WO2013128929A1 - Optical transport system and optical transport method - Google Patents

Optical transport system and optical transport method Download PDF

Info

Publication number
WO2013128929A1
WO2013128929A1 PCT/JP2013/001219 JP2013001219W WO2013128929A1 WO 2013128929 A1 WO2013128929 A1 WO 2013128929A1 JP 2013001219 W JP2013001219 W JP 2013001219W WO 2013128929 A1 WO2013128929 A1 WO 2013128929A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal light
optical transmission
chromatic dispersion
amount
transmission system
Prior art date
Application number
PCT/JP2013/001219
Other languages
French (fr)
Japanese (ja)
Inventor
俊治 伊東
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Publication of WO2013128929A1 publication Critical patent/WO2013128929A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2507Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
    • H04B10/2513Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to chromatic dispersion
    • H04B10/25133Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to chromatic dispersion including a lumped electrical or optical dispersion compensator
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2581Multimode transmission

Definitions

  • the present invention relates to an optical transmission system and an optical transmission method, and more particularly to an optical transmission system and an optical transmission method using a multi-core optical fiber as a transmission path.
  • spatial multiplexing technology is attracting attention.
  • This “spatial multiplexing” technique has a plurality of methods.
  • a “mode multiplexing” method that uses each waveguide mode of a multimode fiber independently, and a “core multiplexing” method that uses each core of a multicore optical fiber having a plurality of cores in one fiber independently For example, see Patent Document 1 and Non-Patent Document 1).
  • a transmission capacity exceeding 100 terabits / second per fiber has been achieved.
  • a multi-core optical fiber having N cores is used, so that the transmission capacity per optical fiber can be increased N times.
  • signal quality deteriorates due to crosstalk generated between cores.
  • a crosstalk of about ⁇ 20 dB occurs after 2 km transmission. Due to this crosstalk, signal quality deteriorates in an optical transmission system using a related multi-core optical fiber.
  • An object of the present invention is to provide an optical transmission system and an optical transmission method that solve the above-described problem that it is difficult to perform large-capacity transmission capable of obtaining good signal quality in an optical transmission system using a multi-core optical fiber. Is to provide.
  • An optical transmission system includes a multiplexed optical transmission path configured to include a plurality of optical transmission paths that are close to each other, a plurality of relay apparatuses that connect the plurality of multiplexed optical transmission paths, and a wavelength that is connected to the relay apparatus.
  • a dispersion adding device the relay device passes the first signal light, inserts the second signal light into the multiplexed optical transmission line, and the chromatic dispersion adding device has the first signal light possessed by the first signal light.
  • the chromatic dispersion compensation amount for one of the first signal light and the second signal light so that the chromatic dispersion amount of 1 and the second chromatic dispersion amount of the second signal light are substantially the same. Is added.
  • the first signal light is allowed to pass through a multiplexed optical transmission line including a plurality of optical transmission lines adjacent to each other, and the second signal light is inserted into the multiplexed optical transmission line. Either the first signal light or the second signal light so that the first chromatic dispersion amount of the first signal light and the second chromatic dispersion amount of the second signal light are substantially the same. In contrast, a chromatic dispersion compensation amount is added.
  • optical transmission system and the optical transmission method of the present invention it is possible to realize large-capacity transmission capable of obtaining good signal quality in an optical transmission system using a multi-core optical fiber.
  • FIG. 1 is a block diagram illustrating a configuration of an optical transmission system according to a first embodiment of the present invention. It is a block diagram which shows the structure of the evaluation experiment system for evaluating the signal quality degradation amount generate
  • FIG. 1 is a block diagram showing a configuration of an optical transmission system 100 according to the first embodiment of the present invention.
  • the optical transmission system 100 includes a multiplexed optical transmission line 110, a plurality of relay apparatuses 120 that connect a plurality of multiplexed optical transmission lines, and a chromatic dispersion adder 131 (132) connected to the relay apparatus 120.
  • the multiplexed optical transmission line 110 includes a plurality of optical transmission lines that are close to each other.
  • a multi-core optical fiber that includes a plurality of cores constituting the optical transmission line in one optical fiber can be used.
  • the relay device 120 passes the first signal light S10 and inserts the second signal light S21 (S22) into the multiplexed optical transmission line 110.
  • a reconfigurable optical add / drop multiplexer ROADM
  • ROADM reconfigurable optical add / drop multiplexer
  • the chromatic dispersion adder 131 (132) is configured so that the first chromatic dispersion amount of the first signal light S10 and the second chromatic dispersion amount of the second signal light S21 (S22) are substantially the same.
  • a chromatic dispersion compensation amount is added to one of the first signal light S10 and the second signal light S21 (S22).
  • the chromatic dispersion adding device 131 can be configured to provide the first signal light S10 with the chromatic dispersion amount that compensates the first chromatic dispersion amount as the chromatic dispersion compensation amount.
  • the chromatic dispersion adding device 132 may be configured to provide the second signal light S21 (S22) with a chromatic dispersion amount substantially the same as the first chromatic dispersion amount as the chromatic dispersion compensation amount.
  • chromatic dispersion refers to a phenomenon in which the group velocity of an optical signal in an optical fiber changes as a function of the wavelength of the optical signal.
  • the chromatic dispersion is defined by a propagation time difference (unit: ps / nm / km or simply ps / nm) when two monochromatic lights having different wavelengths by 1 nm are propagated by 1 km. Therefore, in this specification, when chromatic dispersion is expressed by this propagation time difference, it is referred to as “a chromatic dispersion amount”.
  • the first chromatic dispersion amount is a chromatic dispersion amount (accumulated chromatic dispersion amount) accumulated while the first signal light S10 propagates through the multiplexed optical transmission line 110.
  • wavelength dispersion adding device 131 for example, various types of wavelength dispersion compensating devices such as a fiber Bragg grating (Fiber Bragg Grating FBG) type, a micro-optics type, a planar optical waveguide (Planar Lightwave Circuit: PLC) type, and the like are used. Can be used.
  • a fiber Bragg grating Fiber Bragg Grating FBG
  • a micro-optics type a planar optical waveguide (Planar Lightwave Circuit: PLC) type, and the like are used.
  • PLC Planar Lightwave Circuit
  • FIG. 1 shows the case where the chromatic dispersion adder 131 is arranged in the path of the first signal light S10 and the chromatic dispersion adder 132 is arranged in the path of the second signal light S21 (S22).
  • the chromatic dispersion adder 131 (132) may be disposed on at least one of the path of the first signal light S10 and the path of the second signal light S21 (S22).
  • the first chromatic dispersion amount of the first signal light S10 in the multiplexed optical transmission line 110 and the second signal light S21 (S22). ) can be made substantially the same. That is, the difference in chromatic dispersion amount (accumulated chromatic dispersion difference) accumulated by each signal light transmitted through each optical transmission line (core) of the multiplexed optical transmission line 110 can be made substantially zero. Thereby, degradation of signal quality due to crosstalk between optical transmission paths (cores) can be suppressed.
  • high-capacity transmission capable of obtaining good signal quality can be realized in an optical transmission system using a multi-core optical fiber. That is, in a transmission line using a multi-core optical fiber in which crosstalk can occur between cores, deterioration due to crosstalk can be minimized, and thereby the transmission distance can be extended.
  • each channel is based on a digital coherent transmission system suitable for high-speed / long-distance transmission. .
  • the difference in the accumulated chromatic dispersion amount between the main signal light and the interference signal light can be controlled. Therefore, when the magnitude of signal quality degradation due to the occurrence of crosstalk depends on the accumulated chromatic dispersion difference between the signal light and the interference signal light, the inter-core in the optical transmission system is controlled by controlling the accumulated chromatic dispersion difference. The resistance to crosstalk can be improved.
  • the inventors used the evaluation experiment system 200 shown in FIG. 2 to evaluate the influence of the accumulated chromatic dispersion difference between the main signal light and the interference signal light on the signal quality degradation amount.
  • the main signal light and the interference signal light are both 43 Gb / s DP-QPSK (Dual-Polarization Quadrature-Phase-Shift-Keying) signal light having the same wavelength.
  • the first optical transmitter 211 transmits main signal light
  • the second optical transmitter 212 transmits interference signal light.
  • the noise light from the noise light source 220 is added only to the path of the main signal light to reduce the optical SNR (Signal to Noise Ratio).
  • the optical SNR was set to 16 dB / 0.1 nm.
  • the accumulated chromatic dispersion difference is generated by inserting the chromatic dispersion adding device 230 into the path of the interference signal light and adding the chromatic dispersion to the interference signal light.
  • the optical receiver 240 receives the main signal light and the interference signal light.
  • FIG. 3 shows the measurement result of the bit error rate (BER) when the intensity ratio of the main signal light and the interference signal light is 16 dB.
  • the horizontal axis of the graph is the accumulated chromatic dispersion difference, and the vertical axis is the Q value converted from BER.
  • FIG. 4A and 4B show electric field trajectories in the QPSK signal light.
  • 4A shows the electric field locus when the residual chromatic dispersion amount is zero
  • FIG. 4B shows the electric field locus when the accumulated chromatic dispersion amount is 18,000 [ps / nm]. From these figures, when the accumulated chromatic dispersion is 18,000 [ps / nm] (FIG. 4B), distortion occurs due to the accumulated chromatic dispersion, and compared with the case where the residual chromatic dispersion is zero (FIG. 4A). It can be seen that the electric field amplitude is about 2.5 times larger at the maximum.
  • the electric field locus is composed of the sum of the electric fields of the main signal light and the interference signal light. Therefore, if the interference signal light has a large amplitude component due to the accumulation of chromatic dispersion, the probability of occurrence of a code error inevitably increases.
  • Fig. 5 shows the relationship between the accumulated chromatic dispersion amount and the maximum electric field amplitude. It can be seen from the figure that the maximum electric field amplitude monotonously increases until the accumulated chromatic dispersion amount is about 20,000 [ps / nm].
  • FIG. 3 shows only the measurement results up to the accumulated chromatic dispersion amount of about 5,000 [ps / nm]. From the results of FIG. 5, the accumulated chromatic dispersion amount is about 5,000 [ps / nm] or more. However, the amount of signal quality degradation is expected to increase monotonously.
  • the optical transmission system 100 of the present embodiment in order to minimize signal quality degradation due to crosstalk between cores, it is effective to suppress the difference in the accumulated chromatic dispersion amount between the signal lights where crosstalk occurs, preferably approximately zero. I know that there is.
  • the difference in the chromatic dispersion amount (accumulated chromatic dispersion difference) accumulated in each signal light transmitted through each optical transmission line (core) of the multiplexed optical transmission line 110 is substantially zero. It can be. Thereby, degradation of signal quality due to crosstalk between optical transmission paths (cores) can be suppressed.
  • high-capacity transmission capable of obtaining good signal quality can be realized in an optical transmission system using a multi-core optical fiber.
  • FIG. 6 is a block diagram showing a configuration of an optical transmission system 300 according to the second embodiment of the present invention.
  • the optical transmission system 300 includes multiple optical fiber transmission lines 311 to 314 as multiplexed optical transmission lines, a plurality of relay apparatuses 321 to 325 connecting a plurality of multiplexed optical transmission lines, and a wavelength dispersion adding apparatus 331 connected to the relay apparatus. 332.
  • five relay apparatuses (Node-1 to 5) are connected by four multi-optical fiber transmission lines (Span-1 to 4), and the first relay apparatus (Node-1) 321 is connected.
  • the first optical transmitter 341 is connected will be described.
  • the second optical transmitter 342 is connected to the third repeater (Node-3) via the chromatic dispersion adder 331, and the third optical transmitter 343 is connected to the fourth repeater via the chromatic dispersion adder 332. Connected to each relay device (Node-4).
  • a reconfigurable optical add / drop multiplexer can be used as the relay apparatuses 321 to 325.
  • ROADM reconfigurable optical add / drop multiplexer
  • the difference in the chromatic dispersion amount (accumulated chromatic dispersion) accumulated in each signal light transmitted through each of the multi-optical fiber transmission lines 311 to 314. (Difference) can be substantially zero.
  • the optical transmission system 300 has a configuration in which repeaters 321 to 325 connect a plurality of multi optical fiber transmission lines 311 to 314 in a straight line, and linear optical transmission using ROADMs.
  • the system is configured.
  • FIG. 6 shows a case where the optical transmission system 300 has a 5-node (Node-1 to 5) 4-span configuration.
  • each of the multi-optical fiber transmission lines 311 to 314 (span) configured by the multi-core optical fiber has chromatic dispersion amounts (Disp) D1 to D4.
  • the process of adding chromatic dispersion in advance to the signal light S31 that is the output light of the first optical transmitter 341 input to Node-1 is Not performed.
  • the signal light S31 arrives at the third repeater (Node-3) 323, it receives a total of D1 + D2 chromatic dispersion amounts from the multi-optical fiber transmission line and holds them as the accumulated chromatic dispersion amount.
  • the chromatic dispersion adder 331 connected to the third repeater (Node-3) 323 has the same amount of output light from the second optical transmitter 342 inserted (Add) in Node-3. Is added before being inserted into the multi-optical fiber transmission line.
  • FIG. 7 shows the relationship between the position in the optical transmission system 300 and the accumulated chromatic dispersion amount of each signal light at this time. As shown in the figure, the accumulated chromatic dispersion amounts of the signal light S31 and the signal light S32 are the same in Node-3.
  • the signal light S31 from Node-1 is dropped.
  • the signal light S32 from Node-3 passes through Node-4 while maintaining the accumulated chromatic dispersion amount of D1 + D2 + D3. Therefore, the chromatic dispersion adder 332 connected to the fourth repeater (Node-4) 324 has the same amount of wavelength as the output light from the third optical transmitter 343 inserted (Add) in Node-4. The amount of dispersion is added before being inserted into the multi-optical fiber transmission line. Thereafter, the signal light S33 is output to the multi-optical fiber transmission line. Also at this time, as shown in FIG. 7, the accumulated chromatic dispersion amounts of the signal light S32 and the signal light S33 are the same in Node-4.
  • the accumulated chromatic dispersion amounts possessed by the signal lights S31, S32, and S33 in the multi-optical fiber transmission lines 311 to 314 can be made substantially the same. . That is, the difference in the chromatic dispersion amount (accumulated chromatic dispersion difference) accumulated in each signal light transmitted through the multi-optical fiber transmission lines 311 to 314 can be made substantially zero. Thereby, degradation of signal quality due to crosstalk between optical transmission paths (cores) can be suppressed. As a result, according to the optical transmission system 300 of the present embodiment, high-capacity transmission capable of obtaining good signal quality can be realized in an optical transmission system using a multi-core optical fiber.
  • FIG. 8 is a block diagram showing a configuration of an optical transmission system 400 according to the third embodiment of the present invention.
  • the optical transmission system 400 has a configuration in which a plurality of multi-optical fiber transmission lines 411 to 415 are connected in a ring shape with repeaters 421 to 425, and is a second type in that a ring optical transmission system using ROADM is configured.
  • each relay apparatus Node-1 to 5
  • the multi-optical fiber transmission lines (Span-1 to 5) have chromatic dispersion amounts (Disp) D1 to D5, respectively.
  • the chromatic dispersion adders 431 to 434 connected to the Nodes 2 to 5 are substantially equal to the accumulated chromatic dispersion amount of the signal light passing through each Node in the output light from the optical transmitter inserted in each Node. The same amount of chromatic dispersion is added. Thereafter, the signal lights S42 to S45 are output.
  • the total chromatic dispersion amount of D1 + D2 + D3 + D4 is added to the multi-optical fiber transmission line for the output light inserted (Add) in Node-5. Need to be added before inserting into. Thereafter, the signal light S45 is output from Node-5 to the multi-optical fiber transmission line.
  • the signal light S45 receives the chromatic dispersion amount of D5 in the multi-optical fiber transmission line (Span-5) 415, and arrives at Node-1 as the signal light 46 having the total chromatic dispersion amount of D1 + D2 + D3 + D4 + D5 as the accumulated chromatic dispersion amount.
  • the chromatic dispersion adding device 435 connected to Node-1 adds a chromatic dispersion amount that compensates the chromatic dispersion amount possessed by the signal light S46. That is, the wavelength dispersion adding device 435 gives the signal light S46 a wavelength dispersion amount ( ⁇ (D1 + D2 + D3 + D4 + D5)) that is equal in magnitude to the accumulated wavelength dispersion amount held by the signal light S46 and has the opposite sign. Therefore, the accumulated chromatic dispersion amounts respectively possessed by the signal light inserted from Node-5 to Node-1 and the signal light newly inserted at Node-1 are substantially the same (zero).
  • FIG. 9 shows the relationship between the position in the optical transmission system 400 and the accumulated chromatic dispersion amount of each signal light. As shown in the figure, the accumulated chromatic dispersion amount of each signal light in Node-1 is the same.
  • the optical transmission system 400 of the present embodiment even if a ring optical transmission system is configured, the accumulated chromatic dispersion that each signal light has in each repeater (Node-1 to 5).
  • the amount can be substantially the same. That is, the difference in the chromatic dispersion amount (accumulated chromatic dispersion difference) accumulated in each signal light transmitted through each repeater can be made substantially zero. Thereby, degradation of signal quality due to crosstalk between optical transmission paths (cores) can be suppressed.
  • high-capacity transmission capable of obtaining good signal quality can be realized in an optical transmission system using a multi-core optical fiber.
  • the wavelength dispersion adding device is arranged immediately before being inserted into the multiplexed optical transmission line (multi-optical fiber transmission line).
  • the present invention is not limited to this, and any other arrangement configuration may be used as long as the accumulated chromatic dispersion amount is acquired before the signal light is inserted into the multiplexed optical transmission line.
  • Optical transmission system 110 Multiplexed optical transmission line 120, 321-325, 421-425 Repeater 131, 132, 230, 331, 332, 431-435 Wavelength dispersion adder 200 Evaluation experiment system 211, 341 First Optical transmitters 212 and 342 second optical transmitter 220 noise light source 240 optical receivers 311 to 314 and 411 to 415 multi-optical fiber transmission line S10 first signal light S21 and S22 second signal light S31 and S32, S33, S41 to S45 Signal light

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

In an optical transport system that uses a multi-core optical fiber, large-capacity transport in which superior signal quality is achieved is difficult, and therefore, this optical transport system has multiplexed optical transport paths configured so as to include a plurality of mutually adjacent optical transport paths, a plurality of relay devices connecting a plurality of the multiplexed optical transport paths, and wavelength dispersion additional devices connected to the relay devices; wherein the relay devices pass a first signal light in order to insert a second signal light into the multiplexed optical transport paths, and the wavelength dispersion additional devices add a wavelength dispersion compensation amount to either the first signal light or the second signal light so that a first wavelength dispersion amount possessed by the first signal light and the second wavelength dispersion amount possessed by the second signal light are substantially the same.

Description

光伝送システムおよび光伝送方法Optical transmission system and optical transmission method
 本発明は、光伝送システムおよび光伝送方法に関し、特に、マルチコア光ファイバを伝送路として用いる光伝送システムおよび光伝送方法に関する。 The present invention relates to an optical transmission system and an optical transmission method, and more particularly to an optical transmission system and an optical transmission method using a multi-core optical fiber as a transmission path.
 インターネットを支える基幹系長距離・大容量光ファイバ伝送システムでは、伝送容量に対する需要増加に対応するため、1本のファイバで伝送可能な容量を向上させる技術の開発が進められてきた。従来は伝送容量を向上させるために、伝送速度を向上させる技術、つまり「時間多重」技術が用いられていた。しかし、時間多重技術だけではインターネットの普及による伝送容量の飛躍的な増大に対処することが困難であった。そのため、光ファイバの性質を利用した「波長多重」、「波長帯多重」、「偏波多重」といった技術を併用することにより伝送容量の需要増加に対処してきた。こうした技術開発の積み重ねにより、デモンストレーションレベルでは1本のファイバあたりの伝送可能容量は、100テラビット/秒を越えるレベルに達している。しかし、現状の技術の延長では、これ以上の大幅な改善を図ることは困難になっている。 In the backbone long-haul and large-capacity optical fiber transmission system that supports the Internet, in order to respond to an increase in demand for transmission capacity, development of technology for improving the capacity that can be transmitted with one fiber has been advanced. Conventionally, in order to improve the transmission capacity, a technique for improving the transmission speed, that is, a “time multiplexing” technique has been used. However, it has been difficult to cope with the dramatic increase in transmission capacity due to the spread of the Internet using only the time multiplexing technology. Therefore, the demand for transmission capacity has been dealt with by using technologies such as “wavelength multiplexing”, “wavelength band multiplexing”, and “polarization multiplexing” that utilize the properties of optical fibers. As a result of such technical development, the transmission capacity per fiber reaches a level exceeding 100 terabit / second at the demonstration level. However, with the extension of the current technology, it is difficult to make further significant improvements.
 さらなる伝送容量の増大を可能とする技術として、「空間多重」技術が注目を集めている。この「空間多重」技術には複数の方式がある。まず、N本の光ファイバを並列に使用することによって総伝送容量をN倍にすることができる「ファイバ多重」方式がある。また、マルチモードファイバの各導波モードを独立に使用する「モード多重」方式や、1本のファイバ中に複数のコアを有するマルチコア光ファイバの各コアを独立に使用する「コア多重」方式(例えば、特許文献1、非特許文献1を参照)などがある。中でも、「コア多重」方式よる大容量光伝送のデモンストレーションにおいては、1ファイバあたり100テラビット/秒を越える伝送可能容量が達成されている。 As a technology that enables further increase in transmission capacity, “spatial multiplexing” technology is attracting attention. This “spatial multiplexing” technique has a plurality of methods. First, there is a “fiber multiplex” method in which the total transmission capacity can be increased N times by using N optical fibers in parallel. In addition, a “mode multiplexing” method that uses each waveguide mode of a multimode fiber independently, and a “core multiplexing” method that uses each core of a multicore optical fiber having a plurality of cores in one fiber independently ( For example, see Patent Document 1 and Non-Patent Document 1). In particular, in a demonstration of large-capacity optical transmission using the “core multiplexing” method, a transmission capacity exceeding 100 terabits / second per fiber has been achieved.
国際公開第2009/107414号(段落「0052」~「0077」)International Publication No. 2009/107414 (paragraphs “0052” to “0077”)
 上述したコア多重方式では、N個のコアを持つマルチコア光ファイバを用いるので、光ファイバ1本当たりの伝送容量をN倍にすることが可能である。しかしながら、コア間で発生するクロストークによって信号品質が劣化するという問題がある。例えば、非特許文献1に記載されたマルチコア光ファイバでは、2km伝送後に約-20dBのクロストークが発生している。このクロストークにより、関連するマルチコア光ファイバを用いた光伝送システムでは、信号品質の劣化が生じる。 In the core multiplexing method described above, a multi-core optical fiber having N cores is used, so that the transmission capacity per optical fiber can be increased N times. However, there is a problem that signal quality deteriorates due to crosstalk generated between cores. For example, in the multi-core optical fiber described in Non-Patent Document 1, a crosstalk of about −20 dB occurs after 2 km transmission. Due to this crosstalk, signal quality deteriorates in an optical transmission system using a related multi-core optical fiber.
 マルチコア光ファイバにおけるクロストーク量を低減させるために、例えば、コアからの光の漏れだし量を抑制することが考えられる。しかし、そのためにはコア内への光閉じ込めを強化する必要があり、結果的に非線形劣化を増大させる要因となってしまう。また、クロストーク量を低減させるために、コア間の距離を拡大することとすると、1本のファイバ内へのコアの設置数を制限する要因となる。つまり、マルチコア光ファイバにおけるクロストーク量を低減させようとすると、大容量伝送システム向けの伝送路に対する要求と相反することになる。 In order to reduce the amount of crosstalk in a multi-core optical fiber, for example, it is conceivable to suppress the amount of light leaking from the core. However, for that purpose, it is necessary to strengthen the optical confinement in the core, and as a result, it becomes a factor of increasing nonlinear degradation. Further, if the distance between the cores is increased in order to reduce the amount of crosstalk, it becomes a factor that limits the number of cores installed in one fiber. That is, reducing the amount of crosstalk in the multi-core optical fiber contradicts the requirement for a transmission line for a large-capacity transmission system.
 このように、マルチコア光ファイバを用いた光伝送システムでは、良好な信号品質が得られる大容量伝送が困難である、という問題があった。 As described above, in the optical transmission system using the multi-core optical fiber, there is a problem that it is difficult to perform large-capacity transmission capable of obtaining good signal quality.
 本発明の目的は、上述した課題である、マルチコア光ファイバを用いた光伝送システムでは、良好な信号品質が得られる大容量伝送が困難である、という課題を解決する光伝送システムおよび光伝送方法を提供することにある。 An object of the present invention is to provide an optical transmission system and an optical transmission method that solve the above-described problem that it is difficult to perform large-capacity transmission capable of obtaining good signal quality in an optical transmission system using a multi-core optical fiber. Is to provide.
 本発明の光伝送システムは、互いに近接する複数の光伝送路を含んで構成される多重光伝送路と、複数の多重光伝送路を接続する複数の中継装置と、中継装置に接続された波長分散付加装置、とを有し、中継装置は、第1の信号光を通過させ、第2の信号光を多重光伝送路に挿入し、波長分散付加装置は、第1の信号光が有する第1の波長分散量と第2の信号光が有する第2の波長分散量が略同一となるように、第1の信号光および第2の信号光のいずれか一方に対して、波長分散補償量を付加する。 An optical transmission system according to the present invention includes a multiplexed optical transmission path configured to include a plurality of optical transmission paths that are close to each other, a plurality of relay apparatuses that connect the plurality of multiplexed optical transmission paths, and a wavelength that is connected to the relay apparatus. A dispersion adding device, the relay device passes the first signal light, inserts the second signal light into the multiplexed optical transmission line, and the chromatic dispersion adding device has the first signal light possessed by the first signal light. The chromatic dispersion compensation amount for one of the first signal light and the second signal light so that the chromatic dispersion amount of 1 and the second chromatic dispersion amount of the second signal light are substantially the same. Is added.
 本発明の光伝送方法は、互いに近接する複数の光伝送路を含んで構成される多重光伝送路に第1の信号光を通過させ、多重光伝送路に第2の信号光を挿入し、第1の信号光が有する第1の波長分散量と第2の信号光が有する第2の波長分散量が略同一となるように、第1の信号光および第2の信号光のいずれか一方に対して、波長分散補償量を付加する。 In the optical transmission method of the present invention, the first signal light is allowed to pass through a multiplexed optical transmission line including a plurality of optical transmission lines adjacent to each other, and the second signal light is inserted into the multiplexed optical transmission line. Either the first signal light or the second signal light so that the first chromatic dispersion amount of the first signal light and the second chromatic dispersion amount of the second signal light are substantially the same. In contrast, a chromatic dispersion compensation amount is added.
 本発明の光伝送システムおよび光伝送方法によれば、マルチコア光ファイバを用いた光伝送システムにおいて、良好な信号品質が得られる大容量伝送を実現することができる。 According to the optical transmission system and the optical transmission method of the present invention, it is possible to realize large-capacity transmission capable of obtaining good signal quality in an optical transmission system using a multi-core optical fiber.
本発明の第1の実施形態に係る光伝送システムの構成を示すブロック図である。1 is a block diagram illustrating a configuration of an optical transmission system according to a first embodiment of the present invention. クロストークにより発生する信号品質劣化量を評価するための評価実験系の構成を示すブロック図である。It is a block diagram which shows the structure of the evaluation experiment system for evaluating the signal quality degradation amount generate | occur | produced by crosstalk. 主信号光と干渉信号光の蓄積波長分散差とQ値との関係を測定した結果示す図である。It is a figure which shows the result of having measured the relationship between the accumulation | storage wavelength dispersion difference of main signal light and interference signal light, and Q value. QPSK信号光における電界軌跡を示す図であり、残留波長分散量がゼロの場合である。It is a figure which shows the electric field locus | trajectory in QPSK signal light, and is a case where a residual chromatic dispersion amount is zero. QPSK信号光における電界軌跡を示す図であり、蓄積波長分散量が18,000[ps/nm]の場合である。It is a figure which shows the electric field locus | trajectory in QPSK signal light, and is a case where accumulation | storage wavelength dispersion amount is 18,000 [ps / nm]. QPSK信号光における最大電界振幅と蓄積波長分散量との関係を示す図である。It is a figure which shows the relationship between the maximum electric field amplitude and accumulation | storage wavelength dispersion amount in QPSK signal light. 本発明の第2の実施形態に係る光伝送システムの構成を示すブロック図である。It is a block diagram which shows the structure of the optical transmission system which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係る光伝送システムにおける位置と各信号光の蓄積波長分散量との関係を示す図である。It is a figure which shows the relationship between the position in the optical transmission system which concerns on the 2nd Embodiment of this invention, and the accumulation | storage wavelength dispersion amount of each signal light. 本発明の第3の実施形態に係る光伝送システムの構成を示すブロック図である。It is a block diagram which shows the structure of the optical transmission system which concerns on the 3rd Embodiment of this invention. 本発明の第3の実施形態に係る光伝送システムにおける位置と各信号光の蓄積波長分散量との関係を示す図である。It is a figure which shows the relationship between the position in the optical transmission system which concerns on the 3rd Embodiment of this invention, and the accumulation | storage wavelength dispersion amount of each signal light.
 以下に、図面を参照しながら、本発明の実施形態について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 〔第1の実施形態〕
 図1は、本発明の第1の実施形態に係る光伝送システム100の構成を示すブロック図である。光伝送システム100は、多重光伝送路110、複数の多重光伝送路を接続する複数の中継装置120、および中継装置120に接続された波長分散付加装置131(132)を有する。多重光伝送路110は、互いに近接する複数の光伝送路を含んで構成され、例えば、光伝送路を構成する複数のコアを一の光ファイバ中に備えたマルチコア光ファイバを用いることができる。中継装置120は、第1の信号光S10を通過させ、第2の信号光S21(S22)を多重光伝送路110に挿入する。中継装置120には、例えば、再構成可能な光分岐挿入多重化装置(Reconfigurable Optical ADD/Drop Multiplexer:ROADM)を用いることができる。
[First Embodiment]
FIG. 1 is a block diagram showing a configuration of an optical transmission system 100 according to the first embodiment of the present invention. The optical transmission system 100 includes a multiplexed optical transmission line 110, a plurality of relay apparatuses 120 that connect a plurality of multiplexed optical transmission lines, and a chromatic dispersion adder 131 (132) connected to the relay apparatus 120. The multiplexed optical transmission line 110 includes a plurality of optical transmission lines that are close to each other. For example, a multi-core optical fiber that includes a plurality of cores constituting the optical transmission line in one optical fiber can be used. The relay device 120 passes the first signal light S10 and inserts the second signal light S21 (S22) into the multiplexed optical transmission line 110. For example, a reconfigurable optical add / drop multiplexer (ROADM) can be used as the relay device 120.
 波長分散付加装置131(132)は、第1の信号光S10が有する第1の波長分散量と第2の信号光S21(S22)が有する第2の波長分散量が略同一となるように、第1の信号光S10および第2の信号光S21(S22)のいずれか一方に対して、波長分散補償量を付加する。すなわち、波長分散付加装置131が、波長分散補償量として、第1の波長分散量を補償する波長分散量を第1の信号光S10に付与する構成とすることができる。また、波長分散付加装置132が、波長分散補償量として、第1の波長分散量と略同一の波長分散量を第2の信号光S21(S22)に付与する構成とすることもできる。 The chromatic dispersion adder 131 (132) is configured so that the first chromatic dispersion amount of the first signal light S10 and the second chromatic dispersion amount of the second signal light S21 (S22) are substantially the same. A chromatic dispersion compensation amount is added to one of the first signal light S10 and the second signal light S21 (S22). In other words, the chromatic dispersion adding device 131 can be configured to provide the first signal light S10 with the chromatic dispersion amount that compensates the first chromatic dispersion amount as the chromatic dispersion compensation amount. Further, the chromatic dispersion adding device 132 may be configured to provide the second signal light S21 (S22) with a chromatic dispersion amount substantially the same as the first chromatic dispersion amount as the chromatic dispersion compensation amount.
 ここで、波長分散とは、光ファイバ内における光信号の群速度が光信号の波長の関数として変化する現象をいう。波長分散は、波長が1nm異なる二つの単色光を1km伝搬させたときの伝搬時間差(単位はps/nm/kmまたは単にps/nm)で定義される。そこで本明細書では、波長分散をこの伝播時間差で表すときは、「波長分散量」と言うこととする。なお、第1の波長分散量とは、第1の信号光S10が多重光伝送路110を伝播する間に蓄積された波長分散量(蓄積波長分散量)である。 Here, chromatic dispersion refers to a phenomenon in which the group velocity of an optical signal in an optical fiber changes as a function of the wavelength of the optical signal. The chromatic dispersion is defined by a propagation time difference (unit: ps / nm / km or simply ps / nm) when two monochromatic lights having different wavelengths by 1 nm are propagated by 1 km. Therefore, in this specification, when chromatic dispersion is expressed by this propagation time difference, it is referred to as “a chromatic dispersion amount”. The first chromatic dispersion amount is a chromatic dispersion amount (accumulated chromatic dispersion amount) accumulated while the first signal light S10 propagates through the multiplexed optical transmission line 110.
 波長分散付加装置131(132)としては、例えば、ファイバブラッググレーティング(Fiber Bragg Grating FBG)型、マイクロオプティクス型、平面光導波路(Planar Lightwave Circuit:PLC)型など、種々の方式の波長分散補償装置を用いることができる。 As the wavelength dispersion adding device 131 (132), for example, various types of wavelength dispersion compensating devices such as a fiber Bragg grating (Fiber Bragg Grating FBG) type, a micro-optics type, a planar optical waveguide (Planar Lightwave Circuit: PLC) type, and the like are used. Can be used.
 図1では、第1の信号光S10の経路に波長分散付加装置131が、第2の信号光S21(S22)の経路に波長分散付加装置132がそれぞれ配置している場合を示した。しかし、波長分散付加装置131(132)は第1の信号光S10の経路または第2の信号光S21(S22)の経路の少なくとも一方に配置していればよい。 FIG. 1 shows the case where the chromatic dispersion adder 131 is arranged in the path of the first signal light S10 and the chromatic dispersion adder 132 is arranged in the path of the second signal light S21 (S22). However, the chromatic dispersion adder 131 (132) may be disposed on at least one of the path of the first signal light S10 and the path of the second signal light S21 (S22).
 このような構成とすることにより、本実施形態の光伝送システム100によれば、多重光伝送路110における第1の信号光S10が有する第1の波長分散量と第2の信号光S21(S22)が有する第2の波長分散量を略同一とすることができる。すなわち、多重光伝送路110の各光伝送路(コア)を伝送する各信号光が蓄積している波長分散量の差(蓄積波長分散差)を略ゼロとすることが可能となる。これにより、光伝送路(コア)間のクロストークによる信号品質の劣化を抑制することができる。その結果、本実施形態の光伝送システム100によれば、マルチコア光ファイバを用いた光伝送システムにおいて、良好な信号品質が得られる大容量伝送を実現することができる。すなわち、コア間でクロストークが発生し得るマルチコア光ファイバを使用した伝送路において、クロストークによる劣化を最小化することができ、それによって伝送可能距離の延長が可能となる。 With this configuration, according to the optical transmission system 100 of the present embodiment, the first chromatic dispersion amount of the first signal light S10 in the multiplexed optical transmission line 110 and the second signal light S21 (S22). ) Can be made substantially the same. That is, the difference in chromatic dispersion amount (accumulated chromatic dispersion difference) accumulated by each signal light transmitted through each optical transmission line (core) of the multiplexed optical transmission line 110 can be made substantially zero. Thereby, degradation of signal quality due to crosstalk between optical transmission paths (cores) can be suppressed. As a result, according to the optical transmission system 100 of the present embodiment, high-capacity transmission capable of obtaining good signal quality can be realized in an optical transmission system using a multi-core optical fiber. That is, in a transmission line using a multi-core optical fiber in which crosstalk can occur between cores, deterioration due to crosstalk can be minimized, and thereby the transmission distance can be extended.
 次に、本実施形態による光伝送システム100の作用効果について詳細に説明する。マルチコア光ファイバの採用が最も期待されているのは長距離/大容量光伝送システムであることから、以下の説明では、各チャネルは高速/長距離伝送に適したデジタルコヒーレント伝送方式によるものとする。 Next, operational effects of the optical transmission system 100 according to the present embodiment will be described in detail. Since the long-distance / large-capacity optical transmission system is most expected to adopt multi-core optical fiber, in the following explanation, each channel is based on a digital coherent transmission system suitable for high-speed / long-distance transmission. .
 コア間のクロストークは光ファイバ中で分布的に発生し、その発生点や大きさは時間的に変化する。そのため、主信号光と、主信号光と干渉する信号光である干渉信号光との間の偏波やビット位置に関する相対関係を、システム側で把握し、制御することは不可能である。一方、マルチコア光ファイバの各コアに同一の波長分散特性を持たせれば、クロストークの発生地点によらず、主信号光と干渉信号光の間の蓄積波長分散量の差は、両信号光がマルチコア光ファイバにおいて合波された時の差が保たれる。そして、主信号光と干渉信号光の間の蓄積波長分散量の差は、制御することが可能である。したがって、クロストークの発生による信号品質劣化の大きさが、信号光と干渉信号光との間の蓄積波長分散差に依存する場合は、蓄積波長分散差を制御することにより光伝送システムにおけるコア間クロストークに対する耐力の向上が可能となる。 ク ロ ス Crosstalk between cores occurs in a distributed manner in the optical fiber, and the point and size of the occurrence change with time. For this reason, it is impossible for the system side to grasp and control the relative relationship regarding the polarization and the bit position between the main signal light and the interference signal light that is the signal light that interferes with the main signal light. On the other hand, if each core of the multi-core optical fiber has the same chromatic dispersion characteristics, the difference in the accumulated chromatic dispersion amount between the main signal light and the interference signal light is the same for both signal lights regardless of the crosstalk occurrence point. The difference when combined in the multi-core optical fiber is maintained. The difference in the accumulated chromatic dispersion amount between the main signal light and the interference signal light can be controlled. Therefore, when the magnitude of signal quality degradation due to the occurrence of crosstalk depends on the accumulated chromatic dispersion difference between the signal light and the interference signal light, the inter-core in the optical transmission system is controlled by controlling the accumulated chromatic dispersion difference. The resistance to crosstalk can be improved.
 そこで、発明者等は図2に示した評価実験系200を使用して、主信号光と干渉信号光との間の蓄積波長分散差が信号品質劣化量に与える影響を評価した。ここでは、主信号光および干渉信号光はともに同一波長である43Gb/sのDP-QPSK(Dual-Polarization Quadrature-Phase-Shift-Keying)信号光とした。第1の光送信器211が主信号光を送出し、第2の光送信器212が干渉信号光を送出する。主信号光の経路にのみ雑音光源220からの雑音光を付加し、光SNR(Signal to Noise Ratio)を低下させている。ここでは、光SNRを16dB/0.1nmに設定した。また、干渉信号光の経路に波長分散付加装置230を挿入し、干渉信号光に波長分散を付加することにより蓄積波長分散差を発生させた。そして、主信号光と干渉信号光を光受信器240で受信する構成とした。 Therefore, the inventors used the evaluation experiment system 200 shown in FIG. 2 to evaluate the influence of the accumulated chromatic dispersion difference between the main signal light and the interference signal light on the signal quality degradation amount. Here, the main signal light and the interference signal light are both 43 Gb / s DP-QPSK (Dual-Polarization Quadrature-Phase-Shift-Keying) signal light having the same wavelength. The first optical transmitter 211 transmits main signal light, and the second optical transmitter 212 transmits interference signal light. The noise light from the noise light source 220 is added only to the path of the main signal light to reduce the optical SNR (Signal to Noise Ratio). Here, the optical SNR was set to 16 dB / 0.1 nm. Further, the accumulated chromatic dispersion difference is generated by inserting the chromatic dispersion adding device 230 into the path of the interference signal light and adding the chromatic dispersion to the interference signal light. The optical receiver 240 receives the main signal light and the interference signal light.
 図3に、主信号光と干渉信号光の強度比が16dBであるときのビットエラーレート(Bit Error Rate:BER)の測定結果を示す。グラフの横軸は蓄積波長分散差であり、縦軸にはBERから換算したQ値を用いている。同図から明らかなように、蓄積波長分散差が大きいほどQ値が低い、つまり信号品質の劣化量は増大する。次に、この理由について説明する。 FIG. 3 shows the measurement result of the bit error rate (BER) when the intensity ratio of the main signal light and the interference signal light is 16 dB. The horizontal axis of the graph is the accumulated chromatic dispersion difference, and the vertical axis is the Q value converted from BER. As is clear from the figure, the larger the accumulated chromatic dispersion difference, the lower the Q value, that is, the amount of signal quality degradation increases. Next, the reason will be described.
 図4Aおよび図4Bに、QPSK信号光における電界軌跡を示す。図4Aは残留波長分散量がゼロの場合、図4Bは蓄積波長分散量が18,000[ps/nm]の場合の電界軌跡をそれぞれ示す。これらの図から、蓄積波長分散量が18,000[ps/nm]の場合(図4B)には蓄積波長分散量により歪が発生し、残留波長分散量がゼロの場合(図4A)と比較して、電界振幅が最大で2.5倍程度大きくなることがわかる。ここでクロストークが発生している場合、電界軌跡は主信号光と干渉信号光の電界の和からなる。そのため、干渉信号光が波長分散の蓄積により大きな振幅成分を有する場合には、必然的に符号誤りの発生確率も高まることになる。 4A and 4B show electric field trajectories in the QPSK signal light. 4A shows the electric field locus when the residual chromatic dispersion amount is zero, and FIG. 4B shows the electric field locus when the accumulated chromatic dispersion amount is 18,000 [ps / nm]. From these figures, when the accumulated chromatic dispersion is 18,000 [ps / nm] (FIG. 4B), distortion occurs due to the accumulated chromatic dispersion, and compared with the case where the residual chromatic dispersion is zero (FIG. 4A). It can be seen that the electric field amplitude is about 2.5 times larger at the maximum. Here, when crosstalk occurs, the electric field locus is composed of the sum of the electric fields of the main signal light and the interference signal light. Therefore, if the interference signal light has a large amplitude component due to the accumulation of chromatic dispersion, the probability of occurrence of a code error inevitably increases.
 図5に、蓄積波長分散量と最大電界振幅の関係を示す。同図から蓄積波長分散量が20,000[ps/nm]程度までは、最大電界振幅は単調増加することがわかる。図3では蓄積波長分散量が約5,000[ps/nm]までの測定結果しか示していないが、図5の結果から、蓄積波長分散量が約5,000[ps/nm]以上の場合も信号品質の劣化量は単調増加することが予想される。 Fig. 5 shows the relationship between the accumulated chromatic dispersion amount and the maximum electric field amplitude. It can be seen from the figure that the maximum electric field amplitude monotonously increases until the accumulated chromatic dispersion amount is about 20,000 [ps / nm]. FIG. 3 shows only the measurement results up to the accumulated chromatic dispersion amount of about 5,000 [ps / nm]. From the results of FIG. 5, the accumulated chromatic dispersion amount is about 5,000 [ps / nm] or more. However, the amount of signal quality degradation is expected to increase monotonously.
 以上より、コア間のクロストークによる信号品質の劣化を最小化するためには、クロストークが発生する信号光間の蓄積波長分散量の差を小さく抑える、望ましくは略ゼロとすることが有効であることがわかる。本実施形態の光伝送システム100によれば、多重光伝送路110の各光伝送路(コア)を伝送する各信号光が蓄積している波長分散量の差(蓄積波長分散差)を略ゼロとすることができる。これにより、光伝送路(コア)間のクロストークによる信号品質の劣化を抑制することができる。その結果、本実施形態の光伝送システム100によれば、マルチコア光ファイバを用いた光伝送システムにおいて、良好な信号品質が得られる大容量伝送を実現することができる。 From the above, in order to minimize signal quality degradation due to crosstalk between cores, it is effective to suppress the difference in the accumulated chromatic dispersion amount between the signal lights where crosstalk occurs, preferably approximately zero. I know that there is. According to the optical transmission system 100 of the present embodiment, the difference in the chromatic dispersion amount (accumulated chromatic dispersion difference) accumulated in each signal light transmitted through each optical transmission line (core) of the multiplexed optical transmission line 110 is substantially zero. It can be. Thereby, degradation of signal quality due to crosstalk between optical transmission paths (cores) can be suppressed. As a result, according to the optical transmission system 100 of the present embodiment, high-capacity transmission capable of obtaining good signal quality can be realized in an optical transmission system using a multi-core optical fiber.
 〔第2の実施形態〕
 次に、本発明の第2の実施形態について説明する。図6は、本発明の第2の実施形態に係る光伝送システム300の構成を示すブロック図である。光伝送システム300は、多重光伝送路としてのマルチ光ファイバ伝送路311~314、複数の多重光伝送路を接続する複数の中継装置321~325、および中継装置に接続された波長分散付加装置331、332を有する。本実施形態では、5台の中継装置(Node-1~5)の間を4本のマルチ光ファイバ伝送路(Span-1~4)で接続し、第1の中継装置(Node-1)321に第1の光送信器341が接続された場合について説明する。さらに、第2の光送信器342が波長分散付加装置331を介して第3の中継装置(Node-3)に接続され、第3の光送信器343が波長分散付加装置332を介して第4の中継装置(Node-4)にそれぞれ接続された構成とした。
[Second Embodiment]
Next, a second embodiment of the present invention will be described. FIG. 6 is a block diagram showing a configuration of an optical transmission system 300 according to the second embodiment of the present invention. The optical transmission system 300 includes multiple optical fiber transmission lines 311 to 314 as multiplexed optical transmission lines, a plurality of relay apparatuses 321 to 325 connecting a plurality of multiplexed optical transmission lines, and a wavelength dispersion adding apparatus 331 connected to the relay apparatus. 332. In the present embodiment, five relay apparatuses (Node-1 to 5) are connected by four multi-optical fiber transmission lines (Span-1 to 4), and the first relay apparatus (Node-1) 321 is connected. Next, a case where the first optical transmitter 341 is connected will be described. Further, the second optical transmitter 342 is connected to the third repeater (Node-3) via the chromatic dispersion adder 331, and the third optical transmitter 343 is connected to the fourth repeater via the chromatic dispersion adder 332. Connected to each relay device (Node-4).
 中継装置321~325には、例えば、再構成可能な光分岐挿入多重化装置(ROADM)を用いることができる。ここで、ポイントツーポイント(Point-to-Point)システムにおいては全ての光送信器が同一地点に必ず集まるので、蓄積波長分散差は自動的にゼロとなる。これは、光送信器から出力された蓄積波長分散量がゼロである信号光をそのまま光伝送路に入力すれば、この条件は満たされるからである。それに対して、ROADMを用いた光伝送システムにおいては、光送信器の配置位置がそれぞれ異なるので、蓄積波長分散差が自動的にゼロとなることはない。しかしながら、本実施形態の光伝送システム300によれば、以下に説明するように、各マルチ光ファイバ伝送路311~314を伝送する各信号光が蓄積している波長分散量の差(蓄積波長分散差)を略ゼロとすることができる。 As the relay apparatuses 321 to 325, for example, a reconfigurable optical add / drop multiplexer (ROADM) can be used. Here, in the point-to-point system, since all the optical transmitters always gather at the same point, the accumulated chromatic dispersion difference automatically becomes zero. This is because this condition is satisfied if the signal light having an accumulated wavelength dispersion amount of zero output from the optical transmitter is directly input to the optical transmission line. On the other hand, in an optical transmission system using ROADM, since the arrangement positions of the optical transmitters are different, the accumulated chromatic dispersion difference does not automatically become zero. However, according to the optical transmission system 300 of the present embodiment, as will be described below, the difference in the chromatic dispersion amount (accumulated chromatic dispersion) accumulated in each signal light transmitted through each of the multi-optical fiber transmission lines 311 to 314. (Difference) can be substantially zero.
 図6に示すように、本実施形態の光伝送システム300は、中継装置321~325が複数のマルチ光ファイバ伝送路311~314を直線状に接続した構成であり、ROADMを用いたリニア光伝送システムを構成している。図6では、光伝送システム300が5ノード(Node-1~5)、4スパン構成である場合を示す。ここで、マルチコア光ファイバで構成される各マルチ光ファイバ伝送路311~314(スパン)はそれぞれ波長分散量(Disp)D1~D4を有するものとする。 As shown in FIG. 6, the optical transmission system 300 according to the present embodiment has a configuration in which repeaters 321 to 325 connect a plurality of multi optical fiber transmission lines 311 to 314 in a straight line, and linear optical transmission using ROADMs. The system is configured. FIG. 6 shows a case where the optical transmission system 300 has a 5-node (Node-1 to 5) 4-span configuration. Here, it is assumed that each of the multi-optical fiber transmission lines 311 to 314 (span) configured by the multi-core optical fiber has chromatic dispersion amounts (Disp) D1 to D4.
 第1の中継装置(Node-1)321を基準とすると、Node-1へ入力される第1の光送信器341の出力光である信号光S31に対しては波長分散を予め付加する処理は行わない。この信号光S31は第3の中継装置(Node-3)323に到着する時点において、マルチ光ファイバ伝送路から合計D1+D2の波長分散量を受け取り、蓄積波長分散量として保有している。ここで、第3の中継装置(Node-3)323に接続された波長分散付加装置331は、Node-3において挿入(Add)される第2の光送信器342からの出力光に、同量の波長分散量をマルチ光ファイバ伝送路に挿入される前に付加する。その後に、信号光S32としてマルチ光ファイバ伝送路に出力する。このときの、光伝送システム300における位置と各信号光の蓄積波長分散量との関係を図7に示す。同図に示すように、信号光S31と信号光S32の蓄積波長分散量はNode-3において同一となる。 Using the first repeater (Node-1) 321 as a reference, the process of adding chromatic dispersion in advance to the signal light S31 that is the output light of the first optical transmitter 341 input to Node-1 is Not performed. When the signal light S31 arrives at the third repeater (Node-3) 323, it receives a total of D1 + D2 chromatic dispersion amounts from the multi-optical fiber transmission line and holds them as the accumulated chromatic dispersion amount. Here, the chromatic dispersion adder 331 connected to the third repeater (Node-3) 323 has the same amount of output light from the second optical transmitter 342 inserted (Add) in Node-3. Is added before being inserted into the multi-optical fiber transmission line. Thereafter, the signal light S32 is output to the multi-optical fiber transmission line. FIG. 7 shows the relationship between the position in the optical transmission system 300 and the accumulated chromatic dispersion amount of each signal light at this time. As shown in the figure, the accumulated chromatic dispersion amounts of the signal light S31 and the signal light S32 are the same in Node-3.
 第4の中継装置(Node-4)324においては、例えばNode-1からの信号光S31が分岐(Drop)される。一方、Node-3からの信号光S32は合計D1+D2+D3の蓄積波長分散量を保有したままNode-4を通過する。そこで第4の中継装置(Node-4)324に接続された波長分散付加装置332は、Node-4において挿入(Add)される第3の光送信器343からの出力光に、同量の波長分散量をマルチ光ファイバ伝送路に挿入される前に付加する。その後に、信号光S33としてマルチ光ファイバ伝送路に出力する。このときも図7に示すように、信号光S32と信号光S33の蓄積波長分散量はNode-4において同一となる。 In the fourth relay device (Node-4) 324, for example, the signal light S31 from Node-1 is dropped. On the other hand, the signal light S32 from Node-3 passes through Node-4 while maintaining the accumulated chromatic dispersion amount of D1 + D2 + D3. Therefore, the chromatic dispersion adder 332 connected to the fourth repeater (Node-4) 324 has the same amount of wavelength as the output light from the third optical transmitter 343 inserted (Add) in Node-4. The amount of dispersion is added before being inserted into the multi-optical fiber transmission line. Thereafter, the signal light S33 is output to the multi-optical fiber transmission line. Also at this time, as shown in FIG. 7, the accumulated chromatic dispersion amounts of the signal light S32 and the signal light S33 are the same in Node-4.
 以上説明したように、本実施形態の光伝送システム300によれば、マルチ光ファイバ伝送路311~314において各信号光S31、S32、S33が保有する蓄積波長分散量を略同一とすることができる。すなわち、マルチ光ファイバ伝送路311~314を伝送する各信号光が蓄積している波長分散量の差(蓄積波長分散差)を略ゼロとすることが可能となる。これにより、光伝送路(コア)間のクロストークによる信号品質の劣化を抑制することができる。その結果、本実施形態の光伝送システム300によれば、マルチコア光ファイバを用いた光伝送システムにおいて、良好な信号品質が得られる大容量伝送を実現することができる。 As described above, according to the optical transmission system 300 of this embodiment, the accumulated chromatic dispersion amounts possessed by the signal lights S31, S32, and S33 in the multi-optical fiber transmission lines 311 to 314 can be made substantially the same. . That is, the difference in the chromatic dispersion amount (accumulated chromatic dispersion difference) accumulated in each signal light transmitted through the multi-optical fiber transmission lines 311 to 314 can be made substantially zero. Thereby, degradation of signal quality due to crosstalk between optical transmission paths (cores) can be suppressed. As a result, according to the optical transmission system 300 of the present embodiment, high-capacity transmission capable of obtaining good signal quality can be realized in an optical transmission system using a multi-core optical fiber.
 〔第3の実施形態〕
 次に、本発明の第3の実施形態について説明する。図8は、本発明の第3の実施形態に係る光伝送システム400の構成を示すブロック図である。光伝送システム400は、中継装置421~425が複数のマルチ光ファイバ伝送路411~415を環状に接続した構成であり、ROADMを用いたリング光伝送システムを構成している点で、第2の実施形態の光伝送システム300と異なる。すなわち、Node-5とNode-1とがマルチ光ファイバ伝送路Span-5(波長分散量:D5)により接続された構成とした点が、図6に示した光伝送システム300と異なる。
[Third Embodiment]
Next, a third embodiment of the present invention will be described. FIG. 8 is a block diagram showing a configuration of an optical transmission system 400 according to the third embodiment of the present invention. The optical transmission system 400 has a configuration in which a plurality of multi-optical fiber transmission lines 411 to 415 are connected in a ring shape with repeaters 421 to 425, and is a second type in that a ring optical transmission system using ROADM is configured. Different from the optical transmission system 300 of the embodiment. That is, Node-5 and Node-1 are different from the optical transmission system 300 shown in FIG. 6 in that the configuration is such that Node-5 and Node-1 are connected by a multi-optical fiber transmission line Span-5 (wavelength dispersion amount: D5).
 本実施形態では、5台の中継装置(Node-1~5)の間を5本のマルチ光ファイバ伝送路(Span-1~5)で環状に接続し、各中継装置(Node-1~5)に波長分散付加装置431~435が接続された構成について説明する。ここで、各マルチ光ファイバ伝送路(Span-1~5)は、それぞれ波長分散量(Disp)D1~D5を有するものとする。そして、Node-2~5に接続された波長分散付加装置431~434は、各Nodeにおいて挿入される光送信器からの出力光に、各Nodeを通過する信号光が有する蓄積波長分散量と略同一の波長分散量を付加する。その後に、信号光S42~S45として出力する構成とした。 In the present embodiment, five relay apparatuses (Node-1 to 5) are connected in a ring shape with five multi-optical fiber transmission lines (Span-1 to 5), and each relay apparatus (Node-1 to 5) is connected. ) To which the wavelength dispersion adding devices 431 to 435 are connected. Here, it is assumed that the multi-optical fiber transmission lines (Span-1 to 5) have chromatic dispersion amounts (Disp) D1 to D5, respectively. Then, the chromatic dispersion adders 431 to 434 connected to the Nodes 2 to 5 are substantially equal to the accumulated chromatic dispersion amount of the signal light passing through each Node in the output light from the optical transmitter inserted in each Node. The same amount of chromatic dispersion is added. Thereafter, the signal lights S42 to S45 are output.
 このとき、Node-5における各信号光の蓄積波長分散量を略同一とするために、Node-5において挿入(Add)される出力光には、合計D1+D2+D3+D4の波長分散量をマルチ光ファイバ伝送路に挿入する前に付加する必要がある。その後に、信号光S45としてNode-5からマルチ光ファイバ伝送路に出力される。この信号光S45はマルチ光ファイバ伝送路(Span-5)415においてD5の波長分散量を受け取り、合計D1+D2+D3+D4+D5だけの波長分散量を蓄積波長分散量として保有した信号光46としてNode-1に到着する。ここでNode-1を基準とすると、Node-1から入力される信号光S41に対しては波長分散を予め付加する処理は不要であるので、信号光S41の蓄積波長分散量はゼロである。そのため、信号光S41と信号光S46の蓄積波長分散量は一致しない。 At this time, in order to make the accumulated chromatic dispersion amount of each signal light in Node-5 substantially the same, the total chromatic dispersion amount of D1 + D2 + D3 + D4 is added to the multi-optical fiber transmission line for the output light inserted (Add) in Node-5. Need to be added before inserting into. Thereafter, the signal light S45 is output from Node-5 to the multi-optical fiber transmission line. The signal light S45 receives the chromatic dispersion amount of D5 in the multi-optical fiber transmission line (Span-5) 415, and arrives at Node-1 as the signal light 46 having the total chromatic dispersion amount of D1 + D2 + D3 + D4 + D5 as the accumulated chromatic dispersion amount. . Here, when Node-1 is used as a reference, processing for adding chromatic dispersion in advance to the signal light S41 input from Node-1 is unnecessary, and therefore, the accumulated chromatic dispersion amount of the signal light S41 is zero. Therefore, the accumulated chromatic dispersion amounts of the signal light S41 and the signal light S46 do not match.
 しかし、本実施形態の光伝送システム400によれば、Node-1に接続された波長分散付加装置435は、信号光S46が保有する波長分散量を補償する波長分散量を付加する。すなわち、波長分散付加装置435は信号光S46が保有する蓄積波長分散量と大きさが等しく逆符号の波長分散量(-(D1+D2+D3+D4+D5))を信号光S46に対して付与する。したがって、Node-5からNode-1に挿入される信号光と、Node-1において新たに挿入される信号光がそれぞれ有する蓄積波長分散量は略同一(ゼロ)となる。 However, according to the optical transmission system 400 of the present embodiment, the chromatic dispersion adding device 435 connected to Node-1 adds a chromatic dispersion amount that compensates the chromatic dispersion amount possessed by the signal light S46. That is, the wavelength dispersion adding device 435 gives the signal light S46 a wavelength dispersion amount (− (D1 + D2 + D3 + D4 + D5)) that is equal in magnitude to the accumulated wavelength dispersion amount held by the signal light S46 and has the opposite sign. Therefore, the accumulated chromatic dispersion amounts respectively possessed by the signal light inserted from Node-5 to Node-1 and the signal light newly inserted at Node-1 are substantially the same (zero).
 図9に、光伝送システム400における位置と各信号光の蓄積波長分散量との関係を示す。同図に示すように、Node-1における各信号光が有する蓄積波長分散量は同一となる。 FIG. 9 shows the relationship between the position in the optical transmission system 400 and the accumulated chromatic dispersion amount of each signal light. As shown in the figure, the accumulated chromatic dispersion amount of each signal light in Node-1 is the same.
 以上説明したように、本実施形態の光伝送システム400によれば、リング光伝送システムを構成する場合であっても、各中継装置(Node-1~5)において各信号光が有する蓄積波長分散量を略同一とすることができる。すなわち、各中継装置を伝送する各信号光が蓄積している波長分散量の差(蓄積波長分散差)を略ゼロとすることが可能となる。これにより、光伝送路(コア)間のクロストークによる信号品質の劣化を抑制することができる。その結果、本実施形態の光伝送システム400によれば、マルチコア光ファイバを用いた光伝送システムにおいて、良好な信号品質が得られる大容量伝送を実現することができる。 As described above, according to the optical transmission system 400 of the present embodiment, even if a ring optical transmission system is configured, the accumulated chromatic dispersion that each signal light has in each repeater (Node-1 to 5). The amount can be substantially the same. That is, the difference in the chromatic dispersion amount (accumulated chromatic dispersion difference) accumulated in each signal light transmitted through each repeater can be made substantially zero. Thereby, degradation of signal quality due to crosstalk between optical transmission paths (cores) can be suppressed. As a result, according to the optical transmission system 400 of the present embodiment, high-capacity transmission capable of obtaining good signal quality can be realized in an optical transmission system using a multi-core optical fiber.
 上記実施形態においては、多重光伝送路(マルチ光ファイバ伝送路)に挿入する直前に波長分散付加装置を配置する構成とした。しかし、これに限らず、信号光が多重光伝送路に挿入される前に蓄積波長分散量を取得する構成であれば、他の配置構成であってもよい。 In the above embodiment, the wavelength dispersion adding device is arranged immediately before being inserted into the multiplexed optical transmission line (multi-optical fiber transmission line). However, the present invention is not limited to this, and any other arrangement configuration may be used as long as the accumulated chromatic dispersion amount is acquired before the signal light is inserted into the multiplexed optical transmission line.
 本発明は上記実施形態に限定されることなく、特許請求の範囲に記載した発明の範囲内で、種々の変形が可能であり、それらも本発明の範囲内に含まれるものであることはいうまでもない。 The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope of the invention described in the claims, and it is also included within the scope of the present invention. Not too long.
 この出願は、2012年3月2日に出願された日本出願特願2012-046965を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2012-046965 filed on Mar. 2, 2012, the entire disclosure of which is incorporated herein.
 100、300、400  光伝送システム
 110  多重光伝送路
 120、321~325、421~425  中継装置
 131、132、230、331、332、431~435  波長分散付加装置
 200  評価実験系
 211、341  第1の光送信器
 212、342  第2の光送信器
 220  雑音光源
 240  光受信器
 311~314、411~415  マルチ光ファイバ伝送路
 S10  第1の信号光
 S21、S22  第2の信号光
 S31、S32、S33、S41~S45  信号光
100, 300, 400 Optical transmission system 110 Multiplexed optical transmission line 120, 321-325, 421-425 Repeater 131, 132, 230, 331, 332, 431-435 Wavelength dispersion adder 200 Evaluation experiment system 211, 341 First Optical transmitters 212 and 342 second optical transmitter 220 noise light source 240 optical receivers 311 to 314 and 411 to 415 multi-optical fiber transmission line S10 first signal light S21 and S22 second signal light S31 and S32, S33, S41 to S45 Signal light

Claims (10)

  1. 互いに近接する複数の光伝送路を含んで構成される多重光伝送路と、複数の前記多重光伝送路を接続する複数の中継装置と、前記中継装置に接続された波長分散付加装置、とを有し、
     前記中継装置は、第1の信号光を通過させ、第2の信号光を前記多重光伝送路に挿入し、
     前記波長分散付加装置は、前記第1の信号光が有する第1の波長分散量と前記第2の信号光が有する第2の波長分散量が略同一となるように、前記第1の信号光および前記第2の信号光のいずれか一方に対して、波長分散補償量を付加する
     光伝送システム。
    A plurality of optical transmission lines configured to include a plurality of optical transmission lines close to each other; a plurality of relay apparatuses that connect the plurality of multiplexed optical transmission lines; and a wavelength dispersion addition apparatus connected to the relay apparatus. Have
    The relay device passes the first signal light, inserts the second signal light into the multiplexed optical transmission line,
    The chromatic dispersion adder includes the first signal light so that the first chromatic dispersion amount of the first signal light and the second chromatic dispersion amount of the second signal light are substantially the same. And an optical transmission system for adding a chromatic dispersion compensation amount to any one of the second signal light.
  2. 請求項1に記載した光伝送システムにおいて、
     前記多重光伝送路は、前記光伝送路を構成する複数のコアを一の光ファイバ中に備えたマルチコア光ファイバである
     光伝送システム。
    The optical transmission system according to claim 1,
    The multiplexed optical transmission line is a multi-core optical fiber provided with a plurality of cores constituting the optical transmission line in one optical fiber.
  3. 請求項1または2に記載した光伝送システムにおいて、
     前記波長分散付加装置は、前記波長分散補償量として、前記第1の波長分散量と略同一の波長分散量を前記第2の信号光に付与する
     光伝送システム。
    The optical transmission system according to claim 1 or 2,
    The chromatic dispersion adding apparatus is an optical transmission system that imparts, to the second signal light, a chromatic dispersion amount substantially the same as the first chromatic dispersion amount as the chromatic dispersion compensation amount.
  4. 請求項1または2に記載した光伝送システムにおいて、
     前記波長分散付加装置は、前記波長分散補償量として、前記第1の波長分散量を補償する波長分散量を前記第1の信号光に付与する
     光伝送システム。
    The optical transmission system according to claim 1 or 2,
    The chromatic dispersion adding apparatus is an optical transmission system that imparts, to the first signal light, a chromatic dispersion amount that compensates for the first chromatic dispersion amount as the chromatic dispersion compensation amount.
  5. 請求項1から4のいずれか一項に記載した光伝送システムにおいて、
     前記中継装置は、複数の前記多重光伝送路を直線状に接続する
     光伝送システム。
    In the optical transmission system according to any one of claims 1 to 4,
    The relay device is an optical transmission system that connects a plurality of the multiplexed optical transmission lines in a straight line.
  6. 請求項1から4のいずれか一項に記載した光伝送システムにおいて、
     前記中継装置は、複数の前記多重光伝送路を環状に接続する
     光伝送システム。
    In the optical transmission system according to any one of claims 1 to 4,
    The relay device is an optical transmission system that connects a plurality of the multiplexed optical transmission lines in a ring shape.
  7. 互いに近接する複数の光伝送路を含んで構成される多重光伝送路に第1の信号光を通過させ、
     前記多重光伝送路に第2の信号光を挿入し、
     前記第1の信号光が有する第1の波長分散量と前記第2の信号光が有する第2の波長分散量が略同一となるように、前記第1の信号光および前記第2の信号光のいずれか一方に対して、波長分散補償量を付加する
     光伝送方法。
    Passing the first signal light through a multiple optical transmission line including a plurality of optical transmission lines close to each other;
    A second signal light is inserted into the multiplexed optical transmission line;
    The first signal light and the second signal light so that the first chromatic dispersion amount of the first signal light and the second chromatic dispersion amount of the second signal light are substantially the same. An optical transmission method for adding a chromatic dispersion compensation amount to any one of the above.
  8. 請求項7に記載した光伝送方法において、
     前記波長分散補償量として、前記第1の波長分散量と略同一の波長分散量を前記第2の信号光に付与する
     光伝送方法。
    The optical transmission method according to claim 7,
    An optical transmission method in which a chromatic dispersion amount substantially the same as the first chromatic dispersion amount is imparted to the second signal light as the chromatic dispersion compensation amount.
  9. 請求項7に記載した光伝送方法において、
     前記波長分散補償量として、前記第1の波長分散量を補償する波長分散量を前記第1の信号光に付与する
     光伝送方法。
    The optical transmission method according to claim 7,
    An optical transmission method in which a chromatic dispersion amount for compensating the first chromatic dispersion amount is imparted to the first signal light as the chromatic dispersion compensation amount.
  10. 請求項7から9のいずれか一項に記載した光伝送方法において、
     前記第1の信号光は、複数の前記多重光伝送路を環状に伝送する
     光伝送方法。
    In the optical transmission method according to any one of claims 7 to 9,
    The first signal light is an optical transmission method in which a plurality of the multiplexed optical transmission lines are transmitted in a ring shape.
PCT/JP2013/001219 2012-03-02 2013-02-28 Optical transport system and optical transport method WO2013128929A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-046965 2012-03-02
JP2012046965 2012-03-02

Publications (1)

Publication Number Publication Date
WO2013128929A1 true WO2013128929A1 (en) 2013-09-06

Family

ID=49082140

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/001219 WO2013128929A1 (en) 2012-03-02 2013-02-28 Optical transport system and optical transport method

Country Status (2)

Country Link
JP (1) JPWO2013128929A1 (en)
WO (1) WO2013128929A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017090622A1 (en) * 2015-11-26 2017-06-01 日本電信電話株式会社 Communication system and connector
WO2017090600A1 (en) * 2015-11-26 2017-06-01 日本電信電話株式会社 Communication system and connector
WO2017090608A1 (en) * 2015-11-26 2017-06-01 日本電信電話株式会社 Node and optical power supply system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004266603A (en) * 2003-03-03 2004-09-24 Fujitsu Ltd Multiple wavelength light relay transmission method and relay unit
JP2006100909A (en) * 2004-09-28 2006-04-13 Nec Corp Waveform division multiplex optical transmission system, optical transmitter, relay node and waveform division multiplex optical transmission method
WO2009107414A1 (en) * 2008-02-27 2009-09-03 古河電気工業株式会社 Optical transmission system and multi-core optical fiber

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004266603A (en) * 2003-03-03 2004-09-24 Fujitsu Ltd Multiple wavelength light relay transmission method and relay unit
JP2006100909A (en) * 2004-09-28 2006-04-13 Nec Corp Waveform division multiplex optical transmission system, optical transmitter, relay node and waveform division multiplex optical transmission method
WO2009107414A1 (en) * 2008-02-27 2009-09-03 古河電気工業株式会社 Optical transmission system and multi-core optical fiber

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017090622A1 (en) * 2015-11-26 2017-06-01 日本電信電話株式会社 Communication system and connector
WO2017090600A1 (en) * 2015-11-26 2017-06-01 日本電信電話株式会社 Communication system and connector
WO2017090608A1 (en) * 2015-11-26 2017-06-01 日本電信電話株式会社 Node and optical power supply system
JPWO2017090600A1 (en) * 2015-11-26 2018-05-17 日本電信電話株式会社 Communication system and connector
JPWO2017090608A1 (en) * 2015-11-26 2018-05-31 日本電信電話株式会社 Node and optical power supply system
JPWO2017090622A1 (en) * 2015-11-26 2018-06-07 日本電信電話株式会社 Communication system and connector
CN108292955A (en) * 2015-11-26 2018-07-17 日本电信电话株式会社 Communication system and connector
CN108292959A (en) * 2015-11-26 2018-07-17 日本电信电话株式会社 Node and optical functions system
CN108292956A (en) * 2015-11-26 2018-07-17 日本电信电话株式会社 Communication system and connector
EP3364568A4 (en) * 2015-11-26 2019-05-29 Nippon Telegraph and Telephone Corporation Communication system and connector
EP3364567A4 (en) * 2015-11-26 2019-05-29 Nippon Telegraph and Telephone Corporation Communication system and connector
US10527781B2 (en) 2015-11-26 2020-01-07 Nippon Telegraph And Telephone Corporation Communication system and connector
CN108292959B (en) * 2015-11-26 2021-02-19 日本电信电话株式会社 Node and optical power supply system
CN108292956B (en) * 2015-11-26 2021-04-27 日本电信电话株式会社 Communication system and connector

Also Published As

Publication number Publication date
JPWO2013128929A1 (en) 2015-07-30

Similar Documents

Publication Publication Date Title
Soma et al. 257-Tbit/s weakly coupled 10-mode C+ L-band WDM transmission
Mizuno et al. Dense space division multiplexed transmission over multicore and multimode fiber for long-haul transport systems
Sakaguchi et al. Space division multiplexed transmission of 109-Tb/s data signals using homogeneous seven-core fiber
US10585237B2 (en) Multimode optical fiber, mode delay adjuster for fiber systems, and methods to use such fibers, adjusters, and systems
Puttnam et al. Characteristics of homogeneous multi-core fibers for SDM transmission
JPWO2009107414A1 (en) Optical transmission system and multi-core optical fiber
Sakamoto et al. Strongly-coupled multi-core fiber and its optical characteristics for MIMO transmission systems
Soma et al. 50.47-Tbit/s standard cladding coupled 4-core fiber transmission over 9,150 km
Sillard et al. Few-mode fiber technology, deployments, and systems
JP2010004251A (en) Optical transmission device and optical transmission method
Benyahya et al. 200Gb/s transmission over 20km of FMF fiber using mode group multiplexing and direct detection
WO2013128929A1 (en) Optical transport system and optical transport method
JP5524900B2 (en) Optical fiber transmission system and optical receiver
Amphawan et al. Investigation of channel spacing for Hermite-Gaussian mode division multiplexing in multimode fiber
Shukla et al. Joint WDM and OAM Mode Group Multiplexed Transmission Over Conventional Multimode Fiber
Mishra et al. Investigation of a 16 channel 40 Gbps varied GVD DWDM system using dispersion compensating fiber
Kitayama et al. Mode division multiplexing network: a deployment scenario in metro area network
Genevaux et al. Real time transmission of 2× 200 GB/s PDM-16QAM using two modes over 20km of step-index Few Mode Fibre
CN114144980B (en) Optical transmitter for transmitting information symbol vector, transmission method thereof and optical receiver
US10539739B2 (en) Multimode optical fiber, mode delay adjuster for fiber systems, and methods to use such fibers, adjusters, and systems
Mangan et al. Low latency transmission in a hollow core fiber cable
Yang et al. Coherent WDM Transmission over NANF for High-capacity Intra-data-center Interconnection
Tripathi et al. Investigations with mode division multiplexed transmission
Singh et al. Comparative performance analysis of DCF and FBG for dispersion compensation in optical fiber communication
Asif et al. λ-selection strategy in C+ L band 1-Pbit/s (448 WDM/19-core/128 Gbit/s/channel) flex-grid space division multiplexed transmission

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13755901

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014502047

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13755901

Country of ref document: EP

Kind code of ref document: A1