WO2013125639A1 - Gas phase reaction device - Google Patents

Gas phase reaction device Download PDF

Info

Publication number
WO2013125639A1
WO2013125639A1 PCT/JP2013/054343 JP2013054343W WO2013125639A1 WO 2013125639 A1 WO2013125639 A1 WO 2013125639A1 JP 2013054343 W JP2013054343 W JP 2013054343W WO 2013125639 A1 WO2013125639 A1 WO 2013125639A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas phase
plating
molybdenum
phase reaction
oxide catalyst
Prior art date
Application number
PCT/JP2013/054343
Other languages
French (fr)
Japanese (ja)
Inventor
慎二 岩出
健治 末岡
広志 亀尾
Original Assignee
三菱レイヨン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2012036315A external-priority patent/JP2015086134A/en
Priority claimed from JP2012035935A external-priority patent/JP2015085207A/en
Application filed by 三菱レイヨン株式会社 filed Critical 三菱レイヨン株式会社
Publication of WO2013125639A1 publication Critical patent/WO2013125639A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C253/00Preparation of carboxylic acid nitriles
    • C07C253/24Preparation of carboxylic acid nitriles by ammoxidation of hydrocarbons or substituted hydrocarbons
    • C07C253/26Preparation of carboxylic acid nitriles by ammoxidation of hydrocarbons or substituted hydrocarbons containing carbon-to-carbon multiple bonds, e.g. unsaturated aldehydes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/005Separating solid material from the gas/liquid stream
    • B01J8/0055Separating solid material from the gas/liquid stream using cyclones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/1809Controlling processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/1818Feeding of the fluidising gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/1818Feeding of the fluidising gas
    • B01J8/1827Feeding of the fluidising gas the fluidising gas being a reactant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00115Controlling the temperature by indirect heat exchange with heat exchange elements inside the bed of solid particles
    • B01J2208/00141Coils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00796Details of the reactor or of the particulate material
    • B01J2208/00893Feeding means for the reactants
    • B01J2208/00902Nozzle-type feeding elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/28Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J33/00Protection of catalysts, e.g. by coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • This invention relates to a gas phase reactor.
  • nitrile As a method for producing nitrile, a method of obtaining an unsaturated nitrile such as acrylonitrile by reacting olefin such as propylene or paraffin such as propane with ammonia and oxygen by an ammoxidation method is known, and as a catalyst used in this reaction, A metal oxide catalyst containing molybdenum is used.
  • olefin such as propylene or paraffin such as propane
  • olefin such as propylene or paraffin such as propane
  • ammonia and oxygen an ammoxidation method
  • a metal oxide catalyst containing molybdenum is used as a catalyst used in this reaction.
  • molybdenum in the metal oxide catalyst is liberated as a molybdenum compound such as molybdenum hydroxide when water generated as a by-product in the ammoxidation method increases in the reactor.
  • molybdenum trioxide crystals are precipitated at a site such as a cooling pipe in the gas phase reactor and
  • the metal oxide catalyst loses its catalytic activity and is wasted, and the precipitated molybdenum trioxide crystals cover the cooling pipe to lower the thermal conductivity or block the pipe. In this case, there are adverse effects such as increasing the pressure loss and corroding the base material itself.
  • Patent Document 1 describes a method of introducing a powder into a reaction gas and removing the deposits attached to the heat exchanger with this powder.
  • Patent Document 2 describes a method of suppressing a decrease in catalyst activity and a change in particle size distribution by installing an indirect heat exchanger in a catalyst dilute layer at the top of the reactor.
  • Patent Document 1 is not practical because the powder wears not only the molybdenum oxide but also the apparatus, and it takes much time to separate and remove the powder downstream. Furthermore, in the method of Patent Document 2, the amount of adhesion is not sufficiently reduced, and it is necessary to cool the indirect heat exchanger with another cooling medium, which is inefficient.
  • the present invention relates to adhesion of molybdenum oxide to a contact surface of a vapor phase reaction apparatus that performs vapor phase oxidation using an oxide catalyst containing molybdenum and contacts with a molybdenum compound released from the metal oxide catalyst. It aims at suppressing efficiently.
  • the present invention relates to a gas phase reactor for causing a reaction using a metal oxide catalyst containing molybdenum, wherein the surface roughness of the contact surface with which the molybdenum compound released from the metal oxide catalyst contacts is a stylus type surface.
  • the center line average roughness (Ra) in the roughness measurement method is 0.1 ⁇ m or more and 5 ⁇ m or less, and this contact surface was covered with a film formed by thermal spraying or plating, thereby solving the above-mentioned problem. It is.
  • the contact surface is released from the metal oxide catalyst by forming a metal film by thermal spraying or plating.
  • the adhesion of the molybdenum compound can be suppressed.
  • adhesion of a molybdenum compound released from the metal oxide catalyst can be further suppressed.
  • the present invention relates to a gas phase reaction apparatus for causing a reaction using a metal oxide catalyst containing molybdenum.
  • Examples of the reaction performed using the above metal oxide catalyst containing molybdenum include a reaction for producing acrylonitrile from propylene and ammonia by an ammoxidation method, and production of acrylic acid by vapor phase oxidation of propylene.
  • the molybdenum-containing metal oxide catalyst only needs to have catalytic ability for the above reaction.
  • the reaction for producing the above acrylonitrile includes a Mo—Bi-based catalyst.
  • Me II represents a II-valent metal such as Co or Ni
  • Me III represents a III-valent metal such as Fe or Cr
  • Me I represents an I-valent metal such as Na or K.
  • the reaction is generally carried out by contacting the metal oxide catalyst in the form of fine particles as a fluidized bed with a gas phase reactant.
  • a gas phase reactor for producing acrylonitrile by the above-described ammoxidation method is shown in FIG.
  • Air a is introduced into the main body 11 of the gas phase reaction apparatus from the lower air introduction pipe 12 and blown out from the blow-out port 13 to float the catalyst 14.
  • a mixed gas b of propylene and ammonia is introduced from the raw material introduction pipe 15 as the above-mentioned reactant, and these are oxidized with oxygen in the air to obtain 1 equivalent of acrylonitrile and 3 equivalents of water.
  • the above reaction is performed while cooling the mixed gas inside the main body 11 by the cooling coil 16 through which the refrigerant d has passed.
  • Acrylonitrile produced by the reaction in the gas phase reactor is separated from the catalyst by the cyclone 19 and extracted from the product discharge pipe 17 as a reaction gas c containing impurities such as unreacted ammonia and by-product acrylic acid. It is.
  • the reaction gas c is cooled by the heat exchanger 18 and then sent to the ammonia absorption / separation system and the acrylonitrile purification system.
  • contact surface As a contact surface (hereinafter, simply referred to as “contact surface”) where the molybdenum compound released from the metal oxide catalyst contacts, for example, cooling such as the cooling coil 16 or the heat exchanger 18 is performed. And the inner surface of the part where the flow of gas changes, such as the surface of the part that is likely to precipitate due to, or the part where the pipe entrance / exit or the thickness of the pipe changes. Molybdenum compounds liberated from the catalyst as hydroxides by water generated by the reaction tend to adhere and grow as molybdenum oxide crystals on these contact surfaces. As a method for suppressing them as much as possible, a method is conceivable in which the surface roughness of the contact surface is set within a predetermined range and then covered with a metal film.
  • the gas phase reactor in the present invention is connected not only to the inside of the main body 11 of the gas phase reactor but also to the main body 11 of the gas phase reactor, and the main body 11 in contact with the released molybdenum compound. Also includes external piping and heat exchanger 18.
  • the above surface roughness is a roughness measured by a stylus type surface roughness measuring method, and the center line average roughness (Ra) is required to be 5 ⁇ m or less, and preferably 1 ⁇ m or less. If it is larger than 5 ⁇ m, it is difficult to suppress adhesion of the molybdenum compound even if it is covered with a metal film. On the other hand, 0.1 ⁇ m is sufficient as the lower limit of the surface roughness. Although it may be smaller than 0.1 ⁇ m, it is more difficult to prepare a member having such a contact surface.
  • a mechanical polishing method in which a metal surface is smoothed by mechanically or manually scraping a sandpaper, a grindstone, or an abrasive containing fine particles.
  • Electrolytic polishing method in which the metal surface is submerged in an acidic solution and the surface is melted and smoothed by passing an electric current, and a chemistry that provides a smooth metal surface by immersing in a solution of various compositions without applying an electric current.
  • An example is a polishing method.
  • the contact surface having a surface roughness within the above range is covered with a metal film.
  • a metal film examples include thermal spraying and plating.
  • the above-mentioned thermal spraying refers to forming a coating of the above material on the surface by bringing the metal forming the coating into a molten or semi-molten state and colliding with the contact surface.
  • Examples of the plating method include plating methods such as brush plating, electroplating, and electroless plating.
  • a plating treatment step a plating treatment method having a step of immersing in a plating solution, that is, a plating treatment method by an electroplating method or an electroless plating method is preferable, and a plating treatment method by an electroless plating method is more preferable.
  • the brush plating method is a method in which a plating object is immersed in an electrolytic solution containing plating metal ions and this electrolytic solution is applied to the plating object.
  • This brush is generally made by winding a fibrous material around a stainless steel electrode body so that the electrode does not directly touch the object to be plated and the electrolyte is held on the fiber. Then, this is connected to the positive pole of the low voltage power source, and the plating object is connected to the negative pole to perform the electroplating process.
  • the electroplating method is a conductive electrolyte containing a metal salt for plating an object to be plated, that is, dipped in a plating solution, and electricity is passed between a pair of electrodes immersed in the plating solution, to the surface of the object to be plated. This is a method of depositing a metal film to be plated.
  • the electroless plating method is immersed in a plating solution containing a metal salt and a reducing agent for plating an object to be plated, not by electrons due to energization, but by electrons released by oxidation of the reducing agent contained in the plating solution, This is a method of depositing a metal film to be plated on an object to be plated.
  • the obtained plating film has a uniform thickness regardless of the shape and type of the material.
  • the plating object is immersed in the plating solution, so that the plating film can be formed while maintaining the surface roughness of the object. Thereby, it becomes possible to suppress adhesion of the molybdenum compound released from the metal oxide catalyst. And when the film thickness of a plating film is thickened, adhesion of the said molybdenum compound can be suppressed more.
  • Examples of the metal constituting the metal film formed by the above-described thermal spraying or plating treatment include metals such as molybdenum, zinc, copper, silver, gold, titanium, aluminum, chromium, nickel, INCONEL (registered trademark, “Inconel”).
  • Alloys containing nickel-chromium-molybdenum-iron such as INCOLOY (registered trademark, referred to as "Incoloy"), alloys containing aluminum-chromium-iron, such as HASTELLOY (registered trademark), Hastelloy Alloys containing nickel-molybdenum-tungsten, such as MONEL (registered trademark, referred to as “Monel”), alloys containing nickel-copper, cobalt-chromium, such as stellite®, etc. Alloys containing tungsten, stainless steel made of nickel-chromium-iron such as SUS304 , Cermets, chromium carbide, titanium oxide and the like, can be used alone or in combination.
  • the metal constituting the plating film includes nickel, chromium, zinc, gold, silver and the like.
  • the plating film formed by electroplating is an alloy film of nickel and phosphorus, and the plating film formed by electroless plating is a pure nickel film.
  • the gas phase reactor according to the present invention uses a metal oxide catalyst containing molybdenum.
  • the amount of molybdenum oxide deposited can be suppressed, so the consumption of catalyst can be suppressed, the cooling effect can be reduced by the coating of the parts, and the corrosion of the substrate can be suppressed.
  • a manufacturing plant using an ammoxidation method such as acrylonitrile It can be operated more efficiently.
  • Production Example 3 The surface of Production Example 1 was subjected to nickel plating using an electroless plating method.
  • the surface roughness (Ra) was measured by a stylus type surface roughness measuring instrument and found to be 1.09 ⁇ m.
  • Production Example 4 The surface of Production Example 2 was subjected to nickel plating using an electroless plating method.
  • the surface roughness (Ra) was measured with a stylus type surface roughness measuring instrument and found to be 0.11 ⁇ m.
  • Example 1 Using the apparatus shown in FIG. 2, the amount of molybdenum trioxide (MoO 3 ) deposited on the metal surface was observed.
  • the catalyst cell 22 filled with 800 mg of MoO 3 manufactured by Wako Pure Chemical Industries, Ltd. was sealed so that gas could pass through the outlet 22a of the catalyst cell and MoO 3 particles could not pass. 21 to 500 ° C.
  • the test piece 25 produced by the manufacture example 3 cooled with external air was attached to the exit 22a.
  • Air is introduced into the catalyst cell 22 from the Air feed 23 at a flow rate of 658 ml / hour, liquid water is introduced from the water feed 24 at a flow rate of 0.275 ml / hour to vaporize, and the molybdenum compound released from the outlet 22a is removed.
  • the work of spraying was performed for 20 hours.
  • the test piece 25 to which the sprayed molybdenum compound is attached is taken out, and the attached molybdenum compound is recovered by dissolving it in ammonia water. Quantified with. As a result, the amount of molybdenum adhering to the test piece 25 during 20 hours was 94 micrograms.
  • Example 2 The operation was performed in the same manner as in Example 1 except that the test piece 25 was prepared according to Production Example 4. As a result of measuring the amount of molybdenum attached, the amount of molybdenum attached to the test piece 25 during 20 hours was 9 micrograms.
  • Example 1 The operation was performed in the same manner as in Example 1 except that the test piece 25 was prepared according to Production Example 1. As a result of measuring the amount of molybdenum attached, the amount of molybdenum attached to the test piece 25 during 20 hours was 319 micrograms.
  • Example 2 The operation was performed in the same manner as in Example 1 except that the test piece 25 was prepared according to Production Example 2. As a result of measuring the amount of molybdenum attached, the amount of molybdenum attached to the test piece 25 during 20 hours was 228 micrograms.
  • Example 3 The operation was performed in the same manner as in Example 1 except that the test piece 25 was prepared according to Production Example 5. As a result of measuring the amount of molybdenum attached, the amount of molybdenum attached to the test piece 25 during 20 hours was 304 micrograms.

Abstract

The purpose of the present invention is to effectively reduce deposits of molybdenum oxides on a contact surface with which a molybdenum compound freed from a metal oxide catalyst makes contact in a gas phase reaction device for carrying out gas phase oxidation using an oxide catalyst that contains molybdenum. A gas phase reaction device for carrying out reactions using a metal oxide catalyst that contains molybdenum, wherein the surface roughness of the contact surface with which a molybdenum compound freed from a metal oxide catalyst makes contact is 0.1 μm to 5 μm inclusive, and the contact surface is covered with a film formed by thermal spraying or plating.

Description

気相反応装置Gas phase reactor
 この発明は、気相反応装置に関する。 This invention relates to a gas phase reactor.
 ニトリルの製造方法として、プロピレンなどのオレフィンやプロパンなどのパラフィン等をアンモ酸化法によりアンモニア及び酸素と反応させてアクリロニトリルなどの不飽和ニトリルを得る方法が知られており、この反応に用いる触媒としては、モリブデンを含む金属酸化物触媒が用いられている。しかし、上記金属酸化物触媒中のモリブデンは、非特許文献1に記載のように、アンモ酸化法で副生成する水が反応器中で増加することにより、モリブデン水酸化物等のモリブデン化合物として遊離しやすくなり、それが気相反応装置内の冷却パイプなどの部位で凝固して、三酸化モリブデンの結晶が大量に析出する場合があった。 As a method for producing nitrile, a method of obtaining an unsaturated nitrile such as acrylonitrile by reacting olefin such as propylene or paraffin such as propane with ammonia and oxygen by an ammoxidation method is known, and as a catalyst used in this reaction, A metal oxide catalyst containing molybdenum is used. However, as described in Non-Patent Document 1, molybdenum in the metal oxide catalyst is liberated as a molybdenum compound such as molybdenum hydroxide when water generated as a by-product in the ammoxidation method increases in the reactor. In some cases, molybdenum trioxide crystals are precipitated at a site such as a cooling pipe in the gas phase reactor and a large amount of crystals of molybdenum trioxide are precipitated.
 この析出によって、上記金属酸化物触媒が触媒活性を失って無駄に消費されてしまうだけでなく、析出した三酸化モリブデンの結晶が冷却用パイプを覆って熱伝導率を低下させたり、配管を塞いで圧力損失を上昇させ、さらには基材そのものを腐食させたりするといった弊害が起こるので、析出を抑制する方法が検討されている。 Due to this precipitation, the metal oxide catalyst loses its catalytic activity and is wasted, and the precipitated molybdenum trioxide crystals cover the cooling pipe to lower the thermal conductivity or block the pipe. In this case, there are adverse effects such as increasing the pressure loss and corroding the base material itself.
 特許文献1には、反応ガス中に粉体を導入して、この粉体により熱交換器に付着した付着物を除去する方法が記載されている。また、特許文献2には、反応器上部の触媒希薄層部に間接熱交換器を設置することによって、触媒活性の低下や粒度分布の変化を抑制する方法が記載されている。 Patent Document 1 describes a method of introducing a powder into a reaction gas and removing the deposits attached to the heat exchanger with this powder. Patent Document 2 describes a method of suppressing a decrease in catalyst activity and a change in particle size distribution by installing an indirect heat exchanger in a catalyst dilute layer at the top of the reactor.
特開平5-301040号公報JP-A-5-301040 特開平11-349545号公報JP 11-349545 A
 しかしながら、特許文献1の方法では、粉体によって酸化モリブデンだけではなく装置まで摩耗してしまい、また、下流において粉体を分離、除去するために多大な手間がかかるため、現実的ではなかった。さらに、特許文献2の方法では、付着量の削減が十分ではなく、間接熱交換器を別な冷却媒体で冷却する必要があり、効率が悪かった。 However, the method of Patent Document 1 is not practical because the powder wears not only the molybdenum oxide but also the apparatus, and it takes much time to separate and remove the powder downstream. Furthermore, in the method of Patent Document 2, the amount of adhesion is not sufficiently reduced, and it is necessary to cool the indirect heat exchanger with another cooling medium, which is inefficient.
 そこでこの発明は、モリブデンを含んだ酸化物触媒を用いて気相酸化を行う気相反応装置の、上記金属酸化物触媒から遊離したモリブデン化合物が接触する接触面への、モリブデン酸化物の付着を効率的に抑制することを目的とする。 In view of this, the present invention relates to adhesion of molybdenum oxide to a contact surface of a vapor phase reaction apparatus that performs vapor phase oxidation using an oxide catalyst containing molybdenum and contacts with a molybdenum compound released from the metal oxide catalyst. It aims at suppressing efficiently.
 この発明は、モリブデンを含む金属酸化物触媒を用いて反応を起こさせる気相反応装置であって、上記金属酸化物触媒から遊離したモリブデン化合物が接触する接触面の表面粗度が触針式表面粗さ測定法での中心線平均粗さ(Ra)として0.1μm以上5μm以下であり、この接触面を、溶射又はメッキ処理により形成された皮膜によって覆ったことにより、上記の課題を解決したのである。 The present invention relates to a gas phase reactor for causing a reaction using a metal oxide catalyst containing molybdenum, wherein the surface roughness of the contact surface with which the molybdenum compound released from the metal oxide catalyst contacts is a stylus type surface. The center line average roughness (Ra) in the roughness measurement method is 0.1 μm or more and 5 μm or less, and this contact surface was covered with a film formed by thermal spraying or plating, thereby solving the above-mentioned problem. It is.
 金属酸化物触媒から遊離したモリブデン化合物が接触する接触面の表面粗度を所定の範囲内とすると、その接触面を溶射又はメッキ処理により金属皮膜を形成することにより、金属酸化物触媒から遊離したモリブデン化合物が付着するのを抑制することができる。特に、無電解メッキを施した場合、金属酸化物触媒から遊離したモリブデン化合物の付着をより抑制することができる。 When the surface roughness of the contact surface with which the molybdenum compound released from the metal oxide catalyst contacts is within a predetermined range, the contact surface is released from the metal oxide catalyst by forming a metal film by thermal spraying or plating. The adhesion of the molybdenum compound can be suppressed. In particular, when electroless plating is performed, adhesion of a molybdenum compound released from the metal oxide catalyst can be further suppressed.
気相反応装置の概略図Schematic diagram of gas phase reactor 実施例で用いる装置の概略図Schematic of the equipment used in the examples
 以下、この発明について詳細に説明する。
 この発明は、モリブデンを含む金属酸化物触媒を用いて反応を起こさせる気相反応装置についての発明である。
Hereinafter, the present invention will be described in detail.
The present invention relates to a gas phase reaction apparatus for causing a reaction using a metal oxide catalyst containing molybdenum.
 上記のモリブデンを含む金属酸化物触媒を用いて行う反応としては、例えば、アンモ酸化法によってプロピレンとアンモニアからアクリロニトリルを製造する反応や、プロピレンの気相酸化によるアクリル酸の製造などが挙げられる。 Examples of the reaction performed using the above metal oxide catalyst containing molybdenum include a reaction for producing acrylonitrile from propylene and ammonia by an ammoxidation method, and production of acrylic acid by vapor phase oxidation of propylene.
 上記のモリブデンを含有する金属酸化物触媒としては、上記の反応について触媒能を有せばよく、例えば、上記のアクリロニトリルを製造する反応であると、Mo-Bi系触媒が挙げられ、具体的には、MoBiMeII・MeIII・Me・X・Oからなる触媒が挙げられる。ここで、MeIIはCo、Ni等のII価金属、MeIIIはFe、Cr等のIII価金属、MeはNa、K等のI価金属を示す。 The molybdenum-containing metal oxide catalyst only needs to have catalytic ability for the above reaction. For example, the reaction for producing the above acrylonitrile includes a Mo—Bi-based catalyst. Is a catalyst composed of MoBiMe II , Me III , Me I , X, O. Here, Me II represents a II-valent metal such as Co or Ni, Me III represents a III-valent metal such as Fe or Cr, and Me I represents an I-valent metal such as Na or K.
 上記の気相反応装置では、微細粒子とした上記の金属酸化物触媒を流動床として、気相の反応物質に接触させて反応を行うのが一般的である。上記のアンモ酸化法によりアクリロニトリルを製造する気相反応装置の例を図1に示す。気相反応装置の本体11に、下方の空気導入管12から空気aを導入して、吹き出し口13から吹き出させることで触媒14を浮遊させる。この環境に、原料導入管15から上記の反応物質としてプロピレンとアンモニアとの混合気体bを導入して、これらを空気中の酸素により酸化させて、1当量のアクリロニトリルと、3当量の水を得る。ただし、この反応に適切な温度に保つために、冷媒dを通した冷却コイル16で本体11内部の上記の混合気体を冷却しつつ上記の反応を行う。 In the above gas phase reaction apparatus, the reaction is generally carried out by contacting the metal oxide catalyst in the form of fine particles as a fluidized bed with a gas phase reactant. An example of a gas phase reactor for producing acrylonitrile by the above-described ammoxidation method is shown in FIG. Air a is introduced into the main body 11 of the gas phase reaction apparatus from the lower air introduction pipe 12 and blown out from the blow-out port 13 to float the catalyst 14. Into this environment, a mixed gas b of propylene and ammonia is introduced from the raw material introduction pipe 15 as the above-mentioned reactant, and these are oxidized with oxygen in the air to obtain 1 equivalent of acrylonitrile and 3 equivalents of water. . However, in order to maintain a temperature suitable for this reaction, the above reaction is performed while cooling the mixed gas inside the main body 11 by the cooling coil 16 through which the refrigerant d has passed.
 上記の気相反応装置での反応で生成したアクリロニトリルは、サイクロン19で触媒を分離され、未反応のアンモニアや副生したアクリル酸等の不純物を含んだ反応ガスcとして製品排出管17から抜き出される。この反応ガスcを熱交換器18で冷却した後、アンモニアの吸収分離、アクリロニトリルの精製系へ送られる。 Acrylonitrile produced by the reaction in the gas phase reactor is separated from the catalyst by the cyclone 19 and extracted from the product discharge pipe 17 as a reaction gas c containing impurities such as unreacted ammonia and by-product acrylic acid. It is. The reaction gas c is cooled by the heat exchanger 18 and then sent to the ammonia absorption / separation system and the acrylonitrile purification system.
 上記金属酸化物触媒から遊離したモリブデン化合物が接触する接触面(以下、単に「接触面」と称する場合がある。)としては、例えば、上記の冷却コイル16や熱交換器18といった冷却を行うことにより析出しやすい部位の表面や、配管の出入り口や配管の太さが変化する箇所等といった気体の流れが変化する部位の内部表面が挙げられる。これらの接触面には、反応で生成した水によって水酸化物として触媒から遊離したモリブデン化合物が、モリブデン酸化物結晶として付着成長しやすい。それらを出来る限り抑制する方法として、この接触面の表面粗度を所定範囲とした後、金属製の皮膜で覆う方法が考えられる。 As a contact surface (hereinafter, simply referred to as “contact surface”) where the molybdenum compound released from the metal oxide catalyst contacts, for example, cooling such as the cooling coil 16 or the heat exchanger 18 is performed. And the inner surface of the part where the flow of gas changes, such as the surface of the part that is likely to precipitate due to, or the part where the pipe entrance / exit or the thickness of the pipe changes. Molybdenum compounds liberated from the catalyst as hydroxides by water generated by the reaction tend to adhere and grow as molybdenum oxide crystals on these contact surfaces. As a method for suppressing them as much as possible, a method is conceivable in which the surface roughness of the contact surface is set within a predetermined range and then covered with a metal film.
 なお、この発明における気相反応装置とは、上記気相反応装置の本体11内部だけでなく、上記気相反応装置の本体11と繋がっており、上記の遊離したモリブデン化合物が接触する、本体11外の配管や熱交換器18なども含む。 The gas phase reactor in the present invention is connected not only to the inside of the main body 11 of the gas phase reactor but also to the main body 11 of the gas phase reactor, and the main body 11 in contact with the released molybdenum compound. Also includes external piping and heat exchanger 18.
 上記の表面粗度は、触針式表面粗さ測定法で測定される粗度であり、中心線平均粗さ(Ra)として5μm以下が必要で、1μm以下が好ましい。5μmより大きいと、そこを金属皮膜で覆っても、モリブデン化合物の付着を抑制することが困難となりやすい。一方、表面粗度の下限は、0.1μmで十分である。0.1μmより小さくてもよいが、そのような接触面を有する部材を調製する方が困難である。 The above surface roughness is a roughness measured by a stylus type surface roughness measuring method, and the center line average roughness (Ra) is required to be 5 μm or less, and preferably 1 μm or less. If it is larger than 5 μm, it is difficult to suppress adhesion of the molybdenum compound even if it is covered with a metal film. On the other hand, 0.1 μm is sufficient as the lower limit of the surface roughness. Although it may be smaller than 0.1 μm, it is more difficult to prepare a member having such a contact surface.
 上記の接触面を、上記範囲内の表面粗度とする方法としては、サンドペーパーや砥石,微粒子を含む研磨剤などを使って機械あるいは手作業で金属表面を削り取ることにより滑らかにする機械研磨法や,金属表面を酸性溶液中に沈め、電流を流すことにより表面を溶解して滑らかにする電解研磨法,電流は加えずに様々な組成の溶液中に浸漬して平滑な金属面を施す化学研磨法等があげられる。 As a method of making the contact surface have a surface roughness within the above range, a mechanical polishing method in which a metal surface is smoothed by mechanically or manually scraping a sandpaper, a grindstone, or an abrasive containing fine particles. Electrolytic polishing method in which the metal surface is submerged in an acidic solution and the surface is melted and smoothed by passing an electric current, and a chemistry that provides a smooth metal surface by immersing in a solution of various compositions without applying an electric current. An example is a polishing method.
 上記範囲内の表面粗度とした上記接触面は、金属皮膜によって覆われる。この金属皮膜の形成方法としては、溶射やメッキ処理等があげられる。なお、これらの方法で上記金属皮膜を形成させたあと、その表面に不動態を形成させてもよい。 The contact surface having a surface roughness within the above range is covered with a metal film. Examples of the method for forming the metal film include thermal spraying and plating. In addition, after forming the said metal membrane | film | coat by these methods, you may make a passivity form on the surface.
 上記の溶射とは、皮膜を形成する金属を溶融状態又は半溶融状態にして、上記接触面に衝突させることで表面に上記材料の皮膜を形成させることをいう。 The above-mentioned thermal spraying refers to forming a coating of the above material on the surface by bringing the metal forming the coating into a molten or semi-molten state and colliding with the contact surface.
 上記メッキの処理法としては、筆メッキ法、電気メッキ法、無電解メッキ法等によるメッキ処理法があげられる。これらの中でも、メッキの処理工程として、メッキ液に浸漬する工程を有するメッキ処理法、すなわち、電気メッキ法又は無電解メッキ法によるメッキ処理法が好ましく、無電解メッキ法によるメッキ処理法がより好ましい。 Examples of the plating method include plating methods such as brush plating, electroplating, and electroless plating. Among these, as a plating treatment step, a plating treatment method having a step of immersing in a plating solution, that is, a plating treatment method by an electroplating method or an electroless plating method is preferable, and a plating treatment method by an electroless plating method is more preferable. .
 上記筆メッキ法とは、メッキ対象物に、メッキ金属イオンを含む電解液を浸した筆を用いて、この電解液をメッキ対象物に塗布する方法である。この筆は、一般にステンレス鋼の電極本体に繊維性の素材を巻き付け、電極がメッキ対象物に直接触れないようにすると共に、その繊維に電解液を保持するようにしたものである。そして、これを低電圧の電源のプラス極に接続し、メッキ対象物をマイナス極に接続することで、電気メッキ処理を行う方法である。 The brush plating method is a method in which a plating object is immersed in an electrolytic solution containing plating metal ions and this electrolytic solution is applied to the plating object. This brush is generally made by winding a fibrous material around a stainless steel electrode body so that the electrode does not directly touch the object to be plated and the electrolyte is held on the fiber. Then, this is connected to the positive pole of the low voltage power source, and the plating object is connected to the negative pole to perform the electroplating process.
 上記電気メッキ法とは、メッキ対象物をメッキする金属塩を含む電導性の電解液、すなわちメッキ液に浸漬し、メッキ液に浸した対の電極間に電気を流して、メッキ対象物表面にメッキする金属の膜を析出させる方法である。 The electroplating method is a conductive electrolyte containing a metal salt for plating an object to be plated, that is, dipped in a plating solution, and electricity is passed between a pair of electrodes immersed in the plating solution, to the surface of the object to be plated. This is a method of depositing a metal film to be plated.
 上記無電解メッキ法とは、メッキ対象物をメッキする金属塩及び還元剤を含むメッキ液に浸漬し、通電による電子ではなく、メッキ液に含まれる上記還元剤の酸化によって放出される電子によって、メッキ対象物にメッキする金属の膜を析出させる方法である。得られるメッキ皮膜は、素材の形状や種類にかかわらず均一な厚みとなる。 The electroless plating method is immersed in a plating solution containing a metal salt and a reducing agent for plating an object to be plated, not by electrons due to energization, but by electrons released by oxidation of the reducing agent contained in the plating solution, This is a method of depositing a metal film to be plated on an object to be plated. The obtained plating film has a uniform thickness regardless of the shape and type of the material.
 上記の電気メッキ法や無電解メッキ法は、メッキ対象物をメッキ液に浸漬するので、対象物の表面粗度を保持した状態でメッキ皮膜を形成させることができる。これにより、金属酸化物触媒から遊離したモリブデン化合物の付着を抑制することが可能となる。そして、メッキ皮膜の膜厚を厚くすると、上記モリブデン化合物の付着をより抑制することができる。 In the electroplating method and electroless plating method described above, the plating object is immersed in the plating solution, so that the plating film can be formed while maintaining the surface roughness of the object. Thereby, it becomes possible to suppress adhesion of the molybdenum compound released from the metal oxide catalyst. And when the film thickness of a plating film is thickened, adhesion of the said molybdenum compound can be suppressed more.
 上記溶射やメッキ処理等で形成される金属皮膜を構成する金属としては、例えば、モリブデン、亜鉛、銅、銀、金、チタン、アルミニウム、クロム、ニッケル等の金属や、INCONEL(登録商標、「インコネル」と呼称する。)等のニッケル-クロム-モリブデン-鉄を含む合金、INCOLOY(登録商標、「インコロイ」と呼称する。)等のアルミニウム-クロム-鉄を含む合金、HASTELLOY(登録商標、「ハステロイ」と呼称する。)等のニッケル-モリブデン-タングステンを含む合金、MONEL(登録商標、「モネル」と呼称する。)等のニッケル-銅を含む合金、Stellite(登録商標)などのコバルト-クロム-タングステンを含む合金、SUS304等のニッケル-クロム-鉄からなるステンレス合金、サーメット、クロムカーバイド、酸化チタンなどが挙げられ、これらを単独、または複合して用いることができる。 Examples of the metal constituting the metal film formed by the above-described thermal spraying or plating treatment include metals such as molybdenum, zinc, copper, silver, gold, titanium, aluminum, chromium, nickel, INCONEL (registered trademark, “Inconel”). Alloys containing nickel-chromium-molybdenum-iron such as INCOLOY (registered trademark, referred to as "Incoloy"), alloys containing aluminum-chromium-iron, such as HASTELLOY (registered trademark), Hastelloy Alloys containing nickel-molybdenum-tungsten, such as MONEL (registered trademark, referred to as “Monel”), alloys containing nickel-copper, cobalt-chromium, such as stellite®, etc. Alloys containing tungsten, stainless steel made of nickel-chromium-iron such as SUS304 , Cermets, chromium carbide, titanium oxide and the like, can be used alone or in combination.
 上記の中でも特に、上記メッキ皮膜を構成する金属としては、ニッケル、クロム、亜鉛,金,銀等があげられる。なお、ニッケルメッキを行う場合、電気メッキ法で形成されるメッキ皮膜は、ニッケルとリンとの合金皮膜となり、また、無電解メッキ法で形成されるメッキ皮膜は、純ニッケル皮膜となる。 Among the above, the metal constituting the plating film includes nickel, chromium, zinc, gold, silver and the like. When performing nickel plating, the plating film formed by electroplating is an alloy film of nickel and phosphorus, and the plating film formed by electroless plating is a pure nickel film.
 この発明により、上記接触面を所定範囲内の表面粗度とし、上記の方法で金属皮膜を形成することにより、この発明にかかる気相反応装置は、モリブデンを含む金属酸化物触媒を用いた際の酸化モリブデンの付着量を抑制することができるので、触媒の消費量を抑え、部位の被覆による冷却効果の低下や基材の腐食を抑えることができ、アクリロニトリル等のアンモ酸化法による製造プラントをより効率よく運用することができる。 According to the present invention, when the contact surface has a surface roughness within a predetermined range and a metal film is formed by the above method, the gas phase reactor according to the present invention uses a metal oxide catalyst containing molybdenum. The amount of molybdenum oxide deposited can be suppressed, so the consumption of catalyst can be suppressed, the cooling effect can be reduced by the coating of the parts, and the corrosion of the substrate can be suppressed. A manufacturing plant using an ammoxidation method such as acrylonitrile It can be operated more efficiently.
 以下、実施例によりこの発明をより具体的に説明する。
<試験片の製造>
(製造例1)
 直径2ミリメートル、長さ100ミリメートルのSTPA23製のものを粒度60のサンドペーパーで表面を研磨した。研磨後の表面粗度(Ra)をTaylor Hoboson社製の触針式表面粗さ測定器で測定したところ、0.86μmであった。
Hereinafter, the present invention will be described more specifically with reference to examples.
<Manufacture of test pieces>
(Production Example 1)
A surface made of STPA23 having a diameter of 2 millimeters and a length of 100 millimeters was polished with sandpaper having a grain size of 60. The surface roughness (Ra) after polishing was measured with a stylus type surface roughness measuring instrument manufactured by Taylor Hoboson, and found to be 0.86 μm.
(製造例2)
 直径2ミリメートル、長さ100ミリメートルのSTPA23製のものを粒度400のサンドペーパーで表面を研磨した。研磨後の表面粗度(Ra)を触針式表面粗さ測定器で測定したところ、0.13μmであった。
(Production Example 2)
A surface made of STPA23 having a diameter of 2 millimeters and a length of 100 millimeters was polished with sandpaper having a particle size of 400. It was 0.13 micrometer when the surface roughness (Ra) after grinding | polishing was measured with the stylus type surface roughness measuring device.
(製造例3)
 製造例1のものに無電解メッキ法を用いて、その表面にニッケルメッキを施した。表面粗度(Ra)を触針式表面粗さ測定器で測定したところ、1.09μmであった。
(Production Example 3)
The surface of Production Example 1 was subjected to nickel plating using an electroless plating method. The surface roughness (Ra) was measured by a stylus type surface roughness measuring instrument and found to be 1.09 μm.
(製造例4)
 製造例2のものに無電解メッキ法を用いて、その表面にニッケルメッキを施した。表面粗度(Ra)を触針式表面粗さ測定器で測定したところ、0.11μmであった。
(Production Example 4)
The surface of Production Example 2 was subjected to nickel plating using an electroless plating method. The surface roughness (Ra) was measured with a stylus type surface roughness measuring instrument and found to be 0.11 μm.
(製造例5)
 内径2ミリメートル,長さ100ミリメートルのSS400製のものの表面粗度(Ra)を触針式表面粗さ測定器で測定したところ、9.6μmであった。この表面に溶射法でSUS304を溶射した。
(Production Example 5)
When the surface roughness (Ra) of an SS400 product having an inner diameter of 2 millimeters and a length of 100 millimeters was measured with a stylus type surface roughness measuring instrument, it was 9.6 μm. SUS304 was sprayed on this surface by a thermal spraying method.
(実施例1)
 図2に示す装置を用いて、金属表面上の三酸化モリブデン(MoO)の付着量を観測した。まず、触媒セルの出口22aを気体が通過可能で、かつ、MoO粒子が通過不可能であるように塞ぎ、和光純薬工業(株)製のMoO800mgを充填した触媒セル22を電気ヒータ21で500℃に加熱した。出口22aには,外気によって冷却される製造例3により作製したテストピース25を取り付けた。この触媒セル22にAirフィード23から毎時658ミリリットルの流量で空気を導入し、水フィード24から毎時0.275ミリリットルの流量で液体の水を導入して気化させ、出口22aから遊離したモリブデン化合物を霧散させる作業を20時間に亘って行った。
(Example 1)
Using the apparatus shown in FIG. 2, the amount of molybdenum trioxide (MoO 3 ) deposited on the metal surface was observed. First, the catalyst cell 22 filled with 800 mg of MoO 3 manufactured by Wako Pure Chemical Industries, Ltd. was sealed so that gas could pass through the outlet 22a of the catalyst cell and MoO 3 particles could not pass. 21 to 500 ° C. The test piece 25 produced by the manufacture example 3 cooled with external air was attached to the exit 22a. Air is introduced into the catalyst cell 22 from the Air feed 23 at a flow rate of 658 ml / hour, liquid water is introduced from the water feed 24 at a flow rate of 0.275 ml / hour to vaporize, and the molybdenum compound released from the outlet 22a is removed. The work of spraying was performed for 20 hours.
 霧散したモリブデン化合物が付着したテストピース25を取り出し、付着したモリブデン化合物をアンモニア水に溶解させて回収し、この回収液に含まれるモリブデン量を日本ジャーレルアッシュ(株)製のICP発光分光分析装置で定量した。その結果、20時間の間にテストピース25に付着したモリブデン量は94マイクログラムであった。 The test piece 25 to which the sprayed molybdenum compound is attached is taken out, and the attached molybdenum compound is recovered by dissolving it in ammonia water. Quantified with. As a result, the amount of molybdenum adhering to the test piece 25 during 20 hours was 94 micrograms.
(実施例2)
 製造例4により作製したものをテストピース25とした以外は、実施例1と同様の方法で作業を行った。モリブデン付着量を測定した結果、20時間の間にテストピース25に付着したモリブデン量は9マイクログラムであった。
(Example 2)
The operation was performed in the same manner as in Example 1 except that the test piece 25 was prepared according to Production Example 4. As a result of measuring the amount of molybdenum attached, the amount of molybdenum attached to the test piece 25 during 20 hours was 9 micrograms.
(比較例1)
 製造例1により作製したものをテストピース25とした以外は、実施例1と同様の方法で作業を行った。モリブデン付着量を測定した結果、20時間の間にテストピース25に付着したモリブデン量は319マイクログラムであった。
(Comparative Example 1)
The operation was performed in the same manner as in Example 1 except that the test piece 25 was prepared according to Production Example 1. As a result of measuring the amount of molybdenum attached, the amount of molybdenum attached to the test piece 25 during 20 hours was 319 micrograms.
(比較例2)
 製造例2により作製したものをテストピース25とした以外は、実施例1と同様の方法で作業を行った。モリブデン付着量を測定した結果、20時間の間にテストピース25に付着したモリブデン量は228マイクログラムであった。
(Comparative Example 2)
The operation was performed in the same manner as in Example 1 except that the test piece 25 was prepared according to Production Example 2. As a result of measuring the amount of molybdenum attached, the amount of molybdenum attached to the test piece 25 during 20 hours was 228 micrograms.
(比較例3)
 製造例5により作製したものをテストピース25とした以外は、実施例1と同様の方法で作業を行った。モリブデン付着量を測定した結果、20時間の間にテストピース25に付着したモリブデン量は304マイクログラムであった。
(Comparative Example 3)
The operation was performed in the same manner as in Example 1 except that the test piece 25 was prepared according to Production Example 5. As a result of measuring the amount of molybdenum attached, the amount of molybdenum attached to the test piece 25 during 20 hours was 304 micrograms.
11 (気相反応装置の)本体
12 空気導入管
13 吹き出し口
14 触媒
15 原料導入管
16 冷却コイル
17 製品排出管
18 熱交換器
19 サイクロン
21 電気ヒータ
22 触媒セル
22a (触媒セル)出口
23 Airフィード
24 水フィード
25 テストピース
a 空気
b 混合気体
c 反応ガス
d 冷媒
11 Main body (of gas phase reactor) 12 Air introduction pipe 13 Outlet 14 Catalyst 15 Raw material introduction pipe 16 Cooling coil 17 Product discharge pipe 18 Heat exchanger 19 Cyclone 21 Electric heater 22 Catalyst cell 22a (catalyst cell) outlet 23 Air feed 24 Water feed 25 Test piece a Air b Gas mixture c Reaction gas d Refrigerant

Claims (6)

  1.  モリブデンを含む金属酸化物触媒を用いて反応を起こさせる気相反応装置であって、
     上記金属酸化物触媒から遊離したモリブデン化合物が接触する接触面の表面粗度が0.1μm以上5μm以下であり、
     この接触面を、溶射又はメッキ処理により形成された皮膜によって覆ったことを特徴とする気相反応装置。
    A gas phase reactor for causing a reaction using a metal oxide catalyst containing molybdenum,
    The surface roughness of the contact surface with which the molybdenum compound released from the metal oxide catalyst comes into contact is 0.1 μm or more and 5 μm or less,
    A gas phase reaction apparatus characterized in that the contact surface is covered with a film formed by thermal spraying or plating.
  2.  上記メッキ処理により形成される皮膜が、メッキ液に浸漬する工程を有するメッキ処理により形成されたメッキ皮膜である、請求項1に記載の気相反応装置。 The gas phase reaction apparatus according to claim 1, wherein the film formed by the plating process is a plating film formed by a plating process having a step of immersing in a plating solution.
  3.  上記メッキ処理は、無電解メッキ法によるメッキ処理である請求項2に記載の気相反応装置。 The gas phase reaction apparatus according to claim 2, wherein the plating process is a plating process by an electroless plating method.
  4.  上記接触面に形成されたメッキは、ニッケルメッキである請求項1乃至3のいずれかに記載の気相反応装置。 The gas phase reaction apparatus according to any one of claims 1 to 3, wherein the plating formed on the contact surface is nickel plating.
  5.  上記接触面は、装置内の温度を調整する冷却コイルの表面である請求項1乃至4のいずれかに記載の気相反応装置。 The gas phase reaction apparatus according to any one of claims 1 to 4, wherein the contact surface is a surface of a cooling coil for adjusting a temperature in the apparatus.
  6.  上記気相反応が、アクリロニトリルの生成反応である、請求項1乃至5のいずれかに記載の気相反応装置。 The gas phase reaction apparatus according to any one of claims 1 to 5, wherein the gas phase reaction is an acrylonitrile production reaction.
PCT/JP2013/054343 2012-02-22 2013-02-21 Gas phase reaction device WO2013125639A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-035935 2012-02-22
JP2012036315A JP2015086134A (en) 2012-02-22 2012-02-22 Vapor-phase reaction apparatus
JP2012-036315 2012-02-22
JP2012035935A JP2015085207A (en) 2012-02-22 2012-02-22 Vapor-phase reaction apparatus

Publications (1)

Publication Number Publication Date
WO2013125639A1 true WO2013125639A1 (en) 2013-08-29

Family

ID=49005816

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/054343 WO2013125639A1 (en) 2012-02-22 2013-02-21 Gas phase reaction device

Country Status (1)

Country Link
WO (1) WO2013125639A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015163260A1 (en) * 2014-04-25 2015-10-29 三菱レイヨン株式会社 Fluid bed reactor and method of producing nitrile compound using same
JP2017512643A (en) * 2014-03-31 2017-05-25 イネオス ユーロープ アクチェンゲゼルシャフト Improved air grid design for oxidation or ammoxidation reactors

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0912612A (en) * 1995-06-23 1997-01-14 Mitsubishi Chem Corp Production of vinyl chloride polymer
JP2006247452A (en) * 2005-03-08 2006-09-21 Daiyanitorikkusu Kk Vapor phase reaction apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0912612A (en) * 1995-06-23 1997-01-14 Mitsubishi Chem Corp Production of vinyl chloride polymer
JP2006247452A (en) * 2005-03-08 2006-09-21 Daiyanitorikkusu Kk Vapor phase reaction apparatus

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017512643A (en) * 2014-03-31 2017-05-25 イネオス ユーロープ アクチェンゲゼルシャフト Improved air grid design for oxidation or ammoxidation reactors
WO2015163260A1 (en) * 2014-04-25 2015-10-29 三菱レイヨン株式会社 Fluid bed reactor and method of producing nitrile compound using same
JP2015208705A (en) * 2014-04-25 2015-11-24 三菱レイヨン株式会社 Fluid bed reactor
KR20160131047A (en) * 2014-04-25 2016-11-15 미쯔비시 레이온 가부시끼가이샤 Fluid bed reactor and method of producing nitrile compound using same
CN106170335A (en) * 2014-04-25 2016-11-30 三菱丽阳株式会社 Fluidized-bed reactor and use its manufacture method of nitrile compound
KR20180078333A (en) * 2014-04-25 2018-07-09 미쯔비시 케미컬 주식회사 Fluid bed reactor and method of producing nitrile compound using same
KR101887293B1 (en) * 2014-04-25 2018-08-09 미쯔비시 케미컬 주식회사 Fluid bed reactor and method of producing nitrile compound using same
CN106170335B (en) * 2014-04-25 2019-05-31 三菱化学株式会社 The manufacturing method of fluidized-bed reactor and the nitrile compound using it
KR102005207B1 (en) * 2014-04-25 2019-07-29 미쯔비시 케미컬 주식회사 Fluid bed reactor and method of producing nitrile compound using same

Similar Documents

Publication Publication Date Title
Zhu et al. Preparation of copper-coated β-SiC nanoparticles by electroless plating
CN103597118B (en) The hard films utilizing hard films to be coated to is coated to component and manufacture method thereof
JP5820950B1 (en) Method for producing nickel plating solution and solid fine particle-attached wire
US20160369405A1 (en) Method and apparatus for preparing coated particles
CN101634029A (en) Surface treatment process of stainless steel tube inner wall with 8K-level mirror effect
JP2006247452A (en) Vapor phase reaction apparatus
WO2013125639A1 (en) Gas phase reaction device
JP5835455B2 (en) Method for surface treatment of metal material
JP5802275B2 (en) Solid particulate adhering wire and method for producing the solid particulate adhering wire
JP2004003022A (en) Plasma treatment container inside member
Han et al. A smart electroplating approach to fabricate mechanically robust and fluorine-free Ni-W alloys based superhydrophobic coating on Al alloy
CN108264048B (en) Method for removing free carbon in transition metal carbide
EP2783025B1 (en) Method for exfoliating coating layer of electrode for electrolysis
JP2015086134A (en) Vapor-phase reaction apparatus
Manickaraj et al. Malic acid pathway of constructing high-performance Ni anticorrosive coatings using supercritical-CO2 electrodeposition
JP2015085207A (en) Vapor-phase reaction apparatus
CN109609917A (en) Tubular target including protective device
CN107892324B (en) A kind of preparation method of ZnO nanowire array
CN108203792B (en) Iron-based amorphous powder and preparation method thereof
CN110894594A (en) High-temperature coating method for graphene anticorrosive layer of stainless steel composite material
KR20150144018A (en) Composite steel sheet including metallic thin film and ceramic coated layer having excellent corrosion resistance at high temperature and preparation method thereof
JP2011126890A (en) Gas phase reactor
CN110983308A (en) Preparation method of stainless steel composite material for condensation heat exchange
KR102487913B1 (en) Method for patterning amorphous alloy, a amorphous alloy pattern structure using the same, dome switch and method for thereof
TW201518560A (en) Electrolyte for electrodepositing molybdenum and method for forming molybdenum-containing layer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13752348

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13752348

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP