WO2013129015A1 - Charge control agent and toner using same - Google Patents

Charge control agent and toner using same Download PDF

Info

Publication number
WO2013129015A1
WO2013129015A1 PCT/JP2013/052073 JP2013052073W WO2013129015A1 WO 2013129015 A1 WO2013129015 A1 WO 2013129015A1 JP 2013052073 W JP2013052073 W JP 2013052073W WO 2013129015 A1 WO2013129015 A1 WO 2013129015A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
substituted
substituent
atom
Prior art date
Application number
PCT/JP2013/052073
Other languages
French (fr)
Japanese (ja)
Inventor
育夫 木村
一徳 辻
雅也 東條
昌史 浅貝
Original Assignee
保土谷化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 保土谷化学工業株式会社 filed Critical 保土谷化学工業株式会社
Priority to JP2013523427A priority Critical patent/JP5329010B1/en
Publication of WO2013129015A1 publication Critical patent/WO2013129015A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/78Carbon atoms having three bonds to hetero atoms, with at the most one bond to halogen, e.g. ester or nitrile radicals
    • C07D213/81Amides; Imides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D215/00Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems
    • C07D215/02Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom
    • C07D215/16Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D215/48Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen
    • C07D215/50Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen attached in position 4
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D217/00Heterocyclic compounds containing isoquinoline or hydrogenated isoquinoline ring systems
    • C07D217/22Heterocyclic compounds containing isoquinoline or hydrogenated isoquinoline ring systems with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to carbon atoms of the nitrogen-containing ring
    • C07D217/26Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D221/00Heterocyclic compounds containing six-membered rings having one nitrogen atom as the only ring hetero atom, not provided for by groups C07D211/00 - C07D219/00
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/097Plasticisers; Charge controlling agents
    • G03G9/09733Organic compounds
    • G03G9/09758Organic compounds comprising a heterocyclic ring

Definitions

  • the present invention relates to a charge control agent used in an image forming apparatus for developing an electrostatic latent image in fields such as electrophotography and electrostatic recording, and a negatively chargeable toner containing the charge control agent.
  • an electrostatic latent image is formed on an inorganic photoreceptor such as selenium, selenium alloy, cadmium sulfide, amorphous silicon, or an organic photoreceptor using a charge generator and a charge transport agent. Is developed with toner, transferred onto paper or plastic film, and fixed to obtain a visible image.
  • an inorganic photoreceptor such as selenium, selenium alloy, cadmium sulfide, amorphous silicon, or an organic photoreceptor using a charge generator and a charge transport agent.
  • the photosensitive member has positive and negative charging characteristics depending on the structure.
  • development is performed with a reverse sign charging toner, while on the other hand, the printed part is discharged to perform reverse development.
  • development is performed with a toner having the same sign.
  • the toner is composed of a binder resin, a colorant, and other additives.
  • a charge control agent is generally added. By adding the charge control agent, the toner characteristics are greatly improved.
  • nigrosine dyes, azine dyes, copper phthalocyanine pigments, quaternary ammonium salts, and polymers having quaternary ammonium salts in the side chain are known.
  • Known negative triboelectric charge control agents include metal complex salts of monoazo dyes, metal complex salts of salicylic acid, naphthoic acid or dicarboxylic acid, copper phthalocyanine pigments, resins containing acid components, and the like.
  • a light-colored, preferably colorless, charge control agent that does not affect the hue is indispensable.
  • These light-colored or colorless charge control agents include metal complex salts of hydroxybenzoic acid derivatives (see, for example, Patent Documents 1 to 3) and aromatic dicarboxylic acid metal salt compounds (for example, Patent Document 4) for negatively chargeable toners.
  • Metal complex salt compounds of anthranilic acid derivatives for example, see Patent Documents 5 to 6
  • organoboron compounds for example, see Patent Documents 7 to 8
  • biphenol compounds for example, see Patent Document 9
  • calix n
  • allene compounds see, for example, Patent Documents 10 to 15
  • cyclic phenol sulfides see, for example, Patent Documents 16 to 18
  • quaternary ammonium salt compounds for example, see Patent Documents 19 to 21 for positively chargeable toners.
  • charge control agents are complexes or salts made of heavy metals such as chromium, which are problems regarding waste regulations and are not necessarily safe.
  • the charge imparting effect required today is low and the charge rising speed is insufficient, so that the initial copy image lacks clarity, the quality of the copy image during continuous copying tends to fluctuate,
  • a charge control agent that has a high charge imparting effect and can be applied to polymerized toners has been desired.
  • the object of the present invention is to provide a safe charge control agent having a high charge amount and no problem with waste regulations. It is another object of the present invention to provide a negatively chargeable toner for developing an electrostatic image and a negatively chargeable polymerized toner having high charging performance using the charge control agent.
  • the present invention has been obtained as a result of intensive studies to achieve the above object, and has the following gist.
  • the present invention provides a charge control agent containing one or more pyridinedicarboxylic acid derivatives represented by the general formula (1) as an active ingredient.
  • R 1 , R 2 and R 3 may be the same or different from each other, and are a hydrogen atom, deuterium atom, fluorine atom, chlorine atom, bromine atom, iodine atom, hydroxyl group, cyano group, A trifluoromethyl group, a nitro group, an optionally substituted linear or branched alkyl group having 1 to 8 carbon atoms, and an optionally substituted carbon atom having 5 to 10 carbon atoms A cycloalkyl group, a linear or branched alkenyl group having 2 to 6 carbon atoms which may have a substituent, a straight chain having 1 to 8 carbon atoms which may have a substituent, or A branched alkyloxy group, an optionally substituted cycloalkyloxy group having 5 to 10 carbon atoms, a substituted or unsubstituted aromatic hydrocarbon group, a substituted or unsubstituted heterocyclic group, substituted or Unsubstit
  • R 1 , R 2 and R 3 may be bonded to each other at adjacent groups to form a ring.
  • the pyridinedicarboxylic acid derivative represented by the general formula (1) may be a compound represented by the following general formula (1A).
  • R 1 , R 2 and R 3 may be the same or different from each other, and are a hydrogen atom, deuterium atom, fluorine atom, chlorine atom, bromine atom, iodine atom, hydroxyl group, cyano group, A trifluoromethyl group, a nitro group, an optionally substituted linear or branched alkyl group having 1 to 8 carbon atoms, and an optionally substituted carbon atom having 5 to 10 carbon atoms
  • R 1 , R 2 and R 3 may be bonded to each other at adjacent groups to form a ring.
  • the pyridinedicarboxylic acid derivative represented by the general formula (1) may be a compound represented by the following general formula (1A-1).
  • R 1 , R 2 and R 3 may be the same or different from each other, and are a hydrogen atom, deuterium atom, fluorine atom, chlorine atom, bromine atom, iodine atom, hydroxyl group, cyano Group, a trifluoromethyl group, a nitro group, a linear or branched alkyl group having 1 to 8 carbon atoms which may have a substituent, and a carbon atom having 5 to 5 carbon atoms which may have a substituent 10 cycloalkyl groups, a linear or branched alkenyl group having 2 to 6 carbon atoms which may have a substituent, and a linear chain having 1 to 8 carbon atoms which may have a substituent A branched or branched alkyloxy group, an optionally substituted cycloalkyloxy group having 5 to
  • R 1 , R 2 and R 3 , R 8 , R 9 , R 10 , R 11 and R 12 , or R 13 , R 14 , R 15 , R 16 and R 17 are mutually adjacent groups. It may combine to form a ring.
  • R 6 and R 7 may have a substituent. It may be a cycloalkyl group having 5 to 10 carbon atoms.
  • the present invention also provides a toner containing a charge control agent containing one or more pyridinedicarboxylic acid derivatives represented by the above general formula (1) as active ingredients, a colorant, and a binder resin.
  • a charge control agent containing one or more pyridinedicarboxylic acid derivatives represented by the above general formula (1) as active ingredients, a colorant, and a binder resin.
  • the present invention further provides a polymerization comprising a charge control agent containing one or more pyridinedicarboxylic acid derivatives represented by the general formula (1) as an active ingredient, a colorant, and a binder resin.
  • a charge control agent containing one or more pyridinedicarboxylic acid derivatives represented by the general formula (1) as an active ingredient, a colorant, and a binder resin.
  • toner Provide toner.
  • the charge control agent containing one or more pyridinedicarboxylic acid derivatives represented by the above general formula (1) as an active ingredient has a high charge amount, and is safe and has no problem with waste regulations. Therefore, it can be suitably used for toner charge control. Therefore, the present invention relates to the use of a charge control agent containing one or more pyridinedicarboxylic acid derivatives represented by the above general formula (1) as an active ingredient for charge control of the toner, or the above general formula. It can also be said that the charge control agent containing one or more pyridinedicarboxylic acid derivatives represented by (1) as an active ingredient is applied to toner charge control.
  • the toner may be a polymerized toner.
  • the present invention can also be referred to as a toner charge control method using a charge control agent containing one or more pyridinedicarboxylic acid derivatives represented by the general formula (1) as an active ingredient.
  • the toner may be a polymerized toner.
  • the charge control agent containing one or more pyridinedicarboxylic acid derivatives represented by the general formula (1) as an active ingredient has a higher charge rising speed than conventional charge control agents, and has a high charge. And charging characteristics particularly excellent in stability over time and environmental stability. In addition, it does not contain heavy metals such as chromium, which is a concern for environmental problems, and is excellent in dispersibility and compound stability.
  • the charge control agent according to the present invention is excellent in charge control characteristics, environmental resistance, and durability, and has no fog, image density, dot reproducibility, fine line reproducibility when used for pulverized toner or polymerized toner. Can obtain a good image.
  • the charge control agent is useful for an electrophotographic charge control agent that expresses sufficient triboelectric chargeability in the toner, particularly for a color toner, and further for a polymerized toner.
  • the charge control agent according to the present embodiment contains one or more pyridinedicarboxylic acid derivatives represented by the general formula (1) as an active ingredient.
  • the pyridinedicarboxylic acid derivative represented by the general formula (1) will be described.
  • R 1 , R 2 and R 3 (R 1 to R 3 ) in the general formula (1) “a linear or branched group having 1 to 8 carbon atoms which may have a substituent.
  • alkenyl group “Linear or branched alkyl group having 1 to 8 carbon atoms”, “Cycloalkyl group having 5 to 10 carbon atoms” or “Linear or branched chain having 2 to 6 carbon atoms” in “Alkenyl group”
  • alkenyl group include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group, n-pentyl group, isopentyl group, neopentyl group, n -Hexyl, n-heptyl, isoheptyl Group, n- octyl group, isooctyl group, a cyclopentyl group, a cyclohexyl group, 1-adamantyl, 2-adamantyl, vinyl group, allyl group, etc. may be mentioned. Isopropenyl group
  • a linear or branched alkyl group having 1 to 8 carbon atoms having a substituent represented by R 1 to R 3 in the general formula (1), “5 to 10 carbon atoms having a substituent”
  • Specific examples of the “substituent” in the “cycloalkyl group” or “straight-chain or branched alkenyl group having 2 to 6 carbon atoms” include deuterium atom, trifluoromethyl group, cyano group Group, nitro group, hydroxyl group; halogen atom such as fluorine atom, chlorine atom, bromine atom, iodine atom; methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group Straight chain having 1 to 8 carbon atoms such as n-pentyl group, isopentyl group, neopentyl group, n-hexyl group, n-
  • Aryl vinyl group Acyl group such as acetyl group and benzoyl group; Dialkylamino group such as dimethylamino group and diethylamino group; Aromatic hydrocarbon group such as diphenylamino group and dinaphthylamino group Or a disubstituted amino group substituted with a condensed polycyclic aromatic group; a diaralkylamino group such as a dibenzylamino group or a diphenethylamino group; a dipyridylamino group, a dithienylamino group or a dipiperidinylamino group A disubstituted amino group substituted with a heterocyclic group; a dialkenylamino group such as a diallylamino group; an alkyl group, an aromatic hydrocarbon group, a condensed polycyclic aromatic group, an aralkyl group, a heterocyclic group or an alkenyl group; And a group such as
  • a linear or branched alkyloxy group having 1 to 8 carbon atoms which may have a substituent represented by R 1 to R 3 in the general formula (1) or “having a substituent.
  • R 1 ⁇ R 3 is a neighboring groups to each other, a single bond, and bonded to each other through an oxygen atom or a sulfur atom ring May be formed.
  • a linear or branched alkyloxy group having 1 to 8 carbon atoms having a substituent represented by R 1 to R 3 in the general formula (1) or “a carbon atom having 5 to 5 carbon atoms having a substituent”
  • Specific examples of the “substituent” in “10 cycloalkyloxy groups” include deuterium atom, trifluoromethyl group, cyano group, nitro group, hydroxyl group; fluorine atom, chlorine atom, bromine atom, iodine atom, etc.
  • Halogen atom methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group, n-pentyl group, isopentyl group, neopentyl group, n-hexyl group, n-heptyl group A linear or branched alkyl group having 1 to 8 carbon atoms such as isoheptyl group, n-octyl group, isooctyl group, etc .; methyloxy group, ethyloxy group, pro A linear or branched alkyloxy group having 1 to 8 carbon atoms such as a ruoxy group; an alkenyl group such as an allyl group; an aralkyl group such as a benzyl group, a naphthylmethyl group or a phenethyl group; a phenyloxy group or a toly
  • Dialkylamino group such as dimethylamino group and diethylamino group
  • Diaralkylamino groups such as amino groups and diphenethylamino groups
  • Disubstituted amino groups substituted with heterocyclic groups such as dipyridylamino groups, dithienylamino groups, and dipiperidinylamino groups
  • Dialkenyl groups such as diallylamino groups
  • Examples of the “substituent” in the “substituted aromatic hydrocarbon group”, “substituted heterocyclic group” or “substituted condensed polycyclic aromatic group” represented by R 1 to R 3 in the general formula (1) include Deuterium atom, cyano group, trifluoromethyl group, nitro group, hydroxyl group; halogen atom such as fluorine atom, chlorine atom, bromine atom, iodine atom; methyl group, ethyl group, n-propyl group, isopropyl group , N-butyl group, isobutyl group, tert-butyl group, n-pentyl group, isopentyl group, neopentyl group, n-hexyl group, n-heptyl group, isoheptyl group, n-octyl group, isooctyl group, etc.
  • aryloxy group in the “substituted or unsubstituted aryloxy group” represented by R 1 to R 3 in the general formula (1) include a phenyloxy group, a tolyloxy group, and a biphenylyloxy group.
  • R 1 to R 3 May be bonded to each other through a single bond, oxygen atom or sulfur atom to form a ring.
  • substituted aryloxy group represented by R 1 to R 3 in the general formula (1)
  • substituents in the “substituted aryloxy group” represented by R 1 to R 3 in the general formula (1) include deuterium atom, cyano group, trifluoromethyl group, nitro group, hydroxyl group
  • a linear or branched alkenyl group of 1 to 8 carbon atoms such as a methyloxy group, an ethyloxy group or a propyloxy group; a cyclopentyloxy group, a cyclohexyloxy group or the like;
  • R 1 to R 3 in the general formula (1) are a hydrogen atom, a deuterium atom, a linear or branched alkyl group having 1 to 8 carbon atoms which may have a substituent, or a substituent.
  • a cycloalkyl group having 5 to 10 carbon atoms which may have a group is preferable, and a straight chain or branched chain having 1 to 4 carbon atoms which may have a hydrogen atom, a deuterium atom, or a substituent.
  • the alkyl group is more preferably a hydrogen atom or a deuterium atom.
  • a linear or branched alkyl group having 1 to 8 carbon atoms which may have a substituent represented by R 4 and R 5 in the general formula (1), “having a substituent In the “cycloalkyl group having 5 to 10 carbon atoms” or “the linear or branched alkenyl group having 2 to 6 carbon atoms which may have a substituent”.
  • Examples of “8 linear or branched alkyl group”, “C5-C10 cycloalkyl group” or “C2-C6 linear or branched alkenyl group” include the above R The groups are the same as those shown for 1 to R 3 , and the substituents that these groups may have are the same as those shown for R 1 to R 3 .
  • Substituted or unsubstituted aromatic hydrocarbon group “substituted or unsubstituted heterocyclic group” or “substituted or unsubstituted condensed polycyclic aromatic” represented by R 4 and R 5 in the general formula (1)
  • the “aromatic hydrocarbon group”, “heterocyclic group” or “condensed polycyclic aromatic group” in the “group” is the same group as those described above for R 1 to R 3 , and these groups Substituents that may have are the same as those described for R 1 to R 3 .
  • R 4 and R 5 in the general formula (1) are a hydrogen atom, a deuterium atom, a linear or branched alkyl group having 1 to 8 carbon atoms which may have a substituent, or a substituted group.
  • a cycloalkyl group having 5 to 10 carbon atoms which may have a group is preferable, and a straight chain or branched chain having 1 to 4 carbon atoms which may have a hydrogen atom, a deuterium atom, or a substituent.
  • the alkyl group is more preferably a hydrogen atom or a deuterium atom.
  • Cycloalkyl group having 5 to 10 carbon atoms in “cycloalkyl group having 5 to 10 carbon atoms which may have a substituent” represented by R 6 and R 7 in formula (1) Specific examples thereof include a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, a cyclononyl group, a cyclodecyl group, a 1-adamantyl group, and a 2-adamantyl group.
  • the “fused polycyclic aromatic group” specifically, phenyl group, biphenylyl group, terphenylyl group, naphthyl group, anthryl group, phenanthryl group, fluorenyl group, indenyl group, pyrenyl group, perylenyl group, fluoranthenyl group And a triphenylenyl group.
  • C6-C10 substituted cycloalkyl group “substituted aromatic hydrocarbon group” or “substituted condensed polycyclic aromatic group represented by R 6 and R 7 in general formula (1)
  • substituted specifically, deuterium atom, trifluoromethyl group, cyano group, nitro group, hydroxyl group; halogen atom such as fluorine atom, chlorine atom, bromine atom, iodine atom; Ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl, isopentyl, neopentyl, n-hexyl, n-heptyl, isoheptyl, n- Straight or branched alkyl group having 1 to 8 carbon atoms such as octyl group, isooctyl group, etc .; carbon atoms
  • Arylalkyloxy groups such as phenethyloxy groups; phenyl groups, biphenylyl groups, terphenylyl groups, naphthyl groups, anthracenyl groups, phenanthryl groups, fluorenyl groups, indenyl groups, pyrenyl groups, perylenyl groups, fluoranthenyl groups, triphenylenyl groups, etc.
  • Aromatic hydrocarbon group or condensed polycyclic aromatic group pyridyl group, furanyl group, pyranyl group, thienyl group, furyl group, pyrrolyl group, pyrrolidinyl group, imidazolyl group, imidazolinyl group, imidazolidinyl group, pyrazolyl group, pyrazolinyl group, Pyrazolidinyl group, pyridazinyl group, pyrazinyl group, piperidinyl group, piperazinyl group, thiolanyl group, thianyl group, quinolyl group, isoquinolyl group, benzofuranyl group, benzothienyl group, indolyl group, carbazolyl group, benzoxazolyl group, benzothiazolyl group, quinoxalyl Group, benzimidazolyl group, pyrazolyl group, dibenzofuranyl group, dibenzothienyl group, carbolin
  • C6-C10 substituted cycloalkyl group “substituted aromatic hydrocarbon group” or “substituted condensed polycyclic aromatic group represented by R 6 and R 7 in general formula (1)
  • R 6 and R 7 in the general formula (1) are preferably a cycloalkyl group having 5 to 10 carbon atoms which may have a substituent, or a substituted or unsubstituted aromatic hydrocarbon group. More preferably, R 6 and R 7 are both optionally substituted cycloalkyl groups having 5 to 10 carbon atoms, or both are substituted or unsubstituted aromatic hydrocarbon groups. preferable. Also in this case, R 6 and R 7 may be the same as or different from each other. As an embodiment in which R 6 and R 7 are both substituted or unsubstituted aromatic hydrocarbon groups, R 6 is represented by the following general formula (1A-2), and R 7 is represented by the following general formula (1A-3) ) Is more preferable.
  • R 8 to R 17 may be the same as or different from each other, and are a hydrogen atom, deuterium atom, fluorine atom, chlorine atom, bromine atom, iodine.
  • R 8 to R 17 in the general formula (1A-2) and the general formula (1A-3) “a linear or branched group having 1 to 8 carbon atoms which may have a substituent.
  • the substituents which these groups may have are the same as those shown for R 1 to R 3 .
  • the “aryloxy group” in the “substituted or unsubstituted aryloxy group” represented by R 8 to R 17 in the general formula (1A-2) and the general formula (1A-3) is the above R 1 to
  • the groups are the same as those shown for R 3 , and the substituents that these groups may have are the same as those shown for R 1 to R 3 .
  • R 8 to R 17 in the general formula (1A-2) and the general formula (1A-3) include a deuterium atom, a trifluoromethyl group, a cyano group, a nitro group, a hydroxyl group, a halogen atom, and one carbon atom.
  • a linear or branched alkyl group having 8 to 8 carbon atoms or a linear or branched alkyloxy group having 1 to 8 carbon atoms is preferable.
  • the pyridinedicarboxylic acid derivative represented by the general formula (1) may be, for example, a pyridinedicarboxylic acid derivative represented by the following general formula (1A) or the following general formula (1A-1).
  • R 1 to R 7 are as described above.
  • R 1 to R 5 and R 8 to R 17 are as described above.
  • the pyridinedicarboxylic acid derivative represented by the general formula (1) according to this embodiment can be produced by a known method. For example, by reacting the corresponding dichloride of pyridinedicarboxylic acid and the alicyclic hydrocarbon, aromatic hydrocarbon or condensed polycyclic aromatic having the corresponding amino group in the presence of a base or the like, this embodiment The pyridinedicarboxylic acid derivative according to the above can be synthesized. It can also be synthesized by reacting the corresponding pyridinedicarboxylic acid with an alicyclic hydrocarbon, aromatic hydrocarbon or condensed polycyclic aromatic having a corresponding amino group in the presence of a dehydrating condensing agent.
  • the charge control agent is preferably used by adjusting the volume average particle diameter within the range of 0.1 ⁇ m to 20 ⁇ m, and particularly preferably adjusted within the range of 0.1 ⁇ m to 10 ⁇ m. If the volume average particle size is smaller than 0.1 ⁇ m, the amount of the charge control agent appearing on the toner surface tends to be extremely small, and the target charge control effect tends to be difficult to be obtained. It is not preferable because the charge control agent tends to increase and adverse effects such as in-machine contamination tend to occur.
  • the volume average particle diameter is preferably adjusted to 1.0 ⁇ m or less, particularly preferably adjusted to be in the range of 0.01 ⁇ m to 1.0 ⁇ m. .
  • the volume average particle size exceeds 1.0 ⁇ m, the particle size distribution of the finally obtained electrophotographic toner may be broadened or free particles may be generated, which may lead to a decrease in performance or reliability.
  • the average particle diameter is within the above range, there are no disadvantages, and the uneven distribution among the toners is reduced, the dispersion in the toner is improved, and the variation in performance and reliability is advantageous.
  • a method for adding the charge control agent according to the present embodiment to the toner a method of adding a kneading agent to the binder resin together with a colorant, kneading, and pulverization (pulverized toner), or charge control to a polymerizable monomer monomer
  • the amount of the charge control agent that is preferably added to the toner particles is preferably 0.1 to 10 parts by mass, more preferably 0.2 to 10 parts by mass with respect to 100 parts by mass of the binder resin.
  • the amount is 5 parts by mass.
  • the amount of the pyridinedicarboxylic acid derivative with respect to 100 parts by mass of the binder resin is preferably 0.01 to 5 parts by mass, more preferably 0.01 to 2 parts by mass. is there. Further, it is preferable that the toner particles are fixed mechanochemically.
  • the charge control agent containing the pyridinedicarboxylic acid derivative represented by the general formula (1) as an active ingredient can be used in combination with other known negatively chargeable charge control agents.
  • Preferred charge control agents to be used in combination include azo iron complexes or complex salts, azo chromium complexes or complex salts, azo manganese complexes or complex salts, azo cobalt complexes or complex salts, azo zirconium complexes or complex salts, and chromium complexes of carboxylic acid derivatives.
  • a complex salt, a zinc complex or complex salt of a carboxylic acid derivative, an aluminum complex or complex salt of a carboxylic acid derivative, and a zirconium complex or complex salt of a carboxylic acid derivative is preferably an aromatic hydroxycarboxylic acid, more preferably 3,5-di-tert-butylsalicylic acid.
  • a boron complex or complex salt, a negatively chargeable resin type charge control agent and the like can be mentioned.
  • the amount of charge control other than the charge control agent according to the present embodiment is 100 parts by mass of the binder resin.
  • the agent is preferably 0.1 to 10 parts by mass.
  • binder resin can be used as the binder resin used in the toner according to the exemplary embodiment.
  • Vinyl polymers such as styrene monomers, acrylate monomers, methacrylate monomers, or copolymers composed of two or more of these monomers, polyester polymers, polyol resins, phenol resins, Examples include silicone resins, polyurethane resins, polyamide resins, furan resins, epoxy resins, xylene resins, terpene resins, coumarone indene resins, polycarbonate resins, petroleum resins, and the like.
  • styrene monomer examples include styrene monomer, acrylate monomer, and methacrylate monomer that form the vinyl polymer or copolymer are illustrated below, but are not limited thereto.
  • Styrene monomers include styrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, p-phenylstyrene, p-ethylstyrene, 2,4-dimethylstyrene, pn-amylstyrene, p -Tert-butyl styrene, pn-hexyl styrene, pn-octyl styrene, pn-nonyl styrene, pn-decyl styrene, pn-dodecyl styrene, p-methoxy styrene, p-chloro Examples thereof include styrene such as styrene, 3,4-dichlorostyrene, m-nitrostyrene, o-nitrost
  • acrylate monomers include acrylic acid or methyl acrylate, ethyl acrylate, propyl acrylate, n-butyl acrylate, isobutyl acrylate, n-octyl acrylate, n-dodecyl acrylate, 2-acrylate
  • acrylic acid such as ethylhexyl, stearyl acrylate, 2-chloroethyl acrylate, and phenyl acrylate or esters thereof.
  • Methacrylate monomers include methacrylic acid, methyl methacrylate, ethyl methacrylate, propyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, n-octyl methacrylate, n-dodecyl methacrylate, 2-ethyl methacrylate.
  • methacrylic acid or esters thereof such as hexyl, stearyl methacrylate, phenyl methacrylate, dimethylaminoethyl methacrylate, diethylaminoethyl methacrylate, and the like.
  • Examples of other monomers that form the vinyl polymer or copolymer include the following (1) to (18).
  • Monoolefins such as ethylene, propylene, butylene and isobutylene;
  • Polyenes such as butadiene and isoprene;
  • Vinyl halides such as vinyl chloride, vinylidene chloride, vinyl bromide and vinyl fluoride;
  • Vinyl esters such as vinyl acetate, vinyl propionate and vinyl benzoate;
  • Vinyl ethers such as vinyl methyl ether, vinyl ethyl ether and vinyl isobutyl ether; (6) Vinyl methyl ketone, vinyl hexyl ketone and methyl.
  • Vinyl ketones such as isopropenyl ketone; (7) N-vinyl compounds such as N-vinyl pyrrole, N-vinyl carbazole, N-vinyl indole, N-vinyl pyrrolidone; (8) vinyl naphthalenes; (9) acrylonitrile, methacrylate.
  • the vinyl polymer or copolymer of the binder resin may have a crosslinked structure crosslinked with a crosslinking agent having two or more vinyl groups.
  • the cross-linking agent include aromatic divinyl compounds such as divinylbenzene and divinylnaphthalene.
  • diacrylate compounds linked by an alkyl chain include ethylene glycol diacrylate, 1,3-butylene glycol diacrylate, 1,4-butanediol diacrylate, 1,5-pentanediol diacrylate, 1,6 -Hexanediol diacrylate, neopentyl glycol diacrylate, or those obtained by replacing the acrylate of the above compound with methacrylate.
  • diacrylate compounds linked by an alkyl chain containing an ether bond examples include diethylene glycol diacrylate, triethylene glycol diacrylate, tetraethylene glycol diacrylate, polyethylene glycol # 400 diacrylate, polyethylene glycol # 600 diacrylate, Examples include propylene glycol diacrylate or those obtained by replacing acrylate of the above-mentioned compound with methacrylate.
  • polyester diacrylates examples include trade name MANDA (manufactured by Nippon Kayaku Co., Ltd.).
  • Polyfunctional cross-linking agents include pentaerythritol triacrylate, trimethylol ethane triacrylate, trimethylol propane triacrylate, tetramethylol methane tetraacrylate, oligoester acrylate, and those obtained by replacing acrylates of the above compounds with methacrylate, Examples include lucyanurate and triallyl trimellitate.
  • crosslinking agents can be used in an amount of preferably 0.01 to 10 parts by weight, particularly preferably 0.03 to 5 parts by weight, with respect to 100 parts by weight of other monomer components.
  • cross-linkable monomers those that are preferably used in the toner resin from the viewpoint of fixability and anti-offset properties include one aromatic divinyl compound (especially divinylbenzene is preferred), one aromatic group and one ether bond. Examples thereof include diacrylate compounds linked by a linking chain.
  • a combination of monomers that becomes a styrene copolymer or a styrene-acrylate copolymer is preferable.
  • examples of the polymerization initiator used for producing the vinyl polymer or copolymer include 2,2′-azobisisobutyronitrile, 2,2′-azobis (4-methoxy-2, 4-dimethylvaleronitrile), 2,2′-azobis (2,4-dimethylvaleronitrile), 2,2′-azobis (2-methylbutyronitrile), dimethyl-2,2′-azobisisobutyrate 1,1′-azobis (1-cyclohexanecarbonitrile), 2- (carbamoylazo) -isobutyronitrile, 2,2′-azobis (2,4,4-trimethylpentane), 2-phenylazo- 2 ', 4'-dimethyl-4'-methoxyvaleronitrile, 2,2'-azobis (2-methylpropane), methyl ethyl ketone peroxide, acetylacetone peroxide Ketone peroxides such as oxide and cyclohexanone peroxide, 2,2-bis
  • the binder resin is a styrene-acrylate resin
  • the molecular weight distribution is 3,000 by molecular weight distribution by gel permeation chromatography (hereinafter abbreviated as GPC) soluble in the resin component tetrahydrofuran (hereinafter abbreviated as THF).
  • GPC gel permeation chromatography
  • THF-soluble component is preferably a binder resin in which a component having a molecular weight distribution of 100,000 or less is 50 to 90%. More preferably, it has a main peak in a region having a molecular weight of 5,000 to 30,000, and most preferably in a region having a molecular weight of 5,000 to 20,000.
  • the acid value is preferably 0.1 mgKOH / g to 100 mgKOH / g, and preferably 0.1 mgKOH / g to 70 mgKOH / g. More preferably, it is 0.1 mgKOH / g to 50 mgKOH / g.
  • Examples of the monomer constituting the polyester polymer include the following.
  • Examples of the divalent alcohol component include ethylene glycol, propylene glycol, 1,3-butanediol, 1,4-butanediol, 2,3-butanediol, diethylene glycol, triethylene glycol, 1,5-pentanediol, 1, Examples thereof include 6-hexanediol, neopentyl glycol, 2-ethyl-1,3-hexanediol, hydrogenated bisphenol A, or diol obtained by polymerizing cyclic ethers such as ethylene oxide and propylene oxide with bisphenol A.
  • a trihydric or higher alcohol examples include sorbitol, 1,2,3,6-hexanetetrol, 1,4-sorbitan, pentaerythritol, dipentaerythritol, tripentaerythritol, 1,2,4-butanetriol, 1,2,5-pentatriol, glycerol, 2-methylpropanetriol, 2-methyl-1,2,4-butanetriol, trimethylolethane, trimethylolpropane, 1,3,5-trihydroxybenzene It is done.
  • Examples of the acid component that forms the polyester polymer include benzene dicarboxylic acids such as phthalic acid, isophthalic acid, and terephthalic acid or anhydrides thereof, and alkyldicarboxylic acids such as succinic acid, adipic acid, sebacic acid, and azelaic acid or the like.
  • Unsaturated dibasic acids such as anhydride, maleic acid, citraconic acid, itaconic acid, alkenyl succinic acid, fumaric acid, mesaconic acid, maleic anhydride, citraconic anhydride, itaconic anhydride, alkenyl succinic anhydride, etc.
  • unsaturated dibasic acid anhydrides such as anhydride, maleic acid, citraconic acid, itaconic acid, alkenyl succinic acid, fumaric acid, mesaconic acid, maleic anhydride, citraconic anhydride, itaconic anhydride, alkenyl succin
  • Trivalent or higher polyvalent carboxylic acid components include trimellitic acid, pyromellitic acid, 2,5,7-naphthalene tricarboxylic acid, 1,2,4-naphthalene tricarboxylic acid, 1,2,4-butanetricarboxylic acid, 1,2,5-hexanetricarboxylic acid, 1,3-dicarboxy-2-methyl-2-methylenecarboxypropane, tetra (methylenecarboxy) methane, 1,2,7,8-octanetetracarboxylic acid, empol trimer Body acids, or anhydrides thereof, partial lower alkyl esters, and the like.
  • the molecular weight distribution of the THF-soluble component of the resin component has at least one peak in the molecular weight region of 3,000 to 50,000, which indicates toner fixability and offset resistance.
  • the THF-soluble component is preferably a binder resin in which a component having a molecular weight of 100,000 or less is 60 to 100%. More preferably, at least one peak is present in a region having a molecular weight of 5,000 to 20,000.
  • the molecular weight distribution of the binder resin is measured by GPC using THF as a solvent.
  • the molecular weight is, for example, a number average molecular weight in terms of standard polystyrene measured with an HLC-8220 GPC apparatus (manufactured by Tosoh Corporation).
  • the acid value is preferably 0.1 mgKOH / g to 100 mgKOH / g, more preferably 0.1 mgKOH / g to 70 mgKOH / g, and 0.1 mgKOH / g. More preferably, it is ⁇ 50 mg KOH / g.
  • the hydroxyl value is preferably 30 mgKOH / g or less, more preferably 10 mgKOH / g to 25 mgKOH / g.
  • a mixture of two or more of an amorphous polyester resin and a crystalline polyester resin may be used. In this case, it is preferable to select the material in consideration of the compatibility of each.
  • amorphous polyester resin those synthesized from a polyvalent carboxylic acid component, preferably an aromatic polyvalent carboxylic acid and a polyhydric alcohol component, are suitably used.
  • crystalline polyester resin one synthesized from a divalent carboxylic acid component, preferably an aliphatic dicarboxylic acid and a dihydric alcohol component, is suitably used.
  • a resin including a monomer component capable of reacting with both of these resin components in the vinyl polymer component and / or the polyester resin component can also be used.
  • monomers that can react with the vinyl polymer among the monomers constituting the polyester resin component include unsaturated dicarboxylic acids such as phthalic acid, maleic acid, citraconic acid, and itaconic acid, or anhydrides thereof.
  • the monomer constituting the vinyl polymer component include those having a carboxyl group or a hydroxy group, and acrylic acid or methacrylic acid esters.
  • the total binder resin has a resin having an acid value of 0.1 mgKOH / g to 50 mgKOH / g of 60% by mass or more. preferable.
  • the acid value of the binder resin component of the toner composition is determined by the following method, and the basic operation conforms to JIS K-0070.
  • the sample is used by removing additives other than the binder resin (polymer component) in advance, or the acid value and content of components other than the binder resin and the crosslinked binder resin are obtained in advance. .
  • a crushed sample of 0.5 to 2.0 g is precisely weighed, and the weight of the polymer component is defined as Wg.
  • Wg the weight of the polymer component
  • the toner binder resin and the composition containing the binder resin have a glass transition temperature (Tg) of preferably 35 to 80 ° C., particularly preferably 40 to 75 ° C. from the viewpoint of toner storage stability.
  • Tg glass transition temperature
  • the toner binder resin and the composition containing the binder resin have a glass transition temperature (Tg) of preferably 35 to 80 ° C., particularly preferably 40 to 75 ° C. from the viewpoint of toner storage stability.
  • Tg glass transition temperature
  • Tg glass transition temperature
  • a binder resin having a softening point in the range of 80 to 140 ° C. is preferably used.
  • the softening point of the binder resin is less than 80 ° C., the toner and the image stability of the toner after fixing and storage may be deteriorated.
  • the softening point exceeds 140 ° C., the low-temperature fixability may be deteriorated.
  • Magnetic materials that can be used in the present embodiment include (1) magnetic iron oxides such as magnetite, maghemite, and ferrite, and iron oxides containing other metal oxides, (2) metals such as iron, cobalt, and nickel, or Alloys of these metals with metals such as aluminum, cobalt, copper, lead, magnesium, tin, zinc, antimony, beryllium, bismuth, cadmium, calcium, manganese, selenium, titanium, tungsten, vanadium, and (3) Examples thereof include a mixture thereof.
  • the magnetic material include Fe 3 O 4 , ⁇ -Fe 2 O 3 , ZnFe 2 O 4 , Y 3 Fe 5 O 12 , CdFe 2 O 4 , Gd 3 Fe 5 O 12 , CuFe 2 O 4 , PbFe 12 O, NiFe 2 O 4 , NdFe 2 O, BaFe 12 O 19 , MgFe 2 O 4 , MnFe 2 O 4 , LaFeO 3 , iron powder, cobalt powder, nickel powder, etc. Or two or more types can be used in combination.
  • a particularly suitable magnetic substance is fine powder of iron trioxide or ⁇ -iron trioxide.
  • magnetic iron oxides such as magnetite, maghemite, and ferrite containing different elements, or a mixture thereof can be used.
  • different elements include lithium, beryllium, boron, magnesium, aluminum, silicon, phosphorus, germanium, zirconium, tin, sulfur, calcium, scandium, titanium, vanadium, chromium, manganese, cobalt, nickel, copper, zinc, gallium, etc.
  • Preferred heterogeneous elements are selected from magnesium, aluminum, silicon, phosphorus, or zirconium.
  • the foreign element may be incorporated into the iron oxide crystal lattice, may be incorporated into the iron oxide as an oxide, or may exist as an oxide or hydroxide on the surface. Is preferably contained as an oxide.
  • the aforementioned different elements can be incorporated into the particles by adjusting the pH by mixing salts of the different elements at the time of producing the magnetic material. Moreover, it can be made to deposit on the particle
  • the amount of the magnetic substance used can be 10 to 200 parts by mass, preferably 20 to 150 parts by mass, with respect to 100 parts by mass of the binder resin.
  • These magnetic materials preferably have a number average particle diameter of 0.1 ⁇ m to 2 ⁇ m, and more preferably 0.1 ⁇ m to 0.5 ⁇ m.
  • the number average particle diameter can be obtained by measuring a photograph taken with a transmission electron microscope with a digitizer or the like.
  • the magnetic material preferably has a magnetic property of 10 to 150 oersted, a saturation magnetization of 50 to 200 emu / g, and a residual magnetization of 2 to 20 emu / g when applied with 10K oersted.
  • the magnetic material can also be used as a colorant.
  • the colorant according to this embodiment includes black or blue dye or pigment particles.
  • black or blue pigments include carbon black, aniline black, acetylene black, phthalocyanine blue, and indanthrene blue.
  • black or blue dyes include azo dyes, anthraquinone dyes, xanthene dyes, and methine dyes.
  • examples of the colorant include the following.
  • magenta colorant condensed azo compounds, diketopyrrolopyrrole compounds, anthraquinone compounds, quinacridone compounds, basic dyes, lake dyes, naphthol dyes, benzimidazolone compounds, thioindigo compounds, and perylene compounds can be used.
  • examples of pigment-based magenta colorants include C.I. I.
  • the pigment may be used alone, it is more preferable from the viewpoint of the image quality of a full-color image to improve the sharpness by using a dye and a pigment together.
  • C.I. I. Solvent Red 1, 3, 8, 23, 24, 25, 27, 30, 49, 81, 82, 83, 84, 100, 109, 121, C.I. I, disperse thread 9, C.I. I. Solvent Violet 8, 13, 14, 21, 27, C.I. I.
  • Oil-soluble dyes such as Desperperiolet 1, C.I. I. Basic red 1, 2, 9, 12, 13, 14, 15, 17, 18, 22, 23, 24, 27, 29, 32, 34, 35, 36, 37, 38, 39, 40, C.I. I. Examples include basic dyes such as basic violet 1,3,7,10,14,15,21,25,26,27,28.
  • cyan colorant copper phthalocyanine compounds and derivatives thereof, anthraquinones, basic dye lake compounds can be used.
  • examples of the pigment-based cyan colorant include C.I. I. Pigment blue 2, 3, 15, 16, 17, C.I. I. Bat Blue 6, C.I. I. Examples include Acid Blue 45 or copper phthalocyanine pigments in which 1 to 5 phthalimidomethyl groups are substituted on the phthalocyanine skeleton.
  • yellow colorant condensed azo compounds, isoindolinone compounds, anthraquinone compounds, azo metal complexes, methine compounds, and allylamide compounds can be used.
  • yellow pigments include C.I. I. Pigment Yellow 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17, 23, 65, 73, 83, C.I. I. Bat yellow 1, 3, 20 and the like.
  • orange pigment examples include red chrome yellow, molybdenum orange, permanent orange GTR, pyrazolone orange, Vulcan orange, benzidine orange G, indanthrene brilliant orange RK, and indanthrene brilliant orange GK.
  • purple pigments include manganese purple, fast violet B, and methyl violet lake.
  • green pigment examples include chromium oxide, chrome green, pigment green, malachite green lake, final yellow green G, and the like.
  • white pigments examples include zinc white, titanium oxide, antimony white, and zinc sulfide.
  • the amount of the colorant used is preferably 0.1 to 20 parts by mass with respect to 100 parts by mass of the binder resin.
  • the toner of this embodiment may be mixed with a carrier and used as a two-component developer.
  • a carrier a normal carrier such as ferrite or magnetite or a resin-coated carrier can be used as a carrier.
  • the resin-coated carrier is composed of carrier core particles and a coating material that is a resin that coats (coats) the surface of the carrier core particles.
  • a coating material that is a resin that coats (coats) the surface of the carrier core particles.
  • the resin used for the coating material include styrene-acrylate resins such as styrene-acrylic acid ester copolymers and styrene-methacrylic acid ester copolymers, acrylic acid ester copolymers, and methacrylic acid ester copolymers.
  • Fluorine-containing resins such as acrylate resins, polytetrafluoroethylene, monochlorotrifluoroethylene polymer, polyvinylidene fluoride, silicone resins, polyester resins, polyamide resins, polyvinyl butyral, and aminoacrylate resins are preferred.
  • a resin that can be used as a coating material for a carrier such as an ionomer resin or a polyphenylene sulfide resin can be used. These resins can be used alone or in combination.
  • a binder type carrier core in which magnetic powder is dispersed in a resin can be used.
  • a resin-coated carrier as a method for coating the surface of the carrier core with at least a resin coating material, the resin is dissolved or suspended in a solvent, and is applied to the carrier core for adhesion, or simply mixed in a powder state. Applicable methods are applicable.
  • the ratio of the resin coating material to the resin-coated carrier may be appropriately determined, but is preferably 0.01 to 5% by mass, more preferably 0.1 to 1% by mass with respect to the resin-coated carrier.
  • Examples of use in which a magnetic material is coated with a coating agent of two or more kinds of mixtures include (1) dimethyldichlorosilane and dimethyl silicon oil (mass ratio 1: 5) with respect to 100 parts by mass of fine titanium oxide powder. Those treated with 12 parts by mass of the mixture, and (2) those treated with 20 parts by mass of the mixture of dimethyldichlorosilane and dimethylsilicone oil (mass ratio 1: 5) with respect to 100 parts by mass of the silica fine powder.
  • styrene-methyl methacrylate copolymer a mixture of fluorine-containing resin and styrene-based copolymer, or silicone resin is preferable, and silicone resin is particularly preferable.
  • Examples of the mixture of the fluorine-containing resin and the styrene copolymer include, for example, a mixture of polyvinylidene fluoride and a styrene-methyl methacrylate copolymer, a mixture of polytetrafluoroethylene and a styrene-methyl methacrylate copolymer, Vinylidene fluoride-tetrafluoroethylene copolymer (copolymer mass ratio 10:90 to 90:10), styrene-2-ethylhexyl acrylate copolymer (copolymer mass ratio 10:90 to 90:10) and styrene And a mixture with an acrylic acid-2-ethylhexyl-methyl methacrylate copolymer (copolymer mass ratio 20 to 60: 5 to 30:10:50).
  • silicone resin examples include nitrogen-containing silicone resins and modified silicone resins produced by reacting a nitrogen-containing silane coupling agent with a silicone resin.
  • ferrite, iron-rich ferrite, magnetite, oxides such as ⁇ -iron oxide, metals such as iron, cobalt, nickel, or alloys thereof can be used.
  • elements contained in these magnetic materials include iron, cobalt, nickel, aluminum, copper, lead, magnesium, tin, zinc, antimony, beryllium, bismuth, calcium, manganese, selenium, titanium, tungsten, and vanadium.
  • Preferred magnetic materials include copper-zinc-iron-based ferrites mainly composed of copper, zinc and iron components, and manganese-magnesium-iron-based ferrites mainly composed of manganese, magnesium and iron components.
  • the resistance value of the carrier is preferably adjusted to 10 6 ⁇ ⁇ cm to 10 10 ⁇ ⁇ cm by adjusting the degree of unevenness on the surface of the carrier and the amount of resin to be coated.
  • the particle size of the carrier can be 4 ⁇ m to 200 ⁇ m, preferably 10 ⁇ m to 150 ⁇ m, more preferably 20 ⁇ m to 100 ⁇ m.
  • the resin-coated carrier preferably has a 50% particle size of 20 ⁇ m to 70 ⁇ m.
  • the two-component developer it is preferable to use 1 to 200 parts by mass of the toner according to this embodiment with respect to 100 parts by mass of the carrier, and 2 to 50 parts by mass of toner with respect to 100 parts by mass of the carrier. It is more preferable.
  • the toner of this embodiment may further contain a wax.
  • the following wax is used.
  • oxides of aliphatic hydrocarbon waxes such as low molecular weight polyethylene, low molecular weight polypropylene, polyolefin wax, microcrystalline wax, paraffin wax, sazol wax, aliphatic hydrocarbon waxes such as oxidized polyethylene wax, or blocks thereof Copolymers, plant waxes such as candelilla wax, carnauba wax, wood wax, jojoba wax, animal waxes such as beeswax, lanolin, whale wax, mineral waxes such as ozokerite, ceresin, petrolatum, montanate ester wax, Examples thereof include waxes mainly composed of fatty acid esters such as caster wax and those obtained by partially or fully deoxidizing fatty acid esters such as deoxidized carnauba wax.
  • waxes are further saturated linear fatty acids such as palmitic acid, stearic acid, montanic acid, or linear alkyl carboxylic acids having a linear alkyl group, prandidic acid, eleostearic acid, valinalic acid, etc.
  • Preferred waxes include polyolefins obtained by radical polymerization of olefins under high pressure, polyolefins obtained by purifying low molecular weight by-products obtained during the polymerization of high molecular weight polyolefins, and polymerization using a catalyst such as a Ziegler catalyst or a metallocene catalyst under low pressure.
  • these waxes have a sharp molecular weight distribution using a press sweating method, a solvent method, a recrystallization method, a vacuum distillation method, a supercritical gas extraction method or a solution liquid crystal deposition method, or a low molecular weight solid fatty acid, a low A molecular weight solid alcohol, a low molecular weight solid compound or other impurities are preferably used.
  • the wax used in the present embodiment preferably has a melting point of 50 to 140 ° C., more preferably 70 to 120 ° C., in order to balance the fixability and the offset resistance. If it is less than 50 degreeC, there exists a tendency for blocking resistance to fall, and if it exceeds 140 degreeC, it will become difficult to express an offset-proof effect.
  • the plasticizing action and the releasing action which are the actions of the wax can be expressed simultaneously.
  • the type of wax having a plasticizing action include a wax having a low melting point, a wax having a branched structure on the molecular structure, or a wax having a structure having a polar group.
  • the wax having a high molecular weight a linear wax or a non-polar wax having no functional group can be mentioned.
  • use include a combination in which the difference in melting point between two or more different waxes is 10 ° C. to 100 ° C., a combination of polyolefin and graft-modified polyolefin, and the like.
  • the melting point of at least one of the waxes is preferably 70 to 120 ° C., more preferably 70 to 100 ° C. When the melting point is in this range, the function separation effect tends to be easily exhibited.
  • the wax is relatively branched, has a polar group such as a functional group, or is modified with a component different from the main component to exert a plastic action, and has a more linear structure, A non-polar one having no functional group or an unmodified straight one exhibits a releasing action.
  • Preferred combinations of waxes include polyethylene homopolymers or copolymers based on ethylene and polyolefin homopolymers or copolymers based on olefins other than ethylene; combinations of polyolefins and graft modified polyolefins; alcohol waxes, fatty acid waxes or A combination of ester wax and hydrocarbon wax; a combination of Fischer-Tropsch wax or polyolefin wax and paraffin wax or microcrystal wax; a combination of Fischer-Tropsch wax and polyolefin wax; a combination of paraffin wax and microcrystal wax; a carnauba wax; Candelilla wax, rice wax or montan wax and carbonized water The combination of the system wax and the like.
  • the endothermic peak observed in the DSC measurement of the toner preferably has a maximum peak peak top temperature in the region of 70 to 110 ° C., and has a maximum peak peak top temperature in the region of 70 to 110 ° C. It is more preferable. This makes it easy to balance toner storage and fixing properties.
  • the total content of these waxes is preferably 0.2 to 20 parts by mass, and preferably 0.5 to 10 parts by mass with respect to 100 parts by mass of the binder resin. More preferred.
  • the melting point of the wax is the peak top temperature of the endothermic peak of the wax measured by DSC.
  • the DSC measurement of wax or toner is performed with a highly accurate internal heat input compensation type differential scanning calorimeter.
  • the measurement method is performed according to ASTM D3418-82.
  • a DSC curve is used that is measured when the temperature is raised at a temperature rate of 10 ° C./min after once raising and lowering the temperature and taking a previous history.
  • a fluidity improver may be added to the toner of this embodiment.
  • the fluidity improver improves the fluidity of the toner (becomes easy to flow) when added to the toner surface.
  • fluorocarbon resin powder such as carbon black, vinylidene fluoride fine powder, polytetrafluoroethylene fine powder, wet process silica, fine powder silica such as dry process silica, fine powder unoxidized titanium, fine powder unalumina, and silane
  • the particle size of the fluidity improver is preferably 0.001 ⁇ m to 2 ⁇ m, more preferably 0.002 ⁇ m to 0.2 ⁇ m, as an average primary particle size.
  • a preferable fine powder silica is a fine powder produced by vapor phase oxidation of a silicon halide inclusion, and is called so-called dry silica or fumed silica.
  • Examples of commercially available silica fine powders produced by vapor phase oxidation of silicon halogen compounds include those sold under the following trade names.
  • AEROSIL manufactured by Nippon Aerosil Co., Ltd., the same shall apply hereinafter
  • -130, -300, -380, -TT600, -MOX170, -MOX80, -COK84 Ca-O-SiL (manufactured by CABOT Corp., hereinafter the same shall apply) -M-5 , -MS-7, -MS-75, -HS-5, -EH-5, Wacker HDK (manufactured by WACKER-CHEMIEGMBH Co., Ltd., the same shall apply hereinafter) -N20 V15, -N20E, -T30, -T40: D-CFineSi1ica (Manufactured by Dow Corning): Franco1 (manufactured by Franci1).
  • a treated silica fine powder obtained by hydrophobizing a silica fine powder produced by vapor phase oxidation of a silicon halogen compound is more preferable.
  • the treated silica fine powder it is particularly preferable to treat the silica fine powder so that the degree of hydrophobicity measured by a methanol titration test shows a value of 30 to 80%.
  • the hydrophobizing treatment can be performed, for example, by a method of chemically or physically treating with an organosilicon compound that reacts or physically adsorbs with silica fine powder.
  • a method of treating silica fine powder produced by vapor phase oxidation of a silicon halogen compound with an organosilicon compound is preferable.
  • organosilicon compounds include hydroxypropyltrimethoxysilane, phenyltrimethoxysilane, n-hexadecyltrimethoxysilane, n-octadecyltrimethoxysilane, vinylmethoxysilane, vinyltriethoxysilane, vinyltriacetoxysilane, dimethylvinylchlorosilane, Divinylchlorosilane, ⁇ -methacryloxypropyltrimethoxysilane, hexamethyldisilane, trimethylsilane, trimethylchlorosilane, dimethyldichlorosilane, methyltrichlorosilane, allyldimethylchlorosilane, allylphenyldichlorosilane, benzyldimethylchlorosilane, bromomethyldimethylchlorosilane, ⁇ -Chloroethyltrichlorosilane,
  • the fluidity improver preferably has a number average particle diameter of 5 nm to 100 nm, more preferably 5 nm to 50 nm.
  • the specific surface area by nitrogen adsorption measured by the BET method is preferably 30 m 2 / g or more, more preferably 60 to 400 m 2 / g.
  • the surface-treated fine powder is preferably 20 m 2 / g or more, more preferably 40 to 300 m 2 / g.
  • the application amount of these fine powders is preferably 0.03 to 8 parts by mass with respect to 100 parts by mass of the toner particles.
  • the toner of the present embodiment includes various types of metal soaps for the purpose of protecting the photoconductor / carrier, improving cleaning properties, adjusting thermal characteristics / electrical characteristics / physical characteristics, adjusting resistance, adjusting softening point, improving fixing rate, etc.
  • lubricants such as polytetrafluoroethylene, zinc stearate, and polyvinylidene fluoride, abrasives such as cesium oxide, silicon carbide, and strontium titanate, anti-caking agents, and white particles and black particles that are opposite in polarity to the toner particles A small amount can be used as a developability improver.
  • These additives include silicone varnishes, various modified silicone varnishes, silicone oils, various modified silicone oils, silane coupling agents, silane coupling agents having functional groups, and other organosilicon compounds for the purpose of charge control. It is also preferable to treat with a treating agent or various treating agents.
  • the charge control agent is sufficiently mixed and stirred together with the additive and toner as described above by a mixer such as a Henschel mixer, a ball mill, a nauter mixer, a V-type mixer, a W-type mixer, or a super mixer.
  • a mixer such as a Henschel mixer, a ball mill, a nauter mixer, a V-type mixer, a W-type mixer, or a super mixer.
  • the target electrostatic charge developing toner can be obtained by uniformly externally treating the toner particle surface.
  • the toner of this embodiment is thermally stable and does not undergo thermal changes during the electrophotographic process, and can maintain stable charging characteristics. Further, since it is uniformly dispersed in any binder resin, the charge distribution of the fresh toner is very uniform. For this reason, in the toner of this embodiment, even in the untransferred and recovered toner (waste toner), almost no change is observed in the saturated triboelectric charge amount and the charge distribution compared to the fresh toner. On the other hand, when the waste toner from the electrostatic image developing toner of this embodiment is reused, a method of selecting a polyester resin containing an aliphatic diol as a binder resin, a metal-crosslinked styrene-acrylate copolymer is used. By producing a toner by using a binder resin and adding a large amount of polyolefin to the binder resin, the difference between the fresh toner and the waste toner can be further reduced.
  • the toner according to the present embodiment can be manufactured by a known manufacturing method.
  • the above-mentioned toner constituent materials such as a binder resin, a charge control agent, and a colorant are sufficiently mixed by a mixer such as a ball mill, and the resulting mixture is well kneaded by a heating and kneading apparatus such as a hot roll kneader.
  • a method (pulverization method) obtained by solidifying by cooling, classification after pulverization is preferable.
  • toner production method comprising a core material and a shell material by a polymerization method in which a predetermined material is mixed with a monomer to constitute a binder resin to form an emulsion or suspension and then polymerized to obtain a toner.
  • the microcapsule toner can also be manufactured by a method in which a predetermined material is contained in the core material, the shell material, or both.
  • the toner according to the exemplary embodiment can be manufactured by sufficiently mixing a desired additive and toner particles with a mixer such as a Henschel mixer as necessary.
  • the toner manufacturing method according to the present embodiment using the pulverization method will be described in more detail.
  • a binder resin, a colorant, a charge control agent, and other necessary additives are mixed uniformly.
  • a known stirrer such as a Henschel mixer, a super mixer, or a ball mill can be used.
  • the obtained mixture is hot-melt kneaded using a closed kneader or a single-screw or twin-screw extruder.
  • the kneaded product is coarsely pulverized using a crusher or a hammer mill, and further finely pulverized by a pulverizer such as a jet mill or a high-speed rotor rotary mill.
  • classification is performed to a predetermined particle size using an air classifier, for example, an inertia class elbow jet utilizing the Coanda effect, a cyclone (centrifugal) class microplex, a DS separator, and the like.
  • an air classifier for example, an inertia class elbow jet utilizing the Coanda effect, a cyclone (centrifugal) class microplex, a DS separator, and the like.
  • a high-speed agitator such as a Henschel mixer or a super mixer.
  • the toner according to the present embodiment can be manufactured by a suspension polymerization method or an emulsion polymerization method.
  • a suspension polymerization method first, a polymerizable monomer, a colorant, a polymerization initiator, a charge control agent and, if necessary, a crosslinking agent, a dispersion stabilizer and other additives are uniformly dissolved or dispersed.
  • a monomer composition is prepared.
  • the monomer composition and the dispersion stabilizer are mixed into an appropriate stirrer or disperser such as a homomixer, a homogenizer, an atomizer, a microfluidizer, a one-component fluid nozzle, a gas-liquid fluid in a continuous phase (for example, an aqueous phase). Disperse using a nozzle, electric emulsifier or the like.
  • granulation is performed by adjusting the stirring speed, temperature, and time so that the droplets of the polymerizable monomer composition have a desired toner particle size.
  • the polymerization reaction is carried out at 40 to 90 ° C. to obtain toner particles having a desired particle size.
  • the obtained toner particles are washed, filtered, and dried.
  • the method described above can be used.
  • the average particle diameter is extremely small, 0.1 ⁇ m to 1.0 ⁇ m, although it is excellent in uniformity compared to the particles obtained by the suspension polymerization method described above. It can also be produced by a so-called seed polymerization method in which particles are grown by post-addition of a polymerizable monomer, or a method in which emulsified particles are coalesced and fused to an appropriate average particle size.
  • the selection range of can be expanded.
  • the release agent or colorant which is a hydrophobic material, is difficult to be exposed on the surface of the toner particles, so that contamination of the toner carrying member, the photoreceptor, the transfer roller, and the fixing device can be reduced.
  • the toner according to this embodiment By producing the toner according to this embodiment by a polymerization method, characteristics such as image reproducibility, transferability, and color reproducibility can be further improved.
  • the toner particle size can be reduced in order to deal with minute dots, and a toner having a sharp particle size distribution can be obtained relatively easily.
  • Examples of the polymerizable monomer used when the toner according to the exemplary embodiment is manufactured by a polymerization method include vinyl polymerizable monomers capable of radical polymerization.
  • a monofunctional polymerizable monomer or a polyfunctional polymerizable monomer can be used.
  • Monofunctional polymerizable monomers include styrene, ⁇ -methyl styrene, ⁇ -methyl styrene, o-methyl styrene, m-methyl styrene, p-methyl styrene, 2,4-dimethyl styrene, pn-butyl.
  • Styrene polymerizable monomers such as styrene, p-tert-butylstyrene, pn-hexylstyrene, p-phenylstyrene; methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, isobutyl Acrylate, tert-butyl acrylate, n-amyl acrylate, n-hexyl acrylate, 2-ethylhexyl acrylate, n-octyl acrylate, benzyl acrylate, dimethyl phosphate methyl acrylate, dibutyl phosphate ethyl Acrylate polymerizable monomers such as acrylate and 2-benzoyloxyethyl acrylate; methyl methacrylate, ethyl methacrylate, n-propyl me
  • a known polymerization initiator such as an organic peroxide can be used as the polymerization initiator used when the toner according to the present embodiment is produced by the polymerization method.
  • the water-soluble initiator include ammonium persulfate, potassium persulfate, 2, 2'-azobis (N, N'-dimethyleneisobutyroamidine) hydrochloride, 2,2'-azobis (2-aminodipropane) hydrochloride, azobis (isobutylamidine) hydrochloride, 2,2'-azo Examples thereof include sodium bisisobutyronitrile sulfonate, ferrous sulfate, and hydrogen peroxide.
  • the polymerization initiator is preferably added in an amount of 0.5 to 20 parts by mass with respect to 100 parts by mass of the polymerizable monomer, and may be used alone or in combination.
  • the dispersant used in the production of the polymerized toner include inorganic calcium oxides such as tricalcium phosphate, magnesium phosphate, aluminum phosphate, zinc phosphate, calcium carbonate, magnesium carbonate, aluminum hydroxide, and metasilicate. Examples thereof include calcium acid, calcium sulfate, barium sulfate, bentonite, silica, and alumina.
  • organic compound examples include polyvinyl alcohol, gelatin, methyl cellulose, methyl hydroxypropyl cellulose, ethyl cellulose, sodium salt of carboxymethyl cellulose, starch and the like. These dispersants are preferably used in an amount of 0.2 to 2.0 parts by mass with respect to 100 parts by mass of the polymerizable monomer.
  • the inorganic compound can be produced in a dispersion medium under high-speed stirring.
  • the toner obtained by the polymerization method tends to have a small degree of unevenness of the toner particles compared to the toner by the pulverization method without any special treatment and is indefinite, so that the contact between the electrostatic latent image carrier and the toner The area is increased and the toner adhesion is increased. As a result, there is less in-machine contamination, and a higher image density and a higher quality image can be easily obtained.
  • the toner particles are dispersed in water and heated by a hot water bath method, a heat treatment method in which the toner particles pass through a hot air current, or a mechanical impact method in which mechanical energy is applied and processed.
  • the degree of unevenness on the toner surface can be reduced.
  • Effective devices for reducing the degree of unevenness include a mechano-fusion system (manufactured by Hosokawa Micron Co., Ltd.) applying dry mechanochemical method, an I-type jet mill, and a hybridizer that is a mixing device having a rotor and a liner (Nara Machinery) Manufactured by Seisakusho Co., Ltd.) and a Henschel mixer which is a mixer having high-speed stirring blades.
  • the average circularity (C) is the total number of particles obtained by calculating the circularity (Ci) by the following formula (2) and further measuring the total roundness of all the particles measured as shown by the following formula (3). It means the value divided by (m).
  • the circularity (Ci) is measured using a flow particle image analyzer (for example, FPIA-1000 manufactured by Toa Medical Electronics Co., Ltd.).
  • a flow particle image analyzer for example, FPIA-1000 manufactured by Toa Medical Electronics Co., Ltd.
  • a measurement method a dispersion in which about 5 mg of toner is dispersed in 10 ml of water in which about 0.1 mg of a nonionic surfactant is dissolved is prepared, and ultrasonic waves (20 kHz, 50 W) are irradiated to the dispersion for 5 minutes.
  • the circularity distribution of particles having an equivalent circle diameter of 0.60 ⁇ m or more and less than 159.21 ⁇ m is measured using the flow type particle image analyzer with a dispersion concentration of 5000 to 20000 particles / ⁇ L.
  • the value of the average circularity is preferably 0.955 to 0.995, and more preferably 0.960 to 0.985.
  • the toner particle diameter is preferably in the range of 2 ⁇ m to 15 ⁇ m, more preferably in the range of 3 ⁇ m to 12 ⁇ m in terms of volume average particle diameter.
  • the average particle size exceeds 15 ⁇ m, the resolution or sharpness tends to be dull, and when the average particle size is less than 2 ⁇ m, the resolution is good, but the problem of high cost due to the deterioration of the yield during toner production, Or there is a tendency for health problems such as toner scattering and skin penetration in the machine.
  • the polymerized toner it is preferably in the range of 3 ⁇ m to 9 ⁇ m, more preferably in the range of 4 ⁇ m to 8.5 ⁇ m, and particularly preferably in the range of 5 ⁇ m to 8 ⁇ m.
  • the volume average particle size is smaller than 4 ⁇ m, the toner fluidity is lowered, the chargeability of each particle is liable to be lowered, and the charge distribution is widened. Become.
  • the cleaning property may be extremely difficult. If the volume average particle size is larger than 9 ⁇ m, the resolution decreases, so that sufficient image quality cannot be obtained, and it may be difficult to satisfy recent high image quality requirements.
  • the polymerized toner according to the present embodiment draws a cumulative distribution from the smaller diameter side for each of the volume and the number in the divided particle size range (channel) measured by the following method.
  • the particle size to be defined is defined as volume D16%
  • the particle size to be accumulated 50% is defined as volume D50%
  • the particle size to be accumulated 84% is defined as volume D84%, it is calculated from (D84% / D16%) 1/2.
  • the volume average particle size distribution index (GSDv) is preferably 1.15 to 1.30, more preferably 1.15 to 1.25.
  • the particle content of 2 ⁇ m or less is 10 to 90% on the number basis, for example, by particle size measurement using a Coulter counter (TA-II manufactured by Coulter Co., Ltd.).
  • the content of particles of 12.7 ⁇ m or more is more preferably 0 to 30% on a volume basis.
  • those having a high particle size uniformity are desirable.
  • the specific surface area of the toner is preferably 1.2 to 5.0 m 2 / g in BET specific surface area measurement using nitrogen as a desorption gas. More preferably, it is 1.5 to 3.0 m 2 / g.
  • the specific surface area is measured using, for example, a BET specific surface area measuring apparatus (for example, FlowSorb II2300, manufactured by Shimadzu Corporation), desorbing the adsorbed gas on the toner surface at 50 ° C. for 30 minutes, and then rapidly cooling with liquid nitrogen. The gas is re-adsorbed and then heated again to 50 ° C., which is defined as a value obtained from the degassing amount at this time.
  • the apparent specific gravity was measured using, for example, a powder tester (for example, manufactured by Hosokawa Micron Corporation).
  • a powder tester for example, manufactured by Hosokawa Micron Corporation.
  • 0.2 to 0.6 g / cm 3 is preferable, and in the case of a magnetic toner, 0.2 to 2.0 g / cm 3 is preferable depending on the kind and content of the magnetic powder.
  • the true specific gravity in the case of the non-magnetic toner is preferably 0.9 to 1.2 g / cm 3 , and in the case of the magnetic toner, it depends on the kind and content of the magnetic powder, but 0.9 ⁇ 4.0 g / cm 3 is preferred.
  • the true specific gravity of the toner is calculated as follows. 1.000 g of toner is precisely weighed, put into a 10 mm ⁇ tablet molding machine, and compression molded while applying a pressure of 200 kgf / cm 2 under vacuum. The height of this cylindrical molded product is measured with a micrometer, and the true specific gravity is calculated from this.
  • the fluidity of the toner is defined by, for example, a flow repose angle and a static repose angle by a repose angle measuring device (for example, manufactured by Tsutsui Rika Co., Ltd.).
  • the flow angle of repose is preferably 5 to 45 degrees in the case of the electrostatic charge developing toner using the charge control agent according to the present embodiment.
  • the rest angle of repose is preferably 10 to 50 degrees.
  • the average value of the shape factor (SF-1) in the case of the pulverized toner is preferably 100 to 400, and the average value of the shape factor 2 (SF-2) is preferably 100 to 350.
  • SF-1 and SF-2 indicating the shape factor of the toner are, for example, toner particles magnified 1000 times using an optical microscope (for example, BH-2 manufactured by Olympus Corporation) equipped with a CCD camera.
  • the group is sampled to be about 30 in one field of view, and the obtained image is transferred to an image analyzer (for example, Luzex FS manufactured by Nireco Co., Ltd.), and the same operation is repeated until there are about 1000 toner particles.
  • the shape factor was calculated.
  • the shape factor (SF-1) and the shape factor 2 (SF-2) are calculated by the following equations.
  • SF-1 ((ML 2 ⁇ ⁇ ) / 4A) ⁇ 100 (In the formula, ML represents the maximum particle length, and A represents the projected area of one particle.)
  • SF-2 (PM 2 / 4A ⁇ ) ⁇ 100 (In the formula, PM represents the perimeter of the particle, and A represents the projected area of one particle.)
  • SF-1 represents the distortion of the particle, and the closer the particle is to a sphere, the closer to 100, and the longer the particle, the larger the value.
  • SF-2 represents the unevenness of the particle. The closer the particle is to a sphere, the closer to 100, and the more complicated the particle shape, the larger the value.
  • the volume resistivity of the toner is preferably 1 ⁇ 10 12 to 1 ⁇ 10 16 ⁇ ⁇ cm in the case of a non-magnetic toner, and the type and content of the magnetic powder in the case of a magnetic toner. However, it is preferably 1 ⁇ 10 8 to 1 ⁇ 10 16 ⁇ ⁇ cm.
  • the toner volume resistivity is obtained by compression-molding toner particles to produce a disk-shaped test piece having a diameter of 50 mm and a thickness of 2 mm, and setting this on a solid electrode (for example, SE-70 manufactured by Ando Electric Co., Ltd.). Using a high insulation resistance meter (for example, 4339A manufactured by Hewlett-Packard Co., Ltd.), it is defined as a value after 1 hour when a DC voltage of 100 V is continuously applied.
  • the toner according to this embodiment preferably has a dielectric loss tangent of 1.0 ⁇ 10 ⁇ 3 to 15.0 ⁇ 10 ⁇ 3 in the case of non-magnetic toner, and the kind of magnetic powder in the case of magnetic toner. Depending on the content, those of 2 ⁇ 10 ⁇ 3 to 30 ⁇ 10 ⁇ 3 are preferable.
  • the dielectric loss tangent of the toner is obtained by compression-molding the toner particles to produce a disk-shaped test piece having a diameter of 50 mm and a thickness of 2 mm, setting this on an electrode for solid, and an LCR meter (for example, Hewlett-Packard) It is defined as a dielectric loss tangent value (Tan ⁇ ) obtained when measured at a measurement frequency of 1 KHz and a peak-to-peak voltage of 0.1 KV using 4284A).
  • the toner according to the exemplary embodiment preferably has an Izod impact value of the toner of 0.1 to 30 kg ⁇ cm / cm.
  • the Izod impact value of the toner in this case is measured in accordance with JIS standard K-7110 (hard plastic impact test method) by thermally melting toner particles to produce a plate-like test piece.
  • the toner according to the present embodiment preferably has a toner melt index (MI value) of 10 to 150 g / 10 min.
  • the melt index (MI value) of the toner in this case is measured according to JIS standard K-7210 (Method A). In this case, the measurement temperature is 125 ° C. and the load is 10 kg.
  • the melting start temperature of the toner is preferably 80 to 180 ° C.
  • the 4 mm drop temperature is preferably 90 to 220 ° C.
  • the toner melting start temperature is obtained by compressing and molding toner particles to produce a cylindrical test piece having a diameter of 10 mm and a thickness of 20 mm, which is then used as a thermal melting characteristic measuring device such as a flow tester (for example, CFT manufactured by Shimadzu Corporation). -500C) and is defined as the value at which melting starts and the piston starts to descend when measured at a load of 20 kgf / cm 2 .
  • the temperature when the piston drops by 4 mm is defined as the 4 mm drop temperature.
  • the glass transition temperature (Tg) of the toner is preferably 35 to 80 ° C., and more preferably 40 to 75 ° C.
  • the glass transition temperature of the toner in this case is measured using a differential thermal analysis (hereinafter abbreviated as DSC) apparatus, and the peak value of the phase change that appears when the temperature is raised at a constant temperature, rapidly cooled, and then reheated. Define what you want more.
  • DSC differential thermal analysis
  • the peak top temperature of the maximum peak is in the region of 70 to 120 ° C.
  • the melt viscosity of the toner is preferably 1000 to 50000 poise, and more preferably 1500 to 38000 poise.
  • the toner melt viscosity is obtained by compressing and molding toner particles to prepare a cylindrical test piece having a diameter of 10 mm and a thickness of 20 mm, and using this, for example, a flow tester (CFT-500C manufactured by Shimadzu Corporation). It is defined as a value when measured at a load of 20 kgf / cm 2 .
  • the solvent-soluble residue of the toner according to the exemplary embodiment is preferably 0 to 30% by mass as a THF-insoluble component, 0 to 40% by mass as an ethyl acetate-insoluble component, and 0 to 30% by mass as a chloroform-insoluble component.
  • the solvent-dissolved residue here is obtained by uniformly dissolving / dispersing 1 g of toner in 100 ml of each solvent of THF, ethyl acetate and chloroform, pressure-filtering the solution / dispersion, drying the filtrate, and quantifying. From this value, the ratio of insoluble matter in the organic solvent in the toner is calculated.
  • the toner according to the present embodiment can be used in a one-component development method which is one of image forming methods.
  • the one-component developing method is a method for developing a latent image by supplying a thinned toner to a latent image carrier.
  • the toner thinning usually includes a toner conveying member, a toner layer thickness regulating member and a toner replenishing auxiliary member, and the replenishing auxiliary member and the toner conveying member, and the toner layer thickness regulating member and the toner conveying member are in contact with each other. It is performed using the device.
  • the two-component development method is a method using toner and a carrier (having a role as a charge imparting material and a toner conveying material), and the above-described magnetic material and glass beads are used for the carrier.
  • the developer toner and carrier
  • the developer is agitated by the agitating member, generates a predetermined amount of charge, and is conveyed to the development site by a magnet roller or the like.
  • a magnet roller On the magnet roller, a developer is held on the roller surface by magnetic force, and a magnetic brush whose layer is regulated to an appropriate height by a developer regulating plate or the like is formed.
  • the developer moves on the roller as the developing roller rotates, and is brought into contact with the electrostatic charge latent image holding member or opposed in a non-contact state at a constant interval to develop and visualize the latent image.
  • a driving force for the toner it is usually possible to obtain a driving force for the toner to fly through a space at a constant interval by generating a direct current electric field between the developer and the latent image holding member. It can also be applied to a method of superimposing alternating current in order to develop an image.
  • the charge control agent used in the present embodiment is also suitable as a charge control agent (charge enhancer) in a coating for electrostatic powder coating. That is, the coating material for electrostatic coating using this charge enhancer is excellent in environmental resistance, storage stability, in particular thermal stability and durability, has a coating efficiency of 100%, and is a thick film free from coating film defects. Can be formed.
  • charge enhancer charge control agent
  • Purification of the pyridinedicarboxylic acid derivative represented by the general formula (1) was performed by purification using column chromatography, adsorption purification using silica gel, activated carbon, activated clay, recrystallization using a solvent, or crystallization. The compound was identified by NMR analysis.
  • Example 1-10 (Production of non-magnetic toner 1-1) Styrene-acrylate copolymer resin (manufactured by Mitsui Chemicals, trade name CPR-100, acid value 0.1 mg KOH / g) 91 parts, pyridinedicarboxylic acid derivative synthesized in Synthesis Example 1-3 (Exemplary Compound 1- 4) 1 part, 5 parts of carbon black (trade name MA-100, manufactured by Mitsubishi Chemical Corporation) and 3 parts of low molecular weight polypropylene (trade name, Biscol 550P, manufactured by Sanyo Chemical Co., Ltd.) are heated and mixed at 130 ° C. (biaxial) The mixture was melt mixed by an extrusion kneader. The cooled mixture was coarsely pulverized with a hammer mill, then finely pulverized with a jet mill, and classified to obtain a nonmagnetic toner 1-1 having a volume average particle size of 9 ⁇ 0.5 ⁇ m.
  • the charge amount was also evaluated when mixed with a silicon-coated ferrite carrier (F96-150 manufactured by Powdertech). As a result, it was ⁇ 23.7 ⁇ c / g.
  • Example 1-11 (Production and evaluation of non-magnetic toner 1-2) Except that the pyridinedicarboxylic acid derivative synthesized in Synthesis Example 1-3 (Exemplary Compound 1-4) was replaced with the pyridinedicarboxylic acid derivative synthesized in Synthesis Example 1-5 (Exemplary Compound 1-6), Example Nonmagnetic toner 1-2 was prepared in the same manner as in 1-10, and the charge amount was evaluated by a blow-off powder charge amount measuring device. As a result, the charge amount when mixed with a non-coated ferrite carrier (F-150 manufactured by Powdertech Co., Ltd.) was ⁇ 32.3 ⁇ c / g.
  • a non-coated ferrite carrier F-150 manufactured by Powdertech Co., Ltd.
  • the charge amount when mixed with a non-coated ferrite carrier was ⁇ 23.0 ⁇ c / g.
  • the charge amount when mixed with a silicon-coated ferrite carrier was -15.0 ⁇ c / g.
  • Example 2-5 Manufacture of non-magnetic toner 2-1
  • Styrene-acrylate copolymer resin manufactured by Mitsui Chemicals, trade name CPR-100, acid value 0.1 mg KOH / g
  • pyridine dicarboxylic acid derivative synthesized in Synthesis Example 2-2 Exemplary Compound 2- 3 1 part, 5 parts of carbon black (trade name MA-100, manufactured by Mitsubishi Chemical Corporation) and 3 parts of low molecular weight polypropylene (trade name, Biscol 550P, manufactured by Sanyo Chemical Co., Ltd.) are heated and mixed at 130 ° C. (biaxial The mixture was melt mixed by an extrusion kneader. The cooled mixture was coarsely pulverized with a hammer mill, then finely pulverized with a jet mill, and classified to obtain a nonmagnetic toner 2-1 having a volume average particle size of 9 ⁇ 0.5 ⁇ m.
  • the charge amount was also evaluated when mixed with a silicon-coated ferrite carrier (F96-150 manufactured by Powdertech). As a result, it was ⁇ 25.3 ⁇ c / g.
  • Comparative Example 2-1 (Production and evaluation of comparative non-magnetic toner 2-1) Except that the pyridinedicarboxylic acid derivative (Exemplary Compound 2-3) synthesized in Synthesis Example 2-2 was replaced with a salt of 3,5-tert-butylsalicylic acid and zinc, the same method as in Example 2-5 was used. Comparative non-magnetic toner 2-1 was prepared, and the charge amount was evaluated with a blow-off powder charge amount measuring device. As a result, the charge amount when mixed with a non-coated ferrite carrier (F-150 manufactured by Powdertech Co., Ltd.) was ⁇ 23.0 ⁇ c / g. Similarly, the charge amount when mixed with a silicon-coated ferrite carrier (F96-150 manufactured by Powdertech) was -15.0 ⁇ c / g.
  • a non-coated ferrite carrier F-150 manufactured by Powdertech Co., Ltd.
  • a silicon-coated ferrite carrier F96-150 manufactured by Powder
  • the toner using the charge control agent containing the pyridinedicarboxylic acid derivative represented by the general formula (1) of the present invention as an active ingredient has a high charge amount.
  • Example 1-12 Preparation of resin dispersion
  • the volume average particle diameter of the resin particles in this dispersion was 0.2 ⁇ m (the resin particle concentration was adjusted to 20% by mass with ion-exchanged water).
  • the mixture was further stirred for 2 hours, and after confirming that the volume average particle diameter was 6.0 ⁇ m and the particle shape was spheroidized, it was rapidly cooled using ice water.
  • the sample was collected by filtration and dispersed and washed with ion exchange water. Dispersion washing was repeated until the electric conductivity of the filtrate after dispersion became 20 ⁇ S / cm or less. Thereafter, the toner particles were obtained by drying with a dryer at 40 ° C. The obtained toner was sieved with a 166 mesh (aperture 90 ⁇ m) sieve to obtain an evaluation toner.
  • Example 1-2 For comparison, a toner was prepared under the same conditions as in Example 1-12 except that the operation of adding the charge control agent dispersion was omitted, and the saturation charge amount was measured. As a result, the saturated charge amount was ⁇ 20.5 ⁇ C / g.
  • Example 2-6 (Preparation of resin dispersion) Mix 80 parts of polyester resin (Made by Mitsubishi Rayon Co., Ltd., DIACRON ER-561), 320 parts of ethyl acetate and 32 parts of isopropyl alcohol, and use a homogenizer (Megaku Co., Ltd., foamless mixer NGM-0.5TB). While stirring at 5000 to 10000 rpm, an appropriate amount of 0.1% by mass of ammonia water was added dropwise for phase inversion emulsification, and the solvent was removed while reducing the pressure with an evaporator to obtain a resin dispersion. The volume average particle diameter of the resin particles in this dispersion was 0.2 ⁇ m (the resin particle concentration was adjusted to 20% by mass with ion-exchanged water).
  • the mixture was further stirred for 2 hours, and after confirming that the volume average particle diameter was 6.0 ⁇ m and the particle shape was spheroidized, it was rapidly cooled using ice water.
  • the sample was collected by filtration and dispersed and washed with ion exchange water. Dispersion washing was repeated until the electric conductivity of the filtrate after dispersion became 20 ⁇ S / cm or less. Thereafter, the toner particles were obtained by drying with a dryer at 40 ° C. The obtained toner was sieved with a 166 mesh (aperture 90 ⁇ m) sieve to obtain an evaluation toner.
  • Example 2-2 For comparison, a toner was prepared under the same conditions as in Example 2-6, except that the operation of adding the charge control agent dispersion was omitted, and the saturation charge amount was measured. As a result, the saturated charge amount was ⁇ 20.5 ⁇ C / g.
  • the polymerized toner containing the pyridinedicarboxylic acid derivative represented by the general formula (1) of the present invention as an active ingredient exhibits excellent charging performance. That is, high charge performance can be imparted to the polymerized toner by using a charge control agent containing the pyridinedicarboxylic acid derivative represented by the general formula (1) of the present invention as an active ingredient.
  • the pyridinedicarboxylic acid derivative represented by the general formula (1) according to the present invention has excellent charging performance, and the charge control agent containing the compound as an active ingredient is clearly higher than the conventional charge control agent. Has charging performance.
  • the charge control agent is optimal for color toners, particularly for polymerized toners. Furthermore, the charge control agent is extremely useful because it does not contain heavy metals such as chromium compounds, which are concerned with environmental problems.

Abstract

The present invention provides a charge control agent which contains, as an active ingredient, one or more pyridine dicarboxylic acid derivatives represented by general formula (1). (In general formula (1), R1, R2 and R3 may be the same as or different from each other, and each represents a hydrogen atom or the like; R4 and R5 may be the same as or different from each other, and each represents a hydrogen atom or the like; R6 and R7 may be the same as or different from each other, and each represents an optionally substitute cycloalkyl group having 5-10 carbon atoms, a substituted or unsubstituted aromatic hydrocarbon group or a substituted or unsubstituted condensed polycyclic aromatic group. In this connection, R1, R2 and R3 may combine with respective adjacent groups to form a ring.)

Description

電荷制御剤及びそれを用いたトナーCharge control agent and toner using the same
 本発明は電子写真、静電記録などの分野で静電潜像を顕像化するための画像形成装置で用いられる電荷制御剤、及び電荷制御剤を含有する負帯電性トナーに関する。 The present invention relates to a charge control agent used in an image forming apparatus for developing an electrostatic latent image in fields such as electrophotography and electrostatic recording, and a negatively chargeable toner containing the charge control agent.
 電子写真方式による画像形成プロセスでは、セレン、セレン合金、硫化カドミウム、アモルファスシリコンなどの無機感光体、又は、電荷発生剤と電荷輸送剤を用いた有機感光体に静電潜像を形成し、これをトナーにより現像し、紙又はプラスチックフィルムに転写し、定着して可視画像を得る。 In an electrophotographic image forming process, an electrostatic latent image is formed on an inorganic photoreceptor such as selenium, selenium alloy, cadmium sulfide, amorphous silicon, or an organic photoreceptor using a charge generator and a charge transport agent. Is developed with toner, transferred onto paper or plastic film, and fixed to obtain a visible image.
 感光体にはその構成により正帯電性と負帯電性が有り、露光により印字部を静電潜像として残す場合は逆符号帯電性トナーにより現像し、一方、印字部を除電して反転現像を行なう場合は同符号帯電性トナーにより現像する。 The photosensitive member has positive and negative charging characteristics depending on the structure. When the printed part is left as an electrostatic latent image by exposure, development is performed with a reverse sign charging toner, while on the other hand, the printed part is discharged to perform reverse development. In the case of carrying out the development, development is performed with a toner having the same sign.
 トナーは、結着樹脂、着色剤、及びその他の添加剤により構成される。望ましい帯電特性(帯電速度、帯電レベル、帯電安定性など)、経時安定性、環境安定性などを付与するために一般に電荷制御剤が添加される。この電荷制御剤の添加によりトナーの特性は大きく改善される。 The toner is composed of a binder resin, a colorant, and other additives. In order to impart desirable charging characteristics (charging speed, charge level, charge stability, etc.), aging stability, environmental stability, etc., a charge control agent is generally added. By adding the charge control agent, the toner characteristics are greatly improved.
 今日、当該技術分野で知られている正摩擦帯電性電荷制御剤として、ニグロシン染料、アジン系染料、銅フタロシアニン顔料、4級アンモニウム塩、及び4級アンモニウム塩を側鎖に有するポリマーなどが知られている。負摩擦帯電性電荷制御剤としては、モノアゾ染料の金属錯塩、サリチル酸、ナフトエ酸又はジカルボン酸の金属錯塩、銅フタロシアニン顔料、酸成分を含む樹脂などが知られている。 As a positive triboelectric charge control agent known in the technical field, nigrosine dyes, azine dyes, copper phthalocyanine pigments, quaternary ammonium salts, and polymers having quaternary ammonium salts in the side chain are known. ing. Known negative triboelectric charge control agents include metal complex salts of monoazo dyes, metal complex salts of salicylic acid, naphthoic acid or dicarboxylic acid, copper phthalocyanine pigments, resins containing acid components, and the like.
 また今後の市場拡大が予想されるカラートナーの場合においては、色相に影響を与えない淡色、望ましくは無色の電荷制御剤が必要不可欠である。これら淡色、又は無色の電荷制御剤には、負帯電性トナー用としてヒドロキシ安息香酸誘導体の金属錯塩化合物(例えば、特許文献1~3参照)、芳香族ジカルボン酸金属塩化合物(例えば、特許文献4参照)、アントラニル酸誘導体の金属錯塩化合物(例えば、特許文献5~6参照)、有機ホウ素化合物(例えば、特許文献7~8参照)、ビフェノール化合物(例えば、特許文献9参照)、カリックス(n)アレン化合物(例えば、特許文献10~15参照)及び環状フェノール硫化物(例えば、特許文献16~18参照)などがある。また、正帯電性トナー用として、第四級アンモニウム塩化合物(例えば、特許文献19~21参照)などがある。 In the case of color toners that are expected to expand in the future, a light-colored, preferably colorless, charge control agent that does not affect the hue is indispensable. These light-colored or colorless charge control agents include metal complex salts of hydroxybenzoic acid derivatives (see, for example, Patent Documents 1 to 3) and aromatic dicarboxylic acid metal salt compounds (for example, Patent Document 4) for negatively chargeable toners. Metal complex salt compounds of anthranilic acid derivatives (for example, see Patent Documents 5 to 6), organoboron compounds (for example, see Patent Documents 7 to 8), biphenol compounds (for example, see Patent Document 9), calix (n) Examples include allene compounds (see, for example, Patent Documents 10 to 15) and cyclic phenol sulfides (see, for example, Patent Documents 16 to 18). Further, there are quaternary ammonium salt compounds (for example, see Patent Documents 19 to 21) for positively chargeable toners.
特公昭55-042752号公報Japanese Patent Publication No. 55-042752 特開昭61-069073号公報JP 61-069073 A 特開昭61-221756号公報JP 61-221756 A 特開昭57-111541号公報JP-A-57-111541 特開昭61-141453号公報JP 61-141453 A 特開昭62-094856号公報Japanese Patent Laid-Open No. 62-094856 米国特許第4767688号公報U.S. Pat. No. 4,767,688 特開平1-306861号公報JP-A-1-3066861 特開昭61-003149号公報JP-A 61-003149 特許第2568675号公報Japanese Patent No. 2568675 特許第2899038号公報Japanese Patent No. 2899038 特許第3359657号公報Japanese Patent No. 3359657 特許第3313871号公報Japanese Patent No. 3313871 特許第3325730号公報Japanese Patent No. 3325730 特開2003-162100号公報Japanese Patent Laid-Open No. 2003-162100 特開2003-295522号公報JP 2003-295522 A WO2007-111346号公報WO2007-111346 WO2007-119797号公報WO2007-119797 特開昭57-119364号公報JP 57-119364 A 特開昭58-009154号公報JP 58-009154 A 特開昭58-098742号公報JP 58-098742 A
 しかしながら、これらの電荷制御剤の多くはクロムなどの重金属からなる錯体又は塩などであって、廃棄物規制に関して問題であり、必ずしも安全であるとは言えない。また、今日要求されている帯電付与効果が低く、帯電の立ち上がり速度が不十分なために、初期の複写画像が鮮明性に欠けたり、連続複写中における複写画像の品質が変動し易かったり、さらには、重合トナーへの適用ができないなどの欠点があった。そこで、帯電付与効果が高く、重合トナーへの適用ができる電荷制御剤が望まれていた。 However, many of these charge control agents are complexes or salts made of heavy metals such as chromium, which are problems regarding waste regulations and are not necessarily safe. In addition, the charge imparting effect required today is low and the charge rising speed is insufficient, so that the initial copy image lacks clarity, the quality of the copy image during continuous copying tends to fluctuate, However, there is a drawback that it cannot be applied to polymerized toner. Therefore, a charge control agent that has a high charge imparting effect and can be applied to polymerized toners has been desired.
 本発明は、高い帯電量を有し、廃棄物規制にも問題のない安全な電荷制御剤を提供することを目的とする。また、当該電荷制御剤を使用する高い帯電性能を有する静電荷像現像用負帯電性トナー、及び負帯電性重合トナーを提供することを目的とする。 The object of the present invention is to provide a safe charge control agent having a high charge amount and no problem with waste regulations. It is another object of the present invention to provide a negatively chargeable toner for developing an electrostatic image and a negatively chargeable polymerized toner having high charging performance using the charge control agent.
 本発明は、前記目的を達成するために鋭意研究した結果得られたものであり、以下を要旨とするものである。 The present invention has been obtained as a result of intensive studies to achieve the above object, and has the following gist.
 すなわち、本発明は、一般式(1)で表されるピリジンジカルボン酸誘導体の1種又は2種以上を有効成分として含有する電荷制御剤を提供する。 That is, the present invention provides a charge control agent containing one or more pyridinedicarboxylic acid derivatives represented by the general formula (1) as an active ingredient.
Figure JPOXMLDOC01-appb-C000004
 一般式(1)中、R、R及びRは相互に同一でも異なってもよく、水素原子、重水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子、ヒドロキシル基、シアノ基、トリフルオロメチル基、ニトロ基、置換基を有していてもよい炭素原子数1~8の直鎖状若しくは分岐状のアルキル基、置換基を有していてもよい炭素原子数5~10のシクロアルキル基、置換基を有していてもよい炭素原子数2~6の直鎖状若しくは分岐状のアルケニル基、置換基を有していてもよい炭素原子数1~8の直鎖状若しくは分岐状のアルキルオキシ基、置換基を有していてもよい炭素原子数5~10のシクロアルキルオキシ基、置換若しくは無置換の芳香族炭化水素基、置換若しくは無置換の複素環基、置換若しくは無置換の縮合多環芳香族基、又は置換若しくは無置換のアリールオキシ基を示し、R及びRは相互に同一でも異なってもよく、水素原子、重水素原子、置換基を有していてもよい炭素原子数1~8の直鎖状若しくは分岐状のアルキル基、置換基を有していてもよい炭素原子数5~10のシクロアルキル基、置換基を有していてもよい炭素原子数2~6の直鎖状若しくは分岐状のアルケニル基、置換若しくは無置換の芳香族炭化水素基、置換若しくは無置換の複素環基、又は置換若しくは無置換の縮合多環芳香族基を示し、R及びRは相互に同一でも異なってもよく、置換基を有していてもよい炭素原子数5~10のシクロアルキル基、置換若しくは無置換の芳香族炭化水素基、又は置換若しくは無置換の縮合多環芳香族基を示す。ここで、R、R及びRは、隣り合う基同士で互いに結合して環を形成していてもよい。
Figure JPOXMLDOC01-appb-C000004
In the general formula (1), R 1 , R 2 and R 3 may be the same or different from each other, and are a hydrogen atom, deuterium atom, fluorine atom, chlorine atom, bromine atom, iodine atom, hydroxyl group, cyano group, A trifluoromethyl group, a nitro group, an optionally substituted linear or branched alkyl group having 1 to 8 carbon atoms, and an optionally substituted carbon atom having 5 to 10 carbon atoms A cycloalkyl group, a linear or branched alkenyl group having 2 to 6 carbon atoms which may have a substituent, a straight chain having 1 to 8 carbon atoms which may have a substituent, or A branched alkyloxy group, an optionally substituted cycloalkyloxy group having 5 to 10 carbon atoms, a substituted or unsubstituted aromatic hydrocarbon group, a substituted or unsubstituted heterocyclic group, substituted or Unsubstituted fused polycyclic aromatic groups, or Represents a substituted or unsubstituted aryloxy group, and R 4 and R 5 may be the same or different from each other, and may have a hydrogen atom, a deuterium atom, or a C 1-8 carbon atom which may have a substituent. A linear or branched alkyl group, a cycloalkyl group having 5 to 10 carbon atoms which may have a substituent, a straight chain having 2 to 6 carbon atoms which may have a substituent, or A branched alkenyl group, a substituted or unsubstituted aromatic hydrocarbon group, a substituted or unsubstituted heterocyclic group, or a substituted or unsubstituted condensed polycyclic aromatic group, wherein R 6 and R 7 are the same as each other Or a cycloalkyl group having 5 to 10 carbon atoms, a substituted or unsubstituted aromatic hydrocarbon group, or a substituted or unsubstituted condensed polycyclic aromatic group which may have a substituent. Show. Here, R 1 , R 2 and R 3 may be bonded to each other at adjacent groups to form a ring.
 上記一般式(1)で表されるピリジンジカルボン酸誘導体は、下記一般式(1A)で表される化合物であってもよい。
Figure JPOXMLDOC01-appb-C000005
 一般式(1A)中、R、R及びRは相互に同一でも異なってもよく、水素原子、重水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子、ヒドロキシル基、シアノ基、トリフルオロメチル基、ニトロ基、置換基を有していてもよい炭素原子数1~8の直鎖状若しくは分岐状のアルキル基、置換基を有していてもよい炭素原子数5~10のシクロアルキル基、置換基を有していてもよい炭素原子数2~6の直鎖状若しくは分岐状のアルケニル基、置換基を有していてもよい炭素原子数1~8の直鎖状若しくは分岐状のアルキルオキシ基、置換基を有していてもよい炭素原子数5~10のシクロアルキルオキシ基、置換若しくは無置換の芳香族炭化水素基、置換若しくは無置換の複素環基、置換若しくは無置換の縮合多環芳香族基、又は置換若しくは無置換のアリールオキシ基を示し、R及びRは相互に同一でも異なってもよく、水素原子、重水素原子、置換基を有していてもよい炭素原子数1~8の直鎖状若しくは分岐状のアルキル基、置換基を有していてもよい炭素原子数5~10のシクロアルキル基、置換基を有していてもよい炭素原子数2~6の直鎖状若しくは分岐状のアルケニル基、置換若しくは無置換の芳香族炭化水素基、置換若しくは無置換の複素環基、又は置換若しくは無置換の縮合多環芳香族基を示し、R及びRは相互に同一でも異なってもよく、置換基を有していてもよい炭素原子数5~10のシクロアルキル基、置換若しくは無置換の芳香族炭化水素基、又は置換若しくは無置換の縮合多環芳香族基を示す。ここで、R、R及びRは、隣り合う基同士で互いに結合して環を形成していてもよい。
The pyridinedicarboxylic acid derivative represented by the general formula (1) may be a compound represented by the following general formula (1A).
Figure JPOXMLDOC01-appb-C000005
In general formula (1A), R 1 , R 2 and R 3 may be the same or different from each other, and are a hydrogen atom, deuterium atom, fluorine atom, chlorine atom, bromine atom, iodine atom, hydroxyl group, cyano group, A trifluoromethyl group, a nitro group, an optionally substituted linear or branched alkyl group having 1 to 8 carbon atoms, and an optionally substituted carbon atom having 5 to 10 carbon atoms A cycloalkyl group, a linear or branched alkenyl group having 2 to 6 carbon atoms which may have a substituent, a straight chain having 1 to 8 carbon atoms which may have a substituent, or A branched alkyloxy group, an optionally substituted cycloalkyloxy group having 5 to 10 carbon atoms, a substituted or unsubstituted aromatic hydrocarbon group, a substituted or unsubstituted heterocyclic group, substituted or Unsubstituted fused polycyclic aromatic groups, Or a substituted or unsubstituted aryloxy group, R 4 and R 5 may be the same as or different from each other, and may have a hydrogen atom, a deuterium atom, or a substituent having 1 to 8 carbon atoms. A linear or branched alkyl group, a cycloalkyl group having 5 to 10 carbon atoms which may have a substituent, a straight chain having 2 to 6 carbon atoms which may have a substituent, or A branched alkenyl group, a substituted or unsubstituted aromatic hydrocarbon group, a substituted or unsubstituted heterocyclic group, or a substituted or unsubstituted condensed polycyclic aromatic group, wherein R 6 and R 7 are the same as each other Or a cycloalkyl group having 5 to 10 carbon atoms, a substituted or unsubstituted aromatic hydrocarbon group, or a substituted or unsubstituted condensed polycyclic aromatic group which may have a substituent. Show. Here, R 1 , R 2 and R 3 may be bonded to each other at adjacent groups to form a ring.
 上記一般式(1)で表されるピリジンジカルボン酸誘導体は、下記一般式(1A-1)で表される化合物であってもよい。
Figure JPOXMLDOC01-appb-C000006
 一般式(1A-1)中、R、R及びRは相互に同一でも異なってもよく、水素原子、重水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子、ヒドロキシル基、シアノ基、トリフルオロメチル基、ニトロ基、置換基を有していてもよい炭素原子数1~8の直鎖状若しくは分岐状のアルキル基、置換基を有していてもよい炭素原子数5~10のシクロアルキル基、置換基を有していてもよい炭素原子数2~6の直鎖状若しくは分岐状のアルケニル基、置換基を有していてもよい炭素原子数1~8の直鎖状若しくは分岐状のアルキルオキシ基、置換基を有していてもよい炭素原子数5~10のシクロアルキルオキシ基、置換若しくは無置換の芳香族炭化水素基、置換若しくは無置換の複素環基、置換若しくは無置換の縮合多環芳香族基、又は置換若しくは無置換のアリールオキシ基を示し、R及びRは相互に同一でも異なってもよく、水素原子、重水素原子、置換基を有していてもよい炭素原子数1~8の直鎖状若しくは分岐状のアルキル基、置換基を有していてもよい炭素原子数5~10のシクロアルキル基、置換基を有していてもよい炭素原子数2~6の直鎖状若しくは分岐状のアルケニル基、置換若しくは無置換の芳香族炭化水素基、置換若しくは無置換の複素環基、又は置換若しくは無置換の縮合多環芳香族基を示し、R、R、R10、R11、R12、R13、R14、R15、R16及びR17は相互に同一でも異なってもよく、水素原子、重水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子、ヒドロキシル基、シアノ基、トリフルオロメチル基、ニトロ基、置換基を有していてもよい炭素原子数1~8の直鎖状若しくは分岐状のアルキル基、置換基を有していてもよい炭素原子数5~10のシクロアルキル基、置換基を有していてもよい炭素原子数2~6の直鎖状若しくは分岐状のアルケニル基、置換基を有していてもよい炭素原子数1~8の直鎖状若しくは分岐状のアルキルオキシ基、置換基を有していてもよい炭素原子数5~10のシクロアルキルオキシ基、置換若しくは無置換の芳香族炭化水素基、置換若しくは無置換の複素環基、置換若しくは無置換の縮合多環芳香族基、又は置換若しくは無置換のアリールオキシ基を示す。ここで、R、R及びR、R、R、R10、R11及びR12、又はR13、R14、R15、R16及びR17は、隣り合う基同士で互いに結合して環を形成していてもよい。
The pyridinedicarboxylic acid derivative represented by the general formula (1) may be a compound represented by the following general formula (1A-1).
Figure JPOXMLDOC01-appb-C000006
In general formula (1A-1), R 1 , R 2 and R 3 may be the same or different from each other, and are a hydrogen atom, deuterium atom, fluorine atom, chlorine atom, bromine atom, iodine atom, hydroxyl group, cyano Group, a trifluoromethyl group, a nitro group, a linear or branched alkyl group having 1 to 8 carbon atoms which may have a substituent, and a carbon atom having 5 to 5 carbon atoms which may have a substituent 10 cycloalkyl groups, a linear or branched alkenyl group having 2 to 6 carbon atoms which may have a substituent, and a linear chain having 1 to 8 carbon atoms which may have a substituent A branched or branched alkyloxy group, an optionally substituted cycloalkyloxy group having 5 to 10 carbon atoms, a substituted or unsubstituted aromatic hydrocarbon group, a substituted or unsubstituted heterocyclic group, Substituted or unsubstituted fused polycyclic aromatics Group, or a substituted or unsubstituted aryloxy group, R 4 and R 5 may be the same or different from each other, and may have a hydrogen atom, a deuterium atom, or an optionally substituted carbon atom having 1 to 8 linear or branched alkyl groups, optionally substituted cycloalkyl groups having 5 to 10 carbon atoms, and optionally substituted straight chain having 2 to 6 carbon atoms A branched or branched alkenyl group, a substituted or unsubstituted aromatic hydrocarbon group, a substituted or unsubstituted heterocyclic group, or a substituted or unsubstituted condensed polycyclic aromatic group, R 8 , R 9 , R 10 , R 11 , R 12 , R 13 , R 14 , R 15 , R 16 and R 17 may be the same as or different from each other, and are a hydrogen atom, deuterium atom, fluorine atom, chlorine atom, bromine atom, iodine atom , Hydroxyl group, cyano group, A fluoromethyl group, a nitro group, a linear or branched alkyl group having 1 to 8 carbon atoms which may have a substituent, and a cyclocarbon having 5 to 10 carbon atoms which may have a substituent; An alkyl group, a linear or branched alkenyl group having 2 to 6 carbon atoms which may have a substituent, or a linear or branched chain having 1 to 8 carbon atoms which may have a substituent Alkyloxy group, optionally substituted cycloalkyloxy group having 5 to 10 carbon atoms, substituted or unsubstituted aromatic hydrocarbon group, substituted or unsubstituted heterocyclic group, substituted or unsubstituted A substituted condensed polycyclic aromatic group, or a substituted or unsubstituted aryloxy group is shown. Here, R 1 , R 2 and R 3 , R 8 , R 9 , R 10 , R 11 and R 12 , or R 13 , R 14 , R 15 , R 16 and R 17 are mutually adjacent groups. It may combine to form a ring.
 上記一般式(1)で表されるピリジンジカルボン酸誘導体、及び上記一般式(1A-1)で表されるピリジンジカルボン酸誘導体は、R及びRが、置換基を有していてもよい炭素原子数5~10のシクロアルキル基であってもよい。 In the pyridinedicarboxylic acid derivative represented by the general formula (1) and the pyridinedicarboxylic acid derivative represented by the general formula (1A-1), R 6 and R 7 may have a substituent. It may be a cycloalkyl group having 5 to 10 carbon atoms.
 本発明はまた、上記一般式(1)で表されるピリジンジカルボン酸誘導体の1種又は2種以上を有効成分として含有する電荷制御剤と、着色剤と、結着樹脂と、を含有するトナーを提供する。 The present invention also provides a toner containing a charge control agent containing one or more pyridinedicarboxylic acid derivatives represented by the above general formula (1) as active ingredients, a colorant, and a binder resin. I will provide a.
 本発明は更に、上記一般式(1)で表されるピリジンジカルボン酸誘導体の1種又は2種以上を有効成分として含有する電荷制御剤と、着色剤と、結着樹脂と、を含有する重合トナーを提供する。 The present invention further provides a polymerization comprising a charge control agent containing one or more pyridinedicarboxylic acid derivatives represented by the general formula (1) as an active ingredient, a colorant, and a binder resin. Provide toner.
 上記一般式(1)で表されるピリジンジカルボン酸誘導体の1種又は2種以上を有効成分として含有する電荷制御剤は、高い帯電量を有し、しかも、廃棄物規制にも問題がなく安全であるという優れた特性を有しており、トナーの電荷制御に好適に使用できる。したがって、本発明は、上記一般式(1)で表されるピリジンジカルボン酸誘導体の1種又は2種以上を有効成分として含有する電荷制御剤のトナーの電荷制御のための使用、又は上記一般式(1)で表されるピリジンジカルボン酸誘導体の1種又は2種以上を有効成分として含有する電荷制御剤のトナーの電荷制御への応用ということもできる。上記トナーは重合トナーであってもよい。 The charge control agent containing one or more pyridinedicarboxylic acid derivatives represented by the above general formula (1) as an active ingredient has a high charge amount, and is safe and has no problem with waste regulations. Therefore, it can be suitably used for toner charge control. Therefore, the present invention relates to the use of a charge control agent containing one or more pyridinedicarboxylic acid derivatives represented by the above general formula (1) as an active ingredient for charge control of the toner, or the above general formula. It can also be said that the charge control agent containing one or more pyridinedicarboxylic acid derivatives represented by (1) as an active ingredient is applied to toner charge control. The toner may be a polymerized toner.
 さらに、本発明は、上記一般式(1)で表されるピリジンジカルボン酸誘導体の1種又は2種以上を有効成分として含有する電荷制御剤を用いるトナーの電荷制御方法、ということもできる。この場合も上記トナーは重合トナーであってもよい。 Furthermore, the present invention can also be referred to as a toner charge control method using a charge control agent containing one or more pyridinedicarboxylic acid derivatives represented by the general formula (1) as an active ingredient. Also in this case, the toner may be a polymerized toner.
 本発明において、一般式(1)で表されるピリジンジカルボン酸誘導体の1種又は2種以上を有効成分として含有する電荷制御剤は、従来の電荷制御剤より帯電の立ち上がり速度が高く、高い帯電量を有し、かつ経時安定性及び環境安定性に特に優れた帯電特性を有している。また、環境問題で懸念されるクロムなどの重金属を含まず、さらに分散性及び化合物の安定性に優れている。 In the present invention, the charge control agent containing one or more pyridinedicarboxylic acid derivatives represented by the general formula (1) as an active ingredient has a higher charge rising speed than conventional charge control agents, and has a high charge. And charging characteristics particularly excellent in stability over time and environmental stability. In addition, it does not contain heavy metals such as chromium, which is a concern for environmental problems, and is excellent in dispersibility and compound stability.
 本発明に係る電荷制御剤は、電荷制御特性、耐環境性、及び耐久性に優れており、粉砕トナー又は重合トナーに用いた場合に、カブリがなく、画像濃度、ドット再現性、細線再現性が良好な画像を得ることができる。上記電荷制御剤は、トナーに十分な摩擦帯電性を発現させる電子写真用の荷電制御剤、特にカラートナー用として、さらには重合トナー用として有用である。 The charge control agent according to the present invention is excellent in charge control characteristics, environmental resistance, and durability, and has no fog, image density, dot reproducibility, fine line reproducibility when used for pulverized toner or polymerized toner. Can obtain a good image. The charge control agent is useful for an electrophotographic charge control agent that expresses sufficient triboelectric chargeability in the toner, particularly for a color toner, and further for a polymerized toner.
 以下、本発明の実施形態について詳細に説明する。なお、本発明は、以下の実施形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。 Hereinafter, embodiments of the present invention will be described in detail. In addition, this invention is not limited to the following embodiment, It can implement by changing variously within the range of the summary.
 本実施形態に係る電荷制御剤は、上記一般式(1)で表されるピリジンジカルボン酸誘導体の1種又は2種以上を有効成分として含有する。まず、一般式(1)で表されるピリジンジカルボン酸誘導体について説明する。 The charge control agent according to the present embodiment contains one or more pyridinedicarboxylic acid derivatives represented by the general formula (1) as an active ingredient. First, the pyridinedicarboxylic acid derivative represented by the general formula (1) will be described.
 一般式(1)中のR、R及びR(R~R)で表される「置換基を有していてもよい炭素原子数1~8の直鎖状若しくは分岐状のアルキル基」、「置換基を有していてもよい炭素原子数5~10のシクロアルキル基」又は「置換基を有していてもよい炭素原子数2~6の直鎖状若しくは分岐状のアルケニル基」における「炭素原子数1~8の直鎖状若しくは分岐状のアルキル基」、「炭素原子数5~10のシクロアルキル基」又は「炭素原子数2~6の直鎖状若しくは分岐状のアルケニル基」としては、具体的に、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、n-ヘキシル基、n-ヘプチル基、イソヘプチル基、n-オクチル基、イソオクチル基、シクロペンチル基、シクロヘキシル基、1-アダマンチル基、2-アダマンチル基、ビニル基、アリル基、イソプロペニル基及び2-ブテニル基などをあげることができ、R~Rは、隣り合う基同士で、単結合、酸素原子又は硫黄原子を介して互いに結合して環を形成してもよい。 Represented by R 1 , R 2 and R 3 (R 1 to R 3 ) in the general formula (1) “a linear or branched group having 1 to 8 carbon atoms which may have a substituent. Alkyl group "," optionally substituted cycloalkyl group having 5 to 10 carbon atoms "or" optionally substituted straight chain or branched chain group having 2 to 6 carbon atoms ". “Linear or branched alkyl group having 1 to 8 carbon atoms”, “Cycloalkyl group having 5 to 10 carbon atoms” or “Linear or branched chain having 2 to 6 carbon atoms” in “Alkenyl group” Specific examples of the alkenyl group include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group, n-pentyl group, isopentyl group, neopentyl group, n -Hexyl, n-heptyl, isoheptyl Group, n- octyl group, isooctyl group, a cyclopentyl group, a cyclohexyl group, 1-adamantyl, 2-adamantyl, vinyl group, allyl group, etc. may be mentioned. Isopropenyl group and a 2-butenyl group, R 1 ~ R 3 may be adjacent to each other and bonded to each other via a single bond, oxygen atom or sulfur atom to form a ring.
 一般式(1)中のR~Rで表される「置換基を有する炭素原子数1~8の直鎖状若しくは分岐状のアルキル基」、「置換基を有する炭素原子数5~10のシクロアルキル基」又は「置換基を有する炭素原子数2~6の直鎖状若しくは分岐状のアルケニル基」における「置換基」としては、具体的に、重水素原子、トリフルオロメチル基、シアノ基、ニトロ基、ヒドロキシル基;フッ素原子、塩素原子、臭素原子、ヨウ素原子などのハロゲン原子;メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、n-ヘキシル基、n-ヘプチル基、イソヘプチル基、n-オクチル基、イソオクチル基などの炭素原子数1~8の直鎖状若しくは分岐状のアルキル基;メチルオキシ基、エチルオキシ基、プロピルオキシ基などの炭素原子数1~8の直鎖状若しくは分岐状のアルキルオキシ基;アリル基などのアルケニル基;ベンジル基、ナフチルメチル基、フェネチル基などのアラルキル基;フェニルオキシ基、トリルオキシ基などのアリールオキシ基;ベンジルオキシ基、フェネチルオキシ基などのアリールアルキルオキシ基;フェニル基、ビフェニリル基、ターフェニリル基、ナフチル基、アントラセニル基、フェナントリル基、フルオレニル基、インデニル基、ピレニル基、ペリレニル基、フルオランテニル基、トリフェニレニル基などの芳香族炭化水素基若しくは縮合多環芳香族基;ピリジル基、フラニル基、ピラニル基、チエニル基、フリル基、ピロリル基、ピロリジニル基、イミダゾリル基、イミダゾリニル基、イミダゾリジニル基、ピラゾリル基、ピラゾリニル基、ピラゾリジニル基、ピリダジニル基、ピラジニル基、ピペリジニル基、ピペラジニル基、チオラニル基、チアニル基、キノリル基、イソキノリル基、ベンゾフラニル基、ベンゾチエニル基、インドリル基、カルバゾリル基、ベンゾオキサゾリル基、ベンゾチアゾリル基、キノキサリル基、ベンゾイミダゾリル基、ピラゾリル基、ジベンゾフラニル基、ジベンゾチエニル基、カルボリニル基などの複素環基;スチリル基、ナフチルビニル基などのアリールビニル基;アセチル基、ベンゾイル基などのアシル基;ジメチルアミノ基、ジエチルアミノ基などのジアルキルアミノ基;ジフェニルアミノ基、ジナフチルアミノ基などの芳香族炭化水素基若しくは縮合多環芳香族基で置換されたジ置換アミノ基;ジベンジルアミノ基、ジフェネチルアミノ基などのジアラルキルアミノ基;ジピリジルアミノ基、ジチエニルアミノ基、ジピペリジニルアミノ基などの複素環基で置換されたジ置換アミノ基;ジアリルアミノ基などのジアルケニルアミノ基;アルキル基、芳香族炭化水素基、縮合多環芳香族基、アラルキル基、複素環基又はアルケニル基から選択される置換基で置換されたジ置換アミノ基のような基をあげることができ、これらの置換基は、さらに他の置換基によって置換されていてもよく、単結合、酸素原子又は硫黄原子を介して互いに結合して環を形成してもよい。 “A linear or branched alkyl group having 1 to 8 carbon atoms having a substituent” represented by R 1 to R 3 in the general formula (1), “5 to 10 carbon atoms having a substituent” Specific examples of the “substituent” in the “cycloalkyl group” or “straight-chain or branched alkenyl group having 2 to 6 carbon atoms” include deuterium atom, trifluoromethyl group, cyano group Group, nitro group, hydroxyl group; halogen atom such as fluorine atom, chlorine atom, bromine atom, iodine atom; methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group Straight chain having 1 to 8 carbon atoms such as n-pentyl group, isopentyl group, neopentyl group, n-hexyl group, n-heptyl group, isoheptyl group, n-octyl group and isooctyl group Is a branched alkyl group; a linear or branched alkyloxy group having 1 to 8 carbon atoms such as a methyloxy group, an ethyloxy group or a propyloxy group; an alkenyl group such as an allyl group; a benzyl group or a naphthylmethyl group Aralkyl groups such as phenethyl group; aryloxy groups such as phenyloxy group and tolyloxy group; arylalkyloxy groups such as benzyloxy group and phenethyloxy group; phenyl group, biphenylyl group, terphenylyl group, naphthyl group, anthracenyl group, phenanthryl Group, fluorenyl group, indenyl group, pyrenyl group, perylenyl group, fluoranthenyl group, triphenylenyl group and other aromatic hydrocarbon groups or condensed polycyclic aromatic groups; pyridyl group, furanyl group, pyranyl group, thienyl group, furyl group , Pyrrolyl group, pyrrolidini Group, imidazolyl group, imidazolinyl group, imidazolidinyl group, pyrazolyl group, pyrazolinyl group, pyrazolidinyl group, pyridazinyl group, pyrazinyl group, piperidinyl group, piperazinyl group, thiolanyl group, thianyl group, quinolyl group, isoquinolyl group, benzofuranyl group, benzothienyl group , Heterocyclic groups such as indolyl group, carbazolyl group, benzoxazolyl group, benzothiazolyl group, quinoxalyl group, benzoimidazolyl group, pyrazolyl group, dibenzofuranyl group, dibenzothienyl group, carbolinyl group; styryl group, naphthylvinyl group, etc. Aryl vinyl group; Acyl group such as acetyl group and benzoyl group; Dialkylamino group such as dimethylamino group and diethylamino group; Aromatic hydrocarbon group such as diphenylamino group and dinaphthylamino group Or a disubstituted amino group substituted with a condensed polycyclic aromatic group; a diaralkylamino group such as a dibenzylamino group or a diphenethylamino group; a dipyridylamino group, a dithienylamino group or a dipiperidinylamino group A disubstituted amino group substituted with a heterocyclic group; a dialkenylamino group such as a diallylamino group; an alkyl group, an aromatic hydrocarbon group, a condensed polycyclic aromatic group, an aralkyl group, a heterocyclic group or an alkenyl group; And a group such as a di-substituted amino group substituted with a substituent, and these substituents may be further substituted with other substituents, via a single bond, an oxygen atom or a sulfur atom. May be combined with each other to form a ring.
 一般式(1)中のR~Rで表される「置換基を有していてもよい炭素原子数1~8の直鎖状若しくは分岐状のアルキル基」の中では、「置換基を有していてもよい炭素原子数1~4の直鎖状若しくは分岐状のアルキル基」が好ましい。
 また、一般式(1)中のR~Rで表される「置換基を有していてもよい炭素原子数5~10のシクロアルキル基」の中では、「置換基を有していてもよい炭素原子数5~6のシクロアルキル基」が好ましい。
 また、一般式(1)中のR~Rで表される「置換基を有していてもよい炭素原子数2~6の直鎖状若しくは分岐状のアルケニル基」の中では、「置換基を有していてもよい炭素原子数2~4の直鎖状若しくは分岐状のアルケニル基」が好ましい。
In the “linear or branched alkyl group having 1 to 8 carbon atoms which may have a substituent” represented by R 1 to R 3 in the general formula (1), “substituent A straight-chain or branched alkyl group having 1 to 4 carbon atoms which may have a "is preferable.
In the “cycloalkyl group having 5 to 10 carbon atoms which may have a substituent” represented by R 1 to R 3 in the general formula (1), the “having a substituent” An optionally substituted cycloalkyl group having 5 to 6 carbon atoms is preferable.
Further, in the “linear or branched alkenyl group having 2 to 6 carbon atoms which may have a substituent” represented by R 1 to R 3 in the general formula (1), “ A “straight or branched alkenyl group having 2 to 4 carbon atoms which may have a substituent” is preferred.
 一般式(1)中のR~Rで表される「置換基を有していてもよい炭素原子数1~8の直鎖状若しくは分岐状のアルキルオキシ基」又は「置換基を有していてもよい炭素原子数5~10のシクロアルキルオキシ基」における「炭素原子数1~8の直鎖状若しくは分岐状のアルキルオキシ基」又は「炭素原子数5~10のシクロアルキルオキシ基」としては、具体的に、メチルオキシ基、エチルオキシ基、n-プロピルオキシ基、イソプロピルオキシ基、n-ブチルオキシ基、tert-ブチルオキシ基、n-ペンチルオキシ基、n-ヘキシルオキシ基、n-ヘプチルオキシ基、イソヘプチルオキシ基、n-オクチルオキシ基、イソオクチルオキシ基、シクロペンチルオキシ基、シクロヘキシルオキシ基、シクロヘプチルオキシ基、シクロオクチルオキシ基、1-アダマンチルオキシ基及び2-アダマンチルオキシ基などをあげることができ、R~Rは、隣り合う基同士で、単結合、酸素原子又は硫黄原子を介して互いに結合して環を形成してもよい。 “A linear or branched alkyloxy group having 1 to 8 carbon atoms which may have a substituent” represented by R 1 to R 3 in the general formula (1) or “having a substituent. The “linear or branched alkyloxy group having 1 to 8 carbon atoms” or “cycloalkyloxy group having 5 to 10 carbon atoms” in “optionally substituted cycloalkyloxy group having 5 to 10 carbon atoms”. Are specifically methyloxy, ethyloxy, n-propyloxy, isopropyloxy, n-butyloxy, tert-butyloxy, n-pentyloxy, n-hexyloxy, n-heptyl Oxy group, isoheptyloxy group, n-octyloxy group, isooctyloxy group, cyclopentyloxy group, cyclohexyloxy group, cycloheptyloxy group, cyclo Kuchiruokishi group, 1-like adamantyl group and a 2-adamantyl group can be exemplified, R 1 ~ R 3 is a neighboring groups to each other, a single bond, and bonded to each other through an oxygen atom or a sulfur atom ring May be formed.
 一般式(1)中のR~Rで表される「置換基を有する炭素原子数1~8の直鎖状若しくは分岐状のアルキルオキシ基」又は「置換基を有する炭素原子数5~10のシクロアルキルオキシ基」における「置換基」としては、具体的に、重水素原子、トリフルオロメチル基、シアノ基、ニトロ基、ヒドロキシル基;フッ素原子、塩素原子、臭素原子、ヨウ素原子などのハロゲン原子;メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、n-ヘキシル基、n-ヘプチル基、イソヘプチル基、n-オクチル基、イソオクチル基などの炭素原子数1~8の直鎖状若しくは分岐状のアルキル基;メチルオキシ基、エチルオキシ基、プロピルオキシ基などの炭素原子数1~8の直鎖状若しくは分岐状のアルキルオキシ基;アリル基などのアルケニル基;ベンジル基、ナフチルメチル基、フェネチル基などのアラルキル基;フェニルオキシ基、トリルオキシ基などのアリールオキシ基;ベンジルオキシ基、フェネチルオキシ基などのアリールアルキルオキシ基;フェニル基、ビフェニリル基、ターフェニリル基、ナフチル基、アントラセニル基、フェナントリル基、フルオレニル基、インデニル基、ピレニル基、ペリレニル基、フルオランテニル基、トリフェニレニル基などの芳香族炭化水素基若しくは縮合多環芳香族基;ピリジル基、フラニル基、ピラニル基、チエニル基、フリル基、ピロリル基、ピロリジニル基、イミダゾリル基、イミダゾリニル基、イミダゾリジニル基、ピラゾリル基、ピラゾリニル基、ピラゾリジニル基、ピリダジニル基、ピラジニル基、ピペリジニル基、ピペラジニル基、チオラニル基、チアニル基、キノリル基、イソキノリル基、ベンゾフラニル基、ベンゾチエニル基、インドリル基、カルバゾリル基、ベンゾオキサゾリル基、ベンゾチアゾリル基、キノキサリル基、ベンゾイミダゾリル基、ピラゾリル基、ジベンゾフラニル基、ジベンゾチエニル基、カルボリニル基などの複素環基;スチリル基、ナフチルビニル基などのアリールビニル基;アセチル基、ベンゾイル基などのアシル基;ジメチルアミノ基、ジエチルアミノ基などのジアルキルアミノ基;ジフェニルアミノ基、ジナフチルアミノ基などの芳香族炭化水素基若しくは縮合多環芳香族基で置換されたジ置換アミノ基;ジベンジルアミノ基、ジフェネチルアミノ基などのジアラルキルアミノ基;ジピリジルアミノ基、ジチエニルアミノ基、ジピペリジニルアミノ基などの複素環基で置換されたジ置換アミノ基;ジアリルアミノ基などのジアルケニルアミノ基;アルキル基、芳香族炭化水素基、縮合多環芳香族基、アラルキル基、複素環基又はアルケニル基から選択される置換基で置換されたジ置換アミノ基のような基をあげることができ、これらの置換基は、さらに他の置換基によって置換されていてもよく、単結合、酸素原子又は硫黄原子を介して互いに結合して環を形成してもよい。 “A linear or branched alkyloxy group having 1 to 8 carbon atoms having a substituent” represented by R 1 to R 3 in the general formula (1) or “a carbon atom having 5 to 5 carbon atoms having a substituent” Specific examples of the “substituent” in “10 cycloalkyloxy groups” include deuterium atom, trifluoromethyl group, cyano group, nitro group, hydroxyl group; fluorine atom, chlorine atom, bromine atom, iodine atom, etc. Halogen atom: methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group, n-pentyl group, isopentyl group, neopentyl group, n-hexyl group, n-heptyl group A linear or branched alkyl group having 1 to 8 carbon atoms such as isoheptyl group, n-octyl group, isooctyl group, etc .; methyloxy group, ethyloxy group, pro A linear or branched alkyloxy group having 1 to 8 carbon atoms such as a ruoxy group; an alkenyl group such as an allyl group; an aralkyl group such as a benzyl group, a naphthylmethyl group or a phenethyl group; a phenyloxy group or a tolyloxy group An aryloxy group such as benzyloxy group and phenethyloxy group; phenyl group, biphenylyl group, terphenylyl group, naphthyl group, anthracenyl group, phenanthryl group, fluorenyl group, indenyl group, pyrenyl group, perylenyl group, fullyl group Aromatic hydrocarbon group or condensed polycyclic aromatic group such as oranthenyl group and triphenylenyl group; pyridyl group, furanyl group, pyranyl group, thienyl group, furyl group, pyrrolyl group, pyrrolidinyl group, imidazolyl group, imidazolinyl group, imidazolidinyl group , Lazolyl, pyrazolinyl, pyrazolidinyl, pyridazinyl, pyrazinyl, piperidinyl, piperazinyl, thiolanyl, thianyl, quinolyl, isoquinolyl, benzofuranyl, benzothienyl, indolyl, carbazolyl, benzoxazolyl Group, benzothiazolyl group, quinoxalyl group, benzoimidazolyl group, pyrazolyl group, dibenzofuranyl group, dibenzothienyl group, carbolinyl group and other heterocyclic groups; styryl group, naphthylvinyl group and other aryl vinyl groups; acetyl group, benzoyl group, etc. Acyl group; Dialkylamino group such as dimethylamino group and diethylamino group; Disubstituted amino group substituted with aromatic hydrocarbon group or condensed polycyclic aromatic group such as diphenylamino group and dinaphthylamino group; Diaralkylamino groups such as amino groups and diphenethylamino groups; Disubstituted amino groups substituted with heterocyclic groups such as dipyridylamino groups, dithienylamino groups, and dipiperidinylamino groups; Dialkenyl groups such as diallylamino groups An amino group; a group such as an alkyl group, an aromatic hydrocarbon group, a condensed polycyclic aromatic group, an aralkyl group, a heterocyclic group or a disubstituted amino group substituted with a substituent selected from an alkenyl group. These substituents may be further substituted with other substituents, and may be bonded to each other through a single bond, an oxygen atom or a sulfur atom to form a ring.
 また、一般式(1)中のR~Rで表される「置換基を有していてもよい炭素原子数1~8の直鎖状若しくは分岐状のアルキルオキシ基」の中では、「置換基を有していてもよい炭素原子数1~4の直鎖状若しくは分岐状のアルキルオキシ基」が好ましい。
 また、一般式(1)中のR~Rで表される「置換基を有していてもよい炭素原子数5~10のシクロアルキルオキシ基」の中では、「置換基を有していてもよい炭素原子数5~6のシクロアルキルオキシ基」が好ましい。
In the “linear or branched alkyloxy group having 1 to 8 carbon atoms which may have a substituent” represented by R 1 to R 3 in the general formula (1), “A linear or branched alkyloxy group having 1 to 4 carbon atoms which may have a substituent” is preferable.
In the “cycloalkyloxy group having 5 to 10 carbon atoms which may have a substituent” represented by R 1 to R 3 in the general formula (1), “having a substituent An optionally substituted cycloalkyloxy group having 5 to 6 carbon atoms is preferable.
 一般式(1)中のR~Rで表される「置換若しくは無置換の芳香族炭化水素基」、「置換若しくは無置換の複素環基」又は「置換若しくは無置換の縮合多環芳香族基」における「芳香族炭化水素基」、「複素環基」又は「縮合多環芳香族基」としては、具体的に、フェニル基、ビフェニリル基、ターフェニリル基、ナフチル基、アントリル基、フェナントリル基、フルオレニル基、インデニル基、ピレニル基、ペリレニル基、フルオランテニル基、トリフェニレニル基、ピリジル基、フラニル基、ピラニル基、チエニル基、ピロリジニル基、イミダゾリル基、イミダゾリニル基、イミダゾリジニル基、ピラゾリル基、ピラゾリニル基、ピラゾリジニル基、ピリダジニル基、ピラジニル基、ピペリジニル基、ピペラジニル基、チオラニル基、チアニル基、キノリル基、イソキノリル基、ベンゾフラニル基、ベンゾチエニル基、インドリル基、カルバゾリル基、ベンゾオキサゾリル基、ベンゾチアゾリル基、キノキサリル基、ベンゾイミダゾリル基、ピラゾリル基、ジベンゾフラニル基、ジベンゾチエニル基、及びカルボリニル基などをあげることができ、R~Rは、隣り合う基同士で、単結合、酸素原子又は硫黄原子を介して互いに結合して環を形成してもよい。 “Substituted or unsubstituted aromatic hydrocarbon group”, “substituted or unsubstituted heterocyclic group” represented by R 1 to R 3 in the general formula (1), or “substituted or unsubstituted condensed polycyclic aromatic” As the “aromatic hydrocarbon group”, “heterocyclic group” or “condensed polycyclic aromatic group” in the “group group”, specifically, phenyl group, biphenylyl group, terphenylyl group, naphthyl group, anthryl group, phenanthryl group , Fluorenyl group, indenyl group, pyrenyl group, perylenyl group, fluoranthenyl group, triphenylenyl group, pyridyl group, furanyl group, pyranyl group, thienyl group, pyrrolidinyl group, imidazolyl group, imidazolinyl group, imidazolidinyl group, pyrazolyl group, pyrazolinyl group , Pyrazolidinyl group, pyridazinyl group, pyrazinyl group, piperidinyl group, piperazinyl group, thiolanyl , Thianyl group, quinolyl group, isoquinolyl group, benzofuranyl group, benzothienyl group, indolyl group, carbazolyl group, benzoxazolyl group, benzothiazolyl group, quinoxalyl group, benzoimidazolyl group, pyrazolyl group, dibenzofuranyl group, dibenzothienyl group, R 1 to R 3 may be bonded to each other through a single bond, an oxygen atom or a sulfur atom to form a ring.
 一般式(1)中のR~Rで表される「置換芳香族炭化水素基」、「置換複素環基」又は「置換縮合多環芳香族基」における「置換基」としては、具体的に、重水素原子、シアノ基、トリフルオロメチル基、ニトロ基、ヒドロキシル基;フッ素原子、塩素原子、臭素原子、ヨウ素原子などのハロゲン原子;メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、n-ヘキシル基、n-ヘプチル基、イソヘプチル基、n-オクチル基、イソオクチル基などの炭素原子数1~8の直鎖状若しくは分岐状のアルキル基;シクロペンチル基、シクロヘキシル基などの炭素原子数5~10のシクロアルキル基;ビニル基、アリル基、2-ブテニル基、1-ヘキセニル基などの炭素原子数2~6の直鎖状若しくは分岐状のアルケニル基;メチルオキシ基、エチルオキシ基、プロピルオキシ基などの炭素原子数1~8の直鎖状若しくは分岐状のアルキルオキシ基;シクロペンチルオキシ基、シクロヘキシルオキシ基などの炭素原子数5~10のシクロアルキルオキシ基;ベンジル基、ナフチルメチル基、フェネチル基などのアラルキル基;フェニルオキシ基、トリルオキシ基、ビフェニリルオキシ基、ターフェニリルオキシ基、ナフチルオキシ基、アントリルオキシ基、フェナントリルオキシ基、フルオレニルオキシ基、インデニルオキシ基、ピレニルオキシ基、ペリレニルオキシ基などのアリールオキシ基;ベンジルオキシ基、フェネチルオキシ基などのアリールアルキルオキシ基;フェニル基、ビフェニリル基、ターフェニリル基、ナフチル基、アントラセニル基、フェナントリル基、フルオレニル基、インデニル基、ピレニル基、ペリレニル基、フルオランテニル基、トリフェニレニル基などの芳香族炭化水素基若しくは縮合多環芳香族基;ピリジル基、フラニル基、ピラニル基、チエニル基、フリル基、ピロリル基、ピロリジニル基、イミダゾリル基、イミダゾリニル基、イミダゾリジニル基、ピラゾリル基、ピラゾリニル基、ピラゾリジニル基、ピリダジニル基、ピラジニル基、ピペリジニル基、ピペラジニル基、チオラニル基、チアニル基、キノリル基、イソキノリル基、ベンゾフラニル基、ベンゾチエニル基、インドリル基、カルバゾリル基、ベンゾオキサゾリル基、ベンゾチアゾリル基、キノキサリル基、ベンゾイミダゾリル基、ピラゾリル基、ジベンゾフラニル基、ジベンゾチエニル基、カルボリニル基などの複素環基;スチリル基、ナフチルビニル基などのアリールビニル基;アセチル基、ベンゾイル基などのアシル基;ジメチルアミノ基、ジエチルアミノ基などのジアルキルアミノ基;ジフェニルアミノ基、ジナフチルアミノ基などの芳香族炭化水素基若しくは縮合多環芳香族基で置換されたジ置換アミノ基;ジベンジルアミノ基、ジフェネチルアミノ基などのジアラルキルアミノ基;ジピリジルアミノ基、ジチエニルアミノ基、ジピペリジニルアミノ基などの複素環基で置換されたジ置換アミノ基;ジアリルアミノ基などのジアルケニルアミノ基;アルキル基、芳香族炭化水素基、縮合多環芳香族基、アラルキル基、複素環基又はアルケニル基から選択される置換基で置換されたジ置換アミノ基のような基をあげることができ、これらの置換基は、さらに他の置換基によって置換されていてもよく、単結合、酸素原子又は硫黄原子を介して互いに結合して環を形成してもよい。 Examples of the “substituent” in the “substituted aromatic hydrocarbon group”, “substituted heterocyclic group” or “substituted condensed polycyclic aromatic group” represented by R 1 to R 3 in the general formula (1) include Deuterium atom, cyano group, trifluoromethyl group, nitro group, hydroxyl group; halogen atom such as fluorine atom, chlorine atom, bromine atom, iodine atom; methyl group, ethyl group, n-propyl group, isopropyl group , N-butyl group, isobutyl group, tert-butyl group, n-pentyl group, isopentyl group, neopentyl group, n-hexyl group, n-heptyl group, isoheptyl group, n-octyl group, isooctyl group, etc. A linear or branched alkyl group having 1 to 8 carbon atoms; a cycloalkyl group having 5 to 10 carbon atoms such as a cyclopentyl group and a cyclohexyl group; a vinyl group, an allyl group, Straight or branched alkenyl groups having 2 to 6 carbon atoms such as nyl and 1-hexenyl groups; straight or branched having 1 to 8 carbon atoms such as methyloxy, ethyloxy and propyloxy Alkyloxy groups having 5 to 10 carbon atoms such as cyclopentyloxy groups and cyclohexyloxy groups; aralkyl groups such as benzyl groups, naphthylmethyl groups and phenethyl groups; phenyloxy groups, tolyloxy groups and biphenylyl groups Aryloxy groups such as oxy group, terphenylyloxy group, naphthyloxy group, anthryloxy group, phenanthryloxy group, fluorenyloxy group, indenyloxy group, pyrenyloxy group, perylenyloxy group; benzyloxy group, Arylalkyloxy groups such as phenethyloxy groups Aromatic hydrocarbon groups or condensed polycyclic aromatic groups such as phenyl, biphenylyl, terphenylyl, naphthyl, anthracenyl, phenanthryl, fluorenyl, indenyl, pyrenyl, perylenyl, fluoranthenyl, triphenylenyl Group; pyridyl group, furanyl group, pyranyl group, thienyl group, furyl group, pyrrolyl group, pyrrolidinyl group, imidazolyl group, imidazolinyl group, imidazolidinyl group, pyrazolyl group, pyrazolinyl group, pyrazolidinyl group, pyridazinyl group, pyrazinyl group, piperidinyl group, Piperazinyl, thiolanyl, thianyl, quinolyl, isoquinolyl, benzofuranyl, benzothienyl, indolyl, carbazolyl, benzoxazolyl, benzothiazolyl, quinoxalyl, Heterocyclic groups such as azoimidazolyl, pyrazolyl, dibenzofuranyl, dibenzothienyl, carbolinyl; arylvinyl groups such as styryl and naphthylvinyl; acyl groups such as acetyl and benzoyl; dimethylamino Dialkylamino groups such as diethylamino groups; disubstituted amino groups substituted with aromatic hydrocarbon groups or condensed polycyclic aromatic groups such as diphenylamino groups and dinaphthylamino groups; dibenzylamino groups and diphenethylamino groups A disubstituted amino group substituted with a heterocyclic group such as a dipyridylamino group, a dithienylamino group or a dipiperidinylamino group; a dialkenylamino group such as a diallylamino group; an alkyl group or an aromatic group Hydrocarbon group, condensed polycyclic aromatic group, aralkyl group, heterocyclic group or alkeni And a group such as a di-substituted amino group substituted with a substituent selected from the group, and these substituents may be further substituted with other substituents, such as a single bond, an oxygen atom or A ring may be formed by bonding to each other via a sulfur atom.
 一般式(1)中のR~Rで表される「置換若しくは無置換のアリールオキシ基」における「アリールオキシ基」としては、具体的に、フェニルオキシ基、トリルオキシ基、ビフェニリルオキシ基、ターフェニリルオキシ基、ナフチルオキシ基、アントリルオキシ基、フェナントリルオキシ基、フルオレニルオキシ基、インデニルオキシ基、ピレニルオキシ基、ペリレニルオキシ基などをあげることができ、R~Rは、隣り合う基同士で、単結合、酸素原子又は硫黄原子を介して互いに結合して環を形成してもよい。 Specific examples of the “aryloxy group” in the “substituted or unsubstituted aryloxy group” represented by R 1 to R 3 in the general formula (1) include a phenyloxy group, a tolyloxy group, and a biphenylyloxy group. Terphenylyloxy group, naphthyloxy group, anthryloxy group, phenanthryloxy group, fluorenyloxy group, indenyloxy group, pyrenyloxy group, perylenyloxy group, and the like. R 1 to R 3 May be bonded to each other through a single bond, oxygen atom or sulfur atom to form a ring.
 一般式(1)中のR~Rで表される「置換アリールオキシ基」における「置換基」としては、具体的に、重水素原子、シアノ基、トリフルオロメチル基、ニトロ基、ヒドロキシル基;フッ素原子、塩素原子、臭素原子、ヨウ素原子などのハロゲン原子;メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、n-ヘキシル基、n-ヘプチル基、イソヘプチル基、n-オクチル基、イソオクチル基などの炭素原子数1~8の直鎖状若しくは分岐状のアルキル基;シクロペンチル基、シクロヘキシル基などの炭素原子数5~10のシクロアルキル基;ビニル基、アリル基、2-ブテニル基、1-ヘキセニル基などの炭素原子数2~6の直鎖状若しくは分岐状のアルケニル基;メチルオキシ基、エチルオキシ基、プロピルオキシ基などの炭素原子数1~8の直鎖状若しくは分岐状のアルキルオキシ基;シクロペンチルオキシ基、シクロヘキシルオキシ基などの炭素原子数5~10のシクロアルキルオキシ基;ベンジル基、ナフチルメチル基、フェネチル基などのアラルキル基;フェニルオキシ基、トリルオキシ基、ビフェニリルオキシ基、ターフェニリルオキシ基、ナフチルオキシ基、アントリルオキシ基、フェナントリルオキシ基、フルオレニルオキシ基、インデニルオキシ基、ピレニルオキシ基、ペリレニルオキシ基などのアリールオキシ基;ベンジルオキシ基、フェネチルオキシ基などのアリールアルキルオキシ基;フェニル基、ビフェニリル基、ターフェニリル基、ナフチル基、アントラセニル基、フェナントリル基、フルオレニル基、インデニル基、ピレニル基、ペリレニル基、フルオランテニル基、トリフェニレニル基などの芳香族炭化水素基若しくは縮合多環芳香族基;ピリジル基、フラニル基、ピラニル基、チエニル基、フリル基、ピロリル基、ピロリジニル基、イミダゾリル基、イミダゾリニル基、イミダゾリジニル基、ピラゾリル基、ピラゾリニル基、ピラゾリジニル基、ピリダジニル基、ピラジニル基、ピペリジニル基、ピペラジニル基、チオラニル基、チアニル基、キノリル基、イソキノリル基、ベンゾフラニル基、ベンゾチエニル基、インドリル基、カルバゾリル基、ベンゾオキサゾリル基、ベンゾチアゾリル基、キノキサリル基、ベンゾイミダゾリル基、ピラゾリル基、ジベンゾフラニル基、ジベンゾチエニル基、カルボリニル基などの複素環基;スチリル基、ナフチルビニル基などのアリールビニル基;アセチル基、ベンゾイル基などのアシル基;ジメチルアミノ基、ジエチルアミノ基などのジアルキルアミノ基;ジフェニルアミノ基、ジナフチルアミノ基などの芳香族炭化水素基若しくは縮合多環芳香族基で置換されたジ置換アミノ基;ジベンジルアミノ基、ジフェネチルアミノ基などのジアラルキルアミノ基;ジピリジルアミノ基、ジチエニルアミノ基、ジピペリジニルアミノ基などの複素環基で置換されたジ置換アミノ基;ジアリルアミノ基などのジアルケニルアミノ基;アルキル基、芳香族炭化水素基、縮合多環芳香族基、アラルキル基、複素環基又はアルケニル基から選択される置換基で置換されたジ置換アミノ基のような基をあげることができ、これらの置換基は、さらに他の置換基によって置換されていてもよく、単結合、酸素原子又は硫黄原子を介して互いに結合して環を形成してもよい。 Specific examples of the “substituent” in the “substituted aryloxy group” represented by R 1 to R 3 in the general formula (1) include deuterium atom, cyano group, trifluoromethyl group, nitro group, hydroxyl group Group: halogen atom such as fluorine atom, chlorine atom, bromine atom, iodine atom; methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group, n-pentyl group, A linear or branched alkyl group having 1 to 8 carbon atoms such as an isopentyl group, neopentyl group, n-hexyl group, n-heptyl group, isoheptyl group, n-octyl group, isooctyl group; cyclopentyl group, cyclohexyl group A cycloalkyl group having 5 to 10 carbon atoms such as vinyl group, allyl group, 2-butenyl group, 1-hexenyl group, etc. A linear or branched alkenyl group of 1 to 8 carbon atoms such as a methyloxy group, an ethyloxy group or a propyloxy group; a cyclopentyloxy group, a cyclohexyloxy group or the like; A cycloalkyloxy group having 5 to 10 carbon atoms; an aralkyl group such as benzyl group, naphthylmethyl group, phenethyl group; phenyloxy group, tolyloxy group, biphenylyloxy group, terphenylyloxy group, naphthyloxy group, anthryl Aryloxy groups such as oxy group, phenanthryloxy group, fluorenyloxy group, indenyloxy group, pyrenyloxy group, perylenyloxy group; arylalkyloxy groups such as benzyloxy group, phenethyloxy group; phenyl group, biphenylyl group , Terphenylyl group Aromatic hydrocarbon groups or condensed polycyclic aromatic groups such as naphthyl group, anthracenyl group, phenanthryl group, fluorenyl group, indenyl group, pyrenyl group, perylenyl group, fluoranthenyl group, triphenylenyl group; pyridyl group, furanyl group, pyranyl Group, thienyl group, furyl group, pyrrolyl group, pyrrolidinyl group, imidazolyl group, imidazolinyl group, imidazolidinyl group, pyrazolyl group, pyrazolinyl group, pyrazolidinyl group, pyridazinyl group, pyrazinyl group, piperidinyl group, piperazinyl group, thiolanyl group, thianyl group, Quinolyl, isoquinolyl, benzofuranyl, benzothienyl, indolyl, carbazolyl, benzoxazolyl, benzothiazolyl, quinoxalyl, benzoimidazolyl, pyrazolyl, dibenzofura Heterocyclic groups such as nyl, dibenzothienyl and carbolinyl; arylvinyl groups such as styryl and naphthylvinyl; acyl groups such as acetyl and benzoyl; dialkylamino groups such as dimethylamino and diethylamino; diphenyl A disubstituted amino group substituted with an aromatic hydrocarbon group such as an amino group or a dinaphthylamino group or a condensed polycyclic aromatic group; a diaralkylamino group such as a dibenzylamino group or a diphenethylamino group; a dipyridylamino group; Disubstituted amino groups substituted by heterocyclic groups such as dithienylamino groups and dipiperidinylamino groups; Dialkenylamino groups such as diallylamino groups; alkyl groups, aromatic hydrocarbon groups, condensed polycyclic aromatic groups A disubstituted amino substituted with a substituent selected from an aralkyl group, a heterocyclic group or an alkenyl group These substituents may be further substituted with other substituents, and are bonded to each other through a single bond, oxygen atom or sulfur atom to form a ring. Also good.
 一般式(1)中のR~Rとしては、水素原子、重水素原子、置換基を有していてもよい炭素原子数1~8の直鎖状若しくは分岐状のアルキル基、又は置換基を有していてもよい炭素原子数5~10のシクロアルキル基が好ましく、水素原子、重水素原子、又は置換基を有していてもよい炭素原子数1~4の直鎖状若しくは分岐状のアルキル基がより好ましく、水素原子又は重水素原子が更に好ましい。 R 1 to R 3 in the general formula (1) are a hydrogen atom, a deuterium atom, a linear or branched alkyl group having 1 to 8 carbon atoms which may have a substituent, or a substituent. A cycloalkyl group having 5 to 10 carbon atoms which may have a group is preferable, and a straight chain or branched chain having 1 to 4 carbon atoms which may have a hydrogen atom, a deuterium atom, or a substituent. The alkyl group is more preferably a hydrogen atom or a deuterium atom.
 一般式(1)中のR及びRで表される「置換基を有していてもよい炭素原子数1~8の直鎖状若しくは分岐状のアルキル基」、「置換基を有していてもよい炭素原子数5~10のシクロアルキル基」又は「置換基を有していてもよい炭素原子数2~6の直鎖状若しくは分岐状のアルケニル基」における「炭素原子数1~8の直鎖状若しくは分岐状のアルキル基」、「炭素原子数5~10のシクロアルキル基」又は「炭素原子数2~6の直鎖状若しくは分岐状のアルケニル基」としては、上記のR~Rに関して示したものと同様の基であり、これらの基が有していてよい置換基も、R~Rに関して示したものと同様である。 “A linear or branched alkyl group having 1 to 8 carbon atoms which may have a substituent” represented by R 4 and R 5 in the general formula (1), “having a substituent In the “cycloalkyl group having 5 to 10 carbon atoms” or “the linear or branched alkenyl group having 2 to 6 carbon atoms which may have a substituent”. Examples of “8 linear or branched alkyl group”, “C5-C10 cycloalkyl group” or “C2-C6 linear or branched alkenyl group” include the above R The groups are the same as those shown for 1 to R 3 , and the substituents that these groups may have are the same as those shown for R 1 to R 3 .
 一般式(1)中のR及びRで表される「置換若しくは無置換の芳香族炭化水素基」、「置換若しくは無置換の複素環基」又は「置換若しくは無置換の縮合多環芳香族基」における「芳香族炭化水素基」、「複素環基」又は「縮合多環芳香族基」としては、上記のR~Rに関して示したものと同様の基であり、これらの基が有していてよい置換基も、R~Rに関して示したものと同様である。 “Substituted or unsubstituted aromatic hydrocarbon group”, “substituted or unsubstituted heterocyclic group” or “substituted or unsubstituted condensed polycyclic aromatic” represented by R 4 and R 5 in the general formula (1) The “aromatic hydrocarbon group”, “heterocyclic group” or “condensed polycyclic aromatic group” in the “group” is the same group as those described above for R 1 to R 3 , and these groups Substituents that may have are the same as those described for R 1 to R 3 .
 一般式(1)中のR及びRとしては、水素原子、重水素原子、置換基を有していてもよい炭素原子数1~8の直鎖状若しくは分岐状のアルキル基、又は置換基を有していてもよい炭素原子数5~10のシクロアルキル基が好ましく、水素原子、重水素原子、又は置換基を有していてもよい炭素原子数1~4の直鎖状若しくは分岐状のアルキル基がより好ましく、水素原子又は重水素原子が更に好ましい。 R 4 and R 5 in the general formula (1) are a hydrogen atom, a deuterium atom, a linear or branched alkyl group having 1 to 8 carbon atoms which may have a substituent, or a substituted group. A cycloalkyl group having 5 to 10 carbon atoms which may have a group is preferable, and a straight chain or branched chain having 1 to 4 carbon atoms which may have a hydrogen atom, a deuterium atom, or a substituent. The alkyl group is more preferably a hydrogen atom or a deuterium atom.
 一般式(1)中のR及びRで表される「置換基を有していてもよい炭素原子数5~10のシクロアルキル基」における「炭素原子数5~10のシクロアルキル基」としては、具体的に、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロノニル基、シクロデシル基、1-アダマンチル基及び2-アダマンチル基などをあげることができる。 “Cycloalkyl group having 5 to 10 carbon atoms” in “cycloalkyl group having 5 to 10 carbon atoms which may have a substituent” represented by R 6 and R 7 in formula (1) Specific examples thereof include a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, a cyclononyl group, a cyclodecyl group, a 1-adamantyl group, and a 2-adamantyl group.
 一般式(1)中のR及びRで表される「置換若しくは無置換の芳香族炭化水素基」又は「置換若しくは無置換の縮合多環芳香族基」における「芳香族炭化水素基」又は「縮合多環芳香族基」としては、具体的に、フェニル基、ビフェニリル基、ターフェニリル基、ナフチル基、アントリル基、フェナントリル基、フルオレニル基、インデニル基、ピレニル基、ペリレニル基、フルオランテニル基及びトリフェニレニル基などをあげることができる。 “Aromatic hydrocarbon group” in “substituted or unsubstituted aromatic hydrocarbon group” or “substituted or unsubstituted condensed polycyclic aromatic group” represented by R 6 and R 7 in general formula (1) Or, as the “fused polycyclic aromatic group”, specifically, phenyl group, biphenylyl group, terphenylyl group, naphthyl group, anthryl group, phenanthryl group, fluorenyl group, indenyl group, pyrenyl group, perylenyl group, fluoranthenyl group And a triphenylenyl group.
 一般式(1)中のR及びRで表される「置換基を有する炭素原子数5~10のシクロアルキル基」、「置換芳香族炭化水素基」又は「置換縮合多環芳香族基」における「置換基」としては、具体的に、重水素原子、トリフルオロメチル基、シアノ基、ニトロ基、ヒドロキシル基;フッ素原子、塩素原子、臭素原子、ヨウ素原子などのハロゲン原子;メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、n-ヘキシル基、n-ヘプチル基、イソヘプチル基、n-オクチル基、イソオクチル基などの炭素原子数1~8の直鎖状若しくは分岐状のアルキル基;メチルオキシ基、エチルオキシ基、プロピルオキシ基などの炭素原子数1~8の直鎖状若しくは分岐状のアルキルオキシ基;アリル基などのアルケニル基;ベンジル基、ナフチルメチル基、フェネチル基などのアラルキル基;フェニルオキシ基、トリルオキシ基などのアリールオキシ基;ベンジルオキシ基、フェネチルオキシ基などのアリールアルキルオキシ基;フェニル基、ビフェニリル基、ターフェニリル基、ナフチル基、アントラセニル基、フェナントリル基、フルオレニル基、インデニル基、ピレニル基、ペリレニル基、フルオランテニル基、トリフェニレニル基などの芳香族炭化水素基若しくは縮合多環芳香族基;ピリジル基、フラニル基、ピラニル基、チエニル基、フリル基、ピロリル基、ピロリジニル基、イミダゾリル基、イミダゾリニル基、イミダゾリジニル基、ピラゾリル基、ピラゾリニル基、ピラゾリジニル基、ピリダジニル基、ピラジニル基、ピペリジニル基、ピペラジニル基、チオラニル基、チアニル基、キノリル基、イソキノリル基、ベンゾフラニル基、ベンゾチエニル基、インドリル基、カルバゾリル基、ベンゾオキサゾリル基、ベンゾチアゾリル基、キノキサリル基、ベンゾイミダゾリル基、ピラゾリル基、ジベンゾフラニル基、ジベンゾチエニル基、カルボリニル基などの複素環基;スチリル基、ナフチルビニル基などのアリールビニル基;アセチル基、ベンゾイル基などのアシル基;ジメチルアミノ基、ジエチルアミノ基などのジアルキルアミノ基;ジフェニルアミノ基、ジナフチルアミノ基などの芳香族炭化水素基若しくは縮合多環芳香族基で置換されたジ置換アミノ基;ジベンジルアミノ基、ジフェネチルアミノ基などのジアラルキルアミノ基;ジピリジルアミノ基、ジチエニルアミノ基、ジピペリジニルアミノ基などの複素環基で置換されたジ置換アミノ基;ジアリルアミノ基などのジアルケニルアミノ基;アルキル基、芳香族炭化水素基、縮合多環芳香族基、アラルキル基、複素環基又はアルケニル基から選択される置換基で置換されたジ置換アミノ基のような基をあげることができ、これらの置換基は、さらに他の置換基によって置換されていてもよく、単結合、酸素原子又は硫黄原子を介して互いに結合して環を形成してもよい。 “C6-C10 substituted cycloalkyl group”, “substituted aromatic hydrocarbon group” or “substituted condensed polycyclic aromatic group represented by R 6 and R 7 in general formula (1) As the “substituent” in the above, specifically, deuterium atom, trifluoromethyl group, cyano group, nitro group, hydroxyl group; halogen atom such as fluorine atom, chlorine atom, bromine atom, iodine atom; Ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl, isopentyl, neopentyl, n-hexyl, n-heptyl, isoheptyl, n- Straight or branched alkyl group having 1 to 8 carbon atoms such as octyl group, isooctyl group, etc .; carbon atom number such as methyloxy group, ethyloxy group, propyloxy group, etc. A linear or branched alkyloxy group of 8 to 8; an alkenyl group such as an allyl group; an aralkyl group such as a benzyl group, a naphthylmethyl group and a phenethyl group; an aryloxy group such as a phenyloxy group and a tolyloxy group; a benzyloxy group Arylalkyloxy groups such as phenethyloxy groups; phenyl groups, biphenylyl groups, terphenylyl groups, naphthyl groups, anthracenyl groups, phenanthryl groups, fluorenyl groups, indenyl groups, pyrenyl groups, perylenyl groups, fluoranthenyl groups, triphenylenyl groups, etc. Aromatic hydrocarbon group or condensed polycyclic aromatic group; pyridyl group, furanyl group, pyranyl group, thienyl group, furyl group, pyrrolyl group, pyrrolidinyl group, imidazolyl group, imidazolinyl group, imidazolidinyl group, pyrazolyl group, pyrazolinyl group, Pyrazolidinyl group, pyridazinyl group, pyrazinyl group, piperidinyl group, piperazinyl group, thiolanyl group, thianyl group, quinolyl group, isoquinolyl group, benzofuranyl group, benzothienyl group, indolyl group, carbazolyl group, benzoxazolyl group, benzothiazolyl group, quinoxalyl Group, benzimidazolyl group, pyrazolyl group, dibenzofuranyl group, dibenzothienyl group, carbolinyl group and other heterocyclic groups; styryl group, naphthylvinyl group and other aryl vinyl groups; acetyl group, benzoyl group and other acyl groups; dimethylamino group Dialkylamino groups such as diethylamino groups; disubstituted amino groups substituted with aromatic hydrocarbon groups or condensed polycyclic aromatic groups such as diphenylamino groups and dinaphthylamino groups; dibenzylamino groups and diphenethylamino groups Diaralkylamino groups such as: Disubstituted amino groups substituted with heterocyclic groups such as dipyridylamino groups, dithienylamino groups, and dipiperidinylamino groups; Dialkenylamino groups such as diallylamino groups; And a group such as a disubstituted amino group substituted with a substituent selected from an aromatic hydrocarbon group, a condensed polycyclic aromatic group, an aralkyl group, a heterocyclic group, or an alkenyl group. Furthermore, they may be substituted with other substituents, and may be bonded to each other via a single bond, oxygen atom or sulfur atom to form a ring.
 一般式(1)中のR及びRで表される「置換基を有する炭素原子数5~10のシクロアルキル基」、「置換芳香族炭化水素基」又は「置換縮合多環芳香族基」における「置換基」としては、重水素原子、トリフルオロメチル基、シアノ基、ニトロ基、ヒドロキシル基、ハロゲン原子、炭素原子数1~8の直鎖状若しくは分岐状のアルキル基、炭素原子数1~8の直鎖状若しくは分岐状のアルキルオキシ基が好ましい。 “C6-C10 substituted cycloalkyl group”, “substituted aromatic hydrocarbon group” or “substituted condensed polycyclic aromatic group represented by R 6 and R 7 in general formula (1) The “substituent” in “is a deuterium atom, a trifluoromethyl group, a cyano group, a nitro group, a hydroxyl group, a halogen atom, a linear or branched alkyl group having 1 to 8 carbon atoms, the number of carbon atoms 1-8 linear or branched alkyloxy groups are preferred.
 一般式(1)中のR及びRとしては、置換基を有していてもよい炭素原子数5~10のシクロアルキル基、又は置換若しくは無置換の芳香族炭化水素基が好ましい。R及びRが、いずれも置換基を有していてもよい炭素原子数5~10のシクロアルキル基であるか、又はいずれも置換若しくは無置換の芳香族炭化水素基であることがより好ましい。この場合も、R及びRは、相互に同一でも異なってもよい。R及びRが、いずれも置換若しくは無置換の芳香族炭化水素基である態様として、Rが下記一般式(1A-2)で表され、かつRが下記一般式(1A-3)で表されるものが更に好ましい。 R 6 and R 7 in the general formula (1) are preferably a cycloalkyl group having 5 to 10 carbon atoms which may have a substituent, or a substituted or unsubstituted aromatic hydrocarbon group. More preferably, R 6 and R 7 are both optionally substituted cycloalkyl groups having 5 to 10 carbon atoms, or both are substituted or unsubstituted aromatic hydrocarbon groups. preferable. Also in this case, R 6 and R 7 may be the same as or different from each other. As an embodiment in which R 6 and R 7 are both substituted or unsubstituted aromatic hydrocarbon groups, R 6 is represented by the following general formula (1A-2), and R 7 is represented by the following general formula (1A-3) ) Is more preferable.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
 一般式(1A-2)及び一般式(1A-3)中、R~R17は、相互に同一でも異なってもよく、水素原子、重水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子、ヒドロキシル基、シアノ基、トリフルオロメチル基、ニトロ基、置換基を有していてもよい炭素原子数1~8の直鎖状若しくは分岐状のアルキル基、置換基を有していてもよい炭素原子数5~10のシクロアルキル基、置換基を有していてもよい炭素原子数2~6の直鎖状若しくは分岐状のアルケニル基、置換基を有していてもよい炭素原子数1~8の直鎖状若しくは分岐状のアルキルオキシ基、置換基を有していてもよい炭素原子数5~10のシクロアルキルオキシ基、置換若しくは無置換の芳香族炭化水素基、置換若しくは無置換の複素環基、置換若しくは無置換の縮合多環芳香族基、又は置換若しくは無置換のアリールオキシ基を示す。ここで、R、R、R10、R11及びR12、又はR13、R14、R15、R16及びR17は、隣り合う基同士で互いに結合して環を形成していてもよい。*は結合手を示す。
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
In the general formulas (1A-2) and (1A-3), R 8 to R 17 may be the same as or different from each other, and are a hydrogen atom, deuterium atom, fluorine atom, chlorine atom, bromine atom, iodine. An atom, a hydroxyl group, a cyano group, a trifluoromethyl group, a nitro group, a linear or branched alkyl group having 1 to 8 carbon atoms which may have a substituent, or a substituent A good cycloalkyl group having 5 to 10 carbon atoms, a linear or branched alkenyl group having 2 to 6 carbon atoms which may have a substituent, and a carbon atom which may have a substituent 1 to 8 linear or branched alkyloxy group, optionally substituted cycloalkyloxy group having 5 to 10 carbon atoms, substituted or unsubstituted aromatic hydrocarbon group, substituted or unsubstituted Substituted heterocyclic groups, substituted or unsubstituted It shows a condensed polycyclic aromatic group, or a substituted or unsubstituted aryloxy group. Here, R 8 , R 9 , R 10 , R 11 and R 12 , or R 13 , R 14 , R 15 , R 16 and R 17 are bonded to each other to form a ring. Also good. * Indicates a bond.
 一般式(1A-2)及び一般式(1A-3)中のR~R17で表される「置換基を有していてもよい炭素原子数1~8の直鎖状若しくは分岐状のアルキル基」、「置換基を有していてもよい炭素原子数5~10のシクロアルキル基」又は「置換基を有していてもよい炭素原子数2~6の直鎖状若しくは分岐状のアルケニル基」における「炭素原子数1~8の直鎖状若しくは分岐状のアルキル基」、「炭素原子数5~10のシクロアルキル基」又は「炭素原子数2~6の直鎖状若しくは分岐状のアルケニル基」としては、上記のR~Rに関して示したものと同様の基であり、これらの基が有していてよい置換基も、R~Rに関して示したものと同様である。 Represented by R 8 to R 17 in the general formula (1A-2) and the general formula (1A-3) “a linear or branched group having 1 to 8 carbon atoms which may have a substituent. Alkyl group "," optionally substituted cycloalkyl group having 5 to 10 carbon atoms "or" optionally substituted straight chain or branched chain group having 2 to 6 carbon atoms ". “Linear or branched alkyl group having 1 to 8 carbon atoms”, “Cycloalkyl group having 5 to 10 carbon atoms” or “Linear or branched chain having 2 to 6 carbon atoms” in “Alkenyl group” the alkenyl group "is a similar group to that shown with reference to the above R 1 ~ R 3, substituent which may be possessed by these groups is also similar to that shown with respect to R 1 ~ R 3 is there.
 一般式(1A-2)及び一般式(1A-3)中のR~R17で表される「置換若しくは無置換の芳香族炭化水素基」、「置換若しくは無置換の複素環基」又は「置換若しくは無置換の縮合多環芳香族基」における「芳香族炭化水素基」、「複素環基」又は「縮合多環芳香族基」としては、上記のR~Rに関して示したものと同様の基であり、これらの基が有していてよい置換基も、R~Rに関して示したものと同様である。 A “substituted or unsubstituted aromatic hydrocarbon group”, “substituted or unsubstituted heterocyclic group” represented by R 8 to R 17 in the general formula (1A-2) and the general formula (1A-3); As the “aromatic hydrocarbon group”, “heterocyclic group” or “fused polycyclic aromatic group” in the “substituted or unsubstituted condensed polycyclic aromatic group”, those shown for R 1 to R 3 above The substituents which these groups may have are the same as those shown for R 1 to R 3 .
 一般式(1A-2)及び一般式(1A-3)中のR~R17で表される「置換若しくは無置換のアリールオキシ基」における「アリールオキシ基」としては、上記のR~Rに関して示したものと同様の基であり、これらの基が有していてよい置換基も、R~Rに関して示したものと同様である。 The “aryloxy group” in the “substituted or unsubstituted aryloxy group” represented by R 8 to R 17 in the general formula (1A-2) and the general formula (1A-3) is the above R 1 to The groups are the same as those shown for R 3 , and the substituents that these groups may have are the same as those shown for R 1 to R 3 .
 一般式(1A-2)及び一般式(1A-3)中のR~R17としては、重水素原子、トリフルオロメチル基、シアノ基、ニトロ基、ヒドロキシル基、ハロゲン原子、炭素原子数1~8の直鎖状若しくは分岐状のアルキル基、炭素原子数1~8の直鎖状若しくは分岐状のアルキルオキシ基が好ましい。 R 8 to R 17 in the general formula (1A-2) and the general formula (1A-3) include a deuterium atom, a trifluoromethyl group, a cyano group, a nitro group, a hydroxyl group, a halogen atom, and one carbon atom. A linear or branched alkyl group having 8 to 8 carbon atoms or a linear or branched alkyloxy group having 1 to 8 carbon atoms is preferable.
 上記一般式(1)で表されるピリジンジカルボン酸誘導体は、例えば、下記一般式(1A)又は下記一般式(1A-1)で表されるピリジンジカルボン酸誘導体であってもよい。 The pyridinedicarboxylic acid derivative represented by the general formula (1) may be, for example, a pyridinedicarboxylic acid derivative represented by the following general formula (1A) or the following general formula (1A-1).
Figure JPOXMLDOC01-appb-C000009
 一般式(1A)中、R~Rは上述のとおりである。
Figure JPOXMLDOC01-appb-C000010
 一般式(1A-1)中、R~R、及びR~R17は上述のとおりである。
Figure JPOXMLDOC01-appb-C000009
In general formula (1A), R 1 to R 7 are as described above.
Figure JPOXMLDOC01-appb-C000010
In general formula (1A-1), R 1 to R 5 and R 8 to R 17 are as described above.
 本実施形態に係る一般式(1)で表されるピリジンジカルボン酸誘導体は、既知の方法によって製造することができる。例えば、相当するピリジンジカルボン酸のジクロリドと、相当するアミノ基を有する脂環式炭化水素、芳香族炭化水素又は縮合多環芳香族とを、塩基等の存在下に反応することによって、本実施形態に係るピリジンジカルボン酸誘導体を合成することができる。また、相当するピリジンジカルボン酸と、相当するアミノ基を有する脂環式炭化水素、芳香族炭化水素又は縮合多環芳香族とを脱水縮合剤の存在下に反応することによって合成することもできる。 The pyridinedicarboxylic acid derivative represented by the general formula (1) according to this embodiment can be produced by a known method. For example, by reacting the corresponding dichloride of pyridinedicarboxylic acid and the alicyclic hydrocarbon, aromatic hydrocarbon or condensed polycyclic aromatic having the corresponding amino group in the presence of a base or the like, this embodiment The pyridinedicarboxylic acid derivative according to the above can be synthesized. It can also be synthesized by reacting the corresponding pyridinedicarboxylic acid with an alicyclic hydrocarbon, aromatic hydrocarbon or condensed polycyclic aromatic having a corresponding amino group in the presence of a dehydrating condensing agent.
 本発明に係る一般式(1)で表されるピリジンジカルボン酸誘導体の中で、好ましい化合物の具体例を以下に示すが、本発明は、これらの化合物に限定されるものではない。
 なお、下記構造式では、水素原子は省略して記載している。また、立体異性体が存在する場合であっても、その平面構造式を記載している。
Specific examples of preferable compounds among the pyridinedicarboxylic acid derivatives represented by the general formula (1) according to the present invention are shown below, but the present invention is not limited to these compounds.
In the following structural formula, hydrogen atoms are omitted. Further, even when stereoisomers exist, the planar structural formula is described.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000054
 本実施形態において、電荷制御剤は体積平均粒径を0.1μm~20μmの範囲内に調整して用いるのが好ましく、0.1μm~10μmの範囲内に調整して用いるのが特に好ましい。前記体積平均粒径が0.1μmより小さいと、トナー表面に出現する該電荷制御剤が極めて少なくなり目的の電荷制御効果が得られにくくなる傾向にあり、また20μmより大きいと、トナーから欠落する電荷制御剤が増加し、機内汚染などの悪影響が出やすくなる傾向にあるため好ましくない。 In the present embodiment, the charge control agent is preferably used by adjusting the volume average particle diameter within the range of 0.1 μm to 20 μm, and particularly preferably adjusted within the range of 0.1 μm to 10 μm. If the volume average particle size is smaller than 0.1 μm, the amount of the charge control agent appearing on the toner surface tends to be extremely small, and the target charge control effect tends to be difficult to be obtained. It is not preferable because the charge control agent tends to increase and adverse effects such as in-machine contamination tend to occur.
 また、電荷制御剤を重合トナーに用いる場合は、体積平均粒径を1.0μm以下に調整して用いるのが好ましく、0.01μm~1.0μmの範囲内に調整して用いるのが特に好ましい。前記体積平均粒径が1.0μmを越えると、最終的に得られる電子写真用トナーの粒径分布が広くなったり、遊離粒子の発生が生じ、性能又は信頼性の低下を招く場合がある。一方、前記平均粒径が前記範囲内にあると前記欠点がない上、トナー間の偏在が減少し、トナー中の分散が良好となり、性能及び信頼性のバラツキが小さくなる点で有利である。 When the charge control agent is used for the polymerized toner, the volume average particle diameter is preferably adjusted to 1.0 μm or less, particularly preferably adjusted to be in the range of 0.01 μm to 1.0 μm. . When the volume average particle size exceeds 1.0 μm, the particle size distribution of the finally obtained electrophotographic toner may be broadened or free particles may be generated, which may lead to a decrease in performance or reliability. On the other hand, when the average particle diameter is within the above range, there are no disadvantages, and the uneven distribution among the toners is reduced, the dispersion in the toner is improved, and the variation in performance and reliability is advantageous.
 本実施形態に係る電荷制御剤をトナーに含有させる方法としては、結着樹脂に着色剤などとともに添加し、混練し、粉砕する方法(粉砕トナー)、又は重合性の単量体モノマーに電荷制御剤を添加し、重合させてトナーを得る方法(重合トナー)のように、予めトナー粒子の内部に添加する方法(内添)と、予めトナー粒子を製造し、トナー粒子の表面に添加(外添)する方法がある。トナー粒子に内添する場合の好ましい電荷制御剤の添加量は、結着樹脂100質量部に対するピリジンジカルボン酸誘導体の量が、好ましくは0.1~10質量部、より好ましくは、0.2~5質量部となる量である。また、トナー粒子に外添する場合は、結着樹脂100質量部に対するピリジンジカルボン酸誘導体の量が、好ましくは0.01~5質量部、より好ましくは0.01~2質量部となる量である。また、メカノケミカル的にトナー粒子表面に固着させるのが好ましい。 As a method for adding the charge control agent according to the present embodiment to the toner, a method of adding a kneading agent to the binder resin together with a colorant, kneading, and pulverization (pulverized toner), or charge control to a polymerizable monomer monomer A method of adding the agent and polymerizing the toner (polymerized toner), a method of adding the toner particles in advance (internal addition), a method of preparing the toner particles in advance, and adding the toner particles to the surface of the toner particles (external There is a method to add). The amount of the charge control agent that is preferably added to the toner particles is preferably 0.1 to 10 parts by mass, more preferably 0.2 to 10 parts by mass with respect to 100 parts by mass of the binder resin. The amount is 5 parts by mass. When externally added to the toner particles, the amount of the pyridinedicarboxylic acid derivative with respect to 100 parts by mass of the binder resin is preferably 0.01 to 5 parts by mass, more preferably 0.01 to 2 parts by mass. is there. Further, it is preferable that the toner particles are fixed mechanochemically.
 また本実施形態において、一般式(1)で表されるピリジンジカルボン酸誘導体を有効成分とする電荷制御剤は、既知の他の負帯電性の電荷制御剤と併用することができる。併用する好ましい電荷制御剤としては、アゾ系鉄錯体又は錯塩、アゾ系クロム錯体又は錯塩、アゾ系マンガン錯体又は錯塩、アゾ系コバルト錯体又は錯塩、アゾ系ジルコニウム錯体又は錯塩、カルボン酸誘導体のクロム錯体又は錯塩、カルボン酸誘導体の亜鉛錯体又は錯塩、カルボン酸誘導体のアルミ錯体又は錯塩、カルボン酸誘導体のジルコニウム錯体又は錯塩があげられる。前記カルボン酸誘導体は、芳香族ヒドロキシカルボン酸が好ましく、3,5-ジ-tert-ブチルサリチル酸がより好ましい。更にホウ素錯体又は錯塩、負帯電性樹脂型電荷制御剤などがあげられる。 In this embodiment, the charge control agent containing the pyridinedicarboxylic acid derivative represented by the general formula (1) as an active ingredient can be used in combination with other known negatively chargeable charge control agents. Preferred charge control agents to be used in combination include azo iron complexes or complex salts, azo chromium complexes or complex salts, azo manganese complexes or complex salts, azo cobalt complexes or complex salts, azo zirconium complexes or complex salts, and chromium complexes of carboxylic acid derivatives. Or a complex salt, a zinc complex or complex salt of a carboxylic acid derivative, an aluminum complex or complex salt of a carboxylic acid derivative, and a zirconium complex or complex salt of a carboxylic acid derivative. The carboxylic acid derivative is preferably an aromatic hydroxycarboxylic acid, more preferably 3,5-di-tert-butylsalicylic acid. Furthermore, a boron complex or complex salt, a negatively chargeable resin type charge control agent and the like can be mentioned.
 本実施形態において、本実施形態に係る電荷制御剤と他の電荷制御剤を併用する場合の添加量は、結着樹脂100質量部に対して、本実施形態に係る電荷制御剤以外の電荷制御剤は0.1~10質量部が好ましい。 In the present embodiment, when the charge control agent according to the present embodiment is used in combination with another charge control agent, the amount of charge control other than the charge control agent according to the present embodiment is 100 parts by mass of the binder resin. The agent is preferably 0.1 to 10 parts by mass.
 本実施形態に係るトナーに使用される結着樹脂としては、公知のものであればいずれも使用できる。スチレン系単量体、アクリレート系単量体、メタクリレート系単量体などのビニル重合体、又はこれらの単量体2種類以上からなる共重合体など、ポリエステル系重合体、ポリオール樹脂、フェノール樹脂、シリコーン樹脂、ポリウレタン樹脂、ポリアミド樹脂、フラン樹脂、エポキシ樹脂、キシレン樹脂、テルペン樹脂、クマロンインデン樹脂、ポリカーボネート樹脂、石油系樹脂などがあげられる。 Any binder resin can be used as the binder resin used in the toner according to the exemplary embodiment. Vinyl polymers such as styrene monomers, acrylate monomers, methacrylate monomers, or copolymers composed of two or more of these monomers, polyester polymers, polyol resins, phenol resins, Examples include silicone resins, polyurethane resins, polyamide resins, furan resins, epoxy resins, xylene resins, terpene resins, coumarone indene resins, polycarbonate resins, petroleum resins, and the like.
 前記ビニル重合体又は共重合体を形成するスチレン系単量体、アクリレート系単量体、メタクリレート系単量体について、以下に例示するがこれらに限定されるものではない。 Examples of the styrene monomer, acrylate monomer, and methacrylate monomer that form the vinyl polymer or copolymer are illustrated below, but are not limited thereto.
 スチレン系単量体としては、スチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、p-フェニルスチレン、p-エチルスチレン、2,4-ジメチルスチレン、p-n-アミルスチレン、p-tert-ブチルスチレン、p-n-へキシルスチレン、p-n-オクチルスチレン、p-n-ノニルスチレン、p-n-デシルスチレン、p-n-ドデシルスチレン、p-メトキシスチレン、p-クロルスチレン、3,4-ジクロロスチレン、m-ニトロスチレン、o-ニトロスチレン、p-ニトロスチレンなどのスチレン又はその誘導体などがあげられる。 Styrene monomers include styrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, p-phenylstyrene, p-ethylstyrene, 2,4-dimethylstyrene, pn-amylstyrene, p -Tert-butyl styrene, pn-hexyl styrene, pn-octyl styrene, pn-nonyl styrene, pn-decyl styrene, pn-dodecyl styrene, p-methoxy styrene, p-chloro Examples thereof include styrene such as styrene, 3,4-dichlorostyrene, m-nitrostyrene, o-nitrostyrene, and p-nitrostyrene, or derivatives thereof.
 アクリレート系単量体としては、アクリル酸、あるいはアクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸n-ブチル、アクリル酸イソブチル、アクリル酸n-オクチル、アクリル酸n-ドデシル、アクリル酸2-エチルへキシル、アクリル酸ステアリル、アクリル酸2-クロルエチル、アクリル酸フェニルなどのアクリル酸又はそのエステル類などがあげられる。 Examples of acrylate monomers include acrylic acid or methyl acrylate, ethyl acrylate, propyl acrylate, n-butyl acrylate, isobutyl acrylate, n-octyl acrylate, n-dodecyl acrylate, 2-acrylate Examples thereof include acrylic acid such as ethylhexyl, stearyl acrylate, 2-chloroethyl acrylate, and phenyl acrylate or esters thereof.
 メタクリレート系単量体としては、メタクリル酸、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸n-ブチル、メタクリル酸イソブチル、メタクリル酸n-オクチル、メタクリル酸n-ドデシル、メタクリル酸2-エチルへキシル、メタクリル酸ステアリル、メタクリル酸フェニル、メタクリル酸ジメチルアミノエチル、メタクリル酸ジエチルアミノエチルなどのメタクリル酸又はそのエステル類などがあげられる。 Methacrylate monomers include methacrylic acid, methyl methacrylate, ethyl methacrylate, propyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, n-octyl methacrylate, n-dodecyl methacrylate, 2-ethyl methacrylate. And methacrylic acid or esters thereof such as hexyl, stearyl methacrylate, phenyl methacrylate, dimethylaminoethyl methacrylate, diethylaminoethyl methacrylate, and the like.
 前記ビニル重合体、又は共重合体を形成する他のモノマーの例としては、以下の(1)~(18)があげられる。(1)エチレン、プロピレン、ブチレン、イソブチレンなどのモノオレフイン類;(2)ブタジエン、イソプレンなどのポリエン類;(3)塩化ビニル、塩化ビニリデン、臭化ビニル、フッ化ビニルなどのハロゲン化ビニル類;(4)酢酸ビニル、プロピオン酸ビニル、安息香酸ビニルなどのビニルエステル類;(5)ビニルメチルエーテル、ビニルエチルエーテル、ビニルイソブチルエーテルなどのビニルエーテル類;(6)ビニルメチルケトン、ビニルヘキシルケトン、メチルイソプロペニルケトンなどのビニルケトン類;(7)N-ビニルピロール、N-ビニルカルバゾール、N-ビニルインドール、N-ビニルピロリドンなどのN-ビニル化合物;(8)ビニルナフタレン類;(9)アクリロニトリル、メタクリロニトリル、アクリルアミドなどのアクリル酸若しくはメタクリル酸誘導体など;(10)マレイン酸、シトラコン酸、イタコン酸、アルケニルコハク酸、フマル酸、メサコン酸などの不飽和二塩基酸;(11)マレイン酸無水物、シトラコン酸無水物、イタコン酸無水物、アルケニルコハク酸無水物などの不飽和二塩基酸無水物;(12)マレイン酸モノメチルエステル、マレイン酸モノエチルエステル、マレイン酸モノブチルエステル、シトラコン酸モノメチルエステル、シトラコン酸モノエチルエステル、シトラコン酸モノブチルエステル、イタコン酸モノメチルエステル、アルケニルコハク酸モノメチルエステル、フマル酸モノメチルエステル、メサコン酸モノメチルエステルなどの不飽和二塩基酸のモノエステル;(13)ジメチルマレイン酸、ジメチルフマル酸などの不飽和二塩基酸エステル;(14)クロトン酸、ケイヒ酸などのα,β-不飽和酸;(15)クロトン酸無水物、ケイヒ酸無水物などのα,β-不飽和酸無水物;(16)該α,β-不飽和酸と低級脂肪酸との無水物、アルケニルマロン酸、アルケニルグルタル酸、アルケニルアジピン酸、これらの酸無水物及びこれらのモノエステルなどのカルボキシル基を有するモノマー;(17)2-ヒドロキシエチルアクリレート、2-ヒドロキシエチルメタクリレート、2-ヒドロキシプロピルメタクリレートなどのアクリル酸又はメタクリル酸ヒドロキシアルキルエステル類;(18)4-(1-ヒドロキシ-1-メチルブチル)スチレン、4-(1-ヒドロキシ-1-メチルへキシル)スチレンなどのヒドロキシ基を有するモノマー。 Examples of other monomers that form the vinyl polymer or copolymer include the following (1) to (18). (1) Monoolefins such as ethylene, propylene, butylene and isobutylene; (2) Polyenes such as butadiene and isoprene; (3) Vinyl halides such as vinyl chloride, vinylidene chloride, vinyl bromide and vinyl fluoride; (4) Vinyl esters such as vinyl acetate, vinyl propionate and vinyl benzoate; (5) Vinyl ethers such as vinyl methyl ether, vinyl ethyl ether and vinyl isobutyl ether; (6) Vinyl methyl ketone, vinyl hexyl ketone and methyl. Vinyl ketones such as isopropenyl ketone; (7) N-vinyl compounds such as N-vinyl pyrrole, N-vinyl carbazole, N-vinyl indole, N-vinyl pyrrolidone; (8) vinyl naphthalenes; (9) acrylonitrile, methacrylate. Ronitrile, acrylic Acrylic acid or methacrylic acid derivatives such as amides; (10) unsaturated dibasic acids such as maleic acid, citraconic acid, itaconic acid, alkenyl succinic acid, fumaric acid, mesaconic acid; (11) maleic anhydride, citraconic acid Unsaturated dibasic acid anhydrides such as anhydride, itaconic anhydride, alkenyl succinic anhydride; (12) maleic acid monomethyl ester, maleic acid monoethyl ester, maleic acid monobutyl ester, citraconic acid monomethyl ester, citraconic acid Monoethyl esters of unsaturated dibasic acids such as monoethyl ester, citraconic acid monobutyl ester, itaconic acid monomethyl ester, alkenyl succinic acid monomethyl ester, fumaric acid monomethyl ester, mesaconic acid monomethyl ester; (13) dimethylmaleic acid, dimethyl ester Unsaturated dibasic acid esters such as rufumaric acid; (14) α, β-unsaturated acids such as crotonic acid and cinnamic acid; (15) α, β-unsaturated acids such as crotonic acid anhydride and cinnamic anhydride (16) Carboxyl groups such as anhydrides of the α, β-unsaturated acids and lower fatty acids, alkenylmalonic acid, alkenylglutaric acid, alkenyladipic acid, acid anhydrides and monoesters thereof Monomer; (17) acrylic acid or methacrylic acid hydroxyalkyl esters such as 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate; (18) 4- (1-hydroxy-1-methylbutyl) styrene; Monomers having a hydroxy group such as 4- (1-hydroxy-1-methylhexyl) styrene -.
 本実施形態に係るトナーにおいて、結着樹脂のビニル重合体、又は共重合体は、ビニル基を2個以上有する架橋剤で架橋された架橋構造を有していてもよいが、この場合に用いられる架橋剤は、芳香族ジビニル化合物として例えば、ジビニルベンゼン、ジビニルナフタレンがあげられる。アルキル鎖で結ばれたジアクリレート化合物類としては、例えば、エチレングリコールジアクリレート、1,3-ブチレングリコールジアクリレート、1,4-ブタンジオールジアクリレート、1,5-ペンタンジオールジアクリレート、1,6-へキサンジオールジアクリレート、ネオペンチルグリコールジアクリレート又は前記の化合物のアクリレートをメタクリレートに代えたものがあげられる。 In the toner according to the exemplary embodiment, the vinyl polymer or copolymer of the binder resin may have a crosslinked structure crosslinked with a crosslinking agent having two or more vinyl groups. Examples of the cross-linking agent include aromatic divinyl compounds such as divinylbenzene and divinylnaphthalene. Examples of diacrylate compounds linked by an alkyl chain include ethylene glycol diacrylate, 1,3-butylene glycol diacrylate, 1,4-butanediol diacrylate, 1,5-pentanediol diacrylate, 1,6 -Hexanediol diacrylate, neopentyl glycol diacrylate, or those obtained by replacing the acrylate of the above compound with methacrylate.
 エーテル結合を含むアルキル鎖で結ばれたジアクリレート化合物類としては、例えば、ジエチレングリコールジアクリレート、トリエチレングリコールジアクリレート、テトラエチレングリコールジアクリレート、ポリエチレングリコール#400ジアクリレート、ポリエチレングリコール#600ジアクリレート、ジプロピレングリコールジアクリレート、又は前記の化合物のアクリレートをメタアクリレートに代えたものがあげられる。 Examples of diacrylate compounds linked by an alkyl chain containing an ether bond include diethylene glycol diacrylate, triethylene glycol diacrylate, tetraethylene glycol diacrylate, polyethylene glycol # 400 diacrylate, polyethylene glycol # 600 diacrylate, Examples include propylene glycol diacrylate or those obtained by replacing acrylate of the above-mentioned compound with methacrylate.
 その他、芳香族基及びエーテル結合を含む鎖で結ばれたジアクリレート化合物、又はジメタクリレート化合物もあげられる。ポリエステル型ジアクリレート類としては例えば、商品名MANDA(日本化薬株式会社製)があげられる。 Other examples include diacrylate compounds or dimethacrylate compounds linked by a chain containing an aromatic group and an ether bond. Examples of polyester diacrylates include trade name MANDA (manufactured by Nippon Kayaku Co., Ltd.).
 多官能の架橋剤としては、ペンタエリスリトールトリアクリレート、トリメチロールエタントリアクリレート、トリメチロールプロパントリアクリレート、テトラメチロールメタンテトラアクリレート、オリゴエステルアクリレート、及び以上の化合物のアクリレートをメタクリレートに代えたもの、トリアリルシアヌレート、トリアリルトリメリテートがあげられる。 Polyfunctional cross-linking agents include pentaerythritol triacrylate, trimethylol ethane triacrylate, trimethylol propane triacrylate, tetramethylol methane tetraacrylate, oligoester acrylate, and those obtained by replacing acrylates of the above compounds with methacrylate, Examples include lucyanurate and triallyl trimellitate.
 これらの架橋剤は、他のモノマー成分100質量部に対して、好ましくは0.01~10質量部用いることができ、特に0.03~5質量部用いることが好ましい。これらの架橋性モノマーのうち、トナー用樹脂に定着性、耐オフセット性の点から好適に用いられるものとして、芳香族ジビニル化合物(特にジビニルベンゼンが好ましい。)、芳香族基及びエーテル結合を1つ含む結合鎖で結ばれたジアクリレート化合物類があげられる。これらの中でも、スチレン系共重合体、スチレン-アクリレート系共重合体となるようなモノマーの組み合わせが好ましい。 These crosslinking agents can be used in an amount of preferably 0.01 to 10 parts by weight, particularly preferably 0.03 to 5 parts by weight, with respect to 100 parts by weight of other monomer components. Among these cross-linkable monomers, those that are preferably used in the toner resin from the viewpoint of fixability and anti-offset properties include one aromatic divinyl compound (especially divinylbenzene is preferred), one aromatic group and one ether bond. Examples thereof include diacrylate compounds linked by a linking chain. Among these, a combination of monomers that becomes a styrene copolymer or a styrene-acrylate copolymer is preferable.
 本実施形態において、ビニル重合体又は共重合体の製造に用いられる重合開始剤としては、例えば、2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2-メチルブチロニトリル)、ジメチル-2,2’-アゾビスイソブチレート、1,1’-アゾビス(1-シクロへキサンカルボニトリル)、2-(カルバモイルアゾ)-イソブチロニトリル、2,2’-アゾビス(2,4,4-トリメチルペンタン)、2-フェニルアゾ-2’,4’-ジメチル-4’-メトキシバレロニトリル、2,2’-アゾビス(2-メチルプロパン)、メチルエチルケトンパーオキサイド、アセチルアセトンパーオキサイド、シクロへキサノンパーオキサイドなどのケトンパーオキサイド類、2,2-ビス(tert-ブチルパーオキシ)ブタン、tert-ブチルハイドロパーオキサイド、クメンハイドロパーオキサイド、1,1,3,3-テトラメチルブチルハイドロパーオキサイド、ジ-tert-ブチルパーオキサイド、tert-ブチルクミルパーオキサイド、ジクミルパーオキサイド、α-(tert-ブチルパーオキシ)イソプロピルべンゼン、イソブチルパーオキサイド、オクタノイルパーオキサイド、デカノイルパーオキサイド、ラウロイルパーオキサイド、3,5,5-トリメチルヘキサノイルパーオキサイド、ベンゾイルパーオキサイド、m-トリルパーオキサイド、ジイソプロピルパーオキシジカーボネート、ジ-2-エチルへキシルパーオキシジカーボネート、ジ-n-プロピルパーオキシジカーボネート、ジ-2-エトキシエチルパーオキシカーボネート、ジエトキシイソプロピルパーオキシジカーボネート、ビス(3-メチル-3-メトキシブチル)パーオキシカーボネート、アセチルシクロへキシルスルホニルパーオキサイド、tert-ブチルパーオキシアセテート、tert-ブチルパーオキシイソブチレート、tert-ブチルパーオキシ-2-エチルへキサレート、tert-ブチルパーオキシラウレート、tert-ブチルオキシベンゾエ-ト、tert-ブチルパーオキシイソプロピルカーボネート、ジ-tert-ブチルパーオキシイソフタレート、tert-ブチルパーオキシアリルカーボネート、イソアミルパーオキシ-2-エチルへキサノエート、ジ-tert-ブチルパーオキシへキサハイドロテレフタレート、tert-ブチルパーオキシアゼレートなどがあげられる。 In the present embodiment, examples of the polymerization initiator used for producing the vinyl polymer or copolymer include 2,2′-azobisisobutyronitrile, 2,2′-azobis (4-methoxy-2, 4-dimethylvaleronitrile), 2,2′-azobis (2,4-dimethylvaleronitrile), 2,2′-azobis (2-methylbutyronitrile), dimethyl-2,2′-azobisisobutyrate 1,1′-azobis (1-cyclohexanecarbonitrile), 2- (carbamoylazo) -isobutyronitrile, 2,2′-azobis (2,4,4-trimethylpentane), 2-phenylazo- 2 ', 4'-dimethyl-4'-methoxyvaleronitrile, 2,2'-azobis (2-methylpropane), methyl ethyl ketone peroxide, acetylacetone peroxide Ketone peroxides such as oxide and cyclohexanone peroxide, 2,2-bis (tert-butylperoxy) butane, tert-butyl hydroperoxide, cumene hydroperoxide, 1,1,3,3-tetra Methylbutyl hydroperoxide, di-tert-butyl peroxide, tert-butylcumyl peroxide, dicumyl peroxide, α- (tert-butylperoxy) isopropylbenzene, isobutyl peroxide, octanoyl peroxide, decanoyl To peroxide, lauroyl peroxide, 3,5,5-trimethylhexanoyl peroxide, benzoyl peroxide, m-tolyl peroxide, diisopropyl peroxydicarbonate, di-2-ethyl Xyl peroxydicarbonate, di-n-propyl peroxydicarbonate, di-2-ethoxyethyl peroxycarbonate, diethoxyisopropyl peroxydicarbonate, bis (3-methyl-3-methoxybutyl) peroxycarbonate, acetyl Cyclohexylsulfonyl peroxide, tert-butylperoxyacetate, tert-butylperoxyisobutyrate, tert-butylperoxy-2-ethylhexarate, tert-butylperoxylaurate, tert-butyloxybenzoe Tert-butylperoxyisopropyl carbonate, di-tert-butylperoxyisophthalate, tert-butylperoxyallyl carbonate, isoamylperoxy-2-ethylhexa Benzoate, di -tert- butyl peroxy the hexa hydro terephthalate, etc. tert- butylperoxy azelate and the like.
 結着樹脂がスチレン-アクリレート系樹脂の場合、樹脂成分のテトラヒドロフラン(以後、THFと略称する)に可溶分のゲルパーミエーションクロマトグラフィー(以後、GPCと略称する)による分子量分布で、分子量3千~5万(数平均分子量換算)の領域に少なくとも1つのピークが存在し、分子量10万以上の領域に少なくとも1つのピークが存在する樹脂が、定着性、オフセット性、保存性の点で好ましい。またTHF可溶分は、分子量分布10万以下の成分が50~90%となるような結着樹脂も好ましい。更に好ましくは、分子量5千~3万の領域に、最も好ましくは5千~2万の領域にメインピークを有するのがよい。 When the binder resin is a styrene-acrylate resin, the molecular weight distribution is 3,000 by molecular weight distribution by gel permeation chromatography (hereinafter abbreviated as GPC) soluble in the resin component tetrahydrofuran (hereinafter abbreviated as THF). A resin having at least one peak in a region of 50,000 to 50,000 (in terms of number average molecular weight) and having at least one peak in a region having a molecular weight of 100,000 or more is preferable in terms of fixing property, offset property and storage property. In addition, the THF-soluble component is preferably a binder resin in which a component having a molecular weight distribution of 100,000 or less is 50 to 90%. More preferably, it has a main peak in a region having a molecular weight of 5,000 to 30,000, and most preferably in a region having a molecular weight of 5,000 to 20,000.
 結着樹脂がスチレン-アクリレート系樹脂などのビニル重合体の場合、その酸価は、0.1mgKOH/g~100mgKOH/gであることが好ましく、0.1mgKOH/g~70mgKOH/gであることがより好ましく、0.1mgKOH/g~50mgKOH/gであることが更に好ましい。 When the binder resin is a vinyl polymer such as a styrene-acrylate resin, the acid value is preferably 0.1 mgKOH / g to 100 mgKOH / g, and preferably 0.1 mgKOH / g to 70 mgKOH / g. More preferably, it is 0.1 mgKOH / g to 50 mgKOH / g.
 ポリエステル系重合体を構成するモノマーとしては、以下のものがあげられる。2価のアルコール成分としては、エチレングリコール、プロピレングリコール、1,3-ブタンジオール、1,4-ブタンジオール、2,3-ブタンジオール、ジエチレングリコール、トリエチレングリコール、1,5-ペンタンジオール、1,6-へキサンジオール、ネオペンチルグリコール、2-エチル-1,3-ヘキサンジオール、水素化ビスフェノールA、又はビスフェノールAにエチレンオキシド、プロピレンオキシドなどの環状エーテルが重合して得られるジオールなどがあげられる。 Examples of the monomer constituting the polyester polymer include the following. Examples of the divalent alcohol component include ethylene glycol, propylene glycol, 1,3-butanediol, 1,4-butanediol, 2,3-butanediol, diethylene glycol, triethylene glycol, 1,5-pentanediol, 1, Examples thereof include 6-hexanediol, neopentyl glycol, 2-ethyl-1,3-hexanediol, hydrogenated bisphenol A, or diol obtained by polymerizing cyclic ethers such as ethylene oxide and propylene oxide with bisphenol A.
 ポリエステル樹脂を架橋させるために3価以上のアルコールを併用することが好ましい。3価以上の多価アルコールとしては、ソルビトール、1,2,3,6-ヘキサンテトロール、1,4-ソルビタン、ペンタエリスリトール、ジペンタエリスリトール、トリペンタエリスリトール、1,2,4-ブタントリオール、1,2,5-ペンタトリオール、グリセロール、2-メチルプロパントリオール、2-メチル-1,2,4-ブタントリオール、トリメチロールエタン、トリメチロールプロパン、1,3,5-トリヒドロキシベンゼンなどがあげられる。 In order to crosslink the polyester resin, it is preferable to use a trihydric or higher alcohol together. Examples of the trihydric or higher polyhydric alcohol include sorbitol, 1,2,3,6-hexanetetrol, 1,4-sorbitan, pentaerythritol, dipentaerythritol, tripentaerythritol, 1,2,4-butanetriol, 1,2,5-pentatriol, glycerol, 2-methylpropanetriol, 2-methyl-1,2,4-butanetriol, trimethylolethane, trimethylolpropane, 1,3,5-trihydroxybenzene It is done.
 前記ポリエステル系重合体を形成する酸成分としては、フタル酸、イソフタル酸、テレフタル酸などのべンゼンジカルボン酸類又はその無水物、こはく酸、アジピン酸、セバシン酸、アゼライン酸などのアルキルジカルボン酸類又はその無水物、マレイン酸、シトラコン酸、イタコン酸、アルケニルコハク酸、フマル酸、メサコン酸などの不飽和二塩基酸、マレイン酸無水物、シトラコン酸無水物、イタコン酸無水物、アルケニルコハク酸無水物などの不飽和二塩基酸無水物などがあげられる。また、3価以上の多価カルボン酸成分としては、トリメリト酸、ピロメリト酸、2,5,7-ナフタレントリカルボン酸、1,2,4-ナフタレントリカルボン酸、1,2,4-ブタントリカルボン酸、1,2,5-ヘキサントリカルボン酸、1,3-ジカルボキシ-2-メチル-2-メチレンカルボキシプロパン、テトラ(メチレンカルボキシ)メタン、1,2,7,8-オクタンテトラカルボン酸、エンポール三量体酸、又はこれらの無水物、部分低級アルキルエステルなどがあげられる。 Examples of the acid component that forms the polyester polymer include benzene dicarboxylic acids such as phthalic acid, isophthalic acid, and terephthalic acid or anhydrides thereof, and alkyldicarboxylic acids such as succinic acid, adipic acid, sebacic acid, and azelaic acid or the like. Unsaturated dibasic acids such as anhydride, maleic acid, citraconic acid, itaconic acid, alkenyl succinic acid, fumaric acid, mesaconic acid, maleic anhydride, citraconic anhydride, itaconic anhydride, alkenyl succinic anhydride, etc. And unsaturated dibasic acid anhydrides. Trivalent or higher polyvalent carboxylic acid components include trimellitic acid, pyromellitic acid, 2,5,7-naphthalene tricarboxylic acid, 1,2,4-naphthalene tricarboxylic acid, 1,2,4-butanetricarboxylic acid, 1,2,5-hexanetricarboxylic acid, 1,3-dicarboxy-2-methyl-2-methylenecarboxypropane, tetra (methylenecarboxy) methane, 1,2,7,8-octanetetracarboxylic acid, empol trimer Body acids, or anhydrides thereof, partial lower alkyl esters, and the like.
 結着樹脂がポリエステル系樹脂の場合は、樹脂成分のTHF可溶成分の分子量分布で、分子量3千~5万の領域に少なくとも1つのピークが存在するのがトナーの定着性、耐オフセット性の点で好ましく、また、THF可溶分は、分子量10万以下の成分が60~100%となるような結着樹脂も好ましい。また、分子量5千~2万の領域に少なくとも1つのピークが存在するのがより好ましい。 When the binder resin is a polyester resin, the molecular weight distribution of the THF-soluble component of the resin component has at least one peak in the molecular weight region of 3,000 to 50,000, which indicates toner fixability and offset resistance. In view of the above, the THF-soluble component is preferably a binder resin in which a component having a molecular weight of 100,000 or less is 60 to 100%. More preferably, at least one peak is present in a region having a molecular weight of 5,000 to 20,000.
 本実施形態において、結着樹脂の分子量分布は、THFを溶媒としたGPCによって測定される。上記分子量は、例えば、HLC-8220GPC装置(東ソー社製)で測定した、標準ポリスチレン換算の数平均分子量である。 In this embodiment, the molecular weight distribution of the binder resin is measured by GPC using THF as a solvent. The molecular weight is, for example, a number average molecular weight in terms of standard polystyrene measured with an HLC-8220 GPC apparatus (manufactured by Tosoh Corporation).
 結着樹脂がポリエステル樹脂の場合、その酸価が、0.1mgKOH/g~100mgKOH/gであることが好ましく、0.1mgKOH/g~70mgKOH/gであることがより好ましく、0.1mgKOH/g~50mgKOH/gであることが更に好ましい。 When the binder resin is a polyester resin, the acid value is preferably 0.1 mgKOH / g to 100 mgKOH / g, more preferably 0.1 mgKOH / g to 70 mgKOH / g, and 0.1 mgKOH / g. More preferably, it is ˜50 mg KOH / g.
 また、水酸基価は、30mgKOH/g以下であることが好ましく、10mgKOH/g~25mgKOH/gが更に好ましい。 Further, the hydroxyl value is preferably 30 mgKOH / g or less, more preferably 10 mgKOH / g to 25 mgKOH / g.
 本実施形態において、非晶性のポリエステル樹脂と結晶性のポリエステル樹脂の2種以上を混合して用いてもよい。この場合、それぞれの相溶性を考慮に入れて材料を選択するのが好ましい。 In the present embodiment, a mixture of two or more of an amorphous polyester resin and a crystalline polyester resin may be used. In this case, it is preferable to select the material in consideration of the compatibility of each.
 非晶性のポリエステル樹脂は多価カルボン酸成分、好ましくは芳香族多価カルボン酸と多価アルコール成分とから合成されるものが好適に用いられる。 As the amorphous polyester resin, those synthesized from a polyvalent carboxylic acid component, preferably an aromatic polyvalent carboxylic acid and a polyhydric alcohol component, are suitably used.
 結晶性のポリエステル樹脂は2価カルボン酸成分、好ましくは脂肪族ジカルボン酸と2価アルコール成分とから合成されるものが好適に用いられる。 As the crystalline polyester resin, one synthesized from a divalent carboxylic acid component, preferably an aliphatic dicarboxylic acid and a dihydric alcohol component, is suitably used.
 本実施形態に係るトナーに使用できる結着樹脂として、前記ビニル重合体成分及び/又はポリエステル系樹脂成分中に、これらの両樹脂成分と反応し得るモノマー成分を含む樹脂も使用することができる。ポリエステル系樹脂成分を構成するモノマーのうちビニル重合体と反応し得るものとしては、例えば、フタル酸、マレイン酸、シトラコン酸、イタコン酸などの不飽和ジカルボン酸又はその無水物などがあげられる。ビニル重合体成分を構成するモノマーとしては、カルボキシル基又はヒドロキシ基を有するもの、又は、アクリル酸若しくはメタクリル酸エステル類があげられる。 As the binder resin that can be used in the toner according to the exemplary embodiment, a resin including a monomer component capable of reacting with both of these resin components in the vinyl polymer component and / or the polyester resin component can also be used. Examples of monomers that can react with the vinyl polymer among the monomers constituting the polyester resin component include unsaturated dicarboxylic acids such as phthalic acid, maleic acid, citraconic acid, and itaconic acid, or anhydrides thereof. Examples of the monomer constituting the vinyl polymer component include those having a carboxyl group or a hydroxy group, and acrylic acid or methacrylic acid esters.
 また、ポリエステル系重合体、ビニル重合体とその他の結着樹脂を併用する場合、全体の結着樹脂の酸価が0.1mgKOH/g~50mgKOH/gである樹脂を60質量%以上有するものが好ましい。 Further, when a polyester polymer, a vinyl polymer and another binder resin are used in combination, the total binder resin has a resin having an acid value of 0.1 mgKOH / g to 50 mgKOH / g of 60% by mass or more. preferable.
 本実施形態において、トナー組成物の結着樹脂成分の酸価は、以下の方法により求め、基本操作はJIS K-0070に準ずる。
(1)試料は予め結着樹脂(重合体成分)以外の添加物を除去して使用するか、結着樹脂及び架橋された結着樹脂以外の成分の酸価及び含有量を予め求めておく。試料の粉砕品0.5~2.0gを精秤し、重合体成分の重さをWgとする。例えば、トナーから結着樹脂の酸価を測定する場合は、着色剤又は磁性体などの酸価及び含有量を別途測定しておき、計算により結着樹脂の酸価を求める。
(2)300(ml)のビーカーに試料を入れ、トルエン/エタノール(体積比4/1)の混合液150(ml)を加え溶解する。
(3)0.1mol/LのKOHのエタノール溶液を用いて、電位差滴定装置を用いて滴定する。
(4)この時のKOH溶液の使用量をS(ml)とし、同時にブランクを測定し、この時のKOH溶液の使用量をB(ml)とし、以下の式(1)で算出する。ただしfはKOH濃度のファクターである。
 酸価(mgKOH/g)=[(S-B)×f×5.61]/W  (1)
In this embodiment, the acid value of the binder resin component of the toner composition is determined by the following method, and the basic operation conforms to JIS K-0070.
(1) The sample is used by removing additives other than the binder resin (polymer component) in advance, or the acid value and content of components other than the binder resin and the crosslinked binder resin are obtained in advance. . A crushed sample of 0.5 to 2.0 g is precisely weighed, and the weight of the polymer component is defined as Wg. For example, when the acid value of the binder resin is measured from the toner, the acid value and content of the colorant or magnetic material are separately measured, and the acid value of the binder resin is obtained by calculation.
(2) A sample is put into a 300 (ml) beaker, and a mixed solution 150 (ml) of toluene / ethanol (volume ratio 4/1) is added and dissolved.
(3) Titrate with an ethanol solution of 0.1 mol / L KOH using a potentiometric titrator.
(4) The amount of KOH solution used at this time is S (ml), a blank is measured at the same time, and the amount of KOH solution used at this time is B (ml), which is calculated by the following equation (1). However, f is a factor of KOH concentration.
Acid value (mgKOH / g) = [(SB) × f × 5.61] / W (1)
 トナーの結着樹脂及び結着樹脂を含む組成物は、トナー保存性の観点から、ガラス転移温度(Tg)が好ましくは35~80℃、特に好ましくは40~75℃である。Tgが35℃より低いと高温雰囲気下でトナーが劣化しやすく、また定着時にオフセットが発生しやすくなる。またTgが80℃を超えると、定着性が低下する傾向にある。 The toner binder resin and the composition containing the binder resin have a glass transition temperature (Tg) of preferably 35 to 80 ° C., particularly preferably 40 to 75 ° C. from the viewpoint of toner storage stability. When Tg is lower than 35 ° C., the toner is likely to deteriorate in a high temperature atmosphere, and offset is likely to occur during fixing. On the other hand, when Tg exceeds 80 ° C., fixability tends to be lowered.
 本実施形態の重合トナーにおいて、軟化点が80から140℃の範囲内である結着樹脂が好適に用いられる。結着樹脂の軟化点が80℃未満であると、定着後及び保管時のトナー及びトナーの画像安定性が悪化する場合がある。一方、軟化点が140℃を超えると、低温定着性が悪化してしまう場合がある。 In the polymerization toner of this embodiment, a binder resin having a softening point in the range of 80 to 140 ° C. is preferably used. When the softening point of the binder resin is less than 80 ° C., the toner and the image stability of the toner after fixing and storage may be deteriorated. On the other hand, when the softening point exceeds 140 ° C., the low-temperature fixability may be deteriorated.
 本実施形態において使用できる磁性体としては、(1)マグネタイト、マグヘマイト、フェライトなどの磁性酸化鉄、及び他の金属酸化物を含む酸化鉄、(2)鉄、コバルト、ニッケルのような金属、あるいは、これらの金属とアルミニウム、コバルト、銅、鉛、マグネシウム、錫、亜鉛、アンチモン、ベリリウム、ビスマス、カドミウム、カルシウム、マンガン、セレン、チタン、タングステン、バナジウムのような金属との合金、及び(3)これらの混合物などがあげられる。 Magnetic materials that can be used in the present embodiment include (1) magnetic iron oxides such as magnetite, maghemite, and ferrite, and iron oxides containing other metal oxides, (2) metals such as iron, cobalt, and nickel, or Alloys of these metals with metals such as aluminum, cobalt, copper, lead, magnesium, tin, zinc, antimony, beryllium, bismuth, cadmium, calcium, manganese, selenium, titanium, tungsten, vanadium, and (3) Examples thereof include a mixture thereof.
 磁性体として具体的に例示すると、Fe、γ-Fe、ZnFe、YFe12、CdFe、GdFe12、CuFe、PbFe12O、NiFe、NdFeO、BaFe1219、MgFe、MnFe、LaFeO、鉄粉、コバルト粉、ニッケル粉などがあげられる、上述した磁性体を単独で又は2種以上を組合せて使用することができる。特に好適な磁性体は、四三酸化鉄又はγ-三二酸化鉄の微粉末である。 Specific examples of the magnetic material include Fe 3 O 4 , γ-Fe 2 O 3 , ZnFe 2 O 4 , Y 3 Fe 5 O 12 , CdFe 2 O 4 , Gd 3 Fe 5 O 12 , CuFe 2 O 4 , PbFe 12 O, NiFe 2 O 4 , NdFe 2 O, BaFe 12 O 19 , MgFe 2 O 4 , MnFe 2 O 4 , LaFeO 3 , iron powder, cobalt powder, nickel powder, etc. Or two or more types can be used in combination. A particularly suitable magnetic substance is fine powder of iron trioxide or γ-iron trioxide.
 また、異種元素を含有するマグネタイト、マグヘマイト、フェライトなどの磁性酸化鉄、又はその混合物も使用できる。異種元素を例示すると、リチウム、ベリリウム、ホウ素、マグネシウム、アルミニウム、ケイ素、リン、ゲルマニウム、ジルコニウム、錫、イオウ、カルシウム、スカンジウム、チタン、バナジウム、クロム、マンガン、コバルト、ニッケル、銅、亜鉛、ガリウムなどがあげられる。好ましい異種元素としては、マグネシウム、アルミニウム、ケイ素、リン、又はジルコニウムから選択される。異種元素は、酸化鉄結晶格子の中に取り込まれていてもよいし、酸化物として酸化鉄中に取り込まれていてもよいし、又は表面に酸化物若しくは水酸化物として存在していてもよいが、酸化物として含有されているのが好ましい。 Also, magnetic iron oxides such as magnetite, maghemite, and ferrite containing different elements, or a mixture thereof can be used. Examples of different elements include lithium, beryllium, boron, magnesium, aluminum, silicon, phosphorus, germanium, zirconium, tin, sulfur, calcium, scandium, titanium, vanadium, chromium, manganese, cobalt, nickel, copper, zinc, gallium, etc. Can be given. Preferred heterogeneous elements are selected from magnesium, aluminum, silicon, phosphorus, or zirconium. The foreign element may be incorporated into the iron oxide crystal lattice, may be incorporated into the iron oxide as an oxide, or may exist as an oxide or hydroxide on the surface. Is preferably contained as an oxide.
 前記の異種元素は、磁性体生成時にそれぞれの異種元素の塩を混在させpH調整により、粒子中に取り込むことができる。また、磁性体粒子生成後にpH調整、あるいは各々の元素の塩を添加しpH調整することにより、粒子表面に析出させることができる。 The aforementioned different elements can be incorporated into the particles by adjusting the pH by mixing salts of the different elements at the time of producing the magnetic material. Moreover, it can be made to deposit on the particle | grain surface by adjusting pH after magnetic body particle | grain production | generation, or adding salt of each element and adjusting pH.
 前記磁性体の使用量は、結着樹脂100質量部に対して、磁性体10~200質量部とすることができ、好ましくは20~150質量部とするのが好ましい。これらの磁性体は個数平均粒径が0.1μm~2μmであることが好ましく、0.1μm~0.5μmであることがより好ましい。個数平均粒径は透過電子顕微鏡により拡大撮影した写真をデジタイザーなどで測定することにより求めることができる。 The amount of the magnetic substance used can be 10 to 200 parts by mass, preferably 20 to 150 parts by mass, with respect to 100 parts by mass of the binder resin. These magnetic materials preferably have a number average particle diameter of 0.1 μm to 2 μm, and more preferably 0.1 μm to 0.5 μm. The number average particle diameter can be obtained by measuring a photograph taken with a transmission electron microscope with a digitizer or the like.
 また、磁性体としては、10Kエルステッド印加での磁気特性がそれぞれ、抗磁力20~150エルステッド、飽和磁化50~200emu/g、残留磁化2~20emu/gのものが好ましい。 Also, the magnetic material preferably has a magnetic property of 10 to 150 oersted, a saturation magnetization of 50 to 200 emu / g, and a residual magnetization of 2 to 20 emu / g when applied with 10K oersted.
 前記磁性体は、着色剤としても使用することができる。本実施形態に係る着色剤としては黒色トナーの場合、黒色又は青色の染料又は顔料粒子があげられる。黒色又は青色の顔料としては、カーボンブラック、アニリンブラック、アセチレンブラック、フタロシアニンブルー、インダンスレンブルーなどがある。黒色又は青色の染料としてはアゾ系染料、アントラキノン系染料、キサンテン系染料、メチン系染料などがあげられる。 The magnetic material can also be used as a colorant. In the case of a black toner, the colorant according to this embodiment includes black or blue dye or pigment particles. Examples of black or blue pigments include carbon black, aniline black, acetylene black, phthalocyanine blue, and indanthrene blue. Examples of black or blue dyes include azo dyes, anthraquinone dyes, xanthene dyes, and methine dyes.
 カラー用トナーとして使用する場合には、着色剤として、次の様なものがあげられる。マゼンダ着色剤としては、縮合アゾ化合物、ジケトピロロピロール化合物、アントラキノン化合物、キナクリドン化合物、塩基性染料、レーキ染料、ナフトール染料、ベンズイミダゾロン化合物、チオインジゴ化合物、ペリレン化合物を利用できる。具体的には、顔料系のマゼンダ着色剤としては、C.I.ピグメントレッド1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,21,22,23,30,31,32,37,38,39,40,41,48,49,50,51,52,53,54,55,57,58,60,63,64,68,81,83,87,88,89,90,112,114,122,123,163,202,206,207,209、C.I.ピグメントバイオレット19、C.I.バットレッド1,2,10,13,15,23,29,35などがあげられる。
 前記顔料を単独で使用しても構わないが、染料と顔料と併用してその鮮明度を向上させた方がフルカラー画像の画質の点からより好ましい。
When used as a color toner, examples of the colorant include the following. As the magenta colorant, condensed azo compounds, diketopyrrolopyrrole compounds, anthraquinone compounds, quinacridone compounds, basic dyes, lake dyes, naphthol dyes, benzimidazolone compounds, thioindigo compounds, and perylene compounds can be used. Specifically, examples of pigment-based magenta colorants include C.I. I. Pigment Red 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 30, 31, 32, 37, 38, 39, 40, 41, 48, 49, 50, 51, 52, 53, 54, 55, 57, 58, 60, 63, 64, 68, 81, 83, 87, 88, 89, 90, 112, 114, 122, 123, 163, 202, 206, 207, 209, C.I. I. Pigment violet 19, C.I. I. Vat red 1, 2, 10, 13, 15, 23, 29, 35 and the like.
Although the pigment may be used alone, it is more preferable from the viewpoint of the image quality of a full-color image to improve the sharpness by using a dye and a pigment together.
 染料系マゼンタ着色剤としては、C.I.ソルベントレッド1,3,8,23,24,25,27,30,49,81,82,83,84,100,109,121、C.I,デイスパースレッド9、C.I.ソルべントバイオレット8,13,14,21,27、C.I.デイスパースパイオレット1などの油溶染料、C.I.べーシックレッド1,2,9,12,13,14,15,17,18,22,23,24,27,29,32,34,35,36,37,38,39,40、C.I.ベーシックバイオレツト1,3,7,10,14,15,21,25,26,27,28などの塩基性染料があげられる。 As dye-based magenta colorants, C.I. I. Solvent Red 1, 3, 8, 23, 24, 25, 27, 30, 49, 81, 82, 83, 84, 100, 109, 121, C.I. I, disperse thread 9, C.I. I. Solvent Violet 8, 13, 14, 21, 27, C.I. I. Oil-soluble dyes such as Desperperiolet 1, C.I. I. Basic red 1, 2, 9, 12, 13, 14, 15, 17, 18, 22, 23, 24, 27, 29, 32, 34, 35, 36, 37, 38, 39, 40, C.I. I. Examples include basic dyes such as basic violet 1,3,7,10,14,15,21,25,26,27,28.
 シアン着色剤としては、銅フタロシアニン化合物及びその誘導体、アントラキノン、塩基染料レーキ化合物を利用できる。具体的には、顔料系のシアン着色剤としては、C.I.ピグメントブルー2,3,15,16,17、C.I.バットブルー6、C.I.アシッドブルー45又はフタロシアニン骨格にフタルイミドメチル基を1~5個置換した銅フタロシアニン顔料があげられる。 As the cyan colorant, copper phthalocyanine compounds and derivatives thereof, anthraquinones, basic dye lake compounds can be used. Specifically, examples of the pigment-based cyan colorant include C.I. I. Pigment blue 2, 3, 15, 16, 17, C.I. I. Bat Blue 6, C.I. I. Examples include Acid Blue 45 or copper phthalocyanine pigments in which 1 to 5 phthalimidomethyl groups are substituted on the phthalocyanine skeleton.
 イエロー着色剤としては、縮合アゾ化合物、イソインドリノン化合物、アンスラキノン化合物、アゾ金属錯体、メチン化合物、アリルアミド化合物を利用できる。具体的には、イエロー用顔料としては、C.I.ピグメントイエロー1,2,3,4,5,6,7,10,11,12,13,14,15,16,17,23,65,73,83、C.I.バットイエロー1,3,20などがあげられる。 As the yellow colorant, condensed azo compounds, isoindolinone compounds, anthraquinone compounds, azo metal complexes, methine compounds, and allylamide compounds can be used. Specifically, yellow pigments include C.I. I. Pigment Yellow 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17, 23, 65, 73, 83, C.I. I. Bat yellow 1, 3, 20 and the like.
 橙色顔料としては、赤色黄鉛、モリブデンオレンジ、パーマネントオレンジGTR、ピラゾロンオレンジ、バルカンオレンジ、ベンジジンオレンジG、インダスレンブリリアントオレンジRK、インダンスレンブリリアントオレンジGKなどをあげることができる。紫色顔料としては、マンガン紫、ファストバイオレットB、メチルバイオレットレーキなどをあげることができる。緑色顔料としては、酸化クロム、クロムグリーン、ピグメントグリーン、マラカイトグリーンレーキ、ファイナルイエローグリーンGなどをあげることができる。白色顔料としては、亜鉛華、酸化チタン、アンチモン白、硫化亜鉛などをあげることができる。
 前記の着色剤の使用量は結着樹脂100量部に対して、0.1~20質量部とするのが好ましい。
Examples of the orange pigment include red chrome yellow, molybdenum orange, permanent orange GTR, pyrazolone orange, Vulcan orange, benzidine orange G, indanthrene brilliant orange RK, and indanthrene brilliant orange GK. Examples of purple pigments include manganese purple, fast violet B, and methyl violet lake. Examples of the green pigment include chromium oxide, chrome green, pigment green, malachite green lake, final yellow green G, and the like. Examples of white pigments include zinc white, titanium oxide, antimony white, and zinc sulfide.
The amount of the colorant used is preferably 0.1 to 20 parts by mass with respect to 100 parts by mass of the binder resin.
 本実施形態のトナーは、キャリアと混合して2成分現像剤として使用してもよい。本実施形態において、キャリアとして、通常のフェライト、マグネタイトなどのキャリアも樹脂コートキャリアも使用することができる。 The toner of this embodiment may be mixed with a carrier and used as a two-component developer. In the present embodiment, as a carrier, a normal carrier such as ferrite or magnetite or a resin-coated carrier can be used.
 樹脂コートキャリアは、キャリアコア粒子とキャリアコア粒子表面を被覆(コート)する樹脂である被覆材からなる。該被覆材に使用する樹脂としては、スチレン-アクリル酸エステル共重合体、スチレン-メタクリル酸エステル共重合体などのスチレン-アクリレート系樹脂、アクリル酸エステル共重合体、メタクリル酸エステル共重合体などのアクリレート系樹脂、ポリテトラフルオロエチレン、モノクロロトリフルオロエチレン重合体、ポリフッ化ビニリデンなどのフッ素含有樹脂、シリコーン樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリビニルブチラール、アミノアクリレート樹脂が好ましい。他にもアイオモノマー樹脂、ポリフェニレンサルファイド樹脂などのキャリアの被覆(コート)材として使用できる樹脂を用いることができる。これらの樹脂は、単独で、又は複数を組み合わせて用いることができる。 The resin-coated carrier is composed of carrier core particles and a coating material that is a resin that coats (coats) the surface of the carrier core particles. Examples of the resin used for the coating material include styrene-acrylate resins such as styrene-acrylic acid ester copolymers and styrene-methacrylic acid ester copolymers, acrylic acid ester copolymers, and methacrylic acid ester copolymers. Fluorine-containing resins such as acrylate resins, polytetrafluoroethylene, monochlorotrifluoroethylene polymer, polyvinylidene fluoride, silicone resins, polyester resins, polyamide resins, polyvinyl butyral, and aminoacrylate resins are preferred. In addition, a resin that can be used as a coating material for a carrier such as an ionomer resin or a polyphenylene sulfide resin can be used. These resins can be used alone or in combination.
 また、樹脂中に磁性粉が分散されたバインダー型のキャリアコアも用いることができる。樹脂コートキャリアにおいて、キャリアコアの表面を少なくとも樹脂被覆材で被覆する方法としては、樹脂を溶剤中に溶解若しくは懸濁させて、キャリアコアに塗布して付着させる方法、又は単に粉体状態で混合する方法が適用できる。樹脂コートキャリアに対して樹脂被覆材の割合は、適宜決定すればよいが、樹脂コートキャリアに対し好ましくは0.01~5質量%、より好ましくは0.1~1質量%である。 Also, a binder type carrier core in which magnetic powder is dispersed in a resin can be used. In a resin-coated carrier, as a method for coating the surface of the carrier core with at least a resin coating material, the resin is dissolved or suspended in a solvent, and is applied to the carrier core for adhesion, or simply mixed in a powder state. Applicable methods are applicable. The ratio of the resin coating material to the resin-coated carrier may be appropriately determined, but is preferably 0.01 to 5% by mass, more preferably 0.1 to 1% by mass with respect to the resin-coated carrier.
 2種以上の混合物の被覆(コート)剤で磁性体を被覆する使用例としては、(1)酸化チタン微粉体100質量部に対してジメチルジクロロシランとジメチルシリコンオイル(質量比1:5)の混合物12質量部で処理したもの、(2)シリカ微粉体100質量部に対してジメチルジクロロシランとジメチルシリコンオイル(質量比1:5)の混合物20質量部で処理したものがあげられる。 Examples of use in which a magnetic material is coated with a coating agent of two or more kinds of mixtures include (1) dimethyldichlorosilane and dimethyl silicon oil (mass ratio 1: 5) with respect to 100 parts by mass of fine titanium oxide powder. Those treated with 12 parts by mass of the mixture, and (2) those treated with 20 parts by mass of the mixture of dimethyldichlorosilane and dimethylsilicone oil (mass ratio 1: 5) with respect to 100 parts by mass of the silica fine powder.
 前記の樹脂中、スチレン-メタクリル酸メチル共重合体、含フッ素樹脂とスチレン系共重合体との混合物、又はシリコーン樹脂が好ましく、特にシリコーン樹脂がより好ましい。 Among the above resins, styrene-methyl methacrylate copolymer, a mixture of fluorine-containing resin and styrene-based copolymer, or silicone resin is preferable, and silicone resin is particularly preferable.
 含フッ素樹脂とスチレン系共重合体との混合物としては、例えば、ポリフッ化ビニリデンとスチレン-メタクリ酸メチル共重合体との混合物、ポリテトラフルオロエチレンとスチレン-メタクリル酸メチル共重合体との混合物、フッ化ビニリデン-テトラフルオロエチレン共重合(共重合体質量比10:90~90:10)とスチレン-アクリル酸2-エチルヘキシル共重合体(共重合質量比10:90~90:10)とスチレン-アクリル酸-2-エチルヘキシル-メタクリル酸メチル共重合体(共重合体質量比20~60:5~30:10:50)との混合物があげられる。 Examples of the mixture of the fluorine-containing resin and the styrene copolymer include, for example, a mixture of polyvinylidene fluoride and a styrene-methyl methacrylate copolymer, a mixture of polytetrafluoroethylene and a styrene-methyl methacrylate copolymer, Vinylidene fluoride-tetrafluoroethylene copolymer (copolymer mass ratio 10:90 to 90:10), styrene-2-ethylhexyl acrylate copolymer (copolymer mass ratio 10:90 to 90:10) and styrene And a mixture with an acrylic acid-2-ethylhexyl-methyl methacrylate copolymer (copolymer mass ratio 20 to 60: 5 to 30:10:50).
 シリコーン樹脂としては、含窒素シリコーン樹脂及び含窒素シランカップリング剤とシリコーン樹脂とが反応することにより生成された変性シリコーン樹脂があげられる。 Examples of the silicone resin include nitrogen-containing silicone resins and modified silicone resins produced by reacting a nitrogen-containing silane coupling agent with a silicone resin.
 キャリアコアの磁性材料としては、フェライト、鉄過剰型フェライト、マグネタイト、γ-酸化鉄などの酸化物、鉄、コバルト、ニッケルなどの金属、又はこれらの合金を用いることができる。またこれらの磁性材料に含まれる元素としては、鉄、コバルト、ニッケル、アルミニウム、銅、鉛、マグネシウム、スズ、亜鉛、アンチモン、ベリリウム、ビスマス、カルシウム、マンガン、セレン、チタン、タングステン、バナジウムがあげられる。好ましい磁性材料として、銅、亜鉛、及び鉄成分を主成分とする銅-亜鉛-鉄系フェライト、マンガン、マグネシウム及び鉄成分を主成分とするマンガン-マグネシウム-鉄系フェライトがあげられる。 As the magnetic material for the carrier core, ferrite, iron-rich ferrite, magnetite, oxides such as γ-iron oxide, metals such as iron, cobalt, nickel, or alloys thereof can be used. Examples of elements contained in these magnetic materials include iron, cobalt, nickel, aluminum, copper, lead, magnesium, tin, zinc, antimony, beryllium, bismuth, calcium, manganese, selenium, titanium, tungsten, and vanadium. . Preferred magnetic materials include copper-zinc-iron-based ferrites mainly composed of copper, zinc and iron components, and manganese-magnesium-iron-based ferrites mainly composed of manganese, magnesium and iron components.
 キャリアの抵抗値は、キャリアの表面の凹凸度合い、被覆する樹脂の量を調整して10Ω・cm~1010Ω・cmにするのがよい。キャリアの粒径は4μm~200μmとすることができるが、好ましくは、10μm~150μmであり、より好ましくは20μm~100μmである。特に、樹脂コートキャリアは、50%粒径が20μm~70μmであることが好ましい。 The resistance value of the carrier is preferably adjusted to 10 6 Ω · cm to 10 10 Ω · cm by adjusting the degree of unevenness on the surface of the carrier and the amount of resin to be coated. The particle size of the carrier can be 4 μm to 200 μm, preferably 10 μm to 150 μm, more preferably 20 μm to 100 μm. In particular, the resin-coated carrier preferably has a 50% particle size of 20 μm to 70 μm.
 2成分系現像剤では、キャリア100質量部に対して、本実施形態に係るトナー1~200質量部を使用することが好ましく、キャリア100質量部に対して、トナー2~50質量部で使用することがより好ましい。 In the two-component developer, it is preferable to use 1 to 200 parts by mass of the toner according to this embodiment with respect to 100 parts by mass of the carrier, and 2 to 50 parts by mass of toner with respect to 100 parts by mass of the carrier. It is more preferable.
 本実施形態のトナーは更に、ワックスを含有していてもよい。本実施形態において、用いられるワックスには次のようなものがある。例えば低分子量ポリエチレン、低分子量ポリプロピレン、ポリオレフィンワックス、マイクロクリスタリンワックス、パラフィンワックス、サゾールワックスなどの脂肪族炭化水素系ワックス、酸化ポリエチレンワックスなどの脂肪族炭化水素系ワックスの酸化物、又はそれらのブロック共重合体、キャンデリラワックス、カルナバワックス、木ろう、ホホバろうなどの植物系ワックス、みつろう、ラノリン、鯨ろうなどの動物系ワックス、オゾケライト、セレシン、ペテロラタムなどの鉱物系ワックス、モンタン酸エステルワックス、カスターワックスなどの脂肪酸エステルを主成分とするワックス類、脱酸カルナバワックスなどの脂肪酸エステルを一部又は全部を脱酸化したものがあげられる。 The toner of this embodiment may further contain a wax. In the present embodiment, the following wax is used. For example, oxides of aliphatic hydrocarbon waxes such as low molecular weight polyethylene, low molecular weight polypropylene, polyolefin wax, microcrystalline wax, paraffin wax, sazol wax, aliphatic hydrocarbon waxes such as oxidized polyethylene wax, or blocks thereof Copolymers, plant waxes such as candelilla wax, carnauba wax, wood wax, jojoba wax, animal waxes such as beeswax, lanolin, whale wax, mineral waxes such as ozokerite, ceresin, petrolatum, montanate ester wax, Examples thereof include waxes mainly composed of fatty acid esters such as caster wax and those obtained by partially or fully deoxidizing fatty acid esters such as deoxidized carnauba wax.
 ワックスの例としては、更に、パルミチン酸、ステアリン酸、モンタン酸、又は更に直鎖のアルキル基を有する直鎖アルキルカルボン酸類などの飽和直鎖脂肪酸、プランジン酸、エレオステアリン酸、バリナリン酸などの不飽和脂肪酸、ステアリルアルコール、エイコシルアルコール、ベヘニルアルコール、カルナウピルアルコール、セリルアルコール、メシリルアルコール、あるいは長鎖アルキルアルコールなどの飽和アルコール、ソルビトールなどの多価アルコール、リノール酸アミド、オレフィン酸アミド、ラウリン酸アミドなどの脂肪酸アミド、メチレンビスカプリン酸アミド、エチレンビスラウリン酸アミド、ヘキサメチレンビスステアリン酸アミドなどの飽和脂肪酸ビスアミド、エチレンビスオレイン酸アミド、ヘキサメチレンビスオレイン酸アミド、N,N’-ジオレイルアジピン酸アミド、N,N’-ジオレイルセパシン酸アミドなどの不飽和脂肪酸アミド類、m-キシレンビスステアリン酸アミド、N,N’-ジステアリルイソフタル酸アミドなどの芳香族系ビスアミド、ステアリン酸カルシウム、ラウリン酸カルシウム、ステアリン酸亜鉛、ステアリン酸マグネシウムなどの脂肪酸金属塩、脂肪族炭化水素系ワックスにスチレンやアクリレートなどのビニル系モノマーを用いてグラフト化させたワックス、ベヘニン酸モノグリセリドなどの脂肪酸と多価アルコールの部分エステル化合物、植物性油脂を水素添加することによって得られるヒドロキシル基を有するメチルエステル化合物があげられる。 Examples of waxes are further saturated linear fatty acids such as palmitic acid, stearic acid, montanic acid, or linear alkyl carboxylic acids having a linear alkyl group, prandidic acid, eleostearic acid, valinalic acid, etc. Unsaturated fatty acids, stearyl alcohol, eicosyl alcohol, behenyl alcohol, carnaupyl alcohol, seryl alcohol, mesyl alcohol, saturated alcohols such as long-chain alkyl alcohols, polyhydric alcohols such as sorbitol, linoleic acid amides, olefinic acid amides , Fatty acid amides such as lauric acid amide, methylene biscapric acid amide, ethylene bis lauric acid amide, saturated fatty acid bisamides such as hexamethylene bis stearic acid amide, ethylene bis oleic acid amide, hexamethyle Unsaturated fatty acid amides such as bisoleic acid amide, N, N′-dioleyl adipic acid amide, N, N′-dioleyl sepasic acid amide, m-xylene bisstearic acid amide, N, N′-distearyl Grafting onto aromatic bisamides such as isophthalic acid amide, fatty acid metal salts such as calcium stearate, calcium laurate, zinc stearate and magnesium stearate, and aliphatic hydrocarbon waxes using vinyl monomers such as styrene and acrylate Wax, a partial ester compound of a fatty acid such as behenic acid monoglyceride and a polyhydric alcohol, and a methyl ester compound having a hydroxyl group obtained by hydrogenating vegetable oils and fats.
 好ましく用いられるワックスとしては、オレフィンを高圧下でラジカル重合したポリオレフィン、高分子量ポリオレフィン重合時に得られる低分子量副生成物を精製したポリオレフィン、低圧下でチーグラー触媒、メタロセン触媒の如き触媒を用いて重合したポリオレフィン、放射線、電磁波又は光を利用して重合したポリオレフィン、高分子量ポリオレフィンを熱分解して得られる低分子量ポリオレフィン、パラフィンワックス、マイクロクリスタリンワックス、フィッシャートロプシュワックス、ジントール法、ヒドロコール法、アーゲ法などにより合成される合成炭化水素ワックス、炭素数1個の化合物をモノマーとする合成ワックス、水酸基又はカルボキシル基などの官能基を有する炭化水素系ワックス、炭化水素系ワックスと官能基を有する炭化水素系ワックスとの混合物、これらのワックスを母体としてスチレン、マレイン酸エステル、アクリレート、メタクリレート、無水マレイン酸などのビニルモノマーでグラフト変性したワックスがあげられる。 Preferred waxes include polyolefins obtained by radical polymerization of olefins under high pressure, polyolefins obtained by purifying low molecular weight by-products obtained during the polymerization of high molecular weight polyolefins, and polymerization using a catalyst such as a Ziegler catalyst or a metallocene catalyst under low pressure. Polyolefin, polyolefin polymerized using radiation, electromagnetic wave or light, low molecular weight polyolefin obtained by thermal decomposition of high molecular weight polyolefin, paraffin wax, microcrystalline wax, Fischer-Tropsch wax, Jintole method, hydrocol method, age method, etc. Synthetic hydrocarbon waxes synthesized by the above, synthetic waxes having a compound having one carbon atom as monomers, hydrocarbon waxes having functional groups such as hydroxyl groups or carboxyl groups, hydrocarbon waxes and government Mixture of hydrocarbon wax having a group, styrene these waxes as a matrix, maleic acid esters, acrylates, methacrylates, graft modified wax with vinyl monomers such as maleic anhydride.
 また、これらのワックスを、プレス発汗法、溶剤法、再結晶法、真空蒸留法、超臨界ガス抽出法又は溶液晶析法を用いて分子量分布をシャープにしたもの、又は低分子量固形脂肪酸、低分子量固形アルコール、低分子量固形化合物若しくはその他の不純物を除去したものが好ましく用いられる。 In addition, these waxes have a sharp molecular weight distribution using a press sweating method, a solvent method, a recrystallization method, a vacuum distillation method, a supercritical gas extraction method or a solution liquid crystal deposition method, or a low molecular weight solid fatty acid, a low A molecular weight solid alcohol, a low molecular weight solid compound or other impurities are preferably used.
 本実施形態において使用するワックスは、定着性と耐オフセット性のバランスを取るために融点が50~140℃であることが好ましく、70~120℃であることがより好ましい。50℃未満では耐ブロッキング性が低下する傾向があり、140℃を超えると耐オフセット効果が発現しにくくなる。 The wax used in the present embodiment preferably has a melting point of 50 to 140 ° C., more preferably 70 to 120 ° C., in order to balance the fixability and the offset resistance. If it is less than 50 degreeC, there exists a tendency for blocking resistance to fall, and if it exceeds 140 degreeC, it will become difficult to express an offset-proof effect.
 また、2種以上の異なる種類のワックスを併用することにより、ワックスの作用である可塑化作用と離型作用を同時に発現させることができる。
 可塑化作用を有するワックスの種類としては、例えば融点の低いワックス、又は分子の構造上に分岐のあるワックス、若しくは極性基を有する構造のワックスがあげられ、離型作用を有するワックスとしては、融点の高いワックス、分子の構造では、直鎖構造のワックス、又は、官能基を有さない無極性のワックスがあげられる。使用例としては、2種以上の異なるワックスの融点の差が10℃~100℃となる組み合わせ、及び、ポリオレフィンとグラフト変性ポリオレフィンの組み合わせなどがあげられる。
Further, by using two or more different types of waxes in combination, the plasticizing action and the releasing action which are the actions of the wax can be expressed simultaneously.
Examples of the type of wax having a plasticizing action include a wax having a low melting point, a wax having a branched structure on the molecular structure, or a wax having a structure having a polar group. As for the wax having a high molecular weight, a linear wax or a non-polar wax having no functional group can be mentioned. Examples of use include a combination in which the difference in melting point between two or more different waxes is 10 ° C. to 100 ° C., a combination of polyolefin and graft-modified polyolefin, and the like.
 2種のワックスを選択する場合は、同様の構造を有するワックスの場合は、相対的に、融点の低いワックスが可塑化作用を発揮し、融点の高いワックスが離型作用を発揮する。この時、融点の差が10~100℃の場合に、機能分離が効果的に発現する。10℃未満では機能分離効果が表れにくく、100℃を超える場合には相互作用による機能の強調が行われにくい。この場合、少なくとも一方のワックスの融点が70~120℃であることが好ましく、70~100℃であることがより好ましい。融点がこの範囲にあると、機能分離効果を発揮しやすくなる傾向がある。 When two types of wax are selected, in the case of a wax having a similar structure, a wax having a relatively low melting point exhibits a plasticizing action, and a wax having a high melting point exhibits a releasing action. At this time, when the difference in melting point is 10 to 100 ° C., functional separation is effectively exhibited. If it is less than 10 ° C., the function separation effect is difficult to appear, and if it exceeds 100 ° C., the function is not easily emphasized by interaction. In this case, the melting point of at least one of the waxes is preferably 70 to 120 ° C., more preferably 70 to 100 ° C. When the melting point is in this range, the function separation effect tends to be easily exhibited.
 また、ワックスは、相対的に、枝分かれ構造のもの、官能基などの極性基を有するもの、又は主成分とは異なる成分で変性されたものが可塑作用を発揮し、より直鎖構造のもの、官能基を有さない無極性のもの、又は未変性のストレートなものが離型作用を発揮する。好ましいワックスの組み合わせとしては、エチレンを主成分とするポリエチレンホモポリマー又はコポリマーとエチレン以外のオレフィンを主成分とするポリオレフィンホモポリマー又はコポリマーの組み合わせ;ポリオレフィンとグラフト変成ポリオレフィンの組み合わせ;アルコールワックス、脂肪酸ワックス又はエステルワックスと炭化水素系ワックスの組み合わせ;フイシャートロプシュワックス又はポリオレフィンワックスとパラフィンワックス又はマイクロクリスタルワックスの組み合わせ;フィッシャートロプシュワックスとポルリオレフィンワックスの組み合わせ;パラフィンワックスとマイクロクリスタルワックスの組み合わせ;カルナバワックス、キャンデリラワックス、ライスワックス又はモンタンワックスと炭化水素系ワックスの組み合わせがあげられる。 In addition, the wax is relatively branched, has a polar group such as a functional group, or is modified with a component different from the main component to exert a plastic action, and has a more linear structure, A non-polar one having no functional group or an unmodified straight one exhibits a releasing action. Preferred combinations of waxes include polyethylene homopolymers or copolymers based on ethylene and polyolefin homopolymers or copolymers based on olefins other than ethylene; combinations of polyolefins and graft modified polyolefins; alcohol waxes, fatty acid waxes or A combination of ester wax and hydrocarbon wax; a combination of Fischer-Tropsch wax or polyolefin wax and paraffin wax or microcrystal wax; a combination of Fischer-Tropsch wax and polyolefin wax; a combination of paraffin wax and microcrystal wax; a carnauba wax; Candelilla wax, rice wax or montan wax and carbonized water The combination of the system wax and the like.
 いずれの場合においてもトナーのDSC測定において観測される吸熱ピークにおいて70~110℃の領域に最大ピークのピークトップ温度があることが好ましく、70~110℃の領域に最大ピークのピークトップ温度があることがより好ましい。このことより、トナー保存性と定着性のバランスをとりやすくなる。 In any case, the endothermic peak observed in the DSC measurement of the toner preferably has a maximum peak peak top temperature in the region of 70 to 110 ° C., and has a maximum peak peak top temperature in the region of 70 to 110 ° C. It is more preferable. This makes it easy to balance toner storage and fixing properties.
 本実施形態のトナーにおいては、これらのワックスの総含有量は、結着樹脂100質量部に対し、0.2~20質量部であることが好ましく、0.5~10質量部であることがより好ましい。 In the toner of the present embodiment, the total content of these waxes is preferably 0.2 to 20 parts by mass, and preferably 0.5 to 10 parts by mass with respect to 100 parts by mass of the binder resin. More preferred.
 本実施形態では、ワックスの融点は、DSCにおいて測定されるワックスの吸熱ピークの最大ピークのピークトップの温度である。 In this embodiment, the melting point of the wax is the peak top temperature of the endothermic peak of the wax measured by DSC.
 本実施形態においてワックス又はトナーのDSC測定は、高精度の内熱式入力補償型の示差走査熱量計で行なうことが好ましい。測定方法は、ASTM D3418-82に準じて行う。本実施形態においては、1回昇温、降温させ前履歴を取った後、温度速度10℃/minで、昇温させた時に測定されるDSC曲線を用いる。 In this embodiment, it is preferable that the DSC measurement of wax or toner is performed with a highly accurate internal heat input compensation type differential scanning calorimeter. The measurement method is performed according to ASTM D3418-82. In the present embodiment, a DSC curve is used that is measured when the temperature is raised at a temperature rate of 10 ° C./min after once raising and lowering the temperature and taking a previous history.
 本実施形態のトナーには、流動性向上剤を添加してもよい。流動性向上剤は、トナー表面に添加することにより、トナーの流動性を改善(流動しやすくなる)するものである。例えば、カーボンブラック、フッ化ビニリデン微粉末、ポリテトラフルオロエチレン微粉末などのフッ素系樹脂粉末、湿式製法シリカ、乾式製法シリカの如き微粉末シリカ、微粉未酸化チタン、微粉未アルミナ、及びこれらにシランカップリング剤、チタンカップリング剤若しくはシリコーンオイルにより表面処理を施した、処理シリカ、処理酸化チタン、処理アルミナがあげられる。なかでも、微粉末シリカ、微粉未酸化チタン、微粉未アルミナが好ましく、また、これらをシランカップリング剤やシリコーンオイルにより表面処理を施した処理シリカが更に好ましい。流動性向上剤の粒径は、平均一次粒径として0.001μm~2μmであることが好ましく、0.002μm~0.2μmであることがより好ましい。 A fluidity improver may be added to the toner of this embodiment. The fluidity improver improves the fluidity of the toner (becomes easy to flow) when added to the toner surface. For example, fluorocarbon resin powder such as carbon black, vinylidene fluoride fine powder, polytetrafluoroethylene fine powder, wet process silica, fine powder silica such as dry process silica, fine powder unoxidized titanium, fine powder unalumina, and silane Examples include treated silica, treated titanium oxide, and treated alumina that have been surface-treated with a coupling agent, a titanium coupling agent, or silicone oil. Of these, finely divided silica, finely powdered titanium oxide, and finely powdered unalumina are preferable, and treated silica obtained by surface-treating these with a silane coupling agent or silicone oil is more preferable. The particle size of the fluidity improver is preferably 0.001 μm to 2 μm, more preferably 0.002 μm to 0.2 μm, as an average primary particle size.
 好ましい微粉末シリカは、ケイ素ハロゲン化含物の気相酸化により生成された微粉体であり、いわゆる乾式法シリカ又はヒュームドシリカと称されるものである。 A preferable fine powder silica is a fine powder produced by vapor phase oxidation of a silicon halide inclusion, and is called so-called dry silica or fumed silica.
 ケイ素ハロゲン化合物の気相酸化により生成された市販のシリカ微粉体としては、例えば以下の様な商品名で市販されているものがある。AEROSIL(日本アエロジル株式会社製、以下同じ)-130、-300、-380、-TT600、-MOX170、-MOX80、-COK84:Ca-O-SiL(CABOT株式会社製、以下同じ)-M-5、-MS-7、-MS-75、-HS-5、-EH-5、Wacker HDK(WACKER-CHEMIEGMBH株式会社製、以下同じ)-N20 V15、-N20E、-T30、-T40:D-CFineSi1ica(ダウコーニング株式会社製):Franso1(Fransi1株式会社製)。 Examples of commercially available silica fine powders produced by vapor phase oxidation of silicon halogen compounds include those sold under the following trade names. AEROSIL (manufactured by Nippon Aerosil Co., Ltd., the same shall apply hereinafter) -130, -300, -380, -TT600, -MOX170, -MOX80, -COK84: Ca-O-SiL (manufactured by CABOT Corp., hereinafter the same shall apply) -M-5 , -MS-7, -MS-75, -HS-5, -EH-5, Wacker HDK (manufactured by WACKER-CHEMIEGMBH Co., Ltd., the same shall apply hereinafter) -N20 V15, -N20E, -T30, -T40: D-CFineSi1ica (Manufactured by Dow Corning): Franco1 (manufactured by Franci1).
 更には、ケイ素ハロゲン化合物の気相酸化により生成されたシリカ微粉体を疎水化処理した処理シリカ微粉体がより好ましい。処理シリカ微粉体としては、メタノール滴定試験によって測定された疎水化度が30~80%の値を示すようにシリカ微粉体を処理したものが特に好ましい。疎水化処理は、例えば、シリカ微粉体と反応又は物理吸着する有機ケイ素化合物などで化学的又は物理的に処理する方法により行うことができる。中でも、ケイ素ハロゲン化合物の気相酸化により生成されたシリカ微粉体を有機ケイ素化合物で処理する方法が好ましい。 Furthermore, a treated silica fine powder obtained by hydrophobizing a silica fine powder produced by vapor phase oxidation of a silicon halogen compound is more preferable. As the treated silica fine powder, it is particularly preferable to treat the silica fine powder so that the degree of hydrophobicity measured by a methanol titration test shows a value of 30 to 80%. The hydrophobizing treatment can be performed, for example, by a method of chemically or physically treating with an organosilicon compound that reacts or physically adsorbs with silica fine powder. Among these, a method of treating silica fine powder produced by vapor phase oxidation of a silicon halogen compound with an organosilicon compound is preferable.
 有機ケイ素化合物としては、ヒドロキシプロピルトリメトキシシラン、フェニルトリメトキシシラン、n-ヘキサデシルトリメトキシシラン、n-オクタデシルトリメトキシシラン、ビニルメトキシシラン、ビニルトリエトキシシラン、ビニルトリアセトキシシラン、ジメチルビニルクロロシラン、ジビニルクロロシラン、γ-メタクリルオキシプロピルトリメトキシシラン、へキサメチルジシラン、トリメチルシラン、トリメチルクロロシラン、ジメチルジクロロシラン、メチルトリクロロシラン、アリルジメチルクロロシラン、アリルフェニルジクロロシラン、ベンジルジメチルクロロシラン、ブロモメチルジメチルクロロシラン、α-クロルエチルトリクロロシラン、β-クロロエチルトリクロロシラン、クロロメチルジメチルクロロシラン、トリオルガノシリルメルカプタン、トリメチルシリルメルカプタン、トリオルガノシリルアクリレート、ビニルジメチルアセトキシシラン、ジメチルエトキシシラン、トリメチルエトキシシラン、トリメチルメトキシシラン、メチルトリエトキシシラン、イソブチルトリメトキシシラン、ジメチルジメトキシシラン、ジフェニルジエトキシシラン、へキサメチルジシロキサン、1,3-ジビニルテトラメチルジシロキサン、1,3-ジフェニルテトラメチルジシロキサン及び1分子当り2~12個のシロキサン単位を有し、未端に位置する単位にそれぞれSiに結合した水酸基を0~1個含有するジメチルポリシロキサンなどがあげられる。更に、ジメチルシリコーンオイルなどのシリコーンオイルがあげられる。これらは1種単独で、又は2種以上の混合物で用いられる。 Examples of organosilicon compounds include hydroxypropyltrimethoxysilane, phenyltrimethoxysilane, n-hexadecyltrimethoxysilane, n-octadecyltrimethoxysilane, vinylmethoxysilane, vinyltriethoxysilane, vinyltriacetoxysilane, dimethylvinylchlorosilane, Divinylchlorosilane, γ-methacryloxypropyltrimethoxysilane, hexamethyldisilane, trimethylsilane, trimethylchlorosilane, dimethyldichlorosilane, methyltrichlorosilane, allyldimethylchlorosilane, allylphenyldichlorosilane, benzyldimethylchlorosilane, bromomethyldimethylchlorosilane, α -Chloroethyltrichlorosilane, β-chloroethyltrichlorosilane, chloromethyldimethylchloro Run, triorganosilyl mercaptan, trimethylsilyl mercaptan, triorganosilyl acrylate, vinyldimethylacetoxysilane, dimethylethoxysilane, trimethylethoxysilane, trimethylmethoxysilane, methyltriethoxysilane, isobutyltrimethoxysilane, dimethyldimethoxysilane, diphenyldiethoxysilane , Hexamethyldisiloxane, 1,3-divinyltetramethyldisiloxane, 1,3-diphenyltetramethyldisiloxane and 2 to 12 siloxane units per molecule, each of which is located at the end Examples thereof include dimethylpolysiloxane containing 0 to 1 hydroxyl group bonded to. Furthermore, silicone oils such as dimethyl silicone oil can be mentioned. These are used individually by 1 type or in mixture of 2 or more types.
 流動性向上剤は、個数平均粒径が5nm~100nmになるものが好ましく、5nm~50nmになるものがより好ましい。BET法で測定した窒素吸着による比表面積が30m/g以上のものが好ましく、60~400m/gのものがより好ましい。表面処理された微粉体としては、20m/g以上が好ましく、40~300m/gがより好ましい。これらの微粉体の適用量は、トナー粒子100質量部に対して、好ましくは0.03~8質量部である。 The fluidity improver preferably has a number average particle diameter of 5 nm to 100 nm, more preferably 5 nm to 50 nm. The specific surface area by nitrogen adsorption measured by the BET method is preferably 30 m 2 / g or more, more preferably 60 to 400 m 2 / g. The surface-treated fine powder is preferably 20 m 2 / g or more, more preferably 40 to 300 m 2 / g. The application amount of these fine powders is preferably 0.03 to 8 parts by mass with respect to 100 parts by mass of the toner particles.
 本実施形態のトナーには、感光体・キャリアーの保護、クリーニング性の向上、熱特性・電気特性・物理特性の調整、抵抗調整、軟化点調整、定着率向上などを目的として、各種金属石けん、フッ素系界面活性剤、フタル酸ジオクチル、導電性付与剤として酸化スズ、酸化亜鉛、カーボンブラック、酸化アンチモンなど、又は、酸化チタン、酸化アルミニウム、アルミナなどの無機微粉体などを必要に応じて添加することができる。また、これらの無機微粉体は必要に応じて疎水化してもよい。また、ポリテトラフルオロエチレン、ステアリン酸亜鉛、ポリフッ化ビニリデンなどの滑剤、酸化セシウム、炭化ケイ素、チタン酸ストロンチウムなどの研磨剤、ケーキング防止剤、更に、トナー粒子と逆極性の白色微粒子及び黒色微粒子を現像性向上剤として少量用いることもできる。 The toner of the present embodiment includes various types of metal soaps for the purpose of protecting the photoconductor / carrier, improving cleaning properties, adjusting thermal characteristics / electrical characteristics / physical characteristics, adjusting resistance, adjusting softening point, improving fixing rate, etc. Add fluorosurfactant, dioctyl phthalate, tin oxide, zinc oxide, carbon black, antimony oxide, etc., or inorganic fine powders such as titanium oxide, aluminum oxide, alumina, etc. as necessary. be able to. These inorganic fine powders may be hydrophobized as necessary. Also, lubricants such as polytetrafluoroethylene, zinc stearate, and polyvinylidene fluoride, abrasives such as cesium oxide, silicon carbide, and strontium titanate, anti-caking agents, and white particles and black particles that are opposite in polarity to the toner particles A small amount can be used as a developability improver.
 これらの添加剤は、帯電量コントロールなどの目的でシリコーンワニス、各種変性シリコーンワニス、シリコーンオイル、各種変性シリコーンオイル、シランカップリング剤、官能基を有するシランカップリング剤、その他の有機ケイ素化合物などの処理剤、又は種々の処理剤で処理することも好ましい。 These additives include silicone varnishes, various modified silicone varnishes, silicone oils, various modified silicone oils, silane coupling agents, silane coupling agents having functional groups, and other organosilicon compounds for the purpose of charge control. It is also preferable to treat with a treating agent or various treating agents.
 本実施形態において、電荷制御剤を前記のような添加剤及びトナーと一緒に、ヘンシェルミキサー、ボールミル、ナウターミキサー、V型ミキサー、W型ミキサー、スーパーミキサーなどの混合機により充分に混合攪拌し、トナー粒子表面に均一に外添処理することにより目的とする静電荷現像用トナーを得ることもできる。 In this embodiment, the charge control agent is sufficiently mixed and stirred together with the additive and toner as described above by a mixer such as a Henschel mixer, a ball mill, a nauter mixer, a V-type mixer, a W-type mixer, or a super mixer. Further, the target electrostatic charge developing toner can be obtained by uniformly externally treating the toner particle surface.
 本実施形態のトナーは熱的にも安定であり電子写真プロセス時に熱的変化を受けることがなく、安定した帯電特性を保持することが可能である。また、どのような結着樹脂にも均一に分散することから、フレッシュトナーの帯電分布が非常に均一である。そのため、本実施形態のトナーは未転写、回収トナー(廃トナー)においても、フレッシュトナーと較べて飽和摩擦帯電量、帯電分布とも変化はほとんど認められない。一方、本実施形態の静電荷像現像用トナーから出る廃トナーを再利用する場合は、脂肪族ジオールを含むポリエステル樹脂を結着樹脂に選択する方法、金属架橋されたスチレン-アクリレート共重合体を結着樹脂とし、これに多量のポリオレフィンを加えた方法でトナーを製造することによってフレッシュトナーと廃トナーの格差を更に小さくすることができる。 The toner of this embodiment is thermally stable and does not undergo thermal changes during the electrophotographic process, and can maintain stable charging characteristics. Further, since it is uniformly dispersed in any binder resin, the charge distribution of the fresh toner is very uniform. For this reason, in the toner of this embodiment, even in the untransferred and recovered toner (waste toner), almost no change is observed in the saturated triboelectric charge amount and the charge distribution compared to the fresh toner. On the other hand, when the waste toner from the electrostatic image developing toner of this embodiment is reused, a method of selecting a polyester resin containing an aliphatic diol as a binder resin, a metal-crosslinked styrene-acrylate copolymer is used. By producing a toner by using a binder resin and adding a large amount of polyolefin to the binder resin, the difference between the fresh toner and the waste toner can be further reduced.
 本実施形態に係るトナーは、既知の製造法によって製造することができる。製造方法について例示すると、結着樹脂、電荷制御剤、着色剤などの上述したトナー構成材料をボールミルなどの混合機により十分混合し、得られた混合物を熱ロールニーダなどの加熱混練装置により良く混練し、冷却固化し、粉砕後、分級して得る方法(粉砕法)が好ましい。 The toner according to the present embodiment can be manufactured by a known manufacturing method. As an example of the production method, the above-mentioned toner constituent materials such as a binder resin, a charge control agent, and a colorant are sufficiently mixed by a mixer such as a ball mill, and the resulting mixture is well kneaded by a heating and kneading apparatus such as a hot roll kneader. A method (pulverization method) obtained by solidifying by cooling, classification after pulverization is preferable.
 また前記混合物を溶媒に溶解させ噴霧により微粒化、乾燥、分級して得る方法でも製造できる。更に、結着樹脂を構成すべき単量体に所定の材料を混合して乳化又は懸濁液とした後に、重合させてトナーを得る重合法によるトナー製造法、コア材及びシェル材からなるいわゆるマイクロカプセルトナーにおいて、コア材若しくはシェル材、又はこれらの両方に所定の材料を含有させる方法によっても製造できる。更に必要に応じ所望の添加剤とトナー粒子とをヘンシェルミキサーなどの混合機により十分に混合することにより、本実施形態に係るトナーを製造することができる。 It can also be produced by a method obtained by dissolving the mixture in a solvent and atomizing, drying, and classifying by spraying. Furthermore, a so-called toner production method comprising a core material and a shell material by a polymerization method in which a predetermined material is mixed with a monomer to constitute a binder resin to form an emulsion or suspension and then polymerized to obtain a toner. The microcapsule toner can also be manufactured by a method in which a predetermined material is contained in the core material, the shell material, or both. Furthermore, the toner according to the exemplary embodiment can be manufactured by sufficiently mixing a desired additive and toner particles with a mixer such as a Henschel mixer as necessary.
 前記粉砕法による本実施形態に係るトナーの製造法を更に詳しく説明する。初めに結着樹脂と着色剤、電荷制御剤、その他必要な添加剤を均一に混合する。混合には既知の攪拌機、例えばヘンシェルミキサー、スーパーミキサー、ボールミルなどを用いることができる。得られた混合物を、密閉式のニーダー、あるいは1軸又は2軸の押出機を用いて、熱溶融混練する。混練物を冷却後に、クラッシャー又はハンマーミルを用いて粗粉砕し、更にジェットミル、高速ローター回転式ミルなどの粉砕機で微粉砕する。更に風力分級機、例えばコアンダ効果を利用した慣性分級方式のエルボジェット、サイクロン(遠心)分級方式のミクロプレックス、DSセパレーターなどを使用し、所定の粒度にまで分級を行う。更に外添剤などをトナー表面に処理する場合は、トナーと外添剤を高速攪拌機、例えばヘンシェルミキサー、スーパーミキサーなどで攪拌混合する。 The toner manufacturing method according to the present embodiment using the pulverization method will be described in more detail. First, a binder resin, a colorant, a charge control agent, and other necessary additives are mixed uniformly. For mixing, a known stirrer such as a Henschel mixer, a super mixer, or a ball mill can be used. The obtained mixture is hot-melt kneaded using a closed kneader or a single-screw or twin-screw extruder. After cooling, the kneaded product is coarsely pulverized using a crusher or a hammer mill, and further finely pulverized by a pulverizer such as a jet mill or a high-speed rotor rotary mill. Further, classification is performed to a predetermined particle size using an air classifier, for example, an inertia class elbow jet utilizing the Coanda effect, a cyclone (centrifugal) class microplex, a DS separator, and the like. Further, when the external additive is treated on the toner surface, the toner and the external additive are agitated and mixed with a high-speed agitator such as a Henschel mixer or a super mixer.
 また、本実施形態に係るトナーは、懸濁重合法又は乳化重合法によっても製造できる。懸濁重合法においては、まず、重合性単量体、着色剤、重合開始剤、電荷制御剤、更に必要に応じて架橋剤、分散安定剤その他の添加剤を、均一に溶解又は分散させて、単量体組成物を調製する。その後、この単量体組成物と分散安定剤を、連続相(たとえば水相)中に適当な攪拌機又は分散機、例えばホモミキサー、ホモジナイザー、アトマイザー、マイクロフルイダイザー、一液流体ノズル、気液流体ノズル、電気乳化機などを用いて分散させる。好ましくは、重合性単量体組成物の液滴が所望のトナー粒子のサイズを有するように撹拌速度、温度、時間を調整し、造粒する。同時に重合反応を40~90℃で行い、所望の粒径を有するトナー粒子を得ることができる。得られたトナー粒子を洗浄し、ろ別した後、乾燥する。トナー粒子の製造後の外添処理は前記記載の方法が使用できる。 In addition, the toner according to the present embodiment can be manufactured by a suspension polymerization method or an emulsion polymerization method. In the suspension polymerization method, first, a polymerizable monomer, a colorant, a polymerization initiator, a charge control agent and, if necessary, a crosslinking agent, a dispersion stabilizer and other additives are uniformly dissolved or dispersed. A monomer composition is prepared. Thereafter, the monomer composition and the dispersion stabilizer are mixed into an appropriate stirrer or disperser such as a homomixer, a homogenizer, an atomizer, a microfluidizer, a one-component fluid nozzle, a gas-liquid fluid in a continuous phase (for example, an aqueous phase). Disperse using a nozzle, electric emulsifier or the like. Preferably, granulation is performed by adjusting the stirring speed, temperature, and time so that the droplets of the polymerizable monomer composition have a desired toner particle size. At the same time, the polymerization reaction is carried out at 40 to 90 ° C. to obtain toner particles having a desired particle size. The obtained toner particles are washed, filtered, and dried. For the external addition treatment after the production of the toner particles, the method described above can be used.
 乳化重合法で製造すると、上述の懸濁重合法により得られる粒子と比べ、均一性には優れるものの平均粒子径が0.1μm~1.0μmと極めて小さいため、場合によっては乳化粒子を核として重合性単量体を後添加して粒子を成長させる、いわゆるシード重合による方法、又は、乳化粒子を適当な平均粒径にまで合一、融着させる方法で製造することもできる。 When produced by the emulsion polymerization method, the average particle diameter is extremely small, 0.1 μm to 1.0 μm, although it is excellent in uniformity compared to the particles obtained by the suspension polymerization method described above. It can also be produced by a so-called seed polymerization method in which particles are grown by post-addition of a polymerizable monomer, or a method in which emulsified particles are coalesced and fused to an appropriate average particle size.
 これらの重合法による製造は、粉砕工程を経ないためトナー粒子に脆性を付与させる必要がなく、更に従来の粉砕法では使用することが困難であった低軟化点物質を多量に使用できることから材料の選択幅を広げることができる。トナー粒子表面に疎水性の材料である離型剤又は着色剤が露出しにくく、このためトナー担持部材、感光体、転写ローラー及び定着器への汚染を少なくすることができる。 Since the production by these polymerization methods does not go through the pulverization step, it is not necessary to impart brittleness to the toner particles, and furthermore, it is possible to use a large amount of a low softening point substance that was difficult to use by the conventional pulverization method. The selection range of can be expanded. The release agent or colorant, which is a hydrophobic material, is difficult to be exposed on the surface of the toner particles, so that contamination of the toner carrying member, the photoreceptor, the transfer roller, and the fixing device can be reduced.
 本実施形態に係るトナーを重合法によって製造することによって、画像再現性、転写性、色再現性などの特性を更に向上させることができる。また、微小ドットに対応するためにトナーの粒径を小径化し、比較的容易に粒度分布がシャープなトナーを得ることができる。 By producing the toner according to this embodiment by a polymerization method, characteristics such as image reproducibility, transferability, and color reproducibility can be further improved. In addition, the toner particle size can be reduced in order to deal with minute dots, and a toner having a sharp particle size distribution can be obtained relatively easily.
 本実施形態に係るトナーを重合方法で製造する際に使用する重合性単量体としては、ラジカル重合が可能なビニル系重合性単量体があげられる。該ビニル系重合性単量体としては、単官能性重合性単量体又は多官能性重合性単量体を使用することができる。 Examples of the polymerizable monomer used when the toner according to the exemplary embodiment is manufactured by a polymerization method include vinyl polymerizable monomers capable of radical polymerization. As the vinyl polymerizable monomer, a monofunctional polymerizable monomer or a polyfunctional polymerizable monomer can be used.
 単官能性重合性単量体としては、スチレン、α-メチルスチレン、β-メチルスチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、2,4-ジメチルスチレン、p-n-ブチルスチレン、p-tert-ブチルスチレン、p-n-ヘキシルスチレン、p-フェニルスチレンなどのスチレン系重合性単量体;メチルアクリレート、エチルアクリレート、n-プロピルアクリレート、イソプロピルアクリレート、n-ブチルアクリレート、イソブチルアクリレート、tert-ブチルアクリレート、n-アミルアクリレート、n-ヘキシルアクリレート、2-エチルヘキシルアクリレート、n-オクチルアクリレート、ベンジルアクリレート、ジメチルフォスフェートメチルアクリレート、ジブチルフォスフェートエチルアクリレート、2-ベンゾイルオキシエチルアクリレートなどのアクリレート系重合性単量体;メチルメタクリレート、エチルメタクリレート、n-プロピルメタクリレート、イソプロピルメタクリレート、n-ブチルメタクリレート、イソブチルメタクリレート、tert-ブチルメタクリレート、n-アミルメタクリレート、n-ヘキシルメタクリレート、2-エチルヘキシルメタクリレート、n-オクチルメタクリレート、ジエチルフォスフェートメタクリレート、ジブチルフォスフェートエチルメタクリレートなどのメタクリレート系重合性単量体;不飽和脂肪族モノカルボン酸エステル類;酢酸ビニル、プロピオン酸ビニル、安息香酸ビニルなどのビニルエステル類;ビニルメチルエーテル、ビニルイソブチルエーテルなどのビニルエーテル類;ビニルメチルケトン、ビニルヘキシルケトン、ビニルイソプロピルケトンなどのビニルケトン類があげられる。 Monofunctional polymerizable monomers include styrene, α-methyl styrene, β-methyl styrene, o-methyl styrene, m-methyl styrene, p-methyl styrene, 2,4-dimethyl styrene, pn-butyl. Styrene polymerizable monomers such as styrene, p-tert-butylstyrene, pn-hexylstyrene, p-phenylstyrene; methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, isobutyl Acrylate, tert-butyl acrylate, n-amyl acrylate, n-hexyl acrylate, 2-ethylhexyl acrylate, n-octyl acrylate, benzyl acrylate, dimethyl phosphate methyl acrylate, dibutyl phosphate ethyl Acrylate polymerizable monomers such as acrylate and 2-benzoyloxyethyl acrylate; methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, tert-butyl methacrylate, n-amyl methacrylate, Methacrylate-based polymerizable monomers such as n-hexyl methacrylate, 2-ethylhexyl methacrylate, n-octyl methacrylate, diethyl phosphate methacrylate, dibutyl phosphate ethyl methacrylate; unsaturated aliphatic monocarboxylic acid esters; vinyl acetate, propionic acid Vinyl esters such as vinyl and vinyl benzoate; Vinyl resins such as vinyl methyl ether and vinyl isobutyl ether Ethers; vinyl methyl ketone, vinyl hexyl ketone, vinyl ketones such as vinyl isopropyl ketone.
 本実施形態に係るトナーを重合方法で製造する際に使用する重合開始剤は有機過酸化物など、公知のものが使用できるが、水溶性開始剤としては、過硫酸アンモニウム、過硫酸カリウム、2,2’-アゾビス(N、N’-ジメチレンイソブチロアミジン)塩酸塩、2,2’-アゾビス(2-アミノジプロパン)塩酸塩、アゾビス(イソブチルアミジン)塩酸塩、2,2’-アゾビスイソブチロニトリルスルホン酸ナトリウム、硫酸第一鉄又は過酸化水素があげられる。 A known polymerization initiator such as an organic peroxide can be used as the polymerization initiator used when the toner according to the present embodiment is produced by the polymerization method. Examples of the water-soluble initiator include ammonium persulfate, potassium persulfate, 2, 2'-azobis (N, N'-dimethyleneisobutyroamidine) hydrochloride, 2,2'-azobis (2-aminodipropane) hydrochloride, azobis (isobutylamidine) hydrochloride, 2,2'-azo Examples thereof include sodium bisisobutyronitrile sulfonate, ferrous sulfate, and hydrogen peroxide.
 重合開始剤は重合性単量体100質量部に対して0.5~20質量部の添加量が好ましく、単独又は併用してもよい。重合トナーを製造する際に使用する分散剤としては、例えば無機系酸化物としては、リン酸三カルシウム、リン酸マグネシウム、リン酸アルミニウム、リン酸亜鉛、炭酸カルシウム、炭酸マグネシウム、水酸化アルミニウム、メタケイ酸カルシウム、硫酸カルシウム、硫酸バリウム、ベントナイト、シリカ、アルミナなどがあげられる。有機系化合物としては、例えばポリビニルアルコール、ゼラチン、メチルセルロース、メチルヒドロキシプロピルセルロース、エチルセルロース、カルボキシメチルセルロースのナトリウム塩、デンプンなどがあげられる。これらの分散剤は、重合性単量体100質量部に対して0.2~2.0質量部を使用することが好ましい。 The polymerization initiator is preferably added in an amount of 0.5 to 20 parts by mass with respect to 100 parts by mass of the polymerizable monomer, and may be used alone or in combination. Examples of the dispersant used in the production of the polymerized toner include inorganic calcium oxides such as tricalcium phosphate, magnesium phosphate, aluminum phosphate, zinc phosphate, calcium carbonate, magnesium carbonate, aluminum hydroxide, and metasilicate. Examples thereof include calcium acid, calcium sulfate, barium sulfate, bentonite, silica, and alumina. Examples of the organic compound include polyvinyl alcohol, gelatin, methyl cellulose, methyl hydroxypropyl cellulose, ethyl cellulose, sodium salt of carboxymethyl cellulose, starch and the like. These dispersants are preferably used in an amount of 0.2 to 2.0 parts by mass with respect to 100 parts by mass of the polymerizable monomer.
 これら分散剤は市販のものをそのまま使用してもよいが、細かい均一な粒度を有する分散粒子を得るために、分散媒体中にて高速撹拌下にて該無機化合物を生成させることもできる。 These commercially available dispersants may be used as they are, but in order to obtain dispersed particles having a fine and uniform particle size, the inorganic compound can be produced in a dispersion medium under high-speed stirring.
 前記重合法で得られるトナーは、特別な処理をしない粉砕法によるトナーに較べ、トナー粒子の凹凸の度合いが小さい傾向にあり、不定形であるために静電潜像担持体とトナーとの接触面積が増加し、トナー付着力が高くなり、結果として機内汚染が少なく、より高画像濃度、より高品位な画像を得られやすい。 The toner obtained by the polymerization method tends to have a small degree of unevenness of the toner particles compared to the toner by the pulverization method without any special treatment and is indefinite, so that the contact between the electrostatic latent image carrier and the toner The area is increased and the toner adhesion is increased. As a result, there is less in-machine contamination, and a higher image density and a higher quality image can be easily obtained.
 また、粉砕法によるトナーにおいても、トナー粒子を、水中に分散させ加熱する湯浴法、熱気流中を通過させる熱処理法、又は機械的エネルギーを付与して処理する機械的衝撃法などの方法によりトナー表面の凹凸の度合いを小さくすることができる。凹凸の度合いを小さくするために有効な装置としては、乾式メカノケミカル法を応用したメカノフージョンシステム(ホソカワミクロン株式会社製)、I式ジェットミル、ローターとライナーを有する混合装置であるハイブリダイザー(奈良機械製作所株式会社製)、高速撹拌羽を有する混合機であるヘンシェルミキサーなどがあげられる。 Also in the toner by the pulverization method, the toner particles are dispersed in water and heated by a hot water bath method, a heat treatment method in which the toner particles pass through a hot air current, or a mechanical impact method in which mechanical energy is applied and processed. The degree of unevenness on the toner surface can be reduced. Effective devices for reducing the degree of unevenness include a mechano-fusion system (manufactured by Hosokawa Micron Co., Ltd.) applying dry mechanochemical method, an I-type jet mill, and a hybridizer that is a mixing device having a rotor and a liner (Nara Machinery) Manufactured by Seisakusho Co., Ltd.) and a Henschel mixer which is a mixer having high-speed stirring blades.
 前記トナー粒子の凹凸の度合いを示す値の一つとして、平均円形度をあげることができる。平均円形度(C)とは、下式(2)により円形度(Ci)を求め、更に下式(3)で示すように測定された全粒子の円形度の総和を測定された全粒子数(m)で除した値を意味する。 As one of the values indicating the degree of unevenness of the toner particles, the average circularity can be given. The average circularity (C) is the total number of particles obtained by calculating the circularity (Ci) by the following formula (2) and further measuring the total roundness of all the particles measured as shown by the following formula (3). It means the value divided by (m).
Figure JPOXMLDOC01-appb-M000055
Figure JPOXMLDOC01-appb-M000055
Figure JPOXMLDOC01-appb-M000056
Figure JPOXMLDOC01-appb-M000056
 前記円形度(Ci)は、フロー式粒子像分析装置(例えば、東亜医用電子株式会社製FPIA-1000)を用いて測定する。測定方法としては、ノニオン界面活性剤約0.1mgを溶解している水10mlにトナー約5mgを分散させた分散液を調整し、超音波(20kHz、50W)を分散液に5分間照射し、分散液濃度を5000~20000個/μLとして、前記フロー式粒子像分析装置を用い、0.60μm以上159.21μm未満の円相当径を有する粒子の円形度分布を測定する。 The circularity (Ci) is measured using a flow particle image analyzer (for example, FPIA-1000 manufactured by Toa Medical Electronics Co., Ltd.). As a measurement method, a dispersion in which about 5 mg of toner is dispersed in 10 ml of water in which about 0.1 mg of a nonionic surfactant is dissolved is prepared, and ultrasonic waves (20 kHz, 50 W) are irradiated to the dispersion for 5 minutes. The circularity distribution of particles having an equivalent circle diameter of 0.60 μm or more and less than 159.21 μm is measured using the flow type particle image analyzer with a dispersion concentration of 5000 to 20000 particles / μL.
 前記平均円形度の値は、0.955~0.995が好ましく、0.960~0.985がより好ましい。平均円形度がこの値になるようにトナー粒子を調整すると、転写残トナーの増加を招くという現象が生じにくく、再転写を起こしにくい傾向にある。 The value of the average circularity is preferably 0.955 to 0.995, and more preferably 0.960 to 0.985. When the toner particles are adjusted so that the average circularity becomes this value, the phenomenon that the transfer residual toner increases is less likely to occur, and retransfer tends not to occur.
 本実施形態に係るトナーの場合、画像性とトナーの生産性の面から、例えばミクロンサイザー(例えば、セイシン企業株式会社製)などのレーザー式粒度分布測定機を使用した測定において、粉砕トナーの場合、トナーの粒子径が体積基準の平均粒径で2μm~15μmの範囲内であることが好ましく、3μm~12μmの範囲内であることがより好ましい。15μmを超える平均粒径になると解像度又は鮮鋭性が鈍くなる傾向にあり、また、2μm未満の平均粒径では解像性は良好となるものの、トナー製造時の歩留まりの悪化によるコスト高の問題、又は機内でのトナー飛散、皮膚浸透などの健康への障害が生じる傾向がある。 In the case of the toner according to the present embodiment, in the case of using a laser particle size distribution measuring machine such as a micron sizer (for example, manufactured by Seishin Enterprise Co., Ltd.) The toner particle diameter is preferably in the range of 2 μm to 15 μm, more preferably in the range of 3 μm to 12 μm in terms of volume average particle diameter. When the average particle size exceeds 15 μm, the resolution or sharpness tends to be dull, and when the average particle size is less than 2 μm, the resolution is good, but the problem of high cost due to the deterioration of the yield during toner production, Or there is a tendency for health problems such as toner scattering and skin penetration in the machine.
 一方、重合トナーの場合では3μm~9μmの範囲内であることが好ましく、4μm~8.5μmの範囲内であることがより好ましく、5μm~8μmの範囲内であることが特に好ましい。体積平均粒径が4μmより小さいと、トナー流動性が低下し、各粒子の帯電性が低下しやすく、また帯電分布が広がるため、背景へのかぶり、又は現像器からのトナーこぼれ等が生じやすくなる。また4μmより小さいと、格段にクリーニング性が困難となる場合がある。体積平均粒径が9μmより大きいと、解像度が低下するため、十分な画質が得られなくなり、近年の高画質要求を満たすことが困難となる場合がある。 On the other hand, in the case of the polymerized toner, it is preferably in the range of 3 μm to 9 μm, more preferably in the range of 4 μm to 8.5 μm, and particularly preferably in the range of 5 μm to 8 μm. When the volume average particle size is smaller than 4 μm, the toner fluidity is lowered, the chargeability of each particle is liable to be lowered, and the charge distribution is widened. Become. On the other hand, if it is smaller than 4 μm, the cleaning property may be extremely difficult. If the volume average particle size is larger than 9 μm, the resolution decreases, so that sufficient image quality cannot be obtained, and it may be difficult to satisfy recent high image quality requirements.
 また、本実施形態に係る重合トナーは、下記の方法により測定される粒度分布を分割された粒度範囲(チャンネル)に対し、体積、数、それぞれに小径側から累積分布を描き、累積16%となる粒径を体積D16%、累積50%となる粒径を体積D50%、累積84%となる粒径を体積D84%と定義したときに、(D84%/D16%)1/2より算出される体積平均粒度分布指標(GSDv)は、1.15~1.30であることが好ましく、1.15~1.25であることがより好ましい。 In addition, the polymerized toner according to the present embodiment draws a cumulative distribution from the smaller diameter side for each of the volume and the number in the divided particle size range (channel) measured by the following method. When the particle size to be defined is defined as volume D16%, the particle size to be accumulated 50% is defined as volume D50%, and the particle size to be accumulated 84% is defined as volume D84%, it is calculated from (D84% / D16%) 1/2. The volume average particle size distribution index (GSDv) is preferably 1.15 to 1.30, more preferably 1.15 to 1.25.
 トナーの粒度分布に関して、本実施形態に係るトナーの場合、例えばコールターカウンター(コールター株式会社製TA-II)による粒度測定により、2μm以下の粒子含有量が個数基準で10~90%であることが好ましく、12.7μm以上の粒子の含有量が体積基準で0~30%であることがより好ましい。
 また、粒径均一性の高い(体積平均粒径/個数平均粒径が1.00~1.30)ものが望ましい。
Regarding the toner particle size distribution, in the case of the toner according to the present embodiment, the particle content of 2 μm or less is 10 to 90% on the number basis, for example, by particle size measurement using a Coulter counter (TA-II manufactured by Coulter Co., Ltd.). Preferably, the content of particles of 12.7 μm or more is more preferably 0 to 30% on a volume basis.
Further, those having a high particle size uniformity (volume average particle size / number average particle size of 1.00 to 1.30) are desirable.
 本実施形態に係る静電荷現像用トナーの場合、トナーの比表面積は、脱吸着ガスを窒素としたBET比表面積測定において、1.2~5.0m/gであることが好ましい。より好ましくは1.5~3.0m/gである。比表面積の測定は、例えばBET比表面積測定装置(例えば、株式会社島津製作所製、FlowSorb II2300)を使用し、50℃で30分間トナー表面の吸着ガスを脱離後、液体窒素により急冷して窒素ガスを再吸着し、更に再度50℃に昇温し、このときの脱ガス量から求めた値と定義する。 In the case of the electrostatic charge developing toner according to the exemplary embodiment, the specific surface area of the toner is preferably 1.2 to 5.0 m 2 / g in BET specific surface area measurement using nitrogen as a desorption gas. More preferably, it is 1.5 to 3.0 m 2 / g. The specific surface area is measured using, for example, a BET specific surface area measuring apparatus (for example, FlowSorb II2300, manufactured by Shimadzu Corporation), desorbing the adsorbed gas on the toner surface at 50 ° C. for 30 minutes, and then rapidly cooling with liquid nitrogen. The gas is re-adsorbed and then heated again to 50 ° C., which is defined as a value obtained from the degassing amount at this time.
 本実施形態に係るトナーの場合、見かけ比重(かさ密度)は、例えばパウダーテスター(例えば、ホソカワミクロン株式会社製)を用いて測定した。非磁性トナーの場合は0.2~0.6g/cmが好ましく、磁性トナーの場合は磁性粉の種類及び含有量にもよるが0.2~2.0g/cmが好ましい。 In the case of the toner according to the exemplary embodiment, the apparent specific gravity (bulk density) was measured using, for example, a powder tester (for example, manufactured by Hosokawa Micron Corporation). In the case of a non-magnetic toner, 0.2 to 0.6 g / cm 3 is preferable, and in the case of a magnetic toner, 0.2 to 2.0 g / cm 3 is preferable depending on the kind and content of the magnetic powder.
 本実施形態に係るトナーの場合、非磁性トナーの場合の真比重は0.9~1.2g/cmが好ましく、磁性トナーの場合は磁性粉の種類及び含有量にもよるが0.9~4.0g/cmが好ましい。トナーの真比重は、次のようにして算出される。トナー1.000gを精秤し、これを10mmΦの錠剤成型器に入れ、真空下で200kgf/cmの圧力をかけながら圧縮成型する。この円柱状の成型物の高さをマイクロメーターで測定し、これより真比重を算出する。 In the case of the toner according to this embodiment, the true specific gravity in the case of the non-magnetic toner is preferably 0.9 to 1.2 g / cm 3 , and in the case of the magnetic toner, it depends on the kind and content of the magnetic powder, but 0.9 ˜4.0 g / cm 3 is preferred. The true specific gravity of the toner is calculated as follows. 1.000 g of toner is precisely weighed, put into a 10 mmφ tablet molding machine, and compression molded while applying a pressure of 200 kgf / cm 2 under vacuum. The height of this cylindrical molded product is measured with a micrometer, and the true specific gravity is calculated from this.
 トナーの流動性は、例えば、安息角測定装置(例えば、筒井理化株式会社製)による流動安息角と静止安息角により定義する。流動安息角は本実施形態に係る電荷制御剤を使用した静電荷現像用トナーの場合、5度~45度のものが好ましい。また静止安息角は10~50度のものが好ましい。
 本実施形態に係るトナーは、粉砕型トナーの場合の形状係数(SF-1)の平均値が100~400が好ましく、形状係数2(SF-2)の平均値が100~350が好ましい。
The fluidity of the toner is defined by, for example, a flow repose angle and a static repose angle by a repose angle measuring device (for example, manufactured by Tsutsui Rika Co., Ltd.). The flow angle of repose is preferably 5 to 45 degrees in the case of the electrostatic charge developing toner using the charge control agent according to the present embodiment. The rest angle of repose is preferably 10 to 50 degrees.
In the toner according to the exemplary embodiment, the average value of the shape factor (SF-1) in the case of the pulverized toner is preferably 100 to 400, and the average value of the shape factor 2 (SF-2) is preferably 100 to 350.
 本実施形態において、トナーの形状係数を示すSF-1、SF-2とは、例えばCCDカメラを備えた光学顕微鏡(例えば、オリンパス株式会社製BH-2)を用い、1000倍に拡大したトナー粒子群を一視野に30個程度となるようサンプリングし、得られた画像を画像解析装置(例えば、ニレコ株式会社製ルーゼックスFS)に転送し、同作業をトナー粒子に対し約1000個となるまで繰り返し行い形状係数を算出した。形状係数(SF-1)と形状係数2(SF-2)は以下の式によって算出する。
SF-1=((ML×π)/4A)×100
 (式中、MLは粒子の最大長、Aは一粒子の投影面積を示す。)
SF-2=(PM/4Aπ)×100
 (式中、PMは粒子の周囲長、Aは一粒子の投影面積を示す。)。
In the present embodiment, SF-1 and SF-2 indicating the shape factor of the toner are, for example, toner particles magnified 1000 times using an optical microscope (for example, BH-2 manufactured by Olympus Corporation) equipped with a CCD camera. The group is sampled to be about 30 in one field of view, and the obtained image is transferred to an image analyzer (for example, Luzex FS manufactured by Nireco Co., Ltd.), and the same operation is repeated until there are about 1000 toner particles. The shape factor was calculated. The shape factor (SF-1) and the shape factor 2 (SF-2) are calculated by the following equations.
SF-1 = ((ML 2 × π) / 4A) × 100
(In the formula, ML represents the maximum particle length, and A represents the projected area of one particle.)
SF-2 = (PM 2 / 4Aπ) × 100
(In the formula, PM represents the perimeter of the particle, and A represents the projected area of one particle.)
 SF-1は粒子の歪みを表し、粒子が球に近いものほど100に近く、細長いものであるほど数値が大きくなる。またSF-2は粒子の凹凸を表し、粒子が球に近いものほど100に近く、粒子の形が複雑であるほど数値が大きくなる。 SF-1 represents the distortion of the particle, and the closer the particle is to a sphere, the closer to 100, and the longer the particle, the larger the value. SF-2 represents the unevenness of the particle. The closer the particle is to a sphere, the closer to 100, and the more complicated the particle shape, the larger the value.
 本実施形態に係るトナーは、トナーの体積抵抗率が、非磁性トナーの場合は1×1012~1×1016Ω・cmが好ましく、また磁性トナーの場合は磁性粉の種類及び含有量にもよるが、1×10~1×1016Ω・cmのものが好ましい。この場合のトナー体積抵抗率は、トナー粒子を圧縮成型し直径50mm、厚み2mmの円盤状の試験片を作製し、これを固体用電極(例えば、安藤電気株式会社製SE-70)にセットし、高絶縁抵抗計(例えば、ヒューレットパッカッ-ド株式会社製4339A)を用いて、直流電圧100Vを連続印加した時の1時間経過後の値と定義する。 In the toner according to this embodiment, the volume resistivity of the toner is preferably 1 × 10 12 to 1 × 10 16 Ω · cm in the case of a non-magnetic toner, and the type and content of the magnetic powder in the case of a magnetic toner. However, it is preferably 1 × 10 8 to 1 × 10 16 Ω · cm. In this case, the toner volume resistivity is obtained by compression-molding toner particles to produce a disk-shaped test piece having a diameter of 50 mm and a thickness of 2 mm, and setting this on a solid electrode (for example, SE-70 manufactured by Ando Electric Co., Ltd.). Using a high insulation resistance meter (for example, 4339A manufactured by Hewlett-Packard Co., Ltd.), it is defined as a value after 1 hour when a DC voltage of 100 V is continuously applied.
 本実施形態に係るトナーは、トナーの誘電正接が、非磁性トナーの場合は1.0×10-3~15.0×10-3のものが好ましく、また磁性トナーの場合は磁性粉の種類及び含有量にもよるが、2×10-3~30×10-3のものが好ましい。この場合のトナーの誘電正接は、トナー粒子を圧縮成型し、直径50mm、厚み2mmの円盤状の試験片を作製し、これを固体用電極にセットし、LCRメーター(例えば、ヒューレットパッカッ-ド株式会社製4284A)を用いて、測定周波数1KHz、ピークトゥーピーク電圧0.1KVで測定した時に得られる誘電正接値(Tanδ)と定義する。 The toner according to this embodiment preferably has a dielectric loss tangent of 1.0 × 10 −3 to 15.0 × 10 −3 in the case of non-magnetic toner, and the kind of magnetic powder in the case of magnetic toner. Depending on the content, those of 2 × 10 −3 to 30 × 10 −3 are preferable. In this case, the dielectric loss tangent of the toner is obtained by compression-molding the toner particles to produce a disk-shaped test piece having a diameter of 50 mm and a thickness of 2 mm, setting this on an electrode for solid, and an LCR meter (for example, Hewlett-Packard) It is defined as a dielectric loss tangent value (Tanδ) obtained when measured at a measurement frequency of 1 KHz and a peak-to-peak voltage of 0.1 KV using 4284A).
 本実施形態に係るトナーは、トナーのアイゾット衝撃値が0.1~30kg・cm/cmであることが好ましい。この場合のトナーのアイゾット衝撃値とは、トナー粒子を熱溶融し板状の試験片を作製し、これをJIS規格K-7110(硬質プラスチックの衝撃試験法)に準じて測定する。 The toner according to the exemplary embodiment preferably has an Izod impact value of the toner of 0.1 to 30 kg · cm / cm. The Izod impact value of the toner in this case is measured in accordance with JIS standard K-7110 (hard plastic impact test method) by thermally melting toner particles to produce a plate-like test piece.
 本実施形態に係るトナーは、トナーのメルトインデクス(MI値)が10~150g/10minであることが好ましい。この場合のトナーのメルトインデクス(MI値)とは、JIS規格K-7210(A法)に準じて測定するものである。この場合、測定温度が125℃、加重を10kgとする。 The toner according to the present embodiment preferably has a toner melt index (MI value) of 10 to 150 g / 10 min. The melt index (MI value) of the toner in this case is measured according to JIS standard K-7210 (Method A). In this case, the measurement temperature is 125 ° C. and the load is 10 kg.
 本実施形態に係るトナーは、トナーの溶融開始温度が80~180℃であることが好ましく、4mm降下温度が90~220℃であることが好ましい。この場合のトナー溶融開始温度は、トナー粒子を圧縮成型し直径10mm、厚み20mmの円柱状の試験片を作製し、これを熱溶融特性測定装置、例えばフローテスター(例えば、株式会社島津製作所製CFT-500C)にセットし、荷重20kgf/cmで測定した時の溶融が始まりピストンが降下し始める値と定義する。また同様の測定で、ピストンが4mm降下したときの温度を4mm降下温度と定義する。 In the toner according to this embodiment, the melting start temperature of the toner is preferably 80 to 180 ° C., and the 4 mm drop temperature is preferably 90 to 220 ° C. In this case, the toner melting start temperature is obtained by compressing and molding toner particles to produce a cylindrical test piece having a diameter of 10 mm and a thickness of 20 mm, which is then used as a thermal melting characteristic measuring device such as a flow tester (for example, CFT manufactured by Shimadzu Corporation). -500C) and is defined as the value at which melting starts and the piston starts to descend when measured at a load of 20 kgf / cm 2 . In the same measurement, the temperature when the piston drops by 4 mm is defined as the 4 mm drop temperature.
 本実施形態に係るトナーは、トナーのガラス転移温度(Tg)が35~80℃であることが好ましく、40~75℃であることがより好ましい。この場合のトナーのガラス転移温度は、示差熱分析(以後、DSCと略称する)装置を用いて測定し、一定温度で昇温後、急冷し、再昇温したときに現れる相変化のピーク値より求めるものと定義する。トナーのTgが35℃を下回ると、耐オフセット性及び保存安定性が低下する傾向にあり、80℃を超えると画像の定着強度が低下する傾向がある。
 本実施形態に係るトナーのDSC測定において観測される吸熱ピークにおいて70~120℃の領域に最大ピークのピークトップ温度があることが好ましい。
In the toner according to the exemplary embodiment, the glass transition temperature (Tg) of the toner is preferably 35 to 80 ° C., and more preferably 40 to 75 ° C. The glass transition temperature of the toner in this case is measured using a differential thermal analysis (hereinafter abbreviated as DSC) apparatus, and the peak value of the phase change that appears when the temperature is raised at a constant temperature, rapidly cooled, and then reheated. Define what you want more. When the Tg of the toner is lower than 35 ° C., the offset resistance and the storage stability tend to decrease, and when it exceeds 80 ° C., the fixing strength of the image tends to decrease.
In the endothermic peak observed in the DSC measurement of the toner according to the exemplary embodiment, it is preferable that the peak top temperature of the maximum peak is in the region of 70 to 120 ° C.
 本実施形態に係るトナーは、トナーの溶融粘度が1000~50000ポイズであることが好ましく、1500~38000ポイズであることがより好ましい。この場合のトナー溶融粘度は、トナー粒子を圧縮成型し直径10mm、厚み20mmの円柱状の試験片を作製し、これを熱溶融特性測定装置、例えばフローテスター(株式会社島津製作所製CFT-500C)にセットし、荷重20kgf/cmで測定した時の値と定義する。 In the toner according to the exemplary embodiment, the melt viscosity of the toner is preferably 1000 to 50000 poise, and more preferably 1500 to 38000 poise. In this case, the toner melt viscosity is obtained by compressing and molding toner particles to prepare a cylindrical test piece having a diameter of 10 mm and a thickness of 20 mm, and using this, for example, a flow tester (CFT-500C manufactured by Shimadzu Corporation). It is defined as a value when measured at a load of 20 kgf / cm 2 .
 本実施形態に係るトナーの溶媒溶解残分は、THF不溶分として0~30質量%、酢酸エチル不溶分として0~40質量%及びクロロホルム不溶分として0~30質量%のものが好ましい。ここでの溶媒溶解残分は、トナー1gをTHF、酢酸エチル及びクロロホルムの各溶剤100mlに均一に溶解/又は分散させ、この溶液/又は分散液を圧ろ過し、ろ液を乾燥させ定量し、この値からトナー中の有機溶剤への不溶解物の割合を算出した値とする。 The solvent-soluble residue of the toner according to the exemplary embodiment is preferably 0 to 30% by mass as a THF-insoluble component, 0 to 40% by mass as an ethyl acetate-insoluble component, and 0 to 30% by mass as a chloroform-insoluble component. The solvent-dissolved residue here is obtained by uniformly dissolving / dispersing 1 g of toner in 100 ml of each solvent of THF, ethyl acetate and chloroform, pressure-filtering the solution / dispersion, drying the filtrate, and quantifying. From this value, the ratio of insoluble matter in the organic solvent in the toner is calculated.
 本実施形態に係るトナーは画像形成方法の1つである1成分現像方式に使用することができる。1成分現像方式とは、薄膜化させたトナーを潜像担持体に供給して潜像を現像する方式である。トナーの薄膜化は、通常、トナー搬送部材、トナー層厚規制部材及びトナー補給補助部材を備え、かつ該補給補助部材とトナー搬送部材並びにトナー層厚規制部材とトナー搬送部材とがそれぞれ当接している装置を用いて行われる。 The toner according to the present embodiment can be used in a one-component development method which is one of image forming methods. The one-component developing method is a method for developing a latent image by supplying a thinned toner to a latent image carrier. The toner thinning usually includes a toner conveying member, a toner layer thickness regulating member and a toner replenishing auxiliary member, and the replenishing auxiliary member and the toner conveying member, and the toner layer thickness regulating member and the toner conveying member are in contact with each other. It is performed using the device.
 本実施形態に係るトナーを2成分現像法について適用する場合について具体的に説明する。2成分現像方式とは、トナーとキャリア(帯電付与材及びトナー搬送材としての役割を持つもの)を使用する方式であり、キャリアは上述した磁性材やガラスビーズが使用される。現像剤(トナー及びキャリア)は、攪拌部材によって攪拌される事により、所定の電荷量を発生させ、マグネットローラーなどによって現像部位にまで搬送される。マグネットローラー上では磁力により、ローラー表面に現像剤が保持され、現像剤規制板などにより適当な高さに層規制された磁気ブラシを形成する。現像剤は現像ローラーの回転に伴って、ローラー上を移動し、静電荷潜像保持体と接触又は一定の間隔で非接触状態で対向させ、潜像を現像可視化する。非接触状態での現像の場合は、通常、現像剤と潜像保持体の間に直流電界を生じさせる事によりトナーが一定間隔の空間を飛翔する駆動力を得ることができるが、より鮮明な画像に現像するために、交流を重畳させる方式にも適用することができる。 The case where the toner according to the present embodiment is applied to the two-component development method will be specifically described. The two-component development method is a method using toner and a carrier (having a role as a charge imparting material and a toner conveying material), and the above-described magnetic material and glass beads are used for the carrier. The developer (toner and carrier) is agitated by the agitating member, generates a predetermined amount of charge, and is conveyed to the development site by a magnet roller or the like. On the magnet roller, a developer is held on the roller surface by magnetic force, and a magnetic brush whose layer is regulated to an appropriate height by a developer regulating plate or the like is formed. The developer moves on the roller as the developing roller rotates, and is brought into contact with the electrostatic charge latent image holding member or opposed in a non-contact state at a constant interval to develop and visualize the latent image. In the case of development in a non-contact state, it is usually possible to obtain a driving force for the toner to fly through a space at a constant interval by generating a direct current electric field between the developer and the latent image holding member. It can also be applied to a method of superimposing alternating current in order to develop an image.
 また、更に本実施形態において使用する電荷制御剤は、静電粉体塗装用塗料における電荷制御剤(電荷増強剤)としても好適である。すなわち、この電荷増強剤を用いた静電塗装用塗料は、耐環境性、保存安定性、特に熱安定性と耐久性に優れ、塗着効率が100%に達し、塗膜欠陥のない厚膜を形成することができる。 Furthermore, the charge control agent used in the present embodiment is also suitable as a charge control agent (charge enhancer) in a coating for electrostatic powder coating. That is, the coating material for electrostatic coating using this charge enhancer is excellent in environmental resistance, storage stability, in particular thermal stability and durability, has a coating efficiency of 100%, and is a thick film free from coating film defects. Can be formed.
 以下、実施例に基づいて本発明をより詳細に説明するが、これらは本発明をなんら制限するものではない。以下の実施例において、「部」は全て「質量部」を表す。 Hereinafter, the present invention will be described in more detail based on examples, but these do not limit the present invention in any way. In the following examples, all “parts” represent “parts by mass”.
 一般式(1)で表されるピリジンジカルボン酸誘導体の精製はカラムクロマトグラフによる精製、シリカゲル、活性炭、活性白土などによる吸着精製、溶媒による再結晶又は晶析法などによって行った。化合物の同定は、NMR分析によって行った。 Purification of the pyridinedicarboxylic acid derivative represented by the general formula (1) was performed by purification using column chromatography, adsorption purification using silica gel, activated carbon, activated clay, recrystallization using a solvent, or crystallization. The compound was identified by NMR analysis.
[合成実施例1-1](例示化合物1-2の合成)
 窒素置換した反応容器に、アニリン8.0g(86.3ミリモル)、トリエチルアミン8.7g(86.3ミリモル)、ジオキサン50mlを加え、攪拌しながら、2,6-ピリジンジカルボン酸ジクロリド8.0g(39.2ミリモル)のジオキサン溶液50mlを滴下した後、さらに5時間攪拌した。一夜放置した後、反応液を希塩酸400mlの中に攪拌しながら加えた。析出した粗製物をろ過によって採取し、水で洗浄した後、60℃で減圧乾燥することによって白色結晶12.05g(収率97.2%)を得た。
[Synthesis Example 1-1] (Synthesis of Exemplified Compound 1-2)
To a reaction vessel purged with nitrogen, 8.0 g (86.3 mmol) of aniline, 8.7 g (86.3 mmol) of triethylamine and 50 ml of dioxane were added, and 8.0 g (2,6-pyridinedicarboxylic acid dichloride) was added while stirring. 39.2 mmol) of dioxane solution was added dropwise, and the mixture was further stirred for 5 hours. After standing overnight, the reaction solution was added to 400 ml of diluted hydrochloric acid with stirring. The precipitated crude product was collected by filtration, washed with water, and then dried under reduced pressure at 60 ° C. to obtain 12.05 g (yield 97.2%) of white crystals.
 得られた白色結晶についてNMRを使用して構造を同定した。H-NMR(DMSO-d)で以下の15個の水素のシグナルを検出した。
 δ(ppm)=11.05(2H)、8.42-8.43(2H)、8.30-8.33(1H)、7.93-7.95(4H)、7.45-7.48(4H)、7.20-7.22(2H)。
The structure of the white crystals obtained was identified using NMR. The following 15 hydrogen signals were detected by 1 H-NMR (DMSO-d 6 ).
δ (ppm) = 11.05 (2H), 8.42-8.43 (2H), 8.30-8.33 (1H), 7.93-7.95 (4H), 7.45-7 .48 (4H), 7.20-7.22 (2H).
[合成実施例1-2](例示化合物1-3の合成)
 窒素置換した反応容器に、o-トルイジン5.5g(51.5ミリモル)、トリエチルアミン5.2g(51.5ミリモル)、ジオキサン100mlを加え、攪拌しながら、2,6-ピリジンジカルボン酸ジクロリド5.0g(24.5ミリモル)のジオキサン溶液50mlを滴下した後、さらに6時間攪拌した。一夜放置した後、反応液を希塩酸500mlの中に攪拌しながら加えた。析出する粗製物をろ過によって採取し、水で洗浄した後、60℃で減圧乾燥することによって白色結晶7.71g(収率90.7%)を得た。
[Synthesis Example 1-2] (Synthesis of Exemplified Compound 1-3)
To a reaction vessel purged with nitrogen, 5.5 g (51.5 mmol) of o-toluidine, 5.2 g (51.5 mmol) of triethylamine and 100 ml of dioxane were added, and 2,6-pyridinedicarboxylic acid dichloride 5. After adding 50 g of 0 g (24.5 mmol) dioxane solution dropwise, the mixture was further stirred for 6 hours. After standing overnight, the reaction solution was added to 500 ml of diluted hydrochloric acid with stirring. The precipitated crude product was collected by filtration, washed with water, and then dried under reduced pressure at 60 ° C. to obtain 7.71 g of white crystals (yield 90.7%).
 得られた白色結晶についてNMRを使用して構造を同定した。H-NMR(DMSO-d)で以下の19個の水素のシグナルを検出した。
 δ(ppm)=10.84(2H)、8.38-8.39(2H)、8.29-8.31(1H)、7.44-7.45(2H)、7.33-7.35(2H)、7.27-7.30(2H)、7.22-7.25(2H)、2.31(6H)。
The structure of the white crystals obtained was identified using NMR. The following 19 hydrogen signals were detected by 1 H-NMR (DMSO-d 6 ).
δ (ppm) = 10.84 (2H), 8.38-8.39 (2H), 8.29-8.31 (1H), 7.44-7.45 (2H), 7.33-7 .35 (2H), 7.27-7.30 (2H), 7.22-7.25 (2H), 2.31 (6H).
[合成実施例1-3](例示化合物1-4の合成)
 窒素置換した反応容器に、m-トルイジン5.5g(51.5ミリモル)、トリエチルアミン5.2g(51.5ミリモル)、ジオキサン100mlを加え、攪拌しながら、2,6-ピリジンジカルボン酸ジクロリド5.0g(24.5ミリモル)のジオキサン溶液50mlを滴下した後、さらに7時間攪拌した。一夜放置した後、反応液を希塩酸500mlの中に攪拌しながら加えた。析出する粗製物をろ過によって採取し、水で洗浄した後、60℃で減圧乾燥することによって白色結晶7.90g(収率92.9%)を得た。
[Synthesis Example 1-3] (Synthesis of Exemplified Compound 1-4)
To a reaction vessel purged with nitrogen, 5.5 g (51.5 mmol) of m-toluidine, 5.2 g (51.5 mmol) of triethylamine and 100 ml of dioxane were added, and 2,6-pyridinedicarboxylic acid dichloride was added while stirring. After adding 50 g of 0 g (24.5 mmol) dioxane solution dropwise, the mixture was further stirred for 7 hours. After standing overnight, the reaction solution was added to 500 ml of diluted hydrochloric acid with stirring. The precipitated crude product was collected by filtration, washed with water, and then dried under reduced pressure at 60 ° C. to obtain 7.90 g of white crystals (yield 92.9%).
 得られた白色結晶についてNMRを使用して構造を同定した。H-NMR(DMSO-d)で以下の19個の水素のシグナルを検出した。
 δ(ppm)=10.96(2H)、8.40-8.41(2H)、8.29-8.32(1H)、7.77(2H)、7.69-7.70(2H)、7.32-7.35(2H)、7.02-7.03(2H)、2.38(6H)。
The structure of the white crystals obtained was identified using NMR. The following 19 hydrogen signals were detected by 1 H-NMR (DMSO-d 6 ).
δ (ppm) = 19.66 (2H), 8.40-8.41 (2H), 8.29-8.32 (1H), 7.77 (2H), 7.69-7.70 (2H) ), 7.32-7.35 (2H), 7.02-7.03 (2H), 2.38 (6H).
[合成実施例1-4](例示化合物1-5の合成)
 窒素置換した反応容器に、p-トルイジン9.2g(86.3ミリモル)、トリエチルアミン8.7g(86.3ミリモル)、ジオキサン50mlを加え、攪拌しながら、2,6-ピリジンジカルボン酸ジクロリド8.0g(39.2ミリモル)のジオキサン溶液50mlを滴下し、ジオキサン50mlを追加した後、さらに5時間攪拌した。一夜放置した後、反応液を希塩酸400mlの中に攪拌しながら加えた。析出する粗製物をろ過によって採取し、水で洗浄した後、60℃で減圧乾燥することによって白色結晶11.62g(収率86.1%)を得た。
[Synthesis Example 1-4] (Synthesis of Exemplified Compound 1-5)
To a reaction vessel purged with nitrogen, 9.2 g (86.3 mmol) of p-toluidine, 8.7 g (86.3 mmol) of triethylamine and 50 ml of dioxane were added, and 2,6-pyridinedicarboxylic acid dichloride 8. 50 ml of a dioxane solution of 0 g (39.2 mmol) was added dropwise, 50 ml of dioxane was added, and the mixture was further stirred for 5 hours. After standing overnight, the reaction solution was added to 400 ml of diluted hydrochloric acid with stirring. The precipitated crude product was collected by filtration, washed with water, and dried under reduced pressure at 60 ° C. to obtain 11.62 g (yield 86.1%) of white crystals.
 得られた白色結晶についてNMRを使用して構造を同定した。H-NMR(DMSO-d)で以下の19個の水素のシグナルを検出した。
 δ(ppm)=10.97(2H)、8.39-8.40(2H)、8.28-8.31(1H)、7.80-7.82(4H)、7.25-7.26(4H)、2.33(6H)。
The structure of the white crystals obtained was identified using NMR. The following 19 hydrogen signals were detected by 1 H-NMR (DMSO-d 6 ).
δ (ppm) = 10.97 (2H), 8.39-8.40 (2H), 8.28-8.31 (1H), 7.80-7.82 (4H), 7.25-7 .26 (4H), 2.33 (6H).
[合成実施例1-5](例示化合物1-6の合成)
 窒素置換した反応容器に、4-tert-ブチルアニリン12.9g(86.3ミリモル)、トリエチルアミン8.7g(86.3ミリモル)、ジオキサン50mlを加え、攪拌しながら、2,6-ピリジンジカルボン酸ジクロリド8.0g(39.2ミリモル)のジオキサン溶液50mlを滴下した後、さらに6時間攪拌した。一夜放置した後、反応液を希塩酸400mlの中に攪拌しながら加えた。析出する粗製物をろ過によって採取し、水で洗浄した後、60℃で減圧乾燥することによって白色結晶15.78g(収率93.9%)を得た。
[Synthesis Example 1-5] (Synthesis of Exemplified Compound 1-6)
To a reaction vessel purged with nitrogen, 12.9 g (86.3 mmol) of 4-tert-butylaniline, 8.7 g (86.3 mmol) of triethylamine, and 50 ml of dioxane were added, and 2,6-pyridinedicarboxylic acid was stirred. After dropwise addition of 50 ml of dioxane 8.0 g (39.2 mmol) in dioxane, the mixture was further stirred for 6 hours. After standing overnight, the reaction solution was added to 400 ml of diluted hydrochloric acid with stirring. The precipitated crude product was collected by filtration, washed with water, and then dried under reduced pressure at 60 ° C. to obtain 15.78 g (yield 93.9%) of white crystals.
 得られた白色結晶についてNMRを使用して構造を同定した。H-NMR(DMSO-d)で以下の31個の水素のシグナルを検出した。
 δ(ppm)=10.97(2H)、8.39-8.40(2H)、8.28-8.31(1H)、7.82-7.83(4H)、7.45-7.47(4H)、1.31(18H)。
The structure of the white crystals obtained was identified using NMR. The following 31 hydrogen signals were detected by 1 H-NMR (DMSO-d 6 ).
δ (ppm) = 10.97 (2H), 8.39-8.40 (2H), 8.28-8.31 (1H), 7.82-7.83 (4H), 7.45-7 .47 (4H), 1.31 (18H).
[合成実施例1-6](例示化合物1-7の合成)
 窒素置換した反応容器に、m-クロロアニリン6.6g(51.5ミリモル)、トリエチルアミン5.2g(51.5ミリモル)、ジオキサン100mlを加え、攪拌しながら、2,6-ピリジンジカルボン酸ジクロリド5.0g(24.5ミリモル)のジオキサン溶液50mlを滴下した後、さらに6時間攪拌した。一夜放置した後、反応液を希塩酸500mlの中に攪拌しながら加えた。析出する粗製物をろ過によって採取し、水で洗浄した後、60℃で減圧乾燥することによって白色結晶8.76g(収率92.2%)を得た。
[Synthesis Example 1-6] (Synthesis of Exemplified Compound 1-7)
To a reaction vessel purged with nitrogen, 6.6 g (51.5 mmol) of m-chloroaniline, 5.2 g (51.5 mmol) of triethylamine, and 100 ml of dioxane were added, and 2,6-pyridinedicarboxylic acid dichloride 5 was added while stirring. After dropwise addition of 50 ml of 0.0 g (24.5 mmol) of dioxane, the mixture was further stirred for 6 hours. After standing overnight, the reaction solution was added to 500 ml of diluted hydrochloric acid with stirring. The precipitated crude product was collected by filtration, washed with water, and then dried under reduced pressure at 60 ° C. to obtain 8.76 g of white crystals (yield 92.2%).
 得られた白色結晶についてNMRを使用して構造を同定した。H-NMR(DMSO-d)で以下の13個の水素のシグナルを検出した。
 δ(ppm)=11.09(2H)、8.42-8.43(2H)、8.31-8.34(1H)、8.14(2H)、7.87-7.88(2H)、7.48-7.51(2H)、7.26-7.27(2H)。
The structure of the white crystals obtained was identified using NMR. The following 13 hydrogen signals were detected by 1 H-NMR (DMSO-d 6 ).
δ (ppm) = 11.09 (2H), 8.42-8.43 (2H), 8.31-8.34 (1H), 8.14 (2H), 7.87-7.88 (2H) ), 7.48-7.51 (2H), 7.26-7.27 (2H).
[合成実施例1-7](例示化合物1-8の合成)
 窒素置換した反応容器に、m-アニシジン6.3g(51.5ミリモル)、トリエチルアミン5.2g(51.5ミリモル)、ジオキサン100mlを加え、攪拌しながら、2,6-ピリジンジカルボン酸ジクロリド5.0g(24.5ミリモル)のジオキサン溶液50mlを滴下した後、さらに6時間攪拌した。一夜放置した後、反応液を希塩酸500mlの中に攪拌しながら加えた。析出する粗製物をろ過によって採取し、水で洗浄した後、60℃で減圧乾燥することによって白色結晶8.28g(収率90.0%)を得た。
[Synthesis Example 1-7] (Synthesis of Exemplified Compound 1-8)
To a reaction vessel purged with nitrogen, 6.3 g (51.5 mmol) of m-anisidine, 5.2 g (51.5 mmol) of triethylamine and 100 ml of dioxane were added, and 2,6-pyridinedicarboxylic acid dichloride 5. After adding 50 g of 0 g (24.5 mmol) dioxane solution dropwise, the mixture was further stirred for 6 hours. After standing overnight, the reaction solution was added to 500 ml of diluted hydrochloric acid with stirring. The precipitated crude product was collected by filtration, washed with water, and then dried under reduced pressure at 60 ° C. to obtain 8.28 g (yield 90.0%) of white crystals.
 得られた白色結晶についてNMRを使用して構造を同定した。H-NMR(DMSO-d)で以下の19個の水素のシグナルを検出した。
 δ(ppm)=11.00(2H)、8.41-8.42(2H)、8.30-8.33(1H)、7.64-7.65(2H)、7.49-7.50(2H)、7.35-7.38(2H)、6.78-6.80(2H)、3.81(6H)。
The structure of the white crystals obtained was identified using NMR. The following 19 hydrogen signals were detected by 1 H-NMR (DMSO-d 6 ).
δ (ppm) = 11.00 (2H), 8.41-8.42 (2H), 8.30-8.33 (1H), 7.64-7.65 (2H), 7.49-7 .50 (2H), 7.35-7.38 (2H), 6.78-6.80 (2H), 3.81 (6H).
[合成実施例1-8](例示化合物1-9の合成)
 窒素置換した反応容器に、2-tert-ブチルアニリン7.7g(51.5ミリモル)、トリエチルアミン5.2g(51.5ミリモル)、ジオキサン100mlを加え、攪拌しながら、2,6-ピリジンジカルボン酸ジクロリド5.0g(24.5ミリモル)のジオキサン溶液50mlを滴下した後、さらに6.5時間攪拌した。一夜放置した後、反応液を希塩酸500mlの中に攪拌しながら加えた。酢酸エチルを加え、分液操作を行うことによって有機層を採取した。有機層を飽和重曹水、飽和食塩水で順次洗浄した後、無水硫酸ナトリウムで脱水し、濃縮することによって粗製物を得た。粗製物をカラムクロマトグラフ[担体:シリカゲル、溶離液:酢酸エチル]によって精製し、アモルファス晶10.5g(収率100%)を得た。
[Synthesis Example 1-8] (Synthesis of Exemplified Compound 1-9)
To a reaction vessel purged with nitrogen, 7.7 g (51.5 mmol) of 2-tert-butylaniline, 5.2 g (51.5 mmol) of triethylamine and 100 ml of dioxane were added, and 2,6-pyridinedicarboxylic acid was stirred. After adding 50 ml of a dioxane solution of 5.0 g (24.5 mmol) of dichloride dropwise, the mixture was further stirred for 6.5 hours. After standing overnight, the reaction solution was added to 500 ml of diluted hydrochloric acid with stirring. Ethyl acetate was added and an organic layer was collected by performing a liquid separation operation. The organic layer was washed successively with saturated aqueous sodium hydrogen carbonate and saturated brine, dried over anhydrous sodium sulfate, and concentrated to give a crude product. The crude product was purified by column chromatography [carrier: silica gel, eluent: ethyl acetate] to obtain 10.5 g of amorphous crystals (yield 100%).
 得られたアモルファス晶についてNMRを使用して構造を同定した。H-NMR(DMSO-d)で以下の31個の水素のシグナルを検出した。
 δ(ppm)=10.84(2H)、8.36-8.38(2H)、8.28-8.30(1H)、7.48-7.50(2H)、7.27-7.32(4H)、7.15-7.16(2H)、1.34(18H)。
The structure of the obtained amorphous crystal was identified using NMR. The following 31 hydrogen signals were detected by 1 H-NMR (DMSO-d 6 ).
δ (ppm) = 10.84 (2H), 8.36-8.38 (2H), 8.28-8.30 (1H), 7.48-7.50 (2H), 7.27-7 .32 (4H), 7.15-7.16 (2H), 1.34 (18H).
[合成実施例1-9](例示化合物1-10の合成)
 窒素置換した反応容器に、2-(トリフルオロメチル)アニリン8.3g(51.5ミリモル)、トリエチルアミン5.2g(51.5ミリモル)、ジオキサン100mlを加え、攪拌しながら、2,6-ピリジンジカルボン酸ジクロリド5.0g(24.5ミリモル)のジオキサン溶液50mlを滴下した後、さらに6時間攪拌した。一夜放置した後、反応液を希塩酸500mlの中に攪拌しながら加えた。析出する粗製物をろ過によって採取し、水で洗浄した後、60℃で減圧乾燥することによって白色結晶9.33g(収率84.1%)を得た。
[Synthesis Example 1-9] (Synthesis of Exemplified Compound 1-10)
To a reaction vessel purged with nitrogen, 8.3 g (51.5 mmol) of 2- (trifluoromethyl) aniline, 5.2 g (51.5 mmol) of triethylamine, and 100 ml of dioxane were added, and 2,6-pyridine was stirred. After dropwise addition of 50 ml of a dioxane solution of 5.0 g (24.5 mmol) of dicarboxylic acid dichloride, the mixture was further stirred for 6 hours. After standing overnight, the reaction solution was added to 500 ml of diluted hydrochloric acid with stirring. The precipitated crude product was collected by filtration, washed with water, and then dried under reduced pressure at 60 ° C. to obtain 9.33 g of white crystals (yield 84.1%).
 得られた白色結晶についてNMRを使用して構造を同定した。H-NMR(DMSO-d)で以下の13個の水素のシグナルを検出した。
 δ(ppm)=10.82(2H)、8.37-8.38(2H)、8.30-8.32(1H)、7.77-7.84(4H)、7.67-7.68(2H)、7.56-7.59(2H)。
The structure of the white crystals obtained was identified using NMR. The following 13 hydrogen signals were detected by 1 H-NMR (DMSO-d 6 ).
δ (ppm) = 10.82 (2H), 8.37-8.38 (2H), 8.30-8.32 (1H), 7.77-7.84 (4H), 7.67-7 .68 (2H), 7.56-7.59 (2H).
[実施例1-10]
(非磁性トナー1-1の製造)
 スチレン-アクリレート系共重合体樹脂(三井化学株式会社製、商品名CPR-100、酸価0.1mgKOH/g)91部、合成実施例1-3で合成したピリジンジカルボン酸誘導体(例示化合物1-4)1部、カーボンブラック(三菱化学株式会社製、商品名MA-100)5部及び低分子量ポリプロピレン(三洋化成株式会社製、商品名ビスコール550P)3部を130℃の加熱混合装置(2軸押出混練機)によって溶融混合した。冷却した混合物をハンマーミルで粗粉砕した後、ジェットミルで微粉砕し、分級して体積平均粒径9±0.5μmの非磁性トナー1-1を得た。
[Example 1-10]
(Production of non-magnetic toner 1-1)
Styrene-acrylate copolymer resin (manufactured by Mitsui Chemicals, trade name CPR-100, acid value 0.1 mg KOH / g) 91 parts, pyridinedicarboxylic acid derivative synthesized in Synthesis Example 1-3 (Exemplary Compound 1- 4) 1 part, 5 parts of carbon black (trade name MA-100, manufactured by Mitsubishi Chemical Corporation) and 3 parts of low molecular weight polypropylene (trade name, Biscol 550P, manufactured by Sanyo Chemical Co., Ltd.) are heated and mixed at 130 ° C. (biaxial) The mixture was melt mixed by an extrusion kneader. The cooled mixture was coarsely pulverized with a hammer mill, then finely pulverized with a jet mill, and classified to obtain a nonmagnetic toner 1-1 having a volume average particle size of 9 ± 0.5 μm.
(非磁性トナー1-1の評価)
 非磁性トナー1-1をノンコート系のフェライトキャリア(パウダーテック株式会社製F-150)と4対100質量部(トナー:キャリア)の割合で混合振とうしてトナーを負に帯電させた後、ブローオフ粉体帯電量測定装置で帯電量を測定した。その結果、-36.6μc/gであった。
(Evaluation of non-magnetic toner 1-1)
After the non-magnetic toner 1-1 was mixed and shaken at a ratio of 4 to 100 parts by mass (toner: carrier) with a non-coated ferrite carrier (F-150 manufactured by Powder Tech Co., Ltd.), the toner was negatively charged. The charge amount was measured with a blow-off powder charge amount measuring device. As a result, it was −36.6 μc / g.
 同様に、シリコンコート系のフェライトキャリアー(パウダーテック社製 F96-150)と混合した場合についても帯電量を評価した。その結果、-23.7μc/gであった。 Similarly, the charge amount was also evaluated when mixed with a silicon-coated ferrite carrier (F96-150 manufactured by Powdertech). As a result, it was −23.7 μc / g.
[実施例1-11]
(非磁性トナー1-2の製造及び評価)
 合成実施例1-3で合成したピリジンジカルボン酸誘導体(例示化合物1-4)を合成実施例1-5で合成したピリジンジカルボン酸誘導体(例示化合物1-6)に代えたこと以外は、実施例1-10と同様の方法で非磁性トナー1-2を調製し、ブローオフ粉体帯電量測定装置によって帯電量を評価した。その結果、ノンコート系のフェライトキャリア(パウダーテック株式会社製F-150)と混合した場合の帯電量は-32.3μc/gであった。同様に、シリコンコート系のフェライトキャリアー(パウダーテック社製 F96-150)と混合した場合の帯電量は-22.5μc/gであった。
[比較例1-1]
(比較非磁性トナー1-1の製造と評価)
 合成実施例1-3で合成したピリジンジカルボン酸誘導体(例示化合物1-4)を3,5-tert-ブチルサリチル酸と亜鉛の塩に代えたこと以外は、実施例1-10と同様の方法で比較非磁性トナー1-1を調製し、ブローオフ粉体帯電量測定装置によって帯電量を評価した。その結果、ノンコート系のフェライトキャリア(パウダーテック株式会社製F-150)と混合した場合の帯電量は-23.0μc/gであった。同様に、シリコンコート系のフェライトキャリアー(パウダーテック社製 F96-150)と混合した場合の帯電量は-15.0μc/gであった。
[Example 1-11]
(Production and evaluation of non-magnetic toner 1-2)
Except that the pyridinedicarboxylic acid derivative synthesized in Synthesis Example 1-3 (Exemplary Compound 1-4) was replaced with the pyridinedicarboxylic acid derivative synthesized in Synthesis Example 1-5 (Exemplary Compound 1-6), Example Nonmagnetic toner 1-2 was prepared in the same manner as in 1-10, and the charge amount was evaluated by a blow-off powder charge amount measuring device. As a result, the charge amount when mixed with a non-coated ferrite carrier (F-150 manufactured by Powdertech Co., Ltd.) was −32.3 μc / g. Similarly, the charge amount when mixed with a silicon-coated ferrite carrier (F96-150 manufactured by Powdertech Co., Ltd.) was −22.5 μc / g.
[Comparative Example 1-1]
(Production and evaluation of comparative non-magnetic toner 1-1)
Except that the pyridinedicarboxylic acid derivative (Exemplary Compound 1-4) synthesized in Synthesis Example 1-3 was replaced with a salt of 3,5-tert-butylsalicylic acid and zinc, the same method as Example 1-10 was used. A comparative nonmagnetic toner 1-1 was prepared, and the charge amount was evaluated by a blow-off powder charge amount measuring device. As a result, the charge amount when mixed with a non-coated ferrite carrier (F-150 manufactured by Powdertech Co., Ltd.) was −23.0 μc / g. Similarly, the charge amount when mixed with a silicon-coated ferrite carrier (F96-150 manufactured by Powdertech) was -15.0 μc / g.
[合成実施例2-1](例示化合物2-2の合成)
 窒素置換した反応容器に、シクロヘキシルアミン5.0g(51.5ミリモル)、トリエチルアミン5.2g(51.5ミリモル)、ジオキサン100mlを加え、攪拌しながら、2,6-ピリジンジカルボン酸ジクロリド5.0g(24.5ミリモル)のジオキサン溶液50mlを滴下した後、さらに6時間攪拌した。一夜放置した後、反応液を水500mlの中に攪拌しながら加えた。塩酸を加え、溶液のpHを3とした後、さらに1時間攪拌した。析出した粗製物をろ過によって採取し、水で洗浄した後、60℃で減圧乾燥することによって白色結晶7.16g(収率88.4%)を得た。
[Synthesis Example 2-1] (Synthesis of Exemplified Compound 2-2)
To a reaction vessel purged with nitrogen, 5.0 g (51.5 mmol) of cyclohexylamine, 5.2 g (51.5 mmol) of triethylamine, and 100 ml of dioxane were added and 5.0 g of 2,6-pyridinedicarboxylic acid dichloride was stirred. After adding 50 ml of a dioxane solution (24.5 mmol) dropwise, the mixture was further stirred for 6 hours. After standing overnight, the reaction solution was added to 500 ml of water with stirring. Hydrochloric acid was added to adjust the pH of the solution to 3, and the mixture was further stirred for 1 hour. The precipitated crude product was collected by filtration, washed with water, and then dried under reduced pressure at 60 ° C. to obtain 7.16 g (yield 88.4%) of white crystals.
 得られた白色結晶についてNMRを使用して構造を同定した。H-NMR(DMSO-d)で以下の27個の水素のシグナルを検出した。
 δ(ppm)=8.10-8.38(5H)、3.80(2H)、1.21-1.89(20H)。
The structure of the white crystals obtained was identified using NMR. The following 27 hydrogen signals were detected by 1 H-NMR (DMSO-d 6 ).
δ (ppm) = 8.10-8.38 (5H), 3.80 (2H), 1.21-1.89 (20H).
[合成実施例2-2](例示化合物2-3の合成)
 窒素置換した反応容器に、4-tert-ブチルシクロヘキシルアミン8.0g(51.5ミリモル)、トリエチルアミン5.2g(51.5ミリモル)、ジオキサン100mlを加え、攪拌しながら、2,6-ピリジンジカルボン酸ジクロリド5.0g(24.5ミリモル)のジオキサン溶液50mlを滴下した後、さらに6時間攪拌した。一夜放置した後、反応液を水500mlの中に攪拌しながら加えた。塩酸を加え、溶液のpHを3とした後、さらに1時間攪拌した。酢酸エチルを用いた抽出操作を行い、有機層を重曹水で洗浄し、無水硫酸マグネシウムを用いた脱水を行った後、減圧濃縮によって溶媒を留去し、残留物を得た。酢酸エチルとヘキサンの混合溶媒を用いた再結晶を行った後、60℃で減圧乾燥することによって白色結晶3.16g(収率29.3%)を立体異性体の混合物として得た。
[Synthesis Example 2-2] (Synthesis of Exemplary Compound 2-3)
To a reaction vessel purged with nitrogen, 8.0 g (51.5 mmol) of 4-tert-butylcyclohexylamine, 5.2 g (51.5 mmol) of triethylamine and 100 ml of dioxane were added, and 2,6-pyridinedicarboxylic acid was stirred. After adding 50 ml of dioxane solution of 5.0 g (24.5 mmol) of acid dichloride dropwise, the mixture was further stirred for 6 hours. After standing overnight, the reaction solution was added to 500 ml of water with stirring. Hydrochloric acid was added to adjust the pH of the solution to 3, and the mixture was further stirred for 1 hour. Extraction operation using ethyl acetate was performed, the organic layer was washed with aqueous sodium bicarbonate, dehydrated using anhydrous magnesium sulfate, and then the solvent was distilled off by concentration under reduced pressure to obtain a residue. After recrystallization using a mixed solvent of ethyl acetate and hexane, drying under reduced pressure at 60 ° C. gave 3.16 g (yield 29.3%) of white crystals as a mixture of stereoisomers.
 得られた白色結晶についてNMRを使用して構造を同定した。H-NMR(DMSO-d)で以下の43個の水素のシグナルを検出した。
 δ(ppm)=8.08-8.33(5H)、3.72-4.18(2H)、0.87-2.00(36H)。
The structure of the white crystals obtained was identified using NMR. The following 43 hydrogen signals were detected by 1 H-NMR (DMSO-d 6 ).
δ (ppm) = 8.08-8.33 (5H), 3.72-4.18 (2H), 0.87-2.00 (36H).
[合成実施例2-3](例示化合物2-6の合成)
 窒素置換した反応容器に、シクロペンチルアミン4.4g(51.5ミリモル)、トリエチルアミン5.2g(51.5ミリモル)、ジオキサン100mlを加えた後、攪拌しながら、2,6-ピリジンジカルボン酸ジクロリド5.0g(24.5ミリモル)のジオキサン溶液50mlを滴下した後、さらに6時間攪拌した。一夜放置した後、反応液を水500mlの中に攪拌しながら加えた。塩酸を加え、溶液のpHを3とした後、さらに1時間攪拌した。析出する粗製物をろ過によって採取し、水で洗浄した後、60℃で減圧乾燥することによって白色結晶6.14g(収率84.1%)を得た。
[Synthesis Example 2-3] (Synthesis of Exemplified Compound 2-6)
To a reaction vessel purged with nitrogen, 4.4 g (51.5 mmol) of cyclopentylamine, 5.2 g (51.5 mmol) of triethylamine, and 100 ml of dioxane were added, and 2,6-pyridinedicarboxylic acid dichloride 5 was then stirred. After dropwise addition of 50 ml of 0.0 g (24.5 mmol) of dioxane, the mixture was further stirred for 6 hours. After standing overnight, the reaction solution was added to 500 ml of water with stirring. Hydrochloric acid was added to adjust the pH of the solution to 3, and the mixture was further stirred for 1 hour. The precipitated crude product was collected by filtration, washed with water, and then dried under reduced pressure at 60 ° C. to obtain 6.14 g (yield 84.1%) of white crystals.
 得られた白色結晶についてNMRを使用して構造を同定した。H-NMR(DMSO-d)で以下の23個の水素のシグナルを検出した。
 δ(ppm)=8.71(2H)、8.15(3H)、4.23(2H)、1.59-1.97(16H)。
The structure of the white crystals obtained was identified using NMR. The following 23 hydrogen signals were detected by 1 H-NMR (DMSO-d 6 ).
δ (ppm) = 8.71 (2H), 8.15 (3H), 4.23 (2H), 1.59-1.97 (16H).
[合成実施例2-4](例示化合物2-7の合成)
 窒素置換した反応容器に、シクロヘプチルアミン5.8g(51.5ミリモル)、トリエチルアミン5.2g(51.5ミリモル)、ジオキサン100mlを加えた後、攪拌しながら、2,6-ピリジンジカルボン酸ジクロリド5.0g(24.5ミリモル)のジオキサン溶液50mlを滴下した後、さらに6時間攪拌した。一夜放置した後、反応液を水500mlの中に攪拌しながら加えた。塩酸を加え、溶液のpHを3とした後、さらに1時間攪拌した。析出する粗製物をろ過によって採取し、水で洗浄した後、60℃で減圧乾燥することによって白色結晶7.89g(収率89.7%)を得た。
[Synthesis Example 2-4] (Synthesis of Exemplified Compound 2-7)
To a reaction vessel purged with nitrogen, 5.8 g (51.5 mmol) of cycloheptylamine, 5.2 g (51.5 mmol) of triethylamine and 100 ml of dioxane were added, and then 2,6-pyridinedicarboxylic acid dichloride was stirred. After dropwise addition of 50 ml of 5.0 g (24.5 mmol) of dioxane, the mixture was further stirred for 6 hours. After standing overnight, the reaction solution was added to 500 ml of water with stirring. Hydrochloric acid was added to adjust the pH of the solution to 3, and the mixture was further stirred for 1 hour. The precipitated crude product was collected by filtration, washed with water, and then dried under reduced pressure at 60 ° C. to obtain 7.89 g of white crystals (yield 89.7%).
 得られた白色結晶についてNMRを使用して構造を同定した。H-NMR(DMSO-d)で以下の31個の水素のシグナルを検出した。
 δ(ppm)=8.37(2H)、8.09-8.14(3H)、3.99(2H)、1.52-1.93(24H)。
The structure of the white crystals obtained was identified using NMR. The following 31 hydrogen signals were detected by 1 H-NMR (DMSO-d 6 ).
δ (ppm) = 8.37 (2H), 8.09-8.14 (3H), 3.99 (2H), 1.52-1.93 (24H).
[実施例2-5]
(非磁性トナー2-1の製造)
 スチレン-アクリレート系共重合体樹脂(三井化学株式会社製、商品名CPR-100、酸価0.1mgKOH/g)91部、合成実施例2-2で合成したピリジンジカルボン酸誘導体(例示化合物2-3)1部、カーボンブラック(三菱化学株式会社製、商品名MA-100)5部及び低分子量ポリプロピレン(三洋化成株式会社製、商品名ビスコール550P)3部を130℃の加熱混合装置(2軸押出混練機)によって溶融混合した。冷却した混合物をハンマーミルで粗粉砕した後、ジェットミルで微粉砕し、分級して体積平均粒径9±0.5μmの非磁性トナー2-1を得た。
[Example 2-5]
(Manufacture of non-magnetic toner 2-1)
Styrene-acrylate copolymer resin (manufactured by Mitsui Chemicals, trade name CPR-100, acid value 0.1 mg KOH / g) 91 parts, pyridine dicarboxylic acid derivative synthesized in Synthesis Example 2-2 (Exemplary Compound 2- 3) 1 part, 5 parts of carbon black (trade name MA-100, manufactured by Mitsubishi Chemical Corporation) and 3 parts of low molecular weight polypropylene (trade name, Biscol 550P, manufactured by Sanyo Chemical Co., Ltd.) are heated and mixed at 130 ° C. (biaxial The mixture was melt mixed by an extrusion kneader. The cooled mixture was coarsely pulverized with a hammer mill, then finely pulverized with a jet mill, and classified to obtain a nonmagnetic toner 2-1 having a volume average particle size of 9 ± 0.5 μm.
(非磁性トナー2-1の評価)
 非磁性トナー2-1をノンコート系のフェライトキャリア(パウダーテック株式会社製F-150)と4対100質量部(トナー:キャリア)の割合で混合振とうしてトナーを負に帯電させた後、ブローオフ粉体帯電量測定装置で帯電量を測定した。その結果、-38.2μc/gであった。
(Evaluation of non-magnetic toner 2-1)
After non-magnetic toner 2-1 was mixed and shaken at a ratio of 4 to 100 parts by mass (toner: carrier) with a non-coated ferrite carrier (F-150 manufactured by Powdertech Co., Ltd.), the toner was negatively charged. The charge amount was measured with a blow-off powder charge amount measuring device. As a result, it was −38.2 μc / g.
 同様に、シリコンコート系のフェライトキャリアー(パウダーテック社製 F96-150)と混合した場合についても帯電量を評価した。その結果、-25.3μc/gであった。 Similarly, the charge amount was also evaluated when mixed with a silicon-coated ferrite carrier (F96-150 manufactured by Powdertech). As a result, it was −25.3 μc / g.
[比較例2-1]
(比較非磁性トナー2-1の製造と評価)
 合成実施例2-2で合成したピリジンジカルボン酸誘導体(例示化合物2-3)を3,5-tert-ブチルサリチル酸と亜鉛の塩に代えたこと以外は、実施例2-5と同様の方法で比較非磁性トナー2-1を調製し、ブローオフ粉体帯電量測定装置によって帯電量を評価した。その結果、ノンコート系のフェライトキャリア(パウダーテック株式会社製F-150)と混合した場合の帯電量は-23.0μc/gであった。同様に、シリコンコート系のフェライトキャリアー(パウダーテック社製 F96-150)と混合した場合の帯電量は-15.0μc/gであった。
[Comparative Example 2-1]
(Production and evaluation of comparative non-magnetic toner 2-1)
Except that the pyridinedicarboxylic acid derivative (Exemplary Compound 2-3) synthesized in Synthesis Example 2-2 was replaced with a salt of 3,5-tert-butylsalicylic acid and zinc, the same method as in Example 2-5 was used. Comparative non-magnetic toner 2-1 was prepared, and the charge amount was evaluated with a blow-off powder charge amount measuring device. As a result, the charge amount when mixed with a non-coated ferrite carrier (F-150 manufactured by Powdertech Co., Ltd.) was −23.0 μc / g. Similarly, the charge amount when mixed with a silicon-coated ferrite carrier (F96-150 manufactured by Powdertech) was -15.0 μc / g.
 以上の結果から明らかなように、本発明の一般式(1)で表されるピリジンジカルボン酸誘導体を有効成分として含有する電荷制御剤を用いたトナーでは、帯電量が高くなることが分かった。 As is clear from the above results, it was found that the toner using the charge control agent containing the pyridinedicarboxylic acid derivative represented by the general formula (1) of the present invention as an active ingredient has a high charge amount.
[実施例1-12]
(樹脂分散液の調製)
 ポリエステル樹脂(三菱レイヨン株式会社製、DIACRON ER-561)80部、酢酸エチル320部、イソプロピルアルコール32部を混合し、ホモジナイザー(株式会社美粒製、泡レスミキサー NGM-0.5TB)を用いて、5000~10000rpmで攪拌しながら0.1質量%のアンモニア水を適量滴下して転相乳化させ、さらにエバポレーターで減圧しながら脱溶剤を行って、樹脂分散液を得た。この分散液における樹脂粒子の体積平均粒径は0.2μmであった(樹脂粒子濃度はイオン交換水で調整して20質量%とした)。
[Example 1-12]
(Preparation of resin dispersion)
Mix 80 parts of polyester resin (Made by Mitsubishi Rayon Co., Ltd., DIACRON ER-561), 320 parts of ethyl acetate and 32 parts of isopropyl alcohol, and use a homogenizer (Megaku Co., Ltd., foamless mixer NGM-0.5TB). While stirring at 5000 to 10000 rpm, an appropriate amount of 0.1% by mass of ammonia water was added dropwise for phase inversion emulsification, and the solvent was removed while reducing the pressure with an evaporator to obtain a resin dispersion. The volume average particle diameter of the resin particles in this dispersion was 0.2 μm (the resin particle concentration was adjusted to 20% by mass with ion-exchanged water).
(電荷制御剤分散液の調製)
 ドデシルベンゼンスルホン酸ナトリウム0.2部、ソルボンT-20(東邦化学工業株式会社製)0.2部、イオン交換水17.6部を混合溶解し、さらに合成実施例1-3で合成したピリジンジカルボン酸誘導体(例示化合物1-4)2.0部、ジルコニアビーズ(ビーズの粒子径0.65mmφ、15ml相当量)を加えて、ペイントコンディショナー(UNION N.J.(USA)社製、Red Devil No.5400-5L)で3時間分散させた。篩いを用いてジルコニアビーズを除き、イオン交換水で調整して10質量%の電荷制御剤分散液とした。
(Preparation of charge control agent dispersion)
0.2 parts of sodium dodecylbenzenesulfonate, 0.2 part of sorbon T-20 (manufactured by Toho Chemical Co., Ltd.) and 17.6 parts of ion-exchanged water are mixed and dissolved, and pyridine synthesized in Synthesis Example 1-3 2.0 parts of a dicarboxylic acid derivative (Exemplary Compound 1-4) and zirconia beads (bead particle diameter 0.65 mmφ, equivalent to 15 ml) were added, and paint conditioner (made by UNION NJ (USA), Red Devil) No. 5400-5L) for 3 hours. The zirconia beads were removed using a sieve and adjusted with ion-exchanged water to obtain a 10% by mass charge control agent dispersion.
(重合トナーの調製)
 温度計、pH計、攪拌機を備えた反応容器に前記樹脂分散液125部、20質量%のドデシルベンゼンスルホン酸ナトリウム水溶液1.0部、イオン交換水125部を加え、液温を30℃に制御しながら、回転数150rpmで30分撹拌した。1質量%の硝酸水溶液を添加してpHを3.0に調整し、さらに5分間撹拌した。ホモジナイザー(IKAジャパン社製、ウルトラタラックスT-25)で分散させながら、ポリ塩化アルミニウム0.125部を加え、液温を50℃まで昇温させた後、さらに30分間分散させた。前記樹脂分散液62.5部、前記電荷制御剤分散液4.0部を加えた後、1質量%の硝酸水溶液を添加してpHを3.0に調整し、さらに30分間分散した。攪拌機を用いて400~700rpmで撹拌しながら、5質量%の水酸化ナトリウム水溶液8.0部を加え、トナーの体積平均粒子径が9.5μmとなるまで撹拌を継続した。液温を75℃まで昇温させた後、さらに2時間撹拌し、体積平均粒子径が6.0μmとなり、粒子形状が球形化したことを確認した後、氷水を用いて急速冷却させた。ろ過によって採取し、イオン交換水で分散洗浄を行った。分散洗浄は、分散後のろ液の電気伝導度が20μS/cm以下となるまで繰り返した。その後、40℃の乾燥機で乾燥してトナー粒子を得た。
 得られたトナーを166メッシュ(目開き90μm)の篩いで篩分して評価用トナーとした。
(Preparation of polymerization toner)
125 parts of the resin dispersion, 1.0 part of a 20% by weight sodium dodecylbenzenesulfonate aqueous solution and 125 parts of ion-exchanged water are added to a reaction vessel equipped with a thermometer, pH meter, and stirrer, and the liquid temperature is controlled at 30 ° C. While stirring, the mixture was stirred at 150 rpm for 30 minutes. A 1% by mass aqueous nitric acid solution was added to adjust the pH to 3.0, and the mixture was further stirred for 5 minutes. While being dispersed with a homogenizer (manufactured by IKA Japan, Ultra Turrax T-25), 0.125 part of polyaluminum chloride was added, the temperature of the solution was raised to 50 ° C., and the mixture was further dispersed for 30 minutes. After adding 62.5 parts of the resin dispersion and 4.0 parts of the charge control agent dispersion, a 1% by mass aqueous nitric acid solution was added to adjust the pH to 3.0, and the mixture was further dispersed for 30 minutes. While stirring with a stirrer at 400 to 700 rpm, 8.0 parts of a 5% by mass aqueous sodium hydroxide solution was added, and stirring was continued until the volume average particle diameter of the toner reached 9.5 μm. After the liquid temperature was raised to 75 ° C., the mixture was further stirred for 2 hours, and after confirming that the volume average particle diameter was 6.0 μm and the particle shape was spheroidized, it was rapidly cooled using ice water. The sample was collected by filtration and dispersed and washed with ion exchange water. Dispersion washing was repeated until the electric conductivity of the filtrate after dispersion became 20 μS / cm or less. Thereafter, the toner particles were obtained by drying with a dryer at 40 ° C.
The obtained toner was sieved with a 166 mesh (aperture 90 μm) sieve to obtain an evaluation toner.
(評価)
 得られた評価用トナー2部、シリコンコート系のフェライトキャリアー(パウダーテック社製F96-150)100部の割合で混合して振とうし、トナーを負に帯電させた後、ブローオフ粉体帯電量測定装置で温度25℃、湿度50%の雰囲気下で飽和帯電量の測定を行った。その結果、飽和帯電量は-38.9μc/gであった。
(Evaluation)
2 parts of the obtained toner for evaluation and 100 parts of a silicon-coated ferrite carrier (F96-150 manufactured by Powdertech Co., Ltd.) were mixed and shaken to charge the toner negatively. The saturation charge amount was measured in an atmosphere of a temperature of 25 ° C. and a humidity of 50% with a measuring device. As a result, the saturated charge amount was -38.9 μc / g.
[比較例1-2]
 比較のために、電荷制御剤分散液を加える操作を省略したこと以外は、実施例1-12と同様の条件でトナーを作製し、飽和帯電量測定を行った。その結果、飽和帯電量は-20.5μC/gであった。
[Comparative Example 1-2]
For comparison, a toner was prepared under the same conditions as in Example 1-12 except that the operation of adding the charge control agent dispersion was omitted, and the saturation charge amount was measured. As a result, the saturated charge amount was −20.5 μC / g.
[実施例2-6]
(樹脂分散液の調製)
 ポリエステル樹脂(三菱レイヨン株式会社製、DIACRON ER-561)80部、酢酸エチル320部、イソプロピルアルコール32部を混合し、ホモジナイザー(株式会社美粒製、泡レスミキサー NGM-0.5TB)を用いて、5000~10000rpmで攪拌しながら0.1質量%のアンモニア水を適量滴下して転相乳化させ、さらにエバポレーターで減圧しながら脱溶剤を行って、樹脂分散液を得た。この分散液における樹脂粒子の体積平均粒径は0.2μmであった(樹脂粒子濃度はイオン交換水で調整して20質量%とした)。
[Example 2-6]
(Preparation of resin dispersion)
Mix 80 parts of polyester resin (Made by Mitsubishi Rayon Co., Ltd., DIACRON ER-561), 320 parts of ethyl acetate and 32 parts of isopropyl alcohol, and use a homogenizer (Megaku Co., Ltd., foamless mixer NGM-0.5TB). While stirring at 5000 to 10000 rpm, an appropriate amount of 0.1% by mass of ammonia water was added dropwise for phase inversion emulsification, and the solvent was removed while reducing the pressure with an evaporator to obtain a resin dispersion. The volume average particle diameter of the resin particles in this dispersion was 0.2 μm (the resin particle concentration was adjusted to 20% by mass with ion-exchanged water).
(電荷制御剤分散液の調製)
 ドデシルベンゼンスルホン酸ナトリウム0.2部、ソルボンT-20(東邦化学工業株式会社製)0.2部、イオン交換水17.6部を混合溶解し、さらに合成実施例2-2で合成したピリジンジカルボン酸誘導体(例示化合物2-3)2.0部、ジルコニアビーズ(ビーズの粒子径0.65mmφ、15ml相当量)を加えて、ペイントコンディショナー(UNION N.J.(USA)社製、Red Devil No.5400-5L)で3時間分散させた。篩いを用いてジルコニアビーズを除き、イオン交換水で調整して10質量%の電荷制御剤分散液とした。
(Preparation of charge control agent dispersion)
0.2 parts of sodium dodecylbenzenesulfonate, 0.2 part of sorbon T-20 (manufactured by Toho Chemical Co., Ltd.) and 17.6 parts of ion-exchanged water are mixed and dissolved, and pyridine synthesized in Synthesis Example 2-2. 2.0 parts of a dicarboxylic acid derivative (Exemplified Compound 2-3) and zirconia beads (bead particle size 0.65 mmφ, equivalent to 15 ml) were added, and paint conditioner (made by UNION NJ (USA), Red Devil) No. 5400-5L) for 3 hours. The zirconia beads were removed using a sieve and adjusted with ion-exchanged water to obtain a 10% by mass charge control agent dispersion.
(重合トナーの調製)
 温度計、pH計、攪拌機を備えた反応容器に前記樹脂分散液125部、20質量%のドデシルベンゼンスルホン酸ナトリウム水溶液1.0部、イオン交換水125部を加え、液温を30℃に制御しながら、回転数150rpmで30分撹拌した。1質量%の硝酸水溶液を添加してpHを3.0に調整し、さらに5分間撹拌した。ホモジナイザー(IKAジャパン社製、ウルトラタラックスT-25)で分散させながら、ポリ塩化アルミニウム0.125部を加え、液温を50℃まで昇温させた後、さらに30分間分散させた。前記樹脂分散液62.5部、前記電荷制御剤分散液4.0部を加えた後、1質量%の硝酸水溶液を添加してpHを3.0に調整し、さらに30分間分散した。攪拌機を用いて400~700rpmで撹拌しながら、5質量%の水酸化ナトリウム水溶液8.0部を加え、トナーの体積平均粒子径が9.5μmとなるまで撹拌を継続した。液温を75℃まで昇温させた後、さらに2時間撹拌し、体積平均粒子径が6.0μmとなり、粒子形状が球形化したことを確認した後、氷水を用いて急速冷却させた。ろ過によって採取し、イオン交換水で分散洗浄を行った。分散洗浄は、分散後のろ液の電気伝導度が20μS/cm以下となるまで繰り返した。その後、40℃の乾燥機で乾燥してトナー粒子を得た。
 得られたトナーを166メッシュ(目開き90μm)の篩いで篩分して評価用トナーとした。
(Preparation of polymerization toner)
125 parts of the resin dispersion, 1.0 part of a 20% by weight sodium dodecylbenzenesulfonate aqueous solution and 125 parts of ion-exchanged water are added to a reaction vessel equipped with a thermometer, pH meter, and stirrer, and the liquid temperature is controlled at 30 ° C. While stirring, the mixture was stirred at 150 rpm for 30 minutes. A 1% by mass aqueous nitric acid solution was added to adjust the pH to 3.0, and the mixture was further stirred for 5 minutes. While being dispersed with a homogenizer (manufactured by IKA Japan, Ultra Tarrax T-25), 0.125 part of polyaluminum chloride was added, the liquid temperature was raised to 50 ° C., and the mixture was further dispersed for 30 minutes. After adding 62.5 parts of the resin dispersion and 4.0 parts of the charge control agent dispersion, a 1% by mass aqueous nitric acid solution was added to adjust the pH to 3.0, and the mixture was further dispersed for 30 minutes. While stirring with a stirrer at 400 to 700 rpm, 8.0 parts of a 5% by mass aqueous sodium hydroxide solution was added, and stirring was continued until the volume average particle diameter of the toner reached 9.5 μm. After the liquid temperature was raised to 75 ° C., the mixture was further stirred for 2 hours, and after confirming that the volume average particle diameter was 6.0 μm and the particle shape was spheroidized, it was rapidly cooled using ice water. The sample was collected by filtration and dispersed and washed with ion exchange water. Dispersion washing was repeated until the electric conductivity of the filtrate after dispersion became 20 μS / cm or less. Thereafter, the toner particles were obtained by drying with a dryer at 40 ° C.
The obtained toner was sieved with a 166 mesh (aperture 90 μm) sieve to obtain an evaluation toner.
(評価)
 得られた評価用トナー2部、シリコンコート系のフェライトキャリアー(パウダーテック社製 F96-150)100部の割合で混合して振とうし、トナーを負に帯電させた後、ブローオフ粉体帯電量測定装置で温度25℃、湿度50%の雰囲気下で飽和帯電量の測定を行った。その結果、飽和帯電量は-40.5μc/gであった。
(Evaluation)
2 parts of the obtained toner for evaluation and 100 parts of a silicon-coated ferrite carrier (F96-150 manufactured by Powdertech) were mixed and shaken to charge the toner negatively, and then the charge amount of blow-off powder was charged. The saturation charge amount was measured in an atmosphere of a temperature of 25 ° C. and a humidity of 50% with a measuring device. As a result, the saturated charge amount was −40.5 μc / g.
[比較例2-2]
 比較のために、電荷制御剤分散液を加える操作を省略したこと以外は、実施例2-6と同様の条件でトナーを作製し、飽和帯電量測定を行った。その結果、飽和帯電量は-20.5μC/gであった。
[Comparative Example 2-2]
For comparison, a toner was prepared under the same conditions as in Example 2-6, except that the operation of adding the charge control agent dispersion was omitted, and the saturation charge amount was measured. As a result, the saturated charge amount was −20.5 μC / g.
 以上の結果から明らかなように、本発明の一般式(1)で表されるピリジンジカルボン酸誘導体を有効成分として含有する重合トナーは、優れた帯電性能を示すことが分かった。
 すなわち本発明の一般式(1)で表されるピリジンジカルボン酸誘導体を有効成分として含有する電荷制御剤を用いることによって重合トナーに高い帯電性能を付与することができる。
As is apparent from the above results, it was found that the polymerized toner containing the pyridinedicarboxylic acid derivative represented by the general formula (1) of the present invention as an active ingredient exhibits excellent charging performance.
That is, high charge performance can be imparted to the polymerized toner by using a charge control agent containing the pyridinedicarboxylic acid derivative represented by the general formula (1) of the present invention as an active ingredient.
 本発明に係る一般式(1)で表されるピリジンジカルボン酸誘導体は優れた帯電性能を有しており、該化合物を有効成分として含有する電荷制御剤は、従来の電荷制御剤より明らかに高い帯電性能を有している。また、上記電荷制御剤は、カラートナー用として、特に重合トナー用として最適である。さらに、上記電荷制御剤は、環境問題で懸念されるクロム化合物などの重金属も含まれず、極めて有用である。 The pyridinedicarboxylic acid derivative represented by the general formula (1) according to the present invention has excellent charging performance, and the charge control agent containing the compound as an active ingredient is clearly higher than the conventional charge control agent. Has charging performance. The charge control agent is optimal for color toners, particularly for polymerized toners. Furthermore, the charge control agent is extremely useful because it does not contain heavy metals such as chromium compounds, which are concerned with environmental problems.

Claims (6)

  1.  下記一般式(1)で表されるピリジンジカルボン酸誘導体の1種又は2種以上を有効成分として含有する電荷制御剤。
    Figure JPOXMLDOC01-appb-C000001
    [一般式(1)中、R、R及びRは相互に同一でも異なってもよく、水素原子、重水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子、ヒドロキシル基、シアノ基、トリフルオロメチル基、ニトロ基、置換基を有していてもよい炭素原子数1~8の直鎖状若しくは分岐状のアルキル基、置換基を有していてもよい炭素原子数5~10のシクロアルキル基、置換基を有していてもよい炭素原子数2~6の直鎖状若しくは分岐状のアルケニル基、置換基を有していてもよい炭素原子数1~8の直鎖状若しくは分岐状のアルキルオキシ基、置換基を有していてもよい炭素原子数5~10のシクロアルキルオキシ基、置換若しくは無置換の芳香族炭化水素基、置換若しくは無置換の複素環基、置換若しくは無置換の縮合多環芳香族基、又は置換若しくは無置換のアリールオキシ基を示し、R及びRは相互に同一でも異なってもよく、水素原子、重水素原子、置換基を有していてもよい炭素原子数1~8の直鎖状若しくは分岐状のアルキル基、置換基を有していてもよい炭素原子数5~10のシクロアルキル基、置換基を有していてもよい炭素原子数2~6の直鎖状若しくは分岐状のアルケニル基、置換若しくは無置換の芳香族炭化水素基、置換若しくは無置換の複素環基、又は置換若しくは無置換の縮合多環芳香族基を示し、R及びRは相互に同一でも異なってもよく、置換基を有していてもよい炭素原子数5~10のシクロアルキル基、置換若しくは無置換の芳香族炭化水素基、又は置換若しくは無置換の縮合多環芳香族基を示す。ここで、R、R及びRは、隣り合う基同士で互いに結合して環を形成していてもよい。]
    A charge control agent containing one or more pyridinedicarboxylic acid derivatives represented by the following general formula (1) as an active ingredient.
    Figure JPOXMLDOC01-appb-C000001
    [In General Formula (1), R 1 , R 2 and R 3 may be the same or different from each other, and are a hydrogen atom, deuterium atom, fluorine atom, chlorine atom, bromine atom, iodine atom, hydroxyl group, cyano group. , A trifluoromethyl group, a nitro group, a linear or branched alkyl group having 1 to 8 carbon atoms which may have a substituent, and a carbon atom having 5 to 10 carbon atoms which may have a substituent A cycloalkyl group, a linear or branched alkenyl group having 2 to 6 carbon atoms which may have a substituent, and a linear chain having 1 to 8 carbon atoms which may have a substituent Or a branched alkyloxy group, an optionally substituted cycloalkyloxy group having 5 to 10 carbon atoms, a substituted or unsubstituted aromatic hydrocarbon group, a substituted or unsubstituted heterocyclic group, substituted Or an unsubstituted condensed polycyclic aromatic group, Or a substituted or unsubstituted aryloxy group, R 4 and R 5 may be the same as or different from each other, and may have a hydrogen atom, a deuterium atom, or a substituent having 1 to 8 carbon atoms. A linear or branched alkyl group, a cycloalkyl group having 5 to 10 carbon atoms which may have a substituent, a straight chain having 2 to 6 carbon atoms which may have a substituent, or A branched alkenyl group, a substituted or unsubstituted aromatic hydrocarbon group, a substituted or unsubstituted heterocyclic group, or a substituted or unsubstituted condensed polycyclic aromatic group, wherein R 6 and R 7 are the same as each other Or a cycloalkyl group having 5 to 10 carbon atoms, a substituted or unsubstituted aromatic hydrocarbon group, or a substituted or unsubstituted condensed polycyclic aromatic group which may have a substituent. Show. Here, R 1 , R 2 and R 3 may be bonded to each other at adjacent groups to form a ring. ]
  2.  前記一般式(1)で表されるピリジンジカルボン酸誘導体が、下記一般式(1A)で表される化合物である、請求項1に記載の電荷制御剤。
    Figure JPOXMLDOC01-appb-C000002
    [一般式(1A)中、R、R及びRは相互に同一でも異なってもよく、水素原子、重水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子、ヒドロキシル基、シアノ基、トリフルオロメチル基、ニトロ基、置換基を有していてもよい炭素原子数1~8の直鎖状若しくは分岐状のアルキル基、置換基を有していてもよい炭素原子数5~10のシクロアルキル基、置換基を有していてもよい炭素原子数2~6の直鎖状若しくは分岐状のアルケニル基、置換基を有していてもよい炭素原子数1~8の直鎖状若しくは分岐状のアルキルオキシ基、置換基を有していてもよい炭素原子数5~10のシクロアルキルオキシ基、置換若しくは無置換の芳香族炭化水素基、置換若しくは無置換の複素環基、置換若しくは無置換の縮合多環芳香族基、又は置換若しくは無置換のアリールオキシ基を示し、R及びRは相互に同一でも異なってもよく、水素原子、重水素原子、置換基を有していてもよい炭素原子数1~8の直鎖状若しくは分岐状のアルキル基、置換基を有していてもよい炭素原子数5~10のシクロアルキル基、置換基を有していてもよい炭素原子数2~6の直鎖状若しくは分岐状のアルケニル基、置換若しくは無置換の芳香族炭化水素基、置換若しくは無置換の複素環基、又は置換若しくは無置換の縮合多環芳香族基を示し、R及びRは相互に同一でも異なってもよく、置換基を有していてもよい炭素原子数5~10のシクロアルキル基、置換若しくは無置換の芳香族炭化水素基、又は置換若しくは無置換の縮合多環芳香族基を示す。ここで、R、R及びRは、隣り合う基同士で互いに結合して環を形成していてもよい。]
    The charge control agent according to claim 1, wherein the pyridinedicarboxylic acid derivative represented by the general formula (1) is a compound represented by the following general formula (1A).
    Figure JPOXMLDOC01-appb-C000002
    [In General Formula (1A), R 1 , R 2 and R 3 may be the same as or different from each other, and include a hydrogen atom, a deuterium atom, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a hydroxyl group, and a cyano group. , A trifluoromethyl group, a nitro group, a linear or branched alkyl group having 1 to 8 carbon atoms which may have a substituent, and a carbon atom having 5 to 10 carbon atoms which may have a substituent A cycloalkyl group, a linear or branched alkenyl group having 2 to 6 carbon atoms which may have a substituent, and a linear chain having 1 to 8 carbon atoms which may have a substituent Or a branched alkyloxy group, an optionally substituted cycloalkyloxy group having 5 to 10 carbon atoms, a substituted or unsubstituted aromatic hydrocarbon group, a substituted or unsubstituted heterocyclic group, substituted Or unsubstituted condensed polycyclic aromatic group Or a substituted or unsubstituted aryloxy group, R 4 and R 5 may be the same or different from each other, and may have a hydrogen atom, a deuterium atom, or a carbon atom having 1 to 8 carbon atoms which may have a substituent. A linear or branched alkyl group, a cycloalkyl group having 5 to 10 carbon atoms which may have a substituent, or a linear chain having 2 to 6 carbon atoms which may have a substituent Or a branched alkenyl group, a substituted or unsubstituted aromatic hydrocarbon group, a substituted or unsubstituted heterocyclic group, or a substituted or unsubstituted condensed polycyclic aromatic group, and R 6 and R 7 are mutually The cycloalkyl group having 5 to 10 carbon atoms, which may be the same or different, and optionally substituted, a substituted or unsubstituted aromatic hydrocarbon group, or a substituted or unsubstituted condensed polycyclic aromatic group Indicates. Here, R 1 , R 2 and R 3 may be bonded to each other at adjacent groups to form a ring. ]
  3.  前記一般式(1)で表されるピリジンジカルボン酸誘導体が、下記一般式(1A-1)で表される化合物である、請求項1に記載の電荷制御剤。
    Figure JPOXMLDOC01-appb-C000003
    [一般式(1A-1)中、R、R及びRは相互に同一でも異なってもよく、水素原子、重水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子、ヒドロキシル基、シアノ基、トリフルオロメチル基、ニトロ基、置換基を有していてもよい炭素原子数1~8の直鎖状若しくは分岐状のアルキル基、置換基を有していてもよい炭素原子数5~10のシクロアルキル基、置換基を有していてもよい炭素原子数2~6の直鎖状若しくは分岐状のアルケニル基、置換基を有していてもよい炭素原子数1~8の直鎖状若しくは分岐状のアルキルオキシ基、置換基を有していてもよい炭素原子数5~10のシクロアルキルオキシ基、置換若しくは無置換の芳香族炭化水素基、置換若しくは無置換の複素環基、置換若しくは無置換の縮合多環芳香族基、又は置換若しくは無置換のアリールオキシ基を示し、R及びRは相互に同一でも異なってもよく、水素原子、重水素原子、置換基を有していてもよい炭素原子数1~8の直鎖状若しくは分岐状のアルキル基、置換基を有していてもよい炭素原子数5~10のシクロアルキル基、置換基を有していてもよい炭素原子数2~6の直鎖状若しくは分岐状のアルケニル基、置換若しくは無置換の芳香族炭化水素基、置換若しくは無置換の複素環基、又は置換若しくは無置換の縮合多環芳香族基を示し、R、R、R10、R11、R12、R13、R14、R15、R16及びR17は相互に同一でも異なってもよく、水素原子、重水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子、ヒドロキシル基、シアノ基、トリフルオロメチル基、ニトロ基、置換基を有していてもよい炭素原子数1~8の直鎖状若しくは分岐状のアルキル基、置換基を有していてもよい炭素原子数5~10のシクロアルキル基、置換基を有していてもよい炭素原子数2~6の直鎖状若しくは分岐状のアルケニル基、置換基を有していてもよい炭素原子数1~8の直鎖状若しくは分岐状のアルキルオキシ基、置換基を有していてもよい炭素原子数5~10のシクロアルキルオキシ基、置換若しくは無置換の芳香族炭化水素基、置換若しくは無置換の複素環基、置換若しくは無置換の縮合多環芳香族基、又は置換若しくは無置換のアリールオキシ基を示す。ここで、R、R及びR、R、R、R10、R11及びR12、又はR13、R14、R15、R16及びR17は、隣り合う基同士で互いに結合して環を形成していてもよい。]
    The charge control agent according to claim 1, wherein the pyridinedicarboxylic acid derivative represented by the general formula (1) is a compound represented by the following general formula (1A-1).
    Figure JPOXMLDOC01-appb-C000003
    [In the general formula (1A-1), R 1 , R 2 and R 3 may be the same or different from each other, and are a hydrogen atom, deuterium atom, fluorine atom, chlorine atom, bromine atom, iodine atom, hydroxyl group, A cyano group, a trifluoromethyl group, a nitro group, a linear or branched alkyl group having 1 to 8 carbon atoms which may have a substituent, and a carbon atom which may have a substituent of 5 A cycloalkyl group having 10 to 10 carbon atoms, a linear or branched alkenyl group having 2 to 6 carbon atoms which may have a substituent, and a straight chain having 1 to 8 carbon atoms which may have a substituent. A linear or branched alkyloxy group, an optionally substituted cycloalkyloxy group having 5 to 10 carbon atoms, a substituted or unsubstituted aromatic hydrocarbon group, a substituted or unsubstituted heterocyclic group Substituted or unsubstituted condensed polycyclic aromatic Represents a group or a substituted or unsubstituted aryloxy group, R 4 and R 5 may be the same or different from each other, and may have a hydrogen atom, a deuterium atom, or a carbon atom which may have a substituent; A linear or branched alkyl group having 8 to 8 carbon atoms, a cycloalkyl group having 5 to 10 carbon atoms which may have a substituent, and a straight chain having 2 to 6 carbon atoms which may have a substituent. A chain or branched alkenyl group, a substituted or unsubstituted aromatic hydrocarbon group, a substituted or unsubstituted heterocyclic group, or a substituted or unsubstituted condensed polycyclic aromatic group, R 8 , R 9 , R 10 , R 11 , R 12 , R 13 , R 14 , R 15 , R 16 and R 17 may be the same or different from each other, and are a hydrogen atom, deuterium atom, fluorine atom, chlorine atom, bromine atom, iodine Atoms, hydroxyl groups, cyano groups, A trifluoromethyl group, a nitro group, a linear or branched alkyl group having 1 to 8 carbon atoms which may have a substituent, and a carbon atom having 5 to 10 carbon atoms which may have a substituent A cycloalkyl group, a linear or branched alkenyl group having 2 to 6 carbon atoms which may have a substituent, a straight chain having 1 to 8 carbon atoms which may have a substituent, or A branched alkyloxy group, an optionally substituted cycloalkyloxy group having 5 to 10 carbon atoms, a substituted or unsubstituted aromatic hydrocarbon group, a substituted or unsubstituted heterocyclic group, substituted or An unsubstituted condensed polycyclic aromatic group, or a substituted or unsubstituted aryloxy group is shown. Here, R 1 , R 2 and R 3 , R 8 , R 9 , R 10 , R 11 and R 12 , or R 13 , R 14 , R 15 , R 16 and R 17 are mutually adjacent groups. It may combine to form a ring. ]
  4.  R及びRが、置換基を有していてもよい炭素原子数5~10のシクロアルキル基である、請求項1又は2に記載の電荷制御剤。 The charge control agent according to claim 1 or 2, wherein R 6 and R 7 are cycloalkyl groups having 5 to 10 carbon atoms which may have a substituent.
  5.  請求項1~4のいずれか一項に記載の電荷制御剤と、着色剤と、結着樹脂と、を含有するトナー。 A toner containing the charge control agent according to any one of claims 1 to 4, a colorant, and a binder resin.
  6.  請求項1~4のいずれか一項に記載の電荷制御剤と、着色剤と、結着樹脂と、を含有する重合トナー。 A polymerized toner containing the charge control agent according to any one of claims 1 to 4, a colorant, and a binder resin.
PCT/JP2013/052073 2012-02-29 2013-01-30 Charge control agent and toner using same WO2013129015A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013523427A JP5329010B1 (en) 2012-02-29 2013-01-30 Charge control agent and toner using the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012043209 2012-02-29
JP2012-043209 2012-02-29
JP2012106535 2012-05-08
JP2012-106535 2012-05-08

Publications (1)

Publication Number Publication Date
WO2013129015A1 true WO2013129015A1 (en) 2013-09-06

Family

ID=49082219

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/052073 WO2013129015A1 (en) 2012-02-29 2013-01-30 Charge control agent and toner using same

Country Status (3)

Country Link
JP (1) JP5329010B1 (en)
TW (1) TW201348897A (en)
WO (1) WO2013129015A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020034861A (en) * 2018-08-31 2020-03-05 保土谷化学工業株式会社 Charge control agent and toner using the same
WO2023277594A1 (en) * 2021-06-30 2023-01-05 주식회사 동진쎄미켐 Novel compound for capping layer, and organic light-emitting device comprising same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2948871T3 (en) * 2016-05-18 2023-09-20 Solenis Tech Lp Method for improving the adhesion of printed liquid toner on a substrate, and products thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5233676A (en) * 1975-09-09 1977-03-14 Banyu Pharmaceut Co Ltd Process for preparation of pyridinedicarboxylic acid amides
JPS63306460A (en) * 1987-06-02 1988-12-14 ゼロックス コーポレーション Toner composition containing negative charge promoting additive
JPH03174540A (en) * 1989-12-04 1991-07-29 Canon Inc Electrophotographic sensitive body
JP2001213865A (en) * 1999-12-15 2001-08-07 Eastman Kodak Co 1,4-dihydropyridine, toner composition and charge controlling agent
JP2010286592A (en) * 2009-06-10 2010-12-24 Kao Corp Electrophotographic toner

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5233676A (en) * 1975-09-09 1977-03-14 Banyu Pharmaceut Co Ltd Process for preparation of pyridinedicarboxylic acid amides
JPS63306460A (en) * 1987-06-02 1988-12-14 ゼロックス コーポレーション Toner composition containing negative charge promoting additive
JPH03174540A (en) * 1989-12-04 1991-07-29 Canon Inc Electrophotographic sensitive body
JP2001213865A (en) * 1999-12-15 2001-08-07 Eastman Kodak Co 1,4-dihydropyridine, toner composition and charge controlling agent
JP2010286592A (en) * 2009-06-10 2010-12-24 Kao Corp Electrophotographic toner

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020034861A (en) * 2018-08-31 2020-03-05 保土谷化学工業株式会社 Charge control agent and toner using the same
JP7099910B2 (en) 2018-08-31 2022-07-12 保土谷化学工業株式会社 Charge control agent and toner using it
WO2023277594A1 (en) * 2021-06-30 2023-01-05 주식회사 동진쎄미켐 Novel compound for capping layer, and organic light-emitting device comprising same

Also Published As

Publication number Publication date
JP5329010B1 (en) 2013-10-30
TW201348897A (en) 2013-12-01
JPWO2013129015A1 (en) 2015-07-30

Similar Documents

Publication Publication Date Title
JP5532106B2 (en) Oxidized mixed cyclic phenol sulfide, charge control agent and toner using the same
JP5256021B2 (en) Mixed cyclic phenol sulfide, charge control agent and toner using the same
JP5329010B1 (en) Charge control agent and toner using the same
JP5893571B2 (en) Charge control agent and toner using the same
WO2012035990A1 (en) Charge control agent and toner using same
WO2011105334A1 (en) Charge controlling agent and toner using same
JP6308881B2 (en) Charge control agent and toner using the same
JP6407156B2 (en) Toner, developer and toner cartridge
WO2012073756A1 (en) Charge control agent and toner using same
JP5389306B1 (en) Charge control agent and toner using the same
JP5358756B1 (en) Charge control agent and toner using the same
JP5194322B2 (en) Charge control agent and toner using metal compound of cyclic phenol sulfide
JP5552581B1 (en) Charge control agent and toner
WO2011016519A1 (en) Polymerized toner comprising cyclic phenol sulfide
JP7099910B2 (en) Charge control agent and toner using it
WO2014017298A1 (en) Charge control agent and toner using same
JP7120867B2 (en) Charge control agent and toner using the same
WO2012036171A1 (en) Charge control agent and toner using same
JP6263059B2 (en) Charge control agent and toner using the same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013523427

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13755194

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13755194

Country of ref document: EP

Kind code of ref document: A1