WO2013128718A1 - Method for producing biological lumen graft - Google Patents

Method for producing biological lumen graft Download PDF

Info

Publication number
WO2013128718A1
WO2013128718A1 PCT/JP2012/079148 JP2012079148W WO2013128718A1 WO 2013128718 A1 WO2013128718 A1 WO 2013128718A1 JP 2012079148 W JP2012079148 W JP 2012079148W WO 2013128718 A1 WO2013128718 A1 WO 2013128718A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyester
woven fabric
graft
solution
living body
Prior art date
Application number
PCT/JP2012/079148
Other languages
French (fr)
Japanese (ja)
Inventor
あや 斉藤
和佳 谷
Original Assignee
テルモ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テルモ株式会社 filed Critical テルモ株式会社
Publication of WO2013128718A1 publication Critical patent/WO2013128718A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2/06Blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2/06Blood vessels
    • A61F2/07Stent-grafts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/18Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/507Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials for artificial blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2240/00Manufacturing or designing of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2240/001Designing or manufacturing processes

Definitions

  • the present invention relates to a graft for living body lumen and a method for manufacturing the graft for living body lumen.
  • An aortic aneurysm is a state in which a part of the aorta is swollen like an aneurysm, and is mainly divided into an abdominal aortic aneurysm and a thoracic aortic aneurysm depending on the site where the aneurysm is formed.
  • the aortic wall usually has a three-layer structure of the intima, media and adventitia, and the structure of the blood vessel wall at the site where the aortic aneurysm is formed confirms the normal aortic wall structure on the aneurysm wall.
  • a true aneurysm It is divided into a true aneurysm, a dissecting aneurysm formed by dissection of the aortic wall, and a pseudoaneurysm in which the wall structure of the aorta is not confirmed on the aneurysm wall.
  • a true aneurysm or a pseudoaneurysm usually has no remarkable symptoms unless it ruptures, so that early treatment is difficult.
  • a dissecting aneurysm (aortic dissection) is easy to detect because it involves severe pain in the chest and back, but due to organ blood flow disorders, various organ complications may be caused by the site of dissociation Since various symptoms (for example, heart failure, myocardial infarction, disturbance of consciousness, abdominal pain, lower limb pain, etc.) appear, it is difficult to treat aortic dissection. In addition, in any case of the aortic aneurysm, if left untreated, the aneurysm may rupture and there is a risk of causing fatal major bleeding, so treatment is necessary.
  • the main treatment method for an aortic aneurysm is a surgical bypass operation in which the aneurysm is replaced with an artificial blood vessel.
  • it requires laparotomy or thoracotomy, and is invasive to the patient.
  • extracorporeal circulation artificial cardiopulmonary
  • hypothermia hypothermia
  • organ cooling etc. are performed as appropriate, but these methods are complicated and enter into specialized fields, causing complications related to the brain (brain disorders) and spinal cord (lower body paralysis). May cause.
  • aortic aneurysms can be treated by folding a stent graft (stented artificial blood vessel) into small pieces and inserting it into the affected area through a catheter (stent graft). Treatment) has become widespread.
  • the stent graft is an artificial blood vessel in which a spring-like metal called a stent is attached to an artificial blood vessel, and is used while being compressed and housed in a thin catheter. The catheter is advanced to the site where the aneurysm is present, and the stored stent graft is released and expanded from the catheter and is placed in the site where the aneurysm is present.
  • the incision portion by the operation can be made small, and the burden on the patient's body is extremely small, and this is a treatment method with a small invasion to the patient.
  • the aneurysm is capped with a stent graft, and there is no blood flow in the aneurysm, which gradually becomes smaller or even when the aneurysm does not become smaller, the enlargement of the aneurysm can be prevented and the risk of rupture can be reduced.
  • a stent graft produced using a fine yarn has a small thickness, but has insufficient strength, and the opening area of the weave is large when the weave density is maintained. There is a problem that it becomes large and causes blood leakage from the stent graft base material (artificial blood vessel portion).
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a thinned living body lumen graft having sufficient strength.
  • Another object of the present invention is to provide a thinned biological lumen graft having low water permeability.
  • the present inventors applied the polyester solution to the substrate under specific conditions such that the solvent evaporates immediately after the polyester solution arrives on the substrate. As a result, the present inventors have found that the above problems can be solved, and have completed the present invention.
  • polyester (B) solution by dissolving polyester (B-1) in solvent (B-2), and immediately after the polyester (B) solution arrives on the polyester (A) woven fabric.
  • the polyester (A) woven fabric is spray-sprayed on at least one surface of the polyester (A) woven fabric under conditions such that the solvent (B-2) evaporates on the polyester (A).
  • a method for producing a graft for a living body lumen having a stopping, wherein the increase in thickness of the polyester (A) woven fabric before and after spraying is 3 ⁇ m or less is achieved. .
  • the above-mentioned objects include a polyester (A) woven fabric and a polyester (B-1) film formed by fusing on the surface of the polyester (A) woven fabric. Is also achieved by a graft for living body lumens, which seals the polyester (A) woven fabric.
  • FIG. 1A is an electron micrograph of the surface of the graft substrate 1 of Example 1
  • FIG. 1B is an electron micrograph of a cross section of the graft substrate 1 of Example 1.
  • FIG. FIG. 2 is an electron micrograph of the surface of the graft substrate 4 of Comparative Example 2.
  • 3A is an electron micrograph of the surface of the graft substrate 5 of Comparative Example 3
  • FIG. 3B is an electron micrograph of a cross section of the graft substrate 5 of Comparative Example 3.
  • 4A is an electron micrograph of the surface of the graft substrate 6 of Comparative Example 4
  • FIG. 4B is an electron micrograph of the back surface of the graft substrate 6 of Comparative Example 4.
  • FIG. 5 is an electron micrograph of the surface of the graft substrate 7 of Comparative Example 5.
  • FIG. 6 is a schematic view showing a water permeability measuring device.
  • FIG. 7 is a diagram for explaining the measurement of the adaptive sheath size.
  • FIG. 8 is a diagram for
  • the method for producing a graft for living body lumen comprises (i) preparing a polyester (B) solution by dissolving polyester (B-1) in a solvent (B-2) (coating liquid preparation step (i) Ii); (ii) The polyester (B) solution is added to the polyester (A) under conditions such that the solvent (B-2) evaporates immediately after the polyester (B) solution arrives on the polyester (A) woven fabric. Spraying onto at least one surface of the woven fabric to seal the polyester (A) woven fabric (application step (ii)), the thickness of the polyester (A) woven fabric before and after spraying The increase is 3 ⁇ m or less.
  • the method of the present invention is characterized in that the polyester solution is applied to the substrate under specific conditions such that the solvent evaporates immediately after the polyester solution arrives at the polyester (A) woven fabric as the substrate.
  • the graft for living body lumen of the present invention has a polyester (A) woven fabric and a polyester (B-1) film formed by fusing on the surface of the polyester (A) woven fabric.
  • B-1) The membrane is a graft for living body lumens that seals the polyester (A) woven fabric.
  • Stent grafts are made by attaching a stent skeleton using a super elastic metal or the like to an artificial blood vessel such as a polyester woven fabric or ePTFE. It is particularly effective to reduce the bulk of the artificial blood vessel portion to make the catheter thinner. It is. In addition, in order to reduce the bulk of artificial blood vessels such as polyester woven fabrics, it is important not only to reduce the thickness of the fabric but also to maintain the softness of the woven fabric.
  • a thin stent graft base material for example, polyester woven fabric
  • a film such as a thin polymer material, a porous film, or a nonwoven fabric.
  • a way to stop is also conceivable.
  • the coating thickness increases, not only does the bulk increase, but the stent graft base material becomes hard, making it difficult to fold it small, making it difficult to reduce the diameter of the applied catheter.
  • the coating material is peeled off, there is a risk that blood leaks from the opening of the weave of the stent graft base material and the function as the stent graft cannot be maintained. For this reason, it is necessary to firmly adhere the coating material to the stent graft substrate.
  • a method using an adhesive between the coating material and the substrate may be considered.
  • a stent graft like an artificial blood vessel, is placed in the body for a long time (permanently in some cases). is there.
  • the adhesive is preferably the same polyester as the base material, and a method of welding using a solvent capable of dissolving the polyester is preferable. ,Conceivable.
  • the base material is also the same polyester base material, the base material itself may be dissolved depending on the welding conditions, leading to a decrease in strength.
  • a coating method such as a method of forming a film on a substrate or a method of laminating a separately prepared film is conceivable.
  • a method in which a film having a uniform thickness or a porous film is bonded to a substrate it is difficult to cover the substrate uniformly because a film having a thickness of about 1 ⁇ m is very thin and difficult to handle.
  • the film does not enter the openings of the base material, there is a problem that the contact area between the base material and the film becomes small and the film is easily peeled by contact / rubbing with the cartel lumen.
  • the method of the present invention uses a polyester woven fabric as the graft substrate, and the polyester before and after spraying under specific conditions such that the solvent of the polyester solution evaporates immediately after the polyester solution arrives on the substrate.
  • a biological lumen graft is produced by applying a polyester solution to a base material (polyester (A) woven fabric) so that the increase in thickness of the woven fabric is 3 ⁇ m or less.
  • the coating film is firmly formed on the base material and is difficult to peel off.
  • the graft base material artificial blood vessel portion
  • the opening can be firmly covered (sealed).
  • the water permeability of the graft for living body lumen can be reduced.
  • the adhesiveness between the substrate and the coating film is good, even if a coating film that is thin enough to cover (seal) the opening is formed on the substrate, peeling does not easily occur. Therefore, the increase in the thickness of the polyester (A) woven fabric before and after spraying can be made 3 ⁇ m or less, and the graft for living body lumen can be made thin while maintaining strength and flexibility.
  • the graft for living body lumen according to the present invention can be accommodated in a small-diameter catheter, has low water permeability, and can suppress / prevent blood leakage from the graft. Even when implanted for a long period of time, since the coating film is integrated (adhered) with the base material, a part of the coating film does not deviate into the blood vessel, and the stability is high. Further, since the solvent constituting the polyester solution evaporates immediately after reaching the graft substrate, the solvent hardly dissolves the polyester substrate. Therefore, since the graft base material can maintain the original strength, the graft according to the present invention has high strength and flexibility.
  • the graft for living body lumen of the present invention has sufficient strength and low water permeability even if it is thin. For this reason, the graft for living body lumen of the present invention can be inserted into a thin catheter, and the treatment with the stent graft can be performed with less invasiveness.
  • polyester (B-1) is dissolved in solvent (B-2) to prepare a polyester (B) solution.
  • the polyester (B-1) is not particularly limited, and polyesters used for known medical devices can be used in the same manner. Specific examples include polyethylene terephthalate (PET) and polybutylene terephthalate (PBT). Polyethylene terephthalate is also known as Dacron (registered trademark).
  • the polyester may be synthesized or commercially available. In the latter case, Lumirror (registered trademark) series (all manufactured by Toray Industries, Inc.) such as Lumirror (registered trademark) S10, T60, H10, F65, F53, F57S15, S105, etc., Teijin Tetron Film (manufactured by Teijin DuPont Films, Ltd.) ) Etc. can be used.
  • the solvent (B-2) is not particularly limited as long as it can dissolve the polyester (B-1). Specific examples include 1,1,1,3,3,3-hexafluoroisopropanol (HFIP), trifluoroacetic acid (TFA), and the like. Of these, HFIP is preferred.
  • the concentration of polyester (B-1) in the polyester (B) solution is such that the opening (openings) of the polyester (A) woven fabric can be sufficiently covered (sealed) in the next step (ii). If there is no particular limitation. Specifically, the concentration of the polyester (B-1) in the polyester (B) solution is preferably 0.5 to 20% by weight, and more preferably 3 to 10% by weight. If it is such a density
  • the polyester (B) solution is usually prepared by dissolving the polyester (B-1) in the solvent (B-2) to a predetermined concentration. At this time, if necessary, heat treatment, stirring Processing may be performed.
  • (Ii) Coating step the polyester (A) woven fabric is sprayed by spraying the polyester (B) solution prepared in the above step (i) onto at least one surface of the polyester (A) woven fabric.
  • the spraying is performed under such a condition that the solvent (B-2) evaporates immediately after the polyester (B) solution arrives on the polyester (A) woven fabric.
  • the dissolution of the polyester (A) woven fabric by the solvent (B-2) can be suppressed / prevented, so that the obtained graft for living body lumen has high strength and flexibility inherent in the polyester (A) woven fabric. The ability to demonstrate.
  • the polyester (A) woven fabric is substantially Can be completely sealed (coated).
  • “the polyester (A) woven fabric is substantially completely sealed (covered)” means that the opening (opening) of the polyester (A) woven fabric is substantially completely polyester (B- It means the state filled in 1).
  • 90 to 100% of the surface of the polyester (A) woven fabric is preferably sealed (coated) with the polyester (B-1), and 95 to 100% of the surface of the polyester (A) woven fabric is polyester. More preferably, it is sealed (coated) with (B-1). With such a sealing rate (covering rate), water permeability can be suppressed and blood leakage from the graft can be suppressed / prevented.
  • the polyester (B) solution is applied to the polyester (A) woven fabric, a coating film is formed (that is, after the polyester (B) solution arrives on the polyester (A) woven fabric, the solvent (B-2 ) Is evaporated), a large amount of the solvent (B-2) comes into contact with the polyester (A) woven fabric to dissolve the polyester (A) woven fabric, so that the strength of the biological lumen graft is reduced. End up.
  • the solvent (B-2) evaporates before the polyester (B) solution arrives on the polyester (A) woven fabric, the polyester (B-1) coating surface becomes rough, and the polyester (B-1 ) Cannot sufficiently seal (cover) the polyester (A) woven fabric.
  • the water permeability of the obtained graft for living body lumen cannot be sufficiently reduced, and blood leakage from the graft cannot be prevented.
  • the polyester (B-1) coating film is easily peeled off from the polyester (A) woven fabric. Therefore, it is not preferable for safety.
  • the increase in the thickness of the polyester (A) woven fabric before and after spraying is 3 ⁇ m or less.
  • the obtained graft for living body lumen is sufficiently thin and flexible enough to be folded into a small diameter (for example, an inner diameter of 11 Fr or less) and easily stored in a thin catheter. Can be inserted from blood vessels.
  • the graft for living body lumen according to the present invention can be applied to a patient with a thin blood vessel (for example, a child or an elderly person).
  • the increase in the thickness of the polyester (A) woven fabric before and after spraying is preferably 0 to 3 ⁇ m, more preferably more than 0 ⁇ m and 3 ⁇ m or less, and particularly preferably 0.5 to 2 ⁇ m.
  • the increase in the thickness of the polyester (A) woven fabric before and after spraying is 0 ⁇ m” means that the polyester (B) penetrates only into the openings of the polyester (A) woven fabric, and the polyester (A) It means that the thickness of the woven fabric itself does not change.
  • the thickness of the polyester (A) woven fabric before and after spraying is a value measured by the method described in the following examples.
  • the polyester (A) woven fabric is a fabric that constitutes the base material of the graft for living body lumen of the present invention and is composed of a polyester fiber fabric.
  • the fabric structure is not particularly limited, and the same structure as that usually used as a graft base material, such as a knitted fabric and a nonwoven fabric, can be similarly applied.
  • the structure of the woven fabric is not particularly limited, and a structure usually used as a base material for grafts can be similarly applied. Specific examples include plain weave, twill weave, satin weave, and double weave. Of these, plain weave is preferred in terms of strength and thinness.
  • the form of the fabric is also not particularly limited, and may be a form woven in a cylindrical shape other than a general plane fabric.
  • the surface of the polyester (A) woven fabric may be raised or not raised, but is preferably not raised from the viewpoint of the thickness and strength of the woven fabric.
  • the polyester (A) woven fabric is formed by interweaving yarns made of polyester (A) filaments (fibers) as warps and wefts.
  • the yarn may be a monofilament or a multifilament, but is preferably a multifilament.
  • the polyester (A) woven fabric made of multifilaments can flexibly respond to external forces, and can exhibit softness and wear resistance by shifting each monofilament (single yarn). Therefore, the polyester (A) woven fabric produced from the multifilament is excellent in wear resistance and flexibility.
  • the multifilament may be either a non-twisted yarn or a real twisted yarn, or may be a false twisted yarn to which crimps are imparted.
  • the polyester (A) constituting the polyester (A) filament (fiber) is not particularly limited, and polyesters used for known medical devices can be used in the same manner. Specific examples include polyethylene terephthalate (PET) and polybutylene terephthalate (PBT).
  • PET polyethylene terephthalate
  • PBT polybutylene terephthalate
  • the polyester constituting the polyester (A) woven fabric and the polyester (B-1) may be the same or different, but the polyester (A) and the polyester (B-1) Are preferably the same.
  • the adhesion between the polyester (A) woven fabric and the sealing (coating film) of the polyester (B-1) can be enhanced, and the polyester (B-1) film is peeled off from the polyester (A) woven fabric. Can be effectively suppressed / prevented.
  • a thin polyester (A) woven fabric having a large weave opening can be used as a graft substrate, and the graft can be made thin. Therefore, the graft for living body lumen according to the present invention can be housed in a small-diameter catheter, has low water permeability, and can suppress / prevent blood leakage from the graft. Moreover, even if it is a case where it is embedded for a long period of time, since the coating film is integrated (adhered) with the base material, a part of the coating film does not peel off to the blood vessel, and the stability is high.
  • the diameter of the filament (fiber) [polyester (A) fiber] is not particularly limited, but is preferably 10 to 50 ⁇ m, more preferably 20 to 40 ⁇ m. . With such a diameter, sufficient thinness, flexibility and strength can be achieved.
  • the cross section of the monofilament (single yarn) constituting the filament (fiber) used in the polyester (A) woven fabric is not particularly limited, and may be any of a circular cross section, a triangular cross section, a flat cross section, a hollow cross section, and the like. However, from the viewpoints of flexibility and low water permeability, a circular cross section and a flat cross section are preferable.
  • the total fineness of the filaments (fibers) is not particularly limited, but is preferably 20 to 100 dtex, more preferably 30 to 50 dtex. With such a total fineness, sufficient thinness, strength and flexibility can be achieved.
  • the production (spinning) method of the polyester (A) fiber is not particularly limited, and may be obtained by direct spinning, or may be obtained by direct spinning or complex spinning using a sea-island-type or split-split-type composite die to obtain a woven fabric. May be obtained.
  • the opening size of the polyester (A) woven fabric is not particularly limited, but is preferably 5 to 150 ⁇ m, more preferably 5 to 30 ⁇ m.
  • the opening size of the polyester (A) woven fabric may be defined by the yarn density.
  • the yarn density is not particularly limited, but is preferably 70 to 700 yarns / inch, more preferably 400 to 600 yarns / inch. With such an opening size or yarn density, the polyester (A) woven fabric can be made sufficiently thin.
  • the thickness of the polyester (A) woven fabric is not particularly limited, but is preferably thin. Specifically, the thickness of the polyester (A) woven fabric is preferably 20 to 80 ⁇ m, and more preferably 30 to 60 ⁇ m.
  • a graft for living body lumen after applying polyester (B-1) to a woven fabric of polyester (A) is folded and inserted into a thin catheter having an inner diameter of 11 Fr or less. Is easy.
  • the graft for living body lumen has sufficient strength and flexibility, and polyester (B-1) also firmly seals (covers) the polyester (A) woven fabric (base material). Therefore, even if the catheter lumen and the biological lumen graft are rubbed, the polyester (B-1) membrane is not peeled off from the graft.
  • the method for producing the polyester (A) woven fabric is not particularly limited, and a known method can be used.
  • a method of plain weaving polyester (A) fibers so that one to four wefts are arranged for every one warp can be used.
  • the apparatus used for producing the polyester (A) woven fabric is not particularly limited, and a known apparatus can be used in the same manner.
  • a shuttleless loom such as a water jet loom, an air jet loom, and a needle loom, a fly shuttle loom, a tappet loom, a dobby loom, a jacquard loom, and the like can be used.
  • the woven fabric may be scoured and relaxed as necessary, and heat set with a tenter or the like.
  • the obtained polyester (A) woven fabric may be further pressed with a calendar or the like.
  • the surface of the calendar or the like is preferably heated at a temperature equal to or higher than the glass transition point or softening point of the polymer constituting the fiber.
  • the heating temperature is not particularly limited, but for example, it is preferable to heat the calender or the like to about 120 to 180 ° C. for treatment.
  • the polyester (A) woven fabric may be produced as described above or a commercially available product may be used.
  • the commercially available product is not particularly limited, but Tetron Mesh T-No. 508T, T-No. 420T, T-No. 380T, T-No. 355T, T-No. 330T, T-No. 305T, T-No. 280T, T-No. 255T, T-No. 230T, T-No. 200T, T-No. 180T, T-No. 150T, T-No. 135T, T-No. 120T, T-No. 100T, T-No. 90T, T-No. 80T, TB-70, TB-60, TB-50, TB-40 (all manufactured by Tokyo Screen Co., Ltd., material: polyester PET), PETEX PET10, PET11-HC (all manufactured by SEFAR), and the like.
  • the polyester (B) solution onto the polyester (A) woven fabric as described above.
  • the polyester (B) solution may be sprayed on at least one surface of the polyester (A) woven fabric.
  • spray spraying is performed under conditions such that the solvent (B-2) evaporates immediately after the polyester (B) solution arrives on the polyester (A) woven fabric.
  • the solvent (B-2) evaporates immediately after the polyester (B) solution arrives on the polyester (A) woven fabric means that the polyester (A) woven with the solvent (B-2).
  • the solvent (B-2) evaporates before the cloth dissolves.
  • the conditions are preferably such that the solvent (B-2) evaporates 1 to 15 seconds after the polyester (B) solution arrives on the polyester (A) woven fabric. More preferably, the polyester (A) is woven on the polyester (A) woven fabric under conditions such that the solvent (B-2) evaporates 2 to 10 seconds after the polyester (B) solution arrives. ) Spray the solution.
  • solvent (B-2) evaporates means that substantially the entire amount of solvent (B-2) evaporates. Specifically, it is contained in the sprayed polyester (B) solution. It is preferable that 90 to 100% by volume of the solvent (B-2) is evaporated.
  • the confirmation of whether or not the solvent (B-2) has evaporated immediately after the polyester (B) solution arrives on the polyester (A) woven fabric may be carried out by any method.
  • the polyester (A) woven fabric after spraying is held under a light source, and it can be confirmed by visually observing the color tone that changes due to light refraction by the residual solvent.
  • the confirmation of whether or not the solvent (B-2) has evaporated immediately after the polyester (B) solution arrives on the polyester (A) woven fabric is more specific because the dissolution of the polyethylene terephthalate fiber is not observed. Can be confirmed by the fact that the melted area of the polyester (A) woven fabric after spraying is less than 5% of the surface of the polyester (A) woven fabric.
  • the method for evaporating the solvent (B-2) immediately after the polyester (B) solution arrives on the polyester (A) woven fabric is not particularly limited.
  • a method for adjusting the spraying speed For example, (a) a method for adjusting the spraying speed; (b) a method for adjusting the spraying pressure; (c) a method in which the polyester (A) woven fabric is preheated and then sprayed with the polyester (B) solution. (D) There may be a method of adjusting the spraying distance.
  • the spray spraying speed is not particularly limited as long as the solvent (B-2) evaporates immediately after the polyester (B) solution arrives at the polyester (A) woven fabric. .
  • the polyester (B) solution preferably 0.005 ⁇ 0.3mL / cm 2, more preferably sprayed in an amount of 0.007 ⁇ 0.015mL / cm 2. If the polyester (B) solution is sprayed in such an amount, the solvent (B-2) in the polyester (B) solution evaporates immediately before or after it reaches the polyester (A) woven fabric. Then, the polyester (A) woven fabric is sealed (coated) with the polyester (B). In addition, the solvent (B-2) can be effectively suppressed and prevented from dissolving the polyester (A) woven fabric.
  • the spraying pressure is not particularly limited as long as the solvent (B-2) evaporates immediately after the polyester (B) solution arrives on the polyester (A) woven fabric.
  • the polyester (B) solution is sprayed at an air pressure of 10 to 80 kPa, more preferably 30 to 60 kPa. If the polyester (B) solution is sprayed at such an air pressure, the solvent (B-2) in the polyester (B) solution evaporates immediately before or after it arrives at the polyester (A) woven fabric. Then, the polyester (A) woven fabric is sealed (coated) with the polyester (B-1). In addition, the solvent (B-2) can be effectively suppressed and prevented from dissolving the polyester (A) woven fabric.
  • the heating condition of the polyester (A) woven fabric is such that the solvent (B-2) evaporates immediately after the polyester (B) solution arrives at the polyester (A) woven fabric.
  • the heating temperature of the polyester (A) woven fabric is preferably 20 to 80 ° C., more preferably 50 to 70 ° C.
  • the heating time of the polyester (A) woven fabric is not particularly limited as long as it is a preferable temperature as described above, but is usually preferably 1 minute or more, more preferably about 2 to 3 minutes. is there.
  • the solvent (B-2) in the polyester (B) solution is promptly received after reaching the polyester (A) woven fabric.
  • the polyester (A) woven fabric is sealed (coated) with the polyester (B-1).
  • the solvent (B-2) can be effectively suppressed and prevented from dissolving the polyester (A) woven fabric.
  • the spray spray distance is not particularly limited as long as the solvent (B-2) evaporates immediately after the polyester (B) solution arrives on the polyester (A) woven fabric.
  • the spraying is performed with the distance between the nozzle for spraying the polyester (B) solution and the polyester (A) woven fabric being 50 to 150 mm, more preferably 100 to 130 mm. If the polyester (B) solution is sprayed from such a distance, the solvent (B-2) in the polyester (B) solution evaporates immediately before or after it reaches the polyester (A) woven fabric. Then, the polyester (A) woven fabric is sealed (coated) with the polyester (B-1).
  • the solvent (B-2) can be effectively suppressed and prevented from dissolving the polyester (A) woven fabric.
  • the methods (a), (b), (c), and (d) are preferably used.
  • the said method may be used independently or may be used in combination of 2 or more types as appropriate.
  • the conditions for applying (sealing) polyester (B-1) to the polyester (A) woven fabric are as long as the increase in the thickness of the polyester (A) woven fabric before and after spraying is 3 ⁇ m or less.
  • the polyester (B) solution is sprayed on the surface of the polyester (A) woven fabric using at least one of the operations (a) to (d).
  • the said process (ii) may be performed once or may be performed twice or more. In the latter case, the application conditions in each operation may be the same or different. Considering the flexibility of the graft and the ease of operation, the step (ii) is preferably performed once.
  • the graft for living body lumen thus obtained has a polyester (A) woven fabric and a polyester (B-1) membrane formed by fusing on the surface of the polyester (A) woven fabric.
  • B-1) The membrane has a structure for closing the polyester (A) woven fabric.
  • the polyester (A) woven fabric has an opening (opening) in addition to the polyester (A) fiber surface constituting the polyester (A) woven fabric. It has a woven-membrane composite structure formed by coating (sealing).
  • the graft for living body lumen of the present invention is thinned while ensuring strength and flexibility. Specifically, it is preferable that the thickness of the graft for living body lumen is twice the diameter ( ⁇ m) of the polyester (A) fiber + 3 ⁇ m or less.
  • “2 times the diameter ( ⁇ m) of the polyester (A) fiber + 3 ⁇ m or less” means that it is twice the diameter ( ⁇ m) of the polyester (A) fiber ⁇ 3 ⁇ m.
  • the thickness of the graft for living body lumen is more preferably 2 ⁇ 2 ⁇ m of the diameter ( ⁇ m) of the polyester (A) fiber, and 2 ⁇ 1 ⁇ m of the diameter ( ⁇ m) of the polyester (A) fiber. Particularly preferred.
  • Such a thin graft for a living body lumen is rich in flexibility, so it can be folded into a small size and easily stored in a catheter having a small diameter (for example, an inner diameter of 11 Fr or less), and can be inserted even from a thin blood vessel. For this reason, the graft for living body lumen according to the present invention can be applied to a patient with a thin blood vessel (for example, a child or an elderly person).
  • the thickness of the graft for living body lumens is less (minus) than twice the diameter ( ⁇ m) of the polyester (A) fiber. A) This is a case where the diameter is less than twice the fiber diameter ( ⁇ m).
  • the thickness of the graft for living body lumens is smaller than twice the fiber diameter when the woven fabric itself is subjected to a crushing process such as a calendering process. It is because it becomes smaller than twice.
  • the graft for living body lumen of the present invention has low water permeability.
  • the biological lumen graft of the present invention is preferably 0 to 300 mL / min / cm 2 , more preferably 0 to 200 mL / min / cm 2 , more preferably 0 to 10 mL / min / cm 2 , Particularly preferably, it has a water permeability of 0 to 5 mL / min / cm 2 . With such a water permeability, blood leakage from the graft substrate can be effectively suppressed / prevented.
  • water permeability in the present specification means a value defined by the following examples.
  • the biological lumen graft of the present invention has high strength. Specifically, the biological lumen graft of the present invention preferably has a burst strength of 50 to 250 N, more preferably 70 to 200 N. With this strength, after placement (fixation) in the aneurysm, the biological lumen graft sufficiently seals the aneurysm and reduces blood pressure in the aneurysm, resulting in a larger aneurysm size. The thickness can be reduced. “Burst intensity” in this specification means a value defined by the following examples.
  • the graft for living body lumen of the present invention can be used for, for example, a graft substrate (artificial blood vessel portion) of a stent graft, an artificial blood vessel, an artificial trachea, an artificial bronchus, an artificial esophagus, and the like. It can be suitably used for artificial blood vessels.
  • the biological lumen graft of the present invention can also be used for medical purposes other than those described above.
  • the graft for living body lumen of the present invention can be applied to an artificial blood vessel as it is.
  • this invention is not limited to the following.
  • a stent graft is a type of artificial blood vessel in which a spring-like metal (stent part), called a stent, is attached to an artificial blood vessel.
  • the stent graft is compressed and stored in a thin catheter.
  • the graft for living body lumen of the present invention can be used for an artificial blood vessel portion (graft base material) of a stent graft.
  • the stent portion may be a self-expanding stent, a balloon-expandable stent, or a combination of these (ie, a combination of a balloon-expandable portion and a self-expandable portion).
  • the stent material is not particularly limited, and is stainless steel such as SUS304, SUS316L, SUS420J2, SUS630, gold, platinum, silver, copper, nickel, cobalt, titanium, iron, aluminum, tin and nickel-titanium alloy, cobalt-chromium. Metal materials such as alloys, zinc-tungsten alloys, and the like can be preferably used.
  • at least one stent is fixed to the biological lumen graft of the present invention with a suture or the like.
  • the graft for living body lumen of the present invention can be applied in place of a known graft substrate (artificial blood vessel portion) of a stent graft.
  • a known graft substrate artificial blood vessel portion
  • the graft fabric disclosed in JP-T-2008-505713, the annular thin film / thin-film tube disclosed in JP-T-2008-514309, the tubular graft material main body disclosed in JP-A-2010-269161, and the lumen disclosed in JP-A-2007-125415 It may be applied as a graft.
  • the application method to a patient when the graft for living body lumen of the present invention is used for a stent graft is not particularly limited, and known methods can be similarly applied.
  • the stent graft is folded into a small size and stored in a catheter.
  • the catheter is then incised 4-5 cm at the base of the patient's leg to expose the femoral artery, inserted into the femoral artery, and introduced to the site of the aneurysm under fluoroscopy.
  • the stent graft housed from the catheter is released and expanded, and placed (fixed) at the site where the aneurysm is located.
  • the catheter is removed and the incision in the femoral artery is closed.
  • the aneurysm is sealed with a stent graft, reducing the blood pressure into the aneurysm and consequently reducing the size of the aneurysm.
  • the above method does not require an abdominal / thoracotomy operation and is a minimally invasive procedure with very little burden on the patient's body because the incision is small.
  • the polyester (A) woven fabric is formed of polyester single fibers having a diameter of 27 ⁇ m.
  • a polyester (B) solution was prepared by dissolving polyester (Toray Industries, Inc .: Lumirror (registered trademark) S10 # 188) in hexafluoroisopropanol (HFIP) to a concentration of 5% by weight.
  • the said polyester (A) woven fabric was installed in the to-be-coated member of the spray apparatus (Nordson Co., Ltd.:DR2404N), and the temperature around the apparatus was set to about 25 ° C.
  • the polyester (B) solution prepared above from the spray nozzle is set at a distance of 120 mm from the polyester (A) woven fabric and sprayed at an air pressure of 50 kPa. Spray spraying was performed once so that the amount was 0.01 mL / cm 2, and the polyester (A) woven fabric was sealed to prepare the graft substrate 1. Under the present circumstances, when the increase in the thickness of the said polyester (A) woven fabric before and after spraying of the obtained graft base material 1 was measured according to the method described in ⁇ Thickness Measurement> below, the polyester ( A) The increase in the thickness of the woven fabric was 1 ⁇ m.
  • the HFIP evaporated in 5 to 10 seconds after the polyester (B) solution arrived at the polyester (A) woven fabric.
  • the polyester (B-1) coating film was found to have a polyester (A) woven fabric.
  • the melted area of the polyester (A) woven fabric after spray spraying was less than 5% of the surface of the polyester (A) woven fabric, and dissolution of polyethylene terephthalate fibers was not observed.
  • the polyester (B-1) coating film was formed over an area of 95% or more of the polyester (A) woven fabric surface (95% or more of the polyester (A) woven fabric surface was polyester. (B-1) was observed (coated).
  • Example 2 The graft spraying operation of Example 1 was repeated 3 times, and the graft base material 2 was produced. Under the present circumstances, when the increase in the thickness of the said polyester (A) woven fabric before and after spraying of the obtained graft base material 2 was measured according to the method described in ⁇ Thickness measurement> below, the polyester ( A) The increase in the thickness of the woven fabric was 3 ⁇ m. Further, when the cross section of the polyester (A) woven fabric after spray spraying was observed with an electron microscope at a magnification of 1000 times, the dissolved area of the polyester (A) woven fabric after spray spraying was 5 on the surface of the polyester (A) woven fabric. %, And dissolution of polyethylene terephthalate fiber was not observed.
  • polyester (B-1) coating film was formed over an area of 95% or more of the surface of the polyester (A) woven fabric (95% or more of the surface of the polyester (A) woven fabric was sealed with the polyester (B-1). (Coated) was observed.
  • Example 1 The spraying operation of Example 1 was repeated 5 times to produce a graft substrate 3. Under the present circumstances, when the increase in the thickness of the said polyester (A) woven fabric before and behind spraying of the obtained graft base material 3 was measured according to the method as described in the following ⁇ thickness measurement>, it was 5 micrometers. Further, when the cross section of the polyester (A) woven fabric after spray spraying was observed with an electron microscope at a magnification of 1000 times, the dissolved area of the polyester (A) woven fabric after spray spraying was 5 on the surface of the polyester (A) woven fabric. %, And dissolution of polyethylene terephthalate fiber was not observed.
  • Example 2 the polyester (A) woven fabric was not sealed. That is, the polyester (A) woven fabric (thickness: 50 ⁇ m) used in Example 1 was used as the graft substrate 4. When the surface of the graft substrate 4 [polyester (A) woven fabric] was observed with an electron microscope at a magnification of 1000 times, as shown in FIG. Open) was observed.
  • ⁇ Thickness measurement> The total thickness in the longitudinal direction of each graft substrate before and after application of the polyester (B) solution was measured with a thickness gauge, and the maximum thickness before application (T 0 ( ⁇ m)) and the maximum value after application (T 1 ( ⁇ m)) is recorded. The difference between these values (T 1 -T 0 ( ⁇ m)) is calculated, and this difference is defined as the increase ( ⁇ m) in the thickness of the polyester (A) woven fabric before and after spraying.
  • the water permeability of the graft substrate is measured according to ISO 7198. Specifically, each graft substrate is cut into a size of about 2 cm ⁇ 2 cm to prepare a sample. Next, the sample is sandwiched and set in the sample installation part (hole) 11 in the water permeability measuring device 10 shown in FIG. 6, and the water 12 is flowed while checking the water pressure with the pressure gauge 13, and the water pressure of 120 mmHg When water is applied, the amount of water oozing out from this sample per minute is measured and expressed as water permeability (mL / min / cm 2 ).
  • the adaptive sheath size of the graft substrate is measured according to the following method. That is, as shown in FIG. 7A, each graft base material is sewn into a cylindrical shape (diameter: 26 mm, length: 32 mm) to produce the graft 2. Next, five graft-shaped nickel-titanium stents 3 having a diameter of 28 mm are sewn to the graft 2 at intervals of 8 mm. Moreover, the thread
  • a SUS wire 5 having a diameter of 1.5 mm as a shaft it is placed in PTFE tubes (sheaths) 6 having various diameters, and sliding force is measured.
  • the diameter of the thinnest PTFE tube (sheath) at which the sliding force is 40 N or less is confirmed and set as an adaptive sheath size.
  • the sliding force sets a PTFE tube (sheath) in a tensile tester, pulls the graft substrate through the yarn at a speed of 200 mm / min in the PTFE tube, and measures the load. The average value of the load applied for 3 to 5 seconds from the beginning of tension is calculated, and this is defined as the sliding force (N).
  • Example 4 the polyester (B) solution prepared above was sprayed on one side of a woven fabric of polyester (A) in an amount of 0.5 mL / cm 2 at an air pressure of 10 kPa from a spray nozzle.
  • a graft substrate 6 was produced by repeating the operation of Example 1 except that the woven fabric was sealed.
  • the increase of the thickness of the said polyester (A) woven fabric before and after spraying of the obtained graft base material 6 was measured according to the method as described in the above ⁇ thickness measurement>, it was 1 micrometer.
  • HFIP remained without evaporating for 30 seconds to 1 minute after the polyester (B) solution arrived at the polyester (A) woven fabric.
  • the cross section of the polyester (A) woven fabric after spray spraying was observed with an electron microscope at 1000 times magnification, it was observed that polyethylene terephthalate fibers were considerably dissolved as shown in FIG.
  • Example 1 the polyester (B) solution prepared above was sprayed on one side of a polyester (A) woven fabric from a spray nozzle at an air pressure of 100 kPa so as to have an amount of 0.01 mL / cm 2.
  • a graft substrate 7 was prepared by repeating the operation of Example 1 except for sealing the polyester (A) woven fabric. Under the present circumstances, when the increase in the thickness of the said polyester (A) woven fabric before and after spraying of the obtained graft base material 7 was measured according to the method as described in the above ⁇ thickness measurement>, it was 3 micrometers. At this time, the HFIP had evaporated before the polyester (B) solution arrived at the polyester (A) woven fabric.
  • the polyester (B-1) coating film was polyester like a non-woven fabric.
  • each graft substrate is cut into a size of about 3 cm ⁇ 3 cm to prepare a sample.
  • each graft base material (sample) is set by being sandwiched in a sample installation portion (hole) 21 having a diameter of 11.3 mm of the measuring device 20.
  • a pusher (diameter: 11.3 mm) 22 having a spherical tip is pushed into this sample at a speed of 125 mm / min, and a load (N) when the graft base material is broken is measured.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Vascular Medicine (AREA)
  • Biomedical Technology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Pulmonology (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Dermatology (AREA)
  • Medicinal Chemistry (AREA)
  • Epidemiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials For Medical Uses (AREA)
  • Prostheses (AREA)

Abstract

The purpose of the present invention is to provide a thinned biological lumen graft having ample strength. The present invention pertains to a method for producing a biological lumen graft, the method comprising: dissolving a polyester (B-1) into a solvent (B-2) to prepare a polyester (B) solution; and spray-atomizing the polyester (B) solution onto at least one surface of a polyester (A) woven fabric and filling the polyester (A) woven fabric under such conditions that the solvent (B-2) evaporates immediately after the polyester (B) solution arrives at the polyester (A) woven fabric; wherein the increase in thickness of the polyester (A) woven fabric after the spray atomization is 3 μm or less.

Description

生体管腔用グラフトの製造方法Method for producing graft for living body lumen
 本発明は、生体管腔用グラフトおよび生体管腔用グラフトの製造方法に関する。 The present invention relates to a graft for living body lumen and a method for manufacturing the graft for living body lumen.
 大動脈瘤とは、大動脈の一部が「瘤」のように膨らんだ状態のことであり、瘤が形成する部位によって、主に腹部大動脈瘤及び胸部大動脈瘤に分かれる。また、大動脈の壁は通常、内膜、中膜、外膜の3層構造をとり、大動脈瘤が形成した部位の血管壁の構造によって、瘤の壁に通常の大動脈の壁構造が確認される真性瘤、大動脈壁の解離によって形成される解離性瘤、および瘤の壁に大動脈の壁構造が確認されない仮性瘤に分かれる。このうち、真性瘤や仮性瘤は、通常、破裂しない限り顕著な症状が現れないため、早期治療が困難である。一方、解離性瘤(大動脈解離)は、胸部や背部の激しい痛みを伴うため発見は容易であるものの、臓器の血流障害により、解離の部位により様々な臓器の合併症が引き起こされることがあり、多彩な症状(例えば、心不全、心筋梗塞、意識障害、腹痛、下肢痛等)が現れるため、大動脈解離の診療が困難である。加えて、上記いずれの大動脈瘤の場合であっても、治療せずに放置しておくと瘤が破裂して、致命的な大出血を引き起こす危険性があるため、治療が必要である。 An aortic aneurysm is a state in which a part of the aorta is swollen like an aneurysm, and is mainly divided into an abdominal aortic aneurysm and a thoracic aortic aneurysm depending on the site where the aneurysm is formed. The aortic wall usually has a three-layer structure of the intima, media and adventitia, and the structure of the blood vessel wall at the site where the aortic aneurysm is formed confirms the normal aortic wall structure on the aneurysm wall. It is divided into a true aneurysm, a dissecting aneurysm formed by dissection of the aortic wall, and a pseudoaneurysm in which the wall structure of the aorta is not confirmed on the aneurysm wall. Among these, a true aneurysm or a pseudoaneurysm usually has no remarkable symptoms unless it ruptures, so that early treatment is difficult. On the other hand, a dissecting aneurysm (aortic dissection) is easy to detect because it involves severe pain in the chest and back, but due to organ blood flow disorders, various organ complications may be caused by the site of dissociation Since various symptoms (for example, heart failure, myocardial infarction, disturbance of consciousness, abdominal pain, lower limb pain, etc.) appear, it is difficult to treat aortic dissection. In addition, in any case of the aortic aneurysm, if left untreated, the aneurysm may rupture and there is a risk of causing fatal major bleeding, so treatment is necessary.
 大動脈瘤の主要な治療方法としては、瘤を人工血管で置き換える外科バイパス手術があったが、開腹または開胸手術が必要であり、患者への侵襲が大きい。また、体外循環(人工心肺)、低体温、臓器冷却などを適宜組み合わせて行うが、これらの方法は複雑で専門領域に入り、脳(脳障害)及び脊髄(下半身の麻痺)に関わる合併症を引き起こす可能性がある。 The main treatment method for an aortic aneurysm is a surgical bypass operation in which the aneurysm is replaced with an artificial blood vessel. However, it requires laparotomy or thoracotomy, and is invasive to the patient. Moreover, extracorporeal circulation (artificial cardiopulmonary), hypothermia, organ cooling, etc. are performed as appropriate, but these methods are complicated and enter into specialized fields, causing complications related to the brain (brain disorders) and spinal cord (lower body paralysis). May cause.
 このため、近年では、大動脈瘤の治療を、外科バイパス手術による人工血管置換術の代わりに、ステントグラフト(ステント付人工血管)を小さく折りたたみ、これをカテーテルに通して患部に挿入・留置する手法(ステントグラフト治療)が普及してきている。ステントグラフトは、人工血管にステントといわれるバネ状の金属を取り付けた人工血管であり、これを圧縮して細いカテーテルの中に収納したまま使用する。このカテーテルを動脈瘤のある部位まで進め、収納してあったステントグラフトをカテーテルから放出・拡張させて、動脈瘤のある部位に留置する。このため、ステントグラフトによる治療では手術による切開部を小さくすることができ、患者さんの身体にかかる負担は極めて少ない、患者への侵襲の小さい治療方法である。また、この方法によると、瘤はステントグラフトにより蓋がされ、瘤内の血流が無くなって、次第に小さくなる、あるいは瘤が小さくならない場合でも、瘤の拡大を防止して破裂の危険性を低減できる。 Therefore, in recent years, instead of artificial blood vessel replacement by surgical bypass surgery, aortic aneurysms can be treated by folding a stent graft (stented artificial blood vessel) into small pieces and inserting it into the affected area through a catheter (stent graft). Treatment) has become widespread. The stent graft is an artificial blood vessel in which a spring-like metal called a stent is attached to an artificial blood vessel, and is used while being compressed and housed in a thin catheter. The catheter is advanced to the site where the aneurysm is present, and the stored stent graft is released and expanded from the catheter and is placed in the site where the aneurysm is present. For this reason, in the treatment by the stent graft, the incision portion by the operation can be made small, and the burden on the patient's body is extremely small, and this is a treatment method with a small invasion to the patient. In addition, according to this method, the aneurysm is capped with a stent graft, and there is no blood flow in the aneurysm, which gradually becomes smaller or even when the aneurysm does not become smaller, the enlargement of the aneurysm can be prevented and the risk of rupture can be reduced. .
 このようなステントグラフトによる治療をさらに低侵襲で行うためには、カテーテルを細くすることが望ましいが、そのためには内挿するステントグラフトの嵩張りを減らすことが必要となる。このため、5~50デニールの糸でステントグラフトの人工血管部分を構成することで、厚みを低減させ、小径の血管への移植が可能となる技術が報告されている(例えば、WO 2006/014592 A1参照)。 In order to perform such a stent graft treatment in a less invasive manner, it is desirable to make the catheter thinner. For this purpose, it is necessary to reduce the bulk of the stent graft to be inserted. For this reason, a technique has been reported in which the artificial blood vessel portion of the stent graft is composed of 5 to 50 denier yarn, thereby reducing the thickness and enabling transplantation into a small diameter blood vessel (for example, WO 2006/014592 A1). reference).
 しかしながら、WO 2006/014592 A1に記載されるように細繊度の糸を用いて作製されたステントグラフトは、厚みは薄いものの、強度が不十分である上、織密度を維持すると織り目の開口部面積が大きくなり、ステントグラフト基材(人工血管部分)からの血液漏れを引き起こすという問題があった。 However, as described in WO 2006/014592 A1, a stent graft produced using a fine yarn has a small thickness, but has insufficient strength, and the opening area of the weave is large when the weave density is maintained. There is a problem that it becomes large and causes blood leakage from the stent graft base material (artificial blood vessel portion).
 したがって、本発明は、上記事情を鑑みてなされたものであり、十分な強度を有する薄膜化生体管腔用グラフトを提供することを目的とする。 Therefore, the present invention has been made in view of the above circumstances, and an object thereof is to provide a thinned living body lumen graft having sufficient strength.
 本発明の他の目的は、低い透水性を有する薄膜化生体管腔用グラフトを提供することである。 Another object of the present invention is to provide a thinned biological lumen graft having low water permeability.
 本発明者らは、上記の問題を解決すべく、鋭意研究を行った結果、基材にポリエステル溶液が到着する直後に溶媒が蒸発するような特定の条件下で、基材にポリエステル溶液を塗布することによって、上記課題が解決することを見出し、本発明を完成した。 As a result of intensive studies to solve the above problems, the present inventors applied the polyester solution to the substrate under specific conditions such that the solvent evaporates immediately after the polyester solution arrives on the substrate. As a result, the present inventors have found that the above problems can be solved, and have completed the present invention.
 すなわち、上記諸目的は、ポリエステル(B-1)を溶媒(B-2)に溶解してポリエステル(B)溶液を調製し、ポリエステル(A)織布に前記ポリエステル(B)溶液が到着する直後に溶媒(B-2)が蒸発するような条件下で、前記ポリエステル(B)溶液を前記ポリエステル(A)織布の少なくとも一方の面にスプレー噴霧して、前記ポリエステル(A)織布を目止めすることを有する生体管腔用グラフトの製造方法であって、スプレー噴霧前後の前記ポリエステル(A)織布の厚みの増加が3μm以下である、生体管腔用グラフトの製造方法によって達成される。 That is, the above-mentioned purposes are to prepare polyester (B) solution by dissolving polyester (B-1) in solvent (B-2), and immediately after the polyester (B) solution arrives on the polyester (A) woven fabric. The polyester (A) woven fabric is spray-sprayed on at least one surface of the polyester (A) woven fabric under conditions such that the solvent (B-2) evaporates on the polyester (A). A method for producing a graft for a living body lumen having a stopping, wherein the increase in thickness of the polyester (A) woven fabric before and after spraying is 3 μm or less is achieved. .
 また、上記諸目的は、ポリエステル(A)織布および前記ポリエステル(A)織布表面上に融着して形成されるポリエステル(B-1)膜を有し、前記ポリエステル(B-1)膜は前記ポリエステル(A)織布を目止めする、生体管腔用グラフトによっても達成される。 The above-mentioned objects include a polyester (A) woven fabric and a polyester (B-1) film formed by fusing on the surface of the polyester (A) woven fabric. Is also achieved by a graft for living body lumens, which seals the polyester (A) woven fabric.
図1Aは、実施例1のグラフト基材1の表面の電子顕微鏡写真であり、図1Bは、実施例1のグラフト基材1の断面の電子顕微鏡写真である。1A is an electron micrograph of the surface of the graft substrate 1 of Example 1, and FIG. 1B is an electron micrograph of a cross section of the graft substrate 1 of Example 1. FIG. 図2は、比較例2のグラフト基材4の表面の電子顕微鏡写真である。FIG. 2 is an electron micrograph of the surface of the graft substrate 4 of Comparative Example 2. 図3Aは、比較例3のグラフト基材5の表面の電子顕微鏡写真であり、図3Bは、比較例3のグラフト基材5の断面の電子顕微鏡写真である。3A is an electron micrograph of the surface of the graft substrate 5 of Comparative Example 3, and FIG. 3B is an electron micrograph of a cross section of the graft substrate 5 of Comparative Example 3. 図4Aは、比較例4のグラフト基材6の表面の電子顕微鏡写真であり、図4Bは、比較例4のグラフト基材6の裏面の電子顕微鏡写真である。4A is an electron micrograph of the surface of the graft substrate 6 of Comparative Example 4, and FIG. 4B is an electron micrograph of the back surface of the graft substrate 6 of Comparative Example 4. 図5は、比較例5のグラフト基材7の表面の電子顕微鏡写真である。FIG. 5 is an electron micrograph of the surface of the graft substrate 7 of Comparative Example 5. 図6は、透水率の測定装置を示す概略図である。FIG. 6 is a schematic view showing a water permeability measuring device. 図7は、適応シースサイズの測定を説明する図である。FIG. 7 is a diagram for explaining the measurement of the adaptive sheath size. 図8は、バースト強度の測定を説明する図である。FIG. 8 is a diagram for explaining the measurement of burst intensity.
 本発明の生体管腔用グラフトの製造方法は、(i)ポリエステル(B-1)を溶媒(B-2)に溶解してポリエステル(B)溶液を調製し(塗布液の調製工程(i));(ii)ポリエステル(A)織布に前記ポリエステル(B)溶液が到着する直後に溶媒(B-2)が蒸発するような条件下で、前記ポリエステル(B)溶液を前記ポリエステル(A)織布の少なくとも一方の面にスプレー噴霧して、前記ポリエステル(A)織布を目止めする(塗布工程(ii))ことを有し、スプレー噴霧前後の前記ポリエステル(A)織布の厚みの増加が3μm以下である。本発明の方法は、基材としてのポリエステル(A)織布にポリエステル溶液が到着する直後に溶媒が蒸発するような特定の条件下で、基材にポリエステル溶液を塗布することを特徴とする。 The method for producing a graft for living body lumen according to the present invention comprises (i) preparing a polyester (B) solution by dissolving polyester (B-1) in a solvent (B-2) (coating liquid preparation step (i) Ii); (ii) The polyester (B) solution is added to the polyester (A) under conditions such that the solvent (B-2) evaporates immediately after the polyester (B) solution arrives on the polyester (A) woven fabric. Spraying onto at least one surface of the woven fabric to seal the polyester (A) woven fabric (application step (ii)), the thickness of the polyester (A) woven fabric before and after spraying The increase is 3 μm or less. The method of the present invention is characterized in that the polyester solution is applied to the substrate under specific conditions such that the solvent evaporates immediately after the polyester solution arrives at the polyester (A) woven fabric as the substrate.
 また、本発明の生体管腔用グラフトは、ポリエステル(A)織布および前記ポリエステル(A)織布表面上に融着して形成されるポリエステル(B-1)膜を有し、前記ポリエステル(B-1)膜は前記ポリエステル(A)織布を目止めする、生体管腔用グラフトである。 Further, the graft for living body lumen of the present invention has a polyester (A) woven fabric and a polyester (B-1) film formed by fusing on the surface of the polyester (A) woven fabric. B-1) The membrane is a graft for living body lumens that seals the polyester (A) woven fabric.
 上記したように、ステントグラフトによる治療をさらに低侵襲で行うためには、カテーテルを細くすることが望ましいが、そのためには内挿するステントグラフトの嵩張りを減らすことが必要となる。また、ステントグラフトは超弾性金属などを用いたステント骨格をポリエステル織布やePTFEなどの人工血管に取り付けたものであるが、特に人工血管部分の嵩張りを減らすことがカテーテルを細くするには効果的である。加えて、ポリエステル織布などの人工血管の嵩張りを減らすには布の厚みを低減させるだけでなく、織布の柔らかさを維持する事も重要である。 As described above, in order to perform treatment with a stent graft in a less invasive manner, it is desirable to make the catheter thinner. For this purpose, it is necessary to reduce the bulk of the stent graft to be inserted. Stent grafts are made by attaching a stent skeleton using a super elastic metal or the like to an artificial blood vessel such as a polyester woven fabric or ePTFE. It is particularly effective to reduce the bulk of the artificial blood vessel portion to make the catheter thinner. It is. In addition, in order to reduce the bulk of artificial blood vessels such as polyester woven fabrics, it is important not only to reduce the thickness of the fabric but also to maintain the softness of the woven fabric.
 ここで、ステントグラフト基材(人工血管部分)の嵩張りを低減させる方法としては、織布を構成する糸を細くすることがある。しかしながら、織密度を維持したままで構成する糸を細くすると織り目の開口部面積が大きくなりステントグラフト基材(人工血管部)からの血液漏れを引き起こす。このため、ステントグラフト基材からの血液漏れを引き起こさない程度に密に織る必要がある。一方で、織密度を上げるためには糸の本数を増加させる必要があるが、目的の織幅まで経糸(縦糸)を収束させる事が困難である。また、糸が細くなると糸自体の強度が低下することから、織工程における糸と織機との摩擦や糸同士の摩擦により糸が破断しやすく、この観点からも織密度を上げる事は困難である。 Here, as a method of reducing the bulk of the stent graft base (artificial blood vessel portion), there is a method of thinning the yarn constituting the woven fabric. However, if the yarn constituting the woven density is thinned, the opening area of the weave increases and blood leakage from the stent-graft base material (artificial blood vessel) occurs. For this reason, it is necessary to weave as close as possible without causing blood leakage from the stent-graft substrate. On the other hand, in order to increase the weaving density, it is necessary to increase the number of yarns, but it is difficult to converge warps (warp yarns) to the target weaving width. Further, since the strength of the yarn itself decreases as the yarn becomes thinner, the yarn is likely to break due to friction between the yarn and the loom in the weaving process or between the yarns, and it is difficult to increase the weave density from this viewpoint. .
 上記課題を解決するためには、織り目の開口部が大きな薄いステントグラフト基材(例えば、ポリエステル織布)の少なくとも一方の面を、薄い高分子材料などのフィルム、多孔膜、不織布でコーティングすることで目止めする方法もまた考えられる。しかしながら、コーティング厚が厚くなると嵩張りが増すだけでなく、ステントグラフト基材が硬くなることで小さく折りたたむ事が困難となり、適用するカテーテルの細径化が困難になる。また、この方法では、コート材が剥がれてしまうとステントグラフト基材の織り目の開口部から血液が漏出し、ステントグラフトとしての機能が維持できなくなってしまう危険性もある。このため、コート材をステントグラフト基材にしっかりと接着する必要がある。 In order to solve the above-mentioned problem, at least one surface of a thin stent graft base material (for example, polyester woven fabric) having a large opening in the weave is coated with a film such as a thin polymer material, a porous film, or a nonwoven fabric. A way to stop is also conceivable. However, as the coating thickness increases, not only does the bulk increase, but the stent graft base material becomes hard, making it difficult to fold it small, making it difficult to reduce the diameter of the applied catheter. Further, in this method, when the coating material is peeled off, there is a risk that blood leaks from the opening of the weave of the stent graft base material and the function as the stent graft cannot be maintained. For this reason, it is necessary to firmly adhere the coating material to the stent graft substrate.
 これを解決するためには、コート材と基材の間に接着剤を用いる方法も考えられるが、ステントグラフトは人工血管と同様、体内に長期間(場合によっては永久的に)留置されるものである。このため、その安全性(毒性)の観点や長期埋植での安定性の観点から、接着剤を基材と同じポリエステルとし、ポリエステルを溶解する事ができる溶媒を用いて溶着させる方法が好ましいと、考えられる。しかしながら、基材も同じポリエステル基材であるため、溶着させる条件によっては基材自体を溶解させ、強度低下などを招く恐れがある。 In order to solve this problem, a method using an adhesive between the coating material and the substrate may be considered. However, a stent graft, like an artificial blood vessel, is placed in the body for a long time (permanently in some cases). is there. For this reason, from the viewpoint of safety (toxicity) and stability in long-term implantation, the adhesive is preferably the same polyester as the base material, and a method of welding using a solvent capable of dissolving the polyester is preferable. ,Conceivable. However, since the base material is also the same polyester base material, the base material itself may be dissolved depending on the welding conditions, leading to a decrease in strength.
 また、基材上にフィルムを形成させる方法や別に作製したフィルムを張り合わせる方法等のコーティング方法も考えられる。しかしながら、基材に厚さが一様なフィルムや多孔膜を張り合わせる方法では、厚さ1μm程度のフィルムは非常に薄く取り扱いにくいため、基材上を一様にカバーする事は困難である。また、基材の目開きにはフィルムが入らないため、基材とフィルムの接触面積が小さくなり、カーテル内腔との接触/こすれにより剥離しやすいという問題がある。 Also, a coating method such as a method of forming a film on a substrate or a method of laminating a separately prepared film is conceivable. However, in a method in which a film having a uniform thickness or a porous film is bonded to a substrate, it is difficult to cover the substrate uniformly because a film having a thickness of about 1 μm is very thin and difficult to handle. Further, since the film does not enter the openings of the base material, there is a problem that the contact area between the base material and the film becomes small and the film is easily peeled by contact / rubbing with the cartel lumen.
 したがって、従来では、十分な強度及び柔軟性ならびに低透水性を具備する薄膜化したステントグラフト基材に対する要望は強かったものの、実現できていないのが現状であった。 Therefore, there has been a strong demand for a thin stent graft base material having sufficient strength and flexibility and low water permeability, but it has not been realized.
 これに対して、本発明の方法は、グラフトの基材をポリエステル織布とし、基材にポリエステル溶液が到着する直後にポリエステル溶液の溶媒が蒸発するような特定の条件で、スプレー噴霧前後のポリエステル(A)織布の厚みの増加が3μm以下となるように、基材(ポリエステル(A)織布)にポリエステル溶液を塗布して、生体管腔用グラフトを作製することを特徴とする。この方法によると、塗布液(塗膜)に基材と同様のポリエステルを使用することで、塗膜が基材に強固に形成し、剥離しにくい。このため、細い糸で織り目の開口部面積(目開き寸法)の大きいグラフト基材(人工血管部)であっても、この開口部をしっかりと被覆する(目止めする)ことができる。このため、生体管腔用グラフトの透水性を低減できる。また、基材と塗膜との接着性が良好であるため、開口部を被覆する(目止めする)程度に薄い塗膜を基材に形成しても、剥離が起こりにくい。ゆえに、スプレー噴霧前後のポリエステル(A)織布の厚みの増加が3μm以下とすることができ、強度及び柔軟性は維持したまま、生体管腔用グラフトを薄膜化することが可能である。したがって、本発明に係る生体管腔用グラフトは、小径のカテーテルに収納でき、また、透水性が低く、グラフトからの血液漏れを抑制・防止できる。また、長期間埋植した場合であっても、塗膜が基材と一体化(接着)しているため、塗膜の一部が血管に逸脱することがなく、安定性が高い。また、ポリエステル溶液を構成する溶媒は、グラフト基材に到着する直後に蒸発するため、この溶媒がポリエステル基材を溶解することがほとんどあるいは全くない。ゆえに、グラフト基材は本来もっている強度を維持できるため、本発明に係るグラフトは高い強度及び柔軟性を有する。 On the other hand, the method of the present invention uses a polyester woven fabric as the graft substrate, and the polyester before and after spraying under specific conditions such that the solvent of the polyester solution evaporates immediately after the polyester solution arrives on the substrate. (A) A biological lumen graft is produced by applying a polyester solution to a base material (polyester (A) woven fabric) so that the increase in thickness of the woven fabric is 3 μm or less. According to this method, by using the same polyester as the base material for the coating liquid (coating film), the coating film is firmly formed on the base material and is difficult to peel off. For this reason, even if the graft base material (artificial blood vessel portion) has a large opening area (opening size) with a fine thread, the opening can be firmly covered (sealed). For this reason, the water permeability of the graft for living body lumen can be reduced. Moreover, since the adhesiveness between the substrate and the coating film is good, even if a coating film that is thin enough to cover (seal) the opening is formed on the substrate, peeling does not easily occur. Therefore, the increase in the thickness of the polyester (A) woven fabric before and after spraying can be made 3 μm or less, and the graft for living body lumen can be made thin while maintaining strength and flexibility. Therefore, the graft for living body lumen according to the present invention can be accommodated in a small-diameter catheter, has low water permeability, and can suppress / prevent blood leakage from the graft. Even when implanted for a long period of time, since the coating film is integrated (adhered) with the base material, a part of the coating film does not deviate into the blood vessel, and the stability is high. Further, since the solvent constituting the polyester solution evaporates immediately after reaching the graft substrate, the solvent hardly dissolves the polyester substrate. Therefore, since the graft base material can maintain the original strength, the graft according to the present invention has high strength and flexibility.
 上述したように、本発明の生体管腔用グラフトは、薄くとも、十分な強度及び低い透水性を有する。このため、本発明の生体管腔用グラフトは、細いカテーテルに挿入可能であり、ステントグラフトによる治療をさらに低侵襲で行うことができる。 As described above, the graft for living body lumen of the present invention has sufficient strength and low water permeability even if it is thin. For this reason, the graft for living body lumen of the present invention can be inserted into a thin catheter, and the treatment with the stent graft can be performed with less invasiveness.
 以下、本発明の実施の形態を説明する。 Hereinafter, embodiments of the present invention will be described.
 (i)塗布液の調製工程
 本工程では、ポリエステル(B-1)を溶媒(B-2)に溶解してポリエステル(B)溶液を調製する。
(I) Preparation Step of Coating Solution In this step, polyester (B-1) is dissolved in solvent (B-2) to prepare a polyester (B) solution.
 ここで、ポリエステル(B-1)としては、特に制限されず、公知の医療用具に使用されるポリエステルを同様にして使用できる。具体的には、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)などが挙げられる。なお、ポリエチレンテレフタレートは、ダクロン(Dacron)(登録商標)としても知られている。また、ポリエステルは、合成してもあるいは市販してもいずれでもよい。後者の場合、ルミラー(登録商標)S10、T60、H10、F65、F53、F57S15、S105等の、ルミラー(登録商標)シリーズ(いずれも東レ株式会社製)、テイジンテトロンフィルム(帝人デュポンフィルム株式会社製)などが使用できる。 Here, the polyester (B-1) is not particularly limited, and polyesters used for known medical devices can be used in the same manner. Specific examples include polyethylene terephthalate (PET) and polybutylene terephthalate (PBT). Polyethylene terephthalate is also known as Dacron (registered trademark). The polyester may be synthesized or commercially available. In the latter case, Lumirror (registered trademark) series (all manufactured by Toray Industries, Inc.) such as Lumirror (registered trademark) S10, T60, H10, F65, F53, F57S15, S105, etc., Teijin Tetron Film (manufactured by Teijin DuPont Films, Ltd.) ) Etc. can be used.
 また、溶媒(B-2)は、ポリエステル(B-1)を溶解できるものであれば特に制限されない。具体的には、1,1,1,3,3,3-ヘキサフルオロイソプロパノール(HFIP)、トリフルオロ酢酸(TFA)などが挙げられる。これらのうち、HFIPが好ましい。 The solvent (B-2) is not particularly limited as long as it can dissolve the polyester (B-1). Specific examples include 1,1,1,3,3,3-hexafluoroisopropanol (HFIP), trifluoroacetic acid (TFA), and the like. Of these, HFIP is preferred.
 ポリエステル(B)溶液中のポリエステル(B-1)の濃度は、次工程(ii)でポリエステル(A)織布の開口部(目開き)を十分被覆する(目止めする)ことができる濃度であれば特に制限されない。具体的には、ポリエステル(B)溶液中のポリエステル(B-1)の濃度が、0.5~20重量%であることが好ましく、3~10重量%であることがより好ましい。このような濃度であれば、ポリエステル(A)織布の開口部(目開き)を十分被覆する(目止めする)ことができる。また、次工程で、ポリエステル(A)織布に前記ポリエステル(B)溶液が到着する直後に、溶媒(B-2)が速やかに蒸発できる。 The concentration of polyester (B-1) in the polyester (B) solution is such that the opening (openings) of the polyester (A) woven fabric can be sufficiently covered (sealed) in the next step (ii). If there is no particular limitation. Specifically, the concentration of the polyester (B-1) in the polyester (B) solution is preferably 0.5 to 20% by weight, and more preferably 3 to 10% by weight. If it is such a density | concentration, the opening part (opening) of a polyester (A) woven fabric can fully be covered (sealed). In the next step, the solvent (B-2) can be quickly evaporated immediately after the polyester (B) solution arrives at the polyester (A) woven fabric.
 ポリエステル(B)溶液の調製は、通常、ポリエステル(B-1)を溶媒(B-2)に所定の濃度となるように溶解させればよいが、この際、必要であれば加熱処理、撹拌処理を行ってもよい。 The polyester (B) solution is usually prepared by dissolving the polyester (B-1) in the solvent (B-2) to a predetermined concentration. At this time, if necessary, heat treatment, stirring Processing may be performed.
 (ii)塗布工程
 本工程では、上記工程(i)で調製されたポリエステル(B)溶液をポリエステル(A)織布の少なくとも一方の面にスプレー噴霧して、ポリエステル(A)織布を目止め(被覆)するが、上記スプレー噴霧は、ポリエステル(A)織布にポリエステル(B)溶液が到着する直後に溶媒(B-2)が蒸発するような条件下で行われる。このような操作により、溶媒(B-2)によるポリエステル(A)織布の溶解を抑制・防止できるため、得られる生体管腔用グラフトは、ポリエステル(A)織布が本来有する高い強度及び柔軟性を発揮できる。また、ポリエステル(B)溶液のスプレー噴霧により、ポリエステル(A)織布の開口部(目開き)には十分量のポリエステル(B-1)が塗布されるため、ポリエステル(A)織布は実質的に完全に目止め(被覆)されうる。ここで、「ポリエステル(A)織布は実質的に完全に目止め(被覆)される」とは、ポリエステル(A)織布の開口部(目開き)が実質的に完全にポリエステル(B-1)で埋められた状態を意味する。具体的には、ポリエステル(A)織布表面の90~100%がポリエステル(B-1)で目止め(被覆)されることが好ましく、ポリエステル(A)織布表面の95~100%がポリエステル(B-1)で目止め(被覆)されることがより好ましい。このような目止め率(被覆率)であれば、透水性を抑えて、グラフトからの血液漏れを抑制・防止できる。
(Ii) Coating step In this step, the polyester (A) woven fabric is sprayed by spraying the polyester (B) solution prepared in the above step (i) onto at least one surface of the polyester (A) woven fabric. (Coating) The spraying is performed under such a condition that the solvent (B-2) evaporates immediately after the polyester (B) solution arrives on the polyester (A) woven fabric. By such an operation, the dissolution of the polyester (A) woven fabric by the solvent (B-2) can be suppressed / prevented, so that the obtained graft for living body lumen has high strength and flexibility inherent in the polyester (A) woven fabric. The ability to demonstrate. Further, since a sufficient amount of polyester (B-1) is applied to the opening (opening) of the polyester (A) woven fabric by spraying the polyester (B) solution, the polyester (A) woven fabric is substantially Can be completely sealed (coated). Here, “the polyester (A) woven fabric is substantially completely sealed (covered)” means that the opening (opening) of the polyester (A) woven fabric is substantially completely polyester (B- It means the state filled in 1). Specifically, 90 to 100% of the surface of the polyester (A) woven fabric is preferably sealed (coated) with the polyester (B-1), and 95 to 100% of the surface of the polyester (A) woven fabric is polyester. More preferably, it is sealed (coated) with (B-1). With such a sealing rate (covering rate), water permeability can be suppressed and blood leakage from the graft can be suppressed / prevented.
 これに対して、ポリエステル(A)織布にポリエステル(B)溶液を塗布した後に塗膜を形成する(即ち、ポリエステル(A)織布にポリエステル(B)溶液が到着した後に溶媒(B-2)を蒸発させる)場合には、多量の溶媒(B-2)がポリエステル(A)織布と接触してポリエステル(A)織布を溶解するため、生体管腔用グラフトの強度が低下してしまう。一方、ポリエステル(A)織布にポリエステル(B)溶液が到着する前に溶媒(B-2)が蒸発する場合には、ポリエステル(B-1)塗膜表面が粗くなり、ポリエステル(B-1)が十分ポリエステル(A)織布を目止め(被覆)できない。このため、得られる生体管腔用グラフトの透水性を十分低減できず、グラフトからの血液漏れを防げない。加えて、ポリエステル(A)織布の開口部(目開き)に十分量のポリエステル(B-1)が侵入しないため、ポリエステル(B-1)塗膜がポリエステル(A)織布から剥離しやすくなるため、安全上好ましくない。 On the other hand, after the polyester (B) solution is applied to the polyester (A) woven fabric, a coating film is formed (that is, after the polyester (B) solution arrives on the polyester (A) woven fabric, the solvent (B-2 ) Is evaporated), a large amount of the solvent (B-2) comes into contact with the polyester (A) woven fabric to dissolve the polyester (A) woven fabric, so that the strength of the biological lumen graft is reduced. End up. On the other hand, when the solvent (B-2) evaporates before the polyester (B) solution arrives on the polyester (A) woven fabric, the polyester (B-1) coating surface becomes rough, and the polyester (B-1 ) Cannot sufficiently seal (cover) the polyester (A) woven fabric. For this reason, the water permeability of the obtained graft for living body lumen cannot be sufficiently reduced, and blood leakage from the graft cannot be prevented. In addition, since a sufficient amount of polyester (B-1) does not enter the opening (opening) of the polyester (A) woven fabric, the polyester (B-1) coating film is easily peeled off from the polyester (A) woven fabric. Therefore, it is not preferable for safety.
 また、本工程(ii)において、スプレー噴霧前後のポリエステル(A)織布の厚みの増加は、3μm以下である。このような厚みの増加であれば、得られる生体管腔用グラフトは十分薄く、柔軟性にも富むため、小さく折り畳んで小径(例えば、内径11Fr以下)のカテーテルに容易に収納し、また、細い血管からでも挿入できる。このため、本発明に係る生体管腔用グラフトは、血管の細い患者(例えば、小児や老人)などに対しても、適用が可能である。スプレー噴霧前後のポリエステル(A)織布の厚みの増加は、好ましくは0~3μmであり、より好ましくは0μm超3μm以下、特に好ましくは0.5~2μmである。なお、「スプレー噴霧前後のポリエステル(A)織布の厚みの増加」は、スプレー噴霧後のポリエステル(A)織布の厚みとスプレー噴霧前のポリエステル(A)織布の厚みとの差(μm)[=(スプレー噴霧後のポリエステル(A)織布の厚み(μm))-(スプレー噴霧前のポリエステル(A)織布の厚み(μm))]の最大値を意味する。また、「スプレー噴霧前後のポリエステル(A)織布の厚みの増加が、0μmである」とは、ポリエステル(A)織布の目開き部分にのみポリエステル(B)が侵入し、ポリエステル(A)織布自体の厚みが変化しないことを意味する。本明細書において、スプレー噴霧前後のポリエステル(A)織布の厚みは、下記実施例に記載される方法によって測定される値である。 In this step (ii), the increase in the thickness of the polyester (A) woven fabric before and after spraying is 3 μm or less. With such an increase in thickness, the obtained graft for living body lumen is sufficiently thin and flexible enough to be folded into a small diameter (for example, an inner diameter of 11 Fr or less) and easily stored in a thin catheter. Can be inserted from blood vessels. For this reason, the graft for living body lumen according to the present invention can be applied to a patient with a thin blood vessel (for example, a child or an elderly person). The increase in the thickness of the polyester (A) woven fabric before and after spraying is preferably 0 to 3 μm, more preferably more than 0 μm and 3 μm or less, and particularly preferably 0.5 to 2 μm. The “increase in the thickness of the polyester (A) woven fabric before and after spraying” is the difference between the thickness of the polyester (A) woven fabric after spraying and the thickness of the polyester (A) woven fabric before spraying (μm ) [= (The thickness of the polyester (A) woven fabric after spraying (μm)) − (the thickness of the woven fabric of polyester (A) before spraying (μm))]]. In addition, “the increase in the thickness of the polyester (A) woven fabric before and after spraying is 0 μm” means that the polyester (B) penetrates only into the openings of the polyester (A) woven fabric, and the polyester (A) It means that the thickness of the woven fabric itself does not change. In this specification, the thickness of the polyester (A) woven fabric before and after spraying is a value measured by the method described in the following examples.
 ここで、ポリエステル(A)織布は、本発明の生体管腔用グラフトの基材を構成し、ポリエステル繊維の織物で構成される布帛である。布帛構造としては、特に制限されず、編物、不織布等など、通常グラフトの基材として使用されるのと同様の構造が同様にして適用できる。また、織物の組織としても、特に制限されず、通常グラフトの基材として使用される組織が同様にして適用できる。具体的には、平織、綾織、朱子織、二重織等が挙げられる。これらのうち、強度及び薄さの点で平織が好ましい。布帛の形態についても、特に制限されず、一般的な平面上の織物以外に筒状に織り上げた形態であってもよい。また、ポリエステル(A)織布の表面は、起毛されてもあるいは起毛されていなくてもよいが、織布の厚みや強度の点から、起毛されていないことが好ましい。このようにポリエステル(A)織布を平滑なものとすることによって、ポリエステル(A)織布を小さく畳んで、カテーテル内腔に挿入するのが容易にできる。 Here, the polyester (A) woven fabric is a fabric that constitutes the base material of the graft for living body lumen of the present invention and is composed of a polyester fiber fabric. The fabric structure is not particularly limited, and the same structure as that usually used as a graft base material, such as a knitted fabric and a nonwoven fabric, can be similarly applied. Also, the structure of the woven fabric is not particularly limited, and a structure usually used as a base material for grafts can be similarly applied. Specific examples include plain weave, twill weave, satin weave, and double weave. Of these, plain weave is preferred in terms of strength and thinness. The form of the fabric is also not particularly limited, and may be a form woven in a cylindrical shape other than a general plane fabric. Further, the surface of the polyester (A) woven fabric may be raised or not raised, but is preferably not raised from the viewpoint of the thickness and strength of the woven fabric. By making the polyester (A) woven fabric smooth as described above, the polyester (A) woven fabric can be easily folded and inserted into the catheter lumen.
 ポリエステル(A)織布は、ポリエステル(A)フィラメント(繊維)からなる糸を経糸及び緯糸として織り交ぜることによって形成される。ここで、糸は、モノフィラメントであってもあるいはマルチフィラメントであってもよいが、マルチフィラメントであることが好ましい。マルチフィラメントで作製されたポリエステル(A)織布は、外部からの力に柔軟に対応でき、また、各モノフィラメント(単糸)がズレ動くことによって柔らかさや耐摩耗性を発現できる。ゆえに、マルチフィラメントから作製されるポリエステル(A)織布は、耐摩耗性や柔軟性に優れる。なお、マルチフィラメントは、無撚糸または実撚糸のいずれでもよく、また、捲縮が付与された仮撚糸でもよい。 The polyester (A) woven fabric is formed by interweaving yarns made of polyester (A) filaments (fibers) as warps and wefts. Here, the yarn may be a monofilament or a multifilament, but is preferably a multifilament. The polyester (A) woven fabric made of multifilaments can flexibly respond to external forces, and can exhibit softness and wear resistance by shifting each monofilament (single yarn). Therefore, the polyester (A) woven fabric produced from the multifilament is excellent in wear resistance and flexibility. The multifilament may be either a non-twisted yarn or a real twisted yarn, or may be a false twisted yarn to which crimps are imparted.
 また、ポリエステル(A)フィラメント(繊維)を構成するポリエステル(A)は、特に制限されず、公知の医療用具に使用されるポリエステルを同様にして使用できる。具体的には、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)などが挙げられる。ここで、ポリエステル(A)織布を構成するポリエステルと、ポリエステル(B-1)は、同じであってもあるいは異なるものであってもよいが、ポリエステル(A)とポリエステル(B-1)とは同じであることが好ましい。これにより、ポリエステル(A)織布とポリエステル(B-1)による目止め(塗膜)との接着性を高めることができ、ポリエステル(B-1)膜がポリエステル(A)織布から剥離するのを有効に抑制・防止できる。ゆえに、織り目の開口部が大きな薄いポリエステル(A)織布をグラフトの基材として使用でき、グラフトを薄膜化できる。ゆえに、本発明に係る生体管腔用グラフトは、小径のカテーテルに収納でき、また、透水性が低く、グラフトからの血液漏れを抑制・防止できる。また、長期間埋植した場合であっても、塗膜が基材と一体化(接着)しているため、塗膜の一部が血管に剥離することがなく、安定性が高い。 The polyester (A) constituting the polyester (A) filament (fiber) is not particularly limited, and polyesters used for known medical devices can be used in the same manner. Specific examples include polyethylene terephthalate (PET) and polybutylene terephthalate (PBT). Here, the polyester constituting the polyester (A) woven fabric and the polyester (B-1) may be the same or different, but the polyester (A) and the polyester (B-1) Are preferably the same. As a result, the adhesion between the polyester (A) woven fabric and the sealing (coating film) of the polyester (B-1) can be enhanced, and the polyester (B-1) film is peeled off from the polyester (A) woven fabric. Can be effectively suppressed / prevented. Therefore, a thin polyester (A) woven fabric having a large weave opening can be used as a graft substrate, and the graft can be made thin. Therefore, the graft for living body lumen according to the present invention can be housed in a small-diameter catheter, has low water permeability, and can suppress / prevent blood leakage from the graft. Moreover, even if it is a case where it is embedded for a long period of time, since the coating film is integrated (adhered) with the base material, a part of the coating film does not peel off to the blood vessel, and the stability is high.
 ポリエステル(A)織布にモノフィラメント繊維を使用する場合、フィラメント(繊維)[ポリエステル(A)繊維]の直径は、特に制限されないが、好ましくは10~50μmであり、より好ましくは20~40μmである。このような直径であれば、十分な薄さ、柔軟性及び強度を達成できる。また、ポリエステル(A)織布に使用するフィラメント(繊維)を構成するモノフィラメント(単糸)の断面は、特に制限されず、円形断面、三角形断面、扁平形断面、中空断面等のいずれであってもよいが、柔軟性や低透水性の観点から、円形断面、扁平形断面が好ましい。 When monofilament fiber is used for the polyester (A) woven fabric, the diameter of the filament (fiber) [polyester (A) fiber] is not particularly limited, but is preferably 10 to 50 μm, more preferably 20 to 40 μm. . With such a diameter, sufficient thinness, flexibility and strength can be achieved. Moreover, the cross section of the monofilament (single yarn) constituting the filament (fiber) used in the polyester (A) woven fabric is not particularly limited, and may be any of a circular cross section, a triangular cross section, a flat cross section, a hollow cross section, and the like. However, from the viewpoints of flexibility and low water permeability, a circular cross section and a flat cross section are preferable.
 ポリエステル(A)織布にマルチフィラメント繊維を使用する場合、フィラメント(繊維)の総繊度は、特に制限されないが、好ましくは20~100デシテックス、より好ましくは30~50デシテックスである。このような総繊度であれば、十分な薄さ、強度及び柔軟性を達成できる。 When multifilament fibers are used for the polyester (A) woven fabric, the total fineness of the filaments (fibers) is not particularly limited, but is preferably 20 to 100 dtex, more preferably 30 to 50 dtex. With such a total fineness, sufficient thinness, strength and flexibility can be achieved.
 また、ポリエステル(A)繊維の作製(紡糸)方法は、特に制限されず、直接紡糸で得ても、または海島型若しくは分割割繊型の複合口金を用いて複合紡糸し、織物とした後に極細化して得てもよい。 The production (spinning) method of the polyester (A) fiber is not particularly limited, and may be obtained by direct spinning, or may be obtained by direct spinning or complex spinning using a sea-island-type or split-split-type composite die to obtain a woven fabric. May be obtained.
 ポリエステル(A)織布の目開き寸法は、特に制限されないが、好ましくは5~150μm、より好ましくは5~30μmである。または、ポリエステル(A)織布の目開き寸法は糸密度によって規定されてもよい。ここで、糸密度は、特に制限されないが、好ましくは70~700本/inch、より好ましくは400~600本/inchである。このような目開き寸法または糸密度であれば、ポリエステル(A)織布を十分薄くできる。ポリエステル(A)織布の厚みは、特に制限されないが、薄いことが好ましい。具体的には、ポリエステル(A)織布の厚みは、20~80μmであることが好ましく、30~60μmであることがより好ましい。このような厚みであれば、例えば、ポリエステル(B-1)をポリエステル(A)織布に塗布後の生体管腔用グラフトであっても、小さく畳んで内径11Fr以下の細いカテーテルに挿入することが容易である。また、この生体管腔用グラフトは、十分な強度及び柔軟性を有し、また、ポリエステル(B-1)もしっかりとポリエステル(A)織布(基材)を目止め(被覆)しているため、カテーテル内腔と生体管腔用グラフトとがこすれても、ポリエステル(B-1)膜がグラフトから剥がれることもない。 The opening size of the polyester (A) woven fabric is not particularly limited, but is preferably 5 to 150 μm, more preferably 5 to 30 μm. Alternatively, the opening size of the polyester (A) woven fabric may be defined by the yarn density. Here, the yarn density is not particularly limited, but is preferably 70 to 700 yarns / inch, more preferably 400 to 600 yarns / inch. With such an opening size or yarn density, the polyester (A) woven fabric can be made sufficiently thin. The thickness of the polyester (A) woven fabric is not particularly limited, but is preferably thin. Specifically, the thickness of the polyester (A) woven fabric is preferably 20 to 80 μm, and more preferably 30 to 60 μm. With such a thickness, for example, even a graft for living body lumen after applying polyester (B-1) to a woven fabric of polyester (A) is folded and inserted into a thin catheter having an inner diameter of 11 Fr or less. Is easy. The graft for living body lumen has sufficient strength and flexibility, and polyester (B-1) also firmly seals (covers) the polyester (A) woven fabric (base material). Therefore, even if the catheter lumen and the biological lumen graft are rubbed, the polyester (B-1) membrane is not peeled off from the graft.
 ポリエステル(A)織布の作製方法は特に制限されず、公知の方法が使用できる。例えば、ポリエステル(A)繊維を、経糸1本に対して、緯糸を1~4本置きに配置するよう平織する方法が使用できる。ポリエステル(A)織布の作製に使用される装置もまた、特に制限されず、公知の装置が同様にして使用できる。例えば、ウォータージェット織機、エアジェット織機、ニードル織機等のシャトルレス織機、フライシャトル織機、タペット織機、ドビー織機、ジャカード織機等が使用できる。製織した生地には必要に応じて精練、リラックス処理を施し、テンター等でヒートセットを行ってもよい。また、得られたポリエステル(A)織布を、さらにカレンダー等でプレス処理してもよい。この際、カレンダー等の表面は繊維を構成するポリマーのガラス転移点または軟化点以上の温度で加熱することが好ましい。このような加熱処理によって、カレンダー等に接した表面の繊維の断面形状をその表面に対して略平行に変形させることができる。ここで、加熱温度は、特に制限されないが、例えば、カレンダー等の温度を120~180℃程度に加熱して処理することが好ましい。 The method for producing the polyester (A) woven fabric is not particularly limited, and a known method can be used. For example, a method of plain weaving polyester (A) fibers so that one to four wefts are arranged for every one warp can be used. The apparatus used for producing the polyester (A) woven fabric is not particularly limited, and a known apparatus can be used in the same manner. For example, a shuttleless loom such as a water jet loom, an air jet loom, and a needle loom, a fly shuttle loom, a tappet loom, a dobby loom, a jacquard loom, and the like can be used. The woven fabric may be scoured and relaxed as necessary, and heat set with a tenter or the like. The obtained polyester (A) woven fabric may be further pressed with a calendar or the like. At this time, the surface of the calendar or the like is preferably heated at a temperature equal to or higher than the glass transition point or softening point of the polymer constituting the fiber. By such heat treatment, the cross-sectional shape of the fiber on the surface in contact with the calendar or the like can be deformed substantially parallel to the surface. Here, the heating temperature is not particularly limited, but for example, it is preferable to heat the calender or the like to about 120 to 180 ° C. for treatment.
 ポリエステル(A)織布は、上記のように作製してもあるいは市販品を使用してもよい。ここで、市販品としては、特に制限されないが、テトロンメッシュ T-No.508T、T-No.420T、T-No.380T、T-No.355T、T-No.330T、T-No.305T、T-No.280T、T-No.255T、T-No.230T、T-No.200T、T-No.180T、T-No.150T、T-No.135T、T-No.120T、T-No.100T、T-No.90T、T-No.80T、TB-70、TB-60、TB-50、TB-40(いずれも東京スクリーン株式会社製、材質:ポリエステルPET)、PETEX PET10、PET11-HC(いずれもSEFAR社製)などが挙げられる。 The polyester (A) woven fabric may be produced as described above or a commercially available product may be used. Here, the commercially available product is not particularly limited, but Tetron Mesh T-No. 508T, T-No. 420T, T-No. 380T, T-No. 355T, T-No. 330T, T-No. 305T, T-No. 280T, T-No. 255T, T-No. 230T, T-No. 200T, T-No. 180T, T-No. 150T, T-No. 135T, T-No. 120T, T-No. 100T, T-No. 90T, T-No. 80T, TB-70, TB-60, TB-50, TB-40 (all manufactured by Tokyo Screen Co., Ltd., material: polyester PET), PETEX PET10, PET11-HC (all manufactured by SEFAR), and the like.
 上記したようなポリエステル(A)織布に、ポリエステル(B)溶液をスプレー噴霧する。ここで、ポリエステル(B)溶液は、ポリエステル(A)織布の少なくとも一方の面にスプレー噴霧すればよい。薄膜化(縮径化)、柔軟性などを考慮すると、ポリエステル(B)溶液をポリエステル(A)織布の一方の面にスプレー噴霧することが好ましい。ここで、スプレー噴霧は、ポリエステル(A)織布にポリエステル(B)溶液が到着する直後に溶媒(B-2)が蒸発するような条件下で行われる。なお、本明細書において、「ポリエステル(A)織布にポリエステル(B)溶液が到着する直後に溶媒(B-2)が蒸発する」とは、溶媒(B-2)でポリエステル(A)織布が溶解する前には溶媒(B-2)が蒸発することを意味する。具体的には、ポリエステル(A)織布にポリエステル(B)溶液が到着してから1~15秒で溶媒(B-2)が蒸発するような条件であることが好ましい。より好ましくは、ポリエステル(A)織布にポリエステル(B)溶液が到着してから2~10秒で溶媒(B-2)が蒸発するような条件で、ポリエステル(A)織布にポリエステル(B)溶液をスプレー噴霧する。また、「溶媒(B-2)が蒸発する」とは、実質的に溶媒(B-2)全量が蒸発することを意味し、具体的には、スプレー噴霧したポリエステル(B)溶液に含まれる溶媒(B-2)の90~100体積%が蒸発することが好ましい。ここで、ポリエステル(A)織布にポリエステル(B)溶液が到着する直後に溶媒(B-2)が蒸発したか否かの確認は、いずれの方法によって行われてもよいが、例えば、スプレー噴霧後のポリエステル(A)織布を光源下にかざし、残留溶媒による光の屈折により変化する色調を目視で観察することによって確認できる。または、ポリエステル(A)織布にポリエステル(B)溶液が到着する直後に溶媒(B-2)が蒸発したか否かの確認は、ポリエチレンテレフタレート繊維の溶解は認められないことによって、より具体的にはスプレー噴霧後のポリエステル(A)織布の溶解面積がポリエステル(A)織布表面の5%未満であることによって、確認できる。 ポ リ エ ス テ ル Spray the polyester (A) solution onto the polyester (A) woven fabric as described above. Here, the polyester (B) solution may be sprayed on at least one surface of the polyester (A) woven fabric. In consideration of thinning (reducing diameter), flexibility, etc., it is preferable to spray spray the polyester (B) solution on one surface of the polyester (A) woven fabric. Here, spray spraying is performed under conditions such that the solvent (B-2) evaporates immediately after the polyester (B) solution arrives on the polyester (A) woven fabric. In the present specification, “the solvent (B-2) evaporates immediately after the polyester (B) solution arrives on the polyester (A) woven fabric” means that the polyester (A) woven with the solvent (B-2). It means that the solvent (B-2) evaporates before the cloth dissolves. Specifically, the conditions are preferably such that the solvent (B-2) evaporates 1 to 15 seconds after the polyester (B) solution arrives on the polyester (A) woven fabric. More preferably, the polyester (A) is woven on the polyester (A) woven fabric under conditions such that the solvent (B-2) evaporates 2 to 10 seconds after the polyester (B) solution arrives. ) Spray the solution. Further, “solvent (B-2) evaporates” means that substantially the entire amount of solvent (B-2) evaporates. Specifically, it is contained in the sprayed polyester (B) solution. It is preferable that 90 to 100% by volume of the solvent (B-2) is evaporated. Here, the confirmation of whether or not the solvent (B-2) has evaporated immediately after the polyester (B) solution arrives on the polyester (A) woven fabric may be carried out by any method. The polyester (A) woven fabric after spraying is held under a light source, and it can be confirmed by visually observing the color tone that changes due to light refraction by the residual solvent. Alternatively, the confirmation of whether or not the solvent (B-2) has evaporated immediately after the polyester (B) solution arrives on the polyester (A) woven fabric is more specific because the dissolution of the polyethylene terephthalate fiber is not observed. Can be confirmed by the fact that the melted area of the polyester (A) woven fabric after spraying is less than 5% of the surface of the polyester (A) woven fabric.
 ポリエステル(A)織布にポリエステル(B)溶液が到着する直後に、溶媒(B-2)を蒸発させる方法は、特に制限されない。例えば、(a)スプレー噴霧速度を調節する方法;(b)スプレー噴霧圧力を調節する方法;(c)ポリエステル(A)織布をあらかじめ加温した後、ポリエステル(B)溶液をスプレー噴霧する方法;(d)スプレー噴霧距離を調節する方法などがありうる。このうち、上記(a)において、スプレー噴霧速度は、ポリエステル(A)織布にポリエステル(B)溶液が到着する直後に、溶媒(B-2)が蒸発するような速度であれば特に制限されない。具体的には、ポリエステル(B)溶液を、好ましくは0.005~0.3mL/cm、より好ましくは0.007~0.015mL/cmの量でスプレー噴霧する。このような量でポリエステル(B)溶液をスプレー噴霧すれば、ポリエステル(B)溶液中の溶媒(B-2)は、ポリエステル(A)織布に到着するまでにまたは到着した後速やかに蒸発して、ポリエステル(A)織布をポリエステル(B)で目止め(被覆)する。また、溶媒(B-2)がポリエステル(A)織布を溶解するのを有効に抑制・防止できる。 The method for evaporating the solvent (B-2) immediately after the polyester (B) solution arrives on the polyester (A) woven fabric is not particularly limited. For example, (a) a method for adjusting the spraying speed; (b) a method for adjusting the spraying pressure; (c) a method in which the polyester (A) woven fabric is preheated and then sprayed with the polyester (B) solution. (D) There may be a method of adjusting the spraying distance. Among these, in (a) above, the spray spraying speed is not particularly limited as long as the solvent (B-2) evaporates immediately after the polyester (B) solution arrives at the polyester (A) woven fabric. . Specifically, the polyester (B) solution, preferably 0.005 ~ 0.3mL / cm 2, more preferably sprayed in an amount of 0.007 ~ 0.015mL / cm 2. If the polyester (B) solution is sprayed in such an amount, the solvent (B-2) in the polyester (B) solution evaporates immediately before or after it reaches the polyester (A) woven fabric. Then, the polyester (A) woven fabric is sealed (coated) with the polyester (B). In addition, the solvent (B-2) can be effectively suppressed and prevented from dissolving the polyester (A) woven fabric.
 上記(b)において、スプレー噴霧圧力は、ポリエステル(A)織布にポリエステル(B)溶液が到着する直後に、溶媒(B-2)が蒸発するような圧力であれば特に制限されない。具体的には、ポリエステル(B)溶液を、10~80kPa、より好ましくは30~60kPaのエア圧力でスプレー噴霧する。このようなエア圧力でポリエステル(B)溶液をスプレー噴霧すれば、ポリエステル(B)溶液中の溶媒(B-2)は、ポリエステル(A)織布に到着するまでにまたは到着した後速やかに蒸発して、ポリエステル(A)織布をポリエステル(B-1)で目止め(被覆)する。また、溶媒(B-2)がポリエステル(A)織布を溶解するのを有効に抑制・防止できる。 In the above (b), the spraying pressure is not particularly limited as long as the solvent (B-2) evaporates immediately after the polyester (B) solution arrives on the polyester (A) woven fabric. Specifically, the polyester (B) solution is sprayed at an air pressure of 10 to 80 kPa, more preferably 30 to 60 kPa. If the polyester (B) solution is sprayed at such an air pressure, the solvent (B-2) in the polyester (B) solution evaporates immediately before or after it arrives at the polyester (A) woven fabric. Then, the polyester (A) woven fabric is sealed (coated) with the polyester (B-1). In addition, the solvent (B-2) can be effectively suppressed and prevented from dissolving the polyester (A) woven fabric.
 上記(c)において、ポリエステル(A)織布の加温条件は、ポリエステル(A)織布にポリエステル(B)溶液が到着する直後に、溶媒(B-2)が蒸発するような条件であれば特に制限されない。具体的には、ポリエステル(A)織布の加温温度は、好ましくは20~80℃であり、より好ましくは50~70℃である。また、ポリエステル(A)織布の加温時間は、上記したような好ましい温度になればよいので、特に制限されないが、通常、好ましくは1分以上であり、より好ましくは2~3分程度である。このような温度のポリエステル(A)織布にポリエステル(B)溶液をスプレー噴霧すれば、ポリエステル(B)溶液中の溶媒(B-2)は、ポリエステル(A)織布に到着した後速やかに蒸発して、ポリエステル(A)織布をポリエステル(B-1)で目止め(被覆)する。また、溶媒(B-2)がポリエステル(A)織布を溶解するのを有効に抑制・防止できる。 In the above (c), the heating condition of the polyester (A) woven fabric is such that the solvent (B-2) evaporates immediately after the polyester (B) solution arrives at the polyester (A) woven fabric. There is no particular limitation. Specifically, the heating temperature of the polyester (A) woven fabric is preferably 20 to 80 ° C., more preferably 50 to 70 ° C. Further, the heating time of the polyester (A) woven fabric is not particularly limited as long as it is a preferable temperature as described above, but is usually preferably 1 minute or more, more preferably about 2 to 3 minutes. is there. If the polyester (B) solution is spray-sprayed on the polyester (A) woven fabric at such a temperature, the solvent (B-2) in the polyester (B) solution is promptly received after reaching the polyester (A) woven fabric. By evaporation, the polyester (A) woven fabric is sealed (coated) with the polyester (B-1). In addition, the solvent (B-2) can be effectively suppressed and prevented from dissolving the polyester (A) woven fabric.
 上記(d)において、スプレー噴霧距離は、ポリエステル(A)織布にポリエステル(B)溶液が到着する直後に、溶媒(B-2)が蒸発するような距離であれば特に制限されない。具体的には、ポリエステル(B)溶液を噴霧するノズルとポリエステル(A)織布との距離を、50~150mm、より好ましくは100~130mmとしてスプレー噴霧する。このような距離からポリエステル(B)溶液をスプレー噴霧すれば、ポリエステル(B)溶液中の溶媒(B-2)は、ポリエステル(A)織布に到着するまでにまたは到着した後速やかに蒸発して、ポリエステル(A)織布をポリエステル(B-1)で目止め(被覆)する。また、溶媒(B-2)がポリエステル(A)織布を溶解するのを有効に抑制・防止できる。このうち、上記(a)、(b)、(c)、(d)の方法が好ましく使用される。なお、上記方法は、単独で使用されてもあるいは2種以上を適宜組み合わせて使用されてもよい。 In the above (d), the spray spray distance is not particularly limited as long as the solvent (B-2) evaporates immediately after the polyester (B) solution arrives on the polyester (A) woven fabric. Specifically, the spraying is performed with the distance between the nozzle for spraying the polyester (B) solution and the polyester (A) woven fabric being 50 to 150 mm, more preferably 100 to 130 mm. If the polyester (B) solution is sprayed from such a distance, the solvent (B-2) in the polyester (B) solution evaporates immediately before or after it reaches the polyester (A) woven fabric. Then, the polyester (A) woven fabric is sealed (coated) with the polyester (B-1). In addition, the solvent (B-2) can be effectively suppressed and prevented from dissolving the polyester (A) woven fabric. Of these, the methods (a), (b), (c), and (d) are preferably used. In addition, the said method may be used independently or may be used in combination of 2 or more types as appropriate.
 また、ポリエステル(A)織布へのポリエステル(B-1)の塗布(目止め)条件は、スプレー噴霧前後のポリエステル(A)織布の厚みの増加が3μm以下となるような条件であれば特に制限されない。具体的には、上記(a)~(d)の操作の少なくとも一つを用いて、ポリエステル(B)溶液をポリエステル(A)織布表面にスプレー噴霧する。なお、上記工程(ii)は、1回行われてもあるいは2回以上行われてもよい。また、後者の場合には、各操作における塗布条件は、同一であってもあるいは異なるものであってもよい。グラフトの柔軟性、操作の簡便さなどと考慮すると、上記工程(ii)は1回行われることが好ましい。 The conditions for applying (sealing) polyester (B-1) to the polyester (A) woven fabric are as long as the increase in the thickness of the polyester (A) woven fabric before and after spraying is 3 μm or less. There is no particular limitation. Specifically, the polyester (B) solution is sprayed on the surface of the polyester (A) woven fabric using at least one of the operations (a) to (d). In addition, the said process (ii) may be performed once or may be performed twice or more. In the latter case, the application conditions in each operation may be the same or different. Considering the flexibility of the graft and the ease of operation, the step (ii) is preferably performed once.
 このようにして得られた生体管腔用グラフトは、ポリエステル(A)織布およびポリエステル(A)織布表面上に融着して形成されるポリエステル(B-1)膜を有し、ポリエステル(B-1)膜はポリエステル(A)織布を目止めする構造を有する。本発明の生体管腔用グラフトは、ポリエステル(B-1)がポリエステル(A)織布を構成するポリエステル(A)繊維表面に加えて、ポリエステル(A)織布の開口部(目開き)を被覆(目止め)してなる織布-膜複合体構造を有する。 The graft for living body lumen thus obtained has a polyester (A) woven fabric and a polyester (B-1) membrane formed by fusing on the surface of the polyester (A) woven fabric. B-1) The membrane has a structure for closing the polyester (A) woven fabric. In the graft for living body lumen of the present invention, the polyester (A) woven fabric has an opening (opening) in addition to the polyester (A) fiber surface constituting the polyester (A) woven fabric. It has a woven-membrane composite structure formed by coating (sealing).
 本発明の生体管腔用グラフトは、強度及び柔軟性は確保したまま、薄膜化されている。具体的には、生体管腔用グラフトの厚みは、ポリエステル(A)繊維の直径(μm)の2倍+3μm以下であることが好ましい。ここで、「ポリエステル(A)繊維の直径(μm)の2倍+3μm以下である」とは、ポリエステル(A)繊維の直径(μm)の2倍±3μmであることを意味する。生体管腔用グラフトの厚みは、ポリエステル(A)繊維の直径(μm)の2倍±2μmであることがより好ましく、ポリエステル(A)繊維の直径(μm)の2倍±1μmであることが特に好ましい。このような薄い生体管腔用グラフトは、柔軟性にも富むため、小さく折り畳んで小径(例えば、内径11Fr以下)のカテーテルに容易に収納し、また、細い血管からでも挿入できる。このため、本発明に係る生体管腔用グラフトは、血管の細い患者(例えば、小児や老人)などに対しても、適用が可能である。なお、上記において、生体管腔用グラフトの厚みがポリエステル(A)繊維の直径(μm)の2倍に対して少なくなる(マイナスになる)のは、ポリエステル(A)織布の厚みがポリエステル(A)繊維の直径(μm)の2倍未満である場合である。ここで、生体管腔用グラフトの厚みが繊維直径の2倍よりも小さくなるのは、織布自体がカレンダー加工などの押しつぶし加工がされている場合であり、塗布前の時点で繊維直径の2倍よりも小さくなるためである。 The graft for living body lumen of the present invention is thinned while ensuring strength and flexibility. Specifically, it is preferable that the thickness of the graft for living body lumen is twice the diameter (μm) of the polyester (A) fiber + 3 μm or less. Here, “2 times the diameter (μm) of the polyester (A) fiber + 3 μm or less” means that it is twice the diameter (μm) of the polyester (A) fiber ± 3 μm. The thickness of the graft for living body lumen is more preferably 2 ± 2 μm of the diameter (μm) of the polyester (A) fiber, and 2 ± 1 μm of the diameter (μm) of the polyester (A) fiber. Particularly preferred. Such a thin graft for a living body lumen is rich in flexibility, so it can be folded into a small size and easily stored in a catheter having a small diameter (for example, an inner diameter of 11 Fr or less), and can be inserted even from a thin blood vessel. For this reason, the graft for living body lumen according to the present invention can be applied to a patient with a thin blood vessel (for example, a child or an elderly person). In addition, in the above, the thickness of the graft for living body lumens is less (minus) than twice the diameter (μm) of the polyester (A) fiber. A) This is a case where the diameter is less than twice the fiber diameter (μm). Here, the thickness of the graft for living body lumens is smaller than twice the fiber diameter when the woven fabric itself is subjected to a crushing process such as a calendering process. It is because it becomes smaller than twice.
 また、本発明の生体管腔用グラフトは、低い透水性を有する。具体的には、本発明の生体管腔用グラフトは、好ましくは0~300mL/min/cm、より好ましくは0~200mL/min/cm、より好ましくは0~10mL/min/cm、特に好ましくは0~5mL/min/cmの透水率を有する。このような透水率であれば、グラフト基材からの血液漏れを有効に抑制・防止できる。なお、本明細書中の「透水率」は、下記実施例によって規定される値を意味する。 Moreover, the graft for living body lumen of the present invention has low water permeability. Specifically, the biological lumen graft of the present invention is preferably 0 to 300 mL / min / cm 2 , more preferably 0 to 200 mL / min / cm 2 , more preferably 0 to 10 mL / min / cm 2 , Particularly preferably, it has a water permeability of 0 to 5 mL / min / cm 2 . With such a water permeability, blood leakage from the graft substrate can be effectively suppressed / prevented. In addition, “water permeability” in the present specification means a value defined by the following examples.
 本発明の生体管腔用グラフトは、高い強度を有する。具体的には、本発明の生体管腔用グラフトは、好ましくは50~250N、より好ましくは70~200Nのバースト強度を有する。このような強度であれば、動脈瘤内に留置(固定)後、生体管腔用グラフトは、動脈瘤を十分密閉し、動脈瘤内への血行圧力を低減し、その結果、動脈瘤の大きさを小さくすることができる。なお、本明細書中の「バースト強度」は、下記実施例によって規定される値を意味する。 The biological lumen graft of the present invention has high strength. Specifically, the biological lumen graft of the present invention preferably has a burst strength of 50 to 250 N, more preferably 70 to 200 N. With this strength, after placement (fixation) in the aneurysm, the biological lumen graft sufficiently seals the aneurysm and reduces blood pressure in the aneurysm, resulting in a larger aneurysm size. The thickness can be reduced. “Burst intensity” in this specification means a value defined by the following examples.
 本発明の生体管腔用グラフトは、例えば、ステントグラフトのグラフト基材(人工血管部分)、人工血管、人工気管、人工気管支、人工食道などに使用でき、ステントグラフトのグラフト基材(人工血管部分)、人工血管に好適に使用できる。なお、本発明の生体管腔用グラフトは、上記以外の医療用途にも使用できる。上記用途のうち、人工血管には、本発明の生体管腔用グラフトがそのまま適用できる。また、以下に、本発明の生体管腔用グラフトをステントグラフトのグラフト基材(人工血管部分)に適用する場合の好ましい実施形態を説明するが、本発明は下記に限定されるものではない。 The graft for living body lumen of the present invention can be used for, for example, a graft substrate (artificial blood vessel portion) of a stent graft, an artificial blood vessel, an artificial trachea, an artificial bronchus, an artificial esophagus, and the like. It can be suitably used for artificial blood vessels. The biological lumen graft of the present invention can also be used for medical purposes other than those described above. Among the above uses, the graft for living body lumen of the present invention can be applied to an artificial blood vessel as it is. Moreover, although preferable embodiment at the time of applying the graft for biological lumens of this invention to the graft base material (artificial blood vessel part) of a stent graft below is described, this invention is not limited to the following.
 ステントグラフトは、人工血管にステントといわれるバネ状の金属(ステント部分)を取り付けた人工血管の一種で、圧縮して細いカテーテルの中に収納して使用する。本発明の生体管腔用グラフトは、ステントグラフトの人工血管部分(グラフト基材)に使用できる。また、上記ステント部分は、自己拡張型ステント若しくはバルーン拡張型ステントまたはこれらを組み合わせた(即ち、バルーン拡張可能な部分と自己拡張可能な部分とを組み合わせた)ハイブリッド型ステントであってもよい。ステント材料としては、特に制限されず、SUS304、SUS316L、SUS420J2、SUS630などのステンレス鋼、金、白金、銀、銅、ニッケル、コバルト、チタン、鉄、アルミニウム、スズおよびニッケル-チタン合金、コバルト-クロム合金、亜鉛-タングステン合金等のそれらの合金などの金属材料が好適に使用できる。本発明のステントグラフトは、少なくとも1つのステントが本発明の生体管腔用グラフトに縫合糸等により固定されている。 A stent graft is a type of artificial blood vessel in which a spring-like metal (stent part), called a stent, is attached to an artificial blood vessel. The stent graft is compressed and stored in a thin catheter. The graft for living body lumen of the present invention can be used for an artificial blood vessel portion (graft base material) of a stent graft. The stent portion may be a self-expanding stent, a balloon-expandable stent, or a combination of these (ie, a combination of a balloon-expandable portion and a self-expandable portion). The stent material is not particularly limited, and is stainless steel such as SUS304, SUS316L, SUS420J2, SUS630, gold, platinum, silver, copper, nickel, cobalt, titanium, iron, aluminum, tin and nickel-titanium alloy, cobalt-chromium. Metal materials such as alloys, zinc-tungsten alloys, and the like can be preferably used. In the stent graft of the present invention, at least one stent is fixed to the biological lumen graft of the present invention with a suture or the like.
 また、本発明の生体管腔用グラフトは、公知のステントグラフトのグラフト基材(人工血管部分)の代わりに適用できる。例えば、特表2008-505713号公報のグラフトファブリック、特表2008-514309号公報の環状薄膜/薄膜チューブ、特開2010-269161号公報の管状グラフト材料本体、特開2007-125415号公報の管腔状グラフトなどとして適用されてもよい。 Also, the graft for living body lumen of the present invention can be applied in place of a known graft substrate (artificial blood vessel portion) of a stent graft. For example, the graft fabric disclosed in JP-T-2008-505713, the annular thin film / thin-film tube disclosed in JP-T-2008-514309, the tubular graft material main body disclosed in JP-A-2010-269161, and the lumen disclosed in JP-A-2007-125415. It may be applied as a graft.
 また、本発明の生体管腔用グラフトをステントグラフトに使用する場合の、患者への適用方法もまた特に制限されず、公知方法が同様にして適用できる。例えば、ステントグラフトを小さく折り畳んでカテーテルに収納する。ここで、カテーテルの太さは、特に制限されないが、内径11Fr(3Fr=1mm)以下であることが好ましい。患者への侵襲を低減できる。次に、このカテーテルを、患者の脚の付け根を4~5cm切開して大腿動脈を露出させ、大腿動脈内に挿入し、X線透視下で動脈瘤のある部位まで導入する。ステントグラフトが動脈瘤のある部位を挟むように存在したことを確認したら、カテーテルから収納してあったステントグラフトを放出・拡張させ、動脈瘤のある部位に留置(固定)する。ステントグラフトが動脈瘤のある部位にきちんと留置(固定)したことを確認したら、カテーテルを抜去し、大腿動脈の切開部を閉じる。この方法によって、瘤はステントグラフトで密閉され、動脈瘤内への血行圧力を低減して、その結果、動脈瘤の大きさを小さくすることができる。また、上記方法は、開腹/開胸手術を必要とせず、また、切開部も小さいため、患者さんの身体にかかる負担が非常に少ない低侵襲な処置である。 In addition, the application method to a patient when the graft for living body lumen of the present invention is used for a stent graft is not particularly limited, and known methods can be similarly applied. For example, the stent graft is folded into a small size and stored in a catheter. Here, the thickness of the catheter is not particularly limited, but is preferably 11 Fr (3 Fr = 1 mm) or less in inner diameter. Invasion to patients can be reduced. The catheter is then incised 4-5 cm at the base of the patient's leg to expose the femoral artery, inserted into the femoral artery, and introduced to the site of the aneurysm under fluoroscopy. When it is confirmed that the stent graft exists so as to sandwich the site where the aneurysm is located, the stent graft housed from the catheter is released and expanded, and placed (fixed) at the site where the aneurysm is located. After confirming that the stent graft has been properly placed (fixed) at the site of the aneurysm, the catheter is removed and the incision in the femoral artery is closed. By this method, the aneurysm is sealed with a stent graft, reducing the blood pressure into the aneurysm and consequently reducing the size of the aneurysm. In addition, the above method does not require an abdominal / thoracotomy operation and is a minimally invasive procedure with very little burden on the patient's body because the incision is small.
 本発明の効果を、以下の実施例および比較例を用いて説明する。ただし、本発明の技術的範囲が以下の実施例のみに制限されるわけではない。 The effect of the present invention will be described using the following examples and comparative examples. However, the technical scope of the present invention is not limited only to the following examples.
 実施例1
 テトロンメッシュ(東京スクリーン株式会社:T-No.508T;厚さ=50μm;糸密度=508本/inch;PET織布)をポリエステル(A)織布とした。なお、ポリエステル(A)織布は、直径27μmのポリエステル単繊維で形成されている。別途、ポリエステル(東レ株式会社:ルミラー(登録商標)S10 #188)をヘキサフルオロイソプロパノール(HFIP)に5重量%の濃度になるように溶解して、ポリエステル(B)溶液を調製した。また、噴霧装置(ノードソン株式会社:DR2404N)の被塗布部材に、上記ポリエステル(A)織布を設置し、装置周辺の温度を約25℃に設定した。
Example 1
Tetoron mesh (Tokyo Screen Co., Ltd .: T-No. 508T; thickness = 50 μm; yarn density = 508 pieces / inch; PET woven fabric) was used as a polyester (A) woven fabric. The polyester (A) woven fabric is formed of polyester single fibers having a diameter of 27 μm. Separately, a polyester (B) solution was prepared by dissolving polyester (Toray Industries, Inc .: Lumirror (registered trademark) S10 # 188) in hexafluoroisopropanol (HFIP) to a concentration of 5% by weight. Moreover, the said polyester (A) woven fabric was installed in the to-be-coated member of the spray apparatus (Nordson Co., Ltd.:DR2404N), and the temperature around the apparatus was set to about 25 ° C.
 次に、上記ポリエステル(A)織布の片面に、50kPaのエア圧力で、スプレーノズルから上記で調製したポリエステル(B)溶液をポリエステル(A)織布から噴霧ノズルの距離を120mmとし、さらに噴霧量が0.01mL/cmとなるようにスプレー噴霧を1回行い、ポリエステル(A)織布を目止めし、グラフト基材1を作製した。この際、得られたグラフト基材1のスプレー噴霧前後の前記ポリエステル(A)織布の厚みの増加を、下記<厚み測定>に記載の方法に従って、測定したところ、スプレー噴霧前後の前記ポリエステル(A)織布の厚みの増加は1μmであった。ここで、HFIPは、ポリエステル(B)溶液がポリエステル(A)織布に到着してから5~10秒で蒸発した。また、スプレー噴霧後のポリエステル(A)織布断面を電子顕微鏡で1000倍に拡大して観察したところ、図1に示されるように、ポリエステル(B-1)塗膜がポリエステル(A)織布表面に融着して形成され、スプレー噴霧後のポリエステル(A)織布の溶解面積がポリエステル(A)織布表面の5%未満であり、ポリエチレンテレフタレート繊維の溶解は認められなかった。また、図1に示されるように、ポリエステル(B-1)塗膜がポリエステル(A)織布表面の95%以上の面積にわたって形成された(ポリエステル(A)織布表面の95%以上がポリエステル(B-1)で目止め(被覆)された)ことが観察された。 Next, on the one side of the polyester (A) woven fabric, the polyester (B) solution prepared above from the spray nozzle is set at a distance of 120 mm from the polyester (A) woven fabric and sprayed at an air pressure of 50 kPa. Spray spraying was performed once so that the amount was 0.01 mL / cm 2, and the polyester (A) woven fabric was sealed to prepare the graft substrate 1. Under the present circumstances, when the increase in the thickness of the said polyester (A) woven fabric before and after spraying of the obtained graft base material 1 was measured according to the method described in <Thickness Measurement> below, the polyester ( A) The increase in the thickness of the woven fabric was 1 μm. Here, the HFIP evaporated in 5 to 10 seconds after the polyester (B) solution arrived at the polyester (A) woven fabric. Further, when the cross section of the polyester (A) woven fabric after spraying was observed with an electron microscope at 1000 times magnification, as shown in FIG. 1, the polyester (B-1) coating film was found to have a polyester (A) woven fabric. The melted area of the polyester (A) woven fabric after spray spraying was less than 5% of the surface of the polyester (A) woven fabric, and dissolution of polyethylene terephthalate fibers was not observed. Further, as shown in FIG. 1, the polyester (B-1) coating film was formed over an area of 95% or more of the polyester (A) woven fabric surface (95% or more of the polyester (A) woven fabric surface was polyester. (B-1) was observed (coated).
 実施例2
 実施例1のスプレー噴霧操作を3回繰り返して、グラフト基材2を作製した。この際、得られたグラフト基材2のスプレー噴霧前後の前記ポリエステル(A)織布の厚みの増加を、下記<厚み測定>に記載の方法に従って、測定したところ、スプレー噴霧前後の前記ポリエステル(A)織布の厚みの増加は3μmであった。また、スプレー噴霧後のポリエステル(A)織布断面を電子顕微鏡で1000倍に拡大して観察したところ、スプレー噴霧後のポリエステル(A)織布の溶解面積がポリエステル(A)織布表面の5%未満であり、ポリエチレンテレフタレート繊維の溶解は認められなかった。また、ポリエステル(B-1)塗膜がポリエステル(A)織布表面の95%以上の面積にわたって形成された(ポリエステル(A)織布表面の95%以上がポリエステル(B-1)で目止め(被覆)された)ことが観察された。
Example 2
The graft spraying operation of Example 1 was repeated 3 times, and the graft base material 2 was produced. Under the present circumstances, when the increase in the thickness of the said polyester (A) woven fabric before and after spraying of the obtained graft base material 2 was measured according to the method described in <Thickness measurement> below, the polyester ( A) The increase in the thickness of the woven fabric was 3 μm. Further, when the cross section of the polyester (A) woven fabric after spray spraying was observed with an electron microscope at a magnification of 1000 times, the dissolved area of the polyester (A) woven fabric after spray spraying was 5 on the surface of the polyester (A) woven fabric. %, And dissolution of polyethylene terephthalate fiber was not observed. Further, the polyester (B-1) coating film was formed over an area of 95% or more of the surface of the polyester (A) woven fabric (95% or more of the surface of the polyester (A) woven fabric was sealed with the polyester (B-1). (Coated) was observed.
 比較例1
 実施例1のスプレー噴霧操作を5回繰り返して、グラフト基材3を作製した。この際、得られたグラフト基材3のスプレー噴霧前後の前記ポリエステル(A)織布の厚みの増加を、下記<厚み測定>に記載の方法に従って、測定したところ、5μmであった。また、スプレー噴霧後のポリエステル(A)織布断面を電子顕微鏡で1000倍に拡大して観察したところ、スプレー噴霧後のポリエステル(A)織布の溶解面積がポリエステル(A)織布表面の5%未満であり、ポリエチレンテレフタレート繊維の溶解は認められなかった。
Comparative Example 1
The spraying operation of Example 1 was repeated 5 times to produce a graft substrate 3. Under the present circumstances, when the increase in the thickness of the said polyester (A) woven fabric before and behind spraying of the obtained graft base material 3 was measured according to the method as described in the following <thickness measurement>, it was 5 micrometers. Further, when the cross section of the polyester (A) woven fabric after spray spraying was observed with an electron microscope at a magnification of 1000 times, the dissolved area of the polyester (A) woven fabric after spray spraying was 5 on the surface of the polyester (A) woven fabric. %, And dissolution of polyethylene terephthalate fiber was not observed.
 比較例2
 実施例1において、ポリエステル(A)織布の目止めを行わなかった。すなわち、実施例1で使用したポリエステル(A)織布(厚み:50μm)をグラフト基材4として使用した。グラフト基材4[ポリエステル(A)織布]の表面を電子顕微鏡で1000倍に拡大して観察したところ、図2に示されるように、ポリエステル(A)織布にはかなり大きな開口部(目開き)が存在していることが観察された。
Comparative Example 2
In Example 1, the polyester (A) woven fabric was not sealed. That is, the polyester (A) woven fabric (thickness: 50 μm) used in Example 1 was used as the graft substrate 4. When the surface of the graft substrate 4 [polyester (A) woven fabric] was observed with an electron microscope at a magnification of 1000 times, as shown in FIG. Open) was observed.
 比較例3
 ステントグラフトのグラフト基材として実績のあるポリエステル織布(厚み:120μm;糸密度=140本/inch)をグラフト基材5として使用した。なお、このポリエステル織布は、直径約12μmのポリエステル繊維を55本束ねた糸で形成されている。このグラフト基材5の表面を電子顕微鏡で1000倍に拡大して観察したところ、図3に示されるように、グラフトが多くの繊維から構成され、かなりの厚みとなっていることが観察された。
Comparative Example 3
A polyester woven fabric (thickness: 120 μm; yarn density = 140 yarns / inch), which has a proven record as a graft base material for stent grafts, was used as the graft base material 5. In addition, this polyester woven fabric is formed with a thread in which 55 polyester fibers having a diameter of about 12 μm are bundled. When the surface of the graft substrate 5 was observed with an electron microscope at 1000 times magnification, it was observed that the graft was composed of many fibers and had a considerable thickness as shown in FIG. .
 [グラフトの性能評価]
 上記で得られたグラフト基材1~5について、下記評価を行い、結果を下記表1に示す。
[Graft performance evaluation]
The graft substrates 1 to 5 obtained above were evaluated as follows, and the results are shown in Table 1 below.
 <厚み測定>
 ポリエステル(B)溶液の塗布前後の各グラフト基材の長手方向にわたる全厚みをシックネスゲージで測定し、塗布前の厚みの最大値(T(μm))および塗布後の厚みの最大値(T(μm))を記録する。これらの値の差(T-T(μm))を算出して、この差をスプレー噴霧前後の前記ポリエステル(A)織布の厚みの増加(μm)とする。
<Thickness measurement>
The total thickness in the longitudinal direction of each graft substrate before and after application of the polyester (B) solution was measured with a thickness gauge, and the maximum thickness before application (T 0 (μm)) and the maximum value after application (T 1 (μm)) is recorded. The difference between these values (T 1 -T 0 (μm)) is calculated, and this difference is defined as the increase (μm) in the thickness of the polyester (A) woven fabric before and after spraying.
 <透水率>
 グラフト基材の透水率を、ISO7198に従い、測定する。具体的には、各グラフト基材を約2cm×2cmの大きさにカットして、サンプルを作製する。次に、図6に示される透水率測定装置10に、このサンプルをサンプル設置部(穴)11に挟み込んでセットして、圧力計13で水圧を確認しながら水12を流して、120mmHgの水圧をかけたときに1分間にこのサンプルから染み出してくる水の量を測定し、透水率(mL/min/cm)として表す。
<Water permeability>
The water permeability of the graft substrate is measured according to ISO 7198. Specifically, each graft substrate is cut into a size of about 2 cm × 2 cm to prepare a sample. Next, the sample is sandwiched and set in the sample installation part (hole) 11 in the water permeability measuring device 10 shown in FIG. 6, and the water 12 is flowed while checking the water pressure with the pressure gauge 13, and the water pressure of 120 mmHg When water is applied, the amount of water oozing out from this sample per minute is measured and expressed as water permeability (mL / min / cm 2 ).
 <適応シースサイズ(適応シース径)>
 下記方法に従って、グラフト基材の適応シースサイズを測定する。すなわち、図7Aに示されるように、各グラフト基材を円筒形(直径:26mm、長さ:32mm)に縫い合わせ、グラフト2を作製する。次に、このグラフト2に、φ28mmのリング状のニッケル-チタン製のステント3を5本、8mmの間隔で縫い付ける。また、この円筒形基材の末端にチューブ内をスライドさせるための糸4をとりつける(図7B)。直径1.5mmのSUS線5をシャフトとして、様々な径のPTFEチューブ(シース)6に入れ、スライディングフォースを測定する。ここで、スライディングフォースが40N以下となる最細のPTFEチューブ(シース)の直径を確認し、適応シースサイズとする。なお、本試験において、スライディングフォースは、引張試験機にPTFEチューブ(シース)をセットして、PTFEチューブ内で200mm/minの速度で、糸を介してグラフト基材を引張り、荷重を測定する。引張りはじめから、3~5秒にかかる荷重の平均値を算出し、これをスライディングフォース(N)とする。
<Applicable sheath size (adaptive sheath diameter)>
The adaptive sheath size of the graft substrate is measured according to the following method. That is, as shown in FIG. 7A, each graft base material is sewn into a cylindrical shape (diameter: 26 mm, length: 32 mm) to produce the graft 2. Next, five graft-shaped nickel-titanium stents 3 having a diameter of 28 mm are sewn to the graft 2 at intervals of 8 mm. Moreover, the thread | yarn 4 for making the inside of a tube slide is attached to the terminal of this cylindrical base material (FIG. 7B). Using a SUS wire 5 having a diameter of 1.5 mm as a shaft, it is placed in PTFE tubes (sheaths) 6 having various diameters, and sliding force is measured. Here, the diameter of the thinnest PTFE tube (sheath) at which the sliding force is 40 N or less is confirmed and set as an adaptive sheath size. In this test, the sliding force sets a PTFE tube (sheath) in a tensile tester, pulls the graft substrate through the yarn at a speed of 200 mm / min in the PTFE tube, and measures the load. The average value of the load applied for 3 to 5 seconds from the beginning of tension is calculated, and this is defined as the sliding force (N).
 <コーティングの剥がれ>
 上記で得られた適応シースサイズを測定後、グラフトをPTFEチューブ(シース)から取り出し、このグラフトの皺が多い部分について電子顕微鏡で1000倍に拡大して観察する。
<Peeling of coating>
After measuring the adaptive sheath size obtained above, the graft is taken out from the PTFE tube (sheath), and the portion of the graft having many wrinkles is magnified 1000 times with an electron microscope and observed.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 比較例4
 実施例1において、ポリエステル(A)織布の片面に、0.5mL/cmの量で、10kPaのエア圧力で、スプレーノズルから上記で調製したポリエステル(B)溶液をスプレー噴霧して、ポリエステル(A)織布を目止めする以外は、実施例1の操作を繰り返して、グラフト基材6を作製した。この際、得られたグラフト基材6のスプレー噴霧前後の前記ポリエステル(A)織布の厚みの増加を、上記<厚み測定>に記載の方法に従って、測定したところ、1μmであった。この際、HFIPは、ポリエステル(B)溶液がポリエステル(A)織布に到着した後も30秒~1分間は蒸発せずに残存していた。また、スプレー噴霧後のポリエステル(A)織布断面を電子顕微鏡で1000倍に拡大し観察したところ、図4に示されるように、ポリエチレンテレフタレート繊維がかなり溶解していることが観察された。
Comparative Example 4
In Example 1, the polyester (B) solution prepared above was sprayed on one side of a woven fabric of polyester (A) in an amount of 0.5 mL / cm 2 at an air pressure of 10 kPa from a spray nozzle. (A) A graft substrate 6 was produced by repeating the operation of Example 1 except that the woven fabric was sealed. Under the present circumstances, when the increase of the thickness of the said polyester (A) woven fabric before and after spraying of the obtained graft base material 6 was measured according to the method as described in the above <thickness measurement>, it was 1 micrometer. At this time, HFIP remained without evaporating for 30 seconds to 1 minute after the polyester (B) solution arrived at the polyester (A) woven fabric. Further, when the cross section of the polyester (A) woven fabric after spray spraying was observed with an electron microscope at 1000 times magnification, it was observed that polyethylene terephthalate fibers were considerably dissolved as shown in FIG.
 比較例5
 実施例1において、ポリエステル(A)織布の片面に、100kPaのエア圧力で、0.01mL/cmの量となるようにスプレーノズルから上記で調製したポリエステル(B)溶液をスプレー噴霧して、ポリエステル(A)織布を目止めする以外は、実施例1の操作を繰り返して、グラフト基材7を作製した。この際、得られたグラフト基材7のスプレー噴霧前後の前記ポリエステル(A)織布の厚みの増加を、上記<厚み測定>に記載の方法に従って、測定したところ、3μmであった。この際、HFIPは、ポリエステル(B)溶液がポリエステル(A)織布に到着する前に蒸発していた。また、スプレー噴霧後のポリエステル(A)織布断面を電子顕微鏡で1000倍に拡大して観察したところ、図5に示されるように、ポリエステル(B-1)の塗膜が不織布のようにポリエステル(A)織布表面を覆い、それらはポリエステル(A)織布と融着していないことが観察された。
Comparative Example 5
In Example 1, the polyester (B) solution prepared above was sprayed on one side of a polyester (A) woven fabric from a spray nozzle at an air pressure of 100 kPa so as to have an amount of 0.01 mL / cm 2. A graft substrate 7 was prepared by repeating the operation of Example 1 except for sealing the polyester (A) woven fabric. Under the present circumstances, when the increase in the thickness of the said polyester (A) woven fabric before and after spraying of the obtained graft base material 7 was measured according to the method as described in the above <thickness measurement>, it was 3 micrometers. At this time, the HFIP had evaporated before the polyester (B) solution arrived at the polyester (A) woven fabric. Further, when the cross section of the polyester (A) woven fabric after spray spraying was observed with an electron microscope at 1000 times magnification, as shown in FIG. 5, the polyester (B-1) coating film was polyester like a non-woven fabric. (A) Covering the surface of the woven fabric, it was observed that they were not fused to the polyester (A) woven fabric.
 [グラフトの性能評価]
 上記で得られたグラフト基材6,7について、上記と同様にして透水率及びコーティングの剥がれを評価し、結果を下記表2に示す。
[Graft performance evaluation]
The graft bases 6 and 7 obtained above were evaluated in the same manner as described above for water permeability and peeling of the coating, and the results are shown in Table 2 below.
 また、上記で得られたグラフト基材1,4,6,7について、下記評価を行い、結果を下記表2に示す。 Also, the following evaluations were performed on the graft substrates 1, 4, 6, and 7 obtained above, and the results are shown in Table 2 below.
 <バースト強度>
 グラフト基材のバースト強度を、ISO7198に従い、測定する。具体的には、各グラフト基材を約3cm×3cmの大きさにカットして、サンプルを作製する。これを、図8に示されるように、各グラフト基材(サンプルを)を測定装置20の直径11.3mmのサンプル設置部(穴)21に挟み込んでセットする。このサンプルに、先端が球状の押し子(直径:11.3mm)22を125mm/minの速度で押し込み、グラフト基材が破れる時の荷重(N)を測定し、これをバースト強度とする。
<Burst intensity>
The burst strength of the graft substrate is measured according to ISO 7198. Specifically, each graft substrate is cut into a size of about 3 cm × 3 cm to prepare a sample. As shown in FIG. 8, each graft base material (sample) is set by being sandwiched in a sample installation portion (hole) 21 having a diameter of 11.3 mm of the measuring device 20. A pusher (diameter: 11.3 mm) 22 having a spherical tip is pushed into this sample at a speed of 125 mm / min, and a load (N) when the graft base material is broken is measured.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 さらに、本出願は、2012年2月27日に出願された日本特許出願番号2012-040452に基づいており、その開示内容は、参照され、全体として、組み入れられている。 Furthermore, this application is based on Japanese Patent Application No. 2012-040552 filed on February 27, 2012, the disclosure of which is incorporated by reference in its entirety.

Claims (10)

  1.  ポリエステル(B-1)を溶媒(B-2)に溶解してポリエステル(B)溶液を調製し、ポリエステル(A)織布に前記ポリエステル(B)溶液が到着する直後に溶媒(B-2)が蒸発するような条件下で、前記ポリエステル(B)溶液を前記ポリエステル(A)織布の少なくとも一方の面にスプレー噴霧して、前記ポリエステル(A)織布を目止めすることを有する生体管腔用グラフトの製造方法であって、スプレー噴霧前後の前記ポリエステル(A)織布の厚みの増加が3μm以下である、生体管腔用グラフトの製造方法。 The polyester (B-1) is dissolved in the solvent (B-2) to prepare a polyester (B) solution, and immediately after the polyester (B) solution arrives on the polyester (A) woven fabric, the solvent (B-2) And spraying the polyester (B) solution on at least one surface of the polyester (A) woven fabric under the conditions such that the polyester (A) woven fabric is sealed. A method for producing a graft for a living body, wherein the increase in thickness of the polyester (A) woven fabric before and after spraying is 3 μm or less.
  2.  前記ポリエステル(B)溶液中のポリエステル(B-1)の濃度が0.5~20重量%である、請求項1に記載の方法。 The method according to claim 1, wherein the concentration of the polyester (B-1) in the polyester (B) solution is 0.5 to 20% by weight.
  3.  前記ポリエステル(A)織布は、目開き寸法が5~150μmまたは糸密度が70~700本/inchである、請求項1または2に記載の方法。 3. The method according to claim 1, wherein the polyester (A) woven fabric has an opening size of 5 to 150 μm and a yarn density of 70 to 700 yarns / inch.
  4.  前記ポリエステル(B)溶液を、0.005~0.3mL/cmの量でスプレー噴霧する、請求項1~3のいずれか1項に記載の方法。 The method according to any one of claims 1 to 3, wherein the polyester (B) solution is sprayed in an amount of 0.005 to 0.3 mL / cm 2 .
  5.  前記ポリエステル(B)溶液を、10~80kPaのエア圧力でスプレー噴霧する、請求項1~4のいずれか1項に記載の方法。 The method according to any one of claims 1 to 4, wherein the polyester (B) solution is sprayed at an air pressure of 10 to 80 kPa.
  6.  前記ポリエステル(A)織布をあらかじめ加温した後、ポリエステル(B)溶液をスプレー噴霧する、請求項1~5のいずれか1項に記載の方法。 The method according to any one of claims 1 to 5, wherein the polyester (A) woven fabric is preheated and then sprayed with the polyester (B) solution.
  7.  ポリエステル(A)織布および前記ポリエステル(A)織布表面上に融着して形成されるポリエステル(B-1)膜を有し、前記ポリエステル(B-1)膜は前記ポリエステル(A)織布を目止めする、生体管腔用グラフト。 A polyester (A) woven fabric and a polyester (B-1) film formed by fusing on the surface of the polyester (A) woven fabric, the polyester (B-1) film being a woven fabric of the polyester (A) A graft for living body lumens that seals cloth.
  8.  前記ポリエステル(A)織布は、直径10~50μmのポリエステル(A)モノフィラメント繊維または総繊度20~100デシテックスのポリエステル(A)マルチフィラメント繊維で形成される、請求項7に記載の生体管腔用グラフト。 The living body lumen according to claim 7, wherein the polyester (A) woven fabric is formed of a polyester (A) monofilament fiber having a diameter of 10 to 50 µm or a polyester (A) multifilament fiber having a total fineness of 20 to 100 dtex. Graft.
  9.  前記ポリエステル(A)織布は、目開き寸法が5~150μmまたは糸密度が70~700本/inchである、請求項7または8に記載の生体管腔用グラフト。 The graft for living body lumen according to claim 7 or 8, wherein the polyester (A) woven fabric has an opening size of 5 to 150 µm and a yarn density of 70 to 700 yarns / inch.
  10.  前記生体管腔用グラフトの厚みがポリエステル(A)繊維の直径(μm)の2倍+3μm以下である、請求項7~9のいずれか1項に記載の生体管腔用グラフト。 10. The graft for living body lumen according to any one of claims 7 to 9, wherein the thickness of the graft for living body lumen is twice the diameter (μm) of the polyester (A) fiber + 3 μm or less.
PCT/JP2012/079148 2012-02-27 2012-11-09 Method for producing biological lumen graft WO2013128718A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012040452A JP2015091279A (en) 2012-02-27 2012-02-27 Method for manufacturing graft for organism lumen
JP2012-040452 2012-02-27

Publications (1)

Publication Number Publication Date
WO2013128718A1 true WO2013128718A1 (en) 2013-09-06

Family

ID=49081941

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/079148 WO2013128718A1 (en) 2012-02-27 2012-11-09 Method for producing biological lumen graft

Country Status (2)

Country Link
JP (1) JP2015091279A (en)
WO (1) WO2013128718A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019108496A3 (en) * 2017-11-28 2019-07-11 Medtronic Vascular, Inc. Armored graft material structure and method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01242068A (en) * 1988-03-23 1989-09-27 Res Dev Corp Of Japan Medical tubular body excellent in antithrombogenicity and preparation thereof
JPH08291471A (en) * 1995-04-21 1996-11-05 Unitika Ltd Waterproof cloth
JP2007222477A (en) * 2006-02-24 2007-09-06 Yasuharu Noisshiki Fibrous medical material containing in vivo absorbent material
JP2008505713A (en) * 2004-07-07 2008-02-28 クック・インコーポレイテッド Graft, stent graft, and manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01242068A (en) * 1988-03-23 1989-09-27 Res Dev Corp Of Japan Medical tubular body excellent in antithrombogenicity and preparation thereof
JPH08291471A (en) * 1995-04-21 1996-11-05 Unitika Ltd Waterproof cloth
JP2008505713A (en) * 2004-07-07 2008-02-28 クック・インコーポレイテッド Graft, stent graft, and manufacturing method
JP2007222477A (en) * 2006-02-24 2007-09-06 Yasuharu Noisshiki Fibrous medical material containing in vivo absorbent material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019108496A3 (en) * 2017-11-28 2019-07-11 Medtronic Vascular, Inc. Armored graft material structure and method
US10856965B2 (en) 2017-11-28 2020-12-08 Medtronic Vascular, Inc. Graft material having heated puncture structure and method
US10925714B2 (en) 2017-11-28 2021-02-23 Medtronic Vascular, Inc. Variable permeability layered structure and method
US10939990B2 (en) 2017-11-28 2021-03-09 Medtronic Vascular, Inc. Graft material having selectively advanced permeability structure and method

Also Published As

Publication number Publication date
JP2015091279A (en) 2015-05-14

Similar Documents

Publication Publication Date Title
JP6690834B2 (en) Artificial valve and method of manufacturing artificial valve
JP4869437B2 (en) Implantable device
CA2711176C (en) Stent and method of making a stent
JPWO2019131148A1 (en) Medical textiles
US6344052B1 (en) Tubular graft with monofilament fibers
JPWO2019093387A1 (en) Medical textile
US9173736B2 (en) Method of making an endoluminal vascular prosthesis
CA2711284C (en) Stent-graft suture locks
WO2011136243A1 (en) Basic fabric for stent graft, and stent graft
CN113226222A (en) Fiber material for medical instruments
US8771336B2 (en) Endoluminal prosthesis comprising a valve replacement and at least one fenestration
KR20180094001A (en) Medical fabrics
US20140005764A1 (en) Sealing mechanism for expandable vascular device
JP2016123764A (en) High density medical fabric
JP2020036905A (en) Stent graft
EP1346705B1 (en) Woven tubing for stent type blood vascular prosthesis and stent type blood vascular prosthesis using the tubing
JP5729111B2 (en) Stent graft base fabric and stent graft
WO2013128718A1 (en) Method for producing biological lumen graft
JP2011245282A (en) Base cloth for stent graft, and stent graft
JP2011229713A (en) Basic fabric for stent graft, and stent graft
JP4290446B2 (en) Woven tubular body for stent-type vascular prosthesis and stent-type vascular prosthesis using the same
JP2003339746A (en) Woven tubular body for stent type blood vessel prosthesis material, and stent type blood vessel prosthesis material using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12869802

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12869802

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP