and contacting the carrier solution with the hydrophilic polymer membrane matrix, the carrier solution comprising silver nitrate in an amount from about 2 to about 15 weight percent and glutaraldehyde in an amount of about 5 weight percent with water.
4. The apparatus as claimed in any of the preceding claims, wherein the membrane support comprises polyacrylonitrile.
5. The apparatus as claimed in any of the preceding claims, wherein the hydrophilic polymer membrane matrix further comprises an additional hydrophilic polymer selected from the group consisting of polyacrylic acid, chitosan, polyacryl amide, polyvinyl amine, and combinations thereof.
6. The apparatus as claimed in any of the preceding claims, wherein the hydrophilic polymer membrane matrix is disposed on the membrane support by coating the membrane support with a casting solution, the casting solution comprising polyvinyl alcohol in an amount from about 1 to about 5 weight percent and sodium alginate in an amount from about 1 to about 5 weight percent with water.
7. The apparatus as claimed in any of the preceding claims, wherein the cross- linking agent comprises glutaraldehyde.
8. The apparatus as claimed in any of the preceding claims, wherein the membrane housing is selected from the group consisting of a spiral wound housing, a plate and frame housing, and a hollow-fiber bundled housing.
9. The apparatus as claimed in any of the preceding claims, wherein the apparatus is operable to have a selectivity of at least about 40.
10. A method of making a facilitated transport membrane, the method comprising: obtaining a casting solution comprising a hydrophilic polymer and distilled water; coating a membrane support with the casting solution to form a hydrophilic polymer membrane support;
drying the hydrophilic polymer membrane support;
obtaining a carrier solution comprising a carrier agent, a cross-linking agent, and distilled water;
contacting the carrier solution to the hydrophilic polymer membrane support; and drying the hydrophilic polymer membrane support to form the facilitated transport membrane, the facilitated transport membrane being operable to separate aromatic components from non-aromatic components when a hydrocarbon stream comprised of aromatic and non-aromatic hydrocarbons is introduced to the facilitated transport membrane under membrane operating conditions.
11. The method as claimed in Claim 10, wherein the carrier agent is selected from the group consisting of metal salts, amines and combinations thereof
12. The method as claimed in either of Claim 10 or 11, wherein the obtaining the carrier solution further comprises dissolving silver nitrate in an amount from about two to about fifteen weight percent with glutaraldehyde in an amount of about five weight percent in distilled water.
13. The method as claimed in any of Claims 10-12, wherein the hydrophilic polymer is selected from the group consisting of polyvinyl alcohol, sodium alginate, polyacrylic acid, chitosan, polyacryl amide, polyvinyl amine and combinations thereof
14. The method as claimed in any of Claims 10-13, wherein the obtaining the casting solution further comprises dissolving up to five weight percent of the hydrophilic polymer in distilled water.
15. The method as claimed in any of Claims 10-14, wherein the obtaining the casting solution further comprises dissolving polyvinyl alcohol in an amount from about 1 to about 5 weight percent with sodium alginate in an amount from about 1 to about 5 weight percent in distilled water.
16. The method as claimed in any of Claims 10-15, wherein the membrane operating conditions comprise pervaporation conditions.
17. A method for using a facilitated transport membrane to separate aromatic components from non-aromatic components, the method comprising:
feeding a hydrocarbon stream comprising aromatic components and non-aromatic components into the inlet of the apparatus of Claim 1 under membrane operating conditions such that at least a portion of the aromatic components diffuse across the hydrophilic polymer membrane matrix;
withdrawing a permeate stream enriched in aromatic components compared to the hydrocarbon stream through the permeate outlet; and
withdrawing a retentate stream enriched in non-aromatic components compared to the hydrocarbon stream through the retentate outlet
18. The method as claimed in Claim 17, further comprising:
introducing the retentate stream to a distillation column under distillation conditions to remove additional aromatic components to form a lean non-aromatic stream and a lean aromatic stream.
19. The method as claimed in either of claim 17 or 18, wherein the membrane operating conditions comprise pervaporation conditions.
20. The method as claimed in any of Claims 17-19, wherein the hydrocarbon stream is in a liquid phase.
PCT/US2013/028495 2012-03-02 2013-03-01 Facilitated transport membrane for the separation of aromatics from non-aromatics WO2013130923A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014560076A JP6188731B2 (en) 2012-03-02 2013-03-01 Facilitated transport membrane for separating aromatics from non-aromatics
EP13711492.2A EP2819770B8 (en) 2012-03-02 2013-03-01 Facilitated transport membrane for the separation of aromatics from non-aromatics
KR1020147027975A KR101811918B1 (en) 2012-03-02 2013-03-01 Facilitated Transport Membrane For the Separation of Aromatics from Non-Aromatics
CN201380012258.7A CN104168985B (en) 2012-03-02 2013-03-01 For the promotion transport membrane that aromatic compounds is separated with non-aromatic compound

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201261606080P 2012-03-02 2012-03-02
US61/606,080 2012-03-02

Publications (1)

Publication Number Publication Date
WO2013130923A1 true WO2013130923A1 (en) 2013-09-06

Family

ID=47915321

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2013/028495 WO2013130923A1 (en) 2012-03-02 2013-03-01 Facilitated transport membrane for the separation of aromatics from non-aromatics

Country Status (6)

Country Link
US (1) US9056283B2 (en)
EP (1) EP2819770B8 (en)
JP (1) JP6188731B2 (en)
KR (1) KR101811918B1 (en)
CN (1) CN104168985B (en)
WO (1) WO2013130923A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103657609A (en) * 2013-11-29 2014-03-26 黎明职业大学 High-strength super-macroporous separating medium for plant polyphenols extraction and preparation method thereof
US11628394B2 (en) 2016-08-08 2023-04-18 Asahi Kasei Kabushiki Kaisha Gas separation membrane module

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013130923A1 (en) * 2012-03-02 2013-09-06 Saudi Arabian Oil Company Facilitated transport membrane for the separation of aromatics from non-aromatics
US10618008B2 (en) 2015-07-01 2020-04-14 3M Innovative Properties Company Polymeric ionomer separation membranes and methods of use
US10478778B2 (en) 2015-07-01 2019-11-19 3M Innovative Properties Company Composite membranes with improved performance and/or durability and methods of use
JP2018522718A (en) 2015-07-01 2018-08-16 スリーエム イノベイティブ プロパティズ カンパニー PVP-containing and / or PVL-containing composite membrane and method of use
JP6613112B2 (en) * 2015-11-16 2019-11-27 旭化成株式会社 Gas separation membrane
KR20170079234A (en) * 2015-12-30 2017-07-10 상명대학교산학협력단 Polymer electrolyte membrane containing nitrate for SF6 separation
US20190193022A1 (en) * 2016-08-31 2019-06-27 Asahi Kasei Kabushiki Kaisha Gas Separation Membrane
CN110917911B (en) * 2019-12-09 2021-08-24 南京惟新环保装备技术研究院有限公司 One-step formed hollow fiber nanofiltration membrane yarn and preparation method thereof
CN112058093A (en) * 2020-09-02 2020-12-11 蓝星(杭州)膜工业有限公司 Preparation method of anti-pollution composite nanofiltration membrane with network structure
CN112316751A (en) * 2020-10-29 2021-02-05 南京工业大学 Separation method of circulating tumor cells

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4985147A (en) * 1985-01-08 1991-01-15 Agency Of Industrial Science And Technology Liquid separation membrane for pervaporation
US5062866A (en) * 1988-10-13 1991-11-05 Exxon Research And Engineering Co. Polymeric membrane and process for separation of aliphatically unsaturated hydrocarbons
US5670051A (en) * 1996-05-23 1997-09-23 Membrane Technology And Research, Inc. Olefin separation membrane and process
US7045062B1 (en) * 2003-01-21 2006-05-16 Seventy-Seventh Meridian Corporation, Llc Pervaporation membranes and methods of use
EP2172259A1 (en) * 2007-06-28 2010-04-07 Nitto Denko Corporation Composite semipermeable membranes and process for production thereof

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3567632A (en) * 1968-09-04 1971-03-02 Du Pont Permselective,aromatic,nitrogen-containing polymeric membranes
US3556991A (en) * 1968-12-06 1971-01-19 Universal Oil Prod Co Method for the solvent extraction of aromatic hydrocarbons
GB1431946A (en) * 1972-05-12 1976-04-14 Standard Oil Co Process for separation of unsaturated hydrocarbons
US3996589A (en) 1972-12-22 1976-12-07 Rca Corporation Monopulse radar system
DE2627629C3 (en) 1976-06-19 1979-12-20 Bayer Ag, 5090 Leverkusen Process for the separation of aromatic * hydrocarbons from mixtures with other organic compounds with the help of plastic membranes
US4802987A (en) 1984-02-24 1989-02-07 Exxon Research And Engineering Company Selective permeation of aromatic hydrocarbons through polyethylene glycol impregnated regenerated cellulose or cellulose acetate membranes
US4532029A (en) 1984-04-27 1985-07-30 Exxon Research And Engineering Co. Aromatic solvent upgrading using membranes
JPS627404A (en) * 1985-01-30 1987-01-14 Agency Of Ind Science & Technol Anionic polysaccharides type liquid separation membrane
US4914064A (en) 1987-10-14 1990-04-03 Exxon Research And Engineering Company Highly aromatic polyurea/urethane membranes and their use for the separation of aromatics from non-aromatics
US5030355A (en) 1987-10-14 1991-07-09 Exxon Research & Engineering Company Thin film composite membrane prepared by suspension deposition
US5063186A (en) * 1987-10-14 1991-11-05 Exxon Research & Engineering Company Highly aromatic polyurea/urethane membranes and their use of the separation of aromatics from non-aromatics
US4828773A (en) 1987-10-14 1989-05-09 Exxon Research And Engineering Company Highly aromatic anisotropic polyurea/urethane membranes and their use for the separation of aromatics from non-aromatics
US4879044A (en) 1987-10-14 1989-11-07 Exxon Research And Engineering Company Highly aromatic anisotropic polyurea/urethane membranes and their use for the separation of aromatics from non aromatics
US5055632A (en) 1987-10-14 1991-10-08 Exxon Research & Engineering Company Highly aromatic polyurea/urethane membranes and their use for the separation of aromatics from non-aromatics
DE3824359A1 (en) 1988-04-07 1989-10-19 Bayer Ag COMPOSITE MEMBRANES, METHOD FOR THEIR PRODUCTION AND THEIR USE
US5019666A (en) 1988-08-04 1991-05-28 Exxon Research And Engineering Company Non-porous polycarbonate membranes for separation of aromatics from saturates
US5015268A (en) 1988-10-13 1991-05-14 Exxon Research And Engineering Co. Polymeric membrane and process for separating aliphatically unsaturated hydrocarbons
JPH02138136A (en) * 1988-11-07 1990-05-28 Exxon Res & Eng Co Selective separation of aromatic hydrocarbon from mixture of aromatic hydrocarbon and saturated hydrocarbon using polyethylene glycol-impregnated hydrophilic membrane
US4929357A (en) 1989-08-09 1990-05-29 Exxon Research And Engineering Company Isocyanurate crosslinked polyurethane membranes and their use for the separation of aromatics from non-aromatics
US4929358A (en) 1989-08-09 1990-05-29 Exxon Research And Engineering Company Polyurethane-imide membranes and their use for the separation of aromatics from non-aromatics
US4976868A (en) 1989-10-16 1990-12-11 Exxon Research And Engineering Company Polyester membranes for aromatics/saturates separation
US5057641A (en) * 1990-04-09 1991-10-15 The Standard Oil Company High pressure facilitated membranes for selective separation and process for the use thereof
CA2040798A1 (en) * 1990-05-25 1991-11-26 Dean T. Tsou Facilitated liquid membranes for olefin/paraffin gas separations and related process
US5055631A (en) 1990-07-11 1991-10-08 Exxon Research & Engineering Company Sulfonated polysulfone membranes for aromatics/saturates separation
US5177296A (en) 1991-10-11 1993-01-05 Exxon Research And Engineering Company Saturated polyesters and crosslinked membranes therefrom for aromatics/saturates separation
CA2100643A1 (en) 1992-08-14 1994-02-15 Guido Sartori Fluorinated polyolefin membranes for aromatics/saturates separation
US5288712A (en) * 1992-10-07 1994-02-22 Exxon Research & Engineering Co. Pervaporation process employing permeate recycle
JPH07275672A (en) * 1993-12-24 1995-10-24 Agency Of Ind Science & Technol Production of polymeric gel composite membrane, gas separation membrane and gas separation accelerating transport membrane
US5498823A (en) * 1994-02-01 1996-03-12 Regents Of The University Of Colorado Ion-exchange supports for facilitated transport membranes with enhanced selectivity
US5550199A (en) 1994-12-02 1996-08-27 Exxon Research And Engineering Company Diepoxide crosslinked/esterified polyimide-aliphatic polyester copolymers
US6187987B1 (en) * 1998-07-30 2001-02-13 Exxon Mobil Corporation Recovery of aromatic hydrocarbons using lubricating oil conditioned membranes
KR100575113B1 (en) * 2000-06-21 2006-05-03 가부시키가이샤 구라레 Porous hollow fiber membranes and method of making the same
US20020139719A1 (en) * 2000-12-28 2002-10-03 Minhas Bhupender S. Removal of thiophenic sulfur from gasoline by membrane separation process
US7094333B2 (en) 2001-09-04 2006-08-22 The Regents Of The University Of Michigan Selective sorbents for purification of hydrocarbons
US20030150795A1 (en) 2002-01-25 2003-08-14 Dorgan John R. Polymer blends and methods of separation using the same
US6899743B2 (en) 2002-06-12 2005-05-31 Membrane Technology And Research, Inc. Separation of organic mixtures using gas separation or pervaporation and dephlegmation
JP3999110B2 (en) * 2002-11-22 2007-10-31 大陽工業株式会社 Radio-controlled motorcycle toy
US7341663B2 (en) 2004-12-16 2008-03-11 The United States Of America As Represented By The Secretary Of Agriculture Spiral-wound liquid membrane module for separation of fluids and gases
US7638053B2 (en) 2005-06-22 2009-12-29 General Electric Company Poly(meth)acrylate membranes for separation of hydrocarbon mixtures
US7910012B2 (en) 2007-07-16 2011-03-22 General Electric Company Composition, membrane, and associated method
CN101732998B (en) * 2010-01-25 2012-03-07 杭州水处理技术研究开发中心有限公司 Preparation method for cross-linking polyvinyl alcohol furfural nanofiltration membrane
WO2013130923A1 (en) * 2012-03-02 2013-09-06 Saudi Arabian Oil Company Facilitated transport membrane for the separation of aromatics from non-aromatics

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4985147A (en) * 1985-01-08 1991-01-15 Agency Of Industrial Science And Technology Liquid separation membrane for pervaporation
US5062866A (en) * 1988-10-13 1991-11-05 Exxon Research And Engineering Co. Polymeric membrane and process for separation of aliphatically unsaturated hydrocarbons
US5670051A (en) * 1996-05-23 1997-09-23 Membrane Technology And Research, Inc. Olefin separation membrane and process
US7045062B1 (en) * 2003-01-21 2006-05-16 Seventy-Seventh Meridian Corporation, Llc Pervaporation membranes and methods of use
EP2172259A1 (en) * 2007-06-28 2010-04-07 Nitto Denko Corporation Composite semipermeable membranes and process for production thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103657609A (en) * 2013-11-29 2014-03-26 黎明职业大学 High-strength super-macroporous separating medium for plant polyphenols extraction and preparation method thereof
US11628394B2 (en) 2016-08-08 2023-04-18 Asahi Kasei Kabushiki Kaisha Gas separation membrane module

Also Published As

Publication number Publication date
EP2819770B1 (en) 2018-04-25
JP2015508710A (en) 2015-03-23
KR20140130550A (en) 2014-11-10
EP2819770B8 (en) 2018-06-06
EP2819770A1 (en) 2015-01-07
CN104168985B (en) 2017-06-06
US9056283B2 (en) 2015-06-16
JP6188731B2 (en) 2017-08-30
CN104168985A (en) 2014-11-26
US20130228515A1 (en) 2013-09-05
KR101811918B1 (en) 2018-01-25

Similar Documents

Publication Publication Date Title
US9056283B2 (en) Facilitated transport membrane for the separation of aromatics from non-aromatics
Liu et al. Organic solvent reverse osmosis membranes for organic liquid mixture separation: A review
Liang et al. Membrane separation in organic liquid: technologies, achievements, and opportunities
TW518248B (en) Method of separating aromatic hydrocarbons using asymmetric polyimide membrane treated with lubricating oil
US6649061B2 (en) Membrane process for separating sulfur compounds from FCC light naphtha
US20110042315A1 (en) Pervaporation composite membrane for aqueous solution separation and methods for using the same
CN101229486B (en) Method of preparing ionic liquid supporting liquid sheet for organic solvent separation
CN101143803B (en) Method for separating dimethyl carbonate and methanol azeotrope
US20120132589A1 (en) Supported ionic liquid membrane system and process for aromatic separation from hydrocarbon feeds
EP2919894B1 (en) Improved membrane separation process using mixed vapor-liquid feed
Matuschewski et al. MSE—modified membranes in organophilic pervaporation for aromatics/aliphatics separation
Kamiya et al. Separation of aromatic compounds from hydrocarbon mixtures by vapor permeation using liquid membranes with ionic liquids
US8203028B2 (en) Processes for olefin/paraffin separation utilizing porous, hydrophobic poly(ether ether ketone) membranes
CN102186780A (en) Process for the purification of an aqueous stream coming from the fischer-tropsch reaction
WO2002050212A2 (en) A process for deacidifying crude oil
EP3908395A1 (en) Dehydration of a mixture containing a diol with high water content using optimized pervaporation process
Khachonbun Membrane based triethylene glycol separation and recovery from gas separation plant wastewater
Nawawi et al. Pervaporation dehydration of isopropanol-water systems using chitosa membranes
Takht Ravanchi et al. Immobilized liquid membrane for propylene-propane separation
Dudek et al. Application of chitosan membranes for permeation and pervaporation
DE4447235A1 (en) Removal of solvents from fluid mixts., for recovery of pure solvents
Davey Lower Energy Recovery of Dilute Organics from Fermentation Broths
Harun Development of Hybrid Membrane (polysulfone and Zeolites) for Gas Separation Application
White et al. Aromatics Enrichment in Refinery Streams using Solvent Resistant Membranes
Farnand et al. Reverse osmosis fractionation of petroleum and synthetic crude distillates

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13711492

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013711492

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014560076

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147027975

Country of ref document: KR

Kind code of ref document: A