WO2013129710A1 - Label-free aptamer biosensor - Google Patents

Label-free aptamer biosensor Download PDF

Info

Publication number
WO2013129710A1
WO2013129710A1 PCT/KR2012/001453 KR2012001453W WO2013129710A1 WO 2013129710 A1 WO2013129710 A1 WO 2013129710A1 KR 2012001453 W KR2012001453 W KR 2012001453W WO 2013129710 A1 WO2013129710 A1 WO 2013129710A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrochemically active
aptamer
electrode
active particles
analyte
Prior art date
Application number
PCT/KR2012/001453
Other languages
French (fr)
Korean (ko)
Inventor
신재호
최정연
윤종해
구현우
이정봉
이지연
한준희
남학현
차근식
Original Assignee
주식회사 아이센스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 아이센스 filed Critical 주식회사 아이센스
Priority to PCT/KR2012/001453 priority Critical patent/WO2013129710A1/en
Publication of WO2013129710A1 publication Critical patent/WO2013129710A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3277Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction being a redox reaction, e.g. detection by cyclic voltammetry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54366Apparatus specially adapted for solid-phase testing
    • G01N33/54373Apparatus specially adapted for solid-phase testing involving physiochemical end-point determination, e.g. wave-guides, FETS, gratings
    • G01N33/5438Electrodes

Definitions

  • the present invention utilizes the screening effect of electrochemically active particles on an electrode by analyte that specifically binds to the aptamer immobilized on the electrode, thereby improving the sensitivity, reproducibility and reliability of the sensor without complex pretreatment and analysis. For improved aptamer biosensors.
  • Aptamer a molecular recognition material that specifically binds to various substances (target molecules) such as proteins, enzymes or small drugs, has a high affinity and specificity for target molecules compared to antibodies, and is modified as a small molecule structure. Easy to use, high stability, easy to produce, rarely biomolecular reaction occurs, and easy to transform into a binding material for new target molecules, so it is easy to discover new aptamers. Has been used.
  • 'aptamer biosensors' 'aptammer sensors' or simply 'sensors'
  • Sensors using aptamers are labeled and unlabeled.
  • the labeling method is similar to the sandwich assay of the immunoassay. After the first aptamer 13 is immobilized, the analyte according to the concentration is reacted and the labeling material is conjugated again. The method is measured using the secondary aptamer 15 (Zhou, L .; Ou, LJ; Chu, X .; Shen, GL; Yu, RQ Anal. Chem. 2007, 79, 7492-7500). While this labeling method has high sensitivity, it is difficult to find aptamers having two other binding sites of the analyte, and it is also difficult to bond labeling materials 16 such as isotopes and fluorescent materials to the ends of the secondary aptamers. The disadvantage is that the steps are complicated and the measurement takes a long time.
  • the non-labeling method does not require a complicated labeling system, and has the advantage that it can be analyzed quickly without using a second aptamer.
  • Unlabeled methods require expensive equipment and skilled measurers and have high detection limits (XB Yin et al. Anal. Chem. 2009, 81, 9929-9305 and Rodrluez et al. Talanta 2009, 78). , 212-216).
  • the present invention aims to provide a sensor that can be used in a simple manner by omitting complex pretreatment or analytical processes as an aptamer sensor, having a low detection limit, that is, having high sensitivity and providing reliable results.
  • the present invention is to be used in the aptamer sensor, to provide a nanoparticle exhibiting electrochemical activity.
  • the present invention includes an electrode and an aptamer specifically binding to an analyte immobilized on the electrode, the electrochemically active particles generating an electrochemical signal by a redox reaction on the electrode surface.
  • the electrochemical signal provides an aptamer biosensor, characterized in that it is reduced by the screening effect on the particles when the analyte is bound to the aptamer.
  • the electrochemically active particles are silver (Ag), gold (Au), platinum (Pt), copper (Cu), tin (Sn), iron (Fe), nickel (Ni), ruthenium (Ru), titanium (Ti), tantalum (Ta), niobium (Nb), zirconium (Zr), aluminum (Al), hafnium (Hf), tungsten (W), yttrium (Y), zinc (Zn), lanthanum (La) , Cesium (Ce), praseodymium (Pr), neodymium (Nd), samarium (Sm), antimony (Sb), bismuth (Bi), lead (Pb), thallium (Tl), indium (In), tellurium ( Te, chromium (Cr), vanadium (V), manganese (Mn), molybdenum (Mo), cobalt (Co), rhodium (Rh), palladium (Pd), osmium (O
  • the electrochemically active particles are silica (Si), silver (Ag), gold (Au), platinum (Pt), copper (Cu), tin (Sn), iron (Fe), nickel (Ni), ruthenium (Ru), titanium (Ti), tantalum (Ta), niobium (Nb), zirconium (Zr), aluminum (Al), hafnium (Hf), tungsten (W), yttrium (Y), zinc (Zn), Lanthanum (La), Cesium (Ce), Praseodymium (Pr), Neodymium (Nd), Samarium (Sm), Antimony (Sb), Bismuth (Bi), Lead (Pb), Thallium (Tl), Indium ), Tellurium (Te), chromium (Cr), vanadium (V), manganese (Mn), molybdenum (Mo), cobalt (Co), rhodium (Rh), palladium (Pd), osmium (Os
  • the electrochemically active compound is ferrocene (ferrocene), ferrocene derivatives (ferrocene derivatives), quinones (quinones), quinone derivatives (quinone derivatives), ruthenium amin complexes, osmium (I), osmium (II) ), Osmium (III) complexes, metallocene, metallocene derivatives, potassium hexacyanoferrate (II), meldola's blue, fr Prussian blue, dichlorophenolindophenol (DCPIP), o-phenylenediamine (o-PDA), 3,4-dihydroxybenzaldehyde (3,4-dihydroxybenzaldehyde (3) , 4-DHB)), viologen, 7,7,8,8-tetracyanoquinodimethane (7,7,8,8-tetracyanoquinodimethane (TCNQ)), tetrathiafulvalene ( TTF)), N
  • the electrochemically active particles are introduced on the surface with a compound derived from at least one selected from the group consisting of sulfonic acid, phosphoric acid, carboxylic acid and acetic acid By doing so, it is negatively charged.
  • the electrochemically active particles are positively charged by the introduction of quaternary amine or organic silane on the surface.
  • the electrode is a gold (Au) or carbon (C) electrode.
  • the gold (Au) electrode is a screen printing electrode using a gold disk electrode or gold sputtering (gold sputtering).
  • the carbon (C) electrode is a screen printing electrode using a carbon disk electrode or carbon paste (carbon paste).
  • the analyte is thrombin, B-type natriuretic peptide (BNP) or Carcinoembryonic antigen (CEA).
  • BNP B-type natriuretic peptide
  • CEA Carcinoembryonic antigen
  • the electrochemically active particles are ferrocene introduced into the silica nanoparticles.
  • the electrochemically active particles are those in which ferrocene and sulfonic acid groups are introduced into the silica nanoparticles.
  • the electrochemically active particles include silanol groups (Si-OH) and (3-aminopropyl) trimethoxysilane (3-Aminopropyl) triethoxysilane on the surface of silica nanoparticles;
  • [3- (2-amineethoxyamino) propyl] trimethoxysilane ([3- (2-Aminoethylamino) propyl] trimethoxysilane), and (3-aminopropyl) triethoxysilane triethoxysilane It is prepared by performing a process comprising introducing an amine group on the surface of the silica nanoparticles through a condensation reaction between one or more compounds selected from the group consisting of, and introducing a ferrocene in a coupling reaction with the amine group.
  • the electrochemically active particles further include introducing a sulfonic acid group through a ring opening reaction between silanol groups (Si-OH) and 1,3-propanesultone on the surface of the silica nanoparticles. It is manufactured by.
  • the present invention provides electrochemically active particles prepared from the above process.
  • the aptamer biosensor according to the present invention utilizes the screening effect of electrochemically active particles on an electrode by an analyte that specifically binds to an aptamer fixed on the electrode, thereby avoiding a complex pretreatment and analytical processes. Sensitivity, reproducibility and reliability can be improved.
  • the electrochemically active particles have a constant size to control the screening effect by the aptamer-analyte by adjusting the size, and in particular, the detection limit can be lowered by using the repulsive force with the analyte.
  • the present invention has the advantage that it can be analyzed in a short time as an economical, high sensitivity sensor with a low detection limit without the need for expensive equipment.
  • the sensor of the present invention can lower the detection limit to 10-16 M can be used in the field of studying the nucleotide sequence of the aptamer binding to a specific protein.
  • Figure 1 shows a comparison between the labeling method and the non-labeling method of the aptamer sensor.
  • FIG. 2 is a conceptual diagram of an aptamer sensor of the present invention.
  • Figure 3 shows the screening curve of the electrochemically active signal according to the screening effect for the electrochemically active particles of the present invention.
  • Figure 5 shows the process of introducing a sulfonic acid group having a negative charge to the silica nanoparticles of 7 nm and 14 nm introduced ferrocene.
  • FIG. 6 is a cyclic voltammetry diagram of the electrochemically active particles Fc- [a], Fc- [b], and Fc- [b] -SO3- prepared in Examples 1 and 2.
  • FIG. 6 is a cyclic voltammetry diagram of the electrochemically active particles Fc- [a], Fc- [b], and Fc- [b] -SO3- prepared in Examples 1 and 2.
  • FIG. 6 is a cyclic voltammetry diagram of the electrochemically active particles Fc- [a], Fc- [b], and Fc- [b] -SO3- prepared in Examples 1 and 2.
  • FIG. 10 shows the square voltammetry and calibration curve measured according to thrombin concentration in the thrombin aptamer sensor manufactured in Example 3 using the electrochemically active particles (Fc- [a]) prepared in Example 1.
  • FIG. will be.
  • FIG. 11 shows the square voltammetry and calibration curve measured according to thrombin concentration in the thrombin aptamer sensor manufactured in Example 3 using the electrochemically active particles (Fc- [b]) prepared in Example 2.
  • FIG. will be.
  • FIG. 12 is a square voltammetry and calibration curve measured according to thrombin concentration in the thrombin aptamer sensor manufactured in Example 3 using the electrochemically active particles (Fc- [b] -SO3-) prepared in Example 2.
  • Example 13 is a result of testing the specificity of the thrombin aptamer sensor manufactured in Example 3.
  • FIG. 14 is a square voltammetry and calibration curve measured according to BNP concentration in a BNP aptamer sensor prepared in Example 4 using the electrochemically active particles (Fc- [b] -SO3-) prepared in Example 2. FIG. It is shown together.
  • Example 15 is a square voltammetry and calibration curve measured according to the CEA concentration in the CEA aptamer sensor manufactured in Example 5 using the electrochemically active particles (Fc- [b] -SO3-) prepared in Example 2 It is shown together.
  • Figure 16 shows the calibration curve according to the analyte size in the aptamer sensor of the present invention (BNP (a), thrombin (b) and CEA (c) aptamer sensor).
  • the aptamer biosensor of the present invention detects an analyte in an unlabeled manner, and specifically includes an electrode and an aptamer specifically binding to an analyte immobilized on the electrode.
  • electrochemically active particles which produce an electrochemical signal by means of which the electrochemical signal is “hidden” with respect to the electrode when the analyte is bound to the aptamer Use the principle of "reduction".
  • the screening effect is to block the access of the electrochemically active particles on the electrode surface and thereby block the electrochemical signal thereby leading to a decrease in the signal.
  • the aptamer 15 having the screening effect fixed on the surface of the electrode physically binds to the molecule to which it specifically binds, that is, the analyte 14. 21 and 23 combined state).
  • the physical blocking means that when the analyte 14 is not bonded to the aptamer 15 fixed to the electrode surface in FIG. 2, the electrochemically active particles 21 and 23 are bonded as shown in the enlarged view on the right. Is generated by the electron transfer reaction or redox reaction on the electrode surface, but it is achieved by the inaccessibility of the electrode surface when the analyte 14 is bound to the aptamer 15). .
  • FIG. 3 The result of the signal change of the sensor of the present invention associated with the screening effect is shown in FIG. 3. That is, when the access of the analyte 14 to the aptamer on the electrode surface is increased, the access of the electrochemically active particles is blocked, thereby reducing the electrochemical signal detected by the sensor.
  • the higher the concentration of the analyte the more effective the redox reaction because the electrochemically active particles do not reach the electrode due to the screening effect, which results in an inverse calibration curve in which the electrochemical signal decreases depending on the concentration of the analyte.
  • the analyte may include, but is not limited to, thrombin, B-type natriuretic peptide (BNP), or carcinoembryonic antigen (CEA) as a substance to be detected by the sensor of the present invention. Includes all materials for which you want to develop aptamers.
  • the senor of the present invention can be used not only for the detection of analytes for which an aptamer has been developed, but also for developing an aptamer for any analyte.
  • electrochemically active particles include silver (Ag), gold (Au), platinum (Pt), copper (Cu), tin (Sn), iron (Fe), nickel (Ni), ruthenium (Ru), Titanium (Ti), Tantalum (Ta), Niobium (Nb), Zirconium (Zr), Aluminum (Al), Hafnium (Hf), Tungsten (W), Yttrium (Y), Zinc (Zn), Lanthanum (La) ), Cesium (Ce), praseodymium (Pr), neodymium (Nd), samarium (Sm), antimony (Sb), bismuth (Bi), lead (Pb), thallium (Tl), indium (In), tellurium (Te), chromium (Cr), vanadium (V), manganese (Mn), molybdenum (Mo),
  • the present invention can be used as the electrochemically active particles in the form of introducing the electrochemically active compound (23) on the surface of the conductive metal or their oxide or silica (Si) particles 21 as shown in FIG. . Specific examples thereof are described in FIG. 4 and the description of the following examples.
  • This type of electrochemically active particles can be used as a means of controlling the screening effect by adjusting the particle size according to the selection of conductive metals or their oxides or silica particles and electrochemically active compounds, and thus controlling the sensitivity of the sensor of the present invention. It can be advantageous.
  • the electrochemically active compounds introduced on the surface of the conductive metal or oxides or silica (Si) particles thereof include ferrocene, ferrocene derivatives, quinones, quinone derivatives, and ruthenium amine complexes.
  • ruthenium amin complexes osmium (I), osmium (II), osmium (III) complexes, metallocene, metallocene derivatives, potassium hexacyanoferrate (II) (pottasiumhexacyanoferrate), Meldola's blue, Prussian blue, dichlorophenolindophenol (DCPIP), o-phenylenediamine (o-PDA), 3, 4-dihydroxybenzaldehyde (3,4-dihydroxybenzaldehyde (3,4-DHB)), viologen, 7,7,8,8-tetracyanoquinodimethane (7,7,8,8 -tetracyanoquinodimethane (TCNQ)), tetrathiafulvalene (TTF), N-methylacidinium (NMA +), Tetrathiatetracene (TTT), N-methylphenazinium (NMP +), 3-methyl-2-benzothiozolinone
  • the electrochemically active particles are in the form of introducing an electrochemically active compound on the surface of a conductive metal or oxide or silica (Si) particles thereof
  • the conductive metal or oxides or silica (Si) particles thereof are preferably less than 100 nm. Particles having a size of 1 nm or more (hereinafter referred to as 'nano particles') are used.
  • silica nanoparticles can form stable bonds with various organic molecules, and have the advantage of being synthesized by controlling various sizes (see Beesley, CA; Murray, RW Langmuir 2009, 25, 10370-10375). . It also has the advantage of being able to combine with larger amounts of material even when using the same volume of particles because of its large surface area relative to the volume. Accordingly, the present invention utilizes silica nanoparticles in one embodiment for the preparation of electrochemically active particles, and functionalizes the surface by partial chemical reaction with inorganic materials and organic molecules to improve functionality. Impart desirable properties.
  • silica nanoparticles may be of various sizes synthesized from tetraethyl orthosilicate (TEOS) or tetramethyl orthosilicate (TMOS) using the Stover method, or of various sizes available commercially. Fumed silica nanoparticles can also be used.
  • TEOS tetraethyl orthosilicate
  • TMOS tetramethyl orthosilicate
  • silica nanoparticles selected from various sizes, such as, but not limited to, 7 having a number of hydroxyl groups introduced on the surface 7 nm or 14 nm, condensation-polymerization reaction of an organic silane having a primary amine or a secondary amine under anhydrous toluene under amine to nanoparticles
  • a method of introducing a ferrocene, which is a ferrocene having a carboxyl group through a coupling reaction between ferrocenecarboxylic acid and the amine may be used.
  • the organic silane is (3-aminopropyl) trimethoxy silane (3-Aminopropyl) triethoxysilane,
  • [3- (2-amineethoxyamino) propyl] trimethoxysilane ([3- (2-Aminoethylamino) propyl] trimethoxysilane), and (3-aminopropyl) triethoxysilane triethoxysilane It may be one or more compounds selected from the group consisting of.
  • the size of the electrochemically active particles is a means of controlling the sensitivity of the sensor.
  • the size of the whole particle is controlled by controlling the kind, size and amount of the conductive metal or their oxide or silica (Si) and the electrochemically active compound introduced to the surface thereof.
  • the analyte to be detected in the present invention is mostly negatively charged as a protein or glycoprotein. Therefore, if the electrochemically active particles have a negative charge, the covering effect may be further improved by the electric repulsive force.
  • a compound derived from at least one selected from the group consisting of sulfonic acid, phosphoric acid, carboxylic acid and acetic acid is introduced on the surface of the electrochemically active particles. To make a negative charge. Specific examples thereof are described in FIG. 5 and the description of the following examples.
  • the negatively charged electrochemically active particles also have the advantage of being kept very stable in solution by lowering the zeta potential.
  • the zeta potential is -38.5 ⁇ 0.2 mV for 14 nm size silica nanoparticles, and the zeta potential rapidly increases to -5.0 ⁇ 0.9 mV when ferrocene is introduced thereto. In this case, the repulsive force of the particles is weakened in the solution phase, causing agglomeration.
  • the zeta potential decreases rapidly to -52.5 ⁇ 2.1 mV, thus maintaining a very stable state in solution.
  • silanol groups and 1,3- groups which do not react to the surface of the silica nanoparticles exhibited electrochemically by the method as described above.
  • a method of introducing a sulfonic acid group through a ring opening reaction between propane sultones is used.
  • the surface of the electrochemically active particles is a substituent for introducing a positive charge, for example quaternary amine or organic silane. You can also introduce a positive charge. At this time, the signal of the sensor is changed by the attraction force with the analyte.
  • a two-electrode system including an electrode having the aptamer fixed as a working electrode and a reference electrode therefor may be used. It is also possible to use a three-electrode system further comprising an auxiliary electrode. Both the two-electrode system and the three-electrode system can be clearly understood by those skilled in the art.
  • the working electrode to which the aptamer is fixed may be a gold (Au) or carbon (C) electrode.
  • the gold electrode may be a gold disk electrode or a type including a gold surface deposited using gold sputtering.
  • the carbon electrode may be a carbon disk electrode or an electrode manufactured by screen printing using carbon paste.
  • the particles include silanol groups (Si-OH) and (3-aminopropyl) trimethoxysilane (3-Aminopropyl) triethoxysilane on the surface of silica nanoparticles;
  • the electrochemically active particles are negatively charged by introducing sulfonic acid groups through a ring opening reaction between silanol groups (Si-OH) and 1,3-propanesultone on the surface of silica nanoparticles.
  • Si-OH silanol groups
  • a process as shown in FIG. 5 was performed to prepare electrochemically active particles having negative charge. That is, an ultrasonic crusher was added to 30 mL of purified tetrahydrofuran after adding 0.6 g of 1 mmol potassium tert-butoxide (Acros, Geel, Belgium) and 0.3 g of the electrochemically active particles prepared above. It was dispersed completely using. After diluting 0.263 mL of 1,3-propanesultone (Aldrich) in 5 mL of tetrahydrofuran, the mixture was added dropwise using micropipet and reacted at 80 ° C. for 12 hours. The nanoparticles and the solution were separated at 9000 rpm using a centrifuge.
  • an ultrasonic crusher was added to 30 mL of purified tetrahydrofuran after adding 0.6 g of 1 mmol potassium tert-butoxide (Acros, Geel, Belgium) and 0.3 g of the electrochemically active particles
  • a planar-type electrode was manufactured by using ion deposition (working electrode: gold electrode) and screen printing (reference electrode: silver electrode).
  • Polyester (PE) was purchased from 3M (St. Paul, MN, USA) in the United States, silver chloride (Ag / AgCl) dough was used by Japan ASAHI, and insulator dough was used by Jujo, Japan. .
  • Plasma evaporator used NCVS-580S model of Nuricell of Korea and LS-150 product of Newlong Seimitsu Kogyo of Japan.
  • Gold was deposited on polyethylene terephthalate (PE) by ion deposition, and then screen printing was used to sequentially pattern the silver chloride dough and the insulation layer dough.
  • thiol groups were introduced at the five ends of the aptamer DNA to bind well with the gold electrode, and six thymine spacers were introduced for efficient binding with thrombin.
  • Aptamer (5'-SH-TTT TTT GGT TGG TGT GGT TGG-3 ') (Cosmo Genetech, Seoul, South Korea) that binds specifically to thrombin on a working electrode, 0.1 M PBS After dilution with pH 7.4 (10 mM NaCl, 5 mM KCl, 1 mM MgCl2), the aptamer was soaked in water at 90 ° C.
  • a sensor was prepared by introducing an aptamer of B-type Natriuretic Peptide (BNP) (molecular weight of 3 kDa), which is a cardiovascular disease marker.
  • BNP B-type Natriuretic Peptide
  • BNP aptamer (Cosmo Genetech, Seoul, Korea) having the sequence of 5'-SH-TTT TTT TAA ACG CTC AAA GGA CAG AGG GTG CGT AGG AAG GGT ATT CGA CAG GAG GCT CAC A-3 '
  • the sensor was manufactured in the same manner as in Example 3, except that it was fixed to.
  • a sensor was prepared by introducing an aptamer of a colon cancer marker, Carcinoembryonic antigen (CEA), a glycoprotein having a molecular weight of 150 kDa to 200 kDa.
  • CEA Carcinoembryonic antigen
  • the BNP aptamer (Cosmo Genetech, Seoul, Korea) having the sequence of 3'-SH-TTT TTT ATG ATT TCT GGT GGC TGT GCG TAG CTG TGG ATG TGG-5 'is fixed on the electrode surface.
  • the sensor was manufactured by the same procedure as in Example 3.
  • the electrochemically active particles (Fc- [a], Fc- [b], and Fc- [b] -SO3-) prepared in Examples 1 and 2 were buffered (0.1 M PBS pH 7.0 (NaCl 10 mM)). ) was completely dispersed using an ultrasonic grinder. The solution was measured by cyclic voltammetry using an electrochemical analyzer workstaion 760D instrument from CH Instrument, an electrochemical measuring instrument.
  • Electrochemically active particles (Fc- [a], Fc- [b], Fc- [b] -SO3-) prepared in Examples 1 and 2 using Model Tecnai 20 having an acceleration voltage of 200 kV and TEM images of bare silica nanoparticles (ie, 7 nm silica nanoparticles [a] and 14 nm silica nanoparticles [b]) were taken for comparison.
  • TEM images of Fc- [a] and Fc- [b] into which particles [a], [b] and their ferrocenes were introduced are shown in FIG. 7. In each case it can be seen that the size of the particles increased.
  • particles Fc- [a] had a size of 16.8 ⁇ 3.0
  • Fc- [b] had a size of 20.0 ⁇ 2.2
  • Fc- [b] -SO3- had a size of 20.6 ⁇ 2.5. . This is larger than the silica nanoparticles of 7 nm and 14 nm, respectively.
  • the 7 nm silica nanoparticles ([a]) and 14 nm silica nanoparticles ([b]) have negative charge values of -39.4 ⁇ 0.1 and -38.5 ⁇ 0.2 mV, respectively, an amine group and ferrocene are introduced into the surface.
  • the zeta potential of the surface was reduced to -0.6 ⁇ 1.2 and -0.5 ⁇ 0.9 mV, respectively. This results in the phenomenon of aggregation in aqueous solution.
  • Example 3 In order to measure the sensitivity of the aptamer biosensor prepared in Example 3, after applying thrombin to the electrode fixed to the aptamer on the surface in Example 3 by concentration, the aptamer and thrombin were reacted for 30 minutes (Sigma, St. Louis). , MO, USA). The thrombin that did not bind to the aptamer was then removed by washing.
  • electrochemically active particles Fc- [a], Fc- [) prepared in Examples 1 and 2 using buffer 0.1 M PBS pH 7.0 (NaCl 10 mM) as a base solution.
  • b] Fc- [b] -SO3-
  • the oxidation current was measured by square wave voltammetry using an electrochemical analyzer workstaion 760D instrument from CH Instrument (using an electrochemical analyzer workstaion 760D instrument from CH Instrument). The results are shown in Figs. 10 (Fc- [a]), 11 (Fc- [a]) and 12 (Fc- [b] -SO3-), respectively.
  • the screening effect was improved by the repulsive force between the electrochemically active particles having a negative charge and thrombin, and the detection limit was further improved to 10-16 M.
  • FIG. 12 the screening effect was improved by the repulsive force between the electrochemically active particles having a negative charge and thrombin, and the detection limit was further improved to 10-16 M.
  • ferrocene a single molecule having electrochemical activity instead of the electrochemically active particles (Fc- [a], Fc- [b], Fc- [b] -SO3-) prepared in Examples 1 and 2
  • the sensitivity of the sensor according to the thrombin concentration was measured using a concentration of 1 mM carboxylic acid (ferrocenecarboxylic acid).
  • CH Instrument's electrochemical analyzer workstaion 760D was used for cyclic voltammetry at a scanning rate of 100 mV / s. The results are shown in FIG.
  • the electrochemically active particles ((Fc- [b] -SO3-) prepared in Example 2 were prepared for the sensors manufactured in Examples 4 and 5.
  • the signal of the sensor according to the concentration of each analyte (ie, BNP and CEA) was measured using the same technique as that of the thrombin aptamer sensor in Experimental Example 2. The results are shown in FIG. In each case, the concentrations within the clinical ranges (BNP: 1x10-14 to 1x10-10 M and CEA: 1x10-13 to 1x10-9 M) were distinguished from each other to confirm detection.

Abstract

The present invention relates to a label-free aptamer biosensor, wherein electrochemically active particles generate an electrochemical signal by a redox reaction on the surface of an electrode when an analyte is bound to an aptamer fixed on the electrode so as to specifically bind to the analyte, and the electrochemical signal is reduced due to the screening effect of the electrochemically active particles, thereby enabling measurement of the presence and concentration of the analyte. The aptamer biosensor disclosed in the present invention uses the screening effect of electrochemically active particles on an electrode due to an analyte specifically binding to an aptamer fixed on an electrode, and thus it is possible to improve the sensitivity, reproducibility and reliability of the sensor even without complex pretreatment and analytical steps. Therefore, it is possible to rapidly and economically measure the presence and concentration of an analyte by employing the present invention.

Description

비표지 방식의 압타머 바이오센서Unlabeled Aptamer Biosensor
본 발명은 전극 위에 고정된 압타머와 특이적으로 결합하는 분석 물질에 의해 전극에 대한 전기화학적 활성 입자의 가리움 효과를 이용함으로써 복잡한 전처리 과정 및 분석 과정을 거치지 않으면서도 센서의 감도, 재현성 및 신뢰성이 향상된 압타머 바이오센서에 대한 것이다.The present invention utilizes the screening effect of electrochemically active particles on an electrode by analyte that specifically binds to the aptamer immobilized on the electrode, thereby improving the sensitivity, reproducibility and reliability of the sensor without complex pretreatment and analysis. For improved aptamer biosensors.
단백질, 효소 또는 작은 약물 등 다양한 물질(표적분자)에 대해 특이적으로 결합하는 분자 인식 물질인 압타머(Aptamer)는 항체와 비교할 때 표적분자에 대해 높은 친화성과 특이성을 가지고, 작은 분자 구조로서 변형이 용이하며, 안정성이 높고, 생산이 용이하며, 생체 거분 반응이 거의 일어나지 않고, 새로운 표적분자에 대한 결합 물질로의 변형이 용이하여 새로운 압타머 발굴이 용이하다는 등 많은 장점을 갖는 것으로서 면역센서에서 이용되어 왔다. Aptamer, a molecular recognition material that specifically binds to various substances (target molecules) such as proteins, enzymes or small drugs, has a high affinity and specificity for target molecules compared to antibodies, and is modified as a small molecule structure. Easy to use, high stability, easy to produce, rarely biomolecular reaction occurs, and easy to transform into a binding material for new target molecules, so it is easy to discover new aptamers. Has been used.
압타머를 이용한 센서(이하, '압타머 바이오센서', '압타머 센서' 또는 간단히 '센서'로 명명함)에는 표지 방식과 비표지 방식이 있다. Sensors using aptamers (hereinafter referred to as 'aptamer biosensors', 'aptammer sensors' or simply 'sensors') are labeled and unlabeled.
도 1에 도시된 바를 참조하면, 표지 방식은 면역분석법의 샌드위치 분석법(sandwich assay)과 유사한데, 1차 압타머(13)를 고정화 시킨 뒤에 농도에 따른 분석 물질을 반응시키고 다시 표지 물질이 접합된 2차 압타머(15)를 이용하여 측정하는 방법이다(Zhou, L.; Ou, L. J.; Chu, X.; Shen, G. L.; Yu, R. Q. Anal. Chem. 2007, 79, 7492-7500). 이러한 표지 방식은 높은 민감도를 갖는 반면 분석 물질의 다른 두 결합 부위를 갖는 압타머를 찾기 어렵고 2차 압타머 끝에 동위 원소, 형광 물질 등의 표지 물질(16)을 접합하는 데에도 어려움이 크며, 실험 단계가 복잡하고 측정 시간이 오래 걸린다는 단점이 있다.Referring to FIG. 1, the labeling method is similar to the sandwich assay of the immunoassay. After the first aptamer 13 is immobilized, the analyte according to the concentration is reacted and the labeling material is conjugated again. The method is measured using the secondary aptamer 15 (Zhou, L .; Ou, LJ; Chu, X .; Shen, GL; Yu, RQ Anal. Chem. 2007, 79, 7492-7500). While this labeling method has high sensitivity, it is difficult to find aptamers having two other binding sites of the analyte, and it is also difficult to bond labeling materials 16 such as isotopes and fluorescent materials to the ends of the secondary aptamers. The disadvantage is that the steps are complicated and the measurement takes a long time.
반면, 비표지 방식은 복잡한 표지 시스템이 필요 없는 방법으로, 2차 압타머를 사용하지 않아 빠른 시간 내에 분석할 수 있다는 장점을 갖고 있다. 그러나 비표지 방식은 고가의 장비 및 숙련된 측정자를 필요로 하고, 검출 한계가 높은 단점을 갖는다(X. B. Yin et al. Anal. Chem. 2009, 81, 9929-9305 및 Rodrluez et al. Talanta 2009, 78, 212-216).On the other hand, the non-labeling method does not require a complicated labeling system, and has the advantage that it can be analyzed quickly without using a second aptamer. Unlabeled methods, however, require expensive equipment and skilled measurers and have high detection limits (XB Yin et al. Anal. Chem. 2009, 81, 9929-9305 and Rodrluez et al. Talanta 2009, 78). , 212-216).
따라서, 비표지 방식으로서 민감도가 높고 고가의 장비나 숙련된 측정자가 아니더라도 신뢰성 있는 결과를 얻을 수 있는 압타머를 이용한 센서를 개발하고자 하는 노력이 계속되고 있다. 이를 위해 바이오 기술을 기반으로 나노 기술을 융합시킨 나노-바이오 기술을 통해 단백질을 검출하는 바이오센서에 대한 연구가 활발히 진행되고 있다. 나노-바이오 분야에서는 특정 바이오 물질의 검출, 분석 및 정량화를 위한 다양한 방법들이 개발되고 있다.Therefore, efforts have been made to develop sensors using aptamers that have high sensitivity as a non-labeling method and can obtain reliable results even if they are not expensive equipment or skilled measuring instruments. To this end, research is being actively conducted on biosensors that detect proteins through nano-bio technology that fuses nano technology based on bio technology. In the field of nano-bio, various methods for the detection, analysis and quantification of specific biomaterials have been developed.
나노 입자의 장점을 이용하여 면역 센서에 도입시키는 연구(Guonan Chen et al. Anal. Chem. 2010, 82, 1527-1534)가 활발히 진행되고 있다. 또한 전기화학적 활성을 갖는 나노 입자의 합성에 대한 연구(R. W. Murray et al. Langmuir 2009, 25, 10370-10375 및 S. George et al. ACS Nano 2010, 4, 15-19)와 이를 바이오센서에 적용시키는 연구(A. Fainstein et al. J. AM. CHEM. SOC. 2008, 130, 12690-12697)가 발표되었다.Research on introducing the advantages of nanoparticles into immune sensors (Guonan Chen et al. Anal. Chem. 2010, 82, 1527-1534) has been actively conducted. In addition, studies on the synthesis of nanoparticles with electrochemical activity (RW Murray et al. Langmuir 2009, 25, 10370-10375 and S. George et al. ACS Nano 2010, 4, 15-19) and their application to biosensors A study was published (A. Fainstein et al. J. AM. CHEM. SOC. 2008, 130, 12690-12697).
본 발명은 압타머 센서로서 복잡한 전처리 또는 분석 과정을 생략하고 간단한 방법으로 사용될 수 있으며, 낮은 검출 한계 즉, 높은 민감도를 가지며, 신뢰성 있는 결과를 제공할 수 있는 센서를 제시하고자 한다.The present invention aims to provide a sensor that can be used in a simple manner by omitting complex pretreatment or analytical processes as an aptamer sensor, having a low detection limit, that is, having high sensitivity and providing reliable results.
또한 본 발명은 상기 압타머 센서에 이용되는 것으로, 전기화학적 활성을 띄는 나노 입자를 제공하고자 한다.In addition, the present invention is to be used in the aptamer sensor, to provide a nanoparticle exhibiting electrochemical activity.
본 발명은 전극 및 상기 전극에 고정된 분석 물질과 특이적으로 결합하는 압타머를 포함하며, 상기 전극 표면에서의 산화환원 반응에 의해 전기화학적 신호를 생성하는 전기화학적 활성 입자에 의해 상기 분석 물질의 존재 및 농도를 측정하는 것으로, 상기 전기화학적 신호는 상기 압타머에 분석 물질이 결합되었을 때 상기 입자에 대한 가리움 효과에 의해 감소되는 것을 특징으로 하는 압타머 바이오센서를 제공한다.The present invention includes an electrode and an aptamer specifically binding to an analyte immobilized on the electrode, the electrochemically active particles generating an electrochemical signal by a redox reaction on the electrode surface. By measuring the presence and concentration, the electrochemical signal provides an aptamer biosensor, characterized in that it is reduced by the screening effect on the particles when the analyte is bound to the aptamer.
바람직하게, 상기 전기화학적 활성 입자는 은(Ag), 금(Au), 백금(Pt), 구리(Cu), 주석(Sn), 철(Fe), 니켈(Ni), 루테늄(Ru), 티타늄(Ti), 탄탈럼(Ta), 니오븀(Nb), 지르코늄(Zr), 알루미늄(Al), 하프늄(Hf), 텅스텐(W), 이트륨(Y), 아연(Zn), 란탄늄(La), 세슘(Ce), 프라세오디뮴(Pr), 네오디뮴(Nd), 사마륨(Sm), 안티모니(Sb), 비스무스(Bi), 납(Pb), 탈륨(Tl), 인듐(In), 텔루륨(Te), 크롬(Cr), 바나듐(V), 망간(Mn), 몰리브덴(Mo), 코발트(Co), 로듐(Rh), 팔라듐(Pd), 오스뮴(Os), 레륨(Re), 이리듐(Ir) 및 이들의 산화물로 이루어진 그룹에서 선택되는 1종 이상이다.Preferably, the electrochemically active particles are silver (Ag), gold (Au), platinum (Pt), copper (Cu), tin (Sn), iron (Fe), nickel (Ni), ruthenium (Ru), titanium (Ti), tantalum (Ta), niobium (Nb), zirconium (Zr), aluminum (Al), hafnium (Hf), tungsten (W), yttrium (Y), zinc (Zn), lanthanum (La) , Cesium (Ce), praseodymium (Pr), neodymium (Nd), samarium (Sm), antimony (Sb), bismuth (Bi), lead (Pb), thallium (Tl), indium (In), tellurium ( Te, chromium (Cr), vanadium (V), manganese (Mn), molybdenum (Mo), cobalt (Co), rhodium (Rh), palladium (Pd), osmium (Os), rhenium (Re), iridium ( Ir) and at least one selected from the group consisting of oxides thereof.
바람직하게, 상기 전기화학적 활성 입자는 실리카(Si), 은(Ag), 금(Au), 백금(Pt), 구리(Cu), 주석(Sn), 철(Fe), 니켈(Ni), 루테늄(Ru), 티타늄(Ti), 탄탈럼(Ta), 니오븀(Nb), 지르코늄(Zr), 알루미늄(Al), 하프늄(Hf), 텅스텐(W), 이트륨(Y), 아연(Zn), 란탄늄(La), 세슘(Ce), 프라세오디뮴(Pr), 네오디뮴(Nd), 사마륨(Sm), 안티모니(Sb), 비스무스(Bi), 납(Pb), 탈륨(Tl), 인듐(In), 텔루륨(Te), 크롬(Cr), 바나듐(V), 망간(Mn), 몰리브덴(Mo), 코발트(Co), 로듐(Rh), 팔라듐(Pd), 오스뮴(Os), 레륨(Re), 이리듐(Ir) 및 이들의 산화물로 이루어진 그룹에서 선택되는 1종 이상의 표면에 전극 표면에서 산화환원 반응하는 전기화학적 활성 화합물이 도입된 것이다. Preferably, the electrochemically active particles are silica (Si), silver (Ag), gold (Au), platinum (Pt), copper (Cu), tin (Sn), iron (Fe), nickel (Ni), ruthenium (Ru), titanium (Ti), tantalum (Ta), niobium (Nb), zirconium (Zr), aluminum (Al), hafnium (Hf), tungsten (W), yttrium (Y), zinc (Zn), Lanthanum (La), Cesium (Ce), Praseodymium (Pr), Neodymium (Nd), Samarium (Sm), Antimony (Sb), Bismuth (Bi), Lead (Pb), Thallium (Tl), Indium ), Tellurium (Te), chromium (Cr), vanadium (V), manganese (Mn), molybdenum (Mo), cobalt (Co), rhodium (Rh), palladium (Pd), osmium (Os), rhenium ( An electrochemically active compound which redox-reacts at the electrode surface is introduced to at least one surface selected from the group consisting of Re), iridium (Ir) and oxides thereof.
바람직하게, 상기 전기화학적 활성 화합물은 페로센(ferrocene), 페로센 유도체(ferrocene derivatives), 퀴논(quinones), 퀴논 유도체(quinone derivatives), 루테늄 아민 복합체(ruthenium amin complexes), 오스뮴(I), 오스뮴(II), 오스뮴(III) 복합체(osmium complexes), 메탈로센(metallocene), 메탈로센 복합체(metallocene derivatives), 포타슘헥사시아노페레이트(II)(pottasiumhexacyanoferrate), 멜돌라 블루(Meldola's blue), 프루시안 블루(Prussian blue), 디클로로페놀인도페놀(dichlorophenolindophenol(DCPIP)), o-페닐렌디아민(o-phenylenediamine(o-PDA)), 3,4-디히드록시벤즈알데히드(3,4-dihydroxybenzaldehyde(3,4-DHB)), 비오로겐(viologen), 7,7,8,8-테트라시아노퀴노디메탄(7,7,8,8-tetracyanoquinodimethane(TCNQ)), 테트라티아풀발렌(tetrathiafulvalene(TTF)), N-메틸아시디늄(N-methylacidinium(NMA+)), 테트라티아테트라센(tetrathiatetracene(TTT)), N-메틸페나지늄(N-methylphenazinium(NMP+)), 3-메틸-2-벤조티오졸리논히드라존(3-methyl-2-benzothiozolinone hydrazone), 2-메톡시-4-알릴페놀(2-methoxy-4-allylphenol), 4-아미노안티피린(4-aminoantipyrin(AAP)), 디메틸아닐린(dimethylaniline), 4-아미노안티피렌(4-aminoantipyrene), 4-메톡시나프톨(4-methoxynaphthol), 3,3',5,5'-테트라메틸벤지딘(3,3',5,5'-tetramethylbenzidine(TMB)), 2,2-아지노-디-[3-에틸-벤즈티아졸린술포네이트](2,2-azino-di-[3-ethyl-benzthiazoline sulfonate]), o-디아니시딘(o-dianisidine), o-톨루이딘(o-toluidine), 2,4-디클로로페놀(2,4-dichlorophenol), 4-아미노페나존(4-aminophenazone), 및 벤지딘(benzidine)으로 이루어진 그룹에서 선택되는 1종 이상이다.Preferably, the electrochemically active compound is ferrocene (ferrocene), ferrocene derivatives (ferrocene derivatives), quinones (quinones), quinone derivatives (quinone derivatives), ruthenium amin complexes, osmium (I), osmium (II) ), Osmium (III) complexes, metallocene, metallocene derivatives, potassium hexacyanoferrate (II), meldola's blue, fr Prussian blue, dichlorophenolindophenol (DCPIP), o-phenylenediamine (o-PDA), 3,4-dihydroxybenzaldehyde (3,4-dihydroxybenzaldehyde (3) , 4-DHB)), viologen, 7,7,8,8-tetracyanoquinodimethane (7,7,8,8-tetracyanoquinodimethane (TCNQ)), tetrathiafulvalene ( TTF)), N-methylacidinium (NMA +), tetrathiatetracene (TTT), N-methylphenazinium (N-meth) ylphenazinium (NMP +)), 3-methyl-2-benzothiozolinone hydrazone, 2-methoxy-4-allylphenol, 4- 4-aminoantipyrin (AAP), dimethylaniline, 4-aminoantipyrene, 4-methoxynaphthol, 3,3 ', 5,5'-tetra Methylbenzidine (3,3 ', 5,5'-tetramethylbenzidine (TMB)), 2,2-azino-di- [3-ethyl-benzthiazolinesulfonate] (2,2-azino-di- [3- ethyl-benzthiazoline sulfonate]), o-dianisidine, o-toluidine, 2,4-dichlorophenol, 4-aminophenazone ), And benzidine.
바람직하게, 상기 전기화학적 활성 입자는 표면에 술폰산(sulfonic acid), 인산(phosphoric acid), 카르복실산(carboxylic acid) 및 아세트산(acetic acid)으로 이루어진 그룹에서 선택된 1종 이상으로부터 유도되는 화합물이 도입됨으로써 음전하를 띄는 것이다.Preferably, the electrochemically active particles are introduced on the surface with a compound derived from at least one selected from the group consisting of sulfonic acid, phosphoric acid, carboxylic acid and acetic acid By doing so, it is negatively charged.
바람직하게, 상기 전기화학적 활성 입자는 표면에 사차아민(quaternary amine) 또는 유기 실레인(organic silane)이 도입됨으로써 양전하를 띄는 것이다.Preferably, the electrochemically active particles are positively charged by the introduction of quaternary amine or organic silane on the surface.
바람직하게, 상기 전극은 금(Au) 또는 탄소(C) 전극이다.Preferably, the electrode is a gold (Au) or carbon (C) electrode.
바람직하게, 상기 금(Au) 전극은 금 디스크 전극 또는 금 증착법(gold sputtering)을 이용한 스크린 프린팅 전극이다.Preferably, the gold (Au) electrode is a screen printing electrode using a gold disk electrode or gold sputtering (gold sputtering).
바람직하게, 상기 탄소(C) 전극은 탄소 디스크 전극 또는 탄소 반죽(carbon paste)를 이용한 스크린 프린팅 전극이다.Preferably, the carbon (C) electrode is a screen printing electrode using a carbon disk electrode or carbon paste (carbon paste).
바람직하게, 상기 분석 물질은 트롬빈, B-type natriuretic peptide(BNP) 또는 Carcinoembryonic antigen(CEA)이다.Preferably, the analyte is thrombin, B-type natriuretic peptide (BNP) or Carcinoembryonic antigen (CEA).
바람직하게, 상기 전기화학적 활성 입자는 실리카 나노 입자에 페로센이 도입된 것이다.Preferably, the electrochemically active particles are ferrocene introduced into the silica nanoparticles.
바람직하게, 상기 전기화학적 활성 입자는 실리카 나노 입자에 페로센 및 술폰산기가 도입된 것이다.Preferably, the electrochemically active particles are those in which ferrocene and sulfonic acid groups are introduced into the silica nanoparticles.
바람직하게, 상기 전기화학적 활성 입자는 실리카 나노 입자 표면의 실란올기(Si-OH)와 (3-아미노프로필)트리메톡시실레인(3-Aminopropyl)triethoxysilane,Preferably, the electrochemically active particles include silanol groups (Si-OH) and (3-aminopropyl) trimethoxysilane (3-Aminopropyl) triethoxysilane on the surface of silica nanoparticles;
[3-(2-아민에톡시아미노)프로필]트리메톡시실레인 ([3-(2-Aminoethylamino)propyl]trimethoxysilane), 및 (3-아미노프로필)트리에톡시실레인(3-Aminopropyl)triethoxysilane으로 이루어진 그룹에서 선택되는 1종 이상의 화합물 간의 축합반응을 통해 실리카 나노 입자 표면에 아민기를 도입하는 단계 및 상기 아민기와의 커플링 반응을 페로센을 도입하는 단계를 포함하는 공정을 수행함으로써 제조된 것이다. [3- (2-amineethoxyamino) propyl] trimethoxysilane ([3- (2-Aminoethylamino) propyl] trimethoxysilane), and (3-aminopropyl) triethoxysilane triethoxysilane It is prepared by performing a process comprising introducing an amine group on the surface of the silica nanoparticles through a condensation reaction between one or more compounds selected from the group consisting of, and introducing a ferrocene in a coupling reaction with the amine group.
바람직하게, 상기 전기화학적 활성 입자는 실리카 나노 입자 표면의 실란올기(Si-OH)와 1,3-프로페인술톤(1,3-propanesultone)간의 고리열림반응을 통해 술폰산기를 도입하는 단계를 추가적으로 수행함으로써 제조된 것이다.Preferably, the electrochemically active particles further include introducing a sulfonic acid group through a ring opening reaction between silanol groups (Si-OH) and 1,3-propanesultone on the surface of the silica nanoparticles. It is manufactured by.
본 발명은 상기 공정으로부터 제조된 전기화학적 활성 입자를 제공한다.The present invention provides electrochemically active particles prepared from the above process.
본 발명에 의한 압타머 바이오센서는 전극 위에 고정된 압타머와 특이적으로 결합하는 분석 물질에 의해 전극에 대한 전기화학적 활성 입자의 가리움 효과를 이용함으로써 복잡한 전처리 과정 및 분석 과정을 거치지 않으면서 센서의 감도, 재현성 및 신뢰성을 향상시킬 수 있다. 상기 전기화학적 활성 입자는 일정한 크기를 갖는 것으로 그 크기를 조정함으로써 압타머-분석 물질에 의한 가리움 효과를 조절할 수 있고, 특히 분석 물질과의 척력 현상을 이용하여 검출 한계를 더욱 낮출 수 있었다.The aptamer biosensor according to the present invention utilizes the screening effect of electrochemically active particles on an electrode by an analyte that specifically binds to an aptamer fixed on the electrode, thereby avoiding a complex pretreatment and analytical processes. Sensitivity, reproducibility and reliability can be improved. The electrochemically active particles have a constant size to control the screening effect by the aptamer-analyte by adjusting the size, and in particular, the detection limit can be lowered by using the repulsive force with the analyte.
따라서 본 발명에 의하면 값비싼 장비의 사용에 대한 요구 없이 경제적이고, 낮은 검출 한계를 갖는 높은 민감도의 센서로서 빠른 시간 내에 분석할 수 있다는 장점을 갖는다. 또한 본 발명의 센서는 검출 한계를 10-16 M까지 낮출 수 있어 특정 단백질과 결합하는 압타머의 염기 서열을 연구하는 분야에서 사용될 수 있다.Therefore, the present invention has the advantage that it can be analyzed in a short time as an economical, high sensitivity sensor with a low detection limit without the need for expensive equipment. In addition, the sensor of the present invention can lower the detection limit to 10-16 M can be used in the field of studying the nucleotide sequence of the aptamer binding to a specific protein.
도 1은 압타머 센서의 표지 방식 및 비표지 방식을 비교하여 나타낸 것이다.Figure 1 shows a comparison between the labeling method and the non-labeling method of the aptamer sensor.
도 2는 본 발명의 압타머 센서의 개념도이다.2 is a conceptual diagram of an aptamer sensor of the present invention.
도 3은 본 발명의 전기화학적 활성 입자에 대한 가리움 효과와 그에 따른 전기화학적 신호의 검정 곡선을 함께 나타낸 것이다. Figure 3 shows the screening curve of the electrochemically active signal according to the screening effect for the electrochemically active particles of the present invention.
도 4는 7 nm 및 14 nm의 실리카 나노 입자에 페로센을 도입하는 과정을 나타낸 것이다.4 shows a process for introducing ferrocene into silica nanoparticles of 7 nm and 14 nm.
도 5는 페로센을 도입된 7 nm 및 14 nm의 실리카 나노 입자에 음전하성을 갖는 술폰산기를 도입하는 과정을 나타낸 것이다. Figure 5 shows the process of introducing a sulfonic acid group having a negative charge to the silica nanoparticles of 7 nm and 14 nm introduced ferrocene.
도 6은 실시예 1 및 2에서 제조된 전기화학적 활성 입자들(Fc-[a], Fc-[b], Fc-[b]-SO3-)의 순환전압전류도이다.6 is a cyclic voltammetry diagram of the electrochemically active particles Fc- [a], Fc- [b], and Fc- [b] -SO3- prepared in Examples 1 and 2. FIG.
도 7은 실시예 1 및 2에서 제조된 전기화학적 활성 입자들(Fc-[a], Fc-[b], Fc-[a]-SO3-, Fc-[b]-SO3-)의 TEM 사진이다.7 is a TEM photograph of electrochemically active particles (Fc- [a], Fc- [b], Fc- [a] -SO3-, Fc- [b] -SO3-) prepared in Examples 1 and 2 to be.
도 8은 전기화학적 활성 입자로 페로센카르복실산(ferrocenecarboxylic acid)을 사용하는 경우 가리움 효과(즉거의 나타나지 않음)를 도식화한 것이다. 8 is a schematic of the masking effect (i.e., almost not shown) when using ferrocenecarboxylic acid as electrochemically active particles.
도 9는 전기화학적 활성 입자로 페로센카르복실산(ferrocenecarboxylic acid)을 사용하는 경우 측정된 순환전압전류도이다. 9 is a cyclic voltammogram measured when using ferrocenecarboxylic acid as the electrochemically active particles.
도 10은 실시예 1에서 제조된 전기화학적 활성 입자(Fc-[a])를 사용하여 실시예 3에서 제작된 트롬빈 압타머 센서에서 트롬빈 농도에 따라 측정된 네모전압전류도 및 검정곡선을 함께 나타낸 것이다.FIG. 10 shows the square voltammetry and calibration curve measured according to thrombin concentration in the thrombin aptamer sensor manufactured in Example 3 using the electrochemically active particles (Fc- [a]) prepared in Example 1. FIG. will be.
도 11은 실시예 2에서 제조된 전기화학적 활성 입자(Fc-[b])를 사용하여 실시예 3에서 제작된 트롬빈 압타머 센서에서 트롬빈 농도에 따라 측정된 네모전압전류도 및 검정곡선을 함께 나타낸 것이다.FIG. 11 shows the square voltammetry and calibration curve measured according to thrombin concentration in the thrombin aptamer sensor manufactured in Example 3 using the electrochemically active particles (Fc- [b]) prepared in Example 2. FIG. will be.
도 12는 실시예 2에서 제조된 전기화학적 활성 입자(Fc-[b]-SO3-)를 사용하여 실시예 3에서 제작된 트롬빈 압타머 센서에서 트롬빈 농도에 따라 측정된 네모전압전류도 및 검정곡선을 함께 나타낸 것이다.12 is a square voltammetry and calibration curve measured according to thrombin concentration in the thrombin aptamer sensor manufactured in Example 3 using the electrochemically active particles (Fc- [b] -SO3-) prepared in Example 2. FIG. It is shown together.
도 13은 실시예 3에서 제작된 트롬빈 압타머 센서의 특이성을 테스트 한 결과이다. 13 is a result of testing the specificity of the thrombin aptamer sensor manufactured in Example 3.
도 14는 실시예 2에서 제조된 전기화학적 활성 입자(Fc-[b]-SO3-)를 사용하여 실시예 4에서 제작된 BNP 압타머 센서에서 BNP 농도에 따라 측정된 네모전압전류도 및 검정곡선을 함께 나타낸 것이다. FIG. 14 is a square voltammetry and calibration curve measured according to BNP concentration in a BNP aptamer sensor prepared in Example 4 using the electrochemically active particles (Fc- [b] -SO3-) prepared in Example 2. FIG. It is shown together.
도 15는 실시예 2에서 제조된 전기화학적 활성 입자(Fc-[b]-SO3-)를 사용하여 실시예 5에서 제작된 CEA 압타머 센서에서 CEA 농도에 따라 측정된 네모전압전류도 및 검정곡선을 함께 나타낸 것이다. 15 is a square voltammetry and calibration curve measured according to the CEA concentration in the CEA aptamer sensor manufactured in Example 5 using the electrochemically active particles (Fc- [b] -SO3-) prepared in Example 2 It is shown together.
도 16은 본 발명의 압타머 센서(BNP(a), 트롬빈(b) 및 CEA(c) 압타머 센서)에서 분석물질 크기에 따른 검정곡선을 나타낸 것이다. Figure 16 shows the calibration curve according to the analyte size in the aptamer sensor of the present invention (BNP (a), thrombin (b) and CEA (c) aptamer sensor).
본 발명의 압타머 바이오센서는 비표지 방식으로 분석 물질을 검출하는 것으로, 구체적으로 전극 및 상기 전극에 고정된 분석 물질와 특이적으로 결합하는 압타머를 포함하며, 상기 전극 표면에서의 산화환원 반응에 의해 전기화학적 신호를 생성하는 전기화학적 활성 입자에 의해 상기 분석 물질의 존재 및 농도를 측정하는 것으로, 상기 전기화학적 신호가 상기 압타머에 분석 물질이 결합되었을 때 상기 전극에 대해 입자가 가리워지는 "가리움 효과"에 의해 감소되는 원리를 이용한다.The aptamer biosensor of the present invention detects an analyte in an unlabeled manner, and specifically includes an electrode and an aptamer specifically binding to an analyte immobilized on the electrode. By measuring the presence and concentration of the analyte by electrochemically active particles which produce an electrochemical signal by means of which the electrochemical signal is “hidden” with respect to the electrode when the analyte is bound to the aptamer Use the principle of "reduction".
상기 가리움 효과는 상기 전극 표면에서 전기화학적 활성 입자의 접근을 막아 그에 의한 전기화학적 신호를 차단함으로써 신호의 감소를 불러오는 것이다. 본 발명에서는 도 2에 도시된 바와 같이 상기 가리움 효과가 전극 표면에 고정된 압타머(15)가 그것이 특이적으로 결합하는 분자, 즉 분석 물질(14)과 결합함으로써 물리적으로 상기 전기화학적 활성입자(21 및 23가 결합된 상태)를 차단하는 것을 의미한다. The screening effect is to block the access of the electrochemically active particles on the electrode surface and thereby block the electrochemical signal thereby leading to a decrease in the signal. In the present invention, as shown in FIG. 2, the aptamer 15 having the screening effect fixed on the surface of the electrode physically binds to the molecule to which it specifically binds, that is, the analyte 14. 21 and 23 combined state).
상기 물리적으로 차단한다는 의미는, 도 2에서 전극 표면에 고정된 압타머(15)에 분석 물질(14)이 결합되지 않은 경우에는 오른쪽의 확대 도면에서와 같이 전기화학적 활성 입자(21 및 23가 결합된 상태)가 전극 표면에서 전자전달 반응 즉 산화환원반응을 함으로써 전기화학적 신호를 생성하게 되지만, 압타머(15)에 분석 물질(14)이 결합된 경우에는 전극 표면에 접근할 수 없음으로써 달성된다.The physical blocking means that when the analyte 14 is not bonded to the aptamer 15 fixed to the electrode surface in FIG. 2, the electrochemically active particles 21 and 23 are bonded as shown in the enlarged view on the right. Is generated by the electron transfer reaction or redox reaction on the electrode surface, but it is achieved by the inaccessibility of the electrode surface when the analyte 14 is bound to the aptamer 15). .
상기 가리움 효과와 관련된 본 발명 센서의 신호 변화의 결과는 도 3에 도시되었다. 즉, 전극 표면에서의 압타머에 대한 분석 물질(14)의 결합이 증가함으로써 전기화학적 활성입자의 접근이 차단되면 센서에서 검출되는 전기화학적 신호가 감소한다. 분석 물질이 고농도 일수록 가리움 효과에 의해 전기화학적 활성입자가 전극에 도달하지 못하여 산화환원 반응이 용이하지 않게 되므로 분석 물질의 농도에 따라 전기화학적 신호가 감소하는 반비례의 검정 곡선으로 나타난다.The result of the signal change of the sensor of the present invention associated with the screening effect is shown in FIG. 3. That is, when the access of the analyte 14 to the aptamer on the electrode surface is increased, the access of the electrochemically active particles is blocked, thereby reducing the electrochemical signal detected by the sensor. The higher the concentration of the analyte, the more effective the redox reaction because the electrochemically active particles do not reach the electrode due to the screening effect, which results in an inverse calibration curve in which the electrochemical signal decreases depending on the concentration of the analyte.
상기 분석 물질은 본 발명의 센서로 검출하고자 하는 물질로서 트롬빈, B-type natriuretic peptide(BNP) 또는 Carcinoembryonic antigen(CEA) 등을 포함하나 이에 한정되는 것이 아니며, 그것과 특이적으로 결합하는 압타머 또는 압타머를 개발하고자 하는 물질을 모두 포함한다. The analyte may include, but is not limited to, thrombin, B-type natriuretic peptide (BNP), or carcinoembryonic antigen (CEA) as a substance to be detected by the sensor of the present invention. Includes all materials for which you want to develop aptamers.
따라서 본 발명의 센서는 이미 압타머가 개발된 분석 물질의 검출에는 물론, 어떤 분석 물질에 대한 압타머를 개발하고자 하는 데에도 이용될 수 있다.Therefore, the sensor of the present invention can be used not only for the detection of analytes for which an aptamer has been developed, but also for developing an aptamer for any analyte.
본 발명에서 전기화학적 활성 입자로 사용하는 것은 전극 표면에서의 산화환원 반응에 의해 전기화학적 신호를 발생시키는 것이다. 구체적으로, 이러한 전기화학적 활성 입자로는 은(Ag), 금(Au), 백금(Pt), 구리(Cu), 주석(Sn), 철(Fe), 니켈(Ni), 루테늄(Ru), 티타늄(Ti), 탄탈럼(Ta), 니오븀(Nb), 지르코늄(Zr), 알루미늄(Al), 하프늄(Hf), 텅스텐(W), 이트륨(Y), 아연(Zn), 란탄늄(La), 세슘(Ce), 프라세오디뮴(Pr), 네오디뮴(Nd), 사마륨(Sm), 안티모니(Sb), 비스무스(Bi), 납(Pb), 탈륨(Tl), 인듐(In), 텔루륨(Te), 크롬(Cr), 바나듐(V), 망간(Mn), 몰리브덴(Mo), 코발트(Co), 로듐(Rh), 팔라듐(Pd), 오스뮴(Os), 레륨(Re), 이리듐(Ir) 등과 같이, 그 자체가 전극 표면에서 산화환원 반응을 하는 전도성 금속 또는 이들의 산화물을 사용할 수 있다.Use as electrochemically active particles in the present invention is to generate an electrochemical signal by a redox reaction on the electrode surface. Specifically, such electrochemically active particles include silver (Ag), gold (Au), platinum (Pt), copper (Cu), tin (Sn), iron (Fe), nickel (Ni), ruthenium (Ru), Titanium (Ti), Tantalum (Ta), Niobium (Nb), Zirconium (Zr), Aluminum (Al), Hafnium (Hf), Tungsten (W), Yttrium (Y), Zinc (Zn), Lanthanum (La) ), Cesium (Ce), praseodymium (Pr), neodymium (Nd), samarium (Sm), antimony (Sb), bismuth (Bi), lead (Pb), thallium (Tl), indium (In), tellurium (Te), chromium (Cr), vanadium (V), manganese (Mn), molybdenum (Mo), cobalt (Co), rhodium (Rh), palladium (Pd), osmium (Os), rhenium (Re), iridium Like (Ir) or the like, a conductive metal or an oxide thereof, which itself undergoes a redox reaction at the electrode surface, can be used.
또한 본 발명은 전기화학적 활성 입자로서 도 2에 도시된 바와 같이 상기 전도성 금속 또는 이들의 산화물 또는 실리카(Si) 입자(21) 표면에 전기화학적 활성 화합물(23)을 도입시킨 형태의 것을 사용할 수 있다. 이에 대한 구체적 예는 도 4 및 하기 실시예에 대한 설명에 기재된다.In addition, the present invention can be used as the electrochemically active particles in the form of introducing the electrochemically active compound (23) on the surface of the conductive metal or their oxide or silica (Si) particles 21 as shown in FIG. . Specific examples thereof are described in FIG. 4 and the description of the following examples.
이러한 형태의 전기화학적 활성 입자는 전도성 금속 또는 이들의 산화물 또는 실리카 입자 및 전기화학적 활성 화합물의 선택에 따라 입자 크기를 조절하여 가리움 효과를 조절하고, 그에 따라 본 발명 센서의 민감도를 조절하는 수단으로서 사용할 수 있으므로 유리하다.This type of electrochemically active particles can be used as a means of controlling the screening effect by adjusting the particle size according to the selection of conductive metals or their oxides or silica particles and electrochemically active compounds, and thus controlling the sensitivity of the sensor of the present invention. It can be advantageous.
상기 전도성 금속 또는 이들의 산화물 또는 실리카(Si) 입자 표면에 도입되는 전기화학적 활성 화합물로는 페로센(ferrocene), 페로센 유도체(ferrocene derivatives), 퀴논(quinones), 퀴논 유도체(quinone derivatives), 루테늄 아민 복합체(ruthenium amin complexes), 오스뮴(I), 오스뮴(II), 오스뮴(III) 복합체(osmium complexes), 메탈로센(metallocene), 메탈로센 복합체(metallocene derivatives), 포타슘헥사시아노페레이트(II)(pottasiumhexacyanoferrate), 멜돌라 블루(Meldola's blue), 프루시안 블루(Prussian blue), 디클로로페놀인도페놀(dichlorophenolindophenol(DCPIP)), o-페닐렌디아민(o-phenylenediamine(o-PDA)), 3,4-디히드록시벤즈알데히드(3,4-dihydroxybenzaldehyde(3,4-DHB)), 비오로겐(viologen), 7,7,8,8-테트라시아노퀴노디메탄(7,7,8,8-tetracyanoquinodimethane(TCNQ)), 테트라티아풀발렌(tetrathiafulvalene(TTF)), N-메틸아시디늄(N-methylacidinium(NMA+)), 테트라티아테트라센(tetrathiatetracene(TTT)), N-메틸페나지늄(N-methylphenazinium(NMP+)), 3-메틸-2-벤조티오졸리논히드라존(3-methyl-2-benzothiozolinone hydrazone), 2-메톡시-4-알릴페놀(2-methoxy-4-allylphenol), 4-아미노안티피린(4-aminoantipyrin(AAP)), 디메틸아닐린(dimethylaniline), 4-아미노안티피렌(4-aminoantipyrene), 4-메톡시나프톨(4-methoxynaphthol), 3,3',5,5'-테트라메틸벤지딘(3,3',5,5'-tetramethylbenzidine(TMB)), 2,2-아지노-디-[3-에틸-벤즈티아졸린술포네이트](2,2-azino-di-[3-ethyl-benzthiazoline sulfonate]), o-디아니시딘(o-dianisidine), o-톨루이딘(o-toluidine), 2,4-디클로로페놀(2,4-dichlorophenol), 4-아미노페나존(4-aminophenazone), 및 벤지딘(benzidine)으로 이루어진 그룹에서 선택되는 1종 이상을 사용할 수 있다.The electrochemically active compounds introduced on the surface of the conductive metal or oxides or silica (Si) particles thereof include ferrocene, ferrocene derivatives, quinones, quinone derivatives, and ruthenium amine complexes. (ruthenium amin complexes), osmium (I), osmium (II), osmium (III) complexes, metallocene, metallocene derivatives, potassium hexacyanoferrate (II) (pottasiumhexacyanoferrate), Meldola's blue, Prussian blue, dichlorophenolindophenol (DCPIP), o-phenylenediamine (o-PDA), 3, 4-dihydroxybenzaldehyde (3,4-dihydroxybenzaldehyde (3,4-DHB)), viologen, 7,7,8,8-tetracyanoquinodimethane (7,7,8,8 -tetracyanoquinodimethane (TCNQ)), tetrathiafulvalene (TTF), N-methylacidinium (NMA +), Tetrathiatetracene (TTT), N-methylphenazinium (NMP +), 3-methyl-2-benzothiozolinone hydrazone, 3-methyl-2-benzothiozolinone hydrazone, 2 2-methoxy-4-allylphenol, 4-aminoantipyrin (AAP), dimethylaniline, 4-aminoantipyrene, 4- 4-methoxynaphthol, 3,3 ', 5,5'-tetramethylbenzidine (3,3', 5,5'-tetramethylbenzidine (TMB)), 2,2-azino-di- [3- Ethyl-benzthiazolinesulfonate] (2,2-azino-di- [3-ethyl-benzthiazoline sulfonate]), o-dianisidine, o-toluidine, 2,4 One or more selected from the group consisting of dichlorophenol (2,4-dichlorophenol), 4-aminophenazone, and benzidine can be used.
또한 상기 전기화학적 활성 입자가 전도성 금속 또는 이들의 산화물 또는 실리카(Si) 입자 표면에 전기화학적 활성 화합물을 도입시킨 형태일 때에는 상기 전도성 금속 또는 이들의 산화물 또는 실리카(Si) 입자는 바람직하게 100 nm 미만 1 nm 이상의 크기를 갖는 입자(이하 '나노 입자'라 한다)를 사용한다. In addition, when the electrochemically active particles are in the form of introducing an electrochemically active compound on the surface of a conductive metal or oxide or silica (Si) particles thereof, the conductive metal or oxides or silica (Si) particles thereof are preferably less than 100 nm. Particles having a size of 1 nm or more (hereinafter referred to as 'nano particles') are used.
특히 실리카 나노 입자는 다양한 유기 분자들과 안정한 결합을 형성할 수 있으며, 크기를 다양하게 조절하여 합성할 수 있다는 장점을 갖고 있다(Beasley, C.A.; Murray, R.W. Langmuir 2009, 25, 10370-10375 참조). 또한 부피에 비해 넓은 표면적을 갖기 때문에 동일한 부피의 입자를 사용하는 경우에도 더 많은 양의 물질과 결합할 수 있다는 장점을 갖는다. 따라서, 본 발명에서는 전기화학적 활성 입자의 제조를 위한 일 실시예에서 실리카 나노 입자를 이용하고, 기능을 향상시키기 위해 무기 재료 및 유기 분자와의 부분적인 화학 반응을 통해 표면을 기능화함으로써 실리카 나노 입자에 바람직한 특성을 부여한다.In particular, silica nanoparticles can form stable bonds with various organic molecules, and have the advantage of being synthesized by controlling various sizes (see Beesley, CA; Murray, RW Langmuir 2009, 25, 10370-10375). . It also has the advantage of being able to combine with larger amounts of material even when using the same volume of particles because of its large surface area relative to the volume. Accordingly, the present invention utilizes silica nanoparticles in one embodiment for the preparation of electrochemically active particles, and functionalizes the surface by partial chemical reaction with inorganic materials and organic molecules to improve functionality. Impart desirable properties.
이러한 실리카 나노 입자는 테트라에틸 오르소실리케이트(TEOS) 또는 테트라메틸 오르소실리케이트(TMOS)를 스토버(Stober) 방법을 이용하여 합성된 다양한 크기를 갖는 것일 수 있거나, 또는 상업적으로 입수 가능한 다양한 크기의 훈증된(fumed) 실리카 나노 입자를 사용할 수도 있다.Such silica nanoparticles may be of various sizes synthesized from tetraethyl orthosilicate (TEOS) or tetramethyl orthosilicate (TMOS) using the Stover method, or of various sizes available commercially. Fumed silica nanoparticles can also be used.
전기화학적 활성 입자의 제조를 위하여 실리카 나노 입자를 사용하는 경우에는 일 실시예로서, 다양한 크기로부터 선택된 실리카 나노 입자, 예로서 이에 한정되는 것은 아니나 표면에 수산화기(hydroxyl group)가 다수 도입된 상태의 7 nm 또는 14 nm 크기의 것으로, 일차 아민기(primary amine) 또는 이차 아민기(secondary amine)를 갖는 유기 실레인(oranic silane)을 무수 조건인 톨루엔(toluene) 하에서 축합 중합 반응시켜 아민기를 나노 입자에 도입한 후, 카르복실기(carboxyl group)를 갖는 페로센인, 페로센카르복실산(ferrocenecarboxylic acid)과 상기 아민간의 커플링 반응(coupling reaction)을 통해 도입시키는 방법을 사용할 수 있다. 상기 유기 실레인은 (3-아미노프로필)트리메톡시실레인(3-Aminopropyl)triethoxysilane,In the case of using the silica nanoparticles for the production of electrochemically active particles, as an example, silica nanoparticles selected from various sizes, such as, but not limited to, 7 having a number of hydroxyl groups introduced on the surface 7 nm or 14 nm, condensation-polymerization reaction of an organic silane having a primary amine or a secondary amine under anhydrous toluene under amine to nanoparticles After the introduction, a method of introducing a ferrocene, which is a ferrocene having a carboxyl group, through a coupling reaction between ferrocenecarboxylic acid and the amine may be used. The organic silane is (3-aminopropyl) trimethoxy silane (3-Aminopropyl) triethoxysilane,
[3-(2-아민에톡시아미노)프로필]트리메톡시실레인 ([3-(2-Aminoethylamino)propyl]trimethoxysilane), 및 (3-아미노프로필)트리에톡시실레인(3-Aminopropyl)triethoxysilane으로 이루어진 그룹에서 선택되는 1종 이상의 화합물일 수 있다. [3- (2-amineethoxyamino) propyl] trimethoxysilane ([3- (2-Aminoethylamino) propyl] trimethoxysilane), and (3-aminopropyl) triethoxysilane triethoxysilane It may be one or more compounds selected from the group consisting of.
상술한 바와 같이 본 발명의 센서에서는 전극 표면에서 압타머와 분석 물질이 결합되었을 때 가리움 효과에 의해 전기화학적 활성 입자의 전극 표면으로의 접근이 차단되어 산화환원 반응이 감소되는 것으로부터 분석 물질의 존재 및 농도를 검출하므로, 상기 전기화학적 활성 입자의 크기를 조절하는 것은 센서의 감도를 조절하는 수단이 된다. 본 발명에서는 상기 전도성 금속 또는 이들의 산화물 또는 실리카(Si) 및 그 표면에 도입되는 전기화학적 활성 화합물의 종류, 크기 및 양을 조절함으로써 입자 전체의 크기를 조절한다. As described above, in the sensor of the present invention, when the aptamer and the analyte are combined at the electrode surface, the presence of the analyte is prevented from reducing the redox reaction by blocking the access of the electrochemically active particles to the electrode surface by the screening effect. And since the concentration is detected, controlling the size of the electrochemically active particles is a means of controlling the sensitivity of the sensor. In the present invention, the size of the whole particle is controlled by controlling the kind, size and amount of the conductive metal or their oxide or silica (Si) and the electrochemically active compound introduced to the surface thereof.
본 발명에서 검출하고자 하는 분석 물질은 대부분 단백질 또는 당단백질로서 전체적으로 음전하를 띄는 것이다. 그러므로 만약 상기 전기화학적 활성 입자를 음전하를 띄도록 한다면 전기적 척력에 의해 가리움 효과를 더욱 향상시킬 수 있다. 본 발명에서는 이를 위해 전기화학적 활성 입자 표면에 술폰산(sulfonic acid), 인산(phosphoric acid), 카르복실산(carboxylic acid) 및 아세트산(acetic acid)으로 이루어진 그룹에서 선택된 1종 이상으로부터 유도된 화합물이 도입하여 음전하를 띄게 할 수 있다. 이에 대한 구체적 예는 도 5 및 하기 실시예에 대한 설명에 기재된다.The analyte to be detected in the present invention is mostly negatively charged as a protein or glycoprotein. Therefore, if the electrochemically active particles have a negative charge, the covering effect may be further improved by the electric repulsive force. In the present invention, a compound derived from at least one selected from the group consisting of sulfonic acid, phosphoric acid, carboxylic acid and acetic acid is introduced on the surface of the electrochemically active particles. To make a negative charge. Specific examples thereof are described in FIG. 5 and the description of the following examples.
상기 음전하를 띄는 전기화학적 활성 입자는 또한 제타 전위가 낮아짐으로써 용액상에서 매우 안정된 상태로 유지된다는 장점을 갖는다. 예로서, 14 nm 크기의 실리카 나노 입자의 경우 제타 전위는 -38.5±0.2 mV이고, 여기에 페로센을 도입시킨 경우 제타 전위가 -5.0±0.9 mV로 급격히 증가한다. 이럴 경우 용액 상에서 입자의 반발력이 약해져 응집되는 현상이 나타난다. 그러나 여기에 술폰산기를 도입하여 음전하를 띄게 하면 제타 전위는 -52.5±2.1 mV로 급격히 감소하여 용액 상에서 매우 안정한 상태를 유지하는 것이다. The negatively charged electrochemically active particles also have the advantage of being kept very stable in solution by lowering the zeta potential. As an example, the zeta potential is -38.5 ± 0.2 mV for 14 nm size silica nanoparticles, and the zeta potential rapidly increases to -5.0 ± 0.9 mV when ferrocene is introduced thereto. In this case, the repulsive force of the particles is weakened in the solution phase, causing agglomeration. However, when a sulfonic acid group is introduced to make a negative charge, the zeta potential decreases rapidly to -52.5 ± 2.1 mV, thus maintaining a very stable state in solution.
본 발명에서는 상기 음전하를 띄는 전기화학적 활성 입자를 제조하기 위하여 일 실시예로서, 상술한 바와 같은 방법으로 전기화학적 활성을 띄게된 실리카 나노 입자 표면에 반응하지 않은 실란올(silanol)기와 1,3-프로페인 술톤 간의 고리열림반응(ring opening reaction)을 통해 술폰산(sulfonic acid)기를 도입하는 방법을 사용한다. In the present invention, in order to produce the negatively charged electrochemically active particles, as an example, silanol groups and 1,3- groups which do not react to the surface of the silica nanoparticles exhibited electrochemically by the method as described above. A method of introducing a sulfonic acid group through a ring opening reaction between propane sultones is used.
상기에서는 전기화학적 활성 입자 표면에 음전하를 도입하는 예를 보였지만, 대체적인 예로서 전기화학적 활성 입자 표면은 양전하를 도입하기 위한 치환기, 예를 들면 사차아민(quaternary amine) 또는 유기 실레인(organic silane)를 도입하여 양전하를 띄게 할 수도 있다. 이때에는 분석 물질과의 인력에 의해 센서의 신호에 변화를 주게 된다.Although the above example shows the introduction of negative charges on the surface of the electrochemically active particles, as an alternative, the surface of the electrochemically active particles is a substituent for introducing a positive charge, for example quaternary amine or organic silane. You can also introduce a positive charge. At this time, the signal of the sensor is changed by the attraction force with the analyte.
본 발명의 센서에 사용되는 전극계로는 상기 압타머가 고정된 전극을 작업 전극으로 하고, 이에 대한 기준 전극을 포함하는 2 전극계를 사용할 수 있다. 또한, 보조 전극을 추가로 포함하는 3 전극계를 사용할 수도 있다. 상기 2 전극계 및 3 전극계 모두 본 발명이 속하는 기술 분야에서 통상의 기술자에게 명확하게 이해될 수 있는 것이다.As the electrode system used in the sensor of the present invention, a two-electrode system including an electrode having the aptamer fixed as a working electrode and a reference electrode therefor may be used. It is also possible to use a three-electrode system further comprising an auxiliary electrode. Both the two-electrode system and the three-electrode system can be clearly understood by those skilled in the art.
본 발명에서 압타머가 고정되는 작업 전극은 금(Au) 또는 탄소(C) 전극일 수 있다. 상기 금 전극은 금 디스크 전극(gold disk electrode) 이거나 또는 금 증착법(sputtering)을 사용하여 증착된 금 표면을 포함하는 형태일 수 있다. 상기 탄소 전극은 탄소 디스크 전극(carbon disk electrode)이거나 또는 탄소 반죽(carbon paste)을 사용하여 스크린 프린팅하여 제조되는 전극일 수 있다.In the present invention, the working electrode to which the aptamer is fixed may be a gold (Au) or carbon (C) electrode. The gold electrode may be a gold disk electrode or a type including a gold surface deposited using gold sputtering. The carbon electrode may be a carbon disk electrode or an electrode manufactured by screen printing using carbon paste.
상기에서는 압타머 바이오센서에 관하여 기재하였으나, 상기 센서에 포함되는 전기화학적 활성 입자에 관한 기술도 권리 범위에 포함되는 것으로 이해되어야 한다. 즉, 본 발명은 입자는 실리카 나노 입자 표면의 실란올기(Si-OH)와 (3-아미노프로필)트리메톡시실레인(3-Aminopropyl)triethoxysilane,Although described above with respect to the aptamer biosensor, it should be understood that the technology related to the electrochemically active particles included in the sensor is included in the scope of rights. That is, in the present invention, the particles include silanol groups (Si-OH) and (3-aminopropyl) trimethoxysilane (3-Aminopropyl) triethoxysilane on the surface of silica nanoparticles;
[3-(2-아민에톡시아미노)프로필]트리메톡시실레인 ([3-(2-Aminoethylamino)propyl]trimethoxysilane), 및 (3-아미노프로필)트리에톡시실레인(3-Aminopropyl)triethoxysilane으로 이루어진 그룹에서 선택되는 1종 이상의 화합물 간의 축합반응을 통해 실리카 나노 입자 표면에 아민기를 도입하는 단계; 및 상기 아민기와의 커플링 반응을 페로센을 도입하는 단계를 포함하는 공정을 수행함으로써 제조된 것을 특징으로 하는 전기화학적 활성 입자를 제공한다. 또한 상기 전기화학적 활성 입자는 실리카 나노 입자 표면의 실란올기(Si-OH)와 1,3-프로페인술톤(1,3-propanesultone)간의 고리열림반응을 통해 술폰산기를 도입하함으로써 음전하성을 띄는 것일 수 있다.[3- (2-amineethoxyamino) propyl] trimethoxysilane ([3- (2-Aminoethylamino) propyl] trimethoxysilane), and (3-aminopropyl) triethoxysilane triethoxysilane Introducing an amine group to the surface of the silica nanoparticles through a condensation reaction between one or more compounds selected from the group consisting of; And it provides an electrochemically active particles, characterized in that prepared by performing a process comprising the step of introducing a ferrocene coupling reaction with the amine group. In addition, the electrochemically active particles are negatively charged by introducing sulfonic acid groups through a ring opening reaction between silanol groups (Si-OH) and 1,3-propanesultone on the surface of silica nanoparticles. Can be.
이하 실시예를 통해 본 발명을 설명한다. 그러나 이는 발명의 이해를 용이하게 하기 위한 것으로, 본 발명이 이에 한정되는 것으로 여겨져서는 안된다.The present invention will be described through the following examples. However, this is to facilitate the understanding of the invention, the present invention should not be considered to be limited thereto.
실시예 1Example 1
<전기화학적 활성 입자(Fc-[a])의 제조>Preparation of Electrochemically Active Particles (Fc- [a])
전기화학적 활성 입자를 제조하기 위하여 도 4에 도시된 바와 같은 과정을 수행하였다. 즉, 7 nm 크기의 훈증된 실리카 나노 입자(fumed silica nanoparticle) 2 g(6.02 mmol, Aldrich 사)을 톨루엔(toluene)(Carlo Erbr사, Milano, Italy) 55 mL에 넣고 리플럭스(reflux)하였다. 5분 후에 톨루엔 5 mL에 3-아미노프로필트리메톡시실레인(3-aminopropyltrimethoxysilane(APTMS))(Aldrich 사) 5 mL를 혼합한 용액을 한 방울씩 매우 천천히 적가한 후 리플럭스를 유지하며 24시간 동안 반응시켰다. 원심분리기(1580-MGR 모델, GYROZEN 사, 대전, 한국)를 이용하여 5000 rpm에서 나노 입자와 용액을 분리한 후, 톨루엔을 다시 넣고 분산시켜 세척하였다. 동일한 과정을 3회 더 거친 후 원심분리기로 나노 입자를 분리하고 진공 건조하여 완전히 건조시켰다.The procedure as shown in FIG. 4 was carried out to produce electrochemically active particles. That is, 2 g of fumed silica nanoparticles (6.02 mmol, Aldrich) having a size of 7 nm were refluxed in 55 mL of toluene (Carlo Erbr, Milano, Italy). After 5 minutes, a solution of 5 mL of 3-aminopropyltrimethoxysilane (APTMS) (Aldrich) was added dropwise very slowly, dropwise, dropwise to 5 mL of toluene for 24 hours. Reacted for a while. After separating the nanoparticles and the solution at 5000 rpm using a centrifuge (1580-MGR model, GYROZEN, Daejeon, Korea), toluene was added again and dispersed and washed. After the same process three more times, the nanoparticles were separated by centrifugation and dried in vacuo to complete drying.
다음으로, 페로센카르복실산(ferrocenecarboxilic acid)(Fluka 사, Buchs, Swizerland) 2.08 g 및 하이드록시벤조트리아졸(hydroxybenzotiazole(HOBt))(Fluka 사, Buchs, Swizerland) 1.22 g을 디메틸포름아미드(dimethylformamide(DMF))(대정 사, 경기도, 한국)에 녹인 후 상기 방법으로 수득된 아민기가 도입된 실리카 나노 입자를 첨가했다. 이 용액을 초음파분쇄기를 통해 완전히 분산시킨 후, 아민과 카르복실산의 반응 유도체인 N,N'-디이소프로필카보디이미드(N,N'-diisopropylcarbodiimide(DIC))(Aldrich 사) 1.4 mL(9 mmoL)를 첨가한 후 상온에서 24시간 동안 격렬히 반응시켰다. 원심분리기를 이용하여 9000 rpm에서 나노 입자와 용액을 분리하였으며, 그 후 디메틸포름아미드를 다시 넣고 15분간 초음파분쇄기를 이용해 나노 입자를 분산시켜 세척해 주었다. 디메틸포름아미드로 4회 메탄올로 3회 같은 방법으로 세척하였다. 완전히 세척된 합성된 나노 입자는 진공 건조를 위해 둥근 바닥 플라스크에 완전히 분산시킨 후 진공하에서 12시간 건조시켰다.Next, 2.08 g of ferrocenecarboxilic acid (Fluka, Buchs, Swizerland) and 1.22 g of hydroxybenzotiazole (HOBt) (Fluka, Buchs, Swizerland) were added dimethylformamide (dimethylformamide ( DMF)) (Daejeongsa, Gyeonggi-do, Korea), and added the silica nanoparticles into which the amine group obtained by the above method was introduced. After completely dispersing the solution through an ultrasonic mill, 1.4 mL of N, N'-diisopropylcarbodiimide (DIC) (Aldrich), a reaction derivative of an amine and a carboxylic acid, was used. 9 mmoL) was added and reacted vigorously at room temperature for 24 hours. The nanoparticles and the solution were separated using a centrifuge at 9000 rpm, after which dimethylformamide was added again and the nanoparticles were dispersed and washed with an ultrasonic mill for 15 minutes. Washed four times with dimethylformamide three times with methanol in the same manner. The fully washed synthesized nanoparticles were completely dispersed in a round bottom flask for vacuum drying and then dried under vacuum for 12 hours.
<음전하성을 갖는 전기화학적 활성 입자(Fc-[a]-SO3-) 의 제조><Preparation of Electrochemically Active Particles (Fc- [a] -SO3-) Having Negative Charge>
음전하성을 갖는 전기화학적 활성 입자를 제조하기 위하여 도 5에 도시된 바와 같은 과정을 수행하였다. 즉, 정제된 테트라하이드로퓨란 30 mL에 1 mmol의 포타슘 터트-부톡사이트(pottasium tert-butoxide)(Acros 사, Geel, Belgium) 0.6 g과 상기 제조된 전기화학적 활성 입자 0.3 g을 첨가한 후 초음파분쇄기를 이용하여 완전히 분산시켰다. 1,3-프로페인술톤(1,3-propanesultone)(Aldrich 사) 0.263 mL을 테트라하이드로퓨란 5 mL에 희석시킨 후, micropipet을 이용하여 한 방울 씩 첨가한 후 80 ℃에서 12시간 동안 반응시켰다. 원심분리기를 이용하여 9000 rpm에서 나노 입자와 용액을 분리하였다. 그 후 테트라하이드로퓨란를 넣고 15분간 초음파분쇄기를 이용해 나노 입자를 분산시켜 세척해 주었다. 테트라하이드로퓨란 3회 메탄올로 4회 같은 방법으로 세척하였다. 완전히 세척된 합성된 나노 입자는 진공 건조를 위해 둥근 바닥 플라스크에 완전히 분산시킨 후 진공하에서 12시간 건조시켰다.A process as shown in FIG. 5 was performed to prepare electrochemically active particles having negative charge. That is, an ultrasonic crusher was added to 30 mL of purified tetrahydrofuran after adding 0.6 g of 1 mmol potassium tert-butoxide (Acros, Geel, Belgium) and 0.3 g of the electrochemically active particles prepared above. It was dispersed completely using. After diluting 0.263 mL of 1,3-propanesultone (Aldrich) in 5 mL of tetrahydrofuran, the mixture was added dropwise using micropipet and reacted at 80 ° C. for 12 hours. The nanoparticles and the solution were separated at 9000 rpm using a centrifuge. After that, tetrahydrofuran was added and the nanoparticles were dispersed and washed by using an ultrasonic mill for 15 minutes. Tetrahydrofuran was washed three times with methanol three times in the same manner. The fully washed synthesized nanoparticles were completely dispersed in a round bottom flask for vacuum drying and then dried under vacuum for 12 hours.
실시예 2 Example 2
하기 표 1에서와 같은 양으로 시약을 사용하는 것을 제외하고 상기 실시예 1과 동일한 과정에 의해 14 nm의 실리카 나노 입자 2 g(3.98 mmoL)로부터의 전기화학적 활성 입자(Fc-[b]) 및 음전하성을 갖는 전기화학적 활성 입자(Fc-[b]-SO3-)를 제조하였다.By electrochemically active particles (Fc- [b]) from 2 g (3.98 mmoL) of 14 nm silica nanoparticles by the same procedure as in Example 1 except for using the reagent in the same amount as in Table 1 Electrochemically active particles (Fc- [b] -SO3-) with negative charge were prepared.
표 1
시약 APTMS 페로센 카르복실산 HOBt DIC 1,3-프로페인 술톤 포타슘 터트-부톡사이트
사용량 2 mL 1.38 g 0.82 g 0.93 mL 0.526 mL 0.22 g
Table 1
reagent APTMS Ferrocene carboxylic acid HOBt DIC 1,3-propane sultone Potassium tert-butoxide
usage
2 mL 1.38 g 0.82 g 0.93 mL 0.526 mL 0.22 g
실시예 3Example 3
<트롬빈 압타머 바이오센서의 제조><Production of Thrombin Aptamer Biosensor>
센서의 작업 전극을 제조하기 위하여 이온 증착법(작동 전극: 금 전극)과 스크린 프린팅(기준 전극: 은 전극)을 이용하여 planar-type 전극을 제작하였다. 폴리에스터(PE)는 미국 3M(St. Paul, MN, USA)에서 구입하였고, 염화은(Ag/AgCl) 반죽은 일본 ASAHI 사 제품을 사용하였고 절연층(insulator) 반죽은 일본 Jujo 사 제품을 사용하였다. 또한 플라즈마 증착기는 한국 Nuricell사의 NCVS-580S 모델을 사용하였고 스크린 프린터는 일본 Newlong Seimitsu Kogyo 사의 LS-150 제품을 사용하였다. 이온 증착법을 사용하여 polyethylene terephthalate(PE) 위에 금을 증착시킨 후, 스크린 프린팅 기술을 이용하여 염화은 반죽과 절연층 반죽을 순차적으로 패턴하여 완성하였다.In order to manufacture the working electrode of the sensor, a planar-type electrode was manufactured by using ion deposition (working electrode: gold electrode) and screen printing (reference electrode: silver electrode). Polyester (PE) was purchased from 3M (St. Paul, MN, USA) in the United States, silver chloride (Ag / AgCl) dough was used by Japan ASAHI, and insulator dough was used by Jujo, Japan. . Plasma evaporator used NCVS-580S model of Nuricell of Korea and LS-150 product of Newlong Seimitsu Kogyo of Japan. Gold was deposited on polyethylene terephthalate (PE) by ion deposition, and then screen printing was used to sequentially pattern the silver chloride dough and the insulation layer dough.
다음으로 금 전극과 잘 결합하도록 압타머 DNA의 5 말단에 티올기를 도입시켰고, 트롬빈과의 효율적인 결합을 위해 6개의 티민 공간자를 도입시켰다. 작업전극인 금 전극 위에 트롬빈과 특이적 결합을 하는 압타머(5'-SH-TTT TTT GGT TGG TGT GGT TGG-3')(Cosmo Genetech 사, 서울, 한국)를 20 μM의 농도로 0.1 M PBS pH 7.4(10 mM NaCl, 5 mM KCl, 1 mM MgCl2)로 희석한 후 압타머가 트롬빈을 더 결합하기 좋은 구조로 변형시키기 위해 90 ℃의 물에 5분간 압타머를 담가 두고, ice bath하에 5분간 담가 둔 후 전극에 고정시켰다. 압타머를 1 시간 반응시킨 후, 전극과 결합하지 않은 압타머를 제거하기 위해서 0.1 M PBS pH 7.4(10 mM NaCl, 5 mM KCl, 1 mM MgCl2)로 전동 피펫을 이용하여 3회 세척하였다. 그런 다음 전극 표면에 압타머가 결합되지 않은 빈 공간을 메워주어 압타머와 분석물질 간의 상호 작용을 용이하도록 하기 위하여 블록킹 분자 1 mM의 6-머캡토-1-헥산올(6-mercapto-1-hexanol)(Aldrich Chemical 사, Milwaukee, WI)을 에탄올로 희석하여 20분간 고정시켰다. Next, thiol groups were introduced at the five ends of the aptamer DNA to bind well with the gold electrode, and six thymine spacers were introduced for efficient binding with thrombin. Aptamer (5'-SH-TTT TTT GGT TGG TGT GGT TGG-3 ') (Cosmo Genetech, Seoul, South Korea) that binds specifically to thrombin on a working electrode, 0.1 M PBS After dilution with pH 7.4 (10 mM NaCl, 5 mM KCl, 1 mM MgCl2), the aptamer was soaked in water at 90 ° C. for 5 minutes in order to transform the aptamer into a better binding structure for thrombin, followed by 5 minutes in an ice bath. After soaking, it was fixed to the electrode. The aptamer was reacted for 1 hour, and then washed three times using an electric pipette with 0.1 M PBS pH 7.4 (10 mM NaCl, 5 mM KCl, 1 mM MgCl 2) in order to remove the aptamer not bound to the electrode. Then, a 1 mM 6-mercapto-1-hexanol of blocking molecule was filled to fill the empty space with no aptamer bound on the electrode surface to facilitate the interaction between the aptamer and the analyte. ) (Aldrich Chemical, Milwaukee, WI) was diluted with ethanol and fixed for 20 minutes.
실시예 4Example 4
<BNP 압타머 바이오센서의 제조><Manufacture of BNP Aptamer Biosensor>
실시예 3에서의 트롬빈 압타머를 대신하여 심혈관계 질환 표지자인 B-type Natriuretic Peptide(BNP) (3 kDa의 분자량)의 압타머를 도입하여 센서를 제작하였다. 이를 위해 5'-SH-TTT TTT TAA ACG CTC AAA GGA CAG AGG GTG CGT AGG AAG GGT ATT CGA CAG GAG GCT CAC A-3'의 서열을 갖는 BNP 압타머(Cosmo Genetech 사, 서울, 한국)를 전극 표면에 고정시키는 것을 제외하고 상기 실시예 3과 동일한 과정에 의해 센서를 제작하였다.In place of the thrombin aptamer in Example 3, a sensor was prepared by introducing an aptamer of B-type Natriuretic Peptide (BNP) (molecular weight of 3 kDa), which is a cardiovascular disease marker. For this purpose, BNP aptamer (Cosmo Genetech, Seoul, Korea) having the sequence of 5'-SH-TTT TTT TAA ACG CTC AAA GGA CAG AGG GTG CGT AGG AAG GGT ATT CGA CAG GAG GCT CAC A-3 ' The sensor was manufactured in the same manner as in Example 3, except that it was fixed to.
실시예 5Example 5
<CEA 압타머 바이오센서의 제조><Manufacture of CEA Aptamer Biosensor>
실시예 3에서의 트롬빈 압타머를 대신하여 대장암 표지자인 Carcinoembryonic antigen (CEA) (150 kDa~200 kDa의 분자량을 갖는 당 단백질)의 압타머를 도입하여 센서를 제작하였다. 이를 위해 3'-SH-TTT TTT ATG ATT TCT GGT GGC TGT GCG TAG CTG TGG ATG TGG-5'의 서열을 갖는 BNP 압타머(Cosmo Genetech 사, 서울, 한국)를 전극 표면에 고정시키는 것을 제외하고 상기 실시예 3과 동일한 과정에 의해 센서를 제작하였다.Instead of the thrombin aptamer in Example 3, a sensor was prepared by introducing an aptamer of a colon cancer marker, Carcinoembryonic antigen (CEA), a glycoprotein having a molecular weight of 150 kDa to 200 kDa. For this purpose, the BNP aptamer (Cosmo Genetech, Seoul, Korea) having the sequence of 3'-SH-TTT TTT ATG ATT TCT GGT GGC TGT GCG TAG CTG TGG ATG TGG-5 'is fixed on the electrode surface. The sensor was manufactured by the same procedure as in Example 3.
실험예 1Experimental Example 1
<전기화학적 활성 입자의 전기화학적 활성 측정><Measurement of electrochemical activity of electrochemically active particles>
상기 실시예 1 및 2에서 제조된 전기화학적 활성 입자들(Fc-[a], Fc-[b], Fc-[b]-SO3-)을 완충용액(0.1 M PBS pH 7.0(NaCl 10 mM))에 초음파분쇄기를 이용하여 완전히 분산시켰다. 이 용액을 전기화학 측정 장비인 CH Instrument 사의 Electrochemical analyzer workstaion 760D 장비를 사용하여 순환전압전류법을 측정하였다. The electrochemically active particles (Fc- [a], Fc- [b], and Fc- [b] -SO3-) prepared in Examples 1 and 2 were buffered (0.1 M PBS pH 7.0 (NaCl 10 mM)). ) Was completely dispersed using an ultrasonic grinder. The solution was measured by cyclic voltammetry using an electrochemical analyzer workstaion 760D instrument from CH Instrument, an electrochemical measuring instrument.
모든 실험은 상온에서 진행되었으며, 금 디스크 전극(CH Instruments, CHI 101, 지름 2 mm), vycor Ag/AgCl 기준 전극(CH Instruments, MF-2052), 백금 와이어 보조 전극(BAS Inc., MW-1033)의 3 전극계를 사용하였다.All experiments were conducted at room temperature, gold disk electrode (CH Instruments, CHI 101, 2 mm diameter), vycor Ag / AgCl reference electrode (CH Instruments, MF-2052), platinum wire auxiliary electrode (BAS Inc., MW-1033) ) 3 electrode system was used.
순환전압전류법의 주사 속도는 0.2 V/s로, 0 V~0.7 V의 전위 영역에서 2 사이클 실시하였다. 도 6에 결과를 나타내었다. Fc-[a] 및 Fc-[b] 모두 좋은 전기화학적 신호를 나타내지만, 음전하를 띄는 Fc-[b]-SO3-의 경우 향상된 분산 효과로 인해 신호가 증가했음을 확인할 수 있다.The scanning speed of the cyclic voltammetry was 0.2 V / s, and two cycles were performed in the potential region of 0 V to 0.7 V. The results are shown in FIG. Both Fc- [a] and Fc- [b] show good electrochemical signals, but the negatively charged Fc- [b] -SO3- shows an increased signal due to the improved dispersion effect.
<전기화학적 활성 입자의 TEM 이미지 측정><TEM image measurement of electrochemically active particles>
200 kV의 가속 전압을 가지는 Model Tecnai 20을 사용하여 상기 실시예 1 및 2에서 제조된 전기화학적 활성 입자들(Fc-[a], Fc-[b], Fc-[b]-SO3-) 및 비교를 위해 bare 실리카 나노 입자(즉, 7 nm 실리카 나노 입자 [a] 및 14 nm 실리카 나노 입자 [b])의 TEM 이미지를 촬영하였다. 입자들 [a], [b] 및 이들의 페로센이 도입된 Fc-[a], Fc-[b]의 TEM 사진을 도 7에 나타내었다. 각각의 경우 입자의 사이즈가 커진 것을 확인할 수 있다.Electrochemically active particles (Fc- [a], Fc- [b], Fc- [b] -SO3-) prepared in Examples 1 and 2 using Model Tecnai 20 having an acceleration voltage of 200 kV and TEM images of bare silica nanoparticles (ie, 7 nm silica nanoparticles [a] and 14 nm silica nanoparticles [b]) were taken for comparison. TEM images of Fc- [a] and Fc- [b] into which particles [a], [b] and their ferrocenes were introduced are shown in FIG. 7. In each case it can be seen that the size of the particles increased.
구체적으로 입자 Fc-[a]는 16.8±3.0의 크기를 가지고, Fc-[b]는 20.0±2.2의 크기를 가지며, Fc-[b]-SO3-는 20.6±2.5의 크기를 갖는 것으로 확인되었다. 이는 각각 7 nm 및 14 nm의 실리카 나노 입자보다 커진 것이다.Specifically, it was confirmed that particles Fc- [a] had a size of 16.8 ± 3.0, Fc- [b] had a size of 20.0 ± 2.2, and Fc- [b] -SO3- had a size of 20.6 ± 2.5. . This is larger than the silica nanoparticles of 7 nm and 14 nm, respectively.
<전기화학적 활성 입자의 제타 전위 및 응집성 관찰>Observation of zeta potential and cohesiveness of electrochemically active particles
동적광산란법(dynamic light scattering)을 이용하여 상기 실시예 1 및 2에서 제조된 전기화학적 활성 입자들(Fc-[a], Fc-[b], Fc-[b]-SO3-)의 제타전위를 측정하였다. 비교를 위해 7 nm 및 14 nm 실리카 나노 입자(즉,[a] 및 [b])의 제타전위를 함께 측정하였다. 제타전위 측정에는 Microtrac Inc. (Montgomeryville, PA, USA) 모델 Zetatrac zeta potential analyzer를 사용하였다. 결과를 하기 표 2에 나타내었다.Zeta Potential of Electrochemically Active Particles Fc- [a], Fc- [b], and Fc- [b] -SO3- Prepared in Examples 1 and 2 Using Dynamic Light Scattering Was measured. Zeta potentials of 7 nm and 14 nm silica nanoparticles (ie, [a] and [b]) were measured together for comparison. Zeta potential measurements are made by Microtrac Inc. A model Zetatrac zeta potential analyzer was used (Montgomeryville, PA, USA). The results are shown in Table 2 below.
표 2
샘플 TEM average diameter 제타전위(mV)
[a] 10.5±2.7 -39.4±0.1
[b] 13.6±0.7 -38.5±0.2
Fc-[a] 16.8±3.0 -0.6±1.2
Fc-[b] 20.0±2.2 -0.5±0.9
Fc-[b]-SO3 - 20.6±2.5 -52.5±2.1
TABLE 2
Sample TEM average diameter Zeta potential (mV)
[a] 10.5 ± 2.7 -39.4 ± 0.1
[b] 13.6 ± 0.7 -38.5 ± 0.2
Fc- [a] 16.8 ± 3.0 -0.6 ± 1.2
Fc- [b] 20.0 ± 2.2 -0.5 ± 0.9
Fc- [b] -SO 3 - 20.6 ± 2.5 -52.5 ± 2.1
상기 표로부터, 실리카 나노 입자에 페로센 및 음전하성을 도입한 후 입자의 크기가 다소 커지는 것을 확인할 수 있으며, 아울러 그러한 도입 후에도 입자로서의 성질이 유지되고 있음을 확인할 수 있다.From the table, it can be seen that after the introduction of ferrocene and negative charge to the silica nanoparticles the size of the particles is somewhat larger, and also after the introduction, the properties as particles are maintained.
또한, 7 nm 실리카 나노 입자 ([a]) 및 14 nm 실리카 나노 입자([b])는 각각 -39.4±0.1 및 -38.5±0.2 mV의 음전하 값을 가지지만, 표면에 아민기와 페로센이 도입됨으로써 표면의 제타전위가 각각 -0.6±1.2 및 -0.5±0.9 mV로 감소하였다. 이는 수용액 상에서의 응집 현상의 결과를 가져온다.In addition, although the 7 nm silica nanoparticles ([a]) and 14 nm silica nanoparticles ([b]) have negative charge values of -39.4 ± 0.1 and -38.5 ± 0.2 mV, respectively, an amine group and ferrocene are introduced into the surface. The zeta potential of the surface was reduced to -0.6 ± 1.2 and -0.5 ± 0.9 mV, respectively. This results in the phenomenon of aggregation in aqueous solution.
반면, 음전하성을 띄는 경우(Fc-[b]-SO3-) 제타전위가 -52.5±2.1 mV로 큰 값을 갖게 되며, 이는 수용액 상에서 안정된 상태를 유지할 것으로 기대된다.On the other hand, when negatively charged (Fc- [b] -SO3-) zeta potential has a large value of -52.5 ± 2.1 mV, which is expected to remain stable in aqueous solution.
실제 수용액 상에서의 응집 현상을 관찰한 결과, Fc-[b]-SO3-의 경우 48시간 경과 후에도 응집 현상이 거의 발생하지 않았음을 확인할 수 있었다.As a result of observing the aggregation phenomenon in the actual aqueous solution, it was confirmed that the aggregation phenomenon hardly occurred even after 48 hours in the case of Fc- [b] -SO3-.
실험예 2Experimental Example 2
<압타머 바이오센서 1의 감응성 평가><Sensibility Evaluation of Aptamer Biosensor 1>
상기 실시예 3에서 제조된 압타머 바이오센서의 감응도를 측정하기 위하여 실시예 3에서 표면에 압타머를 고정시킨 전극에 트롬빈을 농도 별로 가한 후 30분간 반응시켜 압타머와 트롬빈(Sigma, St. Louis, MO, USA) 간의 결합을 유도하였다. 그런 다음 압타머와 결합하지 않은 트롬빈을 세척과정을 통해 제거했다.In order to measure the sensitivity of the aptamer biosensor prepared in Example 3, after applying thrombin to the electrode fixed to the aptamer on the surface in Example 3 by concentration, the aptamer and thrombin were reacted for 30 minutes (Sigma, St. Louis). , MO, USA). The thrombin that did not bind to the aptamer was then removed by washing.
다음으로 전기화학적 신호를 얻기 위하여 완충용액 0.1 M PBS pH 7.0(NaCl 10 mM)을 바탕용액으로 사용하고, 실시예 1 및 2에서 제조된 전기화학적 활성 입자들(Fc-[a], Fc-[b], Fc-[b]-SO3-)을 2 mg/mL의 농도로 사용하였다. CH Instrument 사의 Electrochemical analyzer workstaion 760D 장비를 사용하여 네모파 전압전류법으로 산화전류를 측정하였다(CH Instrument 사의 Electrochemical analyzer workstaion 760D 장비 사용). 결과를 도 10(Fc-[a]), 도 11(Fc-[a]), 도 12(Fc-[b]-SO3-)에 각각 나타내었다.Next, in order to obtain an electrochemical signal, electrochemically active particles (Fc- [a], Fc- [) prepared in Examples 1 and 2 using buffer 0.1 M PBS pH 7.0 (NaCl 10 mM) as a base solution. b], Fc- [b] -SO3-) was used at a concentration of 2 mg / mL. The oxidation current was measured by square wave voltammetry using an electrochemical analyzer workstaion 760D instrument from CH Instrument (using an electrochemical analyzer workstaion 760D instrument from CH Instrument). The results are shown in Figs. 10 (Fc- [a]), 11 (Fc- [a]) and 12 (Fc- [b] -SO3-), respectively.
도 10 및 도 11 두 그래프 모두 트롬빈의 농도에 따른 신호 차이가 뚜렷이 나타남을 확인할 수 있었고, 검출 한계가 10-12 M 임을 확인하였다. 또한 도 10에서 보다 도 11에서 전기화학적 신호가 더 크고, 또한 트롬빈 농도간의 신호 격차가 더 큰 것을 알 수 있었다. 따라서 전기화학적 활성 입자의 제조한 실리카 나노 입자의 크기에 따라 가리움 효과가 다르게 나타나는 것을 확인할 수 있었다.10 and 11 both graphs were able to confirm that the signal difference according to the concentration of thrombin is apparent, it was confirmed that the detection limit is 10-12 M. In addition, the electrochemical signal is larger in FIG. 11 than in FIG. 10, and the signal gap between the thrombin concentrations is larger. Therefore, it was confirmed that the screening effect is different depending on the size of the prepared silica nanoparticles of the electrochemically active particles.
한편 도 12에서는 음전하성을 띄는 전기화학적 활성 입자와 트롬빈간의 척력 현상에 의해 가리움 효과가 향상되어, 검출 한계가 10-16 M 로 훨씬 향상되었다.Meanwhile, in FIG. 12, the screening effect was improved by the repulsive force between the electrochemically active particles having a negative charge and thrombin, and the detection limit was further improved to 10-16 M. FIG.
또한 비교를 위해 실시예 1 및 2에서 제조된 전기화학적 활성 입자들(Fc-[a], Fc-[b], Fc-[b]-SO3-) 대신에 전기화학적 활성을 갖는 단분자인 페로센카르복실산(ferrocenecarboxylic acid) 1 mM의 농도로 사용하여 트롬빈 농도에 따른 센서의 감응도를 측정하였다. CH Instrument 사의 Electrochemical analyzer workstaion 760D 장비를 사용하여 주사속도 100 mV/s의 순환전압전류법으로 측정하였다. 도 9에 결과를 나타내었다. Also for comparison, ferrocene, a single molecule having electrochemical activity instead of the electrochemically active particles (Fc- [a], Fc- [b], Fc- [b] -SO3-) prepared in Examples 1 and 2 The sensitivity of the sensor according to the thrombin concentration was measured using a concentration of 1 mM carboxylic acid (ferrocenecarboxylic acid). CH Instrument's electrochemical analyzer workstaion 760D was used for cyclic voltammetry at a scanning rate of 100 mV / s. The results are shown in FIG.
그 결과 트롬빈의 농도에 따른 신호 차이를 볼 수 없었다. 본 발명에서 제시되는 가리움 효과가 작은 분자에 의해서는 나타나지 않는 것을 알 수 있다. 즉, 도 8에 도시된 바와 같이 작은 분자의 경우에는 트롬빈의 농도에 상관없이 트롬빈이 가리움 효과가 없어 전기화학적 활성 입자가 전극에 도달하여 산화환원 반응이 일어나는 것이다. 그러므로, 전기화학적 활성 입자의 크기는 본 발명의 가리움 효과를 조절하는 수단이 된다. As a result, no signal difference was observed according to the thrombin concentration. It can be seen that the hiding effect presented in the present invention is not exhibited by small molecules. That is, in the case of a small molecule as shown in Figure 8, regardless of the thrombin concentration, thrombin has no shielding effect, the electrochemically active particles reach the electrode and the redox reaction occurs. Therefore, the size of the electrochemically active particles is a means of controlling the screening effect of the present invention.
<압타머 바이오센서 1의 특이성 평가> <Specific evaluation of aptamer biosensor 1>
면역 센서 기술의 핵심인 센서의 특이성을 평가하기 위하여 cross-reactivity test를 수행하였다. 즉, 혈중에 동시에 존재하고 있는 다른 물질에 대해 본 발명의 센서가 어떤 반응 결과를 나타내는지를 평가하였다. 이를 위해 전기화학적 활성 입자 (Fc-[b]-SO3-)를 이용하여 방해종 5.40x10-7 M의 리소자임(lysozyme) (Sigma, St. Louis, MO, USA), 2.19x10-3 M의 헤모글로빈(hemoglobin) (Sigma, St. Louis, MO, USA) 및 5.97x10-4 M의 인간 혈청 알부민(human serum albumin(HSA)) (Sigma, St. Louis, MO, USA)에 대한 센서의 감응을 측정하였다. 결과를 도 13에 나타냈다. Cross-reactivity tests were performed to evaluate the specificity of the sensor, which is the core of the immune sensor technology. That is, it evaluated what kind of reaction result the sensor of this invention shows with respect to the other substance which exists simultaneously in blood. For this purpose, the lysozyme of the interfering species 5.40x10-7 M (Sigma, St. Louis, Mo., USA), 2.19x10-3 M, using electrochemically active particles (Fc- [b] -SO3-) measuring the sensor's response to hemoglobin (Sigma, St. Louis, MO, USA) and 5.97 × 10-4 M human serum albumin (HSA) (Sigma, St. Louis, MO, USA) It was. The results are shown in FIG.
도 13에서 (a) 내지 (c)와 같이 트롬빈의 농도 변화(각각 10-12 M, 10-15 M, 10-16 M)에 따라 센서의 신호가 변화하는 것이 관찰되었다. 그러나 10-16 M의 트롬빈과 함께 섞어주어 측정한 (d) 내지 (f)에서는 10-16 M의 트롬빈에 의한 감응만이 확인되었다. 따라서 방해종에 대해서는 감응하지 않는다는 것을 알 수 있다.As shown in (a) to (c) in FIG. 13, it is observed that the signal of the sensor changes according to the change in concentration of thrombin (10-12 M, 10-15 M, 10-16 M, respectively). However, in (d) to (f) measured by mixing with 10-16 M thrombin, only the response by 10-16 M thrombin was confirmed. Therefore, it can be seen that it is not sensitive to the interfering species.
실험예 3Experimental Example 3
<분석물질 크기에 따른 센서의 감응성 평가><Evaluation of Sensor Sensitivity According to Analyte Size>
분석물질의 크기에 따라 센서의 감응성이 어떻게 달라지는지를 평가하기 위해 상기 실시예 4 및 5에서 제작된 센서에 대해 실시예 2에서 제조된 전기화학적 활성 입자((Fc-[b]-SO3-)를 이용하여 각 분석물질(즉, BNP 및 CEA)의 농도에 따른 센서의 신호를 측정하였다. 측정 기술 및 조건은 상기 실험예 2에서 트롬빈 압타머 센서의 경우와 동일한 방법으로 하였다. 결과를 도 14 및 15에 각각 나타내었다. 두 경우 모두에서 임상범위(BNP: 1x10-14~1x10-10 M 및 CEA: 1x10-13~1x10-9 M)내에서의 농도를 구별하여 검출이 가능한 것을 확인하였다. In order to evaluate how the sensitivity of the sensor varies depending on the size of the analyte, the electrochemically active particles ((Fc- [b] -SO3-) prepared in Example 2 were prepared for the sensors manufactured in Examples 4 and 5. The signal of the sensor according to the concentration of each analyte (ie, BNP and CEA) was measured using the same technique as that of the thrombin aptamer sensor in Experimental Example 2. The results are shown in FIG. In each case, the concentrations within the clinical ranges (BNP: 1x10-14 to 1x10-10 M and CEA: 1x10-13 to 1x10-9 M) were distinguished from each other to confirm detection.
다음으로, 상기 결과들을 종합하여 트롬빈, BNP 및 CEA 압타머 센서에서의 민감도를 비교하였다. 도 16에 각 센서의 검정 곡선을 나타내었다. 이를 보면, BNP는 3 kDa으로 가장 작은 분자량을 가지고 있으며 센서의 기울기 값은 0.249 μA/M의 값을 보였다. 트롬빈은 약 30 kDa으로 기울기 값은 0.342 μA/M로 나타났다. 세 가지 분석물질 중 분자량이 200 kDa으로 가장 큰 CEA는 0.422 μA/M의 기울기 값으로 가장 큰 값을 보였다. 분석물질의 분자량이 약 10배씩 커짐에 따라 기울기 값, 즉 센서의 민감도가 향상되었음을 알 수 있다.  Next, the results were combined to compare the sensitivity in thrombin, BNP and CEA aptamer sensors. The calibration curve of each sensor is shown in FIG. As a result, BNP had the smallest molecular weight of 3 kDa and the slope value of the sensor was 0.249 μA / M. Thrombin was about 30 kDa with a slope value of 0.342 μA / M. Among the three analytes, CEA with the highest molecular weight of 200 kDa showed the highest with a slope value of 0.422 μA / M. As the molecular weight of the analyte increases by about 10 times, the slope value, that is, the sensitivity of the sensor may be improved.

Claims (16)

  1. 전극 및 상기 전극에 고정된 분석 물질과 특이적으로 결합하는 압타머를 포함하며, 상기 전극 표면에서의 산화환원 반응에 의해 전기화학적 신호를 생성하는 전기화학적 활성 입자에 의해 상기 분석 물질의 존재 및 농도를 측정하는 것으로, 상기 전기화학적 신호는 상기 압타머에 분석 물질이 결합되었을 때 상기 입자에 대한 가리움 효과에 의해 감소되는 것을 특징으로 하는 압타머 바이오센서.Presence and concentration of the analyte by electrochemically active particles comprising an electrode and an aptamer specifically binding to the analyte immobilized on the electrode and generating an electrochemical signal by a redox reaction at the electrode surface By measuring, wherein the electrochemical signal is reduced by the screening effect on the particles when the analyte is bound to the aptamer.
  2. 제1항에서,In claim 1,
    상기 전기화학적 활성 입자는 은(Ag), 금(Au), 백금(Pt), 구리(Cu), 주석(Sn), 철(Fe), 니켈(Ni), 루테늄(Ru), 티타늄(Ti), 탄탈럼(Ta), 니오븀(Nb), 지르코늄(Zr), 알루미늄(Al), 하프늄(Hf), 텅스텐(W), 이트륨(Y), 아연(Zn), 란탄늄(La), 세슘(Ce), 프라세오디뮴(Pr), 네오디뮴(Nd), 사마륨(Sm), 안티모니(Sb), 비스무스(Bi), 납(Pb), 탈륨(Tl), 인듐(In), 텔루륨(Te), 크롬(Cr), 바나듐(V), 망간(Mn), 몰리브덴(Mo), 코발트(Co), 로듐(Rh), 팔라듐(Pd), 오스뮴(Os), 레륨(Re), 이리듐(Ir) 및 이들의 산화물로 이루어진 그룹에서 선택되는 1종 이상인 것을 특징으로 하는 압타머 바이오센서.The electrochemically active particles are silver (Ag), gold (Au), platinum (Pt), copper (Cu), tin (Sn), iron (Fe), nickel (Ni), ruthenium (Ru), titanium (Ti) , Tantalum (Ta), Niobium (Nb), Zirconium (Zr), Aluminum (Al), Hafnium (Hf), Tungsten (W), Yttrium (Y), Zinc (Zn), Lanthanum (La), Cesium ( Ce), praseodymium (Pr), neodymium (Nd), samarium (Sm), antimony (Sb), bismuth (Bi), lead (Pb), thallium (Tl), indium (In), tellurium (Te), Chromium (Cr), vanadium (V), manganese (Mn), molybdenum (Mo), cobalt (Co), rhodium (Rh), palladium (Pd), osmium (Os), rhenium (Re), iridium (Ir) and Aptamer biosensor, characterized in that at least one selected from the group consisting of these oxides.
  3. 제1항에서,In claim 1,
    상기 전기화학적 활성 입자는 실리카(Si), 은(Ag), 금(Au), 백금(Pt), 구리(Cu), 주석(Sn), 철(Fe), 니켈(Ni), 루테늄(Ru), 티타늄(Ti), 탄탈럼(Ta), 니오븀(Nb), 지르코늄(Zr), 알루미늄(Al), 하프늄(Hf), 텅스텐(W), 이트륨(Y), 아연(Zn), 란탄늄(La), 세슘(Ce), 프라세오디뮴(Pr), 네오디뮴(Nd), 사마륨(Sm), 안티모니(Sb), 비스무스(Bi), 납(Pb), 탈륨(Tl), 인듐(In), 텔루륨(Te), 크롬(Cr), 바나듐(V), 망간(Mn), 몰리브덴(Mo), 코발트(Co), 로듐(Rh), 팔라듐(Pd), 오스뮴(Os), 레륨(Re), 이리듐(Ir) 및 이들의 산화물로 이루어진 그룹에서 선택되는 1종 이상의 표면에 전극 표면에서 산화환원 반응하는 전기화학적 활성 화합물이 도입된 것을 특징으로 하는 압타머 바이오센서.The electrochemically active particles are silica (Si), silver (Ag), gold (Au), platinum (Pt), copper (Cu), tin (Sn), iron (Fe), nickel (Ni), ruthenium (Ru) , Titanium (Ti), tantalum (Ta), niobium (Nb), zirconium (Zr), aluminum (Al), hafnium (Hf), tungsten (W), yttrium (Y), zinc (Zn), lanthanum ( La, cesium (Ce), praseodymium (Pr), neodymium (Nd), samarium (Sm), antimony (Sb), bismuth (Bi), lead (Pb), thallium (Tl), indium (In), tel Rulium (Te), Chromium (Cr), Vanadium (V), Manganese (Mn), Molybdenum (Mo), Cobalt (Co), Rhodium (Rh), Palladium (Pd), Osmium (Os), Lelium (Re), An aptamer biosensor characterized in that an electrochemically active compound which redox-reacts at an electrode surface is introduced on at least one surface selected from the group consisting of iridium (Ir) and oxides thereof.
  4. 제1항에서,In claim 1,
    상기 전기화학적 활성 입자는 표면에는 (3-아미노프로필)트리메톡시실레인(3-Aminopropyl)triethoxysilane,The electrochemically active particles are (3-aminopropyl) trimethoxysilane (3-Aminopropyl) triethoxysilane on the surface,
    [3-(2-아민에톡시아미노)프로필]트리메톡시실레인 ([3-(2-Aminoethylamino)propyl]trimethoxysilane), 및 (3-아미노프로필)트리에톡시실레인(3-Aminopropyl)triethoxysilane으로 이루어진 그룹에서 선택되는 1종 이상으로부터 유도된 치환기로 아민이 도입되는 것을 특징으로 하는 압타머 바이오센서.[3- (2-amineethoxyamino) propyl] trimethoxysilane ([3- (2-Aminoethylamino) propyl] trimethoxysilane), and (3-aminopropyl) triethoxysilane triethoxysilane Aptamer biosensor, characterized in that the amine is introduced into a substituent derived from one or more selected from the group consisting of.
  5. 제1항에서,In claim 1,
    상기 전기화학적 활성 화합물은 페로센(ferrocene), 페로센 유도체(ferrocene derivatives), 퀴논(quinones), 퀴논 유도체(quinone derivatives), 루테늄 아민 복합체(ruthenium amin complexes), 오스뮴(I), 오스뮴(II), 오스뮴(III) 복합체(osmium complexes), 메탈로센(metallocene), 메탈로센 복합체(metallocene derivatives), 포타슘헥사시아노페레이트(II)(pottasiumhexacyanoferrate), 멜돌라 블루(Meldola's blue), 프루시안 블루(Prussian blue), 디클로로페놀인도페놀(dichlorophenolindophenol(DCPIP)), o-페닐렌디아민(o-phenylenediamine(o-PDA)), 3,4-디히드록시벤즈알데히드(3,4-dihydroxybenzaldehyde(3,4-DHB)), 비오로겐(viologen), 7,7,8,8-테트라시아노퀴노디메탄(7,7,8,8-tetracyanoquinodimethane(TCNQ)), 테트라티아풀발렌(tetrathiafulvalene(TTF)), N-메틸아시디늄(N-methylacidinium(NMA+)), 테트라티아테트라센(tetrathiatetracene(TTT)), N-메틸페나지늄(N-methylphenazinium(NMP+)), 3-메틸-2-벤조티오졸리논히드라존(3-methyl-2-benzothiozolinone hydrazone), 2-메톡시-4-알릴페놀(2-methoxy-4-allylphenol), 4-아미노안티피린(4-aminoantipyrin(AAP)), 디메틸아닐린(dimethylaniline), 4-아미노안티피렌(4-aminoantipyrene), 4-메톡시나프톨(4-methoxynaphthol), 3,3',5,5'-테트라메틸벤지딘(3,3',5,5'-tetramethylbenzidine(TMB)), 2,2-아지노-디-[3-에틸-벤즈티아졸린술포네이트](2,2-azino-di-[3-ethyl-benzthiazoline sulfonate]), o-디아니시딘(o-dianisidine), o-톨루이딘(o-toluidine), 2,4-디클로로페놀(2,4-dichlorophenol), 4-아미노페나존(4-aminophenazone), 및 벤지딘(benzidine)으로 이루어진 그룹에서 선택되는 1종 이상인 것을 특징으로 하는 압타머 바이오센서.The electrochemically active compounds are ferrocene (ferrocene), ferrocene derivatives (ferrocene derivatives), quinones (quinones), quinone derivatives (quinone derivatives), ruthenium amin complexes (osthenium (I), osmium (II), osmium (III) Osmium complexes, metallocenes, metallocene derivatives, potassium hexacyanoferrate (II), Meldola's blue, Prussian blue Prussian blue), dichlorophenolindophenol (DCPIP), o-phenylenediamine (o-PDA), 3,4-dihydroxybenzaldehyde (3,4-dihydroxybenzaldehyde DHB)), viologen, 7,7,8,8-tetracyanoquinodimethane (7,7,8,8-tetracyanoquinodimethane (TCNQ)), tetrathiafulvalene (TTF) , N-methylacidinium (NMA +), tetrathiatetracene (TTT), N-methylphenazinium (NMP +)), 3-methyl-2-benzothiozolinone hydrazone (3-methyl-2-benzothiozolinone hydrazone), 2-methoxy-4-allylphenol, 4-aminoantipyrine (4-aminoantipyrin (AAP)), dimethylaniline, 4-aminoantipyrene, 4-methoxynaphthol, 3,3 ', 5,5'-tetramethylbenzidine (3,3 ', 5,5'-tetramethylbenzidine (TMB)), 2,2-azino-di- [3-ethyl-benzthiazolinesulfonate] (2,2-azino-di- [3-ethyl- benzthiazoline sulfonate]), o-dianisidine, o-toluidine, 2,4-dichlorophenol, 4-aminophenazone, And aptamer biosensor, characterized in that at least one selected from the group consisting of benzidine.
  6. 제1항에서,In claim 1,
    상기 전기화학적 활성 입자는 표면에 술폰산(sulfonic acid), 인산(phosphoric acid), 카르복실산(carboxylic acid) 및 아세트산(acetic acid)으로 이루어진 그룹에서 선택된 1종 이상으로부터 유도되는 화합물이 도입됨으로써 음전하를 띄는 것임을 특징으로 하는 압타머 바이오센서.The electrochemically active particles have a negative charge on the surface by introducing a compound derived from at least one selected from the group consisting of sulfonic acid, phosphoric acid, carboxylic acid and acetic acid. Aptamer biosensor, characterized in that prominent.
  7. 제1항에서,In claim 1,
    상기 전기화학적 활성 입자는 표면에 사차아민(quaternary amine) 또는 유기 실레인(organic silane)이 도입됨으로써 양전하를 띄는 것임을 특징으로 하는 압타머 바이오센서.The electrochemically active particles are aptamer biosensor, characterized in that by the introduction of quaternary amine (organic silane) on the surface of the positive charge.
  8. 제1항에서,In claim 1,
    상기 전극은 금(Au) 또는 탄소(C) 전극인 것을 특징으로 하는 압타머 바이오센서.The electrode is an aptamer biosensor, characterized in that the gold (Au) or carbon (C) electrode.
  9. 제1항에서,In claim 1,
    상기 금(Au) 전극은 금 디스크 전극 또는 금 증착법(gold sputtering)을 이용한 스크린 프린팅 전극인 것을 특징으로 하는 압타머 바이오센서.The gold (Au) electrode is an aptamer biosensor, characterized in that the screen printing electrode using a gold disk electrode or gold sputtering (gold sputtering).
  10. 제1항에서,In claim 1,
    상기 탄소(C) 전극은 탄소 디스크 전극 또는 탄소 반죽(carbon paste)를 이용한 스크린 프린팅 전극인 것을 특징으로 하는 압타머 바이오센서.The carbon (C) electrode is an aptamer biosensor, characterized in that the screen printing electrode using a carbon disk electrode or carbon paste (carbon paste).
  11. 제1항에서,In claim 1,
    상기 분석 물질은 트롬빈, B-type natriuretic peptide(BNP) 또는 Carcinoembryonic antigen(CEA)인 것을 특징으로 하는 압타머 바이오센서.The analyte is thrombin, B-type natriuretic peptide (BNP) or Carcinoembryonic antigen (CEA), characterized in that the aptamer biosensor.
  12. 제1항에서,In claim 1,
    상기 전기화학적 활성 입자는 실리카 나노 입자에 페로센이 도입된 것을 특징으로 하는 압타머 바이오센서.The electrochemically active particles are aptamer biosensors characterized in that ferrocene is introduced into the silica nanoparticles.
  13. 제1항에서,In claim 1,
    상기 전기화학적 활성 입자는 실리카 나노 입자에 페로센 및 술폰산기가 도입된 것을 특징으로 하는 압타머 바이오센서.The electrochemically active particles are aptamer biosensors characterized in that ferrocene and sulfonic acid groups are introduced into the silica nanoparticles.
  14. 제1항에서,In claim 1,
    상기 전기화학적 활성 입자는 실리카 나노 입자 표면의 실란올기(Si-OH)와 (3-아미노프로필)트리메톡시실레인(3-Aminopropyl)triethoxysilane,The electrochemically active particles include silanol groups (Si-OH) and (3-aminopropyl) trimethoxysilane (3-Aminopropyl) triethoxysilane on the surface of silica nanoparticles,
    [3-(2-아민에톡시아미노)프로필]트리메톡시실레인 ([3-(2-Aminoethylamino)propyl]trimethoxysilane), 및 (3-아미노프로필)트리에톡시실레인(3-Aminopropyl)triethoxysilane으로 이루어진 그룹에서 선택되는 1종 이상의 화합물 간의 축합반응을 통해 실리카 나노 입자 표면에 아민기를 도입하는 단계 및 상기 아민기와의 커플링 반응을 페로센을 도입하는 단계를 포함하는 공정을 수행함으로써 제조된 것을 특징으로 하는 압타머 바이오센서.[3- (2-amineethoxyamino) propyl] trimethoxysilane ([3- (2-Aminoethylamino) propyl] trimethoxysilane), and (3-aminopropyl) triethoxysilane triethoxysilane Introducing an amine group to the surface of the silica nanoparticles through a condensation reaction between one or more compounds selected from the group consisting of Aptamer biosensor.
  15. 제14항에서,The method of claim 14,
    상기 전기화학적 활성 입자는 실리카 나노 입자 표면의 실란올기(Si-OH)와 1,3-프로페인술톤(1,3-propanesultone)간의 고리열림반응을 통해 술폰산기를 도입하는 단계를 추가적으로 수행함으로써 제조된 것을 특징으로 하는 압타머 바이오센서.The electrochemically active particles are prepared by additionally introducing a sulfonic acid group through a ring opening reaction between silanol groups (Si-OH) and 1,3-propanesultone on the surface of silica nanoparticles. Aptamer biosensor, characterized in that.
  16. 제14항 또는 제15항에 기재된 단계를 포함하는 공정으로부터 제조된 것을 특징으로 하는 전기화학적 활성 입자.An electrochemically active particle produced from a process comprising the step as claimed in claim 14.
PCT/KR2012/001453 2012-02-27 2012-02-27 Label-free aptamer biosensor WO2013129710A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2012/001453 WO2013129710A1 (en) 2012-02-27 2012-02-27 Label-free aptamer biosensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2012/001453 WO2013129710A1 (en) 2012-02-27 2012-02-27 Label-free aptamer biosensor

Publications (1)

Publication Number Publication Date
WO2013129710A1 true WO2013129710A1 (en) 2013-09-06

Family

ID=49082886

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/001453 WO2013129710A1 (en) 2012-02-27 2012-02-27 Label-free aptamer biosensor

Country Status (1)

Country Link
WO (1) WO2013129710A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101679140B1 (en) * 2015-03-10 2016-11-25 경희대학교 산학협력단 Palladium ion-specific DNA aptamer and a method for selecting the same
CN111186887A (en) * 2020-01-19 2020-05-22 中南大学 Method for removing and recovering thallium from industrial wastewater
CN111751432A (en) * 2020-06-09 2020-10-09 山东理工大学 Preparation of electrochemical immunosensor based on PdCuPt
CN112326638A (en) * 2020-11-05 2021-02-05 安徽理工大学环境友好材料与职业健康研究院(芜湖) Ratio type quantum dot ECL (electron cyclotron resonance) adapter sensor and manufacturing method thereof
CN112820089A (en) * 2021-01-28 2021-05-18 武汉拓宝科技股份有限公司 Automatic detection method and system for batch smoke sensing alarm
CN115112730A (en) * 2022-07-14 2022-09-27 山东理工大学 Preparation method of aptamer sensor based on lanthanide metal complex luminophor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020058273A1 (en) * 2000-08-10 2002-05-16 Edward Shipwash Method and system for rapid biomolecular recognition of amino acids and protein sequencing
US20100330706A1 (en) * 2009-06-25 2010-12-30 The Regents Of The University Of California Probe immobilization and signal amplification for polymer-based biosensor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020058273A1 (en) * 2000-08-10 2002-05-16 Edward Shipwash Method and system for rapid biomolecular recognition of amino acids and protein sequencing
US20100330706A1 (en) * 2009-06-25 2010-12-30 The Regents Of The University Of California Probe immobilization and signal amplification for polymer-based biosensor

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DENG, CHUNYAN ET AL.: "Impedimetric Aptasensor with Femtomolar Sensitivity Based on the Enlargement of Surface-Charged Gold Nanoparticles", ANALYTICAL CHEMISTRY, vol. 81, 15 January 2009 (2009-01-15), pages 739 - 745 *
JIE, GUIFEN ET AL.: "Enhanced Electrochemiluminescence of CdSe Quantum Dots Composited with CNTs and PDDA for Sensitive Immunoassay", BIOSENSORS AND BIOELECTRONICS, vol. 24, 2009, pages 3352 - 3358, XP026150152, DOI: doi:10.1016/j.bios.2009.04.039 *
LEE, JI-YEON, THESIS FOR MASTER'S DEGREE, February 2011 (2011-02-01), KWANGWOON UNIVERSTIY *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101679140B1 (en) * 2015-03-10 2016-11-25 경희대학교 산학협력단 Palladium ion-specific DNA aptamer and a method for selecting the same
CN111186887A (en) * 2020-01-19 2020-05-22 中南大学 Method for removing and recovering thallium from industrial wastewater
CN111186887B (en) * 2020-01-19 2021-09-03 中南大学 Method for removing and recovering thallium from industrial wastewater
CN111751432A (en) * 2020-06-09 2020-10-09 山东理工大学 Preparation of electrochemical immunosensor based on PdCuPt
CN112326638A (en) * 2020-11-05 2021-02-05 安徽理工大学环境友好材料与职业健康研究院(芜湖) Ratio type quantum dot ECL (electron cyclotron resonance) adapter sensor and manufacturing method thereof
CN112820089A (en) * 2021-01-28 2021-05-18 武汉拓宝科技股份有限公司 Automatic detection method and system for batch smoke sensing alarm
CN112820089B (en) * 2021-01-28 2022-05-03 武汉拓宝科技股份有限公司 Automatic detection method and system for batch smoke sensing alarm
CN115112730A (en) * 2022-07-14 2022-09-27 山东理工大学 Preparation method of aptamer sensor based on lanthanide metal complex luminophor

Similar Documents

Publication Publication Date Title
WO2013129710A1 (en) Label-free aptamer biosensor
Arya et al. Polyaniline protected gold nanoparticles based mediator and label free electrochemical cortisol biosensor
Wang et al. Particle-based detection of DNA hybridization using electrochemical stripping measurements of an iron tracer
Li et al. A novel ECL biosensor for the detection of concanavalin A based on glucose functionalized NiCo2S4 nanoparticles-grown on carboxylic graphene as quenching probe
Yin et al. Electrochemical immunosensor of tumor necrosis factor α based on alkaline phosphatase functionalized nanospheres
Chen et al. Electrochemical aptasensor for mucin 1 based on dual signal amplification of poly (o-phenylenediamine) carrier and functionalized carbon nanotubes tracing tag
Chen et al. Electrochemical immunosensor for simultaneous detection of multiplex cancer biomarkers based on graphene nanocomposites
Miao et al. Electrogenerated chemiluminescence. 80. C-reactive protein determination at high amplification with [Ru (bpy) 3] 2+-containing microspheres
Wan et al. Carbon nanotube-based ultrasensitive multiplexing electrochemical immunosensor for cancer biomarkers
Zhang et al. A multiplex nanoparticle-based bio-barcoded DNA sensor for the simultaneous detection of multiple pathogens
Wang et al. Platinum porous nanoparticles hybrid with metal ions as probes for simultaneous detection of multiplex cancer biomarkers
Zhang et al. Anodic‐Stripping Voltammetric Immunoassay for Ultrasensitive Detection of Low‐Abundance Proteins Using Quantum Dot Aggregated Hollow Microspheres
Peng et al. Electrochemical immunosensor for carcinoembryonic antigen based on signal amplification strategy of graphene and Fe3O4/Au NPs
Chandra et al. Ultrasensitive detection of drug resistant cancer cells in biological matrixes using an amperometric nanobiosensor
Mani et al. Ultrasensitive immunosensor for cancer biomarker proteins using gold nanoparticle film electrodes and multienzyme-particle amplification
Zhang et al. Multiplexed sandwich immunoassays using flow-injection electrochemiluminescence with designed substrate spatial-resolved technique for detection of tumor markers
Li et al. Electrochemical sensing of label free DNA hybridization related to breast cancer 1 gene at disposable sensor platforms modified with single walled carbon nanotubes
KR101321082B1 (en) Label-free Electrochemical Aptamer Sensor Using Nanoparticles
Chen et al. Multiplexed electrochemical immunoassay of biomarkers using chitosan nanocomposites
Feng et al. Dual signal amplification of horseradish peroxidase functionalized nanocomposite as trace label for the electrochemical detection of carcinoembryonic antigen
Liu et al. Electrochemical immunosensor based on mesoporous nanocomposites and HRP-functionalized nanoparticles bioconjugates for sensitivity enhanced detection of diethylstilbestrol
Han et al. Electrochemical immunoassay for thyroxine detection using cascade catalysis as signal amplified enhancer and multi-functionalized magnetic graphene sphere as signal tag
Viet et al. Development of highly sensitive electrochemical immunosensor based on single-walled carbon nanotube modified screen-printed carbon electrode
Zhong et al. Signal amplification of electrochemical immunosensor for the detection of human serum IgG using double-codified nanosilica particles as labels
Xiong et al. A novel solid-state Ru (bpy) 32+ electrochemiluminescence immunosensor based on poly (ethylenimine) and polyamidoamine dendrimers as co-reactants

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12869621

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12869621

Country of ref document: EP

Kind code of ref document: A1