WO2013128694A1 - Lighting device - Google Patents

Lighting device Download PDF

Info

Publication number
WO2013128694A1
WO2013128694A1 PCT/JP2012/073565 JP2012073565W WO2013128694A1 WO 2013128694 A1 WO2013128694 A1 WO 2013128694A1 JP 2012073565 W JP2012073565 W JP 2012073565W WO 2013128694 A1 WO2013128694 A1 WO 2013128694A1
Authority
WO
WIPO (PCT)
Prior art keywords
led
light
illumination
lighting device
diffusion plate
Prior art date
Application number
PCT/JP2012/073565
Other languages
French (fr)
Japanese (ja)
Inventor
久保田 秀直
西中 祐三
大内 敏
横山 淳一
津村 誠
克行 渡辺
益岡 信夫
Original Assignee
日立コンシューマエレクトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立コンシューマエレクトロニクス株式会社 filed Critical 日立コンシューマエレクトロニクス株式会社
Publication of WO2013128694A1 publication Critical patent/WO2013128694A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S8/00Lighting devices intended for fixed installation
    • F21S8/04Lighting devices intended for fixed installation intended only for mounting on a ceiling or the like overhead structures
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0096Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the lights guides being of the hollow type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2105/00Planar light sources
    • F21Y2105/10Planar light sources comprising a two-dimensional array of point-like light-generating elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2113/00Combination of light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0075Arrangements of multiple light guides
    • G02B6/0078Side-by-side arrangements, e.g. for large area displays

Definitions

  • the present invention relates to, for example, a backlight for a liquid crystal display device and an illumination device used for illumination in a room (a room such as a house, a public facility, or an elevator cage).
  • Patent Document 1 As a background art in this technical field, the one described in Patent Document 1 is known.
  • a display body characterized in that an LED light source is provided in the vicinity of a side surface end of the light guide plate (see summary).
  • the irradiation area of the light guide plate is increased, it is necessary to increase the amount of incident light in order to secure a desired luminance. For example, if the irradiation area is doubled, the amount of light incident on the light guide plate needs to be doubled to ensure the same luminance. However, when the irradiation area is doubled, the length of the side surface is about 1.4 times, so the number of LEDs can only be increased to 1.4 times. As described above, since the maximum number of LEDs that can be arranged is determined depending on the size of the light guide plate, there is a problem in that there is a limit to increasing the size of the light guide plate.
  • the illumination device irradiates light from an LED as a light source as illumination light, and is opened in the irradiation direction of the illumination light.
  • a base chassis provided with the LED, an LED board mounted on the base chassis on which the LEDs are mounted, and the LED disposed at a predetermined distance from the LED board at an opening of the base chassis.
  • a diffusion plate for diffusing the light from the LED and the light reflected by the LED substrate and / or the base chassis, and further diffusing the light from the diffusion plate disposed at a predetermined distance from the diffusion plate And a diffusion cover as an exterior of the lighting device,
  • the LED is attached to the LED substrate so as to emit light in a direction perpendicular to the irradiation direction and parallel to the LED substrate, and the diffuser plate has a light emitting direction of the LED. It has a function of propagating or guiding light in parallel directions.
  • the present invention it is possible to provide a lighting device having a configuration that can easily cope with an increase in size at a low weight and at a low cost.
  • FIG. 3 is a diagram illustrating a configuration of a diffusion plate 20 according to the first embodiment, and is a diagram illustrating light propagation by the diffusion plate 20. It is the figure which looked at the diffusion plate of the peripheral part of LED from the Z direction. It is a figure which shows the result of having simulated the luminance distribution of the light radiate
  • FIG. 2 It is sectional drawing of the illuminating device of Example 2.
  • FIG. It is sectional drawing of the illuminating device of Example 4.
  • FIG. It is the top view which looked at the light source block of the state which removed the diffusion plate from the Z direction. It is sectional drawing of the illuminating device of Example 5.
  • FIG. It is the top view which looked at the light source block of the state which removed the diffusion plate from the Z direction. It is sectional drawing of the illuminating device of Example 6.
  • FIG. It is the top view which looked at the light source block of the state which removed the diffusion plate from the Z direction.
  • FIG. It is sectional drawing of the illuminating device of Example 8.
  • FIG. 9 It is sectional drawing of the illuminating device of Example 9.
  • FIG. 10 is sectional drawing of the illuminating device of Example 10.
  • FIG. 10 It is the top view which looked at the light source block which concerns on Example 10 from the Z direction in the state which removed the diffusion plate.
  • FIG. It is a figure which shows the other example of the circuit structure of LED row which concerns on Example 11, or a connection structure.
  • FIG. 10 It is the top view which looked at the light source block which concerns on Example 10 from the Z direction in the state which removed the diffusion plate.
  • FIG. It is a figure which shows the circuit structure or connection structure of the LED row which concerns on Example 11.
  • FIG. It is a figure which shows the other example of the circuit structure of LED row which concerns
  • FIG. 1 is a cross-sectional view of a lighting device 100 according to an embodiment of the present invention.
  • the illumination device 100 includes a light source block 200 and a housing 300 that is an exterior.
  • FIG. 1 shows a state in which the lighting device 100 is attached to a ceiling or the like (not shown), and irradiates illumination light in the Z direction (downward). That is, the Z direction is the irradiation direction of the illumination light of the illumination device (the illumination light from the illumination device is diffused and irradiated in various directions, but here the Z direction is the irradiation direction).
  • the housing 300 includes a case 70 made of, for example, a resin having an opening in the Z direction, and a light diffusing cover 60 that is fixed and held in the opening. That is, the case 70 and the diffusion cover 60 constitute a housing 300 that is an exterior of the lighting device.
  • the light source block 200 is disposed inside the housing 300 and is fixed to the case 70 by, for example, screwing.
  • the diffusion cover 60 is formed of, for example, a member obtained by mixing a diffusible bead in a transparent resin, or a member obtained by roughening the surface of the transparent resin.
  • a predetermined distance (space) from 20 is provided. The light emitted from the light source block 200 is diffused when passing through the diffusion cover 60 and is emitted to the outside of the illumination device 100.
  • the light source block 200 includes a base chassis 10, a light diffusing plate 20, a light emitting diode (LED) 30 as a light source, and an LED substrate 40.
  • the diffusion plate 20 is formed of, for example, a member obtained by mixing a diffusible bead in a transparent resin, or a member obtained by roughening the surface of the transparent resin. Are spaced apart from each other by a predetermined distance (space).
  • the base chassis 10 has an opening in the Z direction and has a box shape, a bowl shape, or a tray shape whose opening area increases in accordance with the irradiation direction, and serves as a housing of the light source block 200.
  • the diffusion plate 20 is arranged so as to cover the opening of the base chassis 10.
  • the diffusion plate 20 is attached with, for example, an adhesive or a double-sided tape so as to be coupled to the four sides (edges) on the opening side of the base chassis 10.
  • the LED substrate 40 is fixed to the base chassis 10 by, for example, screwing.
  • the LED 30 is a side-view type LED that emits light in a direction parallel to the electrode surface, for example, and emits white, daylight, or light bulb color light as illumination light.
  • the LED 30 may be an LED that emits white light with a high color temperature (for example, 7000 ° C. to 9000 ° C.), and the diffusing cover 60 may be colored so that the illumination light has a daylight color or a light bulb color.
  • Many LEDs 30 are attached to the LED substrate 40 so as to protrude in the Z direction. Further, the mounting direction of the LED 30 is determined so as to emit strong illumination light in a direction (Y direction) that is orthogonal to the light irradiation direction (Z direction) of the lighting device and parallel to the LED substrate 40. That is, in this embodiment, the optical axis of the LED 30 is parallel to the Y direction.
  • a light shielding pattern 90 to be described later is provided in the vicinity of the LED 30 of the diffusion plate 20.
  • the outer peripheral part of the base chassis 10 stands up diagonally as shown in the figure, and the light leaking to the outer peripheral part of the base chassis 10 is reflected in the Z direction to improve the luminance.
  • the inner surface of the base chassis 10 is subjected to, for example, white coating to increase the reflectance.
  • a reflective sheet may be attached to the inner surface of the base chassis 10.
  • the base chassis 10 may be made of a metal such as aluminum or resin so as to make it easy to dissipate the heat generated by the LEDs 30.
  • FIG. 2 is a plan view of the light source block 200 with the diffusion plate 20 removed, as viewed from the Z direction.
  • the broken line arrow shown in FIG. 2 is the light emission direction from the LED 30, and is parallel to the Y direction as shown in FIG.
  • the LEDs 30-1, LED 30-2, LED 30-3, and LED 30-4 are arranged with the light emission direction of the LEDs 30 in the same direction.
  • the LED 30-1, LED 30-2, LED 30-3, and LED 30-4 are similarly arranged in the X direction. That is, in this embodiment, a plurality of LEDs 30 having the same light emission direction are arranged in a plurality (6 in the example of FIG. 2) in the X direction orthogonal to the light emission direction of the LEDs 30.
  • a plurality of arrays (four rows in the example of FIG. 2) are arranged at predetermined intervals in the Y direction.
  • the number of LEDs in the X direction and the number of LED rows in the Y direction are not limited to this.
  • the LED 30-1 is provided in the leftmost lighting block 80-1.
  • the LED 30-2 is provided in the next lighting block 80-2
  • the LED 30-3 is provided in the next lighting block 80-3.
  • the LED 30-4 is provided in the illumination block 80-4 at the next stage.
  • light blocking patterns 90-1 to 90-4 described later are provided on the lower surface (light emitting surface) of the diffusion plate 20 in each of the illumination blocks 80-1 to 80-4.
  • the illumination block 80 includes one LED row (eg, LED 30-1 row), a space from this LED row to the next LED row (eg, LED 30-2 row), and a diffusion plate corresponding to the space. It is assumed that 20 regions and a light shielding pattern 90 provided in the regions are included.
  • the LED substrate 40 may be a white substrate having a high reflectance.
  • the LED 30 mounting surface side of the LED substrate 40 may be white coated to increase the reflectance.
  • a reflective sheet may be provided on the LED 30 mounting surface of the LED substrate 40.
  • FIG. 3A is a cross-sectional view of one illumination block 80 viewed from the X direction, ie, a cross-sectional view in the YZ plane, for explaining the propagation of light.
  • the light emitted from the LED 30 is propagated in the Y direction while being emitted from the diffusion plate 20 while reflecting and diffusing the space between the diffusion plate 20 and the LED substrate 40.
  • FIG. 3B is a cross-sectional view viewed from the Y direction, that is, a cross-sectional view of the XZ plane.
  • the diffuser plate 20 has convex portions and concave portions (prisms) having a triangular cross section in the X direction on the LED 30 (on the Z direction) side (light incident surface).
  • the plurality of triangular convex portions and concave portions are arranged in the X direction and are formed to extend in the Y direction.
  • the diffusing plate 20 according to the present embodiment has a light diffusing function and also has a function of propagating or guiding light in the Y direction (light emitting direction of the LED 30, that is, the optical axis direction of the LED 30).
  • the function of propagating or guiding light is performed by triangular irregularities, but other configurations may be used.
  • a light shielding pattern 90 is provided on the exit surface side of the diffusion plate 2.
  • FIG. 4 is a view of the peripheral portion of the LED 30 when the diffusion plate 20 is viewed from the lower side in the Z direction.
  • the light shielding pattern 90 according to the present embodiment is made of, for example, white ink, and the white ink is applied to the lower surface side (that is, the light emitting surface side) of the diffusion plate 20 ( The light shielding pattern 90 is provided on the lower surface side of the diffusion plate 20 by printing.
  • the ink used for the light shielding pattern 90 is not limited to white, but may be black ink or blue ink mixed in white ink, for example.
  • the shape of the light shielding pattern 90 may have a protrusion extending radially around the LED 30 as shown in FIG.
  • the protrusion on the side corresponding to the light emitting direction of the LED 30 is longer than the protrusion corresponding to the back surface (the surface opposite to the light emitting surface) of the LED 30.
  • it may be circular, elliptical, or oval.
  • the light shielding pattern 90 may be any shape and size that covers a predetermined area immediately below the LED 30 and in the vicinity of the emission surface, and the shape is not limited to the above example.
  • a transparent film on which the light shielding pattern 90 is printed is attached to the diffusion plate 20 so that the light shielding pattern 90 corresponds to the LED 30 in position.
  • the structure to attach may be sufficient.
  • a strip-shaped light shielding pattern 90 ′ in which the width between the adjacent LEDs 30 is reduced and the width of the LEDs 30 is increased is attached to the diffusion plate 20 by a sheet having light shielding properties. It is good also as a structure.
  • a diffusion cover 60 having a diffusion function is disposed at a position separated from the diffusion plate 20 by a predetermined distance H1.
  • This distance H1 is a distance from the surface (light emitting surface) of the diffusing plate 20 to the inner surface (light incident surface) of the diffusing cover 60.
  • the thickness of the light source block (from the back surface of the base chassis 10 to the light of the diffusing plate 20).
  • the distance to the incident surface is about 0.5 to 2 times.
  • the present invention is not limited to this.
  • FIG. 5 is a diagram showing a result of simulating the luminance distribution of light emitted in the Z direction on the YZ plane passing through the light emission center of the LED 30.
  • the horizontal axis represents the traveling direction (Y direction) of the light emitted from the LED light source, and the vertical axis represents the luminance (logarithm).
  • L ⁇ b> 1 indicates the luminance value emitted from the diffusion plate 20 when there is no light shielding pattern 90.
  • a luminance value peak P1 is formed in the vicinity of the LED 30-1, and the luminance decreases as the distance from the LED 30-1 increases. In the vicinity of the LED 30-1, since direct light from the LED 30-1 and reflected light from the LED substrate 40 are strong, the brightness is locally high (hot spot).
  • a light shielding pattern 90 is provided on the diffusion plate 20 in the vicinity of the LED 30-1.
  • L2 indicates the luminance value when the light shielding pattern 90 is present.
  • the peak P1 is suppressed by the light shielding pattern 90, and the light reflected by the light shielding pattern 90 is further propagated in the Y direction, so that the luminance value of the other part is increased.
  • L3 represents the luminance value emitted from the diffusion cover 60. As shown in the drawing, the luminance unevenness in the diffusion plate 20 is reduced by the diffusion cover 60, and the luminance can be made uniform.
  • the lighting device according to the present embodiment When the lighting device according to the present embodiment is used for room lighting, some luminance non-uniformity is allowed in the room lighting. Therefore, if the luminance is uniformed to some extent by the diffusion plate 2 and the diffusion cover 60, The light-shielding pattern 90 that has been made may not be provided.
  • the weight can be reduced without using a light guide plate.
  • the number of lighting blocks 80 can be increased to increase the size in the Y direction, and the number of LEDs 30 provided in the lighting block 80 can be increased. If the number is increased, the size in the X direction can be increased.
  • any one to three of the lighting blocks 80-1 to 80-4 may be individually turned on or off.
  • one of the illumination blocks 80-1 to 80-4 (for example, 80-) is selected in response to a user instruction (for example, “partial lighting” instruction). 2 only) or two (for example, only 80-2 and 3) bright blocks may be turned on and the remaining blocks may be turned off.
  • the user may turn on all of the lighting blocks 80-1 to 80-4 by instructing “all lighting”.
  • each of the illumination blocks 80-1 to 80-4 is divided into, for example, two LEDs 30 and divided into three areas (in the example of FIG. 2, divided into three areas), and each of these areas is turned on or off individually. You may let them.
  • all or each of the lighting blocks 80-1 to 80-4 may have a dimming function, and the illumination light from all or each of the lighting blocks 80 may be provided according to a user instruction. The strength may be adjusted.
  • FIG. 6 is a cross-sectional view of the illumination device 101 according to the second embodiment of the present invention.
  • the LED substrate 41 is fixed to the base chassis 10 by, for example, screwing, as in the first embodiment.
  • Many LEDs 30 are attached to the LED substrate 41 so as to protrude in the Z direction, and the light emitting direction is parallel to the Y direction.
  • the light emission direction of the LEDs 30-1 and 30-2 provided in the leftmost illumination block 80-1 and the illumination block 80-2 in the next stage is the + side in the Y direction as in the first embodiment. It is.
  • the light emission direction of the next-stage illumination block 80-3 and the LED 30-3 and LED 30-4 provided in the next-stage illumination block 80-4 is the direction opposite to that in the first embodiment.
  • the negative side That is, in this embodiment, the light emitting directions of the left and right LEDs are opposed to each other so that the light emitting direction of the left and right LEDs faces the center in the Y direction of the lighting device with reference to the center in the Y direction (direction parallel to the light emitting direction) of the lighting device. It is what.
  • the LED 30-1, LED 30-2, LED 30-3, and LED 30-4 are similarly arranged in the X direction.
  • a white substrate having a high reflectance may be used similarly to the LED substrate 40 of the first embodiment.
  • the LED 30 mounting surface side of the LED substrate 41 may be white coated to increase the reflectance.
  • a reflective sheet may be provided on the LED 30 mounting surface of the LED substrate 40.
  • the light shielding pattern 90 provided on the diffusing plate 20 is also matched with the position of the LED 30 and the light emitting direction.
  • the illumination block 80 has four stages. However, in the case of six stages, the light emission direction of the LEDs 30 arranged in the left three stages is arranged in the Y direction + side and the right three stages.
  • the light emission direction of the LED 30 may be the Y direction minus side.
  • the number of the illumination blocks 80 is an odd number, the light emission direction of the LED 30 at the center stage may be either.
  • the housing 300 including the diffusion cover 60 and the case 70 is the same as the lighting device 100 of the first embodiment, description thereof is omitted.
  • the amount of light supplied to the rightmost illumination block 80-4 is integrated by the light of the LEDs 30-1 to 4 rows. By doing so, it becomes the largest among the lighting blocks.
  • the luminance of light from the right illumination block (80-3, 4) is relatively higher than the luminance of light from the left illumination block (80-1, 2).
  • the luminance distribution viewed from the irradiation surface side of the illuminating device becomes asymmetrical, and the brightness of the illumination light is biased.
  • Example 2 since the light from the left and right LED rows is emitted toward the center of the lighting device, the luminance distribution viewed from the irradiation surface side of the lighting device is most at the center in the Y direction. Bright and symmetrical. That is, according to the configuration of the second embodiment, a more preferable luminance distribution can be obtained in the lighting device.
  • the lighting device 101 As described above, in the lighting device 101 according to the second embodiment, light is propagated in the air layer between the diffusion plate 20 and the LED substrate 41 as in the lighting device 100 according to the first embodiment.
  • the weight can be reduced without using.
  • the plurality of lighting blocks 80 since the plurality of lighting blocks 80 are combined, the number of lighting blocks 80 can be increased to increase the size in the Y direction, and the number of LEDs 30 provided in the lighting block 80 can be increased. If the number is increased, the size in the X direction can be increased.
  • the LED 30 is arranged as a target with respect to the XZ plane including the center of the light source block 201, the luminance unevenness is also targeted based on the center in the Y direction. is there. It goes without saying that the light control for each illumination block can be performed in the same manner as in the first embodiment.
  • FIG. 7 is a cross-sectional view of the illumination device 102 according to the third embodiment of the present invention.
  • the LED substrate 42 is fixed to the base chassis 10 by, for example, screwing as in the first embodiment.
  • Many LEDs 30 are attached to the LED substrate 42 so as to protrude in the Z direction, and the light emission direction is parallel to the Y direction.
  • the light emission direction of the LEDs 30-1 and 30-2 provided in the leftmost illumination block 80-1 and the illumination block 80-2 in the next stage is the Y direction opposite to that in the first embodiment. -Side.
  • the light emission direction of the next-stage illumination block 80-3 and the LED 30-3 and LED 30-4 provided in the next-stage illumination block 80-4 is the + side in the Y direction as in the first embodiment. It is.
  • the LED 30-1, LED 30-2, LED 30-3, and LED 30-4 are similarly arranged in the X direction. That is, in this embodiment, contrary to the second embodiment, the light emission direction of the left and right LEDs is set to the left and right end portions of the illumination device with reference to the center in the Y direction (direction parallel to the light emission direction) of the illumination device. They are made to be opposite to each other so as to face the side (outside).
  • the LED substrate 42 may be a white substrate having a high reflectance, similar to the LED substrate 40 of the first embodiment.
  • the LED 30 mounting surface side of the LED substrate 42 may be white coated to increase the reflectance.
  • a reflective sheet may be provided on the LED 30 mounting surface of the LED substrate 40.
  • the light shielding pattern 90 provided on the diffusion plate 20 is also matched with the LED 30 position and the light emission direction.
  • the luminance distribution viewed from the irradiation surface side of the lighting device is symmetrical. Further, in this embodiment, since the LED rows are arranged in the center of the two rows, the brightness of the hot spot on the center side becomes the highest, and therefore the brightness on the center side of the illumination device is also increased in this embodiment 3. be able to.
  • the light emission direction of the LEDs 30 arranged in the left three stages is arranged in the Y direction-side and the right three stages.
  • the light emission direction of the LED 30 may be the Y direction + side.
  • the number of the illumination blocks 80 is an odd number, the light emission direction of the LED 30 at the center stage may be either.
  • the housing 300 including the diffusion cover 60 and the case 70 is the same as the lighting device 100 of the first embodiment, description thereof is omitted.
  • the lighting device 102 As described above, in the lighting device 102 according to the third embodiment, light is propagated in the air layer between the diffusion plate 20 and the LED substrate 42 as in the lighting device 100 according to the first embodiment.
  • the weight can be reduced without using.
  • the number of lighting blocks 80 can be increased to increase the size in the Y direction, and the number of LEDs 30 provided in the lighting block 80 can be increased. If the number is increased, the size in the X direction can be increased.
  • the LEDs 30 are arranged for the XZ plane including the center of the light source block 201, the luminance unevenness is also targeted in the Y direction, so that the luminance unevenness is difficult to recognize as in the second embodiment. There is also an effect. It goes without saying that the light control for each illumination block can be performed in the same manner as in the first embodiment.
  • FIG. 8 is a cross-sectional view of the illumination device 103 according to the fourth embodiment of the present invention.
  • FIG. 9 is the top view which looked at the light source block 203 of the state which removed the diffuser plate 20 from the Z direction about the illuminating device 103 which concerns on Example 4.
  • FIG. 4 unlike the first to third embodiments, different LED substrates 43-1 to 4-4 are used for the LEDs 30-1 to 30, respectively.
  • the LED substrate 43 is fixed to the base chassis 10 by, for example, screwing as in the first embodiment.
  • the leftmost illumination block 80-1 is provided with an LED substrate 43-1, and a large number of LEDs 30-1 are attached to the LED substrate 43-1 so as to protrude in the Z direction.
  • the LED block 43-2 is provided in the illumination block 80-2 at the next stage, and a large number of LEDs 30-2 are attached to the LED substrate 43-2 so as to protrude in the Z direction.
  • the light emission direction of the LEDs 30 is all on the + side of the Y direction as in the first embodiment.
  • the light emitted from the LED 30 is propagated in the Y direction while being emitted from the diffusion plate 20 while reflecting and diffusing the space between the diffusion plate 20 and the base chassis 10.
  • the inner surface of the base chassis 10 is coated with, for example, white paint to increase the reflectance.
  • a reflection sheet may be laid on the entire inner surface of the bottom surface (the surface facing the LED substrate 43) of the base chassis 10, and the LED substrates 43-1 to 4-4 may be disposed thereon. At this time, the LED substrates 43-1 to 4-4 may be provided with a reflection sheet so as to cover the LED mounting surface, or may be coated with white.
  • the housing 300 including the diffusion cover 60 and the case 70 is the same as the lighting device 100 of the first embodiment, description thereof is omitted.
  • each of the LEDs 30 to 1 to 4 is physically divided. It is mounted on LED boards 43-1-4.
  • the LED substrates 43-1 to 4-4 have a long and narrow rectangular shape with the X direction as the longitudinal direction, and the width (dimension in the Y direction) is slightly larger than the width of the LED 30. Compared to the LED substrate 40 of Example 1, the area is sufficiently small.
  • Each width dimension of the LED substrate 43 is, for example, about 1 to 10 cm, but is not limited thereto. If such an LED substrate 43 is used, the cost and weight of the LED substrate can be reduced, and thus the cost and weight of the lighting device can be reduced.
  • the weight can be reduced without using a light guide plate.
  • the number of lighting blocks 80 can be increased to increase the size in the Y direction, and the number of LEDs 30 provided in the lighting block 80 can be increased. If the number is increased, the size in the X direction can be increased. Furthermore, since the area of the LED substrate 43 can be reduced, the corresponding weight can be reduced. It goes without saying that the light control for each illumination block can be performed in the same manner as in the first embodiment.
  • FIG. 10 is a cross-sectional view of the lighting device 104 according to the fifth embodiment of the present invention.
  • FIG. 11 is the top view which looked at the light source block 204 of the state which removed the diffusion plate 20 from the Z direction about the illuminating device 104 which concerns on Example 5.
  • FIG. 10 is a cross-sectional view of the lighting device 104 according to the fifth embodiment of the present invention.
  • FIG. 11 is the top view which looked at the light source block 204 of the state which removed the diffusion plate 20 from the Z direction about the illuminating device 104 which concerns on Example 5.
  • the LED substrate 44 is fixed to the base chassis 10 by, for example, screwing as in the first embodiment.
  • Many LEDs 30-1 and 30-2 arranged in the leftmost illumination block 80-1 and the next illumination block 80-2 are attached to the LED board 44-1 so as to protrude in the Z direction.
  • a large number of LEDs 30-3 and LEDs 30-4 arranged in the illumination block 80-3 and the next-stage illumination block 80-4 are attached to the LED substrate 44-2 so as to protrude in the Z direction.
  • the light emission direction of the odd-numbered blocks LED 30-1 and LED 30-3 is the Y direction minus side
  • the light emission direction of the even-numbered blocks LED 30-2 and LED 30-4 is the Y direction plus side.
  • the LED array group is configured by arranging the LED arrays in close proximity to each other so that the back surfaces of the two LED arrays that emit light in opposite directions face each other, and the Y direction of the illumination device (parallel to the light output direction).
  • the LED rows are arranged symmetrically with respect to the center of the direction.
  • the spacing between the LED rows in each LED row group (the spacing between the back surfaces of the LEDs 30) is about 0.5 to 3 times the width of the LED (dimension in the Y direction), but is not limited to this. Absent.
  • Separate LED substrates 44-1 and 44-2 are used for each LED array group.
  • the LED substrates 44-1 and 2 are elongated ones with the X direction as the longitudinal direction as in the fourth embodiment. However, since two LED rows are mounted on one LED substrate 44, the width dimension of the LED substrate 44 is larger than that of the fourth embodiment.
  • the light emitted from the LED 30 is propagated in the Y direction while being emitted from the diffusion plate 20 while reflecting and diffusing the space between the diffusion plate 20 and the base chassis 10 as in the fourth embodiment.
  • the inner surface of the base chassis 10 is coated with, for example, white paint to increase the reflectance.
  • a reflection sheet may be laid on the inner front surface of the bottom surface (the surface facing the LED substrate 44) of the base chassis 10, and the LED substrates 44-1 and 4-2 may be disposed thereon.
  • a reflective sheet may be provided on the LED substrates 44-1 and 2-2 so as to cover the LED mounting surface, or white coating may be applied.
  • the housing 300 including the diffusion cover 60 and the case 70 is the same as the lighting device 100 of the first embodiment, description thereof is omitted.
  • the luminance distribution viewed from the irradiation surface side of the illumination device is symmetrical as in the second and third embodiments. Further, since the LEDs 30-2 and 30-3 face each other in the center of the lighting device, the luminance on the center side of the lighting device can be increased also in the fifth embodiment.
  • the weight can be reduced without using a light guide plate.
  • the number of lighting blocks 80 can be increased to increase the size in the Y direction, and the number of LEDs 30 provided in the lighting block 80 can be increased. If the number is increased, the size in the X direction can be increased.
  • the area of the LED substrate 44 can be reduced, the weight can be reduced accordingly.
  • the wiring with the LED boards 44 and its connectors (not shown) can be reduced, so that the cost can be reduced. Can do. It goes without saying that the light control for each illumination block can be performed in the same manner as in the first embodiment.
  • FIG. 12 is a cross-sectional view of the illumination device 105 according to the sixth embodiment of the present invention.
  • FIG. 13 is the top view which looked at the light source block 205 of the state which removed the diffuser plate 20 from the Z direction about the illuminating device 105 which concerns on Example 6.
  • FIG. 12 is a cross-sectional view of the illumination device 105 according to the sixth embodiment of the present invention.
  • FIG. 13 is the top view which looked at the light source block 205 of the state which removed the diffuser plate 20 from the Z direction about the illuminating device 105 which concerns on Example 6.
  • the LED substrate 45 is fixed to the base chassis 10 by, for example, screwing as in the first embodiment.
  • Many LEDs 30-1 and 30-2 arranged in the leftmost illumination block 80-1 and the next illumination block 80-2 are attached to the LED board 45-1 so as to protrude in the Z direction.
  • a large number of LEDs 30-3 and LEDs 30-4 disposed in the illumination block 80-3 and the next-stage illumination block 80-4 are attached to the LED substrate 45-2 so as to protrude in the Z direction.
  • the light emission direction of the odd-numbered blocks LED 30-1 and LED 30-3 is the Y direction minus side
  • the light emission direction of the even-numbered blocks LED 30-2 and LED 30-4 is the Y direction plus side.
  • the LEDs 30-1 and 30-2 are alternately arranged at substantially the same position in the Y direction.
  • the LEDs 30-3 and 30-4 are alternately arranged at substantially the same position in the Y direction.
  • the plurality of LEDs included in one LED row all have the same light emission direction, but in this example, the light emission directions of LEDs adjacent in the X direction are opposite to each other. I have to. That is, LEDs that emit light in the Y direction + side and LEDs that emit light in the Y direction-side are alternately arranged along the X direction.
  • different LED substrates 45-1 and 45-2 are used for each LED row.
  • the LED substrates 44-1 and 44-2 are long and thin with the X direction as the longitudinal direction as in the fourth embodiment.
  • the width dimensions of the LED substrates 45-1 and 45-2 are substantially the same as those of the fourth embodiment.
  • FIG. 14 An example of the light shielding pattern 90 in this embodiment is shown in FIG.
  • the light shielding pattern 90-1 for the LED 30-1 and the light shielding pattern 90-2 for the LED 30-2 are alternately arranged in accordance with the position of the LED 30 and the light emitting direction. That is, as shown in the figure, the light emitted from the LED 30 whose sides having long radial protrusions are alternately reversed is the same as that of the fourth to sixth embodiments. It is propagated in the Y direction while being emitted from the diffusion plate 20 while reflecting and diffusing the space between them.
  • the inner surface of the base chassis 10 is coated with, for example, white paint to increase the reflectance.
  • a reflection sheet may be laid on the inner front surface of the bottom surface (the surface facing the LED substrate 44) of the base chassis 10, and the LED substrates 45-1 and 45-2 may be disposed thereon. At this time, a reflection sheet may be provided on the LED substrates 45-1 and 45-2 so as to cover the LED mounting surface, or white coating may be applied.
  • the housing 300 including the diffusion cover 60 and the case 70 is the same as the lighting device 100 of the first embodiment, description thereof is omitted.
  • the weight can be reduced without using a light guide plate.
  • the number of lighting blocks 80 can be increased to increase the size in the Y direction, and the number of LEDs 30 provided in the lighting block 80 can be increased. If the number is increased, the size in the X direction can be increased.
  • the number of the LED boards 45 can be reduced as in the fifth embodiment, the wiring with the LED boards 45 and the connectors (not shown) can be reduced, so that the cost can be reduced. Can do.
  • the area of the LED substrate 45 can be further reduced as compared with the fifth embodiment, the weight can be reduced. It goes without saying that the light control for each illumination block can be performed in the same manner as in the first embodiment.
  • FIG. 15 is a cross-sectional view of the illumination device 106 according to the seventh embodiment of the present invention.
  • the LED substrate 46 is fixed to the base chassis 10 by, for example, screwing, as in the first embodiment.
  • the leftmost illumination block 80-1 is provided with LEDs 30-1, and a large number of LEDs 30-1 are attached to the LED board 46 so as to protrude in the Z direction.
  • the light emission direction of the LED 30 is on the + side of the Y direction as in the first embodiment.
  • the LED 30-1, LED 30-2, LED 30-3, and LED 30-4 are similarly arranged in the X direction.
  • the reflective sheet 50 having a shape similar to the inner surface shape of the base chassis 10 is disposed on the LED 30 mounting surface side of the LED substrate 46.
  • the function of reflecting the LED mounting surface of the LED substrate 46 and the inclined side surface of the base chassis 10 is commonly added by the single reflection sheet 50.
  • the outer shape of the reflection sheet 50 is substantially the same as the inner shape of the base chassis 10, and is a sheet having a hole at a position corresponding to the LED 30.
  • the reflection sheet outer peripheral portion 50-1 is bent so as to have substantially the same shape as the inner surface of the inclined side surface of the base chassis 10.
  • the light emitted from the LED 30 is propagated in the Y direction while being emitted from the diffusion plate 20 while being reflected and diffused in the space between the diffusion plate 20 and the reflection sheet 50.
  • the light leaking to the outer periphery is reflected in the emission direction (Z direction) by the reflection sheet outer periphery 50-1. Since the reflectance of the reflective sheet 50 is higher than the reflectance of white coating or the like applied to the reflective surface of the LED substrate 40 or the base chassis 10, light transmission loss can be reduced. That is, since the luminance can be higher than that of the light source block 200 in the first embodiment, the predetermined luminance may be ensured even if the interval between the LEDs 30 is increased and the total number of the LEDs 30 is reduced.
  • the number of LEDs 30 may be left as it is, and the voltage applied to the LEDs 30 may be lowered to save power. Further, since the inclined side surface of the base chassis 10 and the reflection of the LED substrate 46 are made common, it is advantageous for cost reduction.
  • the weight can be reduced without using a light guide plate.
  • the number of lighting blocks 80 can be increased to increase the size in the Y direction, and the number of LEDs 30 provided in the lighting block 80 can be increased. If the number is increased, the size in the X direction can be increased.
  • the LED substrate 46 an inexpensive general-purpose substrate can be used. Moreover, it is not necessary to apply white paint. Further, the inner surface of the base chassis 10 can be omitted from processing such as white coating for improving the reflectance.
  • the reflection sheet 50 is extended to the outer periphery of the base chassis 10 to provide the reflection sheet outer periphery 50-1.
  • the flat surface portion LED substrate 46
  • the outer peripheral portion may utilize the reflection of the inner side surface of the base chassis 10. It goes without saying that the light control for each illumination block can be performed in the same manner as in the first embodiment.
  • FIG. 16 is a cross-sectional view of the illumination device 107 according to the eighth embodiment of the present invention.
  • two light source blocks 200-1 and 200-2 are arranged inside a housing 301 including a case 71 and a diffusion cover 61.
  • the two light source blocks 200-1 and 200-2 those in the first embodiment are used in this example. According to the present embodiment, by arranging the two light source blocks 200 in one housing 301, the lighting device 107 having a size approximately twice as large can be obtained.
  • the plurality of light source blocks 200 in the housing 301, it is possible to easily cope with an increase in size. Needless to say, when three or more light source blocks 200 are arranged, a larger illumination device can be obtained.
  • FIG. 17 is a cross-sectional view of the illumination device 108 according to the ninth embodiment of the present invention.
  • the light shielding pattern 90 is omitted from the light source block 200 of FIG. Therefore, detailed description of the configuration and function of the light source block 207 is omitted.
  • the illuminating device 108 of Example 9 is an illuminating device that can be used when installed in a place where a large space in the thickness direction (Z direction) for the illuminating device can be secured, for example, when embedded in the ceiling.
  • Z direction the Z direction of the case 72
  • H2 between the diffusion plate 20 and the diffusion cover 62 is increased.
  • This distance H2 is larger than H1 in FIG. 3, and is, for example, about 2 to 5 times the thickness of the light source block (the distance from the back surface of the base chassis 10 to the light emitting surface of the diffusion plate 20).
  • the present invention is not limited to this.
  • the diffusion cover 62 portion is made uniform, so that the light shielding pattern 90 can be omitted as described above. Thereby, since the process of printing the light shielding pattern 90 on the diffusion plate 20 can be omitted, the cost can be reduced.
  • the present invention is not limited to this, and the light source blocks 201 to 206 used in other embodiments are not limited thereto. Any one of which the light shielding pattern is omitted may be arranged. Needless to say, the illumination device using any one of the light source blocks of the first to seventh embodiments can achieve the same effects as those of the first to seventh embodiments.
  • FIG. 18 is a cross-sectional view of the illumination device 109 according to the tenth embodiment of the present invention.
  • FIG. 19 is a plan view of the illumination device 109 according to the tenth embodiment when the light source block 208 with the diffusion plate 20 removed is viewed from the Z direction.
  • the base chassis 10 has a box shape, a bowl shape, or a tray shape with the opening in the Z direction.
  • the base chassis 11 of this embodiment has a flat plate shape.
  • a reflection sheet 51 formed in a box shape, a bowl shape, or a tray shape with an opening facing the irradiation direction side is placed.
  • the reflection sheet 51 is made of, for example, a white resin material. That is, in this embodiment, unlike the first to ninth embodiments, the housing of the light source block 208 is constituted by, for example, a resin reflection sheet 51 instead of a metal base chassis.
  • the diffusion plate 20 is arranged so as to cover the opening of the reflection sheet 51, and is fixed to the base chassis 11 together with the reflection sheet 51 by screws 96 at four corners of the diffusion plate 20. Is done.
  • two LED boards 46-1 and 46-2 on which LEDs are mounted are attached by, for example, different screws or adhesives.
  • a cylindrical spacer 95 is provided between the bottom surface of the reflection sheet 51 and the diffusion plate 20, and the diffusion plate 20 and the reflection sheet 51 are fixed to the base chassis 11 with screws 96 via the cylindrical spacer 95. Is done. That is, the screw 96 is screwed into the screw hole provided in the base chassis 11 through the hole of the diffusion plate 20, the cylindrical spacer 95, and the hole of the reflection sheet 51. Thereby, a space having the same distance as the height of the cylindrical spacer 95 is maintained between the bottom surface of the reflection sheet 51 and the diffusion plate 20.
  • the LED substrate is composed of two substrates 46-1 and 46-2, which are fixed to the base chassis 11 with screws, for example, through the bottom surface of the reflection sheet 51.
  • the total area of the LED substrates 46-1 and 46-2 is smaller than the area of the bottom surface of the reflection sheet 51 as shown in FIG.
  • the diffusion plate 20 and the reflection sheet 51 are screwed and fixed to the base chassis 11 with screws 95 in the area outside the lines 46-2.
  • two LED arrays are mounted on each of the LED substrates 46-1 and 46-2, and the light emission directions of the LEDs in each LED array are all the same.
  • FIGS. 11 and 13 can also be applied.
  • the reflective sheet 51 is made of a white material, but it may have any form as long as the inner surface can reflect light.
  • the inner surface may be white-coated.
  • FIG. 20 shows an example of the circuit configuration or connection configuration of the LED array according to this embodiment.
  • each LED row is indicated by reference numerals 35-1 to 35-4.
  • the supply of current to all the LEDs will be interrupted if one of them is disconnected due to a failure or the like. . That is, in this case, when one LED in the LED row is disconnected, all the LEDs cannot be turned on.
  • the 2n-1th (where n is an integer equal to or greater than 1) LEDs 30 from the head (end) are connected in series to form the first LED series circuit 36.
  • the second LED series circuits 37-1 to 3-4 which are different from the first LED series circuits 36-1 to 36-4, are configured by connecting the 2n-th LEDs 30 in series.
  • the first LED series circuits 36-1 to 36-4 and the second LED series circuits 37-1 to 3-4 are connected in parallel.
  • the first LED series circuits 36-1 to 36-4 and the second LED series circuits 37-1 to 3-4 are connected in parallel, and the first LED series circuits 36-1 to 36-4 are connected to each other.
  • the LED row 35 is configured by alternately arranging the LEDs 30 having the LEDs 30 and the LEDs 3 having the second LED series circuits 37-1 to 3-4 in one row.
  • the LEDs 30 included in the first LED series circuit 36 and the LEDs 30 included in the second LED series circuit 37 are alternately arranged, the LEDs 30 of the first LED series circuit 36 are temporarily turned off due to a failure or the like. Even in this case, it is possible to reduce the bias of the spatial light distribution due to the lighting of the remaining LEDs (that is, the LEDs 30 included in the second LED series circuit 37).
  • FIG. 21 shows another example of the circuit configuration or connection configuration of the LED array according to this embodiment.
  • This example includes a first LED array 35-1a configured by alternately arranging LEDs included in the first LED series circuit 36-1a and LEDs included in the second LED series circuit 37-1a,
  • a second LED array 35-1b configured by alternately arranging the LEDs included in the first LED series circuit 36-1b and the LEDs included in the second LED series circuit 37-1b in one line is arranged in an LED array.
  • the LED array 350-1 having a larger number of LEDs is arranged side by side along the direction.
  • the other LED rows 350-2 to 4-4 have the same configuration. The number of LEDs is not limited to that shown in the figure.
  • the first LED series circuit 36-1a and the second LED series circuit 37-1a are connected in parallel, and the first LED series circuit 36-1b and the second LED series circuit 36-1b are connected in parallel.
  • the LED series circuit 37-1b is also connected in parallel.
  • Two LED series circuits (36-1a and 36-1b) constituting the first LED row 35-1a and two LED series circuits (37-1a and 37-) constituting the second LED row 35-1b 1b) is also connected in parallel. That is, in this example, the LED string 350-1 includes four LED series circuits (36-1a, 36-1b, 37-1a, and 37-1b).
  • the “x” mark 33 indicates a portion where the wiring pattern on which the LED is mounted is formed but the LED is not actually mounted. That is, in this example, all the LEDs of the second LED series circuits 37-1a and 37-1b are not mounted.
  • the number of LEDs mounted can be adjusted according to the application. For example, when the lighting device is used for the purpose of illuminating a wide area with high brightness, LEDs are mounted or connected to all of the first LED series circuit and the second LED series circuit, and high brightness is required. When the lighting device is used for an application that does not, the LED is not mounted or connected to either the first LED series circuit or the second LED series circuit. That is, according to the configuration of this example, since the number of LEDs mounted can be adjusted according to the application, the process of designing and manufacturing a different illumination device for each application is reduced, and the cost of the illumination device can be greatly reduced. .
  • the LEDs included in the first LED series circuit and the LEDs included in the second LED series circuit are alternately arranged, the LED is not mounted or connected to either the first or second LED series circuit. However, it is possible to maintain the uniformity of the spatial luminance distribution of the illumination light.
  • the eleventh embodiment it is possible to irradiate illumination light even when one LED in the LED row breaks down, and to make the spatial luminance luminance distribution of the illumination light uniform at that time. It becomes possible to maintain sex. Furthermore, it is easy to adjust the number of LEDs, and even when the number of LEDs is reduced (that is, when LEDs are not mounted or connected to either the first or second LED series circuit), the illumination light space is reduced. It is possible to maintain a uniform luminance luminance distribution.
  • the present embodiment is not limited to the LED array as shown in FIG. 20 or FIG.
  • the configurations of the first to tenth embodiments can be appropriately applied to the present embodiment.
  • FIG. 22A shows a cross section of the diffusing plate 21 in the YZ plane
  • FIG. 22B shows a cross section of the YZ plane.
  • the diffusion plate 20 according to the first embodiment shown in FIG. 3 is formed on the surface on the LED 30 side with a convex portion and a concave portion (prism) having a triangular cross section on the YZ plane extending in the Y direction.
  • the diffusion plate 21 according to the present embodiment is formed to extend in the X direction. That is, the diffusion plate 21 according to the present embodiment has triangular convex portions and concave portions (prisms) on the surface (light incident surface) on the LED 30 (on the Z direction) side, and the prism is in the X direction. That is, it is arranged in a plurality in a direction parallel to the light emission direction of the LED and extends in the Y direction, that is, a direction orthogonal to the light emission direction of the LED.
  • the light incident on the diffusion plate 21 is propagated while being reflected by the prism recesses along the extension direction (X direction) of the prism. Can be fully supplied. For this reason, according to the present Example, the relative brightness fall between LED can be suppressed. Moreover, the incident angle of the light incident on the LED side surface of the prism is smaller than that of the light incident on each surface of the prism of the diffusion plate 20 of FIG. For this reason, among the light incident on the LED side surface of the prism of the diffusion plate 21, the light incident on the inside of the diffusion plate 21 from the LED side surface is totally reflected by the LED side surface. More than light.
  • the light incident on the inside of the diffusion plate 21 is propagated or guided in the Y direction while diffusing and reflecting inside the diffusion plate 21. Therefore, according to the present embodiment, compared with the diffuser plate 20 of FIG. 3, the light is more easily propagated to the front end of the illumination block, and the luminance unevenness in the Y direction in one illumination block can be further reduced. .
  • RGB primary three-color LEDs may be used in place of the white LEDs, and the overall illumination light or the color of the illumination light may be adjusted for each illumination block according to a user instruction.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Planar Illumination Modules (AREA)

Abstract

The present invention provides a lighting device that is lightweight and that can easily and inexpensively be increased in size. The lighting device of the present invention is provided with LEDs that serve as light-emitting elements, and is characterized by the provision of: a base chassis provided with an opening in the illumination direction; an LED substrate that is mounted on the base chassis; a plurality of LEDs that are mounted on the LED substrate so as to emit light in a direction that is parallel to the LED substrate; a diffusion plate that is arranged in the opening of the base chassis and that has a function of propagating light in a direction that is parallel to the light emission direction of the LEDs; and a diffusion cover that is arranged at a predetermined distance from the diffusion plate.

Description

照明装置Lighting device
 本発明は、例えば、液晶表示装置のバックライトや、室内(家屋、公共施設またはエレベータの籠などの室内)の照明に用いられる照明装置に関する。 The present invention relates to, for example, a backlight for a liquid crystal display device and an illumination device used for illumination in a room (a room such as a house, a public facility, or an elevator cage).
 本技術分野の背景技術として、特許文献1に記載のものが知られている。この公報には、「開口面に付設された拡散板と、該開口面の反対側の底面に付設された導光板と、反射フィルムが貼付された内側壁面と、底面に反射フィルムが貼付されていることを特徴とする照明枠と、前記導光板の側面端近傍にLED光源を設けたことを特徴とする表示体。」と記載されている(要約参照)。 As a background art in this technical field, the one described in Patent Document 1 is known. In this publication, “a diffusion plate attached to an opening surface, a light guide plate attached to a bottom surface opposite to the opening surface, an inner wall surface to which a reflection film is attached, and a reflection film is attached to the bottom surface. And a display body characterized in that an LED light source is provided in the vicinity of a side surface end of the light guide plate ”(see summary).
特開2010-199012号公報JP 2010-199012 A
 上記特許文献1に記載のような、導光板の側面にLEDを配置する技術を、大型の照明装置に用いる場合、導光板の重量を考慮する必要がある。導光板が照明装置の照射面となるため、照射面と略同一の外形状の導光板とする必要がある。また、LEDが照射する光を導光板の側面より入射させなければならないため、導光板を薄くすることは困難である。よって、照明装置の大型化を図り、発光面積を大きくすると、それに応じて導光板の重量も大きくなってしまう。導光板の重量が大きくなると、それを保持する照明装置の筐体も頑丈にしなければならない。よって、照明装置の大型化を図ると、装置全体の重量が大きくなってしまうことと、それに合わせて部品コストが総じて高くなってしまうというという問題がある。 When using a technique for disposing LEDs on the side surface of a light guide plate as described in Patent Document 1 for a large-sized lighting device, it is necessary to consider the weight of the light guide plate. Since the light guide plate serves as the irradiation surface of the lighting device, it is necessary to use a light guide plate having an outer shape substantially the same as the irradiation surface. In addition, it is difficult to make the light guide plate thin because light emitted from the LEDs must be incident from the side surface of the light guide plate. Therefore, when the size of the lighting device is increased and the light emitting area is increased, the weight of the light guide plate is increased accordingly. When the weight of the light guide plate increases, the housing of the lighting device that holds the light guide plate must also be strong. Therefore, when the illuminating device is increased in size, there is a problem that the weight of the entire device increases, and accordingly, the component cost increases as a whole.
 また導光板の照射面積を大きくした場合、所望の輝度を確保するためには、その分入射する光量を大きくする必要がある。例えば、照射面積を2倍にすると、同じ輝度を確保するためには、導光板に入射する光量を2倍にする必要がある。しかし、照射面積を2倍にした場合、側面の長さは約1.4倍であるため、LEDの数は1.4倍までしか増やすことができない。このように、導光板の大きさにより配置できるLEDの最大個数が決まってしまうため、導光板の大型化には限界があるという問題がある。 Also, when the irradiation area of the light guide plate is increased, it is necessary to increase the amount of incident light in order to secure a desired luminance. For example, if the irradiation area is doubled, the amount of light incident on the light guide plate needs to be doubled to ensure the same luminance. However, when the irradiation area is doubled, the length of the side surface is about 1.4 times, so the number of LEDs can only be increased to 1.4 times. As described above, since the maximum number of LEDs that can be arranged is determined depending on the size of the light guide plate, there is a problem in that there is a limit to increasing the size of the light guide plate.
 上記課題を解決するために、例えば特許請求の範囲に記載の構成を採用する。
  本発明は上記課題を解決する構成を複数含んでいるが、その一例を挙げるならば、光源としてのLEDからの光を照明光として照射する照明装置であって、前記照明光の照射方向に開口を設けたベースシャーシと、該ベースシャーシに取り付けられた、前記LEDが搭載されるLED基板と、上記ベースシャーシの開口部に、前記LED基板に対して所定距離離されて配置された、前記LEDからの光及び前記LED基板及び/または前記ベースシャーシで反射された光を拡散するための拡散板と、前記拡散板と所定距離離されて配置された、前記拡散板からの光を更に拡散するための、前記照明装置の外装としての拡散カバーと、備え、
 前記LEDは、前記照射方向と直交する方向であって、前記LED基板と平行な方向に光を出射するように前記LED基板に取付けられており、前記拡散板は、前記LEDの光出射方向と平行な方向に光を伝播或いは導光する機能を有することを特徴とする。
In order to solve the above problems, for example, the configuration described in the claims is adopted.
The present invention includes a plurality of configurations that solve the above-described problems. To give an example, the illumination device irradiates light from an LED as a light source as illumination light, and is opened in the irradiation direction of the illumination light. A base chassis provided with the LED, an LED board mounted on the base chassis on which the LEDs are mounted, and the LED disposed at a predetermined distance from the LED board at an opening of the base chassis. A diffusion plate for diffusing the light from the LED and the light reflected by the LED substrate and / or the base chassis, and further diffusing the light from the diffusion plate disposed at a predetermined distance from the diffusion plate And a diffusion cover as an exterior of the lighting device,
The LED is attached to the LED substrate so as to emit light in a direction perpendicular to the irradiation direction and parallel to the LED substrate, and the diffuser plate has a light emitting direction of the LED. It has a function of propagating or guiding light in parallel directions.
 本発明によれば、軽量、低コストで、容易に大型化への対応が可能な構成の照明装置を提供することができる。 According to the present invention, it is possible to provide a lighting device having a configuration that can easily cope with an increase in size at a low weight and at a low cost.
実施例1の照明装置の断面図である。It is sectional drawing of the illuminating device of Example 1. FIG. 拡散板を外した状態の光源ブロックをZ方向から見た平面図である。It is the top view which looked at the light source block of the state which removed the diffusion plate from the Z direction. 実施例1に係る拡散板20の構成を示す図であって、拡散板20による光の伝播を示す図である。FIG. 3 is a diagram illustrating a configuration of a diffusion plate 20 according to the first embodiment, and is a diagram illustrating light propagation by the diffusion plate 20. LEDの周辺部分の拡散板をZ方向から見た図である。It is the figure which looked at the diffusion plate of the peripheral part of LED from the Z direction. LEDの発光中心を通るYZ面におけるZ方向に出射する光の輝度分布をシミュレーションした結果を示す図である。It is a figure which shows the result of having simulated the luminance distribution of the light radiate | emitted in the Z direction in the YZ plane passing through the light emission center of LED. 実施例2の照明装置の断面図である。It is sectional drawing of the illuminating device of Example 2. FIG. 実施例3の照明装置の断面図である。It is sectional drawing of the illuminating device of Example 3. FIG. 実施例4の照明装置の断面図である。It is sectional drawing of the illuminating device of Example 4. FIG. 拡散板を外した状態の光源ブロックをZ方向から見た平面図である。It is the top view which looked at the light source block of the state which removed the diffusion plate from the Z direction. 実施例5の照明装置の断面図である。It is sectional drawing of the illuminating device of Example 5. FIG. 拡散板を外した状態の光源ブロックをZ方向から見た平面図である。It is the top view which looked at the light source block of the state which removed the diffusion plate from the Z direction. 実施例6の照明装置の断面図である。It is sectional drawing of the illuminating device of Example 6. FIG. 拡散板を外した状態の光源ブロックをZ方向から見た平面図である。It is the top view which looked at the light source block of the state which removed the diffusion plate from the Z direction. LEDの周辺部分の拡散板をZ方向から見た図である。It is the figure which looked at the diffusion plate of the peripheral part of LED from the Z direction. 実施例7の照明装置の断面図である。It is sectional drawing of the illuminating device of Example 7. FIG. 実施例8の照明装置の断面図である。It is sectional drawing of the illuminating device of Example 8. 実施例9の照明装置の断面図である。It is sectional drawing of the illuminating device of Example 9. FIG. 実施例10の照明装置の断面図である。It is sectional drawing of the illuminating device of Example 10. FIG. 実施例10に係る光源ブロックを、拡散板を外した状態でZ方向から見た平面図である。It is the top view which looked at the light source block which concerns on Example 10 from the Z direction in the state which removed the diffusion plate. 実施例11に係るLED列の回路構成或いは接続構成を示す図である。It is a figure which shows the circuit structure or connection structure of the LED row which concerns on Example 11. FIG. 実施例11に係るLED列の回路構成或いは接続構成の他の例を示す図である。It is a figure which shows the other example of the circuit structure of LED row which concerns on Example 11, or a connection structure. 実施例12に係る拡散板21の構成を示す図であって、拡散板21による光の伝播を示す図である。It is a figure which shows the structure of the diffusion plate 21 which concerns on Example 12, Comprising: It is a figure which shows the propagation of the light by the diffusion plate 21. FIG.
 以下、本発明の実施の形態について、図面を参照しながら説明する。以下において、出現する核構成要素のうち同一機能または作用を有するものには同じ番号を付し、重複した説明を省略するものとする。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following, among the appearing nuclear components, those having the same function or action are denoted by the same reference numerals, and redundant description will be omitted.
 先ず、本発明の実施例1について、図1~図5を参照して説明する。図1は、本発明の一実施例における照明装置100の断面図である。 First, Embodiment 1 of the present invention will be described with reference to FIGS. FIG. 1 is a cross-sectional view of a lighting device 100 according to an embodiment of the present invention.
 照明装置100は、光源ブロック200と、外装となるハウジング300とを有して構成される。図1においては、照明装置100が図示しない天井などに取り付けられた状態を示しており、Z方向(下方向)に照明光を照射する。すなわちZ方向が照明装置の照明光の照射方向である(照明装置からの照明光は拡散し様々な方向に照射されるが、ここではZ方向を照射方向とする)。ハウジング300は、Z方向に開口を持つ例えば樹脂製のケース70と、その開口部に固定保持される光透過性を有する拡散カバー60を備える。すなわち、ケース70と拡散カバー60とで照明装置の外装となるハウジング300が構成される。光源ブロック200は、ハウジング300の内部に配置され、例えばネジ止めによりケース70に固定される。拡散カバー60は、例えば透明樹脂に拡散性のビ-ズを混入させた部材、または透明樹脂の表面に粗面加工を施した部材で形成されており、図示のように光源ブロック200の拡散板20から所定の距離(空間)離されて設けられている。光源ブロック200から照射される光は、拡散カバー60を透過する際に拡散され照明装置100の外部に照射される。 The illumination device 100 includes a light source block 200 and a housing 300 that is an exterior. FIG. 1 shows a state in which the lighting device 100 is attached to a ceiling or the like (not shown), and irradiates illumination light in the Z direction (downward). That is, the Z direction is the irradiation direction of the illumination light of the illumination device (the illumination light from the illumination device is diffused and irradiated in various directions, but here the Z direction is the irradiation direction). The housing 300 includes a case 70 made of, for example, a resin having an opening in the Z direction, and a light diffusing cover 60 that is fixed and held in the opening. That is, the case 70 and the diffusion cover 60 constitute a housing 300 that is an exterior of the lighting device. The light source block 200 is disposed inside the housing 300 and is fixed to the case 70 by, for example, screwing. The diffusion cover 60 is formed of, for example, a member obtained by mixing a diffusible bead in a transparent resin, or a member obtained by roughening the surface of the transparent resin. A predetermined distance (space) from 20 is provided. The light emitted from the light source block 200 is diffused when passing through the diffusion cover 60 and is emitted to the outside of the illumination device 100.
 光源ブロック200は、ベースシャーシ10、光透過性を有する拡散板20、光源としての発光ダイオード(LED)30、LED基板40を備える。拡散板20は、拡散カバー60と同様に、例えば透明樹脂に拡散性のビ-ズを混入させた部材、または透明樹脂の表面に粗面加工を施した部材で形成されており、LED基盤40に対して所定の距離(空間)離されて配置されている。ベースシャーシ10はZ方向に開口をもち、その開口面積が照射方向に従って大きくなる箱形状、枡形状あるいはトレイ形状を有しており、光源ブロック200の筐体となるものである。また、ベースシャーシ10の開口部を覆うように拡散板20を配置している。拡散板20は、ベースシャーシ10の開口部側の4辺(縁)と結合するように、例えば接着剤や両面テープ等で取付けられている。LED基板40は、ベースシャーシ10に例えばネジ止めにより固定される。 The light source block 200 includes a base chassis 10, a light diffusing plate 20, a light emitting diode (LED) 30 as a light source, and an LED substrate 40. Similar to the diffusion cover 60, the diffusion plate 20 is formed of, for example, a member obtained by mixing a diffusible bead in a transparent resin, or a member obtained by roughening the surface of the transparent resin. Are spaced apart from each other by a predetermined distance (space). The base chassis 10 has an opening in the Z direction and has a box shape, a bowl shape, or a tray shape whose opening area increases in accordance with the irradiation direction, and serves as a housing of the light source block 200. Further, the diffusion plate 20 is arranged so as to cover the opening of the base chassis 10. The diffusion plate 20 is attached with, for example, an adhesive or a double-sided tape so as to be coupled to the four sides (edges) on the opening side of the base chassis 10. The LED substrate 40 is fixed to the base chassis 10 by, for example, screwing.
 LED30は、例えば電極面と平行な方向に光を出射するサイドビュー型のLEDであり、照明光として例えば白色、昼光色、或いは電球色の光を発光する。LED30を色温度の高い(例えば7000度~9000度)白色光を放出するLEDとし、拡散カバー60を着色することで照明光を昼光色或いは電球色としてもよい。LED30は、LED基板40に、Z方向に突出するように多数取付けられている。またLED30は、主に照明装置の光照射方向(Z方向)と直交し、LED基板40と平行な方向(Y方向)に強い照明光を発光するよう、取付け方向が定められている。すなわち、本実施例では、LED30の光軸がY方向と平行とされている。拡散板20のLED30近傍には後述する遮光パターン90が設けられている。 The LED 30 is a side-view type LED that emits light in a direction parallel to the electrode surface, for example, and emits white, daylight, or light bulb color light as illumination light. The LED 30 may be an LED that emits white light with a high color temperature (for example, 7000 ° C. to 9000 ° C.), and the diffusing cover 60 may be colored so that the illumination light has a daylight color or a light bulb color. Many LEDs 30 are attached to the LED substrate 40 so as to protrude in the Z direction. Further, the mounting direction of the LED 30 is determined so as to emit strong illumination light in a direction (Y direction) that is orthogonal to the light irradiation direction (Z direction) of the lighting device and parallel to the LED substrate 40. That is, in this embodiment, the optical axis of the LED 30 is parallel to the Y direction. A light shielding pattern 90 to be described later is provided in the vicinity of the LED 30 of the diffusion plate 20.
 なお、ベースシャーシ10の外周部は、図に示すように斜めに立ち上げており、ベースシャーシ10の外周部に漏れてくる光をZ方向に反射させて、輝度の向上を図っている。このとき、ベースシャーシ10の内側面を、例えば白色塗装などを施して反射率を高くしている。これに代えて、反射シートをベースシャーシ10の内面に貼り付けるようにしてもよい。またベースシャーシ10は、LED30の発熱を放熱し易くするようにアルミニウム等の金属で構成してもよいし、また樹脂で構成してもよい。 In addition, the outer peripheral part of the base chassis 10 stands up diagonally as shown in the figure, and the light leaking to the outer peripheral part of the base chassis 10 is reflected in the Z direction to improve the luminance. At this time, the inner surface of the base chassis 10 is subjected to, for example, white coating to increase the reflectance. Instead of this, a reflective sheet may be attached to the inner surface of the base chassis 10. Further, the base chassis 10 may be made of a metal such as aluminum or resin so as to make it easy to dissipate the heat generated by the LEDs 30.
 図2は、拡散板20を外した状態の光源ブロック200をZ方向から見た平面図である。図2に示す破線矢印は、LED30からの光の出射方向であり、図2に示すように、Y方向と平行である。LED30の光の出射方向を同一方向にして、LED30-1、LED30-2、LED30-3、LED30-4が配置される。このLED30-1、LED30-2、LED30-3、LED30-4の配置は、X方向に同様に並べられる。すなわち、本実施形態では、光出射方向を同一にした複数のLED30を、LED30の光出射方向と直交するX方向に複数(図2の例では6個)配列して構成されたLED列を、Y方向に所定間隔で複数配列(図2の例では4列)したものである。当然、X方向のLED個数及びY方向のLED列数はこれに限られるものではない。 FIG. 2 is a plan view of the light source block 200 with the diffusion plate 20 removed, as viewed from the Z direction. The broken line arrow shown in FIG. 2 is the light emission direction from the LED 30, and is parallel to the Y direction as shown in FIG. The LEDs 30-1, LED 30-2, LED 30-3, and LED 30-4 are arranged with the light emission direction of the LEDs 30 in the same direction. The LED 30-1, LED 30-2, LED 30-3, and LED 30-4 are similarly arranged in the X direction. That is, in this embodiment, a plurality of LEDs 30 having the same light emission direction are arranged in a plurality (6 in the example of FIG. 2) in the X direction orthogonal to the light emission direction of the LEDs 30. A plurality of arrays (four rows in the example of FIG. 2) are arranged at predetermined intervals in the Y direction. Of course, the number of LEDs in the X direction and the number of LED rows in the Y direction are not limited to this.
 LED30-1は、最左段の照明ブロック80-1に設けられ、同様にLED30-2は次の段の照明ブロック80-2に、LED30-3はその次の段の照明ブロック80-3に、LED30-4はその次の段の照明ブロック80-4に設けられる。また各照明ブロック80-1~4のそれぞれにおける拡散板20の下面(光出射面)には、図1に示されるように、後述の遮光パターン90-1~4が設けられている。ここで、照明ブロック80は、1つのLED列(例えばLED30-1列)と、このLED列から次段のLED列(例えばLED30-2列)までの空間と、その空間に対応するを拡散板20の領域、及びその領域に設けられた遮光パターン90を含むものとする。また、LED基板40のLED30搭載面を反射面として光の伝搬に使用しているため、LED基板40は反射率の高い白色基板を用いるとよい。また、LED基板40のLED30搭載面側を白色塗装などを施して反射率を高くしてもよい。白色塗装に代えて、反射シートをLED基板40のLED30搭載面に設けてもよい。 The LED 30-1 is provided in the leftmost lighting block 80-1. Similarly, the LED 30-2 is provided in the next lighting block 80-2, and the LED 30-3 is provided in the next lighting block 80-3. The LED 30-4 is provided in the illumination block 80-4 at the next stage. Further, as shown in FIG. 1, light blocking patterns 90-1 to 90-4 described later are provided on the lower surface (light emitting surface) of the diffusion plate 20 in each of the illumination blocks 80-1 to 80-4. Here, the illumination block 80 includes one LED row (eg, LED 30-1 row), a space from this LED row to the next LED row (eg, LED 30-2 row), and a diffusion plate corresponding to the space. It is assumed that 20 regions and a light shielding pattern 90 provided in the regions are included. Moreover, since the LED 30 mounting surface of the LED substrate 40 is used as a reflection surface for light propagation, the LED substrate 40 may be a white substrate having a high reflectance. Alternatively, the LED 30 mounting surface side of the LED substrate 40 may be white coated to increase the reflectance. Instead of white coating, a reflective sheet may be provided on the LED 30 mounting surface of the LED substrate 40.
 次に、LED30の光の伝搬について説明する。図3(a)は、光の伝搬を説明するための、1つの照明ブロック80をX方向から見た断面図、すなわちYZ平面の断面図である。LED30から出射した光は、拡散板20とLED基板40の間の空間を反射、拡散しながら拡散板20から出射されつつY方向に伝搬される。図3(b)はY方向から見た断面図、すなわちXZ平面の断面図である。図に示すように、拡散板20は、そのLED30(Z方向上)側の面(光入射面)にX方向の断面が三角形状の凸部及び凹部(プリズム)を有する。この三角形状の凸部及び凹部は、X方向に複数配列されており、かつY方向に延びて形成されている。これによって、LED30から出射された光を、三角形状の凹部内で反射させながらY方向に伝搬するようにしている。すなわち、本実施例に係る拡散板20は、光の拡散機能を有するとともに、Y方向(LED30の光出射方向、すなわちLED30の光軸方向)に光を伝播或いは導光する機能を併せ持っている。本実施例では、光を伝播或いは導光する機能を三角形状の凹凸により行うようにしているが、他の構成としてもよい。 Next, the light propagation of the LED 30 will be described. FIG. 3A is a cross-sectional view of one illumination block 80 viewed from the X direction, ie, a cross-sectional view in the YZ plane, for explaining the propagation of light. The light emitted from the LED 30 is propagated in the Y direction while being emitted from the diffusion plate 20 while reflecting and diffusing the space between the diffusion plate 20 and the LED substrate 40. FIG. 3B is a cross-sectional view viewed from the Y direction, that is, a cross-sectional view of the XZ plane. As shown in the figure, the diffuser plate 20 has convex portions and concave portions (prisms) having a triangular cross section in the X direction on the LED 30 (on the Z direction) side (light incident surface). The plurality of triangular convex portions and concave portions are arranged in the X direction and are formed to extend in the Y direction. Thus, the light emitted from the LED 30 is propagated in the Y direction while being reflected in the triangular recess. That is, the diffusing plate 20 according to the present embodiment has a light diffusing function and also has a function of propagating or guiding light in the Y direction (light emitting direction of the LED 30, that is, the optical axis direction of the LED 30). In the present embodiment, the function of propagating or guiding light is performed by triangular irregularities, but other configurations may be used.
 なお、拡散板20のLED30直下及びLED30の光出射側近傍と対応する位置においては、光が局所的に集中し、スポット的に輝度の高い部分(以降、これをホットスポットと言う)が生じてしまい、これが輝度むらの原因となる。かかるホットスポットを低減するために、本実施例では、図3に示されるように拡散板2の出射面側に遮光パターン90を設けている。 In addition, in the position corresponding to the light emitting side vicinity of LED30 directly under LED30 of the diffusing plate 20, the light concentrates locally, and the part (henceforth called a hot spot) where the brightness | luminance is spot-like arises. This causes uneven brightness. In order to reduce such hot spots, in this embodiment, as shown in FIG. 3, a light shielding pattern 90 is provided on the exit surface side of the diffusion plate 2.
 図4は、LED30の周辺部分について、拡散板20をZ方向の下側から見た図である。図4(a)に示すように、本実施例に係る遮光パターン90は、例えば白色のインクにより構成されており、拡散板20の下面側(すなわち光出射面側)に白色インクを塗装する(印刷する)ことにより遮光パターン90を拡散板20の下面側に設けている。これによって、拡散板20からZ方向(下方向)に向かう光を反射または吸収により遮光または減光するようにしてホットスポットの光強度を低減する。遮光パターン90に使われるインクは白色のみではなく、例えば黒色インクや青色インクを白色インクに混入したものであってもよい。また遮光パターン90の形状は、図4(a)に示されるように、LED30を中心にして放射状に延びる突起を有するものであってもよい。ここで、LED30の光出射方向に対応する側の突起が、LED30の背面(光出射面と反対側の面)に対応す突起よりも長さが長いものとする。また、図4(b)に示されるように、円形、楕円形、長円形状であってもよい。いずれにせよ、遮光パターン90は、LED30の直下及び出射面近傍の所定領域をカバーするような形状及び大きさを有するものであればよく、形状は上記の例に限られるものではない。 FIG. 4 is a view of the peripheral portion of the LED 30 when the diffusion plate 20 is viewed from the lower side in the Z direction. As shown in FIG. 4A, the light shielding pattern 90 according to the present embodiment is made of, for example, white ink, and the white ink is applied to the lower surface side (that is, the light emitting surface side) of the diffusion plate 20 ( The light shielding pattern 90 is provided on the lower surface side of the diffusion plate 20 by printing. Thus, the light intensity of the hot spot is reduced by blocking or reducing the light directed from the diffusion plate 20 in the Z direction (downward) by reflection or absorption. The ink used for the light shielding pattern 90 is not limited to white, but may be black ink or blue ink mixed in white ink, for example. In addition, the shape of the light shielding pattern 90 may have a protrusion extending radially around the LED 30 as shown in FIG. Here, it is assumed that the protrusion on the side corresponding to the light emitting direction of the LED 30 is longer than the protrusion corresponding to the back surface (the surface opposite to the light emitting surface) of the LED 30. Further, as shown in FIG. 4B, it may be circular, elliptical, or oval. In any case, the light shielding pattern 90 may be any shape and size that covers a predetermined area immediately below the LED 30 and in the vicinity of the emission surface, and the shape is not limited to the above example.
 なお、上記においては、拡散板20に直接印刷した例を示しているが、例えば、遮光パターン90を印刷した透明フィルムを、遮光パターン90がLED30と位置的に対応するように拡散板20に貼り付ける構成でもよい。また、図4(b)に示すように、遮光性を有するシートにより、隣り合うLED30の間の幅を小さくし、LED30部の幅を大きくした帯状の遮光パターン90’を拡散板20に貼りつける構成としてもよい。 In the above, an example in which the light is directly printed on the diffusion plate 20 is shown. However, for example, a transparent film on which the light shielding pattern 90 is printed is attached to the diffusion plate 20 so that the light shielding pattern 90 corresponds to the LED 30 in position. The structure to attach may be sufficient. Further, as shown in FIG. 4B, a strip-shaped light shielding pattern 90 ′ in which the width between the adjacent LEDs 30 is reduced and the width of the LEDs 30 is increased is attached to the diffusion plate 20 by a sheet having light shielding properties. It is good also as a structure.
 さらに本実施例では、拡散板20より所定距離H1だけ離れた位置に拡散機能を持つ拡散カバー60を配置している。この距離H1は、拡散板20の表面(光出射面)から拡散カバー60の内面(光入射面)までの距離であり、例えば光源ブロックの厚さ(ベースシャーシ10の背面から拡散板20の光射面までの距離)の0.5倍~2倍程度とする。しかしながら、これに限られるものではない。拡散板2と拡散カバー60を用いてLED30からの光を2段階で拡散することによって、照明装置100の輝度の均一化を図っている。 Further, in this embodiment, a diffusion cover 60 having a diffusion function is disposed at a position separated from the diffusion plate 20 by a predetermined distance H1. This distance H1 is a distance from the surface (light emitting surface) of the diffusing plate 20 to the inner surface (light incident surface) of the diffusing cover 60. For example, the thickness of the light source block (from the back surface of the base chassis 10 to the light of the diffusing plate 20). The distance to the incident surface is about 0.5 to 2 times. However, the present invention is not limited to this. By using the diffusion plate 2 and the diffusion cover 60 to diffuse the light from the LED 30 in two stages, the luminance of the lighting device 100 is made uniform.
 図5は、LED30の発光中心を通るYZ面におけるZ方向に出射する光の輝度分布をシミュレーションした結果を示す図である。横軸は、LED光源から出射される光の進行方向(Y方向)、縦軸は、輝度(対数)を示す。図5において、L1は、遮光パターン90がない場合の拡散板20から出射する輝度値を示したものである。LED30-1近傍に輝度値のピークP1ができ、LED30-1から遠く離れるにつれて輝度は小さくなり、次のLED30-2の背後付近で最低の輝度値となる。LED30-1近傍は、LED30-1からの直接光とLED基板40からの反射光が強いため、局所的に輝度が高い状態(ホットスポット)となる。このLED30-1近傍のホットスポットを抑えるために、LED30-1の近傍の拡散板20に遮光パターン90を設けている。L2は遮光パターン90がある場合の輝度値を示したものである。図に示すように、遮光パターン90により、ピークP1が抑えられ、また遮光パターン90により反射した光が、さらにY方向に伝搬するため、他の部分の輝度値が上がっている。L3は、拡散カバー60から出射する輝度値を示したものである。図に示すように拡散板20部における輝度むらは、拡散カバー60により小さくなり、輝度の均一化を図ることができる。 FIG. 5 is a diagram showing a result of simulating the luminance distribution of light emitted in the Z direction on the YZ plane passing through the light emission center of the LED 30. The horizontal axis represents the traveling direction (Y direction) of the light emitted from the LED light source, and the vertical axis represents the luminance (logarithm). In FIG. 5, L <b> 1 indicates the luminance value emitted from the diffusion plate 20 when there is no light shielding pattern 90. A luminance value peak P1 is formed in the vicinity of the LED 30-1, and the luminance decreases as the distance from the LED 30-1 increases. In the vicinity of the LED 30-1, since direct light from the LED 30-1 and reflected light from the LED substrate 40 are strong, the brightness is locally high (hot spot). In order to suppress the hot spot in the vicinity of the LED 30-1, a light shielding pattern 90 is provided on the diffusion plate 20 in the vicinity of the LED 30-1. L2 indicates the luminance value when the light shielding pattern 90 is present. As shown in the drawing, the peak P1 is suppressed by the light shielding pattern 90, and the light reflected by the light shielding pattern 90 is further propagated in the Y direction, so that the luminance value of the other part is increased. L3 represents the luminance value emitted from the diffusion cover 60. As shown in the drawing, the luminance unevenness in the diffusion plate 20 is reduced by the diffusion cover 60, and the luminance can be made uniform.
 本実施例に係る照明装置を室内照明に用いる場合、室内照明では多少の輝度不均一性は許容されるので、上記拡散板2と拡散カバー60である程度の輝度均一化が為されれば、上述した遮光パターン90は設けなくてもよい。 When the lighting device according to the present embodiment is used for room lighting, some luminance non-uniformity is allowed in the room lighting. Therefore, if the luminance is uniformed to some extent by the diffusion plate 2 and the diffusion cover 60, The light-shielding pattern 90 that has been made may not be provided.
 以上のように、本実施例においては、拡散板20とLED基板40の間の空気層にて光を伝搬しているため、導光板を用いることなく軽量化を図ることができる。また、照明ブロック80を複数組み合わせて構成されているので、照明ブロック80の数(段)を増やせば、Y方向への大型化を図ることができ、また、照明ブロック80に設けられるLED30の数を増やせば、X方向への大型化を図ることができる。 As described above, in this embodiment, since light is propagated in the air layer between the diffusion plate 20 and the LED substrate 40, the weight can be reduced without using a light guide plate. In addition, since the plurality of lighting blocks 80 are combined, the number of lighting blocks 80 can be increased to increase the size in the Y direction, and the number of LEDs 30 provided in the lighting block 80 can be increased. If the number is increased, the size in the X direction can be increased.
 上述した実施例において、例えばユーザの指示に応じて全ての照明ブロック80からの光が点灯または消灯されるものとする。しかしながら、照明ブロック80-1~4のうち任意の1~3つの照明ブロックを個別に点灯または消灯されるようにしてもよい。例えば、室内が明るくユーザが高い照明輝度を要求していない場合は、ユーザの指示(例えば「一部点灯」の指示)に応じて、照明ブロック80-1~4のうち1つ(例えば80-2のみ)または2つ(例えば80-2及び3のみ)の明ブロックを点灯させ、残りを消灯させるようにしてもよい。部屋が暗い場合は、例えばユーザが「全点灯」を指示することで、照明ブロック80-1~4の全てを点灯させるようにしてもよい。 In the above-described embodiment, for example, light from all the lighting blocks 80 is turned on or off according to a user instruction. However, any one to three of the lighting blocks 80-1 to 80-4 may be individually turned on or off. For example, when the room is bright and the user does not request high illumination brightness, one of the illumination blocks 80-1 to 80-4 (for example, 80-) is selected in response to a user instruction (for example, “partial lighting” instruction). 2 only) or two (for example, only 80-2 and 3) bright blocks may be turned on and the remaining blocks may be turned off. When the room is dark, for example, the user may turn on all of the lighting blocks 80-1 to 80-4 by instructing “all lighting”.
 また、照明ブロック80-1~4のそれぞれを、例えば2つのLED30ごとに区分して3つの領域に分割し(図2の例では3つの領域に分割)、この領域毎に個別に点灯または消灯させてもよい。 Further, each of the illumination blocks 80-1 to 80-4 is divided into, for example, two LEDs 30 and divided into three areas (in the example of FIG. 2, divided into three areas), and each of these areas is turned on or off individually. You may let them.
 更にまた、点灯/消灯のみならず、照明ブロック80-1~4の全て或いはそれぞれに調光機能を持たせてもよく、ユーザの指示に応じて照明ブロック80の全て或いはそれぞれからの照明光の強度を調整するようにしてもよい。 Furthermore, not only lighting / extinguishing, but also all or each of the lighting blocks 80-1 to 80-4 may have a dimming function, and the illumination light from all or each of the lighting blocks 80 may be provided according to a user instruction. The strength may be adjusted.
 次に、本発明の実施例2について、図6を参照して説明する。図6は、本発明の実施例2における照明装置101の断面図である。 実施例2の照明装置101に用いられる光源ブロック201においては、LED基板41は、実施例1と同様にベースシャーシ10に例えばネジ止めにより固定される。LED30は、LED基板41に、Z方向に突出するように多数取付けられており、光の出射方向は、Y方向と並行である。最左段の照明ブロック80-1及び、その次の段の照明ブロック80-2に設けられたLED30-1、LED30-2の光の出射方向は、実施例1と同様にY方向の+側である。次の段の照明ブロック80-3及び、その次の段の照明ブロック80-4に設けられたLED30-3、LED30-4の光の出射方向は、実施例1とは逆方向であるY方向の-側である。つまり、本実施例では、照明装置のY方向(光出射方向と平行な方向)の中心を基準にして、左右のLEDの光出射方向が照明装置のY方向中央を向くように互いに対向させているものである。 Next, Embodiment 2 of the present invention will be described with reference to FIG. FIG. 6 is a cross-sectional view of the illumination device 101 according to the second embodiment of the present invention. In the light source block 201 used in the lighting device 101 of the second embodiment, the LED substrate 41 is fixed to the base chassis 10 by, for example, screwing, as in the first embodiment. Many LEDs 30 are attached to the LED substrate 41 so as to protrude in the Z direction, and the light emitting direction is parallel to the Y direction. The light emission direction of the LEDs 30-1 and 30-2 provided in the leftmost illumination block 80-1 and the illumination block 80-2 in the next stage is the + side in the Y direction as in the first embodiment. It is. The light emission direction of the next-stage illumination block 80-3 and the LED 30-3 and LED 30-4 provided in the next-stage illumination block 80-4 is the direction opposite to that in the first embodiment. The negative side. That is, in this embodiment, the light emitting directions of the left and right LEDs are opposed to each other so that the light emitting direction of the left and right LEDs faces the center in the Y direction of the lighting device with reference to the center in the Y direction (direction parallel to the light emitting direction) of the lighting device. It is what.
 このLED30-1、LED30-2、LED30-3、LED30-4の配置は、X方向に同様に並べられる。LED基板41は、実施例1のLED基板40と同様に、反射率の高い白色基板を用いるとよい。また、LED基板41のLED30搭載面側を白色塗装などを施して反射率を高くしてもよい。これに代えて反射シートをLED基板40のLED30搭載面に設けてもよい。拡散板20に設けられている遮光パターン90も、LED30位置及びその光の出射方向に合わせてある。 The LED 30-1, LED 30-2, LED 30-3, and LED 30-4 are similarly arranged in the X direction. As the LED substrate 41, a white substrate having a high reflectance may be used similarly to the LED substrate 40 of the first embodiment. Alternatively, the LED 30 mounting surface side of the LED substrate 41 may be white coated to increase the reflectance. Instead of this, a reflective sheet may be provided on the LED 30 mounting surface of the LED substrate 40. The light shielding pattern 90 provided on the diffusing plate 20 is also matched with the position of the LED 30 and the light emitting direction.
 なお、上記説明では、照明ブロック80が4段の場合について説明したが、6段の場合は、左側3段に配置されるLED30の光の出射方向をY方向+側、右側3段に配置されるLED30の光の出射方向をY方向-側とすればよい。照明ブロック80の数が奇数の場合は、中央の段のLED30の光の出射方向はどちらでもよい。 In the above description, the case where the illumination block 80 has four stages has been described. However, in the case of six stages, the light emission direction of the LEDs 30 arranged in the left three stages is arranged in the Y direction + side and the right three stages. The light emission direction of the LED 30 may be the Y direction minus side. When the number of the illumination blocks 80 is an odd number, the light emission direction of the LED 30 at the center stage may be either.
 拡散カバー60、ケース70からなるハウジング300は、実施例1の照明装置100と同じであるため説明は省略する。 Since the housing 300 including the diffusion cover 60 and the case 70 is the same as the lighting device 100 of the first embodiment, description thereof is omitted.
 上述した実施例1では、全てのLED列からの光が左から右に出射されるため、最右側の照明ブロック80-4への光の供給量は、LED30-1~4列の光が積算されることにより照明ブロックの中で最も大きくなる。この結果、実施例1では、相対的に右側の照明ブロック(80-3,4)からの光の輝度が左側の照明ブロック(80-1,2)からの光の輝度よりも相対的に高く、照明装置の照射面側から見た輝度分布が左右非対称となって、照明光の明るさに偏りが生じる。一方、実施例2の構成によれば、左右のLED列の光が照明装置の中央部に向けて出射されるため、照明装置の照射面側から見た輝度分布は、Y方向の中央が最も明るく、かつ左右対称となる。すなわち、実施例2の構成によれば、照明装置において、より好ましい輝度分布を得ることができる。 In the first embodiment described above, since the light from all the LED rows is emitted from the left to the right, the amount of light supplied to the rightmost illumination block 80-4 is integrated by the light of the LEDs 30-1 to 4 rows. By doing so, it becomes the largest among the lighting blocks. As a result, in Example 1, the luminance of light from the right illumination block (80-3, 4) is relatively higher than the luminance of light from the left illumination block (80-1, 2). The luminance distribution viewed from the irradiation surface side of the illuminating device becomes asymmetrical, and the brightness of the illumination light is biased. On the other hand, according to the configuration of Example 2, since the light from the left and right LED rows is emitted toward the center of the lighting device, the luminance distribution viewed from the irradiation surface side of the lighting device is most at the center in the Y direction. Bright and symmetrical. That is, according to the configuration of the second embodiment, a more preferable luminance distribution can be obtained in the lighting device.
 以上のように、実施例2の照明装置101においては、実施例1の照明装置100と同様に、拡散板20とLED基板41の間の空気層にて光を伝搬しているため、導光板を用いることなく軽量化を図ることができる。また、照明ブロック80を複数組み合わせて構成されているので、照明ブロック80の数(段)を増やせば、Y方向への大型化を図ることができ、また、照明ブロック80に設けられるLED30の数を増やせば、X方向への大型化を図ることができる。また、光源ブロック201の中心を含むXZ平面に対して、LED30を対象に配置していることから、輝度むらもY方向の中心を基準に対象になるので、輝度むらが認識しにくいという効果もある。照明ブロック毎の光の制御は実施例1と同様に行えることは言うまでも無い。 As described above, in the lighting device 101 according to the second embodiment, light is propagated in the air layer between the diffusion plate 20 and the LED substrate 41 as in the lighting device 100 according to the first embodiment. The weight can be reduced without using. In addition, since the plurality of lighting blocks 80 are combined, the number of lighting blocks 80 can be increased to increase the size in the Y direction, and the number of LEDs 30 provided in the lighting block 80 can be increased. If the number is increased, the size in the X direction can be increased. In addition, since the LED 30 is arranged as a target with respect to the XZ plane including the center of the light source block 201, the luminance unevenness is also targeted based on the center in the Y direction. is there. It goes without saying that the light control for each illumination block can be performed in the same manner as in the first embodiment.
 次に、本発明の実施例3について、図7を参照して説明する。図7は、本発明の実施例3における照明装置102の断面図である。 実施例3の照明装置102に用いられる光源ブロック202においては、LED基板42は、実施例1と同様にベースシャーシ10に例えばネジ止めにより固定される。LED30は、LED基板42に、Z方向に突出するように多数取付けられており、光の出射方向は、Y方向と並行である。 Next, Embodiment 3 of the present invention will be described with reference to FIG. FIG. 7 is a cross-sectional view of the illumination device 102 according to the third embodiment of the present invention. In the light source block 202 used in the illumination device 102 according to the third embodiment, the LED substrate 42 is fixed to the base chassis 10 by, for example, screwing as in the first embodiment. Many LEDs 30 are attached to the LED substrate 42 so as to protrude in the Z direction, and the light emission direction is parallel to the Y direction.
 最左段の照明ブロック80-1及び、その次の段の照明ブロック80-2に設けられたLED30-1、LED30-2の光の出射方向は、実施例1とは逆方向のY方向の-側である。次の段の照明ブロック80-3及び、その次の段の照明ブロック80-4に設けられたLED30-3、LED30-4の光の出射方向は、実施例1と同様にY方向の+側である。このLED30-1、LED30-2、LED30-3、LED30-4の配置は、X方向に同様に並べられる。すなわち、本実施例では、実施例2とは逆に、照明装置のY方向(光出射方向と平行な方向)の中心を基準にして、左右のLEDの光出射方向が照明装置の左右端部側(外側)を向くよう互いに逆向きにさせているものである。 The light emission direction of the LEDs 30-1 and 30-2 provided in the leftmost illumination block 80-1 and the illumination block 80-2 in the next stage is the Y direction opposite to that in the first embodiment. -Side. The light emission direction of the next-stage illumination block 80-3 and the LED 30-3 and LED 30-4 provided in the next-stage illumination block 80-4 is the + side in the Y direction as in the first embodiment. It is. The LED 30-1, LED 30-2, LED 30-3, and LED 30-4 are similarly arranged in the X direction. That is, in this embodiment, contrary to the second embodiment, the light emission direction of the left and right LEDs is set to the left and right end portions of the illumination device with reference to the center in the Y direction (direction parallel to the light emission direction) of the illumination device. They are made to be opposite to each other so as to face the side (outside).
 LED基板42は、実施例1のLED基板40と同様に、反射率の高い白色基板を用いるとよい。また、LED基板42のLED30搭載面側を白色塗装などを施して反射率を高くしてもよい。これに代えて反射シートをLED基板40のLED30搭載面に設けてもよい。拡散板20に設けられている遮光パターン90も、LED30位置、光の出射方向に合わせてある。 The LED substrate 42 may be a white substrate having a high reflectance, similar to the LED substrate 40 of the first embodiment. Alternatively, the LED 30 mounting surface side of the LED substrate 42 may be white coated to increase the reflectance. Instead of this, a reflective sheet may be provided on the LED 30 mounting surface of the LED substrate 40. The light shielding pattern 90 provided on the diffusion plate 20 is also matched with the LED 30 position and the light emission direction.
 かかる実施例3の構成によれば、実施例2と同様に照明装置の照射面側から見た輝度分布が左右対称となる。また本実施例ではLED列が2列中央に集中して配列されているために中央側のホットスポットの輝度が最も大きくなる、よって、この実施例3でも照明装置の中央側の輝度を高くすることができる。 According to the configuration of the third embodiment, as in the second embodiment, the luminance distribution viewed from the irradiation surface side of the lighting device is symmetrical. Further, in this embodiment, since the LED rows are arranged in the center of the two rows, the brightness of the hot spot on the center side becomes the highest, and therefore the brightness on the center side of the illumination device is also increased in this embodiment 3. be able to.
 なお、上記説明では、照明ブロック80が4段の場合について説明したが、6段の場合は、左側3段に配置されるLED30の光の出射方向をY方向-側、右側3段に配置されるLED30の光の出射方向をY方向+側とすればよい。照明ブロック80の数が奇数の場合は、中央の段のLED30の光の出射方向はどちらでもよい。 In the above description, the case where the illumination block 80 has four stages has been described, but in the case of six stages, the light emission direction of the LEDs 30 arranged in the left three stages is arranged in the Y direction-side and the right three stages. The light emission direction of the LED 30 may be the Y direction + side. When the number of the illumination blocks 80 is an odd number, the light emission direction of the LED 30 at the center stage may be either.
 拡散カバー60、ケース70からなるハウジング300は、実施例1の照明装置100と同じであるため説明は省略する。 Since the housing 300 including the diffusion cover 60 and the case 70 is the same as the lighting device 100 of the first embodiment, description thereof is omitted.
 以上のように、実施例3の照明装置102においては、実施例1の照明装置100と同様に、拡散板20とLED基板42の間の空気層にて光を伝搬しているため、導光板を用いることなく軽量化を図ることができる。また、照明ブロック80を複数組み合わせて構成されているので、照明ブロック80の数(段)を増やせば、Y方向への大型化を図ることができ、また、照明ブロック80に設けられるLED30の数を増やせば、X方向への大型化を図ることができる。また、光源ブロック201の中心を含むXZ平面に対して、LED30を対象に配置していることから、輝度むらもY方向に対象になるので、実施例2と同様に、輝度むらが認識しにくいという効果もある。照明ブロック毎の光の制御は実施例1と同様に行えることは言うまでも無い。 As described above, in the lighting device 102 according to the third embodiment, light is propagated in the air layer between the diffusion plate 20 and the LED substrate 42 as in the lighting device 100 according to the first embodiment. The weight can be reduced without using. In addition, since the plurality of lighting blocks 80 are combined, the number of lighting blocks 80 can be increased to increase the size in the Y direction, and the number of LEDs 30 provided in the lighting block 80 can be increased. If the number is increased, the size in the X direction can be increased. In addition, since the LEDs 30 are arranged for the XZ plane including the center of the light source block 201, the luminance unevenness is also targeted in the Y direction, so that the luminance unevenness is difficult to recognize as in the second embodiment. There is also an effect. It goes without saying that the light control for each illumination block can be performed in the same manner as in the first embodiment.
 次に、本発明の実施例4について、図8及び9を参照して説明する。図8は、本発明の実施例4における照明装置103の断面図である。図9は、実施例4に係る照明装置103について、拡散板20を外した状態の光源ブロック203をZ方向から見た平面図である。本実施例では、実施例1~3とは異なり、LED30-1~4に対して、それぞれ別のLED基板43-1~4を用いている。 Next, a fourth embodiment of the present invention will be described with reference to FIGS. FIG. 8 is a cross-sectional view of the illumination device 103 according to the fourth embodiment of the present invention. FIG. 9: is the top view which looked at the light source block 203 of the state which removed the diffuser plate 20 from the Z direction about the illuminating device 103 which concerns on Example 4. FIG. In the present embodiment, unlike the first to third embodiments, different LED substrates 43-1 to 4-4 are used for the LEDs 30-1 to 30, respectively.
 実施例4の照明装置103に用いられる光源ブロック203においては、LED基板43は、実施例1と同様にベースシャーシ10に例えばネジ止めにより固定される。最左段の照明ブロック80-1にはLED基板43-1が設けられ、LED基板43-1にはLED30-1がZ方向に突出するように多数取り付けられている。同様に、その次の段の照明ブロック80-2にはLED基板43-2が設けられ、LED基板43-2にはLED30-2がZ方向に突出するように多数取り付けられている。照明ブロック80-3、照明ブロック80-4も同様である。LED30の光の出射方向は、実施例1と同様に全てY方向の+側である。LED30から出射した光は、拡散板20とベースシャーシ10との間の空間を反射、拡散しながら拡散板20から出射されつつY方向に伝搬される。ベースシャーシ10の内側面は、実施例1と同様に、例えば白色塗装などを施して反射率を高くしている。また、ベースシャーシ10の底面(LED基板43と対向する面)の内側全面に反射シートを敷き、この上にLED基板43-1~4を配置してもよい。このとき、LED基板43-1~4にもLED搭載面をカバーするように反射シートを設けてもよいし、また白色塗装を施してもよい。 In the light source block 203 used in the illumination device 103 of the fourth embodiment, the LED substrate 43 is fixed to the base chassis 10 by, for example, screwing as in the first embodiment. The leftmost illumination block 80-1 is provided with an LED substrate 43-1, and a large number of LEDs 30-1 are attached to the LED substrate 43-1 so as to protrude in the Z direction. Similarly, the LED block 43-2 is provided in the illumination block 80-2 at the next stage, and a large number of LEDs 30-2 are attached to the LED substrate 43-2 so as to protrude in the Z direction. The same applies to the illumination block 80-3 and the illumination block 80-4. The light emission direction of the LEDs 30 is all on the + side of the Y direction as in the first embodiment. The light emitted from the LED 30 is propagated in the Y direction while being emitted from the diffusion plate 20 while reflecting and diffusing the space between the diffusion plate 20 and the base chassis 10. As in the first embodiment, the inner surface of the base chassis 10 is coated with, for example, white paint to increase the reflectance. Further, a reflection sheet may be laid on the entire inner surface of the bottom surface (the surface facing the LED substrate 43) of the base chassis 10, and the LED substrates 43-1 to 4-4 may be disposed thereon. At this time, the LED substrates 43-1 to 4-4 may be provided with a reflection sheet so as to cover the LED mounting surface, or may be coated with white.
 拡散カバー60、ケース70からなるハウジング300は、実施例1の照明装置100と同じであるため説明は省略する。 Since the housing 300 including the diffusion cover 60 and the case 70 is the same as the lighting device 100 of the first embodiment, description thereof is omitted.
 上述した実施例1~3では、LED30~1~4列を全て1つのLED基板40に実装したが、本実施例では、LED30~1~4の各列を、それぞれ、物理的に分割されたLED基板43-1~4に実装している。LED基板43-1~4は、図9に示されるようにX方向を長手方向とした細長の長方形状で、その幅(Y方向寸法)はLED30の幅よりも若干大きい幅を有しており、実施例1のLED基板40に比べて十分に小面積である。LED基板43の各幅寸法は、例えば1~10cm程度であるが、これに限られるものではない。このようなLED基板43を用いれば、LED基板のコストと重量を低減でき、以って、照明装置のコスト及び重量を低減できる。 In Examples 1 to 3 described above, all the LEDs 30 to 1 to 4 are mounted on one LED substrate 40. However, in this example, each of the LEDs 30 to 1 to 4 is physically divided. It is mounted on LED boards 43-1-4. As shown in FIG. 9, the LED substrates 43-1 to 4-4 have a long and narrow rectangular shape with the X direction as the longitudinal direction, and the width (dimension in the Y direction) is slightly larger than the width of the LED 30. Compared to the LED substrate 40 of Example 1, the area is sufficiently small. Each width dimension of the LED substrate 43 is, for example, about 1 to 10 cm, but is not limited thereto. If such an LED substrate 43 is used, the cost and weight of the LED substrate can be reduced, and thus the cost and weight of the lighting device can be reduced.
 以上のように、本実施例においては、拡散板20とベースシャーシ10の間の空気層にて光を伝搬しているため、導光板を用いることなく軽量化を図ることができる。また、照明ブロック80を複数組み合わせて構成されているので、照明ブロック80の数(段)を増やせば、Y方向への大型化を図ることができ、また、照明ブロック80に設けられるLED30の数を増やせば、X方向への大型化を図ることができる。さらには、LED基板43の面積を小さくできるため、その分の軽量化を図ることができる。照明ブロック毎の光の制御は実施例1と同様に行えることは言うまでも無い。 As described above, in this embodiment, since light is propagated in the air layer between the diffusion plate 20 and the base chassis 10, the weight can be reduced without using a light guide plate. In addition, since the plurality of lighting blocks 80 are combined, the number of lighting blocks 80 can be increased to increase the size in the Y direction, and the number of LEDs 30 provided in the lighting block 80 can be increased. If the number is increased, the size in the X direction can be increased. Furthermore, since the area of the LED substrate 43 can be reduced, the corresponding weight can be reduced. It goes without saying that the light control for each illumination block can be performed in the same manner as in the first embodiment.
 次に、本発明の実施例5について、図10及び図11を参照して説明する。図10は、本発明の実施例5における照明装置104の断面図である。図11は、実施例5に係る照明装置104について、拡散板20を外した状態の光源ブロック204をZ方向から見た平面図である。 Next, a fifth embodiment of the present invention will be described with reference to FIGS. FIG. 10 is a cross-sectional view of the lighting device 104 according to the fifth embodiment of the present invention. FIG. 11: is the top view which looked at the light source block 204 of the state which removed the diffusion plate 20 from the Z direction about the illuminating device 104 which concerns on Example 5. FIG.
 実施例5の照明装置104に用いられる光源ブロック204においては、LED基板44は、実施例1と同様にベースシャーシ10に例えばネジ止めにより固定される。最左段の照明ブロック80-1と次の段の照明ブロック80-2に配置されるLED30-1、LED30-2は、LED基板44-1にZ方向に突出するように多数取り付けられている。照明ブロック80-3と次の段の照明ブロック80-4に配置されるLED30-3、LED30-4は、LED基板44-2にZ方向に突出するように多数取り付けられている。奇数ブロックのLED30-1、LED30-3の光の出射方向はY方向-側、偶数ブロックのLED30-2、LED30-4の光の出射方向はY方向+側としている。すなわち、本実施例では、互いに逆方向に光を出射する2列のLED列の背面を互いに対向させて近接配置してLED列群を構成し、照明装置のY方向(光出射方向と平行な方向)の中心を基準にして、該LED列群を左右対称に配置したものである。各LED列群におけるLED列同士の間隔(LED30の背面間の間隔)は、LEDの幅寸法(Y方向寸法)の大よそ0.5倍~3倍程度とするが、これに限られるものではない。各LED列群に対して、それぞれ別のLED基板44-1及び44-2を使用する。各LED基板44-1、2は、実施例4と同様にX方向を長手方向とした細長のものを用いるものとする。ただし、1つのLED基板44に2列のLED列を搭載するため、LED基板44の幅寸法は実施例4のものよりも大きくしている。 In the light source block 204 used in the illumination device 104 of the fifth embodiment, the LED substrate 44 is fixed to the base chassis 10 by, for example, screwing as in the first embodiment. Many LEDs 30-1 and 30-2 arranged in the leftmost illumination block 80-1 and the next illumination block 80-2 are attached to the LED board 44-1 so as to protrude in the Z direction. . A large number of LEDs 30-3 and LEDs 30-4 arranged in the illumination block 80-3 and the next-stage illumination block 80-4 are attached to the LED substrate 44-2 so as to protrude in the Z direction. The light emission direction of the odd-numbered blocks LED 30-1 and LED 30-3 is the Y direction minus side, and the light emission direction of the even-numbered blocks LED 30-2 and LED 30-4 is the Y direction plus side. That is, in the present embodiment, the LED array group is configured by arranging the LED arrays in close proximity to each other so that the back surfaces of the two LED arrays that emit light in opposite directions face each other, and the Y direction of the illumination device (parallel to the light output direction). The LED rows are arranged symmetrically with respect to the center of the direction. The spacing between the LED rows in each LED row group (the spacing between the back surfaces of the LEDs 30) is about 0.5 to 3 times the width of the LED (dimension in the Y direction), but is not limited to this. Absent. Separate LED substrates 44-1 and 44-2 are used for each LED array group. The LED substrates 44-1 and 2 are elongated ones with the X direction as the longitudinal direction as in the fourth embodiment. However, since two LED rows are mounted on one LED substrate 44, the width dimension of the LED substrate 44 is larger than that of the fourth embodiment.
 LED30から出射した光は、実施例4と同様に、拡散板20とベースシャーシ10との間の空間を反射、拡散しながら拡散板20から出射されつつY方向に伝搬される。ベースシャーシ10の内側面は、実施例1と同様に、例えば白色塗装などを施して反射率を高くしている。また、ベースシャーシ10の底面(LED基板44と対向する面)の内側前面に反射シートを敷き、この上にLED基板44-1~2を配置してもよい。このとき、LED基板44-1~2にもLED搭載面をカバーするように反射シートを設けてもよいし、また白色塗装を施してもよい。 The light emitted from the LED 30 is propagated in the Y direction while being emitted from the diffusion plate 20 while reflecting and diffusing the space between the diffusion plate 20 and the base chassis 10 as in the fourth embodiment. As in the first embodiment, the inner surface of the base chassis 10 is coated with, for example, white paint to increase the reflectance. Further, a reflection sheet may be laid on the inner front surface of the bottom surface (the surface facing the LED substrate 44) of the base chassis 10, and the LED substrates 44-1 and 4-2 may be disposed thereon. At this time, a reflective sheet may be provided on the LED substrates 44-1 and 2-2 so as to cover the LED mounting surface, or white coating may be applied.
 拡散カバー60、ケース70からなるハウジング300は、実施例1の照明装置100と同じであるため説明は省略する。 Since the housing 300 including the diffusion cover 60 and the case 70 is the same as the lighting device 100 of the first embodiment, description thereof is omitted.
 かかる実施例5の構成によれば、実施例2、3と同様に照明装置の照射面側から見た輝度分布が左右対称となる。またLED30-2及び30-3が互いに照明装置の中央を向いているので、この実施例5でも照明装置の中央側の輝度を高くすることができる。 According to the configuration of the fifth embodiment, the luminance distribution viewed from the irradiation surface side of the illumination device is symmetrical as in the second and third embodiments. Further, since the LEDs 30-2 and 30-3 face each other in the center of the lighting device, the luminance on the center side of the lighting device can be increased also in the fifth embodiment.
 以上のように、本実施例においては、拡散板20とベースシャーシ10の間の空気層にて光を伝搬しているため、導光板を用いることなく軽量化を図ることができる。また、照明ブロック80を複数組み合わせて構成されているので、照明ブロック80の数(段)を増やせば、Y方向への大型化を図ることができ、また、照明ブロック80に設けられるLED30の数を増やせば、X方向への大型化を図ることができる。さらには、LED基板44の面積を小さくできるため、その分の軽量化を図ることができる。更には、実施例4と比べて、LED基板44の数を少なくすることができるため、LED基板44との配線やそのコネクタ(図示せず)を減らすことができるため、低コスト化を図ることができる。照明ブロック毎の光の制御は実施例1と同様に行えることは言うまでも無い。 As described above, in this embodiment, since light is propagated in the air layer between the diffusion plate 20 and the base chassis 10, the weight can be reduced without using a light guide plate. In addition, since the plurality of lighting blocks 80 are combined, the number of lighting blocks 80 can be increased to increase the size in the Y direction, and the number of LEDs 30 provided in the lighting block 80 can be increased. If the number is increased, the size in the X direction can be increased. Furthermore, since the area of the LED substrate 44 can be reduced, the weight can be reduced accordingly. Furthermore, since the number of LED boards 44 can be reduced as compared with the fourth embodiment, the wiring with the LED boards 44 and its connectors (not shown) can be reduced, so that the cost can be reduced. Can do. It goes without saying that the light control for each illumination block can be performed in the same manner as in the first embodiment.
 次に、本発明の実施例6について、図12~図14を参照して説明する。図12は、本発明の実施例6における照明装置105の断面図である。図13は、実施例6に係る照明装置105について、拡散板20を外した状態の光源ブロック205をZ方向から見た平面図である。 Next, a sixth embodiment of the present invention will be described with reference to FIGS. FIG. 12 is a cross-sectional view of the illumination device 105 according to the sixth embodiment of the present invention. FIG. 13: is the top view which looked at the light source block 205 of the state which removed the diffuser plate 20 from the Z direction about the illuminating device 105 which concerns on Example 6. FIG.
 実施例6の照明装置105に用いられる光源ブロック205においては、LED基板45は、実施例1と同様にベースシャーシ10に例えばネジ止めにより固定される。最左段の照明ブロック80-1と次の段の照明ブロック80-2に配置されるLED30-1、LED30-2は、LED基板45-1にZ方向に突出するように多数取り付けられている。照明ブロック80-3と次の段の照明ブロック80-4に配置されるLED30-3、LED30-4は、LED基板45-2にZ方向に突出するように多数取り付けられている。奇数ブロックのLED30-1、LED30-3の光の出射方向はY方向-側、偶数ブロックのLED30-2、LED30-4の光の出射方向はY方向+側としている。 In the light source block 205 used in the illumination device 105 of the sixth embodiment, the LED substrate 45 is fixed to the base chassis 10 by, for example, screwing as in the first embodiment. Many LEDs 30-1 and 30-2 arranged in the leftmost illumination block 80-1 and the next illumination block 80-2 are attached to the LED board 45-1 so as to protrude in the Z direction. . A large number of LEDs 30-3 and LEDs 30-4 disposed in the illumination block 80-3 and the next-stage illumination block 80-4 are attached to the LED substrate 45-2 so as to protrude in the Z direction. The light emission direction of the odd-numbered blocks LED 30-1 and LED 30-3 is the Y direction minus side, and the light emission direction of the even-numbered blocks LED 30-2 and LED 30-4 is the Y direction plus side.
 図に示すように、LED30-1、LED30-2は、Y方向においてほぼ同じ位置に交互に配置している。また、LED30-3、LED30-4においても、同様に、Y方向においてほぼ同じ位置に交互に配置している。 As shown in the figure, the LEDs 30-1 and 30-2 are alternately arranged at substantially the same position in the Y direction. Similarly, the LEDs 30-3 and 30-4 are alternately arranged at substantially the same position in the Y direction.
 実施例1~5では、1つのLED列に含まれる複数のLEDは、光出射方向が全て同じ向きであったが、本実施例では、X方向に隣接するLEDの光出射方向を互いに逆方向にしている。すなわち、Y方向+側に光を出射するLEDと、Y方向-側に光を出射するLEDとをX方向に沿って交互に配置したものである。この実施例では、各LED列に対して、それぞれ別のLED基板45-1及び45-2を使用する。LED基板44-1、2は、実施例4と同様にX方向を長手方向とした細長のものを用いるものとする。LED基板45-1及び45-2の幅寸法は、実施例4のものと略同じとする。 In Examples 1 to 5, the plurality of LEDs included in one LED row all have the same light emission direction, but in this example, the light emission directions of LEDs adjacent in the X direction are opposite to each other. I have to. That is, LEDs that emit light in the Y direction + side and LEDs that emit light in the Y direction-side are alternately arranged along the X direction. In this embodiment, different LED substrates 45-1 and 45-2 are used for each LED row. The LED substrates 44-1 and 44-2 are long and thin with the X direction as the longitudinal direction as in the fourth embodiment. The width dimensions of the LED substrates 45-1 and 45-2 are substantially the same as those of the fourth embodiment.
 本実施例における遮光パターン90の一例を図14に示す。図14に示すように、LED30の位置、光の出射方向に合わせて、LED30-1用の遮光パターン90-1と、LED30-2用の遮光パターン90-2を交互に配置している。すなわち、図示されるように、長い放射状の突起を有する側が交互に逆向きになっている
 LED30から出射した光は、実施例4乃至実施例6と同様に、拡散板20とベースシャーシ10との間の空間を反射、拡散しながら拡散板20から出射されつつY方向に伝搬される。ベースシャーシ10の内側面は、実施例1と同様に、例えば白色塗装などを施して反射率を高くしている。また、ベースシャーシ10の底面(LED基板44と対向する面)の内側前面に反射シートを敷き、この上にLED基板45-1~2を配置してもよい。このとき、LED基板45-1~2にもLED搭載面をカバーするように反射シートを設けてもよいし、また白色塗装を施してもよい。
An example of the light shielding pattern 90 in this embodiment is shown in FIG. As shown in FIG. 14, the light shielding pattern 90-1 for the LED 30-1 and the light shielding pattern 90-2 for the LED 30-2 are alternately arranged in accordance with the position of the LED 30 and the light emitting direction. That is, as shown in the figure, the light emitted from the LED 30 whose sides having long radial protrusions are alternately reversed is the same as that of the fourth to sixth embodiments. It is propagated in the Y direction while being emitted from the diffusion plate 20 while reflecting and diffusing the space between them. As in the first embodiment, the inner surface of the base chassis 10 is coated with, for example, white paint to increase the reflectance. Further, a reflection sheet may be laid on the inner front surface of the bottom surface (the surface facing the LED substrate 44) of the base chassis 10, and the LED substrates 45-1 and 45-2 may be disposed thereon. At this time, a reflection sheet may be provided on the LED substrates 45-1 and 45-2 so as to cover the LED mounting surface, or white coating may be applied.
 拡散カバー60、ケース70からなるハウジング300は、実施例1の照明装置100と同じであるため説明は省略する。 Since the housing 300 including the diffusion cover 60 and the case 70 is the same as the lighting device 100 of the first embodiment, description thereof is omitted.
 以上のように、本実施例においては、拡散板20とベースシャーシ10の間の空気層にて光を伝搬しているため、導光板を用いることなく軽量化を図ることができる。また、照明ブロック80を複数組み合わせて構成されているので、照明ブロック80の数(段)を増やせば、Y方向への大型化を図ることができ、また、照明ブロック80に設けられるLED30の数を増やせば、X方向への大型化を図ることができる。さらには、実施例5と同様に、LED基板45の数を少なくすることができるため、LED基板45との配線やそのコネクタ(図示せず)を減らすことができるため、低コスト化を図ることができる。また、実施例5と比べて更にLED基板45の面積を小さくすることができるため、軽量化を図ることができる。照明ブロック毎の光の制御は実施例1と同様に行えることは言うまでも無い。 As described above, in this embodiment, since light is propagated in the air layer between the diffusion plate 20 and the base chassis 10, the weight can be reduced without using a light guide plate. In addition, since the plurality of lighting blocks 80 are combined, the number of lighting blocks 80 can be increased to increase the size in the Y direction, and the number of LEDs 30 provided in the lighting block 80 can be increased. If the number is increased, the size in the X direction can be increased. Furthermore, since the number of the LED boards 45 can be reduced as in the fifth embodiment, the wiring with the LED boards 45 and the connectors (not shown) can be reduced, so that the cost can be reduced. Can do. In addition, since the area of the LED substrate 45 can be further reduced as compared with the fifth embodiment, the weight can be reduced. It goes without saying that the light control for each illumination block can be performed in the same manner as in the first embodiment.
 次に、本発明の実施例7について、図15を参照して説明する。図15は、本発明の実施例7における照明装置106の断面図である。 Next, a seventh embodiment of the present invention will be described with reference to FIG. FIG. 15 is a cross-sectional view of the illumination device 106 according to the seventh embodiment of the present invention.
 実施例7の照明装置106に用いられる光源ブロック206においては、LED基板46は、実施例1と同様にベースシャーシ10に例えばネジ止めにより固定される。最左段の照明ブロック80-1にはLED30-1が設けられ、LED基板46にLED30-1がZ方向に突出するように多数取り付けられている。照明ブロック80-2、照明ブロック80-3、照明ブロック80-4も同様である。LED30の光の出射方向は、実施例1と同様にY方向の+側である。このLED30-1、LED30-2、LED30-3、LED30-4の配置は、X方向に同様に並べられる。 In the light source block 206 used in the illumination device 106 of the seventh embodiment, the LED substrate 46 is fixed to the base chassis 10 by, for example, screwing, as in the first embodiment. The leftmost illumination block 80-1 is provided with LEDs 30-1, and a large number of LEDs 30-1 are attached to the LED board 46 so as to protrude in the Z direction. The same applies to the illumination block 80-2, the illumination block 80-3, and the illumination block 80-4. The light emission direction of the LED 30 is on the + side of the Y direction as in the first embodiment. The LED 30-1, LED 30-2, LED 30-3, and LED 30-4 are similarly arranged in the X direction.
 そして本実施例では、LED基板46のLED30搭載面側に、ベースシャーシ10の内面形状と相似の形状を有する反射シート50を配置している。すなわち、本実施例では、LED基板46のLED搭載面及びベースシャーシ10の傾斜された側面への反射機能を、1つの反射シート50により共通して付加するようにしている。反射シート50の外形は、ベースシャーシ10の内面形状と略同じであり、LED30に対応する位置に孔が空いたシートである。反射シート外周部50-1は、折り曲げることにより、ベースシャーシ10の傾斜された側面の内面と略同形状となるようにしている。LED30が固定保持されたLED基板46をベースシャーシ10に取り付けた後に、両面テープなどで反射シート50をLED基板46、ベースシャーシ10に貼り付けて固定している。 In this embodiment, the reflective sheet 50 having a shape similar to the inner surface shape of the base chassis 10 is disposed on the LED 30 mounting surface side of the LED substrate 46. In other words, in this embodiment, the function of reflecting the LED mounting surface of the LED substrate 46 and the inclined side surface of the base chassis 10 is commonly added by the single reflection sheet 50. The outer shape of the reflection sheet 50 is substantially the same as the inner shape of the base chassis 10, and is a sheet having a hole at a position corresponding to the LED 30. The reflection sheet outer peripheral portion 50-1 is bent so as to have substantially the same shape as the inner surface of the inclined side surface of the base chassis 10. After the LED board 46 on which the LEDs 30 are fixed and held is attached to the base chassis 10, the reflection sheet 50 is attached and fixed to the LED board 46 and the base chassis 10 with a double-sided tape or the like.
 LED30から出射した光は、拡散板20と反射シート50との間の空間を反射、拡散しながら拡散板20から出射されつつY方向に伝搬される。外周部に漏れた光は反射シート外周部50-1により出射方向(Z方向)に反射させている。反射シート50の反射率は、LED基板40やベースシャーシ10の反射面に施された白塗装などの反射率よりも高いため、光の伝搬ロスを減らすことができる。すなわち、上記実施例1などの光源ブロック200と比べて輝度が高くできるため、LED30の間隔を大きくし、LED30の総数を減らしても、所定輝度を確保できる場合がある。この場合、減らしたLED30分のコスト低減と、それに使用する電力分の省電力化を図ることができる。また、LED30の数はそのままで、LED30に印加する電圧を下げて、省電力化を図ってもよい。また、ベースシャーシ10の傾斜側面とLED基板46の反射を共通化しているため、コストの低減にも有利である。 The light emitted from the LED 30 is propagated in the Y direction while being emitted from the diffusion plate 20 while being reflected and diffused in the space between the diffusion plate 20 and the reflection sheet 50. The light leaking to the outer periphery is reflected in the emission direction (Z direction) by the reflection sheet outer periphery 50-1. Since the reflectance of the reflective sheet 50 is higher than the reflectance of white coating or the like applied to the reflective surface of the LED substrate 40 or the base chassis 10, light transmission loss can be reduced. That is, since the luminance can be higher than that of the light source block 200 in the first embodiment, the predetermined luminance may be ensured even if the interval between the LEDs 30 is increased and the total number of the LEDs 30 is reduced. In this case, it is possible to reduce the cost of the reduced LED 30 and to save power for the power used for the LED. Further, the number of LEDs 30 may be left as it is, and the voltage applied to the LEDs 30 may be lowered to save power. Further, since the inclined side surface of the base chassis 10 and the reflection of the LED substrate 46 are made common, it is advantageous for cost reduction.
 また、拡散板20と反射シート50の間の空気層にて光を伝搬しているため、導光板を用いることなく軽量化を図ることができる。また、照明ブロック80を複数組み合わせて構成されているので、照明ブロック80の数(段)を増やせば、Y方向への大型化を図ることができ、また、照明ブロック80に設けられるLED30の数を増やせば、X方向への大型化を図ることができる。さらには、LED基板46については、安価な汎用の基板を用いることが出来る。また、白塗装など施す必要もない。また、ベースシャーシ10の内面については、反射率を向上させる白塗装などの処理を省略することが可能となる。 Further, since light is propagated in the air layer between the diffusion plate 20 and the reflection sheet 50, the weight can be reduced without using a light guide plate. In addition, since the plurality of lighting blocks 80 are combined, the number of lighting blocks 80 can be increased to increase the size in the Y direction, and the number of LEDs 30 provided in the lighting block 80 can be increased. If the number is increased, the size in the X direction can be increased. Furthermore, as the LED substrate 46, an inexpensive general-purpose substrate can be used. Moreover, it is not necessary to apply white paint. Further, the inner surface of the base chassis 10 can be omitted from processing such as white coating for improving the reflectance.
 なお、上記実施例においては、ベースシャーシ10の外周部にも、反射シート50を延長して反射シート外周部50-1を設けているが、平面部(LED基板46部)のみを反射シート50で覆う形状とし、外周部はベースシャーシ10の内側面自身の反射を利用してもよい。照明ブロック毎の光の制御は実施例1と同様に行えることは言うまでも無い。 In the above-described embodiment, the reflection sheet 50 is extended to the outer periphery of the base chassis 10 to provide the reflection sheet outer periphery 50-1. However, only the flat surface portion (LED substrate 46) is provided on the reflection sheet 50. The outer peripheral portion may utilize the reflection of the inner side surface of the base chassis 10. It goes without saying that the light control for each illumination block can be performed in the same manner as in the first embodiment.
 次に、本発明の実施例8について、図16を参照して説明する。図16は、本発明の実施例8における照明装置107の断面図である。既に説明した図1乃至図15に示された同一の符号を付された要素と同一の作用または機能を有する要素については説明を省略する。 Next, an eighth embodiment of the present invention will be described with reference to FIG. FIG. 16 is a cross-sectional view of the illumination device 107 according to the eighth embodiment of the present invention. The description of the elements having the same operation or function as the elements denoted by the same reference numerals shown in FIGS.
 実施例8の照明装置107においては、ケース71、拡散カバー61からなるハウジング301の内部に、2つの光源ブロック200-1、200-2を配置したものである。2つの光源ブロック200-1、200-2として、本例では実施例1のものを用いている。本実施例によれば、1つのハウジング301に、2つの光源ブロック200を配置することにより、略2倍の大きさの照明装置107とすることができる。 In the lighting device 107 according to the eighth embodiment, two light source blocks 200-1 and 200-2 are arranged inside a housing 301 including a case 71 and a diffusion cover 61. As the two light source blocks 200-1 and 200-2, those in the first embodiment are used in this example. According to the present embodiment, by arranging the two light source blocks 200 in one housing 301, the lighting device 107 having a size approximately twice as large can be obtained.
 以上のように、ハウジング301内に複数の光源ブロック200を配置することにより、容易に大型化に対応することができる。また、光源ブロック200を3個以上配置すると、より大型の照明装置とすることができることは言うまでもない。 As described above, by arranging the plurality of light source blocks 200 in the housing 301, it is possible to easily cope with an increase in size. Needless to say, when three or more light source blocks 200 are arranged, a larger illumination device can be obtained.
 なお、上記実施例においては、実施例1の光源ブロック200を複数配置した場合について説明したが、これに限定されるものではなく、他の実施例に用いた光源ブロック201乃至光源ブロック206を複数あるいは組み合わせて配置してもよい。実施例1乃至実施例7のいずれかの光源ブロックを用いれば、上記実施例1~7のいずれかと同様な効果が得られることは言うまでもない。 In the above embodiment, the case where a plurality of light source blocks 200 according to the first embodiment are arranged has been described. However, the present invention is not limited to this, and a plurality of light source blocks 201 to 206 used in other embodiments are provided. Or you may arrange | position in combination. Needless to say, if any one of the light source blocks of the first to seventh embodiments is used, the same effects as those of the first to seventh embodiments can be obtained.
 次に、本発明の実施例9について、図17を参照して説明する。図17は、本発明の実施例9における照明装置108の断面図である。 実施例9の照明装置108に用いられる光源ブロック207においては、図1の光源ブロック200に対して遮光パターン90を省略したものである。よって、光源ブロック207の構成、機能についての詳細説明は省略する。 Next, a ninth embodiment of the present invention will be described with reference to FIG. FIG. 17 is a cross-sectional view of the illumination device 108 according to the ninth embodiment of the present invention. In the light source block 207 used in the illumination device 108 of Example 9, the light shielding pattern 90 is omitted from the light source block 200 of FIG. Therefore, detailed description of the configuration and function of the light source block 207 is omitted.
 実施例9の照明装置108は、例えば天井に埋め込む場合など、照明装置用の厚さ方向(Z方向)のスペースを大きく確保できる場所に設置する場合に用いることができる照明装置である。図16に示すように、ケース72のZ方向を大きくし、拡散板20と拡散カバー62との距離H2を大きくしている。この距離H2は図3のH1よりも大きく、例えば、光源ブロックの厚さ(ベースシャーシ10の背面から拡散板20の光射面までの距離)の2倍~5倍程度とする。しかしながら、これに限られるものではない。距離H2を大きくしたことにより、拡散板20部で大きな輝度むらがあっても、拡散カバー62部では均一化されるため、上気したように遮光パターン90を省略することができる。これにより、拡散板20に遮光パターン90を印刷する工程を省くことができるため、低コスト化を図ることができる。 The illuminating device 108 of Example 9 is an illuminating device that can be used when installed in a place where a large space in the thickness direction (Z direction) for the illuminating device can be secured, for example, when embedded in the ceiling. As shown in FIG. 16, the Z direction of the case 72 is increased, and the distance H2 between the diffusion plate 20 and the diffusion cover 62 is increased. This distance H2 is larger than H1 in FIG. 3, and is, for example, about 2 to 5 times the thickness of the light source block (the distance from the back surface of the base chassis 10 to the light emitting surface of the diffusion plate 20). However, the present invention is not limited to this. By increasing the distance H2, even if there is a large luminance unevenness in the diffusion plate 20 portion, the diffusion cover 62 portion is made uniform, so that the light shielding pattern 90 can be omitted as described above. Thereby, since the process of printing the light shielding pattern 90 on the diffusion plate 20 can be omitted, the cost can be reduced.
 なお、上記実施例においては、実施例1の光源ブロック200の遮光パターン省略した場合について説明したが、これに限定されるものではなく、他の実施例に用いた光源ブロック201乃至光源ブロック206のいずれかの、遮光パターンを省略したものを配置してもよい。実施例1~7のいずれかの光源ブロックを用いた照明装置でれば、上記実施例1~7のいずれかと同様な効果が得られることは言うまでもない。 In the above embodiment, the case where the light shielding pattern of the light source block 200 of Embodiment 1 is omitted has been described. However, the present invention is not limited to this, and the light source blocks 201 to 206 used in other embodiments are not limited thereto. Any one of which the light shielding pattern is omitted may be arranged. Needless to say, the illumination device using any one of the light source blocks of the first to seventh embodiments can achieve the same effects as those of the first to seventh embodiments.
 次に、本発明の実施例10について、図18及び図19を参照して説明する。図18は、本発明の実施例10おける照明装置109の断面図である。図19は、実施例10に係る照明装置109について、拡散板20を外した状態の光源ブロック208をZ方向から見た平面図である。 Next, a tenth embodiment of the present invention will be described with reference to FIGS. FIG. 18 is a cross-sectional view of the illumination device 109 according to the tenth embodiment of the present invention. FIG. 19 is a plan view of the illumination device 109 according to the tenth embodiment when the light source block 208 with the diffusion plate 20 removed is viewed from the Z direction.
 上記実施例1~9では、ベースシャーシ10はZ方向に開口を向いた、箱形状、枡形状あるいはトレイ形状を有しているものとしたが、本実施例のベースシャーシ11は平板状としている。ベースシャーシ11の照射方向側の面には、照射方向側に開口を向けた、箱形状、枡形状あるいはトレイ形状に形成された反射シート51が載置されている。反射シート51は、例えば白色の樹脂材料により構成されている。すなわち、本実施例では、実施例1~9とは異なり、光源ブロック208の筐体を金属製のベースシャーシでは無く、例えば樹脂製の反射シート51で構成しているものである。 In the first to ninth embodiments, the base chassis 10 has a box shape, a bowl shape, or a tray shape with the opening in the Z direction. However, the base chassis 11 of this embodiment has a flat plate shape. . On the surface of the base chassis 11 on the irradiation direction side, a reflection sheet 51 formed in a box shape, a bowl shape, or a tray shape with an opening facing the irradiation direction side is placed. The reflection sheet 51 is made of, for example, a white resin material. That is, in this embodiment, unlike the first to ninth embodiments, the housing of the light source block 208 is constituted by, for example, a resin reflection sheet 51 instead of a metal base chassis.
 拡散板20は、図示されるように、反射シート51の開口を覆うように配置されており、拡散板20の角部4箇所において、ネジ96により反射シート51とともにベースシャーシ11にネジ止めされ固定される。反射シート51の底面には、LEDが実装された2つのLED基板46-1、46-2が例えば別のネジ或いは接着剤等により取付けられている。また反射シート51の底面と拡散板20との間には筒状のスペーサ95が設けられており、この筒状スペーサ95を介して拡散板20と反射シート51がネジ96によりベースシャーシ11に固定される。すなわち、ネジ96は、拡散板20の孔、筒状スペーサ95、反射シート51の孔を通して、ベースシャーシ11に設けられたネジ孔にねじ込みされる。これによって、反射シート51の底面と拡散板20との間に、筒状スペーサ95の高さと同じ距離の空間を保つようにしている。 As shown in the figure, the diffusion plate 20 is arranged so as to cover the opening of the reflection sheet 51, and is fixed to the base chassis 11 together with the reflection sheet 51 by screws 96 at four corners of the diffusion plate 20. Is done. On the bottom surface of the reflection sheet 51, two LED boards 46-1 and 46-2 on which LEDs are mounted are attached by, for example, different screws or adhesives. A cylindrical spacer 95 is provided between the bottom surface of the reflection sheet 51 and the diffusion plate 20, and the diffusion plate 20 and the reflection sheet 51 are fixed to the base chassis 11 with screws 96 via the cylindrical spacer 95. Is done. That is, the screw 96 is screwed into the screw hole provided in the base chassis 11 through the hole of the diffusion plate 20, the cylindrical spacer 95, and the hole of the reflection sheet 51. Thereby, a space having the same distance as the height of the cylindrical spacer 95 is maintained between the bottom surface of the reflection sheet 51 and the diffusion plate 20.
 また、図示のようにLED基板は2つの基板46-1及び46-2で構成されており、これらは反射シート51の底面を介して例えばネジによりベースシャーシ11に固定される。ここで、LED基板46-1及び46-2の合計面積は、図19に示されるように反射シート51の底面の面積よりも小さくされており、反射シート51の底面の、LED基板46-1及び46-2の外側の領域でネジ95による拡散板20及び反射シート51のベースシャーシ11へのネジ止め及び固定が為されている。本実施例では、LED基板46-1及び46-2のそれぞれに2つのLED列が実装されており、各LED列におけるLEDの光放出方向は、全て同じ向きとしている。しかしながら、図11や図13に示されたLEDの配置も適用できることは言うまでも無い。 Further, as shown in the figure, the LED substrate is composed of two substrates 46-1 and 46-2, which are fixed to the base chassis 11 with screws, for example, through the bottom surface of the reflection sheet 51. Here, the total area of the LED substrates 46-1 and 46-2 is smaller than the area of the bottom surface of the reflection sheet 51 as shown in FIG. In addition, the diffusion plate 20 and the reflection sheet 51 are screwed and fixed to the base chassis 11 with screws 95 in the area outside the lines 46-2. In the present embodiment, two LED arrays are mounted on each of the LED substrates 46-1 and 46-2, and the light emission directions of the LEDs in each LED array are all the same. However, it goes without saying that the LED arrangement shown in FIGS. 11 and 13 can also be applied.
 このような本実施例の構成によれば、光源ブロック208の筐体を樹脂製の反射シート51で構成しているため、光源ブロック208及びこれを用いた照明装置を軽量化することができる。本実施例では、反射シート51は白色の材料としたが、内面が光を反射できる構成であれば、どのような形態であってもよい。例えば、内面のみ白色塗装を施したものであってもよい。 According to the configuration of the present embodiment, since the casing of the light source block 208 is configured by the resin reflection sheet 51, the light source block 208 and a lighting device using the same can be reduced in weight. In the present embodiment, the reflective sheet 51 is made of a white material, but it may have any form as long as the inner surface can reflect light. For example, the inner surface may be white-coated.
 次に、本発明の実施例11について、図20及び図21を参照して説明する。図20は、本実施例に係るLED列の回路構成又は接続構成の一例を示している。 Next, an eleventh embodiment of the present invention will be described with reference to FIGS. FIG. 20 shows an example of the circuit configuration or connection configuration of the LED array according to this embodiment.
 図20において、LED基板(ここでは図示せず)上には、複数の(図20では6個)LED30が物理的に一列に配列されたLED列が4列実装されている。図20では、各LED列を符号35-1~35-4で示している。ここで、1つのLED列35におけるLED(図20では6個)の全てを直列接続すると、そのうちの1つでも故障等により断線状態になると、全てのLEDへの電流の供給が遮断されてしまう。すなわち、この場合は、LED列のうち1つのLEDが断線状態になると、全てのLEDを点灯させることができなくなる。 20, four LED rows each having a plurality of (six in FIG. 20) LEDs 30 physically arranged in a row are mounted on an LED substrate (not shown here). In FIG. 20, each LED row is indicated by reference numerals 35-1 to 35-4. Here, if all of the LEDs (six in FIG. 20) in one LED row 35 are connected in series, the supply of current to all the LEDs will be interrupted if one of them is disconnected due to a failure or the like. . That is, in this case, when one LED in the LED row is disconnected, all the LEDs cannot be turned on.
 そこで本実施例では、LED列35-1~4のそれぞれについて、先頭(端)から2n-1番目(ここでnは1以上の整数)のLED30を直列接続して第1のLED直列回路36-1~4を構成し、2n番目のLED30を直列接続して第1のLED直列回路36-1~4とは別の第2のLED直列回路37-1~4を構成した。そして、第1のLED直列回路36-1~4と第2のLED直列回路37-1~4とを並列接続している。換言すれば、本実施例は、第1のLED直列回路36-1~4と第2のLED直列回路37-1~4とを並列接続し、第1のLED直列回路36-1~4が有するLED30と、第2のLED直列回路37-1~4が有するLED3とを、交互に一列に配置してLED列35を構成したものである。 Therefore, in the present embodiment, for each of the LED rows 35-1 to 35-4, the 2n-1th (where n is an integer equal to or greater than 1) LEDs 30 from the head (end) are connected in series to form the first LED series circuit 36. The second LED series circuits 37-1 to 3-4, which are different from the first LED series circuits 36-1 to 36-4, are configured by connecting the 2n-th LEDs 30 in series. The first LED series circuits 36-1 to 36-4 and the second LED series circuits 37-1 to 3-4 are connected in parallel. In other words, in this embodiment, the first LED series circuits 36-1 to 36-4 and the second LED series circuits 37-1 to 3-4 are connected in parallel, and the first LED series circuits 36-1 to 36-4 are connected to each other. The LED row 35 is configured by alternately arranging the LEDs 30 having the LEDs 30 and the LEDs 3 having the second LED series circuits 37-1 to 3-4 in one row.
 このように構成すれば、例えばLED列35-1が有する複数のLED30のうち、例えば第1のLED直列回路36-1に属するLED30のうち一つが故障等により断線状態になっても、第2のLED直列回路37には電流を供給することができるため、LED列における全てのLEDが消灯することを回避することができる。また、第1のLED直列回路36が有するLED30と、第2のLED直列回路37が有するLED30とを交互に配置しているため、仮に第1のLED直列回路36のLED30が故障等により消灯したとしても、残りのLED(すなわち第2のLED直列回路37が有するLED30)の点灯による空間的な発光分布の偏りを低減することができる。 With this configuration, for example, even if one of the LEDs 30 belonging to the first LED series circuit 36-1 among the plurality of LEDs 30 included in the LED array 35-1 becomes disconnected due to a failure or the like, the second Since the current can be supplied to the LED series circuit 37, it is possible to avoid turning off all the LEDs in the LED array. In addition, since the LEDs 30 included in the first LED series circuit 36 and the LEDs 30 included in the second LED series circuit 37 are alternately arranged, the LEDs 30 of the first LED series circuit 36 are temporarily turned off due to a failure or the like. Even in this case, it is possible to reduce the bias of the spatial light distribution due to the lighting of the remaining LEDs (that is, the LEDs 30 included in the second LED series circuit 37).
 図21は、本実施例に係るLED列の回路構成又は接続構成の他の例を示している。この例は、第1のLED直列回路36-1aが有するLEDと第2のLED直列回路37-1aが有するLEDとを交互に一列に配置して構成した第1のLED列35-1aと、第1のLED直列回路36-1bが有するLEDと第2のLED直列回路37-1bが有するLEDとを交互に一列に配置して構成した第2のLED列35-1bとを、LEDの配列方向に沿って並べて配置して、より多くのLEDを有するLED列350-1を構成したものである。他のLED列350-2~4も同様な構成を有している。LEDの個数は、図示のものに限られるものではない。 FIG. 21 shows another example of the circuit configuration or connection configuration of the LED array according to this embodiment. This example includes a first LED array 35-1a configured by alternately arranging LEDs included in the first LED series circuit 36-1a and LEDs included in the second LED series circuit 37-1a, A second LED array 35-1b configured by alternately arranging the LEDs included in the first LED series circuit 36-1b and the LEDs included in the second LED series circuit 37-1b in one line is arranged in an LED array. The LED array 350-1 having a larger number of LEDs is arranged side by side along the direction. The other LED rows 350-2 to 4-4 have the same configuration. The number of LEDs is not limited to that shown in the figure.
 この例も図20の例と同様に、第1のLED直列回路36-1aと第2のLED直列回路37-1aとは並列接続されており、第1のLED直列回路36-1bと第2のLED直列回路37-1bも並列接続されている。第1のLED列35-1aを構成する2つのLED直列回路(36-1a及び36-1b)と、第2のLED列35-1bを構成する2つのLED直列回路(37-1a及び37-1b)もまた、並列接続されている。すなわち、この例では、LED列350-1は、4つのLED直列回路(36-1a、36-1b、37-1a及び37-1b)を備えている。 Similarly to the example of FIG. 20, in this example, the first LED series circuit 36-1a and the second LED series circuit 37-1a are connected in parallel, and the first LED series circuit 36-1b and the second LED series circuit 36-1b are connected in parallel. The LED series circuit 37-1b is also connected in parallel. Two LED series circuits (36-1a and 36-1b) constituting the first LED row 35-1a and two LED series circuits (37-1a and 37-) constituting the second LED row 35-1b 1b) is also connected in parallel. That is, in this example, the LED string 350-1 includes four LED series circuits (36-1a, 36-1b, 37-1a, and 37-1b).
 また、図21のLED列350-1において、「×」マーク33は、LEDが実装される配線パターンが形成されているが、実際にはLEDが実装されていない箇所を示している。すなわち、この例は、第2のLED直列回路37-1a、37-1bの全てのLEDを実装しない構成としている。 Further, in the LED row 350-1 of FIG. 21, the “x” mark 33 indicates a portion where the wiring pattern on which the LED is mounted is formed but the LED is not actually mounted. That is, in this example, all the LEDs of the second LED series circuits 37-1a and 37-1b are not mounted.
 かかる構成によれば、用途に応じてLEDの実装個数を調整することができる。例えば、広い面積の領域を高輝度に照明する用途に当該照明装置を使用する場合は、第1のLED直列回路及び第2のLED直列回路の全てにLEDを実装或いは接続し、高輝度を必要としない用途に当該照明装置を使用する場合は、第1のLED直列回路または第2のLED直列回路のいずれかについて、LEDを実装又は接続しないようにする。すなわち、この例の構成によれば、用途に応じてLEDの実装個数を調整できるので、用途別に異なる照明装置を設計・製造する工程が低減され、照明装置のコストを大幅に削減することができる。また第1のLED直列回路が有するLEDと第2のLED直列回路が有するLEDとが交互に配置されているので、第1又は第2のLED直列回路のいずれかにLEDを実装又は接続しない場合でも、照明光の空間的な輝度分布の均一性を維持することが可能となる。 According to this configuration, the number of LEDs mounted can be adjusted according to the application. For example, when the lighting device is used for the purpose of illuminating a wide area with high brightness, LEDs are mounted or connected to all of the first LED series circuit and the second LED series circuit, and high brightness is required. When the lighting device is used for an application that does not, the LED is not mounted or connected to either the first LED series circuit or the second LED series circuit. That is, according to the configuration of this example, since the number of LEDs mounted can be adjusted according to the application, the process of designing and manufacturing a different illumination device for each application is reduced, and the cost of the illumination device can be greatly reduced. . In addition, since the LEDs included in the first LED series circuit and the LEDs included in the second LED series circuit are alternately arranged, the LED is not mounted or connected to either the first or second LED series circuit. However, it is possible to maintain the uniformity of the spatial luminance distribution of the illumination light.
 このように、実施例11の構成によれば、LED列の中の一つのLEDが故障した場合でも照明光の照射することができるとともに、そのときの照明光の空間的な輝度輝度分布の均一性を維持することが可能となる。更に、LEDの個数を調整することが容易となり、またLED個数を減少させた場合(つまり第1または第2のLED直列回路のいずれかにLEDを実装又は接続しない場合)でも、照明光の空間的な輝度輝度分布の均一性を維持することが可能となる。 As described above, according to the configuration of the eleventh embodiment, it is possible to irradiate illumination light even when one LED in the LED row breaks down, and to make the spatial luminance luminance distribution of the illumination light uniform at that time. It becomes possible to maintain sex. Furthermore, it is easy to adjust the number of LEDs, and even when the number of LEDs is reduced (that is, when LEDs are not mounted or connected to either the first or second LED series circuit), the illumination light space is reduced. It is possible to maintain a uniform luminance luminance distribution.
 本実施例は、図20または図21のようなLEDの配列に限らず、例えば図11や図13のLED配列にも適用可能であることは言うまでも無い。当然、実施例1~10の各構成を本実施例に適宜適用することも可能である。 Needless to say, the present embodiment is not limited to the LED array as shown in FIG. 20 or FIG. Of course, the configurations of the first to tenth embodiments can be appropriately applied to the present embodiment.
 次に、本発明の実施例12について、図22(a)及び(b)を参照して説明する。図22(a)は、拡散板21のYZ平面の断面を示し、図22(b)は、YZ平面の断面を示している。 Next, a twelfth embodiment of the present invention will be described with reference to FIGS. 22 (a) and (b). FIG. 22A shows a cross section of the diffusing plate 21 in the YZ plane, and FIG. 22B shows a cross section of the YZ plane.
 図3に示された実施例1に係る拡散板20は、そのLED30側の面に、YZ平面の断面が三角形状の凸部及び凹部(プリズム)がY方向に延びて形成されているが、本実施例に係る拡散板21ではX方向に延びて形成されている。すなわち、本実施例に係る拡散板21は、そのLED30(Z方向上)側の面(光入射面)に三角形状の凸部及び凹部(プリズム)を有しており、そのプリズムは、X方向、すなわちLEDの光放出方向と平行な方向に複数配列されており、かつY方向、すなわちLEDの光放出方向と直交する方向に延びて形成されている。 The diffusion plate 20 according to the first embodiment shown in FIG. 3 is formed on the surface on the LED 30 side with a convex portion and a concave portion (prism) having a triangular cross section on the YZ plane extending in the Y direction. The diffusion plate 21 according to the present embodiment is formed to extend in the X direction. That is, the diffusion plate 21 according to the present embodiment has triangular convex portions and concave portions (prisms) on the surface (light incident surface) on the LED 30 (on the Z direction) side, and the prism is in the X direction. That is, it is arranged in a plurality in a direction parallel to the light emission direction of the LED and extends in the Y direction, that is, a direction orthogonal to the light emission direction of the LED.
 かかる構成によれば、拡散板21に入射された光は、プリズムの延伸方向(X方向)に沿ってプリズムの凹部で反射されながら伝播されるため、LED列におけるLED相互間の部分にも光を十分に供給することができる。このため、本実施例によれば、LED相互間のにおける相対的な輝度低下を抑制することができる。また、プリズムのLED側の面に入射される光は、図3の拡散板20のプリズムの各面に入射される光に比べて入射角が小さくなる。このため、拡散板21のプリズムのLED側の面に入射する光のうち、当該LED側の面から拡散板21の内部に入射される光の方が、当該LED側の面によって全反射される光よりも多くなる。この拡散板21の内部に入射された光は、拡散板21の内部を拡散及び反射しながらY方向に伝播或いは導光される。よって、本実施例によれば、図3の拡散板20に比べて、より照明ブロック先端まで光が伝播し易くなり、1つの照明ブロックにおけるY方向の輝度むらをより低減することが可能となる。 According to such a configuration, the light incident on the diffusion plate 21 is propagated while being reflected by the prism recesses along the extension direction (X direction) of the prism. Can be fully supplied. For this reason, according to the present Example, the relative brightness fall between LED can be suppressed. Moreover, the incident angle of the light incident on the LED side surface of the prism is smaller than that of the light incident on each surface of the prism of the diffusion plate 20 of FIG. For this reason, among the light incident on the LED side surface of the prism of the diffusion plate 21, the light incident on the inside of the diffusion plate 21 from the LED side surface is totally reflected by the LED side surface. More than light. The light incident on the inside of the diffusion plate 21 is propagated or guided in the Y direction while diffusing and reflecting inside the diffusion plate 21. Therefore, according to the present embodiment, compared with the diffuser plate 20 of FIG. 3, the light is more easily propagated to the front end of the illumination block, and the luminance unevenness in the Y direction in one illumination block can be further reduced. .
 なお、上記実施例1乃至実施例12の照明装置においては、ケース70(71、72)を照明装置用に配置しているが、拡散板20または21と所定距離H1(H2)離れた位置に拡散カバー60(61、62)が配置できればよいため、建物など別の構造物の一部を用いて拡散カバー60(61、62)を固定保持してもよい。 In addition, in the illuminating device of the said Example 1 thru | or Example 12, although case 70 (71, 72) is arrange | positioned for illuminating devices, it is in the position away from the diffuser plate 20 or 21 by predetermined distance H1 (H2). Since it is sufficient that the diffusion cover 60 (61, 62) can be disposed, the diffusion cover 60 (61, 62) may be fixedly held by using a part of another structure such as a building.
 上述した各実施例は、必要に応じて任意に組み合わせることが可能である。また各実施例において、白色LEDに代えてRGBの3原色のLEDを用い、ユーザの指示により全体の照明光、又は照明ブロック毎に照射光の色合いを調節できるようにしてもよい。 The embodiments described above can be arbitrarily combined as necessary. Further, in each embodiment, RGB primary three-color LEDs may be used in place of the white LEDs, and the overall illumination light or the color of the illumination light may be adjusted for each illumination block according to a user instruction.
10 ベースシャーシ
20、21 拡散板
30 LED
35、350 LED列
36 第1のLED直列回路
37 第2のLED直列回路
40、41、42、43、44、45、46 LED基板
50 反射シート
60、61、62 拡散カバー
70、71、72 ケース
95 筒状スペーサ
100、101、102、103、104、105、106、107、108 照明装置200、201、202、203、204、205、206 光源ブロック
300、301、302 ハウジング
10 Base chassis 20, 21 Diffuser 30 LED
35, 350 LED array 36 1st LED series circuit 37 2nd LED series circuit 40, 41, 42, 43, 44, 45, 46 LED board 50 Reflective sheet 60, 61, 62 Diffusion cover 70, 71, 72 Case 95 Cylindrical spacer 100, 101, 102, 103, 104, 105, 106, 107, 108 Illumination device 200, 201, 202, 203, 204, 205, 206 Light source block 300, 301, 302 Housing

Claims (20)

  1.  光源としてのLEDからの光を照明光として照射する照明装置であって、
     前記照明光の照射方向に開口を設けたベースシャーシと、
     該ベースシャーシに取り付けられた、前記LEDが搭載されるLED基板と、
     上記ベースシャーシの開口部に、前記LED基板に対して所定距離離されて配置された、前記LEDからの光、及び前記LED基板及び/または前記ベースシャーシで反射された光を拡散するための拡散板と、
     前記拡散板と所定距離離されて配置された、前記拡散板からの光を更に拡散するための、前記照明装置の外装としての拡散カバーと、備え、
     前記LEDは、前記照射方向と直交する方向であって、前記LED基板と平行な方向に光を出射するように前記LED基板に取付けられており、前記拡散板は、前記LEDの光出射方向と平行な方向に光を伝播或いは導光する機能を有することを特徴とする照明装置。
    An illumination device for irradiating light from an LED as a light source as illumination light,
    A base chassis provided with an opening in the illumination direction of the illumination light;
    An LED substrate mounted on the base chassis on which the LED is mounted;
    Diffusion for diffusing the light from the LED and the light reflected by the LED substrate and / or the base chassis, which is disposed at a predetermined distance from the LED substrate in the opening of the base chassis. The board,
    A diffusion cover as an exterior of the illuminating device for further diffusing light from the diffusion plate, which is disposed at a predetermined distance from the diffusion plate;
    The LED is attached to the LED substrate so as to emit light in a direction perpendicular to the irradiation direction and parallel to the LED substrate, and the diffuser plate has a light emitting direction of the LED. An illumination device having a function of propagating or guiding light in parallel directions.
  2.  請求項1に記載の照明装置において、前記LED基板のLED搭載面及び/または前記ベースシャーシの内面に、光を反射するための白色塗装又は反射シートが設けられることを特徴とする照明装置。 2. The lighting device according to claim 1, wherein a white coating or a reflection sheet for reflecting light is provided on an LED mounting surface of the LED substrate and / or an inner surface of the base chassis.
  3.  請求項1に記載の照明装置において、前記LEDは、サイドビュー型のLEDであり、白色、昼光色、または電球色の光を放出することを特徴とする照明装置。 2. The lighting device according to claim 1, wherein the LED is a side-view type LED, and emits white, daylight, or light bulb color light.
  4.  請求項1に記載の照明装置において、前記拡散板は、前記LED側の面に、前記LEDの光出射方向に延びる断面が三角形状の凹凸が形成されており、該三角形状の凹凸により、前記LEDの光出射方向と平行な方向に光を伝播或いは導光することを特徴とする照明装置。 2. The illumination device according to claim 1, wherein the diffuser plate has a triangle-shaped concavo-convex section extending in a light emitting direction of the LED on the surface on the LED side, and the triangular concavo-convex forms the An illumination device characterized by propagating or guiding light in a direction parallel to a light emitting direction of the LED.
  5.  請求項1に記載の照明装置において、前記拡散板は、前記LED側の面に、前記LEDの光出射方向と直交する方向に延びる断面が三角形状の凹凸が形成されており、該三角形状の凹凸により、前記LEDの光出射方向と平行な方向と直交する方向に光を伝播或いは導光することを特徴とする照明装置。 2. The illumination device according to claim 1, wherein the diffuser plate has a triangle-shaped concavity and convexity formed in a cross-section extending in a direction orthogonal to the light emitting direction of the LED on the surface on the LED side. An illuminating device characterized in that light is propagated or guided in a direction orthogonal to a direction parallel to the light emitting direction of the LED by the unevenness.
  6.  請求項1に記載の照明装置において、前記拡散板の前記LEDと対応する位置に、光の透過量遮光パターンが設けられ、該遮光パターンは、白色のインク又は白色に黒色又は青色インクを混入したインクを前記拡散板に印刷することにより形成されることを特徴とする照明装置。 The lighting device according to claim 1, wherein a light transmission amount shading pattern is provided at a position corresponding to the LED of the diffusion plate, and the shading pattern is mixed with white ink or white or black or blue ink. It is formed by printing ink on the said diffusion plate, The illuminating device characterized by the above-mentioned.
  7.  請求項1に記載の照明装置において、遮光パターンが印刷されたフィルムを、該遮光パターンが前記LEDと位置的に対応するように、前記拡散板に貼り付けたことを特徴とする照明装置。 2. The illumination device according to claim 1, wherein a film on which a light shielding pattern is printed is attached to the diffusion plate so that the light shielding pattern corresponds to the LED in position.
  8.  請求項6に記載の照明装置において、前記遮光パターンは、前記LEDの光出射方向側に延びる放射状の突起を有することを特徴とする照明装置。 7. The illuminating device according to claim 6, wherein the light shielding pattern has radial protrusions extending toward a light emitting direction side of the LED.
  9.  請求項1に記載の照明装置において、前記LEDの光出射方向と直交する方向に複数の前記LEDが配列されたLED列を有し、該LED列が、前記LEDの光出射方向に沿って複数配列されていることを特徴とする照明装置。 2. The lighting device according to claim 1, further comprising: an LED array in which a plurality of the LEDs are arranged in a direction orthogonal to the light emission direction of the LED, wherein the LED array includes a plurality of LED arrays along the light emission direction of the LED. An illuminating device that is arranged.
  10.  請求項9に記載の照明装置において、前記各LED列における各LEDの光出射方向が同じであることを特徴とする照明装置。 10. The illumination device according to claim 9, wherein the light emission direction of each LED in each LED row is the same.
  11.  請求項9に記載の照明装置において、該照明装置の前記LEDの光出射方向の中心を基準として、一方の側のLED列におけるLEDの光出射方向と、他方の側LED列におけるLEDの光出射方向が互いに対向していることを特徴とする照明装置。 10. The illumination device according to claim 9, wherein the light emission direction of the LED in one side LED row and the light emission of the LED in the other side LED row are based on the center of the light emission direction of the LED of the illumination device. A lighting device characterized in that directions are opposed to each other.
  12.  請求項9に記載の照明装置において、該照明装置の前記LEDの光出射方向の中心を基準として、一方の側のLED列におけるLEDの光出射方向と、他方の側LED列におけるLEDの光出射方向が互いに逆方向であることを特徴とする照明装置。 10. The illumination device according to claim 9, wherein the light emission direction of the LED in one side LED row and the light emission of the LED in the other side LED row are based on the center of the light emission direction of the LED of the illumination device. A lighting device characterized in that directions are opposite to each other.
  13.  請求項9に記載の照明装置において、2つのLED列の背面を互いに対向して配置することによりLED列群を構成し、該LED列群を、前記照明装置の前記LEDの光出射方向の中心を基準として対称配置したことを特徴とする照明装置。 The lighting device according to claim 9, wherein an LED row group is configured by disposing the back surfaces of two LED rows facing each other, and the LED row group is formed at the center of the light emitting direction of the LED of the lighting device. An illuminating device characterized by being symmetrically arranged with respect to.
  14.  請求項9に記載の照明装置において、前記各LED列における隣接するLEDの光出射方向が互いに逆方向であることを特徴とする照明装置。 10. The illuminating device according to claim 9, wherein light emitting directions of adjacent LEDs in each LED row are opposite to each other.
  15.  請求項1に記載の照明装置において、前記ベースシャーシの内面形状と相似の形状を有する反射シートが前記LED基板上及び前記ベースシャーシの内面に設けられることを特徴とする照明装置。 2. The lighting device according to claim 1, wherein a reflection sheet having a shape similar to the shape of the inner surface of the base chassis is provided on the LED substrate and the inner surface of the base chassis.
  16.  請求項9に記載の照明装置において、前記LED列における2n-1番目のLEDが第1のLED直列回路に直列接続されており、2n番目のLEDが第2のLED直列回路に直列接続されており、前記第1のLED直列回路と前記第2のLED直列回路が並列接続されていることを特徴とする照明装置。 The lighting device according to claim 9, wherein the 2n−1th LED in the LED row is connected in series to the first LED series circuit, and the 2nth LED is connected in series to the second LED series circuit. The lighting device is characterized in that the first LED series circuit and the second LED series circuit are connected in parallel.
  17.  請求項1に記載の照明装置において、更に、前記拡散カバーとともに前記照明装置の外装を構成するケースを備え、前記ベースシャーシ、前記LED基板、前記拡散板を含む光源ユニットが、複数個、前記拡散カバーと前記ケースで構成される外装内に収納されることを特徴とする照明装置。 The lighting device according to claim 1, further comprising a case that forms an exterior of the lighting device together with the diffusion cover, and a plurality of light source units including the base chassis, the LED substrate, and the diffusion plate, the diffusion. A lighting device housed in an exterior composed of a cover and the case.
  18.  請求項1に記載の照明装置において、前記拡散板の光出射面から前記拡散カバーの光入射面までの距離が、前記ベースシャーシの背面から前記拡散板の光射面までの距離の0.5倍~5倍であることを特徴とする照明装置。 2. The illumination device according to claim 1, wherein a distance from a light emitting surface of the diffusion plate to a light incident surface of the diffusion cover is 0.5 of a distance from a back surface of the base chassis to a light emitting surface of the diffusion plate. An illuminating device characterized by being double to five times.
  19.  光源としてのLEDからの光を照明光として照射する照明装置であって、
     平板状のベースシャーシと、
     前記ベースシャーシに取付けられ、前記照明光の照射方向に開口を向いた、箱形状、枡形状あるいはトレイ形状に形成された反射シートと、
     該反射シートの底面側に取り付けられた、前記LEDが搭載されるLED基板と、
     上記反射シートの開口部に、前記LED基板に対して所定距離離されて配置された、前記LEDからの光、及び前記LED基板及び/または前記反射シートで反射された光を拡散するための拡散板と、
     前記拡散板と所定距離離されて配置された、前記拡散板からの光を更に拡散するための、前記照明装置の外装としての拡散カバーと、備え、
     前記LEDは、前記照射方向と直交する方向であって、前記LED基板と平行な方向に光を出射するように前記LED基板に取付けられており、前記拡散板は、前記LEDの光出射方向と平行な方向に光を伝播或いは導光する機能を有することを特徴とする照明装置。
    An illumination device for irradiating light from an LED as a light source as illumination light,
    A flat base chassis;
    A reflective sheet attached to the base chassis and facing the opening in the illumination direction of the illumination light, formed in a box shape, a bowl shape or a tray shape;
    An LED substrate on which the LED is mounted, attached to the bottom side of the reflective sheet;
    Diffusion for diffusing the light from the LED and the light reflected by the LED substrate and / or the reflection sheet, which is disposed at a predetermined distance from the LED substrate at the opening of the reflection sheet. The board,
    A diffusion cover as an exterior of the illuminating device for further diffusing light from the diffusion plate, which is disposed at a predetermined distance from the diffusion plate;
    The LED is attached to the LED substrate so as to emit light in a direction perpendicular to the irradiation direction and parallel to the LED substrate, and the diffuser plate has a light emitting direction of the LED. A lighting device having a function of propagating or guiding light in parallel directions.
  20.  請求項19に記載の照明装置において、前記反射シートの底面と前記拡散板との間に円筒状のスペーサが設けられ、該円筒状スペーサを介して、前記反射シートと前記拡散板が前記ベースシャーシにネジ止めされて固定されることを特徴とする照明装置。 20. The lighting device according to claim 19, wherein a cylindrical spacer is provided between a bottom surface of the reflection sheet and the diffusion plate, and the reflection sheet and the diffusion plate are connected to the base chassis via the cylindrical spacer. A lighting device, wherein the lighting device is fixed by screwing.
PCT/JP2012/073565 2012-02-29 2012-09-14 Lighting device WO2013128694A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012042752 2012-02-29
JP2012-042752 2012-02-29
JP2012102034A JP2013211245A (en) 2012-02-29 2012-04-27 Lighting device
JP2012-102034 2012-04-27

Publications (1)

Publication Number Publication Date
WO2013128694A1 true WO2013128694A1 (en) 2013-09-06

Family

ID=49081921

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/073565 WO2013128694A1 (en) 2012-02-29 2012-09-14 Lighting device

Country Status (2)

Country Link
JP (1) JP2013211245A (en)
WO (1) WO2013128694A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3232240A1 (en) * 2016-04-15 2017-10-18 LG Innotek Co., Ltd. Light-emitting apparatus and illumination apparatus including the same
CN113039654A (en) * 2018-11-16 2021-06-25 株式会社光波 Planar light emitting device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10307212A (en) * 1997-03-07 1998-11-17 Enplas Corp Side light type surface light source device
JP2004039476A (en) * 2002-07-04 2004-02-05 Sharp Corp Backlight device and liquid crystal display device
JP2006100182A (en) * 2004-09-30 2006-04-13 Casio Comput Co Ltd Surface light source and liquid crystal display using surface light source
JP2006251075A (en) * 2005-03-08 2006-09-21 Sony Corp Back light apparatus and liquid crystal display
WO2007086347A1 (en) * 2006-01-27 2007-08-02 Opto Design, Inc. Planar illumination light source device and planar illumination device using the same
JP2010250013A (en) * 2009-04-14 2010-11-04 Showa Denko Kk Display device and light source device
JP2010257763A (en) * 2009-04-24 2010-11-11 Okumura Printing Co Ltd Elongated led lighting device and plane lighting system using the same
JP2011129465A (en) * 2009-12-21 2011-06-30 Sony Corp Backlight and liquid crystal display
JP2011243576A (en) * 2010-05-20 2011-12-01 Young Lighting Technology Inc Light module

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007086195A (en) * 2005-09-20 2007-04-05 Toshiba Matsushita Display Technology Co Ltd Illumination unit and liquid crystal display device using the same
JP2010061863A (en) * 2008-09-01 2010-03-18 Sharp Corp Illuminating device and method of manufacturing the same, and display device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10307212A (en) * 1997-03-07 1998-11-17 Enplas Corp Side light type surface light source device
JP2004039476A (en) * 2002-07-04 2004-02-05 Sharp Corp Backlight device and liquid crystal display device
JP2006100182A (en) * 2004-09-30 2006-04-13 Casio Comput Co Ltd Surface light source and liquid crystal display using surface light source
JP2006251075A (en) * 2005-03-08 2006-09-21 Sony Corp Back light apparatus and liquid crystal display
WO2007086347A1 (en) * 2006-01-27 2007-08-02 Opto Design, Inc. Planar illumination light source device and planar illumination device using the same
JP2010250013A (en) * 2009-04-14 2010-11-04 Showa Denko Kk Display device and light source device
JP2010257763A (en) * 2009-04-24 2010-11-11 Okumura Printing Co Ltd Elongated led lighting device and plane lighting system using the same
JP2011129465A (en) * 2009-12-21 2011-06-30 Sony Corp Backlight and liquid crystal display
JP2011243576A (en) * 2010-05-20 2011-12-01 Young Lighting Technology Inc Light module

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3232240A1 (en) * 2016-04-15 2017-10-18 LG Innotek Co., Ltd. Light-emitting apparatus and illumination apparatus including the same
US10551552B2 (en) 2016-04-15 2020-02-04 Lg Innotek Co., Ltd. Light-emitting apparatus and illumination apparatus including the same
CN113039654A (en) * 2018-11-16 2021-06-25 株式会社光波 Planar light emitting device

Also Published As

Publication number Publication date
JP2013211245A (en) 2013-10-10

Similar Documents

Publication Publication Date Title
JP5920616B2 (en) Direct type LED backlight device and liquid crystal display device using the same
KR100989219B1 (en) Backlight assembly and liquid crystal display divice having the same
KR100852249B1 (en) Planar light source device
JP4363268B2 (en) Surface light source device
JP4577229B2 (en) Backlight device and liquid crystal display device
US8752973B2 (en) Lighting device, display device and television receiver
CN111465895B (en) Light-emitting mechanism and backlight module
JP2004311353A (en) Surface light source device and liquid crystal display device using this device
KR100999780B1 (en) Optical assembly, backlight unit having the same, and display apparatus thereof
JP2013131499A (en) Light unit and lighting system using the same
JP2019139905A (en) Illumination device, display device, and television receiver
WO2011048835A1 (en) Lighting device and display device
JP2013175460A (en) Illumination unit and illumination system using the same
JP2012204336A (en) Illumination device and display device
WO2013128694A1 (en) Lighting device
JP2010097783A (en) Planar light source and liquid crystal display device
JP2011159436A (en) Edge light type lighting system
JP5322820B2 (en) Surface emitting device
JP2013182854A (en) Lighting device and display device with the same
JP2004171870A (en) Lighting system and liquid crystal display device
TW201641999A (en) Reflecting assembly, backlight module and display device having the backlight module
JP4848534B2 (en) Planar light source
TWI519862B (en) Direct-type backlight module
US20120236539A1 (en) Light guide plate, light source device, and display device
TW201508395A (en) Direct type backlight module and liquid crystal display device using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12870296

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12870296

Country of ref document: EP

Kind code of ref document: A1