WO2013125737A1 - Rule-based control apparatus and rule-based control method based on diagnosis of process state of sewage treatment plant - Google Patents

Rule-based control apparatus and rule-based control method based on diagnosis of process state of sewage treatment plant Download PDF

Info

Publication number
WO2013125737A1
WO2013125737A1 PCT/KR2012/001271 KR2012001271W WO2013125737A1 WO 2013125737 A1 WO2013125737 A1 WO 2013125737A1 KR 2012001271 W KR2012001271 W KR 2012001271W WO 2013125737 A1 WO2013125737 A1 WO 2013125737A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
control
diagnosis
unit
rule
Prior art date
Application number
PCT/KR2012/001271
Other languages
French (fr)
Korean (ko)
Inventor
김창원
김예진
김효수
Original Assignee
부산대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 부산대학교 산학협력단 filed Critical 부산대학교 산학협력단
Publication of WO2013125737A1 publication Critical patent/WO2013125737A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0639Performance analysis of employees; Performance analysis of enterprise or organisation operations
    • G06Q10/06395Quality analysis or management
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/152Water filtration

Definitions

  • the present invention relates to a rule-based control device and method according to the sewage treatment plant process status diagnosis.
  • a rule-based control device and method according to the sewage treatment plant process status diagnosis.
  • the present invention relates to a rule-based control device and method according to the diagnosis of process status of sewage treatment plant for the development of control method.
  • the solution for process diagnosis and control at the time of the initial application was mostly an off-line expert system based on the expert's operation experience to help the inexperienced operator's decision-making.
  • various solutions for extracting useful information from a large amount of data are available.
  • the traditional P, PI and PID Proportional Integral
  • Differential control methods have been applied to sewage treatment processes, but they have only relied on the experience of experienced operators without any criteria to select new setpoints of variables to be controlled.
  • the sewage treatment plant process is the main one, and it is distinguished from other industrial processes such as chemical processes due to various variables such as microbe behavior, operation status of the device, current water temperature, and rainfall. It is still too much to follow traditional control methodologies.
  • control is not performed based on the result of the process status diagnosis.
  • the result of the process diagnosis is reported to the operator as a result of the diagnosis.
  • the control is carried out separately, and the control is performed without clear information on the current process status. There was a long time problem.
  • the present invention performs qualitative diagnostic information on the treatment performance state of the sewage treatment plant being operated to improve the treatment performance of the sewage treatment plant, and provides the amount of change of specific control parameters according to the diagnosis result.
  • the purpose is to provide a rule-based control device and method according to the diagnosis of process status of sewage treatment plant for developing rule-based control method.
  • the data collection unit for receiving the inflow / outflow water quality data and process operation data required for the diagnosis of the process state of the sewage treatment plant or the past data set stored in the database unit;
  • a data preprocessor for preprocessing the respective data by removing a range of numerical absolute values of each data from the data received by the data collector;
  • a data abbreviation unit In order to derive a diagnosis result regarding the state of the current processing performance using the reduced data, the reduced data is grouped, and a determination function for determining the state of the grouped data is derived, and the diagnosis result by the determination function. Deriving process diagnosis unit; And a control strategy call unit for calling a rule regarding an amount of change of the control variable of the process operation data by a preset simulation according to a group representing a diagnosis result derived from the process diagnosis unit. Provide rule-based control device based on diagnosis.
  • the rule-based control device according to the sewage treatment plant process state diagnosis further includes a control strategy applying unit applying the control action determined by the control strategy calling unit to the sewage treatment plant, wherein the control strategy applying unit includes the control strategy calling unit. It is characterized in that for transmitting an electrical signal by the control action determined by the actuator (actuator).
  • the data preprocessing unit standardizes the input data by Equation 1 by using the average and standard deviation which are automatically calculated and derived for each data of the data input by the data collection unit. .
  • the data reduction unit is characterized in that by performing the principal component analysis method of one of the multivariate analysis method to reduce the plurality of inflow / outflow water quality data and process operation data with a reduced number of reduced main components than several.
  • the process diagnosis unit performs K-average cluster analysis on the principal components abbreviated by the data abbreviation unit to group the processing performance and operation state of the process, and new inflow / outflow water quality data and process operation data are input and converted into the principal components. And then use Fisher's linear discriminant analysis to determine which group the new inflow / outflow water quality data and process operation data can be assigned to. It is characterized by performing a diagnosis on the treatment performance and process operation of the treatment plant.
  • control strategy call unit stores control rules regarding DO (dissolved oxygen) control or an external carbon source control operation that can further improve the processing performance of the process according to the characteristics of each group derived from the process diagnosis unit, the process diagnosis Calling the control rule stored in advance in the control strategy call unit according to the process state derived from the unit to call the amount of change of the control variable of the process operation data derived by the simulation of the control rule do.
  • DO dissolved oxygen
  • Process states are grouped by K-means cluster analysis using the principal components as input data, and a discriminant function for determining the state of the grouped data is derived using discriminant analysis, and new inflow / outflow water quality data and process operation data.
  • DO dissolved oxygen
  • the discriminant analysis uses the group classified by the K-means cluster analysis as an external standard, and through Fisher's linear discriminant analysis, derives a discriminant function for each group, and introduces new inflow / outflow water quality data and process operation. It is characterized in that the principal components generated by the data are input and compared to the magnitudes of the values calculated by the discriminant function of each group and assigned to the group representing the largest value.
  • the present invention combines process state diagnosis and rule-based control based on this to inform the operator about the current process state. And by suggesting the optimized control method for this, it can help the operator to understand the process more quickly, and it has the effect of helping to operate the efficient sewage treatment plant for optimal operation and maintenance.
  • the existing control strategies have the disadvantage of requiring frequent failure and repair of the equipment by changing the operating conditions of the equipment in a short time
  • the present invention by setting the minimum maintenance period that the process can be stabilized by the changed operating conditions It is effective to prevent the frequent breakdown of the equipment due to the long period of changing operating conditions.
  • FIG. 1 is a block diagram showing a rule-based control device according to the sewage treatment plant process status diagnosis according to an embodiment of the present invention.
  • FIG. 2 is a configuration diagram showing in detail the operating state of the rule-based control device of FIG.
  • FIG. 3 is a diagram illustrating a detailed screen of the process diagnosis unit of FIG. 1.
  • FIG. 4 is a diagram illustrating a detailed screen of DO control in a control strategy by the control strategy calling unit in FIG. 1.
  • FIG. 5 is a view showing a detailed screen of the external carbon source flow rate injection of the control strategy by the call control unit in FIG.
  • FIG. 6 is a flow chart showing a rule-based control method according to the sewage treatment plant process status diagnosis according to an embodiment of the present invention.
  • FIG. 7 is a flowchart illustrating a control strategy call step of FIG. 6 in detail.
  • FIG. 8 is a graph illustrating a simulation result for calling a control strategy of two groups in FIG. 7.
  • FIG. 9 is a graph illustrating a simulation result for calling a control strategy of three groups in FIG. 7.
  • FIG. 10 is a graph illustrating a simulation result for calling a control strategy of four groups in FIG. 7.
  • 11 is a graph showing the results of field operation to which the rule-based control method according to the diagnosis of the process state of the sewage treatment plant according to the present invention is not applied.
  • FIG. 12 is a graph showing the results of field operation to which the rule-based control method according to the sewage treatment plant process condition diagnosis according to the present invention is applied.
  • the data collection unit for receiving the inflow / outflow water quality data and process operation data required for the diagnosis of the process state of the sewage treatment plant or the past data set stored in the database unit;
  • a data preprocessor for preprocessing the respective data by removing a range of numerical absolute values of each data from the data received by the data collector;
  • a data abbreviation unit In order to derive a diagnosis result regarding the state of the current processing performance using the reduced data, the reduced data is grouped, and a determination function for determining the state of the grouped data is derived, and the diagnosis result by the determination function. Deriving process diagnosis unit; And a control strategy call unit for calling a rule regarding an amount of change of the control variable of the process operation data by a preset simulation according to a group representing a diagnosis result derived from the process diagnosis unit. Provide rule-based control device based on diagnosis.
  • FIG. 1 is a block diagram showing a rule-based control device according to the sewage treatment plant process condition diagnosis according to an embodiment of the present invention
  • Figure 2 is a configuration diagram showing the operating state of the rule-based control device of Figure 1 in detail
  • 1 is a view showing a detailed screen of the process diagnostic unit
  • Figure 4 is a view showing a detailed screen of the DO control of the control strategy by the control strategy caller in Figure 1
  • Figure 5 is a control strategy caller in Figure 1
  • Figure 6 is a view showing a detailed screen of the external carbon source flow rate injection of the control strategy
  • Figure 6 is a flow chart showing a rule-based control method according to the process state diagnosis of sewage treatment plant according to an embodiment of the present invention
  • Figure 8 is a graph showing the simulation results for the control strategy call of the two groups in Figure 7
  • FIG. 10 is a graph showing simulation results for calling a control strategy of four groups in FIG. 7, and FIG. 11 is not applied to a rule-based control method according to a process status diagnosis of a sewage treatment plant according to the present invention.
  • 12 is a graph showing the results of the field operation, Figure 12 is a graph showing the results of the field operation to which the rule-based control method according to the diagnosis of the process state of the sewage treatment plant according to the present invention.
  • the rule-based control device 10 includes a data collection unit 100, a database unit 200, a data preprocessor 300, a data abbreviation unit 400, and a process diagnosis unit 500. ), The control strategy call unit 600 and the control strategy application unit 700.
  • the data collection unit 100 receives process operation data such as inflow / outflow water quality data and a flow rate value, a sensor value, a blowing amount, and a return flow rate required for the diagnosis and control of the process state of the sewage treatment plant from the sewage treatment plant.
  • the data collection unit 100 may typically be a programmable logic controller (PLC) and a data collection device.
  • PLC programmable logic controller
  • the input process operation data can be confirmed in numerical values and graphs of the change of the cumulative data and the current data values on the monitoring screen of the rule-based control device 10.
  • the monitoring screen is adjustable according to the number and type of devices constituting the process and the type of data to be input.
  • the database unit 200 separately stores inflow / outflow water quality data and process operation data such as a flow rate value, a sensor value, a blowing amount, and a return flow rate. That is, the data collected by the data collection unit 100 is automatically stored in the database unit 200 by the electrical signal conversion. The stored data is composed of past data sets necessary for diagnosing the process state of the sewage treatment plant, and if necessary, data stored in the database unit 200 may be called and used.
  • the database unit 200 may be configured as a separate device, or may be incorporated in the data collector 100 or the data preprocessor 300 to be described later.
  • the data preprocessor 300 performs data preprocessing on the data collected by the data collector 100 or the past data sets stored by the database unit 200. Accordingly, the data preprocessor 300 removes the range of the numerical absolute value of each data from the data input by the data collector 100 to facilitate subsequent data processing. Preprocess
  • the data preprocessing unit 300 calculates the input data by Equation 1 using an average and a standard deviation which are automatically calculated and derived for each of the data input by the data collection unit 100. Standardize The standardized data are the data required for performing multivariate analyses, in particular principal component analysis.
  • the data abbreviation unit 400 receives data preprocessed by the data preprocessing unit 300 and applies a multivariate analysis method to the preprocessed data to relate to a process state inherent in past data sets of a sewage treatment plant.
  • the preprocessed data is abbreviated to extract information.
  • the data reduction unit 400 may perform a dimensional reduction on a plurality of inflow / outflow water quality data and process operation data with fewer abbreviated principal components by principal component analysis, which is typically one of multivariate statistical techniques. . For example, 10 or more inflow / outflow water quality data and process operation data can be reduced to three to five abbreviated principal components.
  • the process diagnosis unit 500 uses the reduced data to group (group) the reduced data to derive a diagnosis result regarding a state of current processing performance, and to determine the state of the grouped data.
  • a function is derived to derive a diagnosis result by the discrimination function.
  • the process diagnosis unit 500 performs a K-average cluster analysis on the principal components abbreviated by the data abbreviation unit 400 to group the processing performance and operation state of the process, and new inflow / outflow water quality data and process operation data.
  • a discriminant function to be used as a means for determining which group the new inflow / outflow water quality data and the process operation data can be assigned to is derived using Fisher's linear discriminant analysis, and the allocation This group is used to carry out diagnostics on the treatment performance and process operation of sewage treatment plants.
  • the process diagnosis unit 500 first performs a process state diagnosis through a past data set stored in the database unit 200, and the result of the diagnosis may be checked on a process state diagnosis screen.
  • the process diagnosis checks which process group belongs to the pre-classified group, and the process characteristics are derived in advance for each group and the result is displayed on the screen. Although varying from process to process, three to five groups are most preferred.
  • FIG. 3 a detailed screen of the process diagnosis unit 500 is shown.
  • the upper part is a schematic diagram of the sewage treatment plant process
  • the middle part is a table showing the corresponding group for each hour as time passes
  • the lower right shows the diagnosis result for the current group. You can check the current process status either hourly or daily, depending on the cycle of the data being stored.
  • the diagnosis result of the current process is displayed on the screen through the process state diagnosis, which can be checked by the operator, which is automatically stored in the database unit 200.
  • Rule-based control according to the derived diagnosis result is performed according to the control flowchart stored in the control device 10, and the result is displayed on the rule-based control screen.
  • the set values of devices and equipment derived by a series of rules can be checked on the screen, and these set values are automatically stored in the database unit 200, and the devices and equipment constituting the sewage treatment plant process are set according to the set values. Controlled. At this time, since the coefficient values necessary for the P, PI, and PID control are input in the control device 10, all control actions are driven by the actual device through the control device 10 under changed operating conditions.
  • the control strategy call unit 600 calls a rule regarding the amount of change of the control variable of the process operation data by a simulation set in advance according to a group representing a diagnosis result derived from the process diagnosis unit 500.
  • the control strategy call unit 600 controls the control rules related to DO (dissolved oxygen) control or external carbon source control operation that can further improve the processing performance of the process according to the characteristics of each group derived from the process diagnosis unit 500. Storing and calling a control rule stored in the control strategy caller 600 in advance according to the process state derived from the process diagnosis unit 500, and a process operation derived by simulation of the control rule. Call up the amount of change in the control variable in the data.
  • DO dissolved oxygen
  • the detailed screen of the DO control of the control strategy by the control strategy call unit 600 is shown.
  • the control strategy call unit 600 performs DO control and external carbon source flow control.
  • the DO setting value derived through rule-based control in the middle of the process diagram of the sewage treatment plant at the top is Is shown.
  • the actual DO concentration is adjusted through PID control in the controller 10. It is appropriate to apply P, PI or PID control to control the setting value.
  • the new DO setpoint is performed to increase or decrease the nitrification reaction, resulting in a change in the NH 4 -N concentration of the effluent.
  • the bottom part shows the DO concentration in the current process.
  • the two graphs in the middle of the screen show the inlet and outlet NH 4 -N concentrations over time.
  • the first graph on the bottom right shows the set DO value and the current DO concentration.
  • the second graph to the right shows the aeration of the blower that is changing to match the set DO concentration.
  • the control strategy call unit 600 determines whether to inject the external carbon source flow rate through rule-based control, and if the external carbon source flow rate is to be injected, calculates an appropriate external carbon source flow rate using the current effluent NOx-N concentration. To be injected into the process. Looking at a more detailed screen of the external carbon source flow control performed in the control device 10, the middle part of the screen shows a series of calculation process for deriving the external carbon source flow rate, which is currently being injected into the lower middle part of the screen The external carbon source flow rate will appear.
  • the first and second graphs on the right side of the screen show the incoming and outgoing NOx-N concentrations, and the graph on the lower right shows the flow of external carbon source flow.
  • the operator can check whether the external carbon source is being injected according to the rule-based control through the screen, and can also check the change of the process status according to the change of operating conditions in each diagnosis and control screen.
  • the control strategy application unit 700 applies the control action determined by the control strategy call unit 600 to the sewage treatment plant.
  • the control strategy application unit 700 transmits an electrical signal based on the control action determined by the control strategy call unit 600 to an actuator.
  • the control method includes a data collection step of receiving data collected in a sewage treatment plant process (S110), a data preprocessing step (S120) of performing preprocessing on necessary data, and a principal component coefficient previously analyzed through the preprocessed data.
  • Data abbreviation step of deriving the principal component value through the combination and calculation of (S130) process diagnostic step of analyzing which group the current process state is applied by applying to the discrimination function also analyzed in advance through the derived principal component value ( S140), a specific group corresponding to the diagnosis result determined in the process diagnosis step is confirmed, and according to the control strategy call step (S150) for calling a rule-based control strategy for each group according to the identified diagnosis result (S150) and the derived result.
  • the control strategy preferably includes only changes in DO setpoints in the process and therefore changes in air flow, internal conveying flow changes, sludge conveying flow changes and, if necessary, additional external carbon source flow changes, depending on the sewage treatment plant process characteristics. It is desirable to exclude some of the statements mentioned.
  • an inflow / outflow water quality data and process operation data necessary for diagnosing a process state of a sewage treatment plant or a data collection step of receiving a historical data set stored in the database unit 200 is performed.
  • inflow / outflow water quality data and process operation data from November 2010 to September 2011 were collected from an A 2 / O process with an average inflow of 18 m 3 / day.
  • the data preprocessing step (S120) is performed on the collected data to preprocess the respective data by removing a range of numerical absolute values of each data. That is, data normalization is performed to perform principal component analysis, which is calculated as shown in Equation 1 through the average and standard deviation that can be calculated from each individual data and the data set in which the data is accumulated. 0, converted to data with a standard deviation of 1.
  • Means the measured value of each data Is the mean of that data item, Means the standard deviation of the data item.
  • Principal component analysis is performed by receiving the preprocessed data through a data reduction step (S130). In other words, by analyzing the variance of the variables constituting the pre-processed data to derive a principal component that can be reduced by a common variance.
  • the principal component value is finally calculated based on each preprocessed item value and principal component coefficient value.
  • the principal component value is calculated as 0.384 * In NH 4 -N + 0.082 * In NOx-N + 0.381 * In PO 4 -P + ... + 0.131 * AERO 3_MLSS-0.147 * ANOX_ORP.
  • process states are grouped by K-means cluster analysis using the principal components as input data, and a discriminant function for determining the state of the grouped data is derived using discriminant analysis.
  • the main components generated by the inflow / outflow water quality data and the process operation data are used as input data to determine which group is among the grouped groups, and the diagnosis is performed on the treatment performance and process operation of the sewage treatment plant using the determined groups.
  • the discriminant analysis sets the group classified by the K-means cluster analysis as an external standard, and derives a discriminant function which is a functional formula for each group through Fisher's linear discriminant analysis, and introduces new inflow / outflow water quality data and process operation data.
  • the main components generated by the input are compared with the magnitudes of the values calculated by the discriminant function of each group, and assigned to the group representing the largest value.
  • the process operation status can be classified into four groups according to their characteristics as shown in [Table 2] below.
  • the linear discriminant analysis yielded the following.
  • Group 1 -4.377PC 1 + 2.172PC 2 + 3.238PC 3 - 6.179
  • Group 2 2.322PC 1 + 3.076PC 2 - 2.504PC 3 - 4.878
  • Group 3 1.724PC 1 - 1.604PC 2 + 1.172PC 3 - 2.864
  • Group 4 -0.229PC 1 - 2.403PC 2 - 1.589PC 3 -3.010
  • the value of the function of each group is calculated by substituting the principal component values first derived into the discrimination function, and the group represented by the function having the largest value is interpreted to mean the current process state.
  • Diagnosis results through the process characteristics of each group can be presented to the operator with the following qualitative information.
  • Group 2 High incoming ammonia loads and moderate loads but not denitrification (DO concentrations are adequate but external carbon source control is required).
  • Group 3 High nitrogen / phosphorus loading, low nitrification and phosphorus removal due to low DO and low MLSS.
  • control strategy call step (S150) by calling the control rules for the DO (dissolved oxygen) control or external carbon source control operation, etc., which can further improve the processing performance of the process according to the characteristics of the group for the derived diagnostic results Call the amount of change in the control variable of the process operating data derived by the simulation of the control rule.
  • DO dissolved oxygen
  • control strategy call step (S150) a rule-based control flow chart as shown in FIG. 7 is embedded, and a control strategy is called for each group in question.
  • each rule implies a change amount of a control variable by a mathematical simulation performed periodically. Doing.
  • control strategy call step (S150) of the control method is shown in detail.
  • the relevant group is checked through the process status diagnosis, and the same group is repeated four times or more. If the process status diagnosis is carried out hourly, it is desirable to be more than 4 hours, and if the process status diagnosis is performed daily, it is desirable to be more than 4 days. This is to prevent frequent equipment changes, and also to change the operating conditions. We believe this is a minimum maintenance period for the process to stabilize.
  • FIG. 7 shows control actions for a total of four groups.
  • the classification of groups will depend on the nature of the sewage treatment plant process and groups 4 to 5 are appropriate.
  • group 1 is a steady state
  • group 2 is a state that requires an additional external carbon source injection due to the lack of denitrification reaction
  • group 3 is a state in which the DO set value is increased and additional external carbon source injection is necessary, due to lack of both nitrification and denitrification reaction
  • Group 4 was classified as requiring a DO increase due to lack of nitrification.
  • the process status is checked again. If a group other than the corresponding group is maintained at least four times, the control action is stopped. Otherwise, the control action is maintained.
  • the operating conditions that can stabilize the continuity are continuously applied.
  • control variables For example, the NH 4 -N and NOx-N concentrations were selected as control variables, and the DO concentration and the external carbon source injection flow rate were selected as control variables.
  • the control actions according to the process status diagnosis result of each group are as follows.
  • Group Control Behavior Do not perform separate control behavior as normal process. Switch to fixed aeration when DO is under control.
  • Group 2 Control Action Requires injection of external carbon sources due to high NOx-N concentrations occurring despite appropriate DO concentrations. Therefore, DO concentration is converted to fixed aeration volume and injected with external carbon source.
  • Group 1 does not need pre-simulation because no additional control is required.
  • Group 2 has a high influent NH 4 -N load but can be removed well and the denitrification reaction is not smooth. Therefore, the denitrification reaction should be activated by external carbon source injection without adjusting the DO concentration.
  • Preliminary simulation results regarding the amount of change in the control variable that can be achieved by setting L as a reference are shown in FIG. 8. As can be seen in Figure 8, the concentration of effluent NOx-N was reduced by about 21.1% through the injection of external carbon source, it can be said that it is reasonable to inject the external carbon source flow rate targeting the effluent NOx-N concentration of 5mg / L through this have.
  • Group 3 has high inflow NH 4 -N load and overall runoff is unstable, so simultaneous control of DO concentration and external carbon source is required, so pre-simulation was carried out under the strategy of DO 30% increase, DO 50% increase, external carbon source injection.
  • the effluent NH 4 -N concentration average decreases by about 15.4%
  • the NOx-N concentration is the DO concentration when an external carbon source is injected. It was confirmed that the increase was about 28.4% compared with the 30% increase.
  • Group 4 has a moderate influent load but is not well nitrified by low DO concentration, so DO control is required, and simulations were performed for DO 20% increase and DO 50% increase, and in FIG. As can be seen, it was confirmed that the initial value is reduced by increasing the DO concentration. Therefore, when the concentration of effluent NH 4 -N is 15 ppm or more, the DO concentration is increased by 50%, and when the concentration is less than 15 ppm, the DO increase of 20% is derived as a control strategy to prevent the problem of overexploitation.
  • the mathematical model used is not included in the control device 10, but may be configured by separately driving the controller at a predetermined period outside the control device 10 and inputting the quantified value into the control logic inside the control device 10. have.
  • control strategy call step (S150) the control strategy according to the rules of each group is called according to a series of flowcharts based on such quantitative set values, which will be described in detail as follows.
  • NH 4 -N and NOx-N control are performed according to the flowchart of FIG. 7, and the DO set value is increased by 50%. DO control is performed.
  • the DO concentration which is the reference for increasing the set value, was set to 1 ppm, and it is preferable to apply the reference value differently according to the process characteristics of the sewage treatment plant.
  • control action is continuously applied to check whether the group changes. If another group is repeated four or more times, it is determined that the control effect has occurred, and the control action of the group is stopped. The flowchart will be repeated. If the other group is not repeated four or more times, it is determined that a sufficient control effect has not occurred and the control action of the corresponding group is repeatedly repeated to check the group variation.
  • control strategy application step (S160) the control action determined according to the called control rule is applied to the sewage treatment plant.
  • the PID control mounted in the control device 10 is applied to the external carbon source.
  • an appropriate external carbon source flow rate is injected according to a series of calculation methods mounted inside the control device 10.
  • control strategy S160
  • the on-site verification was performed by applying the rule-based control device 10 and the control method according to the present invention to the sewage treatment plant process state diagnosis in an A 2 / O process having an average inflow rate of 18 m 3 / day.
  • FIG. 11 shows a result of not applying a rule-based control method according to a diagnosis of a process state of a sewage treatment plant, which is an actual site.
  • a total of 123 data were collected with a fixed airflow, with an average influent concentration of about 23.3 mg / L for NH 4 -N and 1.01 mg / L for NOx-N, with an average outflow concentration of NH 4 -N. About 12.95 mg / L for N and 4.12 mg / L for NOx-N.
  • nitrification did not occur smoothly, and it was confirmed that four groups lacking nitrification occurred predominantly in the state of hourly group derived from the collected data.
  • diagnosis of the sewage treatment plant should be applied.
  • FIG 12 it shows the result of applying the rule-based control method according to the diagnosis of the process state according to the present invention on the actual site.
  • the external carbon source flow was injected until the control strategy of the two groups, DO control and effluent NOx-N concentration reached 5 ppm.
  • the injected external carbon source flow rate was injected at a flow rate of about 19.7 mL / min by a series of calculations inside the controller 10.
  • the two groups lasted for 14 hours, after which the effluent NOx-N concentration reached 5 ppm and four groups occurred four times.
  • the DO setting value was first set to 1.5 ppm, but the effluent NH 4 -N concentration was less than 15 ppm and was changed to 1.2 ppm again.
  • the two groups were then maintained four times, injecting the same external carbon source flow rate, and the two groups were maintained for a total of 21 hours.
  • Such data are concentration values satisfying the effluent NH 4 -N 10mg / L and NOx-N 10mg / L, which were set as targets in the field verification, and through this, the rule-based control method according to the present condition diagnosis of sewage treatment plant It was confirmed that even if it is applied to the actual site, it can be sufficiently effective.
  • the present invention conducts qualitative diagnostic information on the treatment performance of the sewage treatment plant in order to improve the treatment performance of the sewage treatment plant, and provides a change amount of specific control parameters according to the diagnosis result to determine the process state of the sewage treatment plant. It can be widely used in the field of diagnosis and control.

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Human Resources & Organizations (AREA)
  • Economics (AREA)
  • Health & Medical Sciences (AREA)
  • Strategic Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Marketing (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • Primary Health Care (AREA)
  • Water Supply & Treatment (AREA)
  • General Health & Medical Sciences (AREA)
  • Educational Administration (AREA)
  • Development Economics (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Public Health (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Game Theory and Decision Science (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Testing And Monitoring For Control Systems (AREA)
  • Activated Sludge Processes (AREA)

Abstract

According to the present invention, a rule-based control apparatus based on a diagnosis of a process state of a sewage treatment plant is provided, the apparatus comprising: a data collecting unit for taking, as an input, inflow/outflow water quality data required for the diagnosis of the process state of the sewage treatment plant and process operation data, or taking, as an input, the historical data set stored in a database; a data pre-processing unit for removing the range of the numerical absolute value of the data input into the data collecting unit so as to pre-process the data; a data reduction unit for receiving the data pre-processed by the data pre-processing unit and reducing the pre-processed data so as to extract information on the process state from the historical data set of the sewage treatment plant by applying a multi-variable analysis technique to the pre-processed data; a process diagnosis unit for grouping the reduced data so as to derive a diagnosis result on the state of the current treatment performance from the reduced data, and deriving a discriminant function for discriminating the state of the grouped data so as to derive the diagnosis result on the discriminant function; and a control strategy call unit for calling the rule on the variation of the moderating variable of the process operation data by a simulation test preset for the group that indicates the diagnosis result derived by the process diagnosis unit.

Description

하수처리장 공정상태 진단에 따른 규칙기반 제어장치 및 방법Rule-based control device and method according to the diagnosis of process status of sewage treatment plant
본 발명은 하수처리장 공정상태 진단에 따른 규칙기반 제어장치 및 방법에 관한 것이다. 보다 상세하게 설명하면, 하수처리장의 처리성능을 향상시키기 위하여 운전되고 있는 하수처리장의 처리성능 상태에 대한 정성적 진단 정보 도출을 수행하며, 진단결과에 따라 구체적인 조절변수의 변화량을 제공할 수 있는 규칙기반 제어방법 개발을 위한 하수처리장 공정상태 진단에 따른 규칙기반 제어장치 및 방법에 관한 것이다. The present invention relates to a rule-based control device and method according to the sewage treatment plant process status diagnosis. In more detail, in order to improve the treatment performance of sewage treatment plant, it is necessary to derive qualitative diagnostic information on the treatment performance state of the sewage treatment plant, and provide a change amount of specific control variables according to the diagnosis result. The present invention relates to a rule-based control device and method according to the diagnosis of process status of sewage treatment plant for the development of control method.
지난 40년간 하수처리장의 처리성능과 운영을 최적화하기 위한 ICA(Instrumentation Control and Automation) 기술에 대한 연구가 지속적으로 수행되어 실제현장에 적용되어 왔음에도 불구하고, 여전히 하수처리장의 공정성능과 상태를 진단하고 적절한 제어전략 방안을 적용하는 작업은 하수처리장 운전자의 경험적인 지식에 의존해 오고 있는 실정이다.In spite of the continuous research on ICA (Instrumentation Control and Automation) technology for optimizing the treatment performance and operation of sewage treatment plant for the past 40 years, it has been applied to the actual site, but it still diagnoses the process performance and condition of sewage treatment plant. And the application of appropriate control strategies have been relied upon by the sewage treatment plant operator's empirical knowledge.
이러한 운전자의 경험적인 지식은 해당 하수처리장에 장기간 근무하여 얻어지는 운영 노하우에 근거하는 사례가 다반수이므로, 공정운전 문제의 정확한 해결책이 되지 못해 공정이 더욱 불안정한 상태로 지속되는 경우도 빈번히 발생하고 있다.Since the driver's empirical knowledge is many cases based on the operational know-how obtained by working for a long time in the sewage treatment plant, the process often becomes more unstable because it is not an accurate solution to the process operation problem.
또한 숙련된 운전자가 새로운 하수처리장으로 근무지가 변경되거나 혹은 퇴임을 했을 경우 경험적인 지식이 제대로 전수가 되지 않는 사례도 빈번하여 공정의 상태를 진단하고 그에 걸맞는 제어를 수행하여 공정의 처리성능을 보다 향상시키기 위한 운영지식의 영속성이 전무한 실정이다. In addition, when an experienced operator changes or retires to a new sewage treatment plant, there are frequent cases where the empirical knowledge is not properly transferred, and the condition of the process is diagnosed, and the appropriate control is performed to improve the treatment performance of the process. There is no perpetuity of operational knowledge to improve.
최근 이와 같은 운전자의 경험과 지식에 기반하는 하수처리장의 공정상태 진단 및 제어에 대한 한계를 극복하고자 전문가의 지식을 활용하는 진단 방법론이 보고되고 있다. Recently, a diagnostic methodology that utilizes expert knowledge has been reported to overcome the limitations of process status diagnosis and control of sewage treatment plants based on such experiences and knowledge of drivers.
초기 적용 당시의 공정진단 및 제어를 위한 솔루션은 미숙한 운전자의 의사결정을 돕기 위한 전문가의 운전경험에 의존한 오프라인 전문가 시스템의 형태가 대부분이었으나, 최근에는 대용량의 데이터로부터 유용한 정보의 추출을 위한 다양한 데이터마이닝 기법의 적용을 통하여 공정운영 상태에 관한 정보를 실시간으로 추출하고 운전자에게 제안하는 다양한 기술들이 제안되고 있다. The solution for process diagnosis and control at the time of the initial application was mostly an off-line expert system based on the expert's operation experience to help the inexperienced operator's decision-making.In recent years, various solutions for extracting useful information from a large amount of data are available. Through the application of data mining techniques, various techniques for extracting information on the process operation status in real time and suggesting to the operator have been proposed.
그러나 이러한 기술들의 단점은 공정상태 진단을 통해 하수처리장의 비정상적 운영상황에 대한 감지가 가능하더라도 하수처리장의 안정적 운영을 위해서는 폭기량, 슬러지 반송유량 등과 같은 일련의 조절가능한 기기들의 구동 조건 변화에 대한 정량적인 운전조건 제시를 수반하지 않는다는 데 있다. However, the disadvantage of these technologies is that even though it is possible to detect abnormal operating conditions of the sewage treatment plant through process status diagnosis, it is necessary to quantitatively change the operating conditions of a series of adjustable devices such as aeration, sludge return flow, etc. It does not involve the presentation of the operating conditions.
공정상태를 진단한 후 어떠한 원인에 의해 공정문제가 발생하였음을 확인하였다면, 이를 해결하기 위해서는 조절변수의 변화를 통해 공정운전 조건을 변경시켜 주는 제어행위가 필수적으로 수반되어야 하며, 이와 같은 공정제어를 실제현장에 적용하기 위해 다양한 제어방법론이 개발되어 왔었다. After diagnosing the process condition and confirming that the process problem is caused by some cause, in order to solve this problem, the control action to change the process operation condition by changing the control variable must be accompanied. Various control methodologies have been developed to apply to the actual field.
전통적인 제어방법론에 의하면, 쉽게 그 일례를 찾아볼 수 있는 화학공정에서와 같이 제어변수의 설정값을 제시하고 조절변수의 값의 변화를 통해 새로운 설정값에 도달하는 전통적인 P,PI 및 PID(Proportional Integral Differential) 제어방법이 하수처리공정에도 적용된 바 다수 있으나, 제어하고자 하는 변수의 새로운 설정값을 선정하기 위해 어떠한 기준없이 단지 숙련된 운전자의 경험에 의존하여 왔었다. According to traditional control methodologies, the traditional P, PI and PID (Proportional Integral), which present a setpoint of a control variable and reach a new setpoint by changing the value of a control variable, as in a chemical process that can be easily illustrated. Differential control methods have been applied to sewage treatment processes, but they have only relied on the experience of experienced operators without any criteria to select new setpoints of variables to be controlled.
특히 하수처리장 공정은 생물학적 반응이 주된 반응으로서 미생물의 거동, 기기의 동작상태, 현재의 수온, 강우의 발생여부 등과 같은 다양한 변수들로 인해 화학공정 등과 같은 타산업공정과는 차별화되는 특성을 지니고 있어 전통적인 제어방법론을 따르기에는 여전히 무리가 있다. In particular, the sewage treatment plant process is the main one, and it is distinguished from other industrial processes such as chemical processes due to various variables such as microbe behavior, operation status of the device, current water temperature, and rainfall. It is still too much to follow traditional control methodologies.
최근에는 설정값을 도출하기 위해 다양한 방법론이 제기되었는데, 이는 물질수지에 기반하여 목표치를 설정하거나 또는 수학적 모델 및 통계적 모델을 활용하여 설정값을 제시하고 이를 PID 제어기를 통해 제어를 수행한 사례도 보고된 바 있으나, 새로운 설정값이 도출되는 간격이 시간단위로 국한되어 잦은 기기 운전조건의 변동으로 인한 기기 마모 발생 및 운전자가 실제 하수처리장 공정이 어떻게 운전되고 있는지에 대한 상황인식의 부족으로 효율적인 방법으로 평가되지는 못한 실정이다. Recently, various methodologies have been proposed to derive the setpoints, which are based on mass balances or set the target value or present the setpoint using mathematical and statistical models and report the case of control through the PID controller. However, the interval at which new set- tings are derived is limited to time units, resulting in equipment wear caused by frequent fluctuations in equipment operating conditions and lack of situational awareness of how the sewage treatment plant process is operating. It has not been evaluated.
또한 공정상태 진단결과에 기반하여 제어가 수행되는 형태가 아니라, 공정진단 결과는 진단 결과대로 운전자에게 보고되었으며, 제어수행은 별도로 진행이 되어 현재 공정상태에 대한 명확한 정보가 없이 제어가 수행되어 공정 안정화에 긴 시간이 소요되는 문제가 있었다.In addition, the control is not performed based on the result of the process status diagnosis. The result of the process diagnosis is reported to the operator as a result of the diagnosis. The control is carried out separately, and the control is performed without clear information on the current process status. There was a long time problem.
따라서 기존의 진단 및 제어가 별도로 분리되어 수행되어온 점을 인식하여 현재 공정상태에 대한 포괄적인 진단결과 정보에 기반하여 공정을 안정적인 상태로 유지하기 위한 적절한 제어전략 방법의 개발이 시급한 상황이다. Therefore, it is urgent to develop an appropriate control strategy method to keep the process stable based on comprehensive diagnosis result information on the current process state by recognizing that the existing diagnosis and control have been separately performed.
이와 같은 문제점을 해결하기 위해 본 발명은 하수처리장의 처리성능을 향상시키기 위하여 운전되고 있는 하수처리장의 처리성능 상태에 대한 정성적 진단 정보 도출을 수행하며, 진단결과에 따라 구체적인 조절변수의 변화량을 제공할 수 있는 규칙기반 제어방법 개발을 위한 하수처리장 공정상태 진단에 따른 규칙기반 제어장치 및 방법을 제공하는데 그 목적이 있다.In order to solve this problem, the present invention performs qualitative diagnostic information on the treatment performance state of the sewage treatment plant being operated to improve the treatment performance of the sewage treatment plant, and provides the amount of change of specific control parameters according to the diagnosis result. The purpose is to provide a rule-based control device and method according to the diagnosis of process status of sewage treatment plant for developing rule-based control method.
본 발명에 의하면, 하수처리장 공정상태 진단에 필요한 유입/유출 수질 데이터 및 공정운영 데이터를 입력받거나 데이터 베이스부에 저장된 과거 데이터셋을 입력받는 데이터 수집부; 상기 데이터 수집부에 의해 입력받은 데이터들을 대상으로 각각의 데이터가 가지는 수치적 절대값의 범위를 제거하여 상기 각각의 데이터를 전처리하는 데이터 전처리부; 상기 데이터 전처리부에 의해 전처리된 데이터를 전달받아 상기 전처리된 데이터에 대해 다변량 분석기법을 적용하여 하수처리장의 과거 데이터셋들에 내재되어 있는 공정상태에 관한 정보를 추출하기 위해 상기 전처리된 데이터를 축약하는 데이터 축약부; 상기 축약된 데이터를 이용하여 현재 처리성능의 상태에 관한 진단 결과를 도출하기 위해 상기 축약된 데이터를 그룹화하고, 상기 그룹화된 데이터의 상태를 판별하기 위한 판별함수를 도출하여 상기 판별함수에 의한 진단 결과를 도출하는 공정 진단부; 및 상기 공정 진단부로부터 도출된 진단 결과를 의미하는 그룹에 따라 사전에 설정된 모의실험에 의하여 상기 공정 운영 데이터의 조절변수의 변화량에 관한 규칙을 호출하는 제어전략 호출부;를 포함하는 하수처리장 공정상태 진단에 따른 규칙기반 제어장치를 제공한다.According to the present invention, the data collection unit for receiving the inflow / outflow water quality data and process operation data required for the diagnosis of the process state of the sewage treatment plant or the past data set stored in the database unit; A data preprocessor for preprocessing the respective data by removing a range of numerical absolute values of each data from the data received by the data collector; Receiving the preprocessed data by the data preprocessing unit and applying the multivariate analysis method to the preprocessed data to reduce the preprocessed data to extract information on the process state inherent in past data sets of the sewage treatment plant. A data abbreviation unit; In order to derive a diagnosis result regarding the state of the current processing performance using the reduced data, the reduced data is grouped, and a determination function for determining the state of the grouped data is derived, and the diagnosis result by the determination function. Deriving process diagnosis unit; And a control strategy call unit for calling a rule regarding an amount of change of the control variable of the process operation data by a preset simulation according to a group representing a diagnosis result derived from the process diagnosis unit. Provide rule-based control device based on diagnosis.
한편 상기 하수처리장 공정 상태 진단에 따른 규칙기반 제어장치는 상기 제어전략 호출부에 의해 결정된 제어 행위를 하수처리장에 적용하는 제어전략 적용부;를 더 포함하되, 상기 제어전략 적용부는 상기 제어전략 호출부에 의해 결정된 제어 행위에 의한 전기적인 신호를 구동기(actuator)에 전달하는 것을 특징으로 한다.Meanwhile, the rule-based control device according to the sewage treatment plant process state diagnosis further includes a control strategy applying unit applying the control action determined by the control strategy calling unit to the sewage treatment plant, wherein the control strategy applying unit includes the control strategy calling unit. It is characterized in that for transmitting an electrical signal by the control action determined by the actuator (actuator).
한편 상기 데이터 전처리부는 상기 데이터 수집부에 의해 입력받은 데이터들에 대해 각각의 데이터별로 자동으로 계산되어 도출되는 평균과 표준편차를 이용하여 수학식 1에 의해 상기 입력받은 데이터를 표준화하는 것을 특징으로 한다.On the other hand, the data preprocessing unit standardizes the input data by Equation 1 by using the average and standard deviation which are automatically calculated and derived for each data of the data input by the data collection unit. .
한편 상기 데이터 축약부는 상기 다변량 분석기법 중 하나인 주성분 분석법에 의해 여러 개의 유입/유출 수질 데이터 및 공정운영 데이터를 상기 여러 개보다 적은 개수의 축약된 주성분으로 차원축소를 수행하는 것을 특징으로 한다.On the other hand, the data reduction unit is characterized in that by performing the principal component analysis method of one of the multivariate analysis method to reduce the plurality of inflow / outflow water quality data and process operation data with a reduced number of reduced main components than several.
한편 상기 공정 진단부는 상기 데이터 축약부에서 축약된 주성분에 대해 K-평균 군집 분석을 수행하여 공정의 처리성능 및 운영상태를 그룹화하며, 새로운 유입/유출 수질 데이터 및 공정운영 데이터가 입력되어 주성분으로 변환된 후 상기 새로운 유입/유출 수질 데이터 및 공정운영 데이터가 어떠한 그룹에 할당될 수 있는지를 판별하기 위한 수단으로 사용될 판별함수를 Fisher의 선형 판별분석을 이용하여 도출하고, 상기 할당된 그룹을 활용하여 하수처리장의 처리성능 및 공정운영에 관한 진단을 수행하는 것을 특징으로 한다.Meanwhile, the process diagnosis unit performs K-average cluster analysis on the principal components abbreviated by the data abbreviation unit to group the processing performance and operation state of the process, and new inflow / outflow water quality data and process operation data are input and converted into the principal components. And then use Fisher's linear discriminant analysis to determine which group the new inflow / outflow water quality data and process operation data can be assigned to. It is characterized by performing a diagnosis on the treatment performance and process operation of the treatment plant.
한편 상기 제어전략 호출부는 상기 공정 진단부에서 도출된 그룹별 특징에 따라 공정의 처리성능을 보다 향상시킬 수 있는 DO(용존산소) 제어 또는 외부탄소원 제어 동작 등에 관한 제어 규칙을 저장하며, 상기 공정 진단부에서 도출된 공정 상태에 따라 상기 제어전략 호출부에 미리 저장되어 있는 제어 규칙을 호출하여 상기 제어 규칙에 대한 모의실험에 의하여 도출된 바 있는 공정운영 데이터의 조절변수의 변화량을 호출하는 것을 특징으로 한다.On the other hand, the control strategy call unit stores control rules regarding DO (dissolved oxygen) control or an external carbon source control operation that can further improve the processing performance of the process according to the characteristics of each group derived from the process diagnosis unit, the process diagnosis Calling the control rule stored in advance in the control strategy call unit according to the process state derived from the unit to call the amount of change of the control variable of the process operation data derived by the simulation of the control rule do.
또한 본 발명에 의하면, 하수처리장 공정상태 진단에 필요한 유입/유출 수질 데이터 및 공정운영 데이터를 입력받거나 데이터 베이스부에 저장된 과거 데이터셋을 입력받는 데이터 수집 단계; 상기 입력받은 데이터들을 대상으로 각각의 데이터가 가지는 수치적 절대값의 범위를 제거하여 상기 각각의 데이터를 전처리하는 데이터 전처리 단계; 상기 전처리된 데이터를 전달받아 주성분 분석을 적용하여 상기 전처리된 데이터를 구성하는 변수들이 구성하는 분산을 분석하여 공통된 분산별로 축약될 수 있는 주성분을 도출하는 데이터 축약 단계; 상기 주성분들을 입력 데이터로 하여 K-평균 군집 분석에 의하여 공정 상태를 그룹화하고, 상기 그룹화된 데이터의 상태를 판별하기 위한 판별함수를 판별분석을 이용하여 도출하여 새로운 유입/유출 수질 데이터 및 공정운영 데이터에 의해 생성된 주성분들을 입력 데이터로 하여 상기 그룹화된 그룹 중 어떠한 그룹에 해당하는지를 판별하고, 상기 판별된 그룹을 활용하여 하수처리장의 처리성능 및 공정운영에 관한 진단 결과를 도출하는 공정 진단 단계; 상기 도출된 진단 결과에 대한 그룹별 특징에 따라 공정의 처리성능을 보다 향상시킬 수 있는 DO(용존산소) 제어 또는 외부탄소원 제어 동작 등에 관한 제어 규칙을 호출하여 상기 제어 규칙에 대한 모의실험에 의하여 도출된 바 있는 공정운영 데이터의 조절변수의 변화량을 호출하는 제어전략 호출 단계; 및 상기 호출된 제어 규칙에 따라 결정된 제어 행위를 하수처리장에 적용하는 제어전략 적용 단계;를 포함하는 하수처리장 공정 상태 진단에 따른 규칙기반 제어방법을 제공한다.According to the present invention, the data collection step of receiving the inflow / outflow water quality data and process operation data required for the diagnosis of the process state of the sewage treatment plant or the past data set stored in the database unit; A data preprocessing step of preprocessing the respective data by removing a range of numerical absolute values of each data from the received data; A data reduction step of receiving the preprocessed data and applying a principal component analysis to analyze the variances of the variables constituting the preprocessed data to derive a principal component that can be reduced for each common variance; Process states are grouped by K-means cluster analysis using the principal components as input data, and a discriminant function for determining the state of the grouped data is derived using discriminant analysis, and new inflow / outflow water quality data and process operation data. A process diagnosis step of determining which group among the grouped groups corresponds to the main components generated by the input data, and deriving a diagnosis result regarding treatment performance and process operation of the sewage treatment plant using the determined groups; Derived by simulation of the control rule by calling a control rule for DO (dissolved oxygen) control or an external carbon source control operation that can further improve the processing performance of the process according to the characteristics of the group for the derived diagnostic result A control strategy call step of calling up a change amount of a control variable of the process operation data; And a control strategy applying step of applying a control action determined according to the called control rule to a sewage treatment plant.
한편 상기 판별분석은 상기 K-평균 군집 분석에 의해 분류된 그룹을 외적 기준으로 두고, Fisher의 선형 판별분석을 통해 각 그룹에 대한 함수식인 판별 함수식을 도출하며, 새로운 유입/유출 수질 데이터 및 공정운영 데이터에 의해 생성되는 주성분들을 입력으로 하여 각 그룹별 판별 함수식에 의해 계산된 값의 크기들을 비교하여 가장 큰 값을 나타내는 그룹에 할당하는 것을 특징으로 한다.On the other hand, the discriminant analysis uses the group classified by the K-means cluster analysis as an external standard, and through Fisher's linear discriminant analysis, derives a discriminant function for each group, and introduces new inflow / outflow water quality data and process operation. It is characterized in that the principal components generated by the data are input and compared to the magnitudes of the values calculated by the discriminant function of each group and assigned to the group representing the largest value.
기존의 공정상태 진단은 현재 공정상태에 대한 정성적인 정보(예: 유출수 BOD가 높다/유출수 T-N이 보통이다/유출수 T-P가 낮다 등)만을 제공하여 실제 운전자가 문제점을 해결하기 위해 어떠한 제어 행위를 수행해야 하는지에 대한 해결책이 제시되지 못하였지만, 본 발명은 공정상태 진단을 통해 현재 공정상태에 대한 포괄적인 정보제공(예: 유입 부하가 높고, DO 농도가 낮아 유출수 NH4-N 농도가 높게 유지된다 등)이 가능하며, 이와 같은 진단 결과에 따라 새로운 운전조건을 어떻게 유지해야 되는지에 대한 정량적인 수치를 제공하여 제어를 수행함으로써 공정 안전화를 위한 문제점 및 해결책까지 제시가능하며, 이를 시스템화하여 운전자가 부재시에도 자동적으로 공정이 안정적으로 유지가 가능한 장점이 존재한다.Existing process status diagnostics provide only qualitative information on the current process status (e.g. high runoff BOD / high effluent TN / low effluent TP, etc.) so that the actual operator can perform some control actions to solve the problem. Although no solution has been proposed, the present invention provides comprehensive information on the current process state through process state diagnosis (eg high influent load, low DO concentration, and therefore high effluent NH 4 -N concentration). Etc.), and by providing the quantitative figures on how to maintain the new operating conditions according to the diagnosis result, it is possible to present problems and solutions for process safety by systemizing them, and systemize this to prevent the operator from being present. In addition, there is an advantage that the process can be automatically maintained stable.
또한 기존의 발명들이 진단 또는 제어에 국한되어 왔었고, 진단 및 제어를 연동하여 실제 공정에 적용하지 못하였지만, 본 발명은 공정상태 진단과 이에 기반한 규칙기반 제어를 결합함으로써 운전자에게 현재 공정상태에 대한 정보와 이에 대한 최적화된 제어방법을 제안해 줌으로써 운전자가 공정을 보다 빠르게 이해할 수 있도록 지원해 줄 수 있으며, 최적 운전유지를 위한 효율적인 하수처리장의 운영에 도움을 주는 효과가 있다.In addition, although the existing inventions have been limited to diagnosis or control and could not be applied to the actual process by interlocking diagnosis and control, the present invention combines process state diagnosis and rule-based control based on this to inform the operator about the current process state. And by suggesting the optimized control method for this, it can help the operator to understand the process more quickly, and it has the effect of helping to operate the efficient sewage treatment plant for optimal operation and maintenance.
또한 기존 제어전략들이 짧은 시간에 기기의 운전 조건을 변경하여 장비의 잦은 고장 및 수리가 요구된다는 단점이 있지만, 본 발명은 변경된 운전조건으로 공정이 안정화될 수 있는 최소한의 유지기간을 설정함으로서 기기의 운전조건 변경 주기가 길어져 장비의 잦은 고장을 방지할 수 있는 효과가 있다.In addition, the existing control strategies have the disadvantage of requiring frequent failure and repair of the equipment by changing the operating conditions of the equipment in a short time, the present invention by setting the minimum maintenance period that the process can be stabilized by the changed operating conditions It is effective to prevent the frequent breakdown of the equipment due to the long period of changing operating conditions.
도 1은 본 발명의 실시예에 따른 하수처리장 공정상태 진단에 따른 규칙기반 제어장치를 나타낸 구성도이다.1 is a block diagram showing a rule-based control device according to the sewage treatment plant process status diagnosis according to an embodiment of the present invention.
도 2는 도 1의 규칙기반 제어장치의 작동상태를 상세히 나타낸 구성도이다.2 is a configuration diagram showing in detail the operating state of the rule-based control device of FIG.
도 3은 도 1 중 공정진단부의 상세한 화면을 나타낸 도면이다.3 is a diagram illustrating a detailed screen of the process diagnosis unit of FIG. 1.
도 4는 도 1 중 제어전략 호출부에 의한 제어전략 중 DO 제어의 상세한 화면을 나타낸 도면이다.FIG. 4 is a diagram illustrating a detailed screen of DO control in a control strategy by the control strategy calling unit in FIG. 1.
도 5는 도 1 중 제어전략 호출부에 의한 제어전략 중 외부탄소원 유량 주입의 상세한 화면을 나타낸 도면이다.5 is a view showing a detailed screen of the external carbon source flow rate injection of the control strategy by the call control unit in FIG.
도 6은 본 발명의 실시예에 따른 하수처리장 공정상태진단에 따른 규칙기반 제어방법을 나타낸 순서도이다. 6 is a flow chart showing a rule-based control method according to the sewage treatment plant process status diagnosis according to an embodiment of the present invention.
도 7은 도 6 중 제어전략 호출단계를 상세히 나타낸 순서도이다. FIG. 7 is a flowchart illustrating a control strategy call step of FIG. 6 in detail.
도 8은 도 7 중 2그룹의 제어전략 호출을 위한 시뮬레이션 결과를 나타낸 그래프이다.FIG. 8 is a graph illustrating a simulation result for calling a control strategy of two groups in FIG. 7.
도 9는 도 7 중 3그룹의 제어전략 호출을 위한 시뮬레이션 결과를 나타낸 그래프이다.FIG. 9 is a graph illustrating a simulation result for calling a control strategy of three groups in FIG. 7.
도 10은 도 7 중 4그룹의 제어전략 호출을 위한 시뮬레이션 결과를 나타낸 그래프이다.FIG. 10 is a graph illustrating a simulation result for calling a control strategy of four groups in FIG. 7.
도 11은 본 발명에 의한 하수처리장 공정상태 진단에 따른 규칙기반 제어방법이 적용되지 않은 현장운전 결과를 나타낸 그래프이다.11 is a graph showing the results of field operation to which the rule-based control method according to the diagnosis of the process state of the sewage treatment plant according to the present invention is not applied.
도 12는 본 발명에 의한 하수처리장 공정상태 진단에 따른 규칙기반 제어방법이 적용된 현장운전 결과를 나타낸 그래프이다.12 is a graph showing the results of field operation to which the rule-based control method according to the sewage treatment plant process condition diagnosis according to the present invention is applied.
본 발명에 의하면, 하수처리장 공정상태 진단에 필요한 유입/유출 수질 데이터 및 공정운영 데이터를 입력받거나 데이터 베이스부에 저장된 과거 데이터셋을 입력받는 데이터 수집부; 상기 데이터 수집부에 의해 입력받은 데이터들을 대상으로 각각의 데이터가 가지는 수치적 절대값의 범위를 제거하여 상기 각각의 데이터를 전처리하는 데이터 전처리부; 상기 데이터 전처리부에 의해 전처리된 데이터를 전달받아 상기 전처리된 데이터에 대해 다변량 분석기법을 적용하여 하수처리장의 과거 데이터셋들에 내재되어 있는 공정상태에 관한 정보를 추출하기 위해 상기 전처리된 데이터를 축약하는 데이터 축약부; 상기 축약된 데이터를 이용하여 현재 처리성능의 상태에 관한 진단 결과를 도출하기 위해 상기 축약된 데이터를 그룹화하고, 상기 그룹화된 데이터의 상태를 판별하기 위한 판별함수를 도출하여 상기 판별함수에 의한 진단 결과를 도출하는 공정 진단부; 및 상기 공정 진단부로부터 도출된 진단 결과를 의미하는 그룹에 따라 사전에 설정된 모의실험에 의하여 상기 공정 운영 데이터의 조절변수의 변화량에 관한 규칙을 호출하는 제어전략 호출부;를 포함하는 하수처리장 공정상태 진단에 따른 규칙기반 제어장치를 제공한다.According to the present invention, the data collection unit for receiving the inflow / outflow water quality data and process operation data required for the diagnosis of the process state of the sewage treatment plant or the past data set stored in the database unit; A data preprocessor for preprocessing the respective data by removing a range of numerical absolute values of each data from the data received by the data collector; Receiving the preprocessed data by the data preprocessing unit and applying the multivariate analysis method to the preprocessed data to reduce the preprocessed data to extract information on the process state inherent in past data sets of the sewage treatment plant. A data abbreviation unit; In order to derive a diagnosis result regarding the state of the current processing performance using the reduced data, the reduced data is grouped, and a determination function for determining the state of the grouped data is derived, and the diagnosis result by the determination function. Deriving process diagnosis unit; And a control strategy call unit for calling a rule regarding an amount of change of the control variable of the process operation data by a preset simulation according to a group representing a diagnosis result derived from the process diagnosis unit. Provide rule-based control device based on diagnosis.
이하, 본 발명의 바람직한 실시예를 첨부된 도면들을 참조하여 상세히 설명한다. 우선 각 도면의 구성요소들에 참조번호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다. Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. First, in adding reference numerals to the components of each drawing, it should be noted that the same reference numerals are used as much as possible even if displayed on different drawings. In describing the present invention, when it is determined that the detailed description of the related well-known configuration or function may obscure the gist of the present invention, the detailed description thereof will be omitted.
도 1은 본 발명의 실시예에 따른 하수처리장 공정상태 진단에 따른 규칙기반 제어장치를 나타낸 구성도이고, 도 2는 도 1의 규칙기반 제어장치의 작동상태를 상세히 나타낸 구성도이고, 도 3은 도 1 중 공정진단부의 상세한 화면을 나타낸 도면이고, 도 4는 도 1 중 제어전략 호출부에 의한 제어전략 중 DO 제어의 상세한 화면을 나타낸 도면이고, 도 5는 도 1 중 제어전략 호출부에 의한 제어전략 중 외부탄소원 유량 주입의 상세한 화면을 나타낸 도면이고, 도 6은 본 발명의 실시예에 따른 하수처리장 공정상태진단에 따른 규칙기반 제어방법을 나타낸 순서도이고, 도 7은 도 6 중 제어전략 호출단계를 상세히 나타낸 순서도이고, 도 8은 도 7 중 2그룹의 제어전략 호출을 위한 시뮬레이션 결과를 나타낸 그래프이고, 도 9는 도 7 중 3그룹의 제어전략 호출을 위한 시뮬레이션 결과를 나타낸 그래프이고, 도 10은 도 7 중 4그룹의 제어전략 호출을 위한 시뮬레이션 결과를 나타낸 그래프이고, 도 11은 본 발명에 의한 하수처리장 공정상태 진단에 따른 규칙기반 제어방법이 적용되지 않은 현장운전 결과를 나타낸 그래프이고, 도 12는 본 발명에 의한 하수처리장 공정상태 진단에 따른 규칙기반 제어방법이 적용된 현장운전 결과를 나타낸 그래프이다.1 is a block diagram showing a rule-based control device according to the sewage treatment plant process condition diagnosis according to an embodiment of the present invention, Figure 2 is a configuration diagram showing the operating state of the rule-based control device of Figure 1 in detail, 1 is a view showing a detailed screen of the process diagnostic unit, Figure 4 is a view showing a detailed screen of the DO control of the control strategy by the control strategy caller in Figure 1, Figure 5 is a control strategy caller in Figure 1 Figure 6 is a view showing a detailed screen of the external carbon source flow rate injection of the control strategy, Figure 6 is a flow chart showing a rule-based control method according to the process state diagnosis of sewage treatment plant according to an embodiment of the present invention, Figure 7 is a control strategy call of Figure 6 8 is a flow chart showing the steps in detail, Figure 8 is a graph showing the simulation results for the control strategy call of the two groups in Figure 7, Figure 9 is a control strategy call for the three groups in Figure 7 10 is a graph showing simulation results, and FIG. 10 is a graph showing simulation results for calling a control strategy of four groups in FIG. 7, and FIG. 11 is not applied to a rule-based control method according to a process status diagnosis of a sewage treatment plant according to the present invention. 12 is a graph showing the results of the field operation, Figure 12 is a graph showing the results of the field operation to which the rule-based control method according to the diagnosis of the process state of the sewage treatment plant according to the present invention.
도 1 및 도 2를 참조하면, 규칙기반 제어장치(10)는 데이터 수집부(100), 데이터 베이스부(200), 데이터 전처리부(300), 데이터 축약부(400), 공정 진단부(500), 제어전략 호출부(600) 및 제어전략 적용부(700)를 포함한다. 1 and 2, the rule-based control device 10 includes a data collection unit 100, a database unit 200, a data preprocessor 300, a data abbreviation unit 400, and a process diagnosis unit 500. ), The control strategy call unit 600 and the control strategy application unit 700.
상기 데이터 수집부(100)는 하수처리장으로부터 하수처리장 공정상태 진단 및 제어를 위해 필요한 유입/유출수질 데이터와 유량값, 센서값, 송풍량 및 반송유량 등과 같은 공정운영 데이터를 입력받는다. 상기 데이터 수집부(100)는 대표적으로 PLC(Programmable Logic Controller)와 데이터 수집장치가 사용될 수 있다. 상기 입력된 공정운영 데이터들은 상기 규칙기반 제어장치(10)의 모니터링 화면에서 누적 데이터들의 변동 및 현재의 데이터 값들을 수치 및 그래프로 확인가능하다. 또한 현재 구동되고 있는 하수처리장 공정 기기들의 동작상태 역시 확인이 가능하다. 공정을 구성하는 기기의 개수 및 종류, 입력되는 데이터의 종류에 따라 모니터링 화면은 조절가능하다.The data collection unit 100 receives process operation data such as inflow / outflow water quality data and a flow rate value, a sensor value, a blowing amount, and a return flow rate required for the diagnosis and control of the process state of the sewage treatment plant from the sewage treatment plant. The data collection unit 100 may typically be a programmable logic controller (PLC) and a data collection device. The input process operation data can be confirmed in numerical values and graphs of the change of the cumulative data and the current data values on the monitoring screen of the rule-based control device 10. In addition, it is possible to check the operating status of the currently operated sewage treatment plant process equipment. The monitoring screen is adjustable according to the number and type of devices constituting the process and the type of data to be input.
상기 데이터 베이스부(200)는 유입/유출수질 데이터와 유량값, 센서값, 송풍량 및 반송유량 등과 같은 공정운영 데이터를 별도로 저장하는 역할을 한다. 즉, 상기 데이터 수집부(100)에 의해 수집된 데이터들은 전기적 신호 변환에 의해 상기 데이터 베이스부(200)에 자동적으로 저장된다. 상기 저장된 데이터는 하수처리장의 공정상태 진단에 필요한 과거 데이터셋으로 구성되어 필요한 경우 상기 데이터 베이스부(200)에 저장된 데이터들을 불러와 사용할 수 있다. 상기 데이터 베이스부(200)는 별도의 장치로 구성될 수도 있고, 상기 데이터 수집부(100) 또는 후술할 데이터 전처리부(300) 등에 내장되어 결합될 수도 있을 것이다. The database unit 200 separately stores inflow / outflow water quality data and process operation data such as a flow rate value, a sensor value, a blowing amount, and a return flow rate. That is, the data collected by the data collection unit 100 is automatically stored in the database unit 200 by the electrical signal conversion. The stored data is composed of past data sets necessary for diagnosing the process state of the sewage treatment plant, and if necessary, data stored in the database unit 200 may be called and used. The database unit 200 may be configured as a separate device, or may be incorporated in the data collector 100 or the data preprocessor 300 to be described later.
상기 데이터 전처리부(300)는 데이터 수집부(100)에 의해 수집된 데이터 또는 데이터 베이스부(200)에 의해 저장된 과거 데이터셋에 대해 데이터 전처리를 수행하는 역할을 한다. 따라서 상기 데이터 전처리부(300)는 상기 데이터 수집부(100)에 의해 입력받은 데이터들을 대상으로 각각의 데이터가 가지는 수치적 절대값의 범위를 제거하여 이후의 데이터 처리를 용이하게 하도록 상기 각각의 데이터를 전처리한다.The data preprocessor 300 performs data preprocessing on the data collected by the data collector 100 or the past data sets stored by the database unit 200. Accordingly, the data preprocessor 300 removes the range of the numerical absolute value of each data from the data input by the data collector 100 to facilitate subsequent data processing. Preprocess
상기 데이터 전처리부(300)는 상기 데이터 수집부(100)에 의해 입력받은 데이터들에 대해 각각의 데이터별로 자동으로 계산되어 도출되는 평균과 표준편차를 이용하여 수학식 1에 의해 상기 입력받은 데이터를 표준화한다. 표준화된 데이터들은 다변량 분석기법 그 중에서도 특히 주성분 분석을 수행하기 위해 요구되는 데이터들이다. The data preprocessing unit 300 calculates the input data by Equation 1 using an average and a standard deviation which are automatically calculated and derived for each of the data input by the data collection unit 100. Standardize The standardized data are the data required for performing multivariate analyses, in particular principal component analysis.
상기 데이터 축약부(400)는 상기 데이터 전처리부(300)에 의해 전처리된 데이터를 전달받아 상기 전처리된 데이터에 대해 다변량 분석기법을 적용하여 하수처리장의 과거 데이터셋들에 내재되어 있는 공정상태에 관한 정보를 추출하기 위해 상기 전처리된 데이터를 축약한다. 상기 데이터 축약부(400)는 대표적으로 다변량 통계기법 중 하나인 주성분 분석법에 의해 여러 개의 유입/유출 수질 데이터 및 공정운영 데이터를 상기 여러 개보다 적은 개수의 축약된 주성분으로 차원축소를 수행할 수 있다. 예를 들어, 10개 이상의 유입/유출 수질 데이터 및 공정운영 데이터를 3 ~ 5개의 축약된 주성분으로 차원축소를 수행할 수 있다.The data abbreviation unit 400 receives data preprocessed by the data preprocessing unit 300 and applies a multivariate analysis method to the preprocessed data to relate to a process state inherent in past data sets of a sewage treatment plant. The preprocessed data is abbreviated to extract information. The data reduction unit 400 may perform a dimensional reduction on a plurality of inflow / outflow water quality data and process operation data with fewer abbreviated principal components by principal component analysis, which is typically one of multivariate statistical techniques. . For example, 10 or more inflow / outflow water quality data and process operation data can be reduced to three to five abbreviated principal components.
상기 공정 진단부(500)는 상기 축약된 데이터를 이용하여 현재 처리성능의 상태에 관한 진단 결과를 도출하기 위해 상기 축약된 데이터를 그룹화(군집화)하고, 상기 그룹화된 데이터의 상태를 판별하기 위한 판별함수를 도출하여 상기 판별함수에 의한 진단 결과를 도출한다.The process diagnosis unit 500 uses the reduced data to group (group) the reduced data to derive a diagnosis result regarding a state of current processing performance, and to determine the state of the grouped data. A function is derived to derive a diagnosis result by the discrimination function.
상기 공정 진단부(500)는 상기 데이터 축약부(400)에서 축약된 주성분에 대해 K-평균 군집 분석을 수행하여 공정의 처리성능 및 운영상태를 그룹화하며, 새로운 유입/유출 수질 데이터 및 공정운영 데이터가 입력되어 주성분으로 변환된 후 상기 새로운 유입/유출 수질 데이터 및 공정운영 데이터가 어떠한 그룹에 할당될 수 있는지를 판별하기 위한 수단으로 사용될 판별함수를 Fisher의 선형 판별분석을 이용하여 도출하고, 상기 할당된 그룹을 활용하여 하수처리장의 처리성능 및 공정운영에 관한 진단을 수행한다.The process diagnosis unit 500 performs a K-average cluster analysis on the principal components abbreviated by the data abbreviation unit 400 to group the processing performance and operation state of the process, and new inflow / outflow water quality data and process operation data. After the input is converted into the principal component, a discriminant function to be used as a means for determining which group the new inflow / outflow water quality data and the process operation data can be assigned to is derived using Fisher's linear discriminant analysis, and the allocation This group is used to carry out diagnostics on the treatment performance and process operation of sewage treatment plants.
상기 공정 진단부(500)는 데이터 베이스부(200)에 저장된 과거 데이터셋을 통해 먼저 공정상태 진단을 수행하게 되며, 수행된 진단 결과는 공정상태 진단 화면에서 확인가능하다. 공정 진단은 공정상태를 사전에 분류된 그룹된 중 어느 그룹에 해당되는지를 확인하게 해 주며, 각 그룹들마다 공정 특성이 미리 도출되어 그 결과가 화면에 나타나게 되며, 분류된 그룹은 해당되는 하수처리장 공정마다 달라지게 되지만 3 ~ 5개의 그룹이 가장 바람직하다.The process diagnosis unit 500 first performs a process state diagnosis through a past data set stored in the database unit 200, and the result of the diagnosis may be checked on a process state diagnosis screen. The process diagnosis checks which process group belongs to the pre-classified group, and the process characteristics are derived in advance for each group and the result is displayed on the screen. Although varying from process to process, three to five groups are most preferred.
도 3을 참조하면, 공정 진단부(500)의 상세한 화면을 나타내고 있다. 공정상태 진단 화면을 살펴보면 상단은 하수처리장 공정의 모식도이며, 가운데 부분은 시간이 흐름에 따른 각 시간별 해당 그룹을 나타내 주는 테이블이며, 하단 우측에 현재 해당되는 그룹에 대한 진단 결과를 나타내 줌에 따라 이로써 시간별 또는 일별 현재 공정상태를 확인가능하며, 이는 저장되는 데이터의 주기에 따라 달라지게 된다. Referring to FIG. 3, a detailed screen of the process diagnosis unit 500 is shown. Looking at the process status diagnosis screen, the upper part is a schematic diagram of the sewage treatment plant process, and the middle part is a table showing the corresponding group for each hour as time passes, and the lower right shows the diagnosis result for the current group. You can check the current process status either hourly or daily, depending on the cycle of the data being stored.
공정상태 진단을 통해 현재 공정의 진단 결과가 화면에 나타나게 되어 운전자가 확인가능하며, 이는 자동적으로 데이터 베이스부(200)에 저장된다. 도출된 진단 결과에 따른 규칙기반 제어가 제어장치(10) 내 저장된 제어 순서도에 따라 수행되며, 이 결과가 규칙기반 제어화면에서 나타나게 된다. 일련의 규칙에 의해 도출된 기기 및 장비들의 설정값이 화면에서 확인가능하며, 이와 같은 설정값은 자동적으로 데이터 베이스부(200)에 저장되며 설정값에 따라 하수처리장 공정을 구성하는 기기 및 장비들이 제어된다. 이때 P, PI, PID 제어를 위해 필요한 계수값들이 제어장치(10) 내 입력되어 있으므로 모든 제어 행위는 제어장치(10)를 통해서 실제 기기들이 변경된 운전조건으로 구동되게 된다. The diagnosis result of the current process is displayed on the screen through the process state diagnosis, which can be checked by the operator, which is automatically stored in the database unit 200. Rule-based control according to the derived diagnosis result is performed according to the control flowchart stored in the control device 10, and the result is displayed on the rule-based control screen. The set values of devices and equipment derived by a series of rules can be checked on the screen, and these set values are automatically stored in the database unit 200, and the devices and equipment constituting the sewage treatment plant process are set according to the set values. Controlled. At this time, since the coefficient values necessary for the P, PI, and PID control are input in the control device 10, all control actions are driven by the actual device through the control device 10 under changed operating conditions.
상기 제어전략 호출부(600)는 상기 공정 진단부(500)로부터 도출된 진단 결과를 의미하는 그룹에 따라 사전에 설정된 모의실험에 의하여 상기 공정운영 데이터의 조절변수의 변화량에 관한 규칙을 호출한다. The control strategy call unit 600 calls a rule regarding the amount of change of the control variable of the process operation data by a simulation set in advance according to a group representing a diagnosis result derived from the process diagnosis unit 500.
상기 제어전략 호출부(600)는 상기 공정 진단부(500)에서 도출된 그룹별 특징에 따라 공정의 처리성능을 보다 향상시킬 수 있는 DO(용존산소) 제어 또는 외부탄소원 제어 동작 등에 관한 제어 규칙을 저장하며, 상기 공정 진단부(500)에서 도출된 공정상태에 따라 상기 제어전략 호출부(600)에 미리 저장되어 있는 제어 규칙을 호출하여 상기 제어 규칙에 대한 모의실험에 의하여 도출된 바 있는 공정운영 데이터의 조절변수의 변화량을 호출한다.The control strategy call unit 600 controls the control rules related to DO (dissolved oxygen) control or external carbon source control operation that can further improve the processing performance of the process according to the characteristics of each group derived from the process diagnosis unit 500. Storing and calling a control rule stored in the control strategy caller 600 in advance according to the process state derived from the process diagnosis unit 500, and a process operation derived by simulation of the control rule. Call up the amount of change in the control variable in the data.
도 4를 참조하면, 제어전략 호출부(600)에 의한 제어전략 중 DO 제어의 상세한 화면을 나타내고 있다. 상기 제어전략 호출부(600)는 DO 제어 및 외부탄소원 유량 제어를 수행하게 되며, 이에 대한 보다 상세한 화면을 살펴보면, 상단의 하수처리장 공정 모식도에서 중간부분에 규칙기반 제어를 통해 도출된 DO 설정값이 나타나 있다. 이 설정값으로 유지하기 위해 제어장치(10)의 내부에서 PID 제어를 통해 실제 DO 농도가 조절되게 된다. 설정값으로 맞추기 위한 제어는 P, PI 또는 PID 제어를 적용하는 것이 적절하다. 새로운 DO 설정값은 질산화 반응을 증가시키거나 감소시키기 위해 수행되므로, 결국 유출수의 NH4-N 농도 변화가 발생하게 된다. 아래 부분에 현재 공정 내 DO 농도가 표시되고, 화면 가운데 두 그래프는 시간에 따른 유입 및 유출 NH4-N 농도를 나타내고 있고, 하단의 오른쪽 첫번째 그래프는 설정된 DO 값 및 현재의 DO 농도를 나타내며, 하단의 오른쪽 두번째 그래프는 설정된 DO 농도를 맞추기 위해 변동되고 있는 송풍기의 폭기량을 나타내고 있다. 4, the detailed screen of the DO control of the control strategy by the control strategy call unit 600 is shown. The control strategy call unit 600 performs DO control and external carbon source flow control. Looking at the detailed screen thereof, the DO setting value derived through rule-based control in the middle of the process diagram of the sewage treatment plant at the top is Is shown. In order to maintain this set value, the actual DO concentration is adjusted through PID control in the controller 10. It is appropriate to apply P, PI or PID control to control the setting value. The new DO setpoint is performed to increase or decrease the nitrification reaction, resulting in a change in the NH 4 -N concentration of the effluent. The bottom part shows the DO concentration in the current process.The two graphs in the middle of the screen show the inlet and outlet NH 4 -N concentrations over time.The first graph on the bottom right shows the set DO value and the current DO concentration. The second graph to the right shows the aeration of the blower that is changing to match the set DO concentration.
도 5를 참조하면, 제어전략 호출부(600)에 의한 제어전략 중 외부탄소원 유량 주입의 상세한 화면을 나타내고 있다. 상기 제어전략 호출부(600)는 규칙기반 제어를 통해 외부탄소원 유량의 주입 여부를 결정하며, 만약 외부탄소원 유량이 주입되어야 할 경우, 현재의 유출수 NOx-N 농도를 활용하여 적절한 외부탄소원 유량을 계산하여 공정으로 주입하게 된다. 제어장치(10) 내에서 수행되는 외부탄소원 유량 제어에 대한 보다 상세한 화면을 살펴보면, 화면 가운데 부분은 외부탄소원 유량을 도출하기 위한 일련의 계산과정을 나타내고 있으며, 화면 내 중간 하단 부분에 현재 주입되고 있는 외부탄소원 유량이 나타나게 된다. 화면 오른쪽 첫번째 및 두번째 그래프는 유입 및 유출되는 NOx-N 농도를 나타내며, 오른쪽 아래부분의 그래프는 주입되고 있는 외부탄소원 유량에 대한 그래프를 나타낸다. 운전자는 화면을 통해 규칙기반 제어에 따라 외부탄소원이 주입되고 있는지를 확인할 수 있으며, 또한 각 진단 및 제어화면에서도 운전조건 변경에 따른 공정상태 변화를 확인가능하다.Referring to FIG. 5, a detailed screen of the external carbon source flow rate injection in the control strategy by the control strategy call unit 600 is shown. The control strategy call unit 600 determines whether to inject the external carbon source flow rate through rule-based control, and if the external carbon source flow rate is to be injected, calculates an appropriate external carbon source flow rate using the current effluent NOx-N concentration. To be injected into the process. Looking at a more detailed screen of the external carbon source flow control performed in the control device 10, the middle part of the screen shows a series of calculation process for deriving the external carbon source flow rate, which is currently being injected into the lower middle part of the screen The external carbon source flow rate will appear. The first and second graphs on the right side of the screen show the incoming and outgoing NOx-N concentrations, and the graph on the lower right shows the flow of external carbon source flow. The operator can check whether the external carbon source is being injected according to the rule-based control through the screen, and can also check the change of the process status according to the change of operating conditions in each diagnosis and control screen.
상기 제어전략 적용부(700)는 상기 제어전략 호출부(600)에 의해 결정된 제어 행위를 하수처리장에 적용한다. 상기 제어전략 적용부(700)는 상기 제어전략 호출부(600)에 의해 결정된 제어 행위에 의한 전기적인 신호를 구동기(actuator)에 전달한다.The control strategy application unit 700 applies the control action determined by the control strategy call unit 600 to the sewage treatment plant. The control strategy application unit 700 transmits an electrical signal based on the control action determined by the control strategy call unit 600 to an actuator.
도 6을 참조하면, 본 발명에 의한 하수처리장 공정상태 진단에 따른 규칙기반 제어방법의 순서도가 나타나 있다. 6, there is shown a flow chart of the rule-based control method according to the sewage treatment plant process status diagnosis according to the present invention.
상기 제어방법은 먼저 하수처리장 공정에서 수집되는 데이터를 입력받는 데이터 수집 단계(S110), 이후 필요한 데이터에 대한 전처리를 수행하는 데이터 전처리 단계(S120), 전처리된 데이터를 통해서 사전에 분석된 주성분계수와의 결합 및 계산을 통해서 주성분값을 도출하는 데이터 축약 단계(S130), 도출된 주성분값을 통해 역시 사전에 분석된 판별함수에 적용하여 현재 공정 상태가 어느 그룹에 해당되는지를 분석하는 공정 진단 단계(S140), 상기 공정 진단 단계에서 결정된 진단 결과에 해당하는 특정그룹이 확인되며 상기 확인된 진단 결과에 따라 해당되는 그룹별 규칙기반 제어전략을 호출하는 제어전략 호출 단계(S150) 및 도출된 결과에 따라 공정에 자동적으로 제어전략을 적용하는 제어전략 적용 단계(S160)를 포함한다.The control method includes a data collection step of receiving data collected in a sewage treatment plant process (S110), a data preprocessing step (S120) of performing preprocessing on necessary data, and a principal component coefficient previously analyzed through the preprocessed data. Data abbreviation step of deriving the principal component value through the combination and calculation of (S130), process diagnostic step of analyzing which group the current process state is applied by applying to the discrimination function also analyzed in advance through the derived principal component value ( S140), a specific group corresponding to the diagnosis result determined in the process diagnosis step is confirmed, and according to the control strategy call step (S150) for calling a rule-based control strategy for each group according to the identified diagnosis result (S150) and the derived result. It includes a control strategy application step (S160) to automatically apply the control strategy to the process.
상기 제어전략은 공정 내 DO 설정값 변화 및 이에 따른 송풍량 변화, 내부 반송유량 변화, 슬러지 반송유량 변화 그리고 필요하다면 추가적인 외부탄소원 유량 변화만을 포함하는 것이 바람직하며, 해당되는 하수처리장 공정 특성에 따라 추가하거나 언급된 내용 중 일부를 제외하는 것이 바람직하다.The control strategy preferably includes only changes in DO setpoints in the process and therefore changes in air flow, internal conveying flow changes, sludge conveying flow changes and, if necessary, additional external carbon source flow changes, depending on the sewage treatment plant process characteristics. It is desirable to exclude some of the statements mentioned.
먼저, 하수처리장 공정상태 진단에 필요한 유입/유출 수질 데이터 및 공정운영 데이터 또는 데이터 베이스부(200)에 저장된 과거 데이터셋을 입력받는 데이터 수집단계(S110)를 수행하게 된다.First, an inflow / outflow water quality data and process operation data necessary for diagnosing a process state of a sewage treatment plant or a data collection step of receiving a historical data set stored in the database unit 200 is performed.
이를 위해 유입 평균 유량 18 m3/day 규모의 A2/O 공정으로부터 2010년 11월부터 2011년 9월까지의 유입/유출 수질 데이터 그리고 공정운영 데이터들이 수집되었다.For this purpose, inflow / outflow water quality data and process operation data from November 2010 to September 2011 were collected from an A 2 / O process with an average inflow of 18 m 3 / day.
상기 수집된 데이터들을 대상으로 데이터 전처리 단계(S120)를 통해 각각의 데이터가 가지는 수치적 절대값의 범위를 제거하여 상기 각각의 데이터를 전처리하게 된다. 즉, 주성분 분석을 수행하기 위한 데이터 표준화가 수행되며, 이는 각 개별 데이터와 그 데이터가 누적된 데이터셋으로부터 계산될 수 있는 평균과 표준편차를 통하여 수학식 1과 같이 계산되어 표준화된 데이터는 평균이 0이며, 표준편차 1의 값을 가지는 데이터로 변환된다. The data preprocessing step (S120) is performed on the collected data to preprocess the respective data by removing a range of numerical absolute values of each data. That is, data normalization is performed to perform principal component analysis, which is calculated as shown in Equation 1 through the average and standard deviation that can be calculated from each individual data and the data set in which the data is accumulated. 0, converted to data with a standard deviation of 1.
수학식 1
Figure PCTKR2012001271-appb-M000001
Equation 1
Figure PCTKR2012001271-appb-M000001
이때,
Figure PCTKR2012001271-appb-I000001
는 각각의 데이터의 측정된 값을 의미하며,
Figure PCTKR2012001271-appb-I000002
는 해당 데이터 항목의 평균,
Figure PCTKR2012001271-appb-I000003
는 해당 데이터 항목의 표준편차를 의미한다.
At this time,
Figure PCTKR2012001271-appb-I000001
Means the measured value of each data,
Figure PCTKR2012001271-appb-I000002
Is the mean of that data item,
Figure PCTKR2012001271-appb-I000003
Means the standard deviation of the data item.
전처리된 데이터들을 전달받아 데이터 축약 단계(S130)를 통하여 주성분 분석을 수행한다. 즉, 상기 전처리된 데이터를 구성하는 변수들이 구성하는 분산을 분석하여 공통된 분산별로 축약될 수 있는 주성분을 도출한다.Principal component analysis is performed by receiving the preprocessed data through a data reduction step (S130). In other words, by analyzing the variance of the variables constituting the pre-processed data to derive a principal component that can be reduced by a common variance.
따라서 전처리된 데이터(유입 및 유출 NH4-N, NOx-N, PO4-P, DO, MLSS, ORP 총 9개 데이터 항목)를 이용하여 주성분 분석을 수행하여 상기 수행된 주성분 분석을 통해 고유값이 1 이상인 성분을 선택한 결과, 3개의 주성분(PC1, PC2, PC3)이 선택되었다. 이는 9차원의 데이터셋이 새로운 3차원의 데이터셋으로 변형되었음을 의미하며, 주성분 분석을 통해 도출된 주성분 계수를 [표 1]에 나타내었다.Therefore, principal component analysis is performed using preprocessed data (inflow and outflow NH 4 -N, NOx-N, PO 4 -P, DO, MLSS, ORP total 9 data items) As a result of selecting one or more components, three main components (PC 1 , PC 2 , PC 3 ) were selected. This means that the 9-dimensional dataset was transformed into a new 3-dimensional dataset. Principal component coefficients obtained through the principal component analysis are shown in [Table 1].
표 1
Figure PCTKR2012001271-appb-T000001
Table 1
Figure PCTKR2012001271-appb-T000001
따라서 데이터 축약 단계(S130)에서는 새로운 데이터가 입력되었을 경우, 전처리된 각 항목값과 주성분 계수값을 통해 최종적으로 주성분값을 계산하게 된다. Therefore, in the data abbreviation step S130, when new data is input, the principal component value is finally calculated based on each preprocessed item value and principal component coefficient value.
일예로, PC1의 경우 0.384*In NH4-N + 0.082*In NOx-N + 0.381*In PO4-P +...+ 0.131*AERO3_MLSS - 0.147*ANOX_ORP으로 주성분값이 계산된다.For example, in the case of PC 1 , the principal component value is calculated as 0.384 * In NH 4 -N + 0.082 * In NOx-N + 0.381 * In PO 4 -P + ... + 0.131 * AERO 3_MLSS-0.147 * ANOX_ORP.
이후, 공정 진단 단계(S140)에서는 상기 주성분들을 입력 데이터로 하여 K-평균 군집 분석에 의하여 공정상태를 그룹화하고, 상기 그룹화된 데이터의 상태를 판별하기 위한 판별함수를 판별분석을 이용하여 도출하여 새로운 유입/유출 수질 데이터 및 공정운영 데이터에 의해 생성된 주성분들을 입력 데이터로 하여 상기 그룹화된 그룹 중 어떠한 그룹에 해당하는지를 판별하고, 상기 판별된 그룹을 활용하여 하수처리장의 처리성능 및 공정운영에 관한 진단 결과를 도출한다. 상기 판별분석은 상기 K-평균 군집 분석에 의해 분류된 그룹을 외적 기준으로 두고, Fisher의 선형 판별분석을 통해 각 그룹에 대한 함수식인 판별 함수식을 도출하며, 새로운 유입/유출 수질 데이터 및 공정운영 데이터에 의해 생성되는 주성분들을 입력으로 하여 각 그룹별 판별 함수식에 의해 계산된 값의 크기들을 비교하여 가장 큰 값을 나타내는 그룹에 할당한다. Subsequently, in the process diagnosis step S140, process states are grouped by K-means cluster analysis using the principal components as input data, and a discriminant function for determining the state of the grouped data is derived using discriminant analysis. The main components generated by the inflow / outflow water quality data and the process operation data are used as input data to determine which group is among the grouped groups, and the diagnosis is performed on the treatment performance and process operation of the sewage treatment plant using the determined groups. To derive the results. The discriminant analysis sets the group classified by the K-means cluster analysis as an external standard, and derives a discriminant function which is a functional formula for each group through Fisher's linear discriminant analysis, and introduces new inflow / outflow water quality data and process operation data. The main components generated by the input are compared with the magnitudes of the values calculated by the discriminant function of each group, and assigned to the group representing the largest value.
이를 좀 더 구체적으로 살펴보면, K-평균 군집 분석을 통해 공정운영 상태가 그 특성에 따라 아래의 [표 2]에 제시된 바와 같이 총 4개의 그룹으로 분류될 수 있었고, 각 그룹별 판별 함수식이 Fisher의 선형 판별분석에 의해 다음과 같이 도출되었다. In more detail, through the K-means cluster analysis, the process operation status can be classified into four groups according to their characteristics as shown in [Table 2] below. The linear discriminant analysis yielded the following.
Group 1 = -4.377PC1 + 2.172PC2 + 3.238PC3 - 6.179 Group 1 = -4.377PC 1 + 2.172PC 2 + 3.238PC 3 - 6.179
Group 2 = 2.322PC1 + 3.076PC2 - 2.504PC3 - 4.878 Group 2 = 2.322PC 1 + 3.076PC 2 - 2.504PC 3 - 4.878
Group 3 = 1.724PC1 - 1.604PC2 + 1.172PC3 - 2.864 Group 3 = 1.724PC 1 - 1.604PC 2 + 1.172PC 3 - 2.864
Group 4 = -0.229PC1 - 2.403PC2 - 1.589PC3 -3.010 Group 4 = -0.229PC 1 - 2.403PC 2 - 1.589PC 3 -3.010
상기의 판별함수에 먼저 도출된 주성분값을 대입하여 각 그룹의 함수의 값을 계산하게 되고, 가장 큰 값을 가지게 되는 함수가 대표하는 그룹이 현재의 공정 상태를 의미하는 것으로 해석되었다. The value of the function of each group is calculated by substituting the principal component values first derived into the discrimination function, and the group represented by the function having the largest value is interpreted to mean the current process state.
표 2
Figure PCTKR2012001271-appb-T000002
TABLE 2
Figure PCTKR2012001271-appb-T000002
도출된 각 그룹별 공정 특성을 통한 진단 결과는 다음과 같은 정성적인 정보로 운전자에게 제시될 수 있다.Diagnosis results through the process characteristics of each group can be presented to the operator with the following qualitative information.
1 그룹: 기본적인 정상적인 공정상태로 유입 부하량이 보통 이하이며 질소 및 인 제거 원활함.Group 1: Under normal conditions, the influent load is below normal and the nitrogen and phosphorus removal is smooth.
2 그룹: 유입 암모니아 부하가 높고 인 부하는 보통이나 탈질이 원활하지 않음(DO 농도는 적정하나 외부탄소원 조절이 요구).Group 2: High incoming ammonia loads and moderate loads but not denitrification (DO concentrations are adequate but external carbon source control is required).
3 그룹: 유입 질소/인 부하가 높고 낮은 DO와 낮은 MLSS로 질산화 부족 및 인 제거 부족함.Group 3: High nitrogen / phosphorus loading, low nitrification and phosphorus removal due to low DO and low MLSS.
4 그룹: 중간 정도의 유입 부하에서 낮은 DO로 인해 질산화 및 인 제거 원활하지 않음.4 Group: Nitrification and phosphorus removal not as smooth due to low DO at moderate influent loads.
이후, 제어전략 호출단계(S150)에서는 상기 도출된 진단 결과에 대한 그룹별 특징에 따라 공정의 처리성능을 보다 향상시킬 수 있는 DO(용존산소) 제어 또는 외부탄소원 제어 동작 등에 관한 제어 규칙을 호출하여 상기 제어 규칙에 대한 모의실험에 의하여 도출된 바 있는 공정 운영 데이터의 조절변수의 변화량을 호출한다.Then, in the control strategy call step (S150) by calling the control rules for the DO (dissolved oxygen) control or external carbon source control operation, etc., which can further improve the processing performance of the process according to the characteristics of the group for the derived diagnostic results Call the amount of change in the control variable of the process operating data derived by the simulation of the control rule.
상기 제어전략 호출 단계(S150)에서는 도 7과 같은 규칙기반 제어 순서도를 내장하고 있으며, 당면한 그룹별로 제어전략을 호출하는데, 이때 각 규칙은 정기적으로 수행되는 수학적 모의결과에 의하여 조절변수의 변화량을 내재하고 있다.In the control strategy call step (S150), a rule-based control flow chart as shown in FIG. 7 is embedded, and a control strategy is called for each group in question. In this case, each rule implies a change amount of a control variable by a mathematical simulation performed periodically. Doing.
도 7을 참조하면, 제어방법 중 제어전략 호출 단계(S150)가 상세히 나타나 있다. 먼저 공정상태 진단을 통해 해당되는 그룹을 확인하게 되며, 동일한 그룹이 4번 이상 반복되는가를 확인하게 된다. 만약 시간별로 공정상태 진단이 수행된다면 4시간 이상이 되는 것이 바람직하며, 일별로 공정상태 진단이 수행된다면 4일 이상이 되는 것이 바람직하다, 이는 잦은 기기 변동을 방지하기 위함이며, 또한 변경된 운전조건으로 공정이 안정화되기 위한 최소한의 유지기간으로 판단된다. 7, the control strategy call step (S150) of the control method is shown in detail. First, the relevant group is checked through the process status diagnosis, and the same group is repeated four times or more. If the process status diagnosis is carried out hourly, it is desirable to be more than 4 hours, and if the process status diagnosis is performed daily, it is desirable to be more than 4 days. This is to prevent frequent equipment changes, and also to change the operating conditions. We believe this is a minimum maintenance period for the process to stabilize.
각 그룹별로 사전에 도출된 진단 결과에 따라 어떤 제어 행위가 수행되는지는 달라지게 되며, 도 7에서는 총 4그룹에 대한 제어 행위를 나타내었다. 그룹의 분류는 해당 하수처리장 공정 특성에 따라 달라지게 되며, 4 ~ 5그룹이 적절하다. 도 7의 경우 그룹 1은 정상상태, 그룹 2는 탈질 반응이 부족하여 추가적인 외부탄소원 주입이 필요한 상태, 그룹 3은 질산화 및 탈질 반응 모두가 부족하여 DO 설정값 증가 및 추가적인 외부탄소원 주입이 필요한 상태, 그룹 4는 질산화 반응이 부족하여 DO 설정값 증가가 필요한 상태로 분류되었다.Which control actions are performed according to the diagnosis results derived in advance for each group is different, and FIG. 7 shows control actions for a total of four groups. The classification of groups will depend on the nature of the sewage treatment plant process and groups 4 to 5 are appropriate. In the case of Figure 7, group 1 is a steady state, group 2 is a state that requires an additional external carbon source injection due to the lack of denitrification reaction, group 3 is a state in which the DO set value is increased and additional external carbon source injection is necessary, due to lack of both nitrification and denitrification reaction, Group 4 was classified as requiring a DO increase due to lack of nitrification.
각 그룹별 제어 행위가 수행된 이후 다시 공정상태를 확인하게 되며 만약 해당 그룹이 아닌 다른 그룹이 최소 4번 이상 유지될 경우는 제어 행위가 중단되게 되며, 그렇지 않은 경우는 제어 행위가 계속 유지되어 공정을 안정화할 수 있는 운전조건이 지속적으로 적용되게 된다.After the control action of each group is performed, the process status is checked again. If a group other than the corresponding group is maintained at least four times, the control action is stopped. Otherwise, the control action is maintained. The operating conditions that can stabilize the continuity are continuously applied.
본 발명의 예시를 위해 제어변수로는 NH4-N 및 NOx-N 농도를 선택하였으며, 조절변수로는 DO 농도와 외부탄소원 주입 유량을 선택하였다. 각 그룹의 공정상태 진단 결과에 따른 제어 행위는 다음과 같다.For example, the NH 4 -N and NOx-N concentrations were selected as control variables, and the DO concentration and the external carbon source injection flow rate were selected as control variables. The control actions according to the process status diagnosis result of each group are as follows.
1 그룹 제어 행위: 정상적인 공정으로 별도의 제어 행위를 수행하지 않음. DO가 제어되고 있을 시 고정된 폭기량으로 전환.1 Group Control Behavior: Do not perform separate control behavior as normal process. Switch to fixed aeration when DO is under control.
2 그룹 제어 행위: 적절한 DO 농도에도 불구하고 높은 NOx-N 농도가 발생함으로 외부탄소원 주입 요구. 따라서 DO 농도는 고정된 폭기량으로 전환하며 외부탄소원 주입.Group 2 Control Action: Requires injection of external carbon sources due to high NOx-N concentrations occurring despite appropriate DO concentrations. Therefore, DO concentration is converted to fixed aeration volume and injected with external carbon source.
3 그룹 제어 행위: 불안전한 공정 상태로 DO의 조절과 필요에 따라서는 외부탄소원의 주입도 요구.3 Group Control Behavior: Unsafe process conditions require the control of DO and injection of external carbon sources as needed.
4 그룹 제어 행위: 불안전한 공정 상태로 DO의 조절과 필요에 따라서는 외부탄소원의 주입도 요구.4 Group Control Behavior: Unsafe process conditions require the control of DO and injection of external carbon sources as needed.
1 그룹은 정상상태로 별도의 제어가 필요하지 않으므로 사전 모의를 수행하지 않는다. 2 그룹은 유입 NH4-N 부하가 높지만 제거가 잘 되며, 탈질 반응이 원활하지 않은 경우이므로, DO 농도는 조절하지 않고 외부탄소원 주입을 통해 탈질반응을 활성화시켜야 하므로, 유출수 NOx-N 농도 5mg/L를 기준으로 설정하여 이를 달성할 수 있는 조절변수의 변화량에 관한 사전 모의결과가 도 8에 나타나 있다. 도 8에서 확인할 수 있듯이, 외부탄소원 주입을 통해 유출수 NOx-N 농도가 약 21.1% 감소하였고, 이를 통해 5mg/L의 유출수 NOx-N 농도를 목표로 하여 외부탄소원 유량을 주입하는 것이 타당하다고 할 수 있다. Group 1 does not need pre-simulation because no additional control is required. Group 2 has a high influent NH 4 -N load but can be removed well and the denitrification reaction is not smooth. Therefore, the denitrification reaction should be activated by external carbon source injection without adjusting the DO concentration. Preliminary simulation results regarding the amount of change in the control variable that can be achieved by setting L as a reference are shown in FIG. 8. As can be seen in Figure 8, the concentration of effluent NOx-N was reduced by about 21.1% through the injection of external carbon source, it can be said that it is reasonable to inject the external carbon source flow rate targeting the effluent NOx-N concentration of 5mg / L through this have.
3 그룹은 유입 NH4-N 부하가 높고, 전체적인 유출수가 불안정한 상태이므로 DO 농도와 외부탄소원의 동시 제어가 필요하여 사전 모의는 DO 30% 증가, DO 50% 증가, 외부탄소원 주입이라는 전략하에 수행되었으며, 도 9에서 초기값과 DO 50% 증가 시뮬레이션 결과를 비교해 봤을때 유출수 NH4-N 농도 평균이 약 15.4% 감소함을 확인할 수 있었고, NOx-N 농도는 외부탄소원을 주입한 경우에 DO 농도를 30% 증가시킨 경우보다 약 28.4% 감소함을 확인할 수 있었다.Group 3 has high inflow NH 4 -N load and overall runoff is unstable, so simultaneous control of DO concentration and external carbon source is required, so pre-simulation was carried out under the strategy of DO 30% increase, DO 50% increase, external carbon source injection. When comparing the initial value and the simulation result of DO 50% increase in FIG. 9, it can be seen that the effluent NH 4 -N concentration average decreases by about 15.4%, and the NOx-N concentration is the DO concentration when an external carbon source is injected. It was confirmed that the increase was about 28.4% compared with the 30% increase.
4 그룹은 중간 정도의 유입 부하를 가지지만 낮은 DO 농도에 의해서 질산화가 잘 이루어지지 않고 있는 상황으로 DO 제어가 필요하며, 시뮬레이션은 DO 20% 증가 및 DO 50% 증가에 대해 수행되었으며, 도 10에서 확인할 수 있듯이, 초기값이 DO 농도 증가로 인해 감소됨을 확인할 수 있었다. 따라서 유출수 NH4-N 농도가 15ppm 이상의 경우에는 DO 농도를 50% 증가시키며, 농도가 15ppm 미만일 경우 과폭기가 될 수 있는 문제점을 방지하기 위하여 20%의 DO 상승을 제어전략으로 도출하였다. Group 4 has a moderate influent load but is not well nitrified by low DO concentration, so DO control is required, and simulations were performed for DO 20% increase and DO 50% increase, and in FIG. As can be seen, it was confirmed that the initial value is reduced by increasing the DO concentration. Therefore, when the concentration of effluent NH 4 -N is 15 ppm or more, the DO concentration is increased by 50%, and when the concentration is less than 15 ppm, the DO increase of 20% is derived as a control strategy to prevent the problem of overexploitation.
상기 제어전략 호출 단계(S150)에 사용되는 전략을 구성하는 경우, 상기 언급된 그룹별 적절한 설정값을 도출하기 위해 수학적 모델을 사용한 사전모의를 수행하며, 해당 하수처리장 공정의 특성에 따라 숙련된 운전자의 경험적 지식, 입력과 출력간의 물질수지 상관관계에 기반한 계산 등도 적절히 적용가능하다.When constructing the strategy used in the control strategy call step (S150), to perform the pre-simulation using a mathematical model to derive the appropriate set value for each of the above-mentioned group, the skilled driver according to the characteristics of the sewage treatment plant process The empirical knowledge of the system, and calculations based on the balance of mass balance between input and output, are also applicable.
또한 사용된 수학적 모델은 제어장치(10)에 포함되지 않고, 별도로 제어장치(10) 외부에서 일정 주기별로 구동하여 정량화된 값을 제어장치(10) 내부의 제어로직에 입력하는 방식으로 구성될 수도 있다.In addition, the mathematical model used is not included in the control device 10, but may be configured by separately driving the controller at a predetermined period outside the control device 10 and inputting the quantified value into the control logic inside the control device 10. have.
상기 제어전략 호출 단계(S150)에서는 이와 같은 정량적인 설정값을 기반으로 일련의 순서도에 따라 각 그룹별 규칙에 따른 제어전략이 호출되는데, 이에 대해 상세히 설명하면 다음과 같다. In the control strategy call step (S150), the control strategy according to the rules of each group is called according to a series of flowcharts based on such quantitative set values, which will be described in detail as follows.
(1) 일예로, 공정 상태 진단 결과가 3 그룹이 최소 4번 이상 유지되었을 경우, 도 7의 순서도에 따라 NH4-N 및 NOx-N 제어가 수행되게 되며, 먼저 DO 설정값을 50% 증가하여 DO 제어를 수행하게 된다. 이때 설정값 증가의 기준이 되는 DO 농도는 1ppm으로 설정하였으며, 해당 하수처리장 공정 특성에 따라 기준값을 다르게 적용하는 것이 바람직하다.(1) As an example, when the process status diagnosis result is maintained at least four times in three groups, NH 4 -N and NOx-N control are performed according to the flowchart of FIG. 7, and the DO set value is increased by 50%. DO control is performed. In this case, the DO concentration, which is the reference for increasing the set value, was set to 1 ppm, and it is preferable to apply the reference value differently according to the process characteristics of the sewage treatment plant.
(2) 이후 제어가 수행되면서 유출수 NH4-N 농도가 목표값인 10ppm을 초과하는지를 확인하게 되며, 만약 초과하게 되면 현재의 DO 설정값을 유지하면서 그룹의 변동 여부를 확인하게 된다. 이때의 목표값 역시 해당 하수처리장의 공정 특성을 반영하여 다르게 적용하는 것이 바람직하다. (2) After the control is performed, it is checked whether the effluent NH 4 -N concentration exceeds the target value of 10ppm, and if it is exceeded, the group DO is checked while maintaining the current DO set value. The target value at this time is also preferably applied differently to reflect the process characteristics of the sewage treatment plant.
(3) 만약 유출수 NH4-N 농도가 목표값인 10ppm을 초과하지 않는다면, 유출수 NOx-N 농도가 목표값을 초과하고 있는지를 판단하여 초과한다면 외부탄소원을 주입하게 된다. 이때의 NOx-N 목표값인 10ppm 역시 해당 하수처리장의 공정 특성을 반영하여 다르게 적용하는 것이 바람직하다.(3) If the effluent NH 4 -N concentration does not exceed the target value of 10ppm, an external carbon source is injected if the effluent NOx-N concentration exceeds the target value. At this time, 10 ppm, which is a target value of NOx-N, is also preferably applied differently to reflect the process characteristics of the sewage treatment plant.
(4) 이와 같이 제어 행위를 계속 적용하면서 그룹의 변동 여부를 확인하게 되고, 다른 그룹이 4번 이상 반복되게 되면, 제어의 효과가 발생하였다고 판단하여 해당 그룹의 제어 행위를 중단하게 되며, 새로운 그룹으로 순서도가 반복되게 된다. 만약 4번 이상 다른 그룹이 반복되지 않는다면, 충분한 제어 효과가 발생하지 못하였다고 판단하여 해당 그룹의 제어 행위가 계속 반복되면서 그룹 변동을 확인하게 된다. (4) In this way, the control action is continuously applied to check whether the group changes. If another group is repeated four or more times, it is determined that the control effect has occurred, and the control action of the group is stopped. The flowchart will be repeated. If the other group is not repeated four or more times, it is determined that a sufficient control effect has not occurred and the control action of the corresponding group is repeatedly repeated to check the group variation.
상기 호출된 제어 규칙에 따라 결정된 제어 행위를 하수처리장에 적용하는 제어전략 적용 단계;를 포함하는 하수처리장 공정상태 진단에 따른 규칙기반 제어방법.And a control strategy applying step of applying the control action determined according to the called control rule to the sewage treatment plant.
제어전략 적용 단계(S160)에서는 호출된 제어 규칙에 따라 결정된 제어 행위를 하수처리장에 적용하게 되며, 이때 DO 제어의 경우, 제어장치(10) 내부에 탑재되어 있는 PID 제어를 적용하게 되며, 외부탄소원의 경우, 제어장치(10) 내부에 탑재되어 있는 일련의 계산 방법에 따라 적절한 외부탄소원 유량이 주입되게 된다.In the control strategy application step (S160), the control action determined according to the called control rule is applied to the sewage treatment plant. In this case, in the case of DO control, the PID control mounted in the control device 10 is applied to the external carbon source. In this case, an appropriate external carbon source flow rate is injected according to a series of calculation methods mounted inside the control device 10.
상기 제어전략 적용 단계(S160)는 해당 하수처리장 공정의 형태 및 구동 가능한 설비를 파악하여 적절한 제어기를 활용하는 것이 바람직하다.In the application of the control strategy (S160), it is preferable to use an appropriate controller by identifying the type of the sewage treatment plant process and the driveable equipment.
이상 본 발명을 통한 하수처리장 공정상태 진단에 따른 규칙기반 제어장치(10) 및 제어방법을 실제 평균 유입 유량 18 m3/day 규모의 A2/O 공정에 적용하여 현장검증을 수행하였다.The on-site verification was performed by applying the rule-based control device 10 and the control method according to the present invention to the sewage treatment plant process state diagnosis in an A 2 / O process having an average inflow rate of 18 m 3 / day.
도 11을 참조하면, 실제 현장인 하수처리장 공정상태 진단에 따른 규칙기반 제어방법을 적용하지 않은 결과를 나타낸다.Referring to FIG. 11, it shows a result of not applying a rule-based control method according to a diagnosis of a process state of a sewage treatment plant, which is an actual site.
고정된 송풍량으로 총 123개의 데이터를 수집하였으며, 이 기간 동안의 평균 유입수 농도는 NH4-N의 경우 약 23.3 mg/L , NOx-N의 경우 1.01 mg/L였고, 평균 유출수 농도는 NH4-N의 경우 약 12.95 mg/L, NOx-N의 경우 4.12 mg/L로 확인되었다. 전체적으로 질산화 반응이 원활히 발생하지 않음을 확인할 수 있었고, 수집된 데이터를 통해 도출된 시간별 그룹 상태도 질산화 반응이 부족한 4 그룹이 지배적으로 발생하였음을 확인할 수 있었다. 이를 통해 장기간 현상태를 유지하게 된다면, 공정 운전이 점차 악화되어 공정 이상이 길어질 수 있다고 판단하였고, 본 발명인 하수처리장 공정상태 진단에 따른 규칙기반 제어방법이 적용되어야 함을 확인할 수 있었다.A total of 123 data were collected with a fixed airflow, with an average influent concentration of about 23.3 mg / L for NH 4 -N and 1.01 mg / L for NOx-N, with an average outflow concentration of NH 4 -N. About 12.95 mg / L for N and 4.12 mg / L for NOx-N. In general, it was confirmed that nitrification did not occur smoothly, and it was confirmed that four groups lacking nitrification occurred predominantly in the state of hourly group derived from the collected data. Through this, if the status is maintained for a long time, it was determined that the process operation may be gradually worsened and the process abnormality may be long, and the rule-based control method according to the present invention diagnosis of the sewage treatment plant should be applied.
도 12를 참조하면, 실제 현장에 본 발명에 의한 하수처리장 공정상태 진단에 따른 규칙기반 제어방법을 적용한 결과를 나타내었다. Referring to Figure 12, it shows the result of applying the rule-based control method according to the diagnosis of the process state according to the present invention on the actual site.
먼저 4 그룹이 4번 발생되어 해당 그룹에 대한 첫번째 제어전략인 DO 설정값을 1.5ppm으로 하여 제어가 수행되었다. 제어가 수행된 후 그룹 변동을 확인해 보면, 3 그룹이 3번, 1 그룹이 2번 발생되어 그룹 변동이 없이 제어 행위가 유지되었으며, 순서도에 따라 유출수 NH4-N 농도가 15ppm 보다 낮아졌을 때 DO 설정값은 1.2ppm으로 변경되어 적용되었고, 1 그룹이 2번 발생한 기간에 이와 같은 제어 행위가 수행되었다. First, four groups were generated four times, and control was performed using the DO setting value of 1.5 ppm as the first control strategy for the group. After the control was carried out, the group variation was checked, and the three groups were generated three times and one group was generated twice, so that the control behavior was maintained without the group variation, and when the effluent NH 4 -N concentration was lower than 15 ppm according to the flowchart, DO The set value was changed to 1.2ppm, and this control action was performed in one period of two occurrences of one group.
이후 3 그룹이 4번 발생하여 자동적으로 4 그룹의 제어 행위는 중단되었고, 3 그룹 제어 순서도에 따라 DO 설정값은 1.5ppm으로 변경되었고, 유출수 NH4-N 농도가 10ppm 보다 높아서 1.5ppm의 설정값을 유지하며 그룹 변동을 확인하였다. Thereafter, three groups were generated four times, and the control behavior of four groups was automatically stopped, and the DO setting value was changed to 1.5 ppm according to the three group control flowchart, and the set value of 1.5 ppm was set because the effluent NH 4 -N concentration was higher than 10 ppm. The change in the group was checked while maintaining.
이후 1 그룹이 4번 발생하였으며, 이에 따라 3 그룹 제어 행위는 중단되었고, 1 그룹 제어 순서도에 따라 DO 제어 없이 고정된 숭풍량으로 공정이 운전되었다. Thereafter, one group occurred four times, and accordingly, the three group control actions were stopped, and the process was operated at a fixed amount of air flow without DO control according to the one group control flowchart.
1 그룹 이후 2 그룹이 4번 유지되어, 2 그룹의 제어전략인 DO 비제어와 유출수 NOx-N농도가 5ppm에 도달할 때까지 외부탄소원 유량을 주입하였다. 이때 주입된 외부탄소원 유량은 제어장치(10) 내부의 일련의 계산에 의해 약 19.7mL/min의 유량으로 주입되었다. 2 그룹은 총 14시간 동안 지속되었으며, 이후 유출수 NOx-N 농도가 5ppm에 도달하고 4 그룹이 4번 발생하여 2그룹의 제어 행위는 중단되었다. After the first group, two groups were maintained four times, and the external carbon source flow was injected until the control strategy of the two groups, DO control and effluent NOx-N concentration reached 5 ppm. At this time, the injected external carbon source flow rate was injected at a flow rate of about 19.7 mL / min by a series of calculations inside the controller 10. The two groups lasted for 14 hours, after which the effluent NOx-N concentration reached 5 ppm and four groups occurred four times.
4 그룹 제어 순서도에 따라 먼저 DO 설정값은 1.5ppm으로 설정되었으나, 이때의 유출수 NH4-N 농도가 15ppm 미만이어서 다시 1.2ppm으로 변경되어 적용되었다.According to the four-group control flowchart, the DO setting value was first set to 1.5 ppm, but the effluent NH 4 -N concentration was less than 15 ppm and was changed to 1.2 ppm again.
이후 3그룹이 1번 발생하였고, 다시 1그룹이 4번 유지되어 4 그룹 제어는 중단되었고, DO 제어도 적용되지 않았다. Thereafter, three groups occurred once, one group was maintained four times, and four group control was stopped, and DO control was not applied.
40시간 이후에는 2 그룹 2번, 4 그룹 1변, 2 그룹 2번이 연속적으로 도출되었으며, 이후 4 그룹이 4번 유지되어 4 그룹 제어가 수행되었고, 유출수 NH4-N 농도 비교에 따라 DO 설정값은 1.2ppm으로 적용되었다.After 40 hours, 2 groups 2, 4 groups 1 side, 2 groups 2 times were derived continuously, 4 groups were maintained 4 times, and 4 groups control was performed, and DO was set according to the effluent NH 4 -N concentration comparison. The value was applied at 1.2 ppm.
4 그룹 이후 3그룹이 4번 발생하여 다시 3그룹 제어전략이 적용되었고, DO 설정값 1.5ppm이 유지되면서 유출수 NH4-N 농도가 10ppm 보다 낮게 나타나게 되어 3 그룹이 유지되는 마지막 시간부터는 외부탄소원이 제어장치(10) 내부의 일련의 계산에 의해 약 32.1 mL/min의 유량으로 주입되었다. After 4 groups, 3 groups occurred 4 times, and the 3 group control strategy was applied again. The DO setting value of 1.5 ppm was maintained, and the effluent NH 4 -N concentration appeared to be lower than 10 ppm. It was injected at a flow rate of about 32.1 mL / min by a series of calculations inside the controller 10.
이후 2 그룹이 4번 유지되어 동일한 외부탄소원 유량이 주입되었으며, 2 그룹은 총 21시간 동안 유지되었다.The two groups were then maintained four times, injecting the same external carbon source flow rate, and the two groups were maintained for a total of 21 hours.
이후 4 그룹이 3번, 2 그룹이 2번 발생하였고, 다시 4 그룹이 4번 발생하여 4 그룹 제어 순서도에 따라 1.2ppm의 DO 설정값으로 제어가 수행되었다.Thereafter, 4 groups occurred 3 times and 2 groups occurred 2 times, and 4 groups occurred 4 times, and control was performed at a DO set value of 1.2 ppm according to the 4 group control flowchart.
약 90시간 동안 8번의 제어 행위가 수행되었으며, 이 기간 동안의 평균 유입수 농도는 NH4-N의 경우 약 26.5mg/L, NOx-N의 경우 0.91mg/L였고, 평균 유출수 농도는 NH4-N의 경우 약 9.6mg/L, NOx-N의 경우 8.85mg/L로 확인되었다.Eight control actions were performed in about 90 hours, with mean influent concentrations of about 26.5 mg / L for NH 4 -N and 0.91 mg / L for NOx-N, with mean concentrations of NH 4- About 9.6 mg / L for N and 8.85 mg / L for NOx-N.
이와 같은 데이터는 현장검증에서 목표로 설정하였던 유출수 NH4-N 10mg/L, NOx-N 10mg/L를 충분히 만족시키는 농도값이며, 이를 통해 본 발명인 하수처리장 공정상태 진단에 따른 규칙기반 제어방법이 실제 현장에 적용되었을 경우에도 충분히 효과를 나타낼 수 있음을 확인하였다.Such data are concentration values satisfying the effluent NH 4 -N 10mg / L and NOx-N 10mg / L, which were set as targets in the field verification, and through this, the rule-based control method according to the present condition diagnosis of sewage treatment plant It was confirmed that even if it is applied to the actual site, it can be sufficiently effective.
또한 포괄적인 공정상태 진단에 따라 적절한 제어 행위가 일련의 규칙에 기반하여 적용되어 공정 제어 행위가 최소 4시간 길게는 20시간 이상 유지되어 시간 단위의 실시간 제어에 비해 공정의 잦은 변동이 감소할 수 있었고, 이를 통해 공정 기기 및 펌프와 같은 설비의 부하가 감소되는 효과를 유도할 수 있었다고 판단되었다.In addition, according to the comprehensive process status diagnosis, appropriate control actions are applied based on a series of rules, so that the process control actions are maintained for at least 4 hours and 20 hours or more, thereby reducing the frequent fluctuations of the process compared to the real time control of the hour. It was concluded that this could lead to the effect of reducing the load on equipment such as process equipment and pumps.
이상의 설명은 본 발명을 예시적으로 설명한 것에 불과한 것으로, 본 발명이 속하는 기술분야에서 통상의 지식을 가지는 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 변형이 가능할 것이다. 따라서 본 명세서에 개시된 실시예들은 본 발명을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 사상과 범위가 한정되는 것은 아니다. 본 발명의 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.The above description is merely illustrative of the present invention, and those skilled in the art to which the present invention pertains may various modifications without departing from the essential characteristics of the present invention. Therefore, the embodiments disclosed herein are not intended to limit the present invention but to describe the present invention, and the spirit and scope of the present invention are not limited by these embodiments. It is intended that the scope of the invention be interpreted by the following claims, and that all descriptions within the scope equivalent thereto shall be construed as being included in the scope of the present invention.
본 발명은 하수처리장의 처리성능을 향상시키기 위하여 운전되고 있는 하수처리장의 처리성능 상태에 대한 정성적 진단 정보 도출을 수행하며, 진단결과에 따라 구체적인 조절변수의 변화량을 제공함으로써 하수처리장의 공정상태를 진단 및 제어하는 분야에 광범위하게 이용될 수 있다.The present invention conducts qualitative diagnostic information on the treatment performance of the sewage treatment plant in order to improve the treatment performance of the sewage treatment plant, and provides a change amount of specific control parameters according to the diagnosis result to determine the process state of the sewage treatment plant. It can be widely used in the field of diagnosis and control.

Claims (8)

  1. 하수처리장 공정상태 진단에 필요한 유입/유출 수질 데이터 및 공정운영 데이터를 입력받거나 데이터 베이스부에 저장된 과거 데이터셋을 입력받는 데이터 수집부;A data collection unit for receiving inflow / outflow water quality data and process operation data necessary for diagnosing a process state of a sewage treatment plant or receiving a historical data set stored in a database unit;
    상기 데이터 수집부에 의해 입력받은 데이터들을 대상으로 각각의 데이터가 가지는 수치적 절대값의 범위를 제거하여 상기 각각의 데이터를 전처리하는 데이터 전처리부;A data preprocessor for preprocessing the respective data by removing a range of numerical absolute values of each data from the data received by the data collector;
    상기 데이터 전처리부에 의해 전처리된 데이터를 전달받아 상기 전처리된 데이터에 대해 다변량 분석기법을 적용하여 하수처리장의 과거 데이터셋들에 내재되어 있는 공정상태에 관한 정보를 추출하기 위해 상기 전처리된 데이터를 축약하는 데이터 축약부;Receiving the preprocessed data by the data preprocessing unit and applying the multivariate analysis method to the preprocessed data to reduce the preprocessed data to extract information on the process state inherent in past data sets of the sewage treatment plant. A data abbreviation unit;
    상기 축약된 데이터를 이용하여 현재 처리성능의 상태에 관한 진단 결과를 도출하기 위해 상기 축약된 데이터를 그룹화하고, 상기 그룹화된 데이터의 상태를 판별하기 위한 판별함수를 도출하여 상기 판별함수에 의한 진단 결과를 도출하는 공정 진단부; 및In order to derive a diagnosis result regarding the state of the current processing performance using the reduced data, the reduced data is grouped, and a determination function for determining the state of the grouped data is derived, and the diagnosis result by the determination function. Deriving process diagnosis unit; And
    상기 공정 진단부로부터 도출된 진단 결과를 의미하는 그룹에 따라 사전에 설정된 모의실험에 의하여 상기 공정운영 데이터의 조절변수의 변화량에 관한 규칙을 호출하는 제어전략 호출부;를 포함하는 하수처리장 공정상태 진단에 따른 규칙기반 제어장치.A control strategy call unit for calling a rule on the amount of change of the control variable of the process operation data according to a preset simulation according to a group representing a diagnosis result derived from the process diagnosis unit; Rule-based control device according to.
  2. 제 1항에 있어서,The method of claim 1,
    상기 하수처리장 공정상태 진단에 따른 규칙기반 제어장치는 상기 제어전략 호출부에 의해 결정된 제어 행위를 하수처리장에 적용하는 제어전략 적용부;를 더 포함하되, 상기 제어전략 적용부는 상기 제어전략 호출부에 의해 결정된 제어 행위에 의한 전기적인 신호를 구동기(actuator)에 전달하는 것을 특징으로 하는 하수처리장 공정상태 진단에 따른 규칙기반 제어장치.  The rule-based control apparatus according to the process state diagnosis of the sewage treatment plant further includes a control strategy application unit for applying the control action determined by the control strategy calling unit to the control strategy call unit. Rule-based control device according to the diagnosis of the process state of the sewage treatment plant, characterized in that for transmitting an electrical signal by the control action determined by the actuator (actuator).
  3. 제 1항 또는 제 2항에 있어서,The method according to claim 1 or 2,
    상기 데이터 전처리부는 상기 데이터 수집부에 의해 입력받은 데이터들에 대해 각각의 데이터별로 자동으로 계산되어 도출되는 평균과 표준편차를 이용하여 아래의 수식에 의해 상기 입력받은 데이터를 표준화하는 것을 특징으로 하는 하수처리장 공정 상태 진단에 따른 규칙기반 제어장치. The data pre-processing unit standardizes the received data by the following formula by using the average and standard deviation which are automatically calculated and derived for each data of the data input by the data collection unit. Rule-based control device according to the diagnosis of process status of plant.
    Figure PCTKR2012001271-appb-I000004
    Figure PCTKR2012001271-appb-I000004
    이때,
    Figure PCTKR2012001271-appb-I000005
    는 각각의 데이터의 측정된 값을 의미하며,
    Figure PCTKR2012001271-appb-I000006
    는 해당 데이터 항목의 평균,
    Figure PCTKR2012001271-appb-I000007
    는 해당 데이터 항목의 표준편차를 의미함.
    At this time,
    Figure PCTKR2012001271-appb-I000005
    Means the measured value of each data,
    Figure PCTKR2012001271-appb-I000006
    Is the mean of that data item,
    Figure PCTKR2012001271-appb-I000007
    Means the standard deviation of the data item.
  4. 제 1항 또는 제 2항에 있어서,The method according to claim 1 or 2,
    상기 데이터 축약부는 상기 다변량 분석기법 중 하나인 주성분 분석법에 의해 여러 개의 유입/유출 수질 데이터 및 공정운영 데이터를 상기 여러 개보다 적은 개수의 축약된 주성분으로 차원축소를 수행하는 것을 특징으로 하는 하수처리장 공정상태 진단에 따른 규칙기반 제어장치. The data abbreviation unit performs dimensional reduction of a plurality of inflow / outflow water quality data and process operation data with fewer abbreviated principal components by principal component analysis, which is one of the multivariate analysis methods. Rule-based control device based on condition diagnosis.
  5. 제 4항에 있어서,The method of claim 4, wherein
    상기 공정 진단부는 상기 데이터 축약부에서 축약된 주성분에 대해 K-평균 군집 분석을 수행하여 공정의 처리성능 및 운영상태를 그룹화하며, 새로운 유입/유출 수질 데이터 및 공정운영 데이터가 입력되어 주성분으로 변환된 후 상기 새로운 유입/유출 수질 데이터 및 공정운영 데이터가 어떠한 그룹에 할당될 수 있는지를 판별하기 위한 수단으로 사용될 판별함수를 Fisher의 선형 판별분석을 이용하여 도출하고, 상기 할당된 그룹을 활용하여 하수처리장의 처리성능 및 공정운영에 관한 진단을 수행하는 것을 특징으로 하는 하수처리장 공정상태 진단에 따른 규칙기반 제어장치.The process diagnosis unit performs a K-average cluster analysis on the principal components abbreviated by the data abbreviation unit to group the processing performance and operation state of the process, and new inflow / outflow water quality data and process operation data are input and converted into the principal components. After that, a discriminant function to be used as a means for determining to which group the new inflow / outflow water quality data and process operation data can be allocated is derived by using Fisher's linear discriminant analysis, and the sewage treatment plant using the assigned group is used. Rule-based control device according to the diagnosis of the process status of the sewage treatment plant, characterized in that for performing the diagnosis of treatment performance and process operation.
  6. 제 5항에 있어서,The method of claim 5,
    상기 제어전략 호출부는 상기 공정 진단부에서 도출된 그룹별 특징에 따라 공정의 처리성능을 보다 향상시킬 수 있는 DO(용존산소) 제어 또는 외부탄소원 제어 동작 등에 관한 제어 규칙을 저장하며, 상기 공정 진단부에서 도출된 공정상태에 따라 상기 제어전략 호출부에 미리 저장되어 있는 제어 규칙을 호출하여 상기 제어 규칙에 대한 모의실험에 의하여 도출된 바 있는 공정운영 데이터의 조절변수의 변화량을 호출하는 것을 특징으로 하는 하수처리장 공정상태 진단에 따른 규칙기반 제어장치. The control strategy call unit stores control rules regarding DO (dissolved oxygen) control or an external carbon source control operation that can further improve the processing performance of the process according to the characteristics of each group derived from the process diagnosis unit, and the process diagnosis unit Calling the control rule stored in advance in the control strategy call unit according to the process state derived from the call to the amount of change of the control variable of the process operation data derived by the simulation of the control rule Rule-based control device according to the diagnosis of process status of sewage treatment plant.
  7. 하수처리장 공정상태 진단에 필요한 유입/유출 수질 데이터 및 공정운영 데이터를 입력받거나 데이터 베이스부에 저장된 과거 데이터셋을 입력받는 데이터 수집 단계;A data collection step of receiving inflow / outflow water quality data and process operation data necessary for diagnosing a process state of a sewage treatment plant or a historical data set stored in a database unit;
    상기 입력받은 데이터들을 대상으로 각각의 데이터가 가지는 수치적 절대값의 범위를 제거하여 상기 각각의 데이터를 전처리하는 데이터 전처리 단계;A data preprocessing step of preprocessing the respective data by removing a range of numerical absolute values of each data from the received data;
    상기 전처리된 데이터를 전달받아 주성분 분석을 적용하여 상기 전처리된 데이터를 구성하는 변수들이 구성하는 분산을 분석하여 공통된 분산별로 축약될 수 있는 주성분을 도출하는 데이터 축약 단계;A data reduction step of receiving the preprocessed data and applying a principal component analysis to analyze the variances of the variables constituting the preprocessed data to derive a principal component that can be reduced for each common variance;
    상기 주성분들을 입력 데이터로 하여 K-평균 군집 분석에 의하여 공정상태를 그룹화하고, 상기 그룹화된 데이터의 상태를 판별하기 위한 판별함수를 판별분석을 이용하여 도출하여 새로운 유입/유출 수질 데이터 및 공정운영 데이터에 의해 생성된 주성분들을 입력 데이터로 하여 상기 그룹화된 그룹 중 어떠한 그룹에 해당하는지를 판별하고, 상기 판별된 그룹을 활용하여 하수처리장의 처리성능 및 공정운영에 관한 진단 결과를 도출하는 공정 진단 단계;Process states are grouped by K-means cluster analysis using the principal components as input data, and a discriminant function for determining the state of the grouped data is derived using discriminant analysis, and new inflow / outflow water quality data and process operation data. A process diagnosis step of determining which group among the grouped groups corresponds to the main components generated by the input data, and deriving a diagnosis result regarding treatment performance and process operation of the sewage treatment plant using the determined groups;
    상기 도출된 진단 결과에 대한 그룹별 특징에 따라 공정의 처리성능을 보다 향상시킬 수 있는 DO(용존산소) 제어 또는 외부탄소원 제어 동작 등에 관한 제어 규칙을 호출하여 상기 제어 규칙에 대한 모의실험에 의하여 도출된 바 있는 공정 운영 데이터의 조절변수의 변화량을 호출하는 제어전략 호출 단계; 및Derived by simulation of the control rule by calling a control rule for DO (dissolved oxygen) control or an external carbon source control operation that can further improve the processing performance of the process according to the characteristics of the group for the derived diagnostic result A control strategy call step of calling a change amount of a control variable of the process operation data that has been performed; And
    상기 호출된 제어 규칙에 따라 결정된 제어 행위를 하수처리장에 적용하는 제어전략 적용 단계;를 포함하는 하수처리장 공정상태 진단에 따른 규칙기반 제어방법.And a control strategy applying step of applying the control action determined according to the called control rule to the sewage treatment plant.
  8. 제 7항에 있어서,The method of claim 7, wherein
    상기 판별분석은 상기 K-평균 군집 분석에 의해 분류된 그룹을 외적 기준으로 두고, Fisher의 선형 판별분석을 통해 각 그룹에 대한 함수식인 판별 함수식을 도출하며, 새로운 유입/유출 수질 데이터 및 공정운영 데이터에 의해 생성되는 주성분들을 입력으로 하여 각 그룹별 판별 함수식에 의해 계산된 값의 크기들을 비교하여 가장 큰 값을 나타내는 그룹에 할당하는 것을 특징으로 하는 하수처리장 공정상태 진단에 따른 규칙기반 제어방법. The discriminant analysis sets the group classified by the K-means cluster analysis as an external standard, and derives a discriminant function which is a functional formula for each group through Fisher's linear discriminant analysis, and introduces new inflow / outflow water quality data and process operation data. Rule-based control method according to the diagnosis of the process status of the sewage treatment plant, characterized in that the main components generated by the input to compare the magnitudes of the values calculated by the discriminant function of each group and assign them to the group representing the largest value.
PCT/KR2012/001271 2012-02-20 2012-02-20 Rule-based control apparatus and rule-based control method based on diagnosis of process state of sewage treatment plant WO2013125737A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2012-0016793 2012-02-20
KR1020120016793A KR20130095405A (en) 2012-02-20 2012-02-20 Apparatus and method for rule-based control according to process state diagnosis at wastewater treatment plants

Publications (1)

Publication Number Publication Date
WO2013125737A1 true WO2013125737A1 (en) 2013-08-29

Family

ID=49005906

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/001271 WO2013125737A1 (en) 2012-02-20 2012-02-20 Rule-based control apparatus and rule-based control method based on diagnosis of process state of sewage treatment plant

Country Status (2)

Country Link
KR (1) KR20130095405A (en)
WO (1) WO2013125737A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105804187A (en) * 2016-03-16 2016-07-27 宁波市江东精诚自动化设备有限公司 Solar environment-friendly toilet
CN112085081A (en) * 2020-09-02 2020-12-15 董萍 Sewage component detection method and system
CN115140786A (en) * 2022-07-08 2022-10-04 日照职业技术学院 Method and system for intelligently adjusting parameters of sewage treatment equipment
US11565946B2 (en) 2019-12-03 2023-01-31 Ramboll USA, Inc. Systems and methods for treating wastewater

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107065799A (en) * 2017-04-19 2017-08-18 刘飞 Long-distance monitoring method and its system for on-line monitoring sewage disposal system
CN108615115A (en) * 2018-05-02 2018-10-02 山东汇贸电子口岸有限公司 A kind of implementation method of government data collecting flowchart
KR101987897B1 (en) * 2018-11-28 2019-06-11 부산가톨릭대학교 산학협력단 A Process performance monitoring system of wastewater treatment plant
KR102282847B1 (en) * 2019-05-31 2021-07-27 주식회사 포스코아이씨티 System for Detecting Abnormal Control Data
WO2020241959A1 (en) * 2019-05-31 2020-12-03 주식회사 포스코아이씨티 System for detecting abnormal control data
CN111583058B (en) * 2020-03-17 2023-09-05 国网浙江省电力有限公司杭州供电公司 Method and device for generating power distribution network safety analysis system
CN114967623B (en) * 2022-06-07 2023-06-16 中国人民解放军陆军工程大学 Method for optimizing scale and selecting process of urban underground sewage treatment plant

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000167585A (en) * 1998-12-08 2000-06-20 Yaskawa Electric Corp Sewage treatment process simulator
KR20040044748A (en) * 2002-11-22 2004-05-31 지아이 주식회사 Remote controling method of wastewater treatment facilities by simulation expert system for optimal operation
KR20070070647A (en) * 2005-12-29 2007-07-04 (주)대우건설 United managing system for waste treatment facility using the quality of water simulator and statistical analysis method
KR20090078502A (en) * 2008-01-15 2009-07-20 부산대학교 산학협력단 Apparatus and method for diagnosis of operating states in municipal wastewater treatment plant

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000167585A (en) * 1998-12-08 2000-06-20 Yaskawa Electric Corp Sewage treatment process simulator
KR20040044748A (en) * 2002-11-22 2004-05-31 지아이 주식회사 Remote controling method of wastewater treatment facilities by simulation expert system for optimal operation
KR20070070647A (en) * 2005-12-29 2007-07-04 (주)대우건설 United managing system for waste treatment facility using the quality of water simulator and statistical analysis method
KR20090078502A (en) * 2008-01-15 2009-07-20 부산대학교 산학협력단 Apparatus and method for diagnosis of operating states in municipal wastewater treatment plant

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105804187A (en) * 2016-03-16 2016-07-27 宁波市江东精诚自动化设备有限公司 Solar environment-friendly toilet
US11565946B2 (en) 2019-12-03 2023-01-31 Ramboll USA, Inc. Systems and methods for treating wastewater
US11807551B2 (en) 2019-12-03 2023-11-07 Ramboll USA, Inc. Systems and methods for treating wastewater
CN112085081A (en) * 2020-09-02 2020-12-15 董萍 Sewage component detection method and system
CN112085081B (en) * 2020-09-02 2024-02-02 西部第三方检测集团(宁夏)有限公司 Sewage component detection method and system
CN115140786A (en) * 2022-07-08 2022-10-04 日照职业技术学院 Method and system for intelligently adjusting parameters of sewage treatment equipment

Also Published As

Publication number Publication date
KR20130095405A (en) 2013-08-28

Similar Documents

Publication Publication Date Title
WO2013125737A1 (en) Rule-based control apparatus and rule-based control method based on diagnosis of process state of sewage treatment plant
Lee et al. Monitoring of a sequencing batch reactor using adaptive multiblock principal component analysis
US20180327292A1 (en) System and method for wastewater treatment process control
CN1188759C (en) Device in a process system for detecting events
EP0432267B1 (en) Supporting method and system for process control
WO2014073261A1 (en) Process monitoring/diagnosis device and process monitoring/diagnosis program
WO2012002713A2 (en) System and method for diagnosing the processes of a sewage and wastewater treatment plant
CN109188899A (en) Accurate aeration control system and fuzzy control method for sewage treatment blurring
CN107686160B (en) Sewage treatment method and system based on SBR reactor
CN106096789A (en) A kind of based on machine learning techniques can be from the abnormal industry control security protection of perception and warning system
CN1068853C (en) Durability evaluating apparatus for elevator and method thereof
CN113433900B (en) Unattended intelligent centralized control method and system for oil field station
KR100446250B1 (en) Control apparatus for sewage and wastewater equipment
JP4188200B2 (en) Plant-wide optimum process controller
CN116562580A (en) Waste water and waste gas treatment system and method for lithium carbonate production workshop
CN111675257B (en) Remote centralized control method and system for sewage treatment plant
CN112639643A (en) System and method for auditing parameters of a sewage treatment plant
Rasay et al. Integration of the decisions associated with maintenance management and process control for a series production system
WO2015147351A1 (en) System for diagnosing operation state of anaerobic digestor of sewage treatment plant and predicting production amount of digestion gas and method therefor
WO2014157751A1 (en) Energy-saving prediction system and method based on diagnosis of state of energy consumption in sewage treatment plant
Watanabe et al. Intelligent operation support system for activated sludge process
KR20180076454A (en) Method of controlling electric energy in wastewater treatment operation for energy saving
KR100983889B1 (en) Utility flow controller of semiconductor equipment
KR20200075059A (en) Method and apparatus for diagnosing abnormal state of anaerobic digestion equipment using machine learning
KR200329215Y1 (en) Under web base remote unmanned medium and small size the all type integrated system where the thought decisive system for the sewage and waste water management place for facility watch control water measurement and to the process optimum control

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12869152

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12869152

Country of ref document: EP

Kind code of ref document: A1