WO2013128489A1 - Onu and control method - Google Patents

Onu and control method Download PDF

Info

Publication number
WO2013128489A1
WO2013128489A1 PCT/JP2012/001381 JP2012001381W WO2013128489A1 WO 2013128489 A1 WO2013128489 A1 WO 2013128489A1 JP 2012001381 W JP2012001381 W JP 2012001381W WO 2013128489 A1 WO2013128489 A1 WO 2013128489A1
Authority
WO
WIPO (PCT)
Prior art keywords
control signal
power save
output destination
unit
onu
Prior art date
Application number
PCT/JP2012/001381
Other languages
French (fr)
Japanese (ja)
Inventor
英哲 井川
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2012/001381 priority Critical patent/WO2013128489A1/en
Publication of WO2013128489A1 publication Critical patent/WO2013128489A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/02Details
    • H04L12/12Arrangements for remote connection or disconnection of substations or of equipment thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/2854Wide area networks, e.g. public data networks
    • H04L12/2856Access arrangements, e.g. Internet access
    • H04L12/2869Operational details of access network equipments
    • H04L12/2878Access multiplexer, e.g. DSLAM
    • H04L12/2879Access multiplexer, e.g. DSLAM characterised by the network type on the uplink side, i.e. towards the service provider network
    • H04L12/2885Arrangements interfacing with optical systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/2854Wide area networks, e.g. public data networks
    • H04L12/2856Access arrangements, e.g. Internet access
    • H04L12/2869Operational details of access network equipments
    • H04L12/2898Subscriber equipments
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q11/0067Provisions for optical access or distribution networks, e.g. Gigabit Ethernet Passive Optical Network (GE-PON), ATM-based Passive Optical Network (A-PON), PON-Ring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0064Arbitration, scheduling or medium access control aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0079Operation or maintenance aspects
    • H04Q2011/0081Fault tolerance; Redundancy; Recovery; Reconfigurability
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/009Topology aspects
    • H04Q2011/0096Tree
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/50Reducing energy consumption in communication networks in wire-line communication networks, e.g. low power modes or reduced link rate

Definitions

  • the present invention has a power saving function (low power consumption function) for an optical transmitter / receiver incorporated in an ONU (Optical Network Unit: subscriber-side terminating device) constituting a PON system (Passive Optical Network System) in an optical transmission system.
  • the present invention relates to an ONU and a control method.
  • An ONU constituting the PON system includes an optical transceiver that converts an electrical signal into an optical signal and transmits the optical signal, receives the optical signal, and converts it into an electrical signal.
  • the ONU has a function (power saving function) for stopping power consumption by stopping a part of the operation of the optical transceiver when not needed.
  • a method of stopping a part of the operation of the optical transceiver when data is not transmitted is generally used.
  • a circuit block for example, a transmission circuit, a reception circuit, a transmission / reception circuit, etc.
  • the present invention has been made to solve the above-described problems, and an object thereof is to provide an ONU capable of realizing a plurality of power save modes without using a plurality of control signals.
  • the ONU is a control signal for outputting a power saving control signal for causing the output destination to perform power saving, and a digital control signal for designating at least one of the circuit blocks in the optical transceiver as the output destination.
  • An output unit and an output destination selection unit that outputs a power save control signal from the control signal output unit to an output destination specified by the digital control signal are provided.
  • the power save mode can be dynamically switched using an existing digital control line, so that a plurality of power save modes can be realized with one control signal. Therefore, low power consumption can be achieved.
  • FIG. 1 is a diagram showing an overall configuration of a PON system according to Embodiment 1 of the present invention.
  • the PON system includes an OLT 1 that is a station-side terminal device and a plurality of ONUs 2 (n units of ONUs # 1 to #n in FIG. 1) that are optical fibers. 3 and the star coupler 4.
  • the OLT 1 In data communication in this PON system, in the downstream direction, the OLT 1 continuously transmits data to all the ONUs 2, and each ONU 2 selects and receives only the data addressed to itself. On the other hand, in the upstream direction, the ONU 2 intermittently transmits data (burst transmission) to the OLT 1 during communication. Data from each ONU 2 is transmitted by time division multiplexing (TDM) in accordance with the communication schedule set by the OLT 1.
  • TDM time division multiplexing
  • the ONU 2 includes an optical transceiver 5 and a MAC unit (Media Access Control Large Scale Integration: MAC LSI) 6 as shown in FIG.
  • MAC LSI Media Access Control Large Scale Integration
  • the optical transceiver 5 converts the electrical signal from the MAC unit 6 into an optical signal and transmits it to the OLT 1, receives the optical signal from the OLT 1, converts it into an electrical signal, and outputs it to the MAC unit 6.
  • the detailed configuration of the optical transceiver 5 will be described later.
  • the MAC unit 6 performs data transmission / reception with the user side terminal (UNI side) as a user side interface and also performs data transmission / reception with the optical transceiver 5.
  • the MAC unit 6 also has a function of performing transmission timing control of the transmission circuit unit 52 in the optical transceiver 5 based on the communication schedule by the OLT 1. Further, the MAC unit 6 also has a function of power saving a part of the optical transceiver 5 based on a communication schedule by the OLT 1.
  • the MAC unit (control signal output unit) 6 includes a control signal (power save control signal 14) for causing the output destination to perform power saving, and a circuit block in the optical transceiver 5 as an output destination of the control signal.
  • the control signal (digital control signal 15) for designating or switching the power save mode is output to the optical transceiver 5.
  • a digital control line normally prepared for DDM (Digital Diagnostics Monitoring) or the like is used.
  • the optical transceiver 5 includes a card edge connector 51, a transmission circuit unit 52, an optical module 53, a reception circuit unit 54, and a logic control unit (output destination selection unit) 55.
  • the card edge connector 51 connects between each circuit block in the optical transceiver 5 and the MAC unit 6, and various data (transmission main signal 11, burst control signal 12, reception main signal 13, power save control signal 14 and The digital control signal 15) is transmitted and received.
  • transmission main signal 11 and the burst control signal 12 output from the MAC unit 6 are output to the LD driver 521 of the transmission circuit unit 52.
  • reception main signal 13 output from the reception circuit unit 54 is output to the MAC unit 6.
  • the power save control signal 14 and the digital control signal 15 output from the MAC unit 6 are output to the logic control unit 55.
  • the digital control signal 15 is also output to the transmission circuit unit 52 and the reception circuit unit 54 via the logic control unit 55.
  • the transmission circuit unit 52 converts the electrical signal (transmission main signal 11) into an optical signal using the optical module 53 at the transmission timing specified by the burst control signal 12 output from the MAC unit 6 via the card edge connector 51.
  • the data is converted and transmitted to the OLT 1.
  • the transmission circuit unit 52 includes an LD (Laser Diode) driver 521 having a laser driving unit 522.
  • the laser drive unit 522 drives the light emitting element 532 of the optical module 53.
  • the optical module 53 converts the electrical signal (transmission main signal 11) from the MAC unit 6 into an optical signal and transmits it to the OLT 1 under the control of the transmission circuit unit 52.
  • the optical module 53 also has a function of receiving an optical signal from the OLT 1, converting it into an electrical signal, and outputting it to the receiving circuit unit 54.
  • This optical module 53 is driven by a WDM (Wavelength Division Multiplex) filter 531 that multiplexes and demultiplexes optical signals of transmission wavelength / reception wavelength and a laser drive unit 522 to convert an electric signal (transmission main signal 11) into an optical signal.
  • a light receiving element 533 for converting an optical signal into an electric signal.
  • the receiving circuit unit 54 converts the electric signal (current signal) from the optical module 53 into a voltage signal and adjusts it to an appropriate amplitude.
  • the electrical signal (received main signal 13) converted and adjusted by the receiving circuit unit 54 is output to the MAC unit 6 via the card edge connector 51.
  • the logic control unit 55 outputs the power save control signal 14 output from the MAC unit 6 via the card edge connector 51 to a predetermined circuit block of the optical transceiver 5.
  • the logic control unit 55 performs a logical operation based on the digital control signal 15 output from the MAC unit 6 via the card edge connector 51, and outputs the power save control signal 14 to each output destination (each circuit block). Controls ON / OFF.
  • a device such as a microcontroller is used as the logic control unit 55.
  • the power save control signal 14 used when the MAC unit 6 performs power save will be described.
  • the output signals are divided into a Tx power save control signal 141, a laser shutdown control signal 142, and an Rx power save control signal 143.
  • control signals for turning off the power and functions of other circuit blocks may be provided. Which of these control signals is output and the combination of the output signals are based on a power save mode preset by the digital control signal 15.
  • the Tx power save control signal 141 is a control signal for turning off the entire power of the transmission circuit unit 52 via a device such as the switch 523, for example.
  • the laser shutdown control signal 142 is a control signal for shutting down only the laser driving unit 522 in the transmission circuit unit 52. Since the laser driving unit 522 is a part of the transmission circuit unit 52, it can respond faster than Tx power saving.
  • the Rx power save control signal 143 is a control signal for turning off the power of the entire receiving circuit unit 54 via a device such as the switch 541, for example.
  • the power save control signals 141 to 143 for controlling these power save modes can be turned on / off or logically inverted by the digital control signal 15 input to the logic control unit 55. That is, the MAC unit 6 selects the most effective power save mode (power save mode with a large response time and low power consumption effect) based on the communication schedule by the OLT 1, and the corresponding output destination (optical transceiver) 5 is generated and is output to the logic control unit 55 together with the power save control signal 14 or before the power save control signal 14 (control signal output step). Then, the logic control unit 55 sets an output destination, that is, a power save mode based on the digital control signal 15 from the MAC unit 6, and outputs the power save control signal 14 to the output destination (output destination selection step). As a result, it is possible to dynamically transition to a plurality of power save modes (Tx power save, Rx power save, laser shutdown, or a combination thereof) only by assigning one power save control signal 14.
  • power saving may be performed for each data transmission using the burst control signal 12. Further, as shown in FIG. 4, in conjunction with the power saving of the receiving circuit unit 54, the power for the TIA (Transimpedance Amplifier) in the light receiving element 533 is saved using the switch 534 and the Rx power saving control signal 143b. You may do it.
  • TIA Transimpedance Amplifier
  • FIG. 5A is a graph showing changes in traffic
  • FIG. 5B is a graph showing changes in power consumption at that time.
  • the MAC unit 6 performs the Tx power save and the Rx power save (Tx + Rx power save) with the largest low power consumption effect and the long response time. Apply.
  • the MAC unit 6 uses the digital control signal 15 at the timing of the code D (the timing before communication in the section B).
  • the logic control unit 55 is switched to Tx power saving.
  • the MAC unit 6 performs the digital control signal at the timing of the code E (timing before communication in the section C). 15 switches the logic control unit 55 to laser shutdown.
  • the power saving effect lower power consumption
  • the response time is shorter than the Tx power saving
  • the power saving can be performed. Since the relationship between the response time and the power save mode is an example, the circuit block and function to be turned off can be freely changed depending on the balance between the response time and the low power consumption effect.
  • FIG. 6 is a sequence diagram in the case of switching the power save mode led by the OLT 1.
  • the ONU 2 In the initial state, the ONU 2 is assumed to have a power save mode of Tx power save mode (Tx Sleep) and a non-power save state (not a power save state).
  • Tx Sleep Tx power save mode
  • non-power save state not a power save state
  • the OLT1 In the power save mode switching control (OLT1 led) by the PON system, as shown in FIG. 6, first, when the OLT1 transmits a GATE signal to the ONU2, the ONU2 receives the data buffer storage amount (buffer storage) of its own station. Not only the amount but also information such as frame number monitoring and link state change may be notified to OLT 1 to request the first uplink data transmission (steps ST601 and 602).
  • the OLT 1 determines the buffer accumulation amount based on a threshold value stored in the OLT 1. If the buffer storage amount is “Large”, power saving is not performed. If the buffer storage amount is “Medium”, communication is permitted in the Tx power save mode (Tx Sleep). Is “small” and only when there is no downlink transmission data to the target ONU 2 in the OLT 1, a request to switch to the Tx + Rx power save mode (Tx + Rx Sleep) is made to the target ONU 2 (step ST603). In the following, an example will be described in which the OLT 1 requests the ONU 2 to switch to the Tx + Rx power save mode (Tx + Rx Sleep).
  • the ONU 2 that has received the switching request from the OLT 1 uses the MAC digital control signal 15 to switch the power saving mode from the Tx power saving mode to the Tx + Rx power saving mode. Then, the first uplink data transmission (switch notification) is performed (step ST604). At this time, the ONU 2 is not yet in the power saving state.
  • the OLT 1 receives data (switch notification) from the ONU 2, it registers the power save mode.
  • the OLT 1 sends the GATE signal again, the ONU 2 buffer accumulation amount notified after the switching notification from the ONU 2 is continuously below the threshold (accumulation amount “small”), and there is downlink transmission data to the target ONU 2 If not, OLT 1 permits communication in the power save state of the power save mode (Tx + Rx power save mode) switched to ONU 2 (steps ST605 to 607).
  • ONU 2 transmits data to OLT 1 in the power saving state (step ST608).
  • ONU2 also sleeps on the Rx side (reception circuit unit 54 side), so that the link with OLT1 (Link) does not break, so even if there is no transmission data, Wake up periodically and exist in OLT1. Is notified (step ST609). If the OLT 1 determines that the buffer accumulation amount notified after the switching notification from the ONU 2 is “medium”, it makes a request for switching to the Tx power save mode to the target ONU 2, and the ONU 2 performs the first uplink data. The above sequence is repeated from communication (switch notification) (step ST604).
  • FIG. 7 shows an example of a sequence for switching the power save mode led by ONU2.
  • the difference from the OLT1 initiative sequence is that the threshold determination is performed in the ONU2.
  • the ONU2 determines the stored data buffer storage amount in the ONU2 with respect to the GATE signal transmitted by the OLT1. Then, the power save mode is determined in the same manner as described above. In the following description, the buffer accumulation amount is “small” and the ONU 2 determines the power saving mode of the local station as Tx + Rx power saving mode (Tx + Rx Sleep). Then, a request for permission to change the power save mode is sent to the OLT 1 (steps ST701 and 702). At this time, the ONU 2 has not yet changed the power save mode.
  • the OLT 1 that has received the notification confirms whether there is downlink transmission data to the target ONU 2, and if there is no data, permits the change of the power save mode (step ST703). If permitted, as in the above case, first, the power save mode is switched in the first communication, and uplink data transmission (switch notification) is performed to the OLT 1 (step ST704).
  • the ONU 2 makes a determination again when the next GATE signal is received. If the buffer accumulation amount is “small”, the ONU 2 communicates with the OLT 1 in the power saving state of the switched power saving mode (Tx power saving + Rx power saving mode). (Steps ST705 to 708). At this time, the ONU 2 also sleeps on the Rx side, so that the link with the OLT 1 is not broken, so that a wake is periodically made even if there is no transmission data, and the existence is notified to the OLT 1 (step ST 709). . If the buffer accumulation amount is “medium” at the time of determination again, the ONU 2 notifies the OLT 1 of permission to change to the Tx power save mode (step ST702), and performs the same mode switching control.
  • At least one of the power saving control signal 14 that causes the output destination to perform power saving and the circuit block in the optical transceiver 5 is designated as the output destination.
  • the MAC unit 6 that outputs the digital control signal 15 to be output and the logic control unit 55 that outputs the power save control signal 14 from the MAC unit 6 to the output destination specified by the digital control signal 15 are provided. Since the power save mode can be dynamically switched using an existing digital control line, a plurality of power save modes can be realized by one power save control signal 14, and power consumption can be reduced.
  • the MAC unit 6 generates the digital control signal 15 based on the communication schedule set by the OLT 1, outputs the digital control signal 15 before communication with the OLT 1, and outputs the output destination to the logic control unit 55. Since it is configured to perform the setting, it is possible to dynamically switch to the optimum power save mode before communication with the OLT 1, and it is possible to reduce the power consumption more efficiently.
  • FIG. 8 is a diagram showing a circuit configuration of the optical transceiver 5 according to Embodiment 2 of the present invention.
  • the optical transceiver 5 according to the second embodiment shown in FIG. 8 includes a transmission circuit unit 52, a reception circuit unit 54, and a logic control unit 55 of the optical transceiver 5 according to the first embodiment shown in FIG.
  • the integrated device 56 is replaced.
  • Other configurations are the same, and the same reference numerals are given and description thereof is omitted.
  • the transmission / reception integrated device 56 has a power save function in advance in addition to the functions of the transmission circuit unit 52, the reception circuit unit 54, and the logic control unit 55. Therefore, as shown in FIG. 3, it is not necessary to configure discrete devices such as the switches 523 and 541 between the power source and the device, and the function can be stopped inside the device.
  • the transmission / reception integrated device 56 includes a power save mode table 561 that can dynamically change the power save mode by a digital control signal 15 b output from the MAC unit 6 via the card edge connector 51. . Then, a power save mode is set according to the digital control signal 15b, and the power save is performed by the power save control signal 14b output from the MAC unit 6 via the card edge connector 51.
  • An example of power save mode setting control is the same as in the first embodiment.
  • the transmission circuit unit 52, the reception circuit unit 54, and the logic control unit 55 are integrally configured so as to use the power save mode implemented in the device. As compared with the first embodiment, high-speed power save control can be expected.
  • FIG. 9 is a diagram showing a circuit configuration of the optical transceiver 5 according to Embodiment 3 of the present invention.
  • the optical transceiver 5 according to the third embodiment shown in FIG. 9 is obtained by replacing the logic control unit 55 of the optical transceiver 5 according to the first embodiment shown in FIG. 3 with a switch (output destination selection unit) 57. .
  • Other configurations are the same, and the same reference numerals are given and description thereof is omitted.
  • the switch 57 is a switch that can be switched ON / OFF according to a digital control signal 15 c output from the MAC unit 6 via the card edge connector 51.
  • the digital control signal 15c for setting the switch 57 to the OFF (open) state is output, and the power save is performed by the power save control signal 14c.
  • Tx + Rx power saving is to be performed by controlling the switch 523 and the switch 541
  • the digital control signal 15c for setting the switch 57 to the ON (short circuit) state is output, and the power saving is performed by the power saving control signal 14c.
  • the output destination of the power save control signal 14c is changed according to the digital control signal 15c instead of the logic control unit 55. Since the switchable switch 57 is provided, the hardware configuration can be made simpler and less expensive than the first embodiment.
  • the ONU according to the present invention can dynamically switch the power save mode using an existing digital control line, a plurality of power save modes can be realized with one control signal, and the power consumption can be reduced. Therefore, it is suitable for use in an ONU having a power saving function (low power consumption function) for a built-in optical transceiver.

Abstract

This optical network unit (ONU) is provided with: a MAC section (6) which outputs a power-saving control signal (14) for causing an output destination to enter a power saving mode and a digital control signal (15) specifying at least one circuit block in an optical transceiver (5) as an output destination; and a logic control section (55) which outputs the power-saving control signal (14) from the MAC section (6) to the output destination specified by the digital control signal (15).

Description

ONU及び制御方法ONU and control method
 この発明は、光伝送システムにおけるPONシステム(Passive Optical Network System)を構成するONU(Optical Network Unit:加入者側終端装置)において、内蔵する光送受信器に対するパワーセーブ機能(低消費電力機能)を有するONU及び制御方法に関するものである。 The present invention has a power saving function (low power consumption function) for an optical transmitter / receiver incorporated in an ONU (Optical Network Unit: subscriber-side terminating device) constituting a PON system (Passive Optical Network System) in an optical transmission system. The present invention relates to an ONU and a control method.
 PONシステムを構成するONUには、電気信号を光信号に変換して送信し、光信号を受信して電気信号に変換する光送受信器が内蔵されている。そして、ONUは、不要時に、光送受信器の一部の動作を停止させて低消費電力化を図る機能(パワーセーブ機能)を有している。
 このパワーセーブ機能では、データ未送信時に光送受信器の一部の動作を停止させる手法が一般的である。この際、光送受信器内の動作を停止させる回路ブロック(例えば、送信回路、受信回路や送受信回路等)に応じて、それらを停止させるための制御信号を、それぞれホスト側から貰う必要がある。
An ONU constituting the PON system includes an optical transceiver that converts an electrical signal into an optical signal and transmits the optical signal, receives the optical signal, and converts it into an electrical signal. The ONU has a function (power saving function) for stopping power consumption by stopping a part of the operation of the optical transceiver when not needed.
In this power saving function, a method of stopping a part of the operation of the optical transceiver when data is not transmitted is generally used. At this time, it is necessary to receive a control signal for stopping them from the host side in accordance with a circuit block (for example, a transmission circuit, a reception circuit, a transmission / reception circuit, etc.) that stops the operation in the optical transceiver.
 上述したように、従来のONUに内蔵された光送受信器のパワーセーブ機能では、パワーセーブの種類(停止させる回路ブロック)毎に、それぞれホストから制御信号を貰う必要がある。そのため、ONUにいくつかのパワーセーブ機能を実装する場合、複数の制御信号が必要であるという課題があった。特にSFP+(Small Form-Factor Pluggble Plus)やXFP(10 Gigabit Small Form-Factor Pluggble)といった標準規格に準拠した光送受信器の場合、ホスト側とのインターフェースやピンアサインが決められているため、パワーセーブを実現するための制御信号は多くても1ピン程度しか割り当てることができない。したがって、予め実装するパワーセーブモードを決定する必要があり、動的にパワーセーブモードを切替えるということが困難であるという課題があった。 As described above, in the power save function of the optical transceiver built in the conventional ONU, it is necessary to receive a control signal from the host for each type of power save (circuit block to be stopped). For this reason, when several power saving functions are implemented in the ONU, there is a problem that a plurality of control signals are required. In particular, in the case of optical transceivers compliant with standards such as SFP + (Small Form-Factor Pluggable Plus) and XFP (10 Gigabit Small Form-Factor Pluggable), the interface and pin assignment with the host side are determined, so power saving The control signal for realizing can be assigned only about 1 pin at most. Therefore, it is necessary to determine a power save mode to be mounted in advance, and there is a problem that it is difficult to dynamically switch the power save mode.
 この発明は、上記のような課題を解決するためになされたもので、複数の制御信号を用いることなく複数のパワーセーブモードを実現可能なONUを提供することを目的としている。 The present invention has been made to solve the above-described problems, and an object thereof is to provide an ONU capable of realizing a plurality of power save modes without using a plurality of control signals.
 この発明に係るONUは、出力先にパワーセーブを実施させるパワーセーブ制御信号、及び、出力先として光送受信器内の回路ブロックのうちの少なくとも1つ以上を指定するデジタル制御信号を出力する制御信号出力部と、制御信号出力部からのパワーセーブ制御信号を、デジタル制御信号で指定された出力先に出力する出力先選択部とを備えたものである。 The ONU according to the present invention is a control signal for outputting a power saving control signal for causing the output destination to perform power saving, and a digital control signal for designating at least one of the circuit blocks in the optical transceiver as the output destination. An output unit and an output destination selection unit that outputs a power save control signal from the control signal output unit to an output destination specified by the digital control signal are provided.
 この発明によれば、上記のように構成したので、既存のデジタル制御線を用いて動的にパワーセーブモードを切替えることができるため、1つの制御信号で複数のパワーセーブモードを実現可能であり、低消費電力化が可能となる。 According to the present invention, since it is configured as described above, the power save mode can be dynamically switched using an existing digital control line, so that a plurality of power save modes can be realized with one control signal. Therefore, low power consumption can be achieved.
この発明の実施の形態1に係るPONシステムの全体構成を示す図である。It is a figure which shows the whole structure of the PON system which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係るONUの構成を示す図である。It is a figure which shows the structure of ONU which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る光送受信器の回路構成を示す図である。It is a figure which shows the circuit structure of the optical transmitter-receiver which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る光送受信器の別の回路構成を示す図である。It is a figure which shows another circuit structure of the optical transmitter-receiver which concerns on Embodiment 1 of this invention. この発明の概念と低消費電力を時系列で図示したものである。The concept of the present invention and low power consumption are illustrated in time series. この発明の実施の形態1に係るPONシステムによるパワーセーブモード切替制御(OLT主導)の一例を示すシーケンス図である。It is a sequence diagram which shows an example of the power save mode switching control (OLT initiative) by the PON system which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係るPONシステムによるパワーセーブモード切替制御(ONU主導)の一例を示すシーケンス図である。It is a sequence diagram which shows an example of the power save mode switching control (ONU initiative) by the PON system which concerns on Embodiment 1 of this invention. この発明の実施の形態2に係る光送受信器の回路構成を示す図である。It is a figure which shows the circuit structure of the optical transmitter-receiver which concerns on Embodiment 2 of this invention. この発明の実施の形態3に係る光送受信器の回路構成を示す図である。It is a figure which shows the circuit structure of the optical transmitter-receiver which concerns on Embodiment 3 of this invention.
 以下、この発明の実施の形態について図面を参照しながら詳細に説明する。
実施の形態1.
 図1はこの発明の実施の形態1に係るPONシステムの全体構成を示す図である。
 PONシステムは、図1に示すように、局舎側終端装置であるOLT1と、加入者側終端装置である複数のONU2(図1ではONU♯1~♯nのn台)とが、光ファイバ3及びスターカプラ4を介して接続されている。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
Embodiment 1 FIG.
1 is a diagram showing an overall configuration of a PON system according to Embodiment 1 of the present invention.
As shown in FIG. 1, the PON system includes an OLT 1 that is a station-side terminal device and a plurality of ONUs 2 (n units of ONUs # 1 to #n in FIG. 1) that are optical fibers. 3 and the star coupler 4.
 このPONシステムにおけるデータ通信は、下り方向では、OLT1は全てのONU2に対して連続的にデータ送信を行い、各ONU2はそれぞれ自分宛のデータのみを選択し受信する。一方、上り方向では、ONU2はOLT1に対して通信時に間欠的にデータ送信(バースト送信)する。そして、各ONU2からのデータは、OLT1によって設定された通信スケジュールに則り、時分割多重(TDM)でデータ伝送される。 In data communication in this PON system, in the downstream direction, the OLT 1 continuously transmits data to all the ONUs 2, and each ONU 2 selects and receives only the data addressed to itself. On the other hand, in the upstream direction, the ONU 2 intermittently transmits data (burst transmission) to the OLT 1 during communication. Data from each ONU 2 is transmitted by time division multiplexing (TDM) in accordance with the communication schedule set by the OLT 1.
 次に、ONU2の構成について、図2を参照しながら説明する。
 ONU2は、図2に示すように、光送受信器5及びMAC部(Media Access Control Large Scale Integration:MAC LSI)6から構成されている。
Next, the configuration of the ONU 2 will be described with reference to FIG.
The ONU 2 includes an optical transceiver 5 and a MAC unit (Media Access Control Large Scale Integration: MAC LSI) 6 as shown in FIG.
 光送受信器5は、MAC部6からの電気信号を光信号に変換してOLT1に送信し、OLT1からの光信号を受信して電気信号に変換してMAC部6に出力するものである。この光送受信器5の詳細構成については後述する。 The optical transceiver 5 converts the electrical signal from the MAC unit 6 into an optical signal and transmits it to the OLT 1, receives the optical signal from the OLT 1, converts it into an electrical signal, and outputs it to the MAC unit 6. The detailed configuration of the optical transceiver 5 will be described later.
 MAC部6は、ユーザ側インターフェースとして、ユーザ側端末(UNI側)との間でデータ送受信を行うとともに、光送受信器5との間でデータ送受信を行うものである。また、MAC部6は、OLT1による通信スケジュールに基づいて、光送受信器5内の送信回路部52の送信タイミング制御を行う機能も有している。
 さらに、MAC部6は、OLT1による通信スケジュールに基づいて、光送受信器5の一部をパワーセーブさせる機能も有している。この際、MAC部(制御信号出力部)6は、出力先にパワーセーブを実施させる制御信号(パワーセーブ制御信号14)と、この制御信号の出力先として光送受信器5内の回路ブロックのうちの少なくとも1つ以上を指定する、すなわちパワーセーブモードを指定もしくは切り替える制御信号(デジタル制御信号15)とを光送受信器5に出力する。なお、デジタル制御信号15の出力には、DDM(Digital Diagnostics Monitoring)用等のために通常用意されているデジタル制御線を用いる。
The MAC unit 6 performs data transmission / reception with the user side terminal (UNI side) as a user side interface and also performs data transmission / reception with the optical transceiver 5. The MAC unit 6 also has a function of performing transmission timing control of the transmission circuit unit 52 in the optical transceiver 5 based on the communication schedule by the OLT 1.
Further, the MAC unit 6 also has a function of power saving a part of the optical transceiver 5 based on a communication schedule by the OLT 1. At this time, the MAC unit (control signal output unit) 6 includes a control signal (power save control signal 14) for causing the output destination to perform power saving, and a circuit block in the optical transceiver 5 as an output destination of the control signal. The control signal (digital control signal 15) for designating or switching the power save mode is output to the optical transceiver 5. For the output of the digital control signal 15, a digital control line normally prepared for DDM (Digital Diagnostics Monitoring) or the like is used.
 次に、光送受信器5の構成について、図3を参照しながら説明する。
 光送受信器5は、図3に示すように、カードエッジコネクタ51、送信回路部52、光モジュール53、受信回路部54及び論理制御部(出力先選択部)55から構成されている。
Next, the configuration of the optical transceiver 5 will be described with reference to FIG.
As shown in FIG. 3, the optical transceiver 5 includes a card edge connector 51, a transmission circuit unit 52, an optical module 53, a reception circuit unit 54, and a logic control unit (output destination selection unit) 55.
 カードエッジコネクタ51は、光送受信器5内の各回路ブロックとMAC部6との間を接続し、各種データ(送信主信号11、バースト制御信号12、受信主信号13、パワーセーブ制御信号14及びデジタル制御信号15)の送受信を行うものである。ここで、MAC部6から出力された送信主信号11及びバースト制御信号12は、送信回路部52のLDドライバ521に出力される。また、受信回路部54から出力された受信主信号13は、MAC部6に出力される。また、MAC部6から出力されたパワーセーブ制御信号14及びデジタル制御信号15は、論理制御部55に出力される。なお、デジタル制御信号15は、論理制御部55を介して送信回路部52及び受信回路部54にも出力される。 The card edge connector 51 connects between each circuit block in the optical transceiver 5 and the MAC unit 6, and various data (transmission main signal 11, burst control signal 12, reception main signal 13, power save control signal 14 and The digital control signal 15) is transmitted and received. Here, the transmission main signal 11 and the burst control signal 12 output from the MAC unit 6 are output to the LD driver 521 of the transmission circuit unit 52. In addition, the reception main signal 13 output from the reception circuit unit 54 is output to the MAC unit 6. The power save control signal 14 and the digital control signal 15 output from the MAC unit 6 are output to the logic control unit 55. The digital control signal 15 is also output to the transmission circuit unit 52 and the reception circuit unit 54 via the logic control unit 55.
 送信回路部52は、カードエッジコネクタ51を介してMAC部6から出力されたバースト制御信号12により指定された送信タイミングで、光モジュール53を用いて電気信号(送信主信号11)を光信号に変換させてOLT1に送信させるものである。この送信回路部52は、レーザ駆動部522を有するLD(Laser Diode)ドライバ521から構成されている。レーザ駆動部522は、光モジュール53の発光素子532を駆動するものである。 The transmission circuit unit 52 converts the electrical signal (transmission main signal 11) into an optical signal using the optical module 53 at the transmission timing specified by the burst control signal 12 output from the MAC unit 6 via the card edge connector 51. The data is converted and transmitted to the OLT 1. The transmission circuit unit 52 includes an LD (Laser Diode) driver 521 having a laser driving unit 522. The laser drive unit 522 drives the light emitting element 532 of the optical module 53.
 光モジュール53は、送信回路部52による制御に応じ、MAC部6からの電気信号(送信主信号11)を光信号に変換してOLT1に送信するものである。また、光モジュール53は、OLT1からの光信号を受信して電気信号に変換し、受信回路部54に出力する機能も有している。この光モジュール53は、送信波長/受信波長の光信号を合分波するWDM(Wavelength Division Multiplex)フィルタ531と、レーザ駆動部522により駆動されて電気信号(送信主信号11)を光信号に変換する発光素子532と、光信号を電気信号に変換する受光素子533とから構成されている。 The optical module 53 converts the electrical signal (transmission main signal 11) from the MAC unit 6 into an optical signal and transmits it to the OLT 1 under the control of the transmission circuit unit 52. The optical module 53 also has a function of receiving an optical signal from the OLT 1, converting it into an electrical signal, and outputting it to the receiving circuit unit 54. This optical module 53 is driven by a WDM (Wavelength Division Multiplex) filter 531 that multiplexes and demultiplexes optical signals of transmission wavelength / reception wavelength and a laser drive unit 522 to convert an electric signal (transmission main signal 11) into an optical signal. And a light receiving element 533 for converting an optical signal into an electric signal.
 受信回路部54は、光モジュール53からの電気信号(電流信号)を電圧信号に変え、適切な振幅に調整するものである。この受信回路部54により変換・調整された電気信号(受信主信号13)はカードエッジコネクタ51を介してMAC部6に出力される。 The receiving circuit unit 54 converts the electric signal (current signal) from the optical module 53 into a voltage signal and adjusts it to an appropriate amplitude. The electrical signal (received main signal 13) converted and adjusted by the receiving circuit unit 54 is output to the MAC unit 6 via the card edge connector 51.
 論理制御部55は、カードエッジコネクタ51を介してMAC部6から出力されたパワーセーブ制御信号14を、光送受信器5の所定の回路ブロックに出力するものである。なお、論理制御部55は、カードエッジコネクタ51を介してMAC部6から出力されたデジタル制御信号15に基づいて論理演算を行い、各出力先(各回路ブロック)に対するパワーセーブ制御信号14の出力ON/OFFを制御する。この論理制御部55として、例えばマイクロコントローラのようなデバイスを用いる。 The logic control unit 55 outputs the power save control signal 14 output from the MAC unit 6 via the card edge connector 51 to a predetermined circuit block of the optical transceiver 5. The logic control unit 55 performs a logical operation based on the digital control signal 15 output from the MAC unit 6 via the card edge connector 51, and outputs the power save control signal 14 to each output destination (each circuit block). Controls ON / OFF. For example, a device such as a microcontroller is used as the logic control unit 55.
 次に、MAC部6がパワーセーブを行う際に用いるパワーセーブ制御信号14について説明する。
 このパワーセーブ制御信号14は、MAC部6からカードエッジコネクタ51を介して論理制御部55に入力され、実施するパワーセーブモード(=回路ブロック)毎に複数の出力信号として出力される。ここでは、複数の出力信号として、図3に示すように、Txパワーセーブ制御信号141、レーザシャットダウン制御信号142及びRxパワーセーブ制御信号143に分けられる。なお、図3では3種類の制御信号141~143を示したが、その他の回路ブロックの電源や機能をOFFするための制御信号を設けるようにしてもよい。これらの制御信号のいずれを出力するか、また出力される信号の組み合わせは、デジタル制御信号15により予め設定されたパワーセーブモードに基づく。
Next, the power save control signal 14 used when the MAC unit 6 performs power save will be described.
The power save control signal 14 is input from the MAC unit 6 to the logic control unit 55 via the card edge connector 51, and is output as a plurality of output signals for each power save mode (= circuit block) to be executed. Here, as shown in FIG. 3, the output signals are divided into a Tx power save control signal 141, a laser shutdown control signal 142, and an Rx power save control signal 143. Although three types of control signals 141 to 143 are shown in FIG. 3, control signals for turning off the power and functions of other circuit blocks may be provided. Which of these control signals is output and the combination of the output signals are based on a power save mode preset by the digital control signal 15.
 Txパワーセーブ制御信号141は、例えばスイッチ523のようなデバイスを介して、送信回路部52全体の電源をOFFにさせる制御信号である。
 また、レーザシャットダウン制御信号142は、送信回路部52内のレーザ駆動部522のみをシャットダウンさせる制御信号である。レーザ駆動部522は送信回路部52を構成する一部分であるため、Txパワーセーブより高速に応答することができる。
 また、Rxパワーセーブ制御信号143は、例えばスイッチ541のようなデバイスを介して、受信回路部54全体の電源をOFFにさせる制御信号である。
The Tx power save control signal 141 is a control signal for turning off the entire power of the transmission circuit unit 52 via a device such as the switch 523, for example.
The laser shutdown control signal 142 is a control signal for shutting down only the laser driving unit 522 in the transmission circuit unit 52. Since the laser driving unit 522 is a part of the transmission circuit unit 52, it can respond faster than Tx power saving.
The Rx power save control signal 143 is a control signal for turning off the power of the entire receiving circuit unit 54 via a device such as the switch 541, for example.
 これらのパワーセーブモードを制御するパワーセーブ制御信号141~143は、論理制御部55に入力されるデジタル制御信号15によって、それぞれの信号出力ON/OFFや、論理反転等が可能である。
 すなわち、MAC部6は、OLT1による通信スケジュールに基づいて、その際最も効果的なパワーセーブモード(応答時間と低消費電力効果が大きいパワーセーブモード)を選択し、該当する出力先(光送受信器5内の回路ブロック)を指定したデジタル制御信号15を生成してパワーセーブ制御信号14とともに、もしくはパワーセーブ制御信号14より先に論理制御部55に出力する(制御信号出力ステップ)。そして、論理制御部55は、MAC部6からのデジタル制御信号15に基づいて出力先、すなわちパワーセーブモードを設定し、パワーセーブ制御信号14を当該出力先に出力する(出力先選択ステップ)。
 これにより、1つのパワーセーブ制御信号14を割り当てるだけで、複数のパワーセーブモード(Txパワーセーブ、Rxパワーセーブ、レーザシャットダウン、またそれらの組み合わせ)に動的に遷移可能となる。
The power save control signals 141 to 143 for controlling these power save modes can be turned on / off or logically inverted by the digital control signal 15 input to the logic control unit 55.
That is, the MAC unit 6 selects the most effective power save mode (power save mode with a large response time and low power consumption effect) based on the communication schedule by the OLT 1, and the corresponding output destination (optical transceiver) 5 is generated and is output to the logic control unit 55 together with the power save control signal 14 or before the power save control signal 14 (control signal output step). Then, the logic control unit 55 sets an output destination, that is, a power save mode based on the digital control signal 15 from the MAC unit 6, and outputs the power save control signal 14 to the output destination (output destination selection step).
As a result, it is possible to dynamically transition to a plurality of power save modes (Tx power save, Rx power save, laser shutdown, or a combination thereof) only by assigning one power save control signal 14.
 なお、レーザ駆動部522を制御する比較的高速なパワーセーブを実施する場合、バースト制御信号12を用いてデータ送信ごとにパワーセーブを行うようにしてもよい。
 また、図4に示すように、受信回路部54のパワーセーブと合わせて、スイッチ534及びRxパワーセーブ制御信号143bを用いて、受光素子533内のTIA(Transimpedance Amplifier)用の電源をパワーセーブするようにしてもよい。
Note that when performing relatively high-speed power saving for controlling the laser driving unit 522, power saving may be performed for each data transmission using the burst control signal 12.
Further, as shown in FIG. 4, in conjunction with the power saving of the receiving circuit unit 54, the power for the TIA (Transimpedance Amplifier) in the light receiving element 533 is saved using the switch 534 and the Rx power saving control signal 143b. You may do it.
 次に、上記のように構成されたONU2におけるトラフィック量とパワーセーブ効果との関係について、図5を参照しながら説明する。図5(a)はトラフィックの変化を示すグラフであり、図5(b)はその際の消費電力の変化を示すグラフである。
 図5(a)の区間Aのように、通信要求が少ない低トラフィック時には、MAC部6は、低消費電力効果が一番大きく、応答時間も長いTxパワーセーブ及びRxパワーセーブ(Tx+Rxパワーセーブ)を適用する。
Next, the relationship between the traffic volume and the power saving effect in the ONU 2 configured as described above will be described with reference to FIG. FIG. 5A is a graph showing changes in traffic, and FIG. 5B is a graph showing changes in power consumption at that time.
As shown in section A of FIG. 5A, when the communication request is low and the traffic is low, the MAC unit 6 performs the Tx power save and the Rx power save (Tx + Rx power save) with the largest low power consumption effect and the long response time. Apply.
 一方、図5(a)の区間Bのように、トラフィックが中程度に増加した場合には、MAC部6は、符号Dのタイミング(区間Bでの通信前のタイミング)でデジタル制御信号15により論理制御部55を切替え、Txパワーセーブに切替える。これにより、パワーセーブ効果(低消費電力効果)は減少するが、応答時間がTx+Rxパワーセーブより短いため、パワーセーブが可能となる。 On the other hand, when the traffic increases moderately as in the section B of FIG. 5A, the MAC unit 6 uses the digital control signal 15 at the timing of the code D (the timing before communication in the section B). The logic control unit 55 is switched to Tx power saving. Thereby, although the power saving effect (low power consumption effect) is reduced, the response time is shorter than the Tx + Rx power saving, so that the power saving is possible.
 一方、図5(a)の区間Cのように、符号Bよりさらに高トラフィックとなった場合には、MAC部6は、符号Eのタイミング(区間Cでの通信前のタイミング)でデジタル制御信号15により論理制御部55を切替え、レーザシャットダウンに切替える。これにより、さらにパワーセーブ効果(低消費電力化)は減少するが、応答時間がTxパワーセーブより短いため、パワーセーブが可能となる。
 なお、これらの応答時間とパワーセーブモードとの関係は一例であるため、応答時間や低消費電力効果の兼ね合いによっては、OFFさせる回路ブロックや機能は自由に変更することが可能である。
On the other hand, when the traffic becomes higher than the code B as in the section C of FIG. 5A, the MAC unit 6 performs the digital control signal at the timing of the code E (timing before communication in the section C). 15 switches the logic control unit 55 to laser shutdown. As a result, the power saving effect (lower power consumption) is further reduced, but since the response time is shorter than the Tx power saving, the power saving can be performed.
Since the relationship between the response time and the power save mode is an example, the circuit block and function to be turned off can be freely changed depending on the balance between the response time and the low power consumption effect.
 ここで、PONシステムによるパワーセーブモードの切替制御の一例を示す。図6はOLT1主導でパワーセーブモードを切り替える場合のシーケンス図である。なお、初期状態において、ONU2は、パワーセーブモードがTxパワーセーブモード(Tx Sleep)であり、非パワーセーブ状態(パワーセーブ状態ではない)であるとする。 Here, an example of power save mode switching control by the PON system is shown. FIG. 6 is a sequence diagram in the case of switching the power save mode led by the OLT 1. In the initial state, the ONU 2 is assumed to have a power save mode of Tx power save mode (Tx Sleep) and a non-power save state (not a power save state).
 PONシステムによるパワーセーブモード切替制御(OLT1主導)では、図6に示すように、まず、OLT1がONU2へGATE信号を送信すると、これに対し、ONU2は、自局のデータバッファ蓄積量(バッファ蓄積量に限らず、フレーム数監視やリンク状態変化等の情報でもよい)をOLT1に通知して、一回目の上りデータ送信を要求する(ステップST601,602)。 In the power save mode switching control (OLT1 led) by the PON system, as shown in FIG. 6, first, when the OLT1 transmits a GATE signal to the ONU2, the ONU2 receives the data buffer storage amount (buffer storage) of its own station. Not only the amount but also information such as frame number monitoring and link state change may be notified to OLT 1 to request the first uplink data transmission (steps ST601 and 602).
 次いで、OLT1は、そのバッファ蓄積量をOLT1内に保持する閾値で判定する。そして、バッファ蓄積量が「大」の場合にはパワーセーブは実施せず、バッファ蓄積量が「中」の場合にはTxパワーセーブモード(Tx Sleep)のままで通信を許可し、バッファ蓄積量が「小」であり、かつOLT1に対象ONU2への下り送信データが無かった場合にのみ、Tx+Rxパワーセーブモード(Tx+Rx Sleep)への切替要求を対象ONU2へ行う(ステップST603)。なお以下では、OLT1が、ONU2に対して、Tx+Rxパワーセーブモード(Tx+Rx Sleep)への切替要求を行った場合を例に説明を行う。 Next, the OLT 1 determines the buffer accumulation amount based on a threshold value stored in the OLT 1. If the buffer storage amount is “Large”, power saving is not performed. If the buffer storage amount is “Medium”, communication is permitted in the Tx power save mode (Tx Sleep). Is “small” and only when there is no downlink transmission data to the target ONU 2 in the OLT 1, a request to switch to the Tx + Rx power save mode (Tx + Rx Sleep) is made to the target ONU 2 (step ST603). In the following, an example will be described in which the OLT 1 requests the ONU 2 to switch to the Tx + Rx power save mode (Tx + Rx Sleep).
 次いで、OLT1から切替要求を受取ったONU2は、MACデジタル制御信号15を用い、TxパワーセーブモードからTx+Rxパワーセーブモードへのパワーセーブモードの切替を行う。そして、一回目の上りデータ送信(切替通知)を行う(ステップST604)。このとき、ONU2はまだパワーセーブ状態ではない。 Next, the ONU 2 that has received the switching request from the OLT 1 uses the MAC digital control signal 15 to switch the power saving mode from the Tx power saving mode to the Tx + Rx power saving mode. Then, the first uplink data transmission (switch notification) is performed (step ST604). At this time, the ONU 2 is not yet in the power saving state.
 次いで、OLT1は、ONU2からデータ(切替通知)を受信すると、パワーセーブモードの登録を行う。そして、再度OLT1がGATE信号を送った際、ONU2から切替通知後に通知された当該ONU2のバッファ蓄積量が引き続き閾値以下(蓄積量「小」)であり、かつ対象ONU2への下り送信データが存在しない場合、OLT1は、ONU2へ切り替えたパワーセーブモード(Tx+Rxパワーセーブモード)のパワーセーブ状態での通信を許可する(ステップST605~607)。 Next, when the OLT 1 receives data (switch notification) from the ONU 2, it registers the power save mode. When the OLT 1 sends the GATE signal again, the ONU 2 buffer accumulation amount notified after the switching notification from the ONU 2 is continuously below the threshold (accumulation amount “small”), and there is downlink transmission data to the target ONU 2 If not, OLT 1 permits communication in the power save state of the power save mode (Tx + Rx power save mode) switched to ONU 2 (steps ST605 to 607).
 次いで、ONU2は、パワーセーブ状態でOLT1に対しデータ送信する(ステップST608)。この際、ONU2はRx側(受信回路部54側)もSleepしているため、OLT1とのリンク(Link)が切れないように、送信データが無くても定期的にWake upし、OLT1へ存在を通知する(ステップST609)。なお、OLT1において、ONU2から切替通知後に通知されたバッファ蓄積量が「中」であると判定した場合には、Txパワーセーブモードへの切替要求を対象ONU2へ行い、ONU2は一回目の上りデータ通信(切替通知)(ステップST604)から上記シーケンスを繰り返す。 Next, ONU 2 transmits data to OLT 1 in the power saving state (step ST608). At this time, ONU2 also sleeps on the Rx side (reception circuit unit 54 side), so that the link with OLT1 (Link) does not break, so even if there is no transmission data, Wake up periodically and exist in OLT1. Is notified (step ST609). If the OLT 1 determines that the buffer accumulation amount notified after the switching notification from the ONU 2 is “medium”, it makes a request for switching to the Tx power save mode to the target ONU 2, and the ONU 2 performs the first uplink data. The above sequence is repeated from communication (switch notification) (step ST604).
 次に、ONU2主導でパワーセーブモードを切り替える場合のシーケンスの一例を図7に示す。上記OLT1主導シーケンスとの差異は、閾値判定をONU2内で行うことである。 Next, FIG. 7 shows an example of a sequence for switching the power save mode led by ONU2. The difference from the OLT1 initiative sequence is that the threshold determination is performed in the ONU2.
 PONシステムによるパワーセーブモード切替制御(ONU2主導)では、図7に示すように、まず、OLT1が送信したGATE信号に対し、ONU2は自局のデータバッファ蓄積量をONU2内に保持する閾値で判定し、上記と同様にパワーセーブモードを決定する。なお以下では、バッファ蓄積量が「小」であり、ONU2が、自局のパワーセーブモードをTx+Rxパワーセーブモード(Tx+Rx Sleep)に決定した場合を例に説明を行う。そして、OLT1にパワーセーブモード変更許可の要求通知をする(ステップST701,702)。このとき、ONU2はまだパワーセーブモードを変更していない。 In the power save mode switching control (ONU2 initiative) by the PON system, as shown in FIG. 7, first, the ONU2 determines the stored data buffer storage amount in the ONU2 with respect to the GATE signal transmitted by the OLT1. Then, the power save mode is determined in the same manner as described above. In the following description, the buffer accumulation amount is “small” and the ONU 2 determines the power saving mode of the local station as Tx + Rx power saving mode (Tx + Rx Sleep). Then, a request for permission to change the power save mode is sent to the OLT 1 (steps ST701 and 702). At this time, the ONU 2 has not yet changed the power save mode.
 次いで、通知を受け取ったOLT1は、対象ONU2への下り送信データ有無を確認し、データが無ければパワーセーブモードの変更を許可する(ステップST703)。許可されれば上記同様、まず一回目の通信でパワーセーブモードを切り替え、OLT1へ上りデータ送信(切替通知)を行う(ステップST704)。 Next, the OLT 1 that has received the notification confirms whether there is downlink transmission data to the target ONU 2, and if there is no data, permits the change of the power save mode (step ST703). If permitted, as in the above case, first, the power save mode is switched in the first communication, and uplink data transmission (switch notification) is performed to the OLT 1 (step ST704).
 次いで、ONU2は、次のGATE信号受信時に再度判定を行い、バッファ蓄積量が「小」であれば、切り替えたパワーセーブモード(Txパワーセーブ+Rxパワーセーブモード)のパワーセーブ状態でOLT1への通信を行う(ステップST705~708)。この際、ONU2はRx側もSleepしているため、OLT1とのリンク(Link)が切れないように、送信データが無くても定期的にWake upし、OLT1へ存在を通知する(ステップST709)。なお、ONU2は、再度判定時にバッファ蓄積量が「中」であれば、Txパワーセーブモードへの変更許可の要求通知をOLT1へ行い(ステップST702)、同様のモード切替制御を行う。 Next, the ONU 2 makes a determination again when the next GATE signal is received. If the buffer accumulation amount is “small”, the ONU 2 communicates with the OLT 1 in the power saving state of the switched power saving mode (Tx power saving + Rx power saving mode). (Steps ST705 to 708). At this time, the ONU 2 also sleeps on the Rx side, so that the link with the OLT 1 is not broken, so that a wake is periodically made even if there is no transmission data, and the existence is notified to the OLT 1 (step ST 709). . If the buffer accumulation amount is “medium” at the time of determination again, the ONU 2 notifies the OLT 1 of permission to change to the Tx power save mode (step ST702), and performs the same mode switching control.
 以上のように、この実施の形態1によれば、出力先にパワーセーブの実施させるパワーセーブ制御信号14、及び、出力先として光送受信器5内の回路ブロックのうちの少なくとも1つ以上を指定するデジタル制御信号15を出力するMAC部6と、MAC部6からのパワーセーブ制御信号14を、デジタル制御信号15で指定された出力先に出力する論理制御部55とを備えるように構成したので、既存のデジタル制御線を用いて動的にパワーセーブモードを切替えることができるため、1つのパワーセーブ制御信号14で複数のパワーセーブモードを実現可能であり、低消費電力化が可能となる。
 また、MAC部6は、OLT1により設定された通信スケジュールに基づいて、デジタル制御信号15の生成し、OLT1との通信前に、当該デジタル制御信号15の出力を行い論理制御部55に出力先の設定を行わせるように構成したので、OLT1との通信前に動的に最適なパワーセーブモードに切替えることができ、より効率的な低消費電力化が可能となる。
As described above, according to the first embodiment, at least one of the power saving control signal 14 that causes the output destination to perform power saving and the circuit block in the optical transceiver 5 is designated as the output destination. The MAC unit 6 that outputs the digital control signal 15 to be output and the logic control unit 55 that outputs the power save control signal 14 from the MAC unit 6 to the output destination specified by the digital control signal 15 are provided. Since the power save mode can be dynamically switched using an existing digital control line, a plurality of power save modes can be realized by one power save control signal 14, and power consumption can be reduced.
Further, the MAC unit 6 generates the digital control signal 15 based on the communication schedule set by the OLT 1, outputs the digital control signal 15 before communication with the OLT 1, and outputs the output destination to the logic control unit 55. Since it is configured to perform the setting, it is possible to dynamically switch to the optimum power save mode before communication with the OLT 1, and it is possible to reduce the power consumption more efficiently.
実施の形態2.
 実施の形態1では、図3に示すように、送信回路部52、受信回路部54及び論理制御部55をそれぞれ独立に構成した場合について示した。一方、送信回路部52、受信回路部54及び論理制御部55を一体としたデバイスを用いてもよく、以下図を用いて詳細に説明する。
 図8はこの発明の実施の形態2に係る光送受信器5の回路構成を示す図である。図8に示す実施の形態2に係る光送受信器5は、図3に示す実施の形態1に係る光送受信器5の送信回路部52、受信回路部54及び論理制御部55を一体型の送受一体型デバイス56に置き換えたものである。その他の構成は同様であり、同一の符号を付してその説明を省略する。
Embodiment 2. FIG.
In the first embodiment, as shown in FIG. 3, the transmission circuit unit 52, the reception circuit unit 54, and the logic control unit 55 are configured independently. On the other hand, a device in which the transmission circuit unit 52, the reception circuit unit 54, and the logic control unit 55 are integrated may be used, which will be described in detail below with reference to the drawings.
FIG. 8 is a diagram showing a circuit configuration of the optical transceiver 5 according to Embodiment 2 of the present invention. The optical transceiver 5 according to the second embodiment shown in FIG. 8 includes a transmission circuit unit 52, a reception circuit unit 54, and a logic control unit 55 of the optical transceiver 5 according to the first embodiment shown in FIG. The integrated device 56 is replaced. Other configurations are the same, and the same reference numerals are given and description thereof is omitted.
 なお、この送受一体型デバイス56には、送信回路部52、受信回路部54及び論理制御部55が有する各機能に加え、予めパワーセーブ機能が具備されている。そのため、図3のように、電源とデバイス間にスイッチ523,541のような物をディスクリートで構成する必要がなく、デバイス内部で機能を停止することができる。
 また、送受一体型デバイス56には、カードエッジコネクタ51を介してMAC部6から出力されたデジタル制御信号15bにより、パワーセーブモードを動的に変更可能なパワーセーブモードテーブル561が具備されている。そして、このデジタル制御信号15bに応じてパワーセーブモードを設定し、カードエッジコネクタ51を介してMAC部6から出力されたパワーセーブ制御信号14bによりパワーセーブを実施する。パワーセーブモードの設定制御の一例については、実施の形態1に準じる。
The transmission / reception integrated device 56 has a power save function in advance in addition to the functions of the transmission circuit unit 52, the reception circuit unit 54, and the logic control unit 55. Therefore, as shown in FIG. 3, it is not necessary to configure discrete devices such as the switches 523 and 541 between the power source and the device, and the function can be stopped inside the device.
The transmission / reception integrated device 56 includes a power save mode table 561 that can dynamically change the power save mode by a digital control signal 15 b output from the MAC unit 6 via the card edge connector 51. . Then, a power save mode is set according to the digital control signal 15b, and the power save is performed by the power save control signal 14b output from the MAC unit 6 via the card edge connector 51. An example of power save mode setting control is the same as in the first embodiment.
 以上のように、この実施の形態2によれば、送信回路部52、受信回路部54及び論理制御部55を一体に構成し、デバイスにインプリされたパワーセーブモードを利用するように構成したので、実施の形態1に比べ高速なパワーセーブ制御が期待できる。 As described above, according to the second embodiment, the transmission circuit unit 52, the reception circuit unit 54, and the logic control unit 55 are integrally configured so as to use the power save mode implemented in the device. As compared with the first embodiment, high-speed power save control can be expected.
実施の形態3.
 実施の形態1では、図3に示すように、論理制御部55によってTxパワーセーブ、Rxパワーセーブ、レーザシャットダウン、またそれらの組み合わせを自由に制御できる構成について示した。一方、実施したいパワーセーブモードが2種類(例えばTxパワーセーブとTx+Rxパワーセーブ)しかない場合は、論理制御部55をより簡単に構成してもよく、以下図を用いて詳細に説明する。
 図9はこの発明の実施の形態3に係る光送受信器5の回路構成を示す図である。図9に示す実施の形態3に係る光送受信器5は、図3に示す実施の形態1に係る光送受信器5の論理制御部55をスイッチ(出力先選択部)57に置き換えたものである。その他の構成は同様であり、同一の符号を付してその説明を省略する。
Embodiment 3 FIG.
In the first embodiment, as shown in FIG. 3, a configuration is shown in which the logic control unit 55 can freely control Tx power save, Rx power save, laser shutdown, and a combination thereof. On the other hand, when there are only two types of power save modes to be implemented (for example, Tx power save and Tx + Rx power save), the logic control unit 55 may be configured more simply, and will be described in detail below with reference to the drawings.
FIG. 9 is a diagram showing a circuit configuration of the optical transceiver 5 according to Embodiment 3 of the present invention. The optical transceiver 5 according to the third embodiment shown in FIG. 9 is obtained by replacing the logic control unit 55 of the optical transceiver 5 according to the first embodiment shown in FIG. 3 with a switch (output destination selection unit) 57. . Other configurations are the same, and the same reference numerals are given and description thereof is omitted.
 スイッチ57は、カードエッジコネクタ51を介してMAC部6から出力されたデジタル制御信号15cに応じてON/OFF切替え可能なスイッチである。
 ここで、スイッチ523のみを制御してTxパワーセーブのみを実施したい場合には、スイッチ57をOFF(開放)状態に設定させるデジタル制御信号15cを出力し、パワーセーブ制御信号14cによりパワーセーブを実施させる。一方、スイッチ523及びスイッチ541を制御してTx+Rxパワーセーブを実施したい場合には、スイッチ57をON(短絡)状態に設定させるデジタル制御信号15cを出力し、パワーセーブ制御信号14cによりパワーセーブを実施させる。
The switch 57 is a switch that can be switched ON / OFF according to a digital control signal 15 c output from the MAC unit 6 via the card edge connector 51.
Here, when only the Tx power save is performed by controlling only the switch 523, the digital control signal 15c for setting the switch 57 to the OFF (open) state is output, and the power save is performed by the power save control signal 14c. Let On the other hand, when Tx + Rx power saving is to be performed by controlling the switch 523 and the switch 541, the digital control signal 15c for setting the switch 57 to the ON (short circuit) state is output, and the power saving is performed by the power saving control signal 14c. Let
 以上のように、この実施の形態3によれば、実施したいパワーセーブモードが2種類の場合において、論理制御部55に代えて、デジタル制御信号15cに応じてパワーセーブ制御信号14cの出力先を切替え可能なスイッチ57を設けたので、実施の形態1に比べハードウェア構成をシンプルで安価な構成にできる。 As described above, according to the third embodiment, when there are two types of power save modes to be implemented, the output destination of the power save control signal 14c is changed according to the digital control signal 15c instead of the logic control unit 55. Since the switchable switch 57 is provided, the hardware configuration can be made simpler and less expensive than the first embodiment.
 なお、本願発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。 In the present invention, within the scope of the invention, any combination of the embodiments, any modification of any component in each embodiment, or omission of any component in each embodiment is possible. .
 この発明に係るONUは、既存のデジタル制御線を用いて動的にパワーセーブモードを切替えることができるため、1つの制御信号で複数のパワーセーブモードを実現可能であり、低消費電力化が可能となり、内蔵する光送受信器に対するパワーセーブ機能(低消費電力機能)を有するONU等に用いるのに適している。 Since the ONU according to the present invention can dynamically switch the power save mode using an existing digital control line, a plurality of power save modes can be realized with one control signal, and the power consumption can be reduced. Therefore, it is suitable for use in an ONU having a power saving function (low power consumption function) for a built-in optical transceiver.
 1 OLT、2 ONU、3 光ファイバ、4 スターカプラ、5 光送受信器、6 MAC部(制御信号出力部)、11 送信主信号、12 バースト制御信号、13 受信主信号、14,14b,14c パワーセーブ制御信号、15,15b,15c デジタル制御信号、51 カードエッジコネクタ、52 送信回路部、53 光モジュール、54 受信回路部、55 論理制御部(出力先選択部)、56 送受一体型デバイス、57 スイッチ(出力先選択部)、141 Txパワーセーブ制御信号、142 レーザシャットダウン制御信号、143,143b Rxパワーセーブ制御信号、521 LDドライバ、522 レーザ駆動部、523 スイッチ、531 WDMフィルタ、532 発光素子、533 受光素子、534 スイッチ、541 スイッチ、561 パワーセーブモードテーブル。 1 OLT, 2 ONU, 3 optical fiber, 4 star coupler, 5 optical transceiver, 6 MAC unit (control signal output unit), 11 transmission main signal, 12 burst control signal, 13 reception main signal, 14, 14b, 14c power Save control signal, 15, 15b, 15c, digital control signal, 51 card edge connector, 52 transmission circuit unit, 53 optical module, 54 reception circuit unit, 55 logic control unit (output destination selection unit), 56 transmission / reception integrated device, 57 Switch (output destination selection unit), 141 Tx power save control signal, 142 laser shutdown control signal, 143, 143b Rx power save control signal, 521 LD driver, 522 laser drive unit, 523 switch, 531 WDM filter, 532 light emitting element, 533 light receiving element, 34 switch, 541 switch, 561 power save mode table.

Claims (7)

  1.  内蔵する光送受信器のパワーセーブを行うONUにおいて、
     出力先に前記パワーセーブを実施させるパワーセーブ制御信号、及び、前記出力先として前記光送受信器内の回路ブロックのうちの少なくとも1つ以上を指定するデジタル制御信号を出力する制御信号出力部と、
     前記制御信号出力部からの前記パワーセーブ制御信号を、前記デジタル制御信号で指定された出力先に出力する出力先選択部と
     を備えたことを特徴とするONU。
    In the ONU that performs power saving of the built-in optical transceiver,
    A power save control signal that causes the output destination to perform the power save, and a control signal output unit that outputs a digital control signal designating at least one of the circuit blocks in the optical transceiver as the output destination;
    An ONU comprising: an output destination selection unit that outputs the power save control signal from the control signal output unit to an output destination designated by the digital control signal.
  2.  前記制御信号出力部は、対向するOLTにより設定された通信スケジュールに基づいて、前記デジタル制御信号の生成・出力を行う
     ことを特徴とする請求項1記載のONU。
    The ONU according to claim 1, wherein the control signal output unit generates and outputs the digital control signal based on a communication schedule set by an opposing OLT.
  3.  前記制御信号出力部は、前記通信スケジュールに基づいて、前記OLTとの通信前に、前記デジタル制御信号の出力を行い前記出力先選択部に出力先の設定を行わせる
     ことを特徴とする請求項2記載のONU。
    The control signal output unit, based on the communication schedule, outputs the digital control signal and causes the output destination selection unit to set an output destination before communication with the OLT. 2. ONU according to 2.
  4.  前記光送受信器内の回路ブロック及び前記出力先選択部は一体に構成された
     ことを特徴とする請求項1記載のONU。
    The ONU according to claim 1, wherein the circuit block in the optical transceiver and the output destination selection unit are integrally formed.
  5.  前記出力先選択部は、前記デジタル制御信号に基づいて論理演算を行い、前記パワーセーブ制御信号の出力先を設定する論理制御部である
     ことを特徴とする請求項1記載のONU。
    The ONU according to claim 1, wherein the output destination selection unit is a logic control unit that performs a logical operation based on the digital control signal and sets an output destination of the power save control signal.
  6.  前記出力先選択部は、前記デジタル制御信号に応じて前記パワーセーブ制御信号の出力先を切替えるスイッチである
     ことを特徴とする請求項1記載のONU。
    The ONU according to claim 1, wherein the output destination selection unit is a switch that switches an output destination of the power save control signal in accordance with the digital control signal.
  7.  内蔵する光送受信器のパワーセーブを行うONUによる制御方法において、
     制御信号出力部が、出力先に前記パワーセーブを実施させるパワーセーブ制御信号、及び、前記出力先として前記光送受信器内の回路ブロックのうちの少なくとも1つ以上を指定するデジタル制御信号を出力する制御信号出力ステップと、
     出力先選択部が、前記制御信号出力部からの前記パワーセーブ制御信号を、前記デジタル制御信号で指定された出力先に出力する出力先選択ステップと
     を有することを特徴とする制御方法。
    In the control method by the ONU that performs power saving of the built-in optical transceiver,
    The control signal output unit outputs a power save control signal that causes the output destination to execute the power save, and a digital control signal that designates at least one of the circuit blocks in the optical transceiver as the output destination. A control signal output step;
    An output destination selection unit comprising: an output destination selection step of outputting the power save control signal from the control signal output unit to an output destination designated by the digital control signal.
PCT/JP2012/001381 2012-02-29 2012-02-29 Onu and control method WO2013128489A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/001381 WO2013128489A1 (en) 2012-02-29 2012-02-29 Onu and control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/001381 WO2013128489A1 (en) 2012-02-29 2012-02-29 Onu and control method

Publications (1)

Publication Number Publication Date
WO2013128489A1 true WO2013128489A1 (en) 2013-09-06

Family

ID=49081758

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/001381 WO2013128489A1 (en) 2012-02-29 2012-02-29 Onu and control method

Country Status (1)

Country Link
WO (1) WO2013128489A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011223631A (en) * 2011-07-05 2011-11-04 Mitsubishi Electric Corp Communication system, station-side optical line termination device, user-side optical line termination device, controller, and communication method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011223631A (en) * 2011-07-05 2011-11-04 Mitsubishi Electric Corp Communication system, station-side optical line termination device, user-side optical line termination device, controller, and communication method

Similar Documents

Publication Publication Date Title
EP2944052B1 (en) Downstream burst transmission in passive optical networks
US20120045202A1 (en) High Speed Bi-Directional Transceiver, Circuits and Devices Therefor, and Method(s) of Using the Same
WO2007102303A1 (en) Pon system and terminal operation registering method
TWI567436B (en) Optical transceiver, house side device and optical transceiver control method
US8879594B2 (en) Efficient power control for an automatic laser driver
CN112911427B (en) Passive optical network optical module, all-optical access network system and control method
Igawa et al. Symmetric 10G-EPON ONU burst-mode transceiver employing dynamic power save control circuit
US20170093116A1 (en) Optical module
CN106921439A (en) A kind of optical module
CN113545007A (en) Power saving mechanism for high speed passive optical networks
CN102932697B (en) EPON and Low-power-consumptiocontrol control method thereof and optical network unit
US9083467B2 (en) Optical transmission apparatus and optical transmission method
CN101938677B (en) 10G EPON (Ethernet Passive Optical Network) single-fiber bidirectional energy-saving optical module
Dias et al. Offline energy-efficient dynamic wavelength and bandwidth allocation algorithm for TWDM-PONs
WO2013128489A1 (en) Onu and control method
Valcarenghi et al. Delay fairness in reconfigurable and energy efficient TWDM PON
KR100539921B1 (en) Bidirectional signal level shift circuit
JP5455614B2 (en) Communication system, master station device and slave station device
TWI506970B (en) Optical network terminal network device and method for adjusting optical signal power
JP4675374B2 (en) Collision prevention in time division multiplexing optical network, and apparatus and method thereof
CN203167176U (en) Passive optical network, optical network unit thereof and optical network unit optical module
JP5904365B2 (en) PON optical transmission system, station side apparatus, and optical communication method
WO2023175801A1 (en) Optical transceiver, communication device, and power supply control method
JP2009302876A (en) Subscriber terminating apparatus and power supply control method
JP5499937B2 (en) PON system, slave station side device, and data transmission method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12869629

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12869629

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP