WO2013125254A1 - Impurity-diffusion-layer-forming composition, method for manufacturing semiconductor substrate with impurity-diffusion layer, and method for manufacturing solar cell element - Google Patents

Impurity-diffusion-layer-forming composition, method for manufacturing semiconductor substrate with impurity-diffusion layer, and method for manufacturing solar cell element Download PDF

Info

Publication number
WO2013125254A1
WO2013125254A1 PCT/JP2013/050307 JP2013050307W WO2013125254A1 WO 2013125254 A1 WO2013125254 A1 WO 2013125254A1 JP 2013050307 W JP2013050307 W JP 2013050307W WO 2013125254 A1 WO2013125254 A1 WO 2013125254A1
Authority
WO
WIPO (PCT)
Prior art keywords
diffusion layer
forming composition
impurity diffusion
layer forming
group
Prior art date
Application number
PCT/JP2013/050307
Other languages
French (fr)
Japanese (ja)
Inventor
岩室 光則
吉田 誠人
野尻 剛
洋一 町井
明博 織田
鉄也 佐藤
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to JP2014500611A priority Critical patent/JP5655974B2/en
Publication of WO2013125254A1 publication Critical patent/WO2013125254A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/225Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a solid phase, e.g. a doped oxide layer
    • H01L21/2251Diffusion into or out of group IV semiconductors
    • H01L21/2254Diffusion into or out of group IV semiconductors from or through or into an applied layer, e.g. photoresist, nitrides
    • H01L21/2255Diffusion into or out of group IV semiconductors from or through or into an applied layer, e.g. photoresist, nitrides the applied layer comprising oxides only, e.g. P2O5, PSG, H3BO3, doped oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/2225Diffusion sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic System
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an impurity diffusion layer forming composition, a method for manufacturing a semiconductor substrate with an impurity diffusion layer, and a method for manufacturing a solar cell element, and more specifically, forming an impurity diffusion layer in a specific part of a semiconductor substrate. It relates to technology that makes it possible.
  • n-type semiconductor substrate having a texture structure formed on the light-receiving surface side is prepared so as to promote the light confinement effect and increase the efficiency, and then in a mixed gas atmosphere of phosphorus oxychloride (POCl 3 ), nitrogen and oxygen
  • An n-type impurity diffusion layer (n-type diffusion layer) is uniformly formed by performing several tens of minutes of heat treatment at 800 ° C. to 900 ° C. (gas phase reaction method).
  • n-type diffusion layers are formed not only on the front surface, which is the light receiving surface, but also on the side surface and the back surface.
  • the n-type diffusion layer formed on the back surface needs to be converted into a p + -type diffusion layer. Therefore, after applying an aluminum paste containing aluminum as a group 13 element on the n-type diffusion layer on the back surface, heat treatment is performed, and at the same time the n-type diffusion layer is converted to the p + -type diffusion layer by the diffusion of aluminum. , Got ohmic contact.
  • an n-type diffusion layer forming composition containing a glass powder containing a donor element and a dispersion medium is applied to a semiconductor substrate, and a thermal diffusion treatment is performed, whereby an unnecessary impurity diffusion layer is formed on the side surface or the back surface of the semiconductor substrate.
  • a method for manufacturing a solar cell element in which an n-type diffusion layer is formed in a specific region without being formed has been proposed (see, for example, International Publication No. 2011/090216 pamphlet).
  • the diffusion in the region other than directly under the electrode is compared with the diffusion concentration of the donor element in the region directly under the electrode (hereinafter also simply referred to as “diffusion concentration”).
  • diffusion concentration the diffusion concentration of the donor element in the region directly under the electrode
  • the selective emitter structure since a region having a high diffusion concentration (hereinafter, this region is also referred to as “selective emitter”) is formed immediately below the electrode, the contact resistance between the electrode and the semiconductor substrate can be reduced. Furthermore, since the diffusion concentration is relatively low except in the region where the electrode is formed, the conversion efficiency of the solar cell element can be improved. In order to construct such a selective emitter structure, it is required to form an impurity diffusion layer in a thin line shape within a width of several hundred ⁇ m (about 50 ⁇ m to 200 ⁇ m).
  • the back contact type solar cell element it is necessary to form both the n-type diffusion region and the p + -type diffusion region on the back surface to form a pn junction structure. It is required to form.
  • the n-type diffusion layer forming composition described in International Publication No. 2011/090216 pamphlet is used, for example, the n-type diffusion layer forming composition is applied to a semiconductor substrate in a thin line shape to form an n-type diffusion layer Even when the composition layer is formed, the line width of the n-type diffusion layer forming composition layer is widened, and there is a tendency that a desired thin line width cannot be obtained. In order to solve this problem, when the content of the dispersion medium is changed to increase the viscosity, the handling property is poor and the coating itself tends to be impossible.
  • the present invention has been made in view of the above-described problems of the prior art, and when an impurity diffusion layer forming composition layer is formed by being applied to a partial region on a semiconductor substrate, impurities are formed in the surface direction on the semiconductor substrate.
  • an impurity diffusion layer forming composition capable of suppressing an increase in the contact area of the diffusion layer forming composition layer, a method for manufacturing a semiconductor substrate with an impurity diffusion layer using the composition, and a method for manufacturing a solar cell element. For the purpose.
  • fatty acid amide contains at least one selected from the group consisting of compounds represented by the following general formulas (1), (2), (3) and (4) This is an impurity diffusion layer forming composition.
  • R 1 CONH 2 (1) R 1 CONH—R 2 —NHCOR 1 (2) R 1 NHCO—R 2 —CONHR 1 (3) R 1 CONH—R 2 —N (R 3 ) 2 ... (4)
  • R 1 and R 3 each independently represents an alkyl group or alkenyl group having 1 to 30 carbon atoms, and R 2 represents 1 to 10 carbon atoms.
  • the alkylene group is shown.
  • R 1 and R 3 may be the same or different.
  • fatty acid amide contains at least one selected from the group consisting of stearic acid amide, N, N′-methylenebisstearic acid amide, and stearic acid dimethylaminopropylamide.
  • ⁇ 4> The impurity diffusion layer forming composition according to any one of ⁇ 1> to ⁇ 3>, wherein the decomposition temperature of the fatty acid amide is 400 ° C. or lower.
  • One or more donor element-containing materials selected from the group consisting of P 2 O 3 and P 2 O 5 , SiO 2 , K 2 O, Na 2 O, Li 2 O, BaO. ⁇ 9> containing at least one glass component material selected from the group consisting of SrO, CaO, MgO, BeO, ZnO, PbO, CdO, V 2 O 5 , SnO, ZrO 2 and MoO 3.
  • the content of P 2 O 3 and P 2 O 5 in the glass particles is 15% by mass or more, 80 It is an impurity diffusion layer forming composition as described in said ⁇ 10> which is the mass% or less.
  • ⁇ 12> The impurity diffusion layer forming composition according to any one of ⁇ 1> to ⁇ 7>, wherein the compound containing the acceptor element contains B (boron) or Al (aluminum).
  • ⁇ 14> One or more acceptor element-containing substances selected from the group consisting of B 2 O 3 and Al 2 O 3 , and SiO 2 , K 2 O, Na 2 O, Li 2 O, BaO. , SrO, CaO, MgO, BeO, ZnO, PbO, CdO, V 2 O 5 , SnO, ZrO 2 , MoO 3 , GeO 2 , Y 2 O 3 , CsO 2 and TiO 2.
  • a step of forming the impurity diffusion layer forming composition layer by applying the impurity diffusion layer forming composition according to any one of ⁇ 1> to ⁇ 20> to all or a part of the semiconductor substrate. And a step of heat-treating the semiconductor substrate on which the impurity diffusion layer-forming composition layer is formed to form an impurity diffusion layer, and a step of forming an electrode on the formed impurity diffusion layer. It is a manufacturing method of a battery element.
  • the contact area of the impurity diffusion layer forming composition layer is expanded in the surface direction on the semiconductor substrate. It is possible to provide a composition for forming an impurity diffusion layer capable of suppressing the above, a method for manufacturing a semiconductor substrate with an impurity diffusion layer using the composition, and a method for manufacturing a solar cell element.
  • FIG. 2A It is sectional drawing which shows notionally an example of the manufacturing process of the solar cell element of this invention. It is an example of the schematic plan view which looked at the solar cell element from the surface. It is a perspective view which expands and shows a part of FIG. 2A.
  • the impurity diffusion layer forming composition of the present invention will be described, and then a method for manufacturing a semiconductor substrate with an impurity diffusion layer and a solar cell element using the impurity diffusion layer forming composition will be described.
  • the term “process” is not limited to an independent process, and even if it cannot be clearly distinguished from other processes, the term “process” is used if the intended purpose of the process is achieved. included.
  • a numerical range indicated by using “to” indicates a range including the numerical values described before and after “to” as the minimum value and the maximum value, respectively.
  • the amount of each component in the composition means the total amount of the plurality of substances present in the composition unless there is a specific notice when there are a plurality of substances corresponding to each component in the composition.
  • content rate represents the mass% of a component with respect to 100 mass% of impurity diffusion layer forming compositions unless there is particular description.
  • the n-type impurity diffusion layer forming composition is referred to as an n-type diffusion layer forming composition.
  • the p-type impurity diffusion layer forming composition is referred to as a p-type diffusion layer forming composition.
  • the n-type impurity diffusion layer is referred to as an n-type diffusion layer.
  • the p-type impurity diffusion layer is referred to as a p-type diffusion layer.
  • the n-type diffusion layer forming composition and the p-type diffusion layer forming composition are collectively referred to as an impurity diffusion layer forming composition.
  • the n-type diffusion layer and the p-type diffusion layer are collectively referred to as an impurity diffusion layer.
  • the impurity diffusion layer forming composition of the present invention contains a compound containing a donor element or a compound containing an acceptor element, a dispersion medium, and a fatty acid amide. Furthermore, other additives may be contained as necessary in consideration of imparting properties and the like.
  • the impurity diffusion layer forming composition contains a compound containing a donor element or a compound containing an acceptor element, and is applied to a semiconductor substrate and then applied to the compound containing the donor element in the compound containing the donor element or the acceptor element.
  • the impurity diffusion layer forming composition of the present invention contains a fatty acid amide, when a stress is applied when printing on a semiconductor substrate with a screen printing machine, the viscosity is lowered and fluidity is exhibited, and the screen plate meshes through. Then, a patterned impurity diffusion layer forming composition layer corresponding to the screen pattern is formed on the semiconductor substrate as a printed material. On the other hand, the impurity diffusion layer forming composition layer once formed as a printed matter on the semiconductor substrate is in a state where its shape can be maintained without being reduced in viscosity unless stress is applied.
  • the impurity diffusion layer forming composition of the present invention when applied in a pattern on a semiconductor substrate to form a patterned impurity diffusion layer forming composition layer, the impurity diffusion layer forming composition layer causes dripping. Expansion of the contact area of the impurity diffusion layer forming composition layer in the surface direction on the semiconductor substrate is suppressed.
  • the impurity diffusion layer is formed in a region corresponding to the impurity diffusion layer forming composition layer in the semiconductor substrate. Is formed.
  • the compound containing the donor element or the compound containing the acceptor element is in the form of glass particles
  • the donor component or the acceptor component is difficult to volatilize even during heat treatment (firing), so that the generation of the volatilizing gas generates a region other than the desired specific region.
  • the formation of the impurity diffusion layer is more effectively suppressed. Therefore, when the compound containing a donor element or the compound containing an acceptor element is in the form of glass particles, an impurity diffusion layer having a higher impurity concentration than other regions can be formed in a specific region of the semiconductor substrate. .
  • the impurity diffusion layer forming composition of the present invention it is possible to easily form an impurity diffusion layer in a region corresponding to the electrode position in the production of a solar cell element having a selective emitter structure.
  • an impurity diffusion layer forming composition using a compound containing a donor element in the form of glass particles or a compound containing an acceptor element, impurity diffusion can be performed only at a desired site, unlike a conventional gas phase reaction method. A layer is formed, and the formation of an impurity diffusion layer in an unnecessary portion is suppressed. Therefore, when the impurity diffusion layer forming composition of the present invention is applied, the side etching step essential in the production of the solar cell element using the conventional gas phase reaction method becomes unnecessary, and the process is simplified.
  • an impurity diffusion layer forming composition using a compound containing a donor element in the form of glass particles, an n-type diffusion layer formed on the back surface is converted to a p + -type diffusion layer.
  • the process in (1) is also unnecessary. Therefore, the method for forming the p + -type diffusion layer on the back surface and the material, shape, and thickness of the back electrode are not limited, and the options of the manufacturing method, material, and shape to be applied are expanded.
  • production of the internal stress in the semiconductor substrate resulting from the thickness of a back surface electrode is suppressed, and the curvature of a semiconductor substrate is also suppressed.
  • a donor element is an element that can form an n-type diffusion layer by diffusing into a semiconductor substrate.
  • a Group 15 element can be used, and examples thereof include P (phosphorus), Sb (antimony), and As (arsenic).
  • the compound containing a donor element preferably contains at least one of P and Sb, and more preferably P (phosphorus).
  • the oxide containing a donor element is mentioned.
  • an oxide containing a donor element an oxide of a donor element such as P 2 O 5 or P 2 O 3 ; a glass component substance as a constituent component in addition to a donor element-containing substance such as P 2 O 5 or P 2 O 3 Glass particles (glass particles containing a donor element); inorganic phosphorus compounds containing phosphorus such as phosphorus-containing silicon oxide compounds, phosphorus silicides, silicon particles doped with phosphorus, calcium phosphate, phosphoric acid, ammonium dihydrogen phosphate; Examples thereof include organic phosphorus compounds such as acid, phosphonous acid, phosphinic acid, phosphinic acid, phosphine, phosphine oxide, phosphate ester, and phosphite ester.
  • an oxide of a donor element such as P 2 O 3 or P 2 O 5 ; a glass particle containing a donor element; a phosphorus-containing silicon oxide compound; and a heat treatment temperature during thermal diffusion of the donor element to a semiconductor substrate (for example, , 800 ° C.
  • a compound that can be changed to a compound containing P 2 O 5 (ammonium dihydrogen phosphate, phosphoric acid, phosphonous acid, phosphinic acid, phosphinic acid, phosphine, phosphine oxide, phosphoric acid ester, phosphorus phosphite) It is preferable to use one or more selected from the group consisting of acid esters and the like, and among these, in the case of a compound that can change to a compound containing P 2 O 5 depending on the melting point (heat treatment temperature during thermal diffusion) It is more preferable to use a compound having a melting point of the compound containing P 2 O 5 of 1000 ° C. or lower.
  • glass particles containing a donor element or phosphorus-containing silicon oxide compounds are used as the compound containing a donor element from the viewpoint of keeping the impurity concentration low in a region other than the region where the impurity diffusion layer forming composition is applied. It is preferable to use glass particles containing a donor element.
  • the form of the particle may be a state where solid particles are dispersed in a dispersion medium or a state where the particles are partially dissolved in the dispersion medium.
  • the particle shape include a substantially spherical shape, a flat shape, a block shape, a plate shape, and a scale shape. From the viewpoint of imparting to the substrate and uniform diffusibility when the impurity diffusion layer forming composition is used, the particle shape is preferably substantially spherical, flat or plate-like.
  • the particle diameter is preferably 100 ⁇ m or less.
  • the particle size of the particles is more preferably 50 ⁇ m or less.
  • the lower limit of the particle size of the particles is not particularly limited, but is preferably 0.01 ⁇ m or more, and more preferably 0.1 ⁇ m or more.
  • the particle size of the particles in the case where the compound containing the donor element is in the form of solid particles represents the volume average particle size, and can be measured by a laser scattering diffraction particle size distribution analyzer or the like.
  • the volume average particle diameter can be calculated based on the Mie scattering theory by detecting the relationship between the scattered light intensity and the angle of the laser light applied to the particles.
  • the dispersion medium which the particle
  • the compound containing a donor element may be in a state dissolved in a dispersion medium. In that case, the shape of the compound containing a donor element used for preparing the impurity diffusion layer forming composition is not particularly limited.
  • the compound containing a donor element is preferably a glass particle containing a donor element.
  • glass refers to a substance that has no irregular crystal structure in its X-ray diffraction spectrum, has an irregular network structure, and exhibits a glass transition phenomenon.
  • out-diffusion the diffusion of the donor element to a region other than the region to which the impurity diffusion layer forming composition is applied
  • out-diffusion the diffusion of the donor element to a region other than the region to which the impurity diffusion layer forming composition is applied
  • out-diffusion the diffusion of the donor element to a region other than the region to which the impurity diffusion layer forming composition is applied
  • formation of the n-type diffusion layer can be suppressed. That is, when the impurity diffusion layer forming composition of the present invention contains glass particles containing a donor element, an n-type diffusion layer can be formed in a more selective region.
  • the glass particles containing the donor element will be described in detail.
  • the glass particles contained in the impurity diffusion layer forming composition are melted at a heat treatment (firing) temperature (about 800 ° C. to 2000 ° C.) during thermal diffusion to form a glass layer on the n-type diffusion layer. . Therefore, out diffusion can be further suppressed.
  • the glass layer formed on the n-type diffusion layer can be removed by etching (for example, a hydrofluoric acid aqueous solution).
  • the glass particles containing a donor element can be formed including, for example, a donor element-containing material and a glass component material.
  • the donor element-containing material used for introducing the donor element into the glass particles is preferably a compound containing at least one of P (phosphorus) and Sb (antimony), and is a compound containing P (phosphorus). It is more preferable that it is at least one selected from the group consisting of P 2 O 3 and P 2 O 5, and particularly preferable is P 2 O 5 .
  • the content of the donor element-containing substance in the glass particles containing the donor element is not particularly limited.
  • the content is preferably 0.5% by mass or more and 100% by mass or less, and more preferably 2% by mass or more and 80% by mass or less.
  • the glass particle containing the donor element contains 0.5% by mass or more of at least one selected from the group consisting of P 2 O 3 and P 2 O 5 as a donor element-containing substance from the viewpoint of diffusibility of the donor element.
  • the content is preferably 100% by mass or less, more preferably 5% by mass or more and 99% by mass or less, and particularly preferably 15% by mass or more and 80% by mass or less.
  • the glass particles containing a donor element can control the melting temperature, the softening temperature, the glass transition temperature, the chemical durability, etc. by adjusting the component ratio as necessary. It is preferable that the glass particle containing a donor element contains 1 or more types of the glass component substance described below.
  • glass component materials include SiO 2 , K 2 O, Na 2 O, Li 2 O, BaO, SrO, CaO, MgO, BeO, ZnO, PbO, CdO, V 2 O 5 , SnO, ZrO 2 , WO 3 ,
  • glass component materials include MoO 3 , MnO, La 2 O 3 , Nb 2 O 5 , Ta 2 O 5 , Y 2 O 3 , CsO 2 , TiO 2 , GeO 2 , TeO 2 , and Lu 2 O 3 .
  • PbO, CdO, V 2 O 5 , SnO, ZrO 2 and MoO 3 It is more preferable to use one or more selected from the group consisting of PbO, CdO, V 2 O 5 , SnO, ZrO 2 and MoO 3 .
  • the glass particles containing a donor element include a system containing both the donor element-containing substance and the glass component substance.
  • P 2 O 5 —SiO 2 system in the order of donor element-containing material—glass component material, the same applies hereinafter
  • P 2 O 5 —K 2 O system P 2 O 5 —Na 2 O system , P 2 O 5 —Li 2 O system, P 2 O 5 —BaO system, P 2 O 5 —SrO system, P 2 O 5 —CaO system, P 2 O 5 —MgO system, P 2 O 5 —BeO system , P 2 O 5 —ZnO, P 2 O 5 —CdO, P 2 O 5 —PbO, P 2 O 5 —V 2 O 5 , P 2 O 5 —SnO, P 2 O 5 —GeO 2 system, the glass particles of the system containing P 2 O 5 as a donor element-containing substance such as P 2 O 5 -TeO 2 system
  • glass particles containing two or more kinds of donor element-containing substances such as P 2 O 5 —Sb 2 O 3 series, P 2 O 5 —As 2 O 3 series, and the like may be used.
  • a composite glass containing two components is exemplified, but glass particles containing three or more components such as P 2 O 5 —SiO 2 —V 2 O 5 and P 2 O 5 —SiO 2 —CaO may be used.
  • the glass particles include at least one donor element-containing material selected from the group consisting of P 2 O 3 , P 2 O 5 and Sb 2 O 3 , SiO 2 , K 2 O, Na 2 O, Li 2 O. , BaO, SrO, CaO, MgO, BeO, ZnO, PbO, CdO, V 2 O 5 , SnO, ZrO 2 , MoO 3 , GeO 2 , Y 2 O 3 , CsO 2 and TiO 2.
  • P 2 O 3 , P 2 O 5 and Sb 2 O 3 SiO 2 , K 2 O, Na 2 O, Li 2 O.
  • the content ratio of the specific glass component material in the glass particles is the melting temperature, It is desirable to set appropriately considering the softening temperature, glass transition temperature, and chemical durability.
  • the specific glass component substance is preferably 0.01% by mass or more and 80% by mass or less, more preferably 0.1% by mass or more and 50% by mass or less in 100% by mass of the glass particles. .
  • An n-type diffused layer can be efficiently formed as it is 0.01 mass% or more. Moreover, formation of the n-type diffusion layer in the part which has not provided the impurity diffusion layer forming composition as it is 80 mass% or less can be suppressed more effectively.
  • the glass particles may contain at least one of a network modification oxide (for example, an alkali oxide or an alkaline earth oxide) and an intermediate oxide that does not vitrify alone.
  • a network modification oxide for example, an alkali oxide or an alkaline earth oxide
  • an intermediate oxide that does not vitrify alone.
  • the content ratio of CaO that is a network modification oxide is preferably 1% by mass or more and 30% by mass or less. % Or more and 20% by mass or less is more preferable.
  • the softening point of the glass particles is preferably 200 ° C. to 1000 ° C., and more preferably 300 ° C. to 900 ° C., from the viewpoints of diffusibility during the diffusion treatment and dripping.
  • the softening point of the glass particles can be obtained from a differential heat (DTA) curve using a differential heat / thermogravimetric simultaneous measurement apparatus. Specifically, the value of the third peak from the low temperature of the DTA curve can be set as the softening point.
  • Glass particles containing a donor element are produced by the following procedure.
  • raw materials for example, the donor element-containing material and the glass component material are weighed and filled in a crucible.
  • the material for the crucible include platinum, platinum-rhodium, iridium, alumina, quartz, carbon and the like, which are appropriately selected in consideration of the melting temperature, atmosphere, reactivity with the molten material, and the like.
  • it heats with the temperature according to a glass composition with an electric furnace, and is set as a melt. At this time, it is desirable to stir the melt uniformly.
  • the obtained melt is poured onto a zirconia substrate, a carbon substrate, or the like to vitrify the melt.
  • the glass is crushed into powder.
  • a known method such as a jet mill, a bead mill, or a ball mill can be applied to the pulverization.
  • the compound containing a donor element may be a phosphorus-containing silicon oxide compound.
  • the phosphorus-containing silicon oxide compound will be described in detail.
  • Phosphorus-containing silicon oxide compound means a compound synthesized based on a sol-gel reaction using a phosphorus compound and a silicon oxide precursor as starting materials, and contains phosphorus so that it can be distinguished from the above glass particles in the synthesis method. It will be described as a silicon oxide compound.
  • the sol-gel reaction here refers to the hydrolysis of silicate, a silicon oxide precursor, and the condensation reaction of silanol groups, resulting in the formation of a three-dimensionally crosslinked silica gel matrix with silicon-oxygen bonds as structural units. It is.
  • the phosphorus-containing silicon oxide compound obtained by reacting the silicon oxide precursor with the phosphorus compound has a structure in which the phosphorus compound is dispersed in the network of silicon oxide (siloxane), so that the properties of the phosphorus compound alone are greatly different. For example, since the volatility of the phosphorus compound is suppressed, out diffusion is suppressed at a high temperature at which an n-type diffusion layer is formed on a semiconductor substrate such as a silicon substrate.
  • the phosphorus compound not included in the silicon oxide (siloxane) network may be removed by washing with water before the phosphorus-containing silicon oxide compound is added to the n-type diffusion layer forming composition. By doing in this way, out diffusion can further be suppressed.
  • a silicon alkoxide as a silicon oxide precursor, a phosphorus compound, a solvent used in a sol-gel reaction, water, and an acid or alkali catalyst are mixed, and a predetermined temperature is set.
  • a silicon oxide compound containing a phosphorus compound in a siloxane network can be synthesized.
  • hygroscopicity can also be suppressed, reaction with a dispersion medium and reaction with moisture are suppressed, and chemical stability in the impurity diffusion layer forming composition can be improved.
  • silicon alkoxide examples include silicon methoxide, silicon ethoxide, silicon propoxide, silicon butoxide and the like, and at least one selected from the group consisting of silicon methoxide and silicon ethoxide is available because of availability. It is preferable to use it.
  • the solvent used in the sol-gel reaction is not particularly limited as long as it dissolves the silicon oxide precursor polymer; alcohols such as ethanol and isopropanol; acetonitrile, glutaronitrile, methoxyacetonitrile, propionitrile, benzo Nitrile compounds such as nitriles; cyclic ethers such as dioxane and tetrahydrofuran; and the like are preferably used. These solvents may be used alone or in combination of two or more.
  • the amount of the solvent is preferably 100 equivalents or less with respect to the silicon oxide precursor, more preferably 1 equivalent to 10 equivalents. When the amount of the solvent is too large, the sol-gel reaction of the silicon oxide precursor tends to be slow.
  • an acid or an alkali as a catalyst for controlling hydrolysis and dehydration condensation polymerization.
  • alkali catalyst alkali metal hydroxide such as sodium hydroxide, ammonia, tetramethylammonium hydroxide and the like are generally used.
  • An inorganic protonic acid or an organic protonic acid can be used as the acid catalyst. Examples of the inorganic protonic acid include hydrochloric acid, sulfuric acid, boric acid, nitric acid, perchloric acid, tetrafluoroboric acid, hexafluoroarsenic acid, hydrobromic acid and the like.
  • the organic protonic acid examples include acetic acid, oxalic acid, methanesulfonic acid and the like. Since the solubility of the sol in the solvent varies depending on the amount of the catalyst, the amount of the catalyst used may be adjusted so that the solubility of the sol is soluble. Specifically, the catalyst is 0 with respect to the silicon oxide precursor. It is preferably used in an amount of 0.0001 equivalent to 1 equivalent.
  • a solution containing a metal nitrate, ammonium salt, chloride salt, sulfate or the like is added to the sol solution of the silicon oxide precursor, and then the sol-gel reaction is allowed to proceed to thereby convert the phosphorus-containing silicon oxide compound.
  • the salt is not particularly limited, and examples thereof include aluminum nitrate, iron nitrate, zirconium oxynitrate, titanium chloride, aluminum chloride, zirconium oxychloride, zirconium oxynitrate, titanium sulfate, and aluminum sulfate.
  • the solvent is not particularly limited as long as it dissolves a salt.
  • Carbonate compounds such as ethylene carbonate and propylene carbonate; heterocyclic compounds such as 3-methyl-2-oxazolidinone and N-methylpyrrolidone; dioxane, tetrahydrofuran and the like Cyclic ether compounds; chain ether compounds such as diethyl ether, ethylene glycol dialkyl ether, propylene glycol dialkyl ether, polyethylene glycol dialkyl ether, polypropylene glycol dialkyl ether; methanol, ethanol, isopropanol, ethylene glycol monoalkyl ether, propylene glycol monoalkyl ether , Polyethylene glycol monoalkyl ether, polypropylene glycol monoalkyl ether, etc.
  • Alcohol compounds such as ethylene glycol, propylene glycol, polyethylene glycol, polypropylene glycol, and glycerin; Nitrile compounds such as acetonitrile, glutarodinitrile, methoxyacetonitrile, propionitrile, and benzonitrile; Carboxylic acid esters and phosphoric acid esters Ester compounds such as phosphonic acid esters; aprotic polar substances such as dimethyl sulfoxide, sulfolane, dimethylformamide and dimethylacetamide; low polar solvents such as toluene and xylene; chlorinated solvents such as methylene chloride and ethylene chloride; be able to
  • Phosphorus compounds used in the sol-gel reaction include phosphoric acid, ammonium hydrogen phosphate, diphosphorus pentoxide, diphosphorus trioxide, phosphorous acid, phosphonic acid, phosphonous acid, phosphinic acid, phosphine, phosphate ester and It is preferable to use at least one selected from phosphites. Among these, it is preferable to use phosphate ester or phosphite ester. By using an ester compound, when the sol-gel reaction proceeds in a state of being mixed with silicon alkoxide, P—O—Si bonds are likely to be formed, and outdiffusion tends to be suppressed.
  • Examples of the phosphate ester include compounds represented by general formula (I), and examples of the phosphite ester include compounds represented by general formula (II).
  • R 1 to R 6 are each independently a monovalent organic group having 1 to 12 carbon atoms.
  • the monovalent organic group represented by R 1 to R 6 in general formula (I) and general formula (II) is not particularly limited, and each independently represents an alkyl group, an organic group having a functional group, or a hetero atom. And an organic group having an unsaturated bond.
  • the alkyl group represented by R 1 to R 6 may be linear, branched or cyclic, and is preferably linear or branched.
  • the alkyl group represented by R 1 to R 6 preferably has 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms, and 1 to 3 carbon atoms. Further preferred.
  • Specific examples of the alkyl group represented by R 1 to R 6 include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group, and a decyl group. Can be mentioned.
  • examples of the functional group include a chloro group, a bromo group, and a fluoro group.
  • the organic group having a functional group represented by R 1 to R 6 preferably has 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms, and 1 to 3 carbon atoms. More preferably.
  • Specific examples of the organic group having the functional group represented by R 1 to R 6 include chloroethyl group, fluoroethyl group, chloropropyl group, dichloropropyl group, fluoropropyl group, difluoropropyl group, chlorophenyl group, fluoro A phenyl group etc. are mentioned.
  • examples of the hetero atom include a nitrogen atom, an oxygen atom, and a sulfur atom.
  • the organic group having a hetero atom represented by R 1 to R 6 preferably has 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, and 1 to 3 carbon atoms. More preferably.
  • Specific examples of the organic group having a hetero atom represented by R 1 to R 6 include a dimethylamino group, a diethylamino group, a diphenylamino group, a methyl sulfoxide group, an ethyl sulfoxide group, and a phenyl sulfoxide group.
  • the organic group having an unsaturated bond represented by R 1 to R 6 preferably has 2 to 10 carbon atoms, more preferably 2 to 8 carbon atoms, and 2 to 4 carbon atoms. More preferably it is.
  • Specific examples of the organic group having an unsaturated bond represented by R 1 to R 6 include an ethylenyl group, an ethynyl group, a propenyl group, a propynyl group, a butenyl group, a butynyl group, and a phenyl group.
  • the monovalent organic group of R 1 to R 6 is preferably an alkyl group, and more preferably an alkyl group having 1 to 10 carbon atoms.
  • the phosphorus compound used in the sol-gel reaction it is preferable to use at least one selected from trimethyl phosphate, triethyl phosphate, tripropyl phosphate, and tributyl phosphate.
  • the content of the phosphorus compound in the phosphorus-containing silicon oxide compound is not particularly limited.
  • it is preferably 0.5% by mass or more and 99% by mass or less, and more preferably 5% by mass or more and 95% by mass or less.
  • An acceptor element is an element that can form a p-type diffusion layer by diffusing into a semiconductor substrate.
  • a Group 13 element can be used, and from the viewpoint of safety and the like, it is preferable to contain at least one of B (boron) and Al (aluminum).
  • B boron
  • Al aluminum
  • an oxide of a single acceptor element such as B 2 O 3 or Al 2 O 3 ; a glass component substance is formed in addition to an acceptor element-containing substance such as B 2 O 3 or Al 2 O 3
  • Glass particles as components glass particles containing an acceptor element
  • the compound containing an acceptor element is preferably BN particles, glass particles containing an acceptor element or boron-containing silicon oxide compound particles, and more preferably glass particles containing a BN particle or an acceptor element.
  • glass particles or BN particles containing an acceptor element the out-diffusion tends to be more effectively suppressed, and an unnecessary p-type diffusion layer is formed in addition to the region to which the p-type diffusion layer forming composition is applied. Can be suppressed. That is, a p-type diffusion layer can be formed in a more selective region by including glass particles or BN particles containing an acceptor element.
  • the glass particles containing an acceptor element can be formed including, for example, an acceptor element-containing substance and a glass component substance.
  • the acceptor element-containing material used for introducing the acceptor element into the glass particles is preferably a compound containing at least one selected from the group consisting of B 2 O 3 and Al 2 O 3 .
  • the content of the acceptor element-containing substance in the glass particles containing the acceptor element is not particularly limited.
  • it is preferably 0.5% by mass or more and 100% by mass or less, and more preferably 2% by mass or more and 80% by mass or less.
  • 0.5% by mass or more of at least one selected from the group consisting of B 2 O 3 and Al 2 O 3 as the acceptor element-containing substance is contained in the impurity diffusion layer forming composition. It is preferably contained at 100% by mass or less, more preferably 5% by mass or more and 99% by mass or less, further preferably 15% by mass or more and 80% by mass or less, and more preferably 30% by mass or more and 80% by mass or less. It is particularly preferable to include it.
  • the glass component materials include SiO 2 , K 2 O, Na 2 O, Li 2 O, BaO, SrO, CaO, MgO, BeO, ZnO, PbO, CdO, V 2 O 5 , SnO, ZrO 2 , WO 3 , MoO 3 , Y 2 O 3 , CsO 2 , TiO 2 , TeO 2 , La 2 O 3 , Nb 2 O 5 , Ta 2 O 5 , GeO 2 , Lu 2 O 3 and it is preferable to use at least one selected from the group consisting of MnO, SiO 2, K 2 O , Na 2 O, Li 2 O, BaO, SrO, CaO, MgO, BeO, ZnO, PbO, CdO, V 2 O 5, SnO, the use of the ZrO 2, MoO 3, GeO 2 , Y 2 O 3, CsO 2 and at least one selected from the group consisting of TiO 2 , K 2 O, Na 2 O, Li 2 O
  • the glass particles include glass particles containing both the acceptor element-containing substance and the glass component substance, and are described in the order of B 2 O 3 —SiO 2 (acceptor element-containing substance-glass component substance, hereinafter The same), B 2 O 3 —ZnO system, B 2 O 3 —PbO system, B 2 O 3 single system and the like containing B 2 O 3 as the acceptor element-containing substance, Al 2 O 3 —SiO 2 system, etc.
  • the acceptor element-containing substance include glass particles such as a system containing Al 2 O 3 .
  • glass particles containing one component or two components are exemplified, but glass particles containing three or more components such as B 2 O 3 —SiO 2 —CaO may be used. Further, glass particles containing two or more kinds of acceptor element-containing substances such as Al 2 O 3 —B 2 O 3 system may be used.
  • the acceptor element-containing glass particles include at least one acceptor element-containing substance selected from the group consisting of B 2 O 3 and Al 2 O 3 , and SiO 2. , K 2 O, Na 2 O, Li 2 O, BaO, SrO, CaO, MgO, BeO, ZnO, PbO, CdO, V 2 O 5 , SnO, ZrO 2 , WO 3 , MoO 3 , Y 2 O 3 , At least one glass component material selected from the group consisting of CsO 2 , TiO 2 , TeO 2 , La 2 O 3 , Nb 2 O 5 , Ta 2 O 5 , GeO 2 , Lu 2 O 3 and MnO.
  • At least one acceptor element-containing material selected from the group consisting of B 2 O 3 and Al 2 O 3 , SiO 2 , K 2 O, Na From 2 O, Li 2 O, BaO, SrO, CaO, MgO, BeO, ZnO, PbO, CdO, V 2 O 5 , SnO, ZrO 2 , MoO 3 , GeO 2 , Y 2 O 3 , CsO 2 and TiO 2
  • It is more preferable to contain at least one glass component material selected from the group consisting of: at least one acceptor element-containing material selected from the group consisting of B 2 O 3 and Al 2 O 3 ; and SiO 2 2 at least selected from the group consisting of K 2 O, Na 2 O, Li 2 O, BaO, SrO, CaO, MgO, BeO, ZnO, PbO, CdO, V 2 O 5 , SnO, ZrO 2 and MoO 3.
  • the glass particles include Al 2 O 3 as the acceptor element-containing material, and at least one selected from the group consisting of SiO 2 , ZnO, CaO, Na 2 O, Li 2 O, and BaO as the glass component material. It is preferable to include.
  • B 2 O 3 which is an acceptor element-containing substance is used alone, the sheet resistance of the formed impurity diffusion layer is lower, and the out diffusion is further suppressed. It becomes possible.
  • the form and volume average particle diameter of the particle may be the same as the glass particle containing the donor element.
  • the compound containing an acceptor element may be in a state dissolved in a dispersion medium.
  • the shape of the glass particles is not particularly limited.
  • the glass particles containing the acceptor element are produced in the same procedure as the glass particles containing the donor element, except that the donor element-containing substance is replaced with the acceptor element-containing substance.
  • the crystal form of BN may be any of hexagonal, cubic, rhombohedral, Hexagonal crystals are preferred because they can be easily controlled.
  • the method for preparing BN is not particularly limited, and can be prepared by a usual method. Specifically, a method in which boron powder is heated to 1500 ° C.
  • a method in which molten boric acid and nitrogen or ammonia are reacted in the presence of calcium phosphate, boric acid or an alkali boride, urea, guanidine Illustrates a method of reacting an organic nitrogen compound such as melamine in a high temperature nitrogen-ammonia atmosphere, a method of reacting molten sodium borate and ammonium chloride in an ammonia atmosphere, a method of reacting boron trichloride and ammonia at a high temperature, etc. be able to. There is no problem even in manufacturing methods other than the above. Among the above production methods, it is preferable to use a method in which boron trichloride and ammonia are reacted at a high temperature because high-purity BN can be obtained.
  • the compound containing an acceptor element may be a boron-containing silicon oxide compound.
  • the boron-containing silicon oxide compound will be described in detail.
  • the boron-containing silicon oxide compound means a compound synthesized by reacting a boron compound and a silicon oxide precursor based on a sol-gel reaction, and the boron particles can be distinguished from the glass particles so that the synthesis method is different. It will be described as a contained silicon oxide compound.
  • the boron-containing silicon oxide compound obtained by reacting a silicon oxide precursor with a boron compound has a structure in which the boron compound is dispersed in a silicon oxide (siloxane) network, so that the volatility of the boron compound is suppressed, and silicon Outdiffusion is suppressed at a high temperature at which a p-type diffusion layer is formed on a semiconductor substrate such as a substrate.
  • the boron-containing silicon oxide compound may be washed with water before being added to the p-type diffusion layer forming composition to remove boron compounds not included in the silicon oxide (siloxane) network. By doing in this way, out diffusion can be controlled more effectively.
  • Examples of the method for synthesizing the boron-containing silicon oxide compound include the same method as the method for synthesizing the phosphorus-containing silicon oxide compound described above except that the phosphorus compound is replaced with a boron compound.
  • Examples of the silicon alkoxide, the solvent used for the sol-gel reaction, and the acid and alkali used as a catalyst for controlling hydrolysis and dehydration condensation polymerization are the same as those mentioned in the method for synthesizing the phosphorus-containing silicon oxide compound. It is done.
  • a solution containing a metal nitrate, ammonium salt, chloride salt, sulfate salt or the like is added to the silicon oxide precursor sol solution, and then the sol-gel reaction is allowed to proceed to thereby form a boron-containing silicon oxide compound. It may be prepared.
  • the metal nitrate, ammonium salt, chloride salt, sulfate, and salt solvent that can be used here are the same as those mentioned in the method for synthesizing the phosphorus-containing silicon oxide compound.
  • boron compound used for the sol-gel reaction examples include boron oxide and boric acid.
  • Boron oxide is a compound represented by B2O3, which may be a crystallized product or a glassy material.
  • Boric acid is a compound represented by H 3 BO 3 or B (OH) 3 . These compounds are dissolved in water and exist in the state of H 3 BO 3 .
  • any compound that can be dissolved in water to form H 3 BO 3 is not limited to the type of boron compound used as an auxiliary material.
  • Examples of the compound that dissolves in water to become H 3 BO 3 include boric acid esters.
  • Examples of the boric acid ester include compounds represented by the following general formula (III).
  • R 7 to R 9 in the general formula (III) are each independently an organic group having 1 to 12 carbon atoms or a hydrogen atom, and at least one of R 7 to R 9 is an organic group.
  • the organic group represented by R 7 to R 9 in the general formula (III) is not particularly limited, and each independently represents an alkyl group, an organic group having a functional group, an organic group having a hetero atom, and an unsaturated bond.
  • the alkyl group represented by R 7 to R 9 may be linear, branched or cyclic, and is preferably linear or branched.
  • the alkyl group represented by R 7 to R 9 preferably has 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms, and 1 to 3 carbon atoms. Further preferred.
  • Specific examples of the alkyl group represented by R 7 to R 9 include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group, and a decyl group. It is done.
  • examples of the functional group include a chloro group, a bromo group, and a fluoro group.
  • the organic group having a functional group represented by R 7 to R 9 preferably has 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms, and 1 to 10 carbon atoms. More preferably, it is 3.
  • Specific examples of the organic group having a functional group represented by R 7 to R 9 include chloroethyl group, fluoroethyl group, chloropropyl group, dichloropropyl group, fluoropropyl group, difluoropropyl group, chlorophenyl group, fluoro A phenyl group etc. are mentioned.
  • examples of the hetero atom include a nitrogen atom, an oxygen atom, and a sulfur atom.
  • the organic group having a hetero atom represented by R 7 to R 9 preferably has 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, and 1 to 3 carbon atoms. More preferably.
  • Specific examples of the organic group having a hetero atom represented by R 7 to R 9 include a dimethylamino group, a diethylamino group, a diphenylamino group, a methyl sulfoxide group, an ethyl sulfoxide group, and a phenyl sulfoxide group.
  • the organic group having an unsaturated bond represented by R 7 to R 9 preferably has 2 to 10 carbon atoms, more preferably 2 to 8 carbon atoms, and 2 to 4 carbon atoms. More preferably it is.
  • Specific examples of the organic group having an unsaturated bond represented by R 7 to R 9 include an ethylenyl group, an ethynyl group, a propenyl group, a propynyl group, a butenyl group, a butynyl group, and a phenyl group.
  • the monovalent organic group of R 7 to R 9 is preferably an alkyl group, and more preferably an alkyl group having 1 to 10 carbon atoms.
  • the borate ester used in the sol-gel reaction it is preferable to use at least one selected from the group consisting of trimethyl borate, triethyl borate, tripropyl borate, and tributyl borate.
  • the content of the compound containing the donor element or the compound containing the acceptor element in the impurity diffusion layer forming composition is determined in consideration of the coating property, the diffusibility of the compound containing the donor element or the compound containing the acceptor element, and the like.
  • the content of the compound containing a donor element or the compound containing an acceptor element in the impurity diffusion layer forming composition is 0.1% by mass or more and 95% by mass or less in the impurity diffusion layer forming composition. It is preferably 1% by mass or more and 90% by mass or less, more preferably 1% by mass or more and 80% by mass or less, particularly preferably 2% by mass or more and 50% by mass or less, and 5% by mass. It is very preferable that it is 20% by mass or less.
  • the impurity diffusion layer can be sufficiently formed, and is 95% by mass or less.
  • the dispersibility of the compound containing the donor element or the compound containing the acceptor element in the impurity diffusion layer forming composition is improved, and the coating property to the semiconductor substrate is improved.
  • the impurity diffusion layer forming composition of the present invention contains a dispersion medium.
  • the dispersion medium is a medium in which the compound containing the donor element or the compound containing the acceptor element and the fatty acid amide are dispersed or dissolved in the composition.
  • the dispersion medium preferably contains at least a solvent or water.
  • a dispersion medium in addition to a solvent or water, you may contain the organic binder mentioned later.
  • Solvents include acetone, methyl ethyl ketone, methyl-n-propyl ketone, methyl isopropyl ketone, methyl-n-butyl ketone, methyl isobutyl ketone, methyl-n-pentyl ketone, methyl-n-hexyl ketone, diethyl ketone, dipropyl ketone, Ketone solvents such as diisobutylketone, trimethylnonanone, cyclohexanone, cyclopentanone, methylcyclohexanone, 2,4-pentanedione, acetonylacetone; diethyl ether, methyl ethyl ether, methyl-n-propyl ether, diisopropyl ether, tetrahydrofuran , Methyltetrahydrofuran, dioxane, dimethyldioxane, ethylene glycol dimethyl ether
  • acetone is the ketone solvent
  • diethylene glycol di-n-butyl ether is the ether solvent
  • 2- (2-butoxyethoxy) ethyl acetate is the ester solvent
  • N- is the aprotic polar solvent.
  • terpineol (terpineol) is preferably ⁇ -terpineol ( ⁇ -terpineol) or dihydroterpineol (dihydroterpineol)
  • terpene solvent is preferably ⁇ -terpinene or ⁇ -pinene.
  • the content of the dispersion medium in the impurity diffusion layer forming composition is determined in consideration of the coating property and the concentration of the donor element or the acceptor element.
  • the content of the dispersion medium is preferably 5% by mass to 99% by mass, more preferably 20% by mass to 95% by mass, and 40% by mass to 90% by mass. More preferably, it is at most mass%.
  • the impurity diffusion layer forming composition of the present invention contains a fatty acid amide.
  • Fatty acid amide imparts thixotropic properties to the impurity diffusion layer forming composition, and becomes a sol form when stress is applied at a constant temperature, and gives a property of returning to a gel form when left standing.
  • the impurity diffusion layer formation is performed.
  • the composition is reduced in viscosity and exhibits fluidity, and passes through the screen plate mesh to form a printed material on the object.
  • the impurity diffusion layer forming composition once formed as a printed matter on the object maintains its shape without decreasing the viscosity unless stress is applied.
  • a fatty acid amide By using a fatty acid amide, an appropriate diffusion viscosity can be imparted to the impurity diffusion layer forming composition, and good impartability can be imparted. Specifically, the value of thixotropic characteristics (thixotropic properties) described later can be adjusted appropriately.
  • the impurity diffusion layer forming composition when the impurity diffusion layer forming composition layer is formed by being applied to a partial region on the semiconductor substrate, the impurity diffusion layer is formed in the surface direction on the semiconductor substrate. Expansion of the contact area of the forming composition layer is suppressed. In addition, an impurity diffusion layer having an impurity concentration higher than that of other regions can be formed at a specific portion of the semiconductor substrate.
  • fatty acid amide can suppress the generation of residues during heat treatment. This is presumably because the fatty acid amide has good thermal decomposability (decomposes at about 400 ° C. or lower) and hardly generates fatty acid amide-derived residues.
  • an inorganic material when used to suppress the spread of the contact area of the impurity diffusion layer forming composition layer in the surface direction on the semiconductor substrate, it remains after removing organic components through drying and degreasing, The composition of the compound containing the donor element or the acceptor element may be changed during the diffusion treatment, and as a result, the doping of the donor element or the acceptor element may be affected.
  • fatty acid amides include fatty acid monoamides represented by general formula (1), N-substituted fatty acid amides represented by general formula (2) or (3), and N-substituted fatty acid amide amines represented by general formula (4). It is done.
  • R 1 CONH 2 (1) R 1 CONH—R 2 —NHCOR 1 (2) R 1 NHCO—R 2 —CONHR 1 (3) R 1 CONH—R 2 —N (R 3 ) 2 ... (4)
  • R 1 and R 3 each independently represents an alkyl group or alkenyl group having 1 to 30 carbon atoms, and R 2 represents 1 to 10 carbon atoms.
  • the alkylene group is shown.
  • R 1 and R 3 may be the same or different.
  • the alkyl group and alkenyl group represented by R 1 and R 3 each independently have 1 to 30 carbon atoms.
  • the alkyl group and alkenyl group represented by R 1 each independently preferably has 5 to 25 carbon atoms, more preferably 10 to 20 carbon atoms, and further preferably 15 to 18 carbon atoms. preferable.
  • the alkyl group and alkenyl group represented by R 3 each independently preferably has 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms, and further preferably 1 to 3 carbon atoms. preferable.
  • R 3 is preferably an alkyl group having 1 to 30 carbon atoms, more preferably an alkyl group having 1 to 10 carbon atoms, still more preferably an alkyl group having 1 to 6 carbon atoms, and a carbon number of 1 Particularly preferred are ⁇ 3 alkyl groups.
  • the alkyl group and alkenyl group having 1 to 30 carbon atoms represented by R 1 and R 3 may each independently be linear, branched or cyclic, and are linear or branched. It is preferable.
  • Examples of the alkyl group and alkenyl group having 1 to 30 carbon atoms represented by R 1 and R 3 include methyl group, ethyl group, propyl group, butyl group, isopropyl group, isobutyl group, decyl group, dodecyl group, octadecyl group, Examples include a hexadecenyl group and a hencicosenyl group.
  • the alkyl group and alkenyl group having 1 to 30 carbon atoms represented by R 1 and R 3 may be unsubstituted or may have a substituent.
  • Examples of such a substituent include a hydroxyl group, a chloro group, a bromo group, a fluoro group, an aldehyde group, an acyl group, an nitro group, an amino group, a sulfonic acid group, an alkoxy group, and an acyloxy group.
  • each alkylene group represented by R 2 independently has 1 to 10 carbon atoms, preferably 1 to 8 carbon atoms, It is more preferably 1 to 6 and still more preferably 1 to 4 carbon atoms.
  • Specific examples of the alkylene group having 1 to 10 carbon atoms represented by R 2 include an ethylene group, a propylene group, a butylene group, and an octylene group.
  • fatty acid monoamide represented by the general formula (1) examples include lauric acid amide, palmitic acid amide, stearic acid amide, oleic acid amide, erucic acid amide and the like.
  • N-substituted fatty acid amide represented by the general formula (2) examples include N, N′-ethylenebislauric acid amide, N, N′-methylenebisstearic acid amide, N, N′-ethylenebisamide.
  • Examples thereof include amide, N, N′-hexamethylenebisstearic acid amide, N, N′-hexamethylenebisoleic acid amide, N, N′-xylylene bisstearic acid amide, and the like.
  • N-substituted fatty acid amide represented by the general formula (3) examples include N, N′-dioleyl adipate amide, N, N′-distearyl adipate amide, N, N′-dioleyl.
  • Examples include sebacic acid amide, N, N′-distearyl sebacic acid amide, N, N′-distearyl terephthalic acid amide, N, N′-distearyl isophthalic acid amide, and the like.
  • N-substituted fatty acid amidoamine represented by the general formula (4) include stearic acid dimethylaminopropylamide, stearic acid diethylaminoethylamide, lauric acid dimethylaminopropylamide, myristic acid dimethylaminopropylamide, palmitic acid.
  • fatty acid amides at least one selected from the group consisting of stearic acid amide, N, N′-methylenebisstearic acid amide, and stearic acid dimethylaminopropylamide from the viewpoint of solubility in a dispersion medium. It is preferable to use at least one selected from stearamide and N, N′-methylenebisstearic acid amide.
  • the fatty acid amide is preferably evaporated or decomposed at 400 ° C. or lower, more preferably evaporated or decomposed at 300 ° C. or lower, and further preferably evaporated or decomposed at 250 ° C. or lower.
  • the transpiration or decomposition of the fatty acid amide is preferably 80 ° C. or higher.
  • the temperature is more preferably 100 ° C. or higher, and further preferably 150 ° C. or higher.
  • the transpiration or decomposition temperature of the fatty acid amide is measured by examining the temperature at which the weight retention is 20% or less using a thermogravimetric analyzer.
  • Fatty acid amides may be used alone or in combination of two or more.
  • the content of the fatty acid amide is preferably 1% by mass or more and 30% by mass or less, more preferably 3% by mass or more and 25% by mass or less, with respect to 100% by mass of the impurity diffusion layer forming composition. More preferably, it is at least 20% by mass.
  • the compound containing a donor element or the compound containing an acceptor element has a softening point of 450 ° C. to 900 ° C.
  • the fatty acid amide is 40 ° C.
  • the compound containing the donor element or the acceptor element has a softening point of 500 ° C. to 800 ° C.
  • the fatty acid amide is 150 ° C. to 350 ° C. It has a transpiration or decomposition temperature of 0C.
  • the impurity diffusion layer forming composition of the present invention includes an organic binder, a surfactant, an inorganic powder (inorganic filler) as necessary. ), An alkoxysilane, a silicone resin, a reducing compound, and the like.
  • the impurity diffusion layer forming composition of the present invention may further contain one or more organic binders.
  • the organic binder By including the organic binder, the viscosity as the impurity diffusion layer forming composition can be adjusted, or thixotropy can be imparted, and the impartability to the semiconductor substrate is further improved.
  • the organic binder examples include an alkyd resin; a polyvinyl butyral resin; a polyvinyl alcohol resin; a polyacrylamide resin; a polyvinyl amide resin; a polyvinyl pyrrolidone resin; a polyethylene oxide resin; a polysulfone resin; Cellulose derivatives such as ethyl cellulose; gelatin, gelatin derivatives; starch, starch derivatives; sodium alginate, sodium alginate derivatives; xanthan, xanthan derivatives; gua, gua derivatives; Dextrin derivative; (meth) acrylic resin; alkyl (meth) acrylate Resin, (meth) acrylic acid esters such as dimethyl aminoethyl (meth) acrylate resin resin; butadiene resin; a styrene resin; and may appropriately select these copolymers.
  • an organic binder it is preferable to use a cellulose derivative, a (meth) acrylic acid resin, a (meth) acrylic acid ester resin or a polyethylene oxide resin from the viewpoint of degradability and easy handling.
  • the molecular weight of the organic binder is not particularly limited, and is preferably adjusted appropriately in view of the desired viscosity as the composition.
  • content in the case of containing an organic binder is preferably 0.5% by mass or more and 30% by mass or less, and preferably 3% by mass or more and 25% by mass or less in the impurity diffusion layer forming composition. More preferably, it is 3 mass% or more and 20 mass% or less.
  • the impurity diffusion layer forming composition of the present invention may further contain one or more surfactants.
  • the surfactant include a nonionic surfactant, a cationic surfactant, and an anionic surfactant.
  • nonionic surfactants or cationic surfactants are preferable because impurities such as heavy metals are not brought into the semiconductor substrate.
  • nonionic surfactants include silicon surfactants, fluorine surfactants, hydrocarbon surfactants, and the like. Of these, hydrocarbon surfactants are preferred because they are quickly removed during heating such as diffusion.
  • hydrocarbon surfactants include ethylene oxide-propylene oxide block copolymers, acetylene glycol compounds, and the like. From the viewpoint of further reducing variation in the sheet resistance value of the semiconductor substrate, an acetylene glycol compound is preferred.
  • the impurity diffusion layer forming composition of the present invention may further contain one or more inorganic fillers.
  • the inorganic filler include silica (silicon oxide), clay, silicon carbide, silicon nitride and the like. Among these, it is preferable to use a filler containing silica as a component.
  • clay refers to a layered clay mineral, and specific examples include kaolinite, imogolite, montmorillonite, smectite, sericite, illite, talc, stevensite, and zeolite.
  • an inorganic filler By adding an inorganic filler, it is more effective to expand the contact area of the pattern on the semiconductor substrate due to bleeding and dripping of the impurity diffusion layer forming composition layer in the process of applying and drying the impurity diffusion layer forming composition. Can be suppressed.
  • bleeding that occurs during coating it is considered that the dispersion medium and the inorganic filler interact to suppress the bleeding of the dispersion medium.
  • bleeding and heat dripping at the time of drying occur at a temperature of about 100 ° C. to 500 ° C. at which the dispersion medium is decomposed and volatilized, for example, because a reducing compound such as polyethylene glycol described later melts. It is considered that the bleeding and heat dripping are suppressed by the interaction between the melted polyethylene glycol and the inorganic filler.
  • the BET specific surface area of the inorganic filler is preferably 1 m 2 / g to 300 m 2 / g, and more preferably 10 m 2 / g to 200 m 2 / g.
  • fumed silica refers to anhydrous silica in the form of ultrafine particles (BET specific surface area of 30 m 2 / g to 500 m 2 / g), and hydrolyzes silanes such as silicon tetrachloride in a flame of oxygen and hydrogen. Manufactured. Since it is synthesized by the gas phase method, the primary particle size is small and the BET specific surface area is large.
  • the viscosity of the composition for forming an impurity diffusion layer is reduced by the interaction with the dispersion medium (solvent) whose viscosity has been lowered in the drying process due to physical and van der Waals forces. Tends to be suppressed.
  • the BET specific surface area can be calculated from an adsorption isotherm of nitrogen at ⁇ 196 ° C. For example, it can be measured using BELSORP (manufactured by Nippon Bell Co., Ltd.).
  • the fumed silica may be either hydrophilic or hydrophobic, but it is preferable to use fumed silica made hydrophobic by a hydrophobizing treatment.
  • Hydrophobic silica particles can be treated with a silane coupling agent having an organic functional group such as methyl, ethyl, propyl, butyl, or phenyl with a surface treatment by dipping or spraying. The method of doing can be mentioned.
  • the fumed silica is hydrophobic if the methanol concentration at which the floating amount becomes 0% is 30% in the degree of hydrophobicity determined by the method of measuring the floating ratio of particles with respect to the solution by changing the water-methanol ratio. This refers to the case where the volume is at least%.
  • the content of the inorganic filler in the impurity diffusion layer forming composition is preferably 0.01% by mass to 20% by mass, more preferably 0.1% by mass to 10% by mass. Preferably, it is 0.5 to 3% by mass.
  • the coating characteristics (fine wire formability) of the impurity diffusion layer forming composition it is possible to more effectively ensure suppression of bleeding during printing and suppression of dripping during heat drying.
  • the ratio (mass basis) between the fatty acid amide and the inorganic filler is preferably 10:90 to 99: 1, and more preferably 30:70 to 95: 5.
  • the inorganic filler is preferably dispersed in the impurity diffusion layer forming composition.
  • distribution method of an inorganic filler When an inorganic filler melt
  • the inorganic filler does not dissolve in the dispersion medium, it is preferable to disperse using an ultrasonic dispersion, a bead mill, a ball mill, a homogenizer, a sand mill, a roll, a kneader, a dissolver, and a stirring blade.
  • the impurity diffusion layer forming composition of the present invention may further contain one or more alkoxysilanes.
  • the alkoxy group constituting the alkoxysilane is preferably a linear or branched alkoxy group, more preferably a linear or branched alkoxy group having 1 to 24 carbon atoms, still more preferably Is a linear or branched alkoxy group having 1 to 10 carbon atoms, particularly preferably a linear or branched alkoxy group having 1 to 4 carbon atoms.
  • alkyl group in the alkoxy group examples include methyl group, ethyl group, propyl group, butyl group, isopropyl group, isobutyl group, pentyl group, hexyl group, octyl group, 2-ethylhexyl group, t-octyl group, decyl group.
  • the content of alkoxysilane is not particularly limited and is preferably 0.1% by mass to 30% by mass, and preferably 1% by mass to 20% by mass. More preferably, it is more preferably 2% by mass to 10% by mass.
  • the impurity diffusion layer forming composition of the present invention may further contain one or more silicone resins.
  • silicone resin By including the silicone resin, the film thickness uniformity of the printed matter of the impurity diffusion layer forming composition tends to be improved.
  • silicone resin include organopolysiloxane and modified silicone resin.
  • the impurity diffusion layer forming composition may further contain one or more reducing compounds.
  • the reducing compound include polyalkylene glycols such as polyethylene glycol and polypropylene glycol, and terminal alkylated products of polyalkylene glycols; monosaccharides such as glucose, fructose and galactose, and derivatives of monosaccharides; disaccharides and disaccharides such as sucrose and maltose And polysaccharides and polysaccharide derivatives; and the like.
  • polyalkylene glycol is preferable, and polypropylene glycol is more preferable.
  • the impurity diffusion layer forming composition of the present invention is distinguished from the electrode forming composition, the metal as a conductive material is not a main component, and the metal content is less than 50% by mass and 30% by mass or less. Preferably, it is 10 mass% or less, more preferably 5 mass% or less. And it is preferable that the impurity diffusion layer forming composition of this invention does not contain a metal substantially (0.5 mass% or less) other than in a donor element containing compound and an acceptor element containing compound, and does not contain a metal. (0% by mass) is more preferable.
  • the method for producing the impurity diffusion layer forming composition of the present invention is not particularly limited. For example, it can be obtained by mixing a compound containing a donor element or a compound containing an acceptor element, a fatty acid amide, a dispersion medium and components added as necessary using a blender, a mixer, a mortar, a rotor or the like. Moreover, when mixing, you may add a heat
  • the components contained in the impurity diffusion layer forming composition and the content of each component are confirmed using thermal analysis such as TG / DTA, NMR, HPLC, GPC, GC-MS, IR, MALDI-MS, etc. can do.
  • the viscoelasticity of the impurity diffusion layer forming composition of the present invention is not particularly limited, but considering the impartability, the shear viscosity (25 ° C.) at a shear rate of 0.01 s ⁇ 1 is 50 Pa ⁇ s or more and 10,000 Pa. It is preferably s or less, and more preferably 100 Pa ⁇ s or more and 6000 Pa ⁇ s or less.
  • the shear viscosity (25 ° C.) at a shear rate of 0.01 s ⁇ 1 is 50 Pa ⁇ s or more, the thickness of the coating film in screen printing tends to be uniform, and if it is 10000 Pa ⁇ s or less, a screen mask There is a tendency that clogging of the plate is less likely to occur.
  • Thixotropic properties of the impurity diffusion layer forming composition is not particularly limited, the logarithm of the shear viscosity eta x at a shear rate of at 25 ° C. is x [s -1] log 10 ( denoted as eta x), the TI value indicating the thixotropy when the [log 10 ( ⁇ 0.01) -log 10 ( ⁇ 10)], TI value of 0.5 or more, is 6.0 or less It is preferably 0.5 or more and 4.0 or less, more preferably 0.5 or more and 3.0 or less.
  • the TI value is 0.5 or more, dripping of the impurity diffusion layer forming composition layer after screen printing hardly occurs, and when it is 6.0 or less, the application amount during continuous printing tends to be stable. In addition, the same effect can be obtained in other application methods such as an ink jet method. Further, the shear viscosity can be measured using a viscoelasticity measuring apparatus (Rheometer MCR301 manufactured by Anton Paar).
  • the method for producing a semiconductor substrate with an impurity diffusion layer of the present invention includes a step of forming the impurity diffusion layer forming composition layer by applying the impurity diffusion layer forming composition of the present invention to all or part of the semiconductor substrate; Heat-treating the semiconductor substrate on which the impurity diffusion layer forming composition layer is formed.
  • the method for producing a solar cell element of the present invention includes a step of forming the impurity diffusion layer forming composition layer by applying the impurity diffusion layer forming composition of the present invention to all or part of the semiconductor substrate,
  • the semiconductor substrate on which the impurity diffusion layer forming composition layer is formed includes a step of performing a heat treatment to form an impurity diffusion layer, and a step of forming an electrode on the formed impurity diffusion layer.
  • the method for producing a semiconductor substrate with an impurity diffusion layer and the method for producing a solar cell element of the present invention may further include other steps as necessary.
  • FIG. 1 is a schematic cross-sectional view conceptually showing an example of a method for producing a solar cell element of the present invention.
  • common constituent elements are denoted by the same reference numerals.
  • size of each component is an example, and does not restrict
  • an alkaline solution is applied to a silicon substrate which is a p-type semiconductor substrate 10 to remove a damaged layer, and a texture structure is obtained by etching.
  • the damaged layer on the surface of the silicon substrate generated when slicing from the ingot is removed with 20% by mass caustic soda.
  • etching is performed with a mixed solution of 1% by mass caustic soda and 10% by mass isopropyl alcohol to form a texture structure on the light receiving surface (surface) side (the description of the texture structure is omitted in the figure).
  • a texture structure on the light receiving surface (surface) side the description of the texture structure is omitted in the figure.
  • the n-type diffusion layer forming composition layer 11 is formed by applying the n-type diffusion layer forming composition to the surface of the p-type semiconductor substrate 10, that is, the surface serving as the light receiving surface.
  • the application method is not limited, and examples thereof include a printing method such as screen printing, a spin method, a brush coating, a spray method, a doctor blade method, a roll coater method, and an ink jet method.
  • the coating amount of the n-type diffusion layer forming composition is not particularly limited.
  • the amount of the compound containing a donor element or the compound containing an acceptor element should be 0.01 g / m 2 to 100 g / m 2. Is preferable, and more preferably 0.1 g / m 2 to 10 g / m 2 .
  • the ratio of the line thickness to the design value of the line width is preferably within 200%, and within 180%. Is more preferably 150% or less, and particularly preferably 120% or less.
  • a drying step for decomposing or volatilizing the solvent contained in the impurity diffusion layer forming composition may be necessary after coating.
  • drying is performed at a temperature of about 80 ° C. to 300 ° C. for about 1 to 10 minutes when using a hot plate, and about 10 to 30 minutes when using a dryer or the like.
  • the drying conditions depend on the solvent composition of the impurity diffusion layer forming composition and are not particularly limited to the above conditions in the present invention.
  • the semiconductor substrate 10 coated with the n-type diffusion layer forming composition 11 is heat-treated (thermal diffusion treatment).
  • the temperature of the heat treatment is not particularly limited, but is preferably 600 ° C. to 1200 ° C., more preferably 750 ° C. to 1050 ° C.
  • the time for the heat treatment is not particularly limited, but it is preferably 1 to 30 minutes.
  • the donor element diffuses into the semiconductor substrate, and the n-type diffusion layer 12 is formed.
  • a known continuous furnace, batch furnace, or the like can be applied to the heat treatment.
  • the furnace atmosphere at the time of heat processing can also be suitably adjusted to air, oxygen, nitrogen, etc.
  • a glass layer such as phosphate glass is formed on the surface of the n-type diffusion layer 12, this phosphate glass is removed by etching.
  • etching a known method such as a method of immersing in an acid such as hydrofluoric acid or a method of immersing in an alkali such as caustic soda can be applied.
  • an n-type diffusion layer 12 is formed at the electrode position, and the other light-receiving surface regions are formed more than the n-type diffusion layer 12.
  • An n-type diffusion layer 13 having a low donor element diffusion concentration is formed.
  • the method for forming the n-type diffusion layer 13 is not particularly limited, and examples thereof include a method using an impurity diffusion layer forming composition having a low donor element content and a gas phase reaction method using phosphorus oxychloride.
  • the semiconductor with an impurity diffusion layer (n-type diffusion layer) of the present invention which is shown in FIGS. 1 (2) and (3) and forms the n-type diffusion layer 12 using the n-type diffusion layer forming composition layer 11 of the present invention.
  • the n-type diffusion layer 12 is formed only in a desired portion, and unnecessary n-type diffusion layers are formed in the region other than the region where the n-type diffusion layer forming composition layer is formed, the back surface, and the side surface.
  • a side etch process for removing an unnecessary n-type diffusion layer formed on a side surface is essential. According to the manufacturing method of the invention, the side etch process is not required, and the process is simplified.
  • a side etching process is required.
  • an antireflection film 14 is formed on the n-type diffusion layer 12.
  • the antireflection film 14 is formed by applying a known technique.
  • the antireflection film 14 is a silicon nitride film, it is formed by a plasma CVD method using a mixed gas of SiH4 and NH3 as a raw material. At this time, hydrogen diffuses into the crystal, and orbits that do not contribute to the bonding of silicon atoms, that is, dangling bonds and hydrogen are combined to inactivate defects (hydrogen passivation).
  • the mixed gas flow ratio NH 3 / SiH 4 is 0.05 to 1.0
  • the reaction chamber pressure is 13.3 Pa (0.1 Torr) to 266.6 Pa (2 Torr)
  • the thickness of the antireflection film is not particularly limited, but is preferably 10 nm to 300 nm, and more preferably 30 nm to 150 nm.
  • a surface electrode metal paste is printed on the antireflection film 14 on the surface (light receiving surface) by screen printing and dried to form a surface electrode metal paste layer 15 '.
  • the metal paste for a surface electrode includes (1) metal particles and (2) glass particles as essential components, and includes (3) a resin binder, (4) other additives, and the like as necessary.
  • the high-concentration electric field layer 16 and the back surface electrode 17 on the back surface are formed.
  • a back electrode metal paste layer containing aluminum is used to form a back electrode metal paste layer, which is fired to form the back electrode 17 and at the same time a p + -type diffusion layer (high concentration on the back surface).
  • Electric field layer) 16 is formed.
  • a silver paste for forming a silver electrode may be partially applied to the back surface for connection between solar cell elements in the module process.
  • the warp easily causes the cell to be damaged when the solar cell element is transported in the module process or when it is connected to a copper wire called a tab wire.
  • the thickness of the semiconductor substrate is being reduced due to the improvement of the slice processing technique, and the solar cell element tends to be easily broken.
  • the n-type diffusion layer forming composition of the present invention if used, an unnecessary n-type diffusion layer is not formed on the back surface. It is not necessary to convert the diffusion layer to the p-type diffusion layer, and the necessity of increasing the thickness of the aluminum layer is eliminated. As a result, generation of internal stress in the semiconductor substrate and warpage of the semiconductor substrate can be suppressed. As a result, an increase in power loss can be suppressed and damage to the solar cell element can be suppressed.
  • the manufacturing method of the p + type diffused layer (high concentration electric field layer) 16 of a back surface is not limited to the method by the metal paste for back surface electrodes containing aluminum. Any of the conventionally known methods can be adopted, and the options for the manufacturing method are expanded.
  • a p-type diffusion layer forming composition containing a Group 13 element such as B (boron) can be applied to form the p + -type diffusion layer (high concentration electric field layer) 16.
  • the p-type diffusion layer forming composition of the present invention can be used as this p-type diffusion layer forming composition.
  • the material used for the back electrode 17 is not limited to Group 13 aluminum, and Ag (silver), Cu (copper), or the like can be applied. In addition, it can be formed thinner than the conventional one.
  • the material and forming method of the back electrode 17 are not particularly limited.
  • the back electrode 17 may be formed by applying and drying a back electrode paste containing a metal such as aluminum, silver, or copper.
  • the electrode is fired to complete the solar cell element. Firing can be performed in the range of 600 ° C. to 900 ° C. for several seconds to several minutes.
  • the antireflection film 14 which is an insulating film is melted by the glass particles contained in the electrode metal paste, and the surface of the semiconductor substrate 10 is also partially melted, so that the metal particles in the electrode metal paste (for example, Silver particles) form contact portions with the semiconductor substrate 10 and solidify. Thereby, the formed surface electrode 15 and the semiconductor substrate 10 are electrically connected. This is called fire-through.
  • FIG. 2A is a plan view of a solar cell element in which the surface electrode 15 includes a bus bar electrode 30 and a finger electrode 32 intersecting with the bus bar electrode 30 as viewed from the surface.
  • FIG. 2B is an enlarged perspective view illustrating a part of FIG.
  • Such a surface electrode 15 can be formed, for example, by applying a metal paste by screen printing or the like as described above and baking the metal paste. Further, it can be formed by means such as plating of electrode material, vapor deposition of electrode material by electron beam heating in high vacuum.
  • the surface electrode 15 composed of the bus bar electrode 30 and the finger electrode 32 is generally used as an electrode on the light receiving surface side and is well known, and it is possible to apply known forming means for the bus bar electrode and finger electrode on the light receiving surface side. it can.
  • the solar cell element in which the n-type diffusion layer is formed on the front surface, the p + -type diffusion layer is formed on the back surface, and the front surface electrode and the back surface electrode are provided on the respective layers has been described. If the forming composition is used, a back contact type solar cell element can be produced.
  • the back contact type solar cell element has all electrodes provided on the back surface to increase the area of the light receiving surface. That is, in the back contact type solar cell element, it is necessary to form both the n-type diffusion region and the p + -type diffusion region on the back surface to form a pn junction structure.
  • the impurity diffusion layer forming composition of the present invention can form an impurity diffusion site only at a specific site, and therefore can be suitably applied to the production of a back contact type solar cell element.
  • a back contact type solar cell element there is no restriction
  • the solar cell element manufactured by the manufacturing method is used for manufacturing a solar cell.
  • the solar cell includes at least one type of solar cell element manufactured by the manufacturing method, and is configured by arranging a wiring material on the electrode of the solar cell element. If necessary, the solar cell may be constituted by connecting a plurality of solar cell elements via a wiring material and further sealing with a sealing material.
  • the wiring material and the sealing material are not particularly limited, and can be appropriately selected from those usually used in the industry. There is no particular limitation on the shape and size of the solar cell, but it is preferably 0.5 m 2 to 3 m 2 .
  • Examples of the present invention will be described more specifically below, but the present invention is not limited to these examples. Unless otherwise stated, all chemicals used reagents. “%” Means “% by mass” unless otherwise specified. Moreover, the component of the dopant source compound used by each Example and the comparative example is put together in Table 1, and is shown. In Examples, a compound containing a donor element or a compound containing an acceptor element is referred to as a dopant source compound.
  • the impurity diffusion layer forming composition 1 has a shear viscosity of room temperature (25) within a shear rate of 0.01 s ⁇ 1 to 10 s ⁇ 1 using a viscoelasticity measuring device (Rheometer MCR301 manufactured by Anton Paar). C.) was measured. The shear viscosity is measured at a temperature of 25 ° C. using a rotary shear viscometer equipped with a cone plate (diameter 50 mm, cone angle 1 °). The impurity diffusion layer forming composition 1 has a shear viscosity of 378 Pa.s at a shear rate of 0.01 s ⁇ 1 . On the other hand, the shear viscosity at a shear rate of 10 s ⁇ 1 was 23 Pa ⁇ s, and the logarithmic value difference (TI value) of the shear viscosity was 1.22.
  • TI value logarithmic value difference
  • the impurity diffusion layer forming composition 1 described above was applied to the surface of the p-type silicon wafer in a fine line shape by screen printing and dried on a hot plate at 150 ° C. for 1 minute.
  • the impurity diffusion layer forming composition 1 was applied in an amount of 3 mg / cm 2 after drying.
  • the screen printing plate used was designed to obtain a thin line with a width of 150 ⁇ m, and the squeegee speed and scraper speed were both 200 mm / sec. When the thickness of the thin line was measured with an optical microscope manufactured by Olympus Corporation, it was 180 ⁇ m, and the line thickness from the design value was within 35 ⁇ m.
  • the impurity diffusion layer forming composition 1 described above was applied to the surface of the p-type silicon wafer in a solid form, dried on a hot plate at 150 ° C. for 1 minute, and then air was supplied at 5 L / min. Heat treatment (thermal diffusion treatment) was performed for 10 minutes in a 900 ° C.
  • tunnel furnace horizontal tube diffusion furnace ACCURON CQ-1200, manufactured by Kokusai Electric Co., Ltd.
  • the substrate is immersed in a 2.5% by mass HF aqueous solution for 5 minutes, and then washed with running water, ultrasonically washed, and dried to obtain n-type.
  • a p-type silicon substrate on which a diffusion layer was formed was obtained.
  • the sheet resistance of the surface on which the impurity diffusion layer forming composition 1 was applied in a solid form was 40 ⁇ / ⁇ , and P (phosphorus) was diffused to form an n-type diffusion layer.
  • the sheet resistance on the back surface was 1000 ⁇ / ⁇ or more, which was not measurable, and the n-type diffusion layer was not formed.
  • the sheet resistance was measured by a four-probe method using a Loresta-EP MCP-T360 type low resistivity meter manufactured by Mitsubishi Chemical Corporation.
  • Example 2 1 g of ethyl cellulose and 10 g of stearamide were added to 55.7 g of terpineol and dissolved at 160 ° C. over 30 minutes. Next, after the temperature was lowered to 100 ° C., 33.3 g of the 30% glass particle-dispersed terpineol solution obtained in Synthesis Example 1 was added to this solution, stirred for 30 minutes, cooled to room temperature, and pasted to form an impurity diffusion layer. Composition 2 was prepared.
  • the shear viscosity (25 ° C.) of the impurity diffusion layer forming composition 2 was examined by the same method as in Example 1, the shear viscosity at a shear rate of 0.01 s ⁇ 1 was 50 Pa.s. On the other hand, the shear viscosity at a shear rate of 10 s ⁇ 1 was 1.36 Pa ⁇ s, and the logarithmic value difference (TI value) of the shear viscosity was 1.57.
  • the impurity diffusion layer forming composition 2 described above was applied to the surface of the p-type silicon wafer by screen printing in a thin line shape and dried on a hot plate at 150 ° C. for 1 minute.
  • the screen printing plate used was designed to obtain a thin line with a width of 150 ⁇ m, and the squeegee speed and scraper speed were both 300 mm / sec.
  • the thickness of the thin line was measured with an optical microscope manufactured by Olympus Corporation, it was 185 ⁇ m, and the line thickness from the design value was within 35 ⁇ m.
  • the impurity diffusion layer forming composition 2 described above was applied to the surface of the p-type silicon wafer in a solid form, dried on a hot plate at 150 ° C. for 1 minute, and then air was supplied at 5 L / min.
  • Heat treatment was carried out for 10 minutes in a tunnel furnace (horizontal tube diffusion furnace ACCURON CQ-1200, manufactured by Kokusai Electric Co., Ltd.) at 900 ° C.
  • the substrate is immersed in an aqueous 2.5% by mass HF solution for 5 minutes, and then washed with running water, ultrasonically washed, and dried, thereby performing n-type diffusion.
  • a p-type silicon substrate having a layer formed thereon was obtained.
  • the sheet resistance of the surface on which the impurity diffusion layer forming composition 2 was applied was 40 ⁇ / ⁇ , and P (phosphorus) was diffused to form an n-type diffusion layer.
  • the sheet resistance on the back surface was 1000 ⁇ / ⁇ or more, which was not measurable, and the n-type diffusion layer was not formed.
  • Example 3 An impurity diffusion layer forming composition 3 was obtained in the same manner as in Example 1 except that stearic acid amide in Example 1 was replaced with N, N′-methylenebisstearic acid amide.
  • the shear viscosity of the impurity diffusion layer forming composition 3 was examined in the same manner as in Example 1, the shear viscosity at a shear rate of 0.01 s ⁇ 1 was 390 Pa.s. On the other hand, the shear viscosity at a shear rate of 10 s ⁇ 1 was 27 Pa ⁇ s, and the logarithmic value difference (TI value) of the shear viscosity was 1.16.
  • the impurity diffusion layer forming composition 3 described above was applied to the surface of the p-type silicon wafer by screen printing in a thin line shape and dried on a hot plate at 150 ° C. for 1 minute.
  • the screen printing plate used was designed to obtain a thin line with a width of 150 ⁇ m, and the squeegee speed and scraper speed were both 300 mm / sec.
  • the thickness of the thin line was measured with an optical microscope manufactured by Olympus Corporation, it was 175 ⁇ m, and the line thickness from the design value was within 35 ⁇ m.
  • the impurity diffusion layer forming composition 3 described above was applied to the surface of the p-type silicon wafer in a solid form, dried on a hot plate at 150 ° C. for 1 minute, and then air was supplied at 5 L / min.
  • Heat treatment was carried out for 10 minutes in a tunnel furnace (horizontal tube diffusion furnace ACCURON CQ-1200, manufactured by Kokusai Electric Co., Ltd.) at 900 ° C.
  • the substrate is immersed in a 2.5% by mass HF aqueous solution for 5 minutes, and then washed with running water, ultrasonically washed, and dried to obtain n-type.
  • a p-type silicon substrate on which a diffusion layer was formed was obtained.
  • the sheet resistance of the surface on which the impurity diffusion layer forming composition 3 was applied was 40 ⁇ / ⁇ , and P (phosphorus) was diffused to form an n-type diffusion layer.
  • the sheet resistance on the back surface was 1000 ⁇ / ⁇ or more, which was not measurable, and the n-type diffusion layer was not formed.
  • Example 4 An impurity diffusion layer forming composition 4 was obtained in the same manner as in Example 1 except that stearic acid amide in Example 1 was replaced with dimethylaminopropylamide stearate (Croda).
  • the shear viscosity of the impurity diffusion layer forming composition 4 was examined in the same manner as in Example 1, the shear viscosity at a shear rate of 0.01 s ⁇ 1 was 280 Pa ⁇ s. On the other hand, the shear viscosity at a shear rate of 10 s ⁇ 1 was 25 Pa ⁇ s, and the logarithmic value difference (TI value) of the shear viscosity was 1.05.
  • Example 2 In the same manner as in Example 1, except that the thickness of the fine line was measured instead of the impurity diffusion layer forming composition 4, it was 170 ⁇ m, and the line thickness from the design value was within 35 ⁇ m. .
  • a p-type silicon substrate on which an n-type diffusion layer was formed was obtained in the same manner as in Example 1, except that instead of the impurity diffusion layer forming composition 4.
  • the sheet resistance of the surface on which the impurity diffusion layer forming composition 4 was applied was 40 ⁇ / ⁇ , and P (phosphorus) diffused to form an n-type diffusion layer.
  • the sheet resistance on the back surface was 1000 ⁇ / ⁇ or more, which was not measurable, and the n-type diffusion layer was not formed.
  • Example 5 In the same manner as in Example 1, except that terpineol was replaced with dihydroterpineol, a 30% glass particle-dispersed dihydroterpineol solution was prepared. 3.0 g of ethyl cellulose and 10 g of stearamide were added to 53.7 g of dihydrodoterpineol (manufactured by Nippon Terpene Chemical Co., Ltd.) and dissolved at 160 ° C. over 30 minutes.
  • the shear viscosity of the impurity diffusion layer forming composition 5 was examined in the same manner as in Example 1, the shear viscosity at a shear rate of 0.01 s ⁇ 1 was 378 Pa.s. On the other hand, the shear viscosity at a shear rate of 10 s ⁇ 1 was 30 Pa ⁇ s, and the logarithmic value difference (TI value) of the shear viscosity was 1.10.
  • Example 2 In the same manner as in Example 1, except that the thickness of the thin line was measured instead of the impurity diffusion layer forming composition 5, it was 170 ⁇ m, and the line thickness from the design value was within 35 ⁇ m. .
  • a p-type silicon substrate on which an n-type diffusion layer was formed was obtained in the same manner as in Example 1, but in place of the impurity diffusion layer forming composition 5.
  • the sheet resistance of the surface on which the impurity diffusion layer forming composition 5 was applied was 40 ⁇ / ⁇ , and P (phosphorus) was diffused to form an n-type diffusion layer.
  • the sheet resistance on the back surface was 1000 ⁇ / ⁇ or more, which was not measurable, and the n-type diffusion layer was not formed.
  • Example 6 3.0 g of ethyl cellulose, 10 g of stearamide, and 1 g of Aerosil 200 (fumed silica, manufactured by Nippon Aerosil Co., Ltd.) were added to 52.7 g of dihydroterpineol and stirred at 160 ° C. for 30 minutes. Next, after the temperature was lowered to 100 ° C., 33.3 g of the 30% glass particle-dispersed dihydroterpineol solution obtained in Synthesis Example 1 was added to this solution, stirred for 30 minutes, and then cooled to room temperature to form a paste. Forming composition 6 was prepared.
  • the shear viscosity of the impurity diffusion layer forming composition 6 was examined in the same manner as in Example 1, the shear viscosity at a shear rate of 0.01 s ⁇ 1 was 380 Pa ⁇ s. On the other hand, the shear viscosity at a shear rate of 10 s ⁇ 1 was 18 Pa ⁇ s, and the logarithmic value difference (TI value) of the shear viscosity was 1.32.
  • the thickness of the thin wire was measured in the same manner as in Example 1 except that it was replaced with the impurity diffusion layer forming composition 6, it was 175 ⁇ m, and the thickness from the design value was within 35 ⁇ m. .
  • a p-type silicon substrate on which an n-type diffusion layer was formed was obtained in the same manner as in Example 1, except that instead of the impurity diffusion layer forming composition 6.
  • the sheet resistance of the surface on which the impurity diffusion layer forming composition 6 was applied was 40 ⁇ / ⁇ , and P (phosphorus) was diffused to form an n-type diffusion layer.
  • the sheet resistance on the back surface was 1000 ⁇ / ⁇ or more, which was not measurable, and the n-type diffusion layer was not formed.
  • Impurity diffusion layer forming composition 7 was prepared in the same manner as in Example 6 except that Aerosil 90G (fumed silica, manufactured by Nippon Aerosil Co., Ltd.) was used instead of Aerosil 200.
  • Aerosil 90G fumed silica, manufactured by Nippon Aerosil Co., Ltd.
  • the shear viscosity of the impurity diffusion layer forming composition 7 was examined in the same manner as in Example 1, the shear viscosity at a shear rate of 0.01 s ⁇ 1 was 350 Pa.s. On the other hand, the shear viscosity at a shear rate of 10 s ⁇ 1 was 25 Pa ⁇ s, and the logarithmic value difference (TI value) of the shear viscosity was 1.15.
  • a p-type silicon substrate on which an n-type diffusion layer was formed was obtained in the same manner as in Example 1, except that instead of the impurity diffusion layer forming composition 7.
  • the sheet resistance of the surface on which the impurity diffusion layer forming composition 7 was applied was 40 ⁇ / ⁇ , and P (phosphorus) diffused to form an n-type diffusion layer.
  • the sheet resistance on the back surface was 1000 ⁇ / ⁇ or more, which was not measurable, and the n-type diffusion layer was not formed.
  • Impurity diffusion layer forming composition 8 was prepared in the same manner as in Example 6 except that Aerosil RY200 (fumed silica, manufactured by Nippon Aerosil Co., Ltd.) was used instead of Aerosil 200.
  • Aerosil RY200 fumed silica, manufactured by Nippon Aerosil Co., Ltd.
  • the shear viscosity of the impurity diffusion layer forming composition 8 was examined in the same manner as in Example 1, the shear viscosity at a shear rate of 0.01 s ⁇ 1 was 405 Pa.s. On the other hand, the shear viscosity at a shear rate of 10 s ⁇ 1 was 22 Pa ⁇ s, and the logarithmic value difference (TI value) of the shear viscosity was 1.27.
  • the thickness of the fine line was measured instead of the impurity diffusion layer forming composition 8, it was 170 ⁇ m, and the line thickness from the design value was within 35 ⁇ m. .
  • a p-type silicon substrate on which an n-type diffusion layer was formed was obtained in the same manner as in Example 1, except that instead of the impurity diffusion layer forming composition 8.
  • the sheet resistance of the surface on which the impurity diffusion layer forming composition 8 was applied was 40 ⁇ / ⁇ , and P (phosphorus) was diffused to form an n-type diffusion layer.
  • the sheet resistance on the back surface was 1000 ⁇ / ⁇ or more, which was not measurable, and the n-type diffusion layer was not formed.
  • Example 9 A 40% glass particle-dispersed terpineol solution was prepared in the same manner as in Synthesis Example 1, except that the concentration of glass particles was 40%. Next, 3.0 g of ethyl cellulose and 10 g of stearamide were added to 37.0 g of terpineol and dissolved at 160 ° C. over 30 minutes. Next, after the temperature was lowered to 100 ° C., 50.0 g of 40% glass particle-dispersed terpineol solution was added to this solution, stirred for 30 minutes, and then cooled to room temperature to form a paste, thereby preparing an impurity diffusion layer forming composition 9.
  • the shear viscosity of the impurity diffusion layer forming composition 9 was examined in the same manner as in Example 1, the shear viscosity at a shear rate of 0.01 s ⁇ 1 was 430 Pa.s. On the other hand, the shear viscosity at a shear rate of 10 s ⁇ 1 was 25 Pa ⁇ s, and the logarithmic value difference (TI value) of the shear viscosity was 1.23.
  • a p-type silicon substrate on which an n-type diffusion layer was formed was obtained in the same manner as in Example 1, but in place of the impurity diffusion layer forming composition 9.
  • the sheet resistance on the surface on which the impurity diffusion layer forming composition 9 was applied was 40 ⁇ / ⁇ , and P (phosphorus) diffused to form an n-type diffusion layer.
  • the sheet resistance on the back surface was 1000 ⁇ / ⁇ or more, which was not measurable, and the n-type diffusion layer was not formed.
  • Example 10 ⁇ Synthesis Example 2> (Synthesis of dopant source compound 2) 10 g of tetraethoxysilane (manufactured by Wako Pure Chemical Industries) was dissolved in 40 g of ethanol. To this, 10 g of a 10% nitric acid aqueous solution was added. Subsequently, 7.0 g of triethyl phosphate (manufactured by Tokyo Chemical Industry Co., Ltd.) was added and stirred at 25 ° C. for 1 hour. Subsequently, it evaporated to dryness at 60 degreeC. Subsequently, it dried at 100 degreeC for 1 hour. The obtained powder was pulverized in an agate mortar to obtain a dopant source compound 2. The average secondary particle diameter measured by the laser diffraction method was 6 ⁇ m.
  • Impurity diffusion layer forming composition 10 was obtained in the same manner as in Example 1 except that dopant source compound 2 was used instead of dopant source compound 1.
  • a p-type silicon substrate on which an n-type diffusion layer was formed was obtained in the same manner as in Example 1, except that instead of the impurity diffusion layer forming composition 10.
  • the sheet resistance of the surface on which the impurity diffusion layer forming composition 10 was applied was 45 ⁇ / ⁇ , and P (phosphorus) diffused to form an n-type diffusion layer.
  • the sheet resistance on the back surface was 450 ⁇ / ⁇ .
  • Example 11 As the dopant source compound 3, ammonium dihydrogen phosphate (manufactured by Wako Pure Chemical Industries) was used as it was. Aerosil (RY200, manufactured by Nippon Aerosil) and terpineol were mixed to a concentration of 5% by mass, pulverized with 3 mm yttria-stabilized zirconia beads using a planetary ball mill, and a 5% aerosil / terpineol dispersion was obtained. Prepared. Impurity diffusion layer forming composition 11 was prepared in the same manner as in Example 1 except that dopant source compound 3 was used instead of dopant source compound 1.
  • the shear viscosity of the impurity diffusion layer forming composition 11 was examined in the same manner as in Example 1, the shear viscosity at a shear rate of 0.01 s ⁇ 1 was 282 Pa.s. On the other hand, the shear viscosity at a shear rate of 10 s ⁇ 1 was 25 Pa ⁇ s, and the logarithmic value difference (TI value) of the shear viscosity was 1.05.
  • a p-type silicon substrate on which an n-type diffusion layer was formed was obtained in the same manner as in Example 1, except that the impurity diffusion layer-forming composition 11 was used.
  • the sheet resistance of the surface on which the impurity diffusion layer forming composition 11 was applied was 40 ⁇ / ⁇ , and P (phosphorus) was diffused to form an n-type diffusion layer.
  • the sheet resistance on the back surface was 300 ⁇ / ⁇ .
  • a p-type silicon substrate on which an n-type diffusion layer was formed was obtained in the same manner as in Example 1, except that instead of the impurity diffusion layer forming composition 12.
  • the sheet resistance of the surface on which the impurity diffusion layer forming composition 12 was applied was 40 ⁇ / ⁇ , and P (phosphorus) was diffused to form an n-type diffusion layer.
  • the sheet resistance on the back surface was 800 ⁇ / ⁇ .
  • a p-type silicon substrate on which an n-type diffusion layer was formed was obtained in the same manner as in Example 1, except that instead of the impurity diffusion layer forming composition 13.
  • the sheet resistance of the surface on which the impurity diffusion layer forming composition 13 was applied was 40 ⁇ / ⁇ , and P (phosphorus) diffused to form an n-type diffusion layer.
  • the sheet resistance on the back surface was 200 ⁇ / ⁇ .
  • Example 14 Boron oxide (manufactured by Wako Pure Chemical Industries, Ltd.) was used as the dopant source compound 6 as it was.
  • Impurity diffusion layer forming composition 14 was prepared in the same manner as in Example 1 except that dopant source compound 6 was used instead of dopant source compound 1.
  • Dopant source compound 6 / stearic acid amide / ethyl cellulose / terpineol / tetraethoxysilane / aerosil 200 15/6/2/74/2/1 (mass ratio) and mixed in a mortar to form an impurity diffusion layer forming composition Article 14 was prepared.
  • the shear viscosity of the impurity diffusion layer forming composition 14 was examined in the same manner as in Example 1, the shear viscosity at a shear rate of 0.01 s ⁇ 1 was 385 Pa.s. On the other hand, the shear viscosity at a shear rate of 10 s ⁇ 1 was 18 Pa ⁇ s, the logarithmic value difference (TI value) of the shear viscosity was 1.33, and high thixotropy was obtained.
  • a p-type silicon substrate on which an n-type diffusion layer was formed was obtained in the same manner as in Example 1, except that instead of the impurity diffusion layer forming composition 14.
  • the sheet resistance of the surface on which the impurity diffusion layer forming composition 14 was applied was 45 ⁇ / ⁇ , and P (phosphorus) was diffused to form an n-type diffusion layer.
  • the sheet resistance on the back surface was 150 ⁇ / ⁇ .
  • composition 1 ′ containing no fatty acid amide was prepared.
  • the impurity diffusion layer forming composition 1 ′ was examined for shear viscosity in the same manner as in Example 1.
  • the shear viscosity at a shear rate of 0.01 s ⁇ 1 was 176 Pa.s.
  • the shear viscosity at a shear rate of 10 s ⁇ 1 was 68 Pa ⁇ s
  • the difference in logarithmic value (TI value) of the shear viscosity was 0.41, and sufficient thixotropy was not obtained.
  • the impurity diffusion layer has a thin line pattern.
  • the forming composition is applied onto a semiconductor substrate, it is possible to suppress line thickening, and it is possible to form an impurity diffusion layer with a specific size in a desired specific region.
  • the fatty acid amide an appropriate diffusion viscosity can be imparted to the impurity diffusion layer forming composition, good printability can be imparted, and the impurity diffusion layer is formed in a desired specific region. be able to.
  • Example 15 An n-type diffusion layer was formed in the same manner as in Example 1 except that the p-type silicon substrate (5 cm ⁇ 5 cm) was coated on the half surface instead of the entire surface.
  • the sheet resistance of the surface of the portion where the impurity diffusion layer forming composition 1 was applied was 38 ⁇ / ⁇ , and P was diffused to form an n-type diffusion layer.
  • the sheet resistance of the surface of the portion where the impurity diffusion layer forming composition 1 is not applied cannot be measured, the n-type diffusion layer is not formed, and is selected as the portion where the n-type diffusion layer forming composition is applied.
  • an n-type diffusion layer was formed. Further, the sheet resistance on the back surface was not measurable, and it was determined that the n-type diffusion layer was not substantially formed.
  • Example 16 In the same manner as in Example 15, except that the impurity diffusion layer forming composition 10 of Example 10 was used instead of the impurity diffusion layer forming composition 1, an n-type diffusion layer was formed.
  • the sheet resistance of the surface of the portion where the impurity diffusion layer forming composition 1 was applied was 45 ⁇ / ⁇ , and P was diffused to form an n-type diffusion layer.
  • the sheet resistance of the surface where the impurity diffusion layer forming composition 1 was not applied was 450 ⁇ / ⁇ .

Abstract

The present invention provides an impurity-diffusion-layer-forming composition containing a compound containing a donor element or an acceptor element, a dispersion medium, and a fatty acid amide. The present invention also provides a method for manufacturing a semiconductor substrate with an impurity-diffusion layer having a step for applying the impurity-diffusion-layer-forming composition to form an impurity-diffusion-layer-forming composition layer on all or part of a semiconductor substrate, and a step for performing a heat treatment on the semiconductor substrate on which the impurity-diffusion-layer composition layer has been formed.

Description

不純物拡散層形成組成物、不純物拡散層付き半導体基板の製造方法、及び太陽電池素子の製造方法Impurity diffusion layer forming composition, method for manufacturing semiconductor substrate with impurity diffusion layer, and method for manufacturing solar cell element
 本発明は、不純物拡散層形成組成物、不純物拡散層付き半導体基板の製造方法、及び太陽電池素子の製造方法に関するものであり、更に詳しくは、半導体基板の特定の部分に不純物拡散層を形成することを可能とする技術に関するものである。 The present invention relates to an impurity diffusion layer forming composition, a method for manufacturing a semiconductor substrate with an impurity diffusion layer, and a method for manufacturing a solar cell element, and more specifically, forming an impurity diffusion layer in a specific part of a semiconductor substrate. It relates to technology that makes it possible.
 従来のシリコン太陽電池素子(太陽電池セル)の製造工程について説明する。
 まず、光閉じ込め効果を促して高効率化を図るよう、受光面側にテクスチャー構造を形成したp型半導体基板を準備し、続いてオキシ塩化リン(POCl)、窒素及び酸素の混合ガス雰囲気において800℃~900℃で数十分の熱処理を行って一様にn型の不純物拡散層(n型拡散層)を形成する(気相反応法)。この従来の方法では、混合ガスを用いてリンの拡散を行うため、受光面である表面のみならず、側面及び裏面にもn型拡散層が形成される。そのため、側面のn型拡散層を除去するためのサイドエッチング工程が必要であった。また、裏面に形成されたn型拡散層は、p型拡散層へ変換する必要がある。そのため裏面のn型拡散層の上に第13族元素であるアルミニウムを含むアルミニウムペーストを付与した後、熱処理して、アルミニウムの拡散によってn型拡散層からp型拡散層に変換するのと同時に、オーミックコンタクトを得ていた。
The manufacturing process of the conventional silicon solar cell element (solar cell) will be described.
First, a p-type semiconductor substrate having a texture structure formed on the light-receiving surface side is prepared so as to promote the light confinement effect and increase the efficiency, and then in a mixed gas atmosphere of phosphorus oxychloride (POCl 3 ), nitrogen and oxygen An n-type impurity diffusion layer (n-type diffusion layer) is uniformly formed by performing several tens of minutes of heat treatment at 800 ° C. to 900 ° C. (gas phase reaction method). In this conventional method, since phosphorus is diffused using a mixed gas, n-type diffusion layers are formed not only on the front surface, which is the light receiving surface, but also on the side surface and the back surface. Therefore, a side etching process for removing the side n-type diffusion layer is necessary. Further, the n-type diffusion layer formed on the back surface needs to be converted into a p + -type diffusion layer. Therefore, after applying an aluminum paste containing aluminum as a group 13 element on the n-type diffusion layer on the back surface, heat treatment is performed, and at the same time the n-type diffusion layer is converted to the p + -type diffusion layer by the diffusion of aluminum. , Got ohmic contact.
 上記に関連して、気相反応法の代わりにリン酸二水素アンモニウム(NHPO)等のリン酸塩を含有する溶液の塗布によってn型拡散層を形成する方法も提案されている(例えば、特開2002-75894号公報参照)。 In relation to the above, a method of forming an n-type diffusion layer by applying a solution containing a phosphate such as ammonium dihydrogen phosphate (NH 4 H 2 PO 4 ) instead of the gas phase reaction method has also been proposed. (For example, refer to JP-A-2002-75894).
 また、ドナー元素を含むガラス粉末と分散媒とを含有するn型拡散層形成組成物を半導体基板に塗布し、熱拡散処理を行なうことにより、半導体基板の側面又は裏面に不要な不純物拡散層を形成させることなく、特定の領域にn型拡散層を形成する太陽電池素子の製造方法が提案されている(例えば、国際公開第2011/090216号パンフレット参照)。 In addition, an n-type diffusion layer forming composition containing a glass powder containing a donor element and a dispersion medium is applied to a semiconductor substrate, and a thermal diffusion treatment is performed, whereby an unnecessary impurity diffusion layer is formed on the side surface or the back surface of the semiconductor substrate. A method for manufacturing a solar cell element in which an n-type diffusion layer is formed in a specific region without being formed has been proposed (see, for example, International Publication No. 2011/090216 pamphlet).
 一方、変換効率を高めることを目的とした太陽電池素子の構造として、電極直下の領域のドナー元素の拡散濃度(以下、単に「拡散濃度」ともいう)に比べて、電極直下以外の領域における拡散濃度を低くした選択エミッタ構造が知られている(例えば、L.Debarge, M.Schott, J.C.Muller, R.Monna, Solar Energy Materials & Solar Cells 74 (2002) 71-75.参照)。 On the other hand, as a structure of a solar cell element for the purpose of increasing the conversion efficiency, the diffusion in the region other than directly under the electrode is compared with the diffusion concentration of the donor element in the region directly under the electrode (hereinafter also simply referred to as “diffusion concentration”). A selective emitter structure with a low concentration is known (see, for example, L. Debarge, M. Schott, JCMuller, R.Monna, Solar Energy Materials and Solar Cells 74 (2002) 71-75).
 選択エミッタ構造では、電極直下に拡散濃度が高い領域(以下、この領域を「選択エミッタ」ともいう)が形成されているため、電極と半導体基板との接触抵抗を低減できる。更に電極が形成された領域以外では拡散濃度が相対的に低くなっているため、太陽電池素子の変換効率を向上することができる。このような選択エミッタ構造を構築するためには、数百μm幅内(約50μm~200μm)で細線状に不純物拡散層を形成することが求められる。 In the selective emitter structure, since a region having a high diffusion concentration (hereinafter, this region is also referred to as “selective emitter”) is formed immediately below the electrode, the contact resistance between the electrode and the semiconductor substrate can be reduced. Furthermore, since the diffusion concentration is relatively low except in the region where the electrode is formed, the conversion efficiency of the solar cell element can be improved. In order to construct such a selective emitter structure, it is required to form an impurity diffusion layer in a thin line shape within a width of several hundred μm (about 50 μm to 200 μm).
 また、バックコンタクト型の太陽電池素子では、裏面にn型拡散部位及びp型拡散部位の両方を形成しpn接合構造とする必要があるため、特定の部位に所望の範囲で不純物拡散層を形成することが求められる。 Further, in the back contact type solar cell element, it is necessary to form both the n-type diffusion region and the p + -type diffusion region on the back surface to form a pn junction structure. It is required to form.
 しかしながら、特開2002-75894号公報に記載の方法では、気相反応法と同様にリン化合物が拡散時に揮散するため、ドナー元素の拡散は選択的な領域で行われず、全面に一様にn型拡散層を形成してしまう。 However, in the method described in Japanese Patent Application Laid-Open No. 2002-75894, since the phosphorus compound is volatilized during diffusion as in the gas phase reaction method, the diffusion of the donor element is not performed in a selective region, and the entire surface is uniformly n. A mold diffusion layer is formed.
 また、国際公開第2011/090216号パンフレットに記載のn型拡散層形成組成物を用いた場合、例えば、半導体基板上にn型拡散層形成組成物を細線状に塗布してn型拡散層形成組成物層を形成しても、n型拡散層形成組成物層の線幅が広がり、所望の細線幅が得られない傾向があった。この課題を解決するために分散媒の含有量を変え、粘度を高くしようとすると、取り扱い性が悪く、塗布そのものができなくなる傾向があった。 In addition, when the n-type diffusion layer forming composition described in International Publication No. 2011/090216 pamphlet is used, for example, the n-type diffusion layer forming composition is applied to a semiconductor substrate in a thin line shape to form an n-type diffusion layer Even when the composition layer is formed, the line width of the n-type diffusion layer forming composition layer is widened, and there is a tendency that a desired thin line width cannot be obtained. In order to solve this problem, when the content of the dispersion medium is changed to increase the viscosity, the handling property is poor and the coating itself tends to be impossible.
 本発明は、以上の従来技術の課題に鑑みなされたものであり、半導体基板上の一部領域に付与して不純物拡散層形成組成物層を形成したときに、半導体基板上の面方向で不純物拡散層形成組成物層の接触面積が拡大するのを抑えることが可能な不純物拡散層形成組成物、これを用いた不純物拡散層付き半導体基板の製造方法、及び太陽電池素子の製造方法を提供することを目的とする。 The present invention has been made in view of the above-described problems of the prior art, and when an impurity diffusion layer forming composition layer is formed by being applied to a partial region on a semiconductor substrate, impurities are formed in the surface direction on the semiconductor substrate. Provided are an impurity diffusion layer forming composition capable of suppressing an increase in the contact area of the diffusion layer forming composition layer, a method for manufacturing a semiconductor substrate with an impurity diffusion layer using the composition, and a method for manufacturing a solar cell element. For the purpose.
 前記課題を解決する手段は以下の通りである。
<1> ドナー元素を含む化合物又はアクセプタ元素を含む化合物と、分散媒と、脂肪酸アミドと、を含有する不純物拡散層形成組成物である。
Means for solving the problems are as follows.
<1> An impurity diffusion layer forming composition containing a compound containing a donor element or a compound containing an acceptor element, a dispersion medium, and a fatty acid amide.
<2> 前記脂肪酸アミドが、下記一般式(1)、(2)、(3)及び(4)で表される化合物からなる群より選択される少なくとも1種を含有する前記<1>に記載の不純物拡散層形成組成物である。 <2> The <1>, wherein the fatty acid amide contains at least one selected from the group consisting of compounds represented by the following general formulas (1), (2), (3) and (4) This is an impurity diffusion layer forming composition.
 RCONH・・・・(1)
 RCONH-R-NHCOR・・・・(2)
 RNHCO-R-CONHR・・・・(3)
 RCONH-R-N(R・・・・(4)
R 1 CONH 2 (1)
R 1 CONH—R 2 —NHCOR 1 (2)
R 1 NHCO—R 2 —CONHR 1 (3)
R 1 CONH—R 2 —N (R 3 ) 2 ... (4)
 一般式(1)、(2)、(3)及び(4)中、R及びRは各々独立に炭素数1~30のアルキル基又はアルケニル基を示し、Rは炭素数1~10のアルキレン基を示す。R及びRは同一であっても異なっていてもよい。 In general formulas (1), (2), (3) and (4), R 1 and R 3 each independently represents an alkyl group or alkenyl group having 1 to 30 carbon atoms, and R 2 represents 1 to 10 carbon atoms. The alkylene group is shown. R 1 and R 3 may be the same or different.
<3> 前記脂肪酸アミドが、ステアリン酸アミド、N,N’-メチレンビスステアリン酸アミド、及びステアリン酸ジメチルアミノプロピルアミドからなる群より選択される少なくとも1種を含有する前記<1>又は<2>に記載の不純物拡散層形成組成物である。 <3> The above <1> or <2 wherein the fatty acid amide contains at least one selected from the group consisting of stearic acid amide, N, N′-methylenebisstearic acid amide, and stearic acid dimethylaminopropylamide. > The impurity diffusion layer forming composition described in the above.
<4> 前記脂肪酸アミドの分解温度が、400℃以下である、前記<1>~<3>のいずれか1つに記載の不純物拡散層形成組成物である。 <4> The impurity diffusion layer forming composition according to any one of <1> to <3>, wherein the decomposition temperature of the fatty acid amide is 400 ° C. or lower.
<5> 更に無機フィラーを含む、前記<1>~<4>のいずれか1つに記載の不純物拡散層形成組成物である。 <5> The impurity diffusion layer forming composition according to any one of <1> to <4>, further including an inorganic filler.
<6> 前記無機フィラーはフュームドシリカである前記<5>に記載の不純物拡散層形成組成物である。 <6> The impurity diffusion layer forming composition according to <5>, wherein the inorganic filler is fumed silica.
<7> 前記フュームドシリカは表面が疎水化処理されている前記<6>に記載の不純物拡散層形成組成物。 <7> The impurity diffusion layer forming composition according to <6>, wherein a surface of the fumed silica is hydrophobized.
<8> 前記ドナー元素を含む化合物が、P(リン)を含有する化合物である前記<1>~<7>のいずれか1つに記載の不純物拡散層形成組成物である。 <8> The impurity diffusion layer forming composition according to any one of <1> to <7>, wherein the compound containing the donor element is a compound containing P (phosphorus).
<9> 前記ドナー元素を含む化合物が、ガラス粒子の形態である前記<1>~<8>のいずれか1つに記載の不純物拡散層形成組成物である。 <9> The impurity diffusion layer forming composition according to any one of <1> to <8>, wherein the compound containing the donor element is in the form of glass particles.
<10> 前記ガラス粒子が、P及びPからなる群より選択される1種以上のドナー元素含有物質と、SiO、KO、NaO、LiO、BaO、SrO、CaO、MgO、BeO、ZnO、PbO、CdO、V、SnO、ZrO及びMoOからなる群より選択される1種以上のガラス成分物質と、を含有する前記<9>に記載の不純物拡散層形成組成物である。 <10> One or more donor element-containing materials selected from the group consisting of P 2 O 3 and P 2 O 5 , SiO 2 , K 2 O, Na 2 O, Li 2 O, BaO. <9> containing at least one glass component material selected from the group consisting of SrO, CaO, MgO, BeO, ZnO, PbO, CdO, V 2 O 5 , SnO, ZrO 2 and MoO 3. 2. The impurity diffusion layer forming composition described in 1.
<11> 前記ガラス粒子中のP及びPの含有率が、15質量%以上、80
質量%以下である前記<10>に記載の不純物拡散層形成組成物である。
<11> The content of P 2 O 3 and P 2 O 5 in the glass particles is 15% by mass or more, 80
It is an impurity diffusion layer forming composition as described in said <10> which is the mass% or less.
<12> 前記アクセプタ元素を含む化合物が、B(ホウ素)又はAl(アルミニウム)を含有する前記<1>~<7>のいずれか1項に記載の不純物拡散層形成組成物である。 <12> The impurity diffusion layer forming composition according to any one of <1> to <7>, wherein the compound containing the acceptor element contains B (boron) or Al (aluminum).
<13> 前記アクセプタ元素を含む化合物が、ガラス粒子の形態である前記<12>に記載の不純物拡散層形成組成物である。 <13> The impurity diffusion layer forming composition according to <12>, wherein the compound containing the acceptor element is in the form of glass particles.
<14> 前記ガラス粒子が、B及びAlからなる群より選択される1種以上のアクセプタ元素含有物質と、SiO、KO、NaO、LiO、BaO、SrO、CaO、MgO、BeO、ZnO、PbO、CdO、V、SnO、ZrO、MoO、GeO、Y、CsO及びTiOからなる群より選択される少なくとも1種のガラス成分物質と、を含有する前記<13>に記載の不純物拡散層形成用組成物である。 <14> One or more acceptor element-containing substances selected from the group consisting of B 2 O 3 and Al 2 O 3 , and SiO 2 , K 2 O, Na 2 O, Li 2 O, BaO. , SrO, CaO, MgO, BeO, ZnO, PbO, CdO, V 2 O 5 , SnO, ZrO 2 , MoO 3 , GeO 2 , Y 2 O 3 , CsO 2 and TiO 2. The composition for forming an impurity diffusion layer according to <13>, comprising a glass component substance of a seed.
<15> 前記ガラス粒子中のB及びAlの含有率が、15質量%以上、80質量%以下である前記<14>に記載の不純物拡散層形成組成物である。 <15> The impurity diffusion layer forming composition according to <14>, wherein the content ratios of B 2 O 3 and Al 2 O 3 in the glass particles are 15% by mass or more and 80% by mass or less.
<16> 前記アクセプタ元素を含む化合物はBN(窒化ホウ素)である前記<1>~<7>のいずれか1つに記載の不純物拡散層形成組成物である。 <16> The impurity diffusion layer forming composition according to any one of <1> to <7>, wherein the compound including the acceptor element is BN (boron nitride).
<17> 前記ガラス粒子の含有率が、1質量%以上、80質量%以下である前記<9>~<11>、<13>~<15>のいずれか1つに記載の不純物拡散層形成組成物である。 <17> Impurity diffusion layer formation according to any one of <9> to <11>, <13> to <15>, wherein the content of the glass particles is 1% by mass or more and 80% by mass or less. It is a composition.
<18> 前記脂肪酸アミドを1質量%以上、30質量%以下含有する前記<1>~<17>のいずれか1つに記載の不純物拡散層形成組成物である。 <18> The impurity diffusion layer forming composition according to any one of <1> to <17>, wherein the fatty acid amide is contained in an amount of 1% by mass to 30% by mass.
<19> 無機フィラーを含み、前記無機フィラーを0.01質量%以上、20質量%以
下含有する前記<5>~<18>のいずれか1項に記載の不純物拡散層形成組成物である。
<19> The impurity diffusion layer forming composition according to any one of the above items <5> to <18>, comprising an inorganic filler and containing the inorganic filler in an amount of 0.01% by mass to 20% by mass.
<20> せん断速度が0.01[s-1]のときのせん断粘度(25℃)をη0.01とし、せん断速度が10[s-1]のときのせん断粘度(25℃)をη10としたとき、[log10(η0.01)-log10(η10)]で示されるTI値が0.5~3.0である前記<1>~<19>のいずれか1項に記載の不純物拡散層形成組成物である。 <20> The shear viscosity (25 ° C.) when the shear rate is 0.01 [s −1 ] is η 0.01, and the shear viscosity (25 ° C.) when the shear rate is 10 [s −1 ] is η when the 10, [log 10 (η 0.01 ) -log 10 (η 10)] the TI value of 0.5-3.0 represented by <1> to any one of <19> 2. The impurity diffusion layer forming composition described in 1.
<21> 半導体基板上の全部又は一部に、前記<1>~<20>のいずれか1つに記載の不純物拡散層形成組成物を付与して不純物拡散層形成組成物層を形成する工程と、前記不純物拡散層形成組成物層が形成された前記半導体基板に熱処理を施す工程と、を有する不純物拡散層付き半導体基板の製造方法である。 <21> A step of forming an impurity diffusion layer forming composition layer by applying the impurity diffusion layer forming composition according to any one of <1> to <20> to all or a part of a semiconductor substrate And a step of performing a heat treatment on the semiconductor substrate on which the impurity diffusion layer forming composition layer is formed.
<22> 半導体基板上の全部又は一部に、前記<1>~<20>のいずれか1つに記載の不純物拡散層形成組成物を付与して不純物拡散層形成組成物層を形成する工程と、前記不純物拡散層形成組成物層が形成された前記半導体基板に熱処理を施して不純物拡散層を形成する工程と、形成された前記不純物拡散層上に電極を形成する工程と、を有する太陽電池素子の製造方法である。 <22> A step of forming the impurity diffusion layer forming composition layer by applying the impurity diffusion layer forming composition according to any one of <1> to <20> to all or a part of the semiconductor substrate. And a step of heat-treating the semiconductor substrate on which the impurity diffusion layer-forming composition layer is formed to form an impurity diffusion layer, and a step of forming an electrode on the formed impurity diffusion layer. It is a manufacturing method of a battery element.
 本発明によれば、半導体基板上の一部領域に塗布して不純物拡散層形成組成物層を形成したときに、半導体基板上の面方向で不純物拡散層形成組成物層の接触面積が拡大するのを抑えることが可能な不純物拡散層形成組成物、それを用いた不純物拡散層付き半導体基板の製造方法、及び太陽電池素子の製造方法を提供することが可能となる。 According to the present invention, when an impurity diffusion layer forming composition layer is formed by applying to a partial region on a semiconductor substrate, the contact area of the impurity diffusion layer forming composition layer is expanded in the surface direction on the semiconductor substrate. It is possible to provide a composition for forming an impurity diffusion layer capable of suppressing the above, a method for manufacturing a semiconductor substrate with an impurity diffusion layer using the composition, and a method for manufacturing a solar cell element.
本発明の太陽電池素子の製造工程の一例を概念的に示す断面図である。It is sectional drawing which shows notionally an example of the manufacturing process of the solar cell element of this invention. 太陽電池素子を表面から見た概略平面図の一例である。It is an example of the schematic plan view which looked at the solar cell element from the surface. 図2Aの一部を拡大して示す斜視図である。It is a perspective view which expands and shows a part of FIG. 2A.
 まず、本発明の不純物拡散層形成組成物について説明し、次に不純物拡散層形成組成物を用いる不純物拡散層付き半導体基板及び太陽電池素子の製造方法について説明する。
 なお、本明細書において「工程」との語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の目的が達成されれば、本用語に含まれる。また「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。更に組成物中の各成分の量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。また、本明細書において、「含有率」とは、特に記載がなければ、不純物拡散層形成組成物100質量%に対する、成分の質量%を表す。
First, the impurity diffusion layer forming composition of the present invention will be described, and then a method for manufacturing a semiconductor substrate with an impurity diffusion layer and a solar cell element using the impurity diffusion layer forming composition will be described.
Note that in this specification, the term “process” is not limited to an independent process, and even if it cannot be clearly distinguished from other processes, the term “process” is used if the intended purpose of the process is achieved. included. A numerical range indicated by using “to” indicates a range including the numerical values described before and after “to” as the minimum value and the maximum value, respectively. Further, the amount of each component in the composition means the total amount of the plurality of substances present in the composition unless there is a specific notice when there are a plurality of substances corresponding to each component in the composition. Moreover, in this specification, "content rate" represents the mass% of a component with respect to 100 mass% of impurity diffusion layer forming compositions unless there is particular description.
 また、本明細書において、n型の不純物拡散層形成組成物をn型拡散層形成組成物と称する。p型の不純物拡散層形成組成物をp型拡散層形成組成物と称する。n型の不純物拡散層をn型拡散層と称する。p型の不純物拡散層をp型拡散層と称する。更に、n型拡散層形成組成物及びp型拡散層形成組成物を合わせて不純物拡散層形成組成物と称する。n型拡散層及びp型拡散層を合わせて不純物拡散層と称する。 In this specification, the n-type impurity diffusion layer forming composition is referred to as an n-type diffusion layer forming composition. The p-type impurity diffusion layer forming composition is referred to as a p-type diffusion layer forming composition. The n-type impurity diffusion layer is referred to as an n-type diffusion layer. The p-type impurity diffusion layer is referred to as a p-type diffusion layer. Further, the n-type diffusion layer forming composition and the p-type diffusion layer forming composition are collectively referred to as an impurity diffusion layer forming composition. The n-type diffusion layer and the p-type diffusion layer are collectively referred to as an impurity diffusion layer.
<不純物拡散層形成組成物>
 本発明の不純物拡散層形成組成物は、ドナー元素を含む化合物又はアクセプタ元素を含む化合物と、分散媒と、脂肪酸アミドとを含有する。更に付与性等を考慮してその他の添加剤を必要に応じて含有してもよい。
<Impurity diffusion layer forming composition>
The impurity diffusion layer forming composition of the present invention contains a compound containing a donor element or a compound containing an acceptor element, a dispersion medium, and a fatty acid amide. Furthermore, other additives may be contained as necessary in consideration of imparting properties and the like.
 ここで、不純物拡散層形成組成物とは、ドナー元素を含む化合物又はアクセプタ元素を含む化合物を含有し、半導体基板に塗布した後にドナー元素を含む化合物中のドナー元素又はアクセプタ元素を含む化合物中のアクセプタ元素を半導体基板へ熱拡散することで半導体基板に不純物拡散層を形成することが可能な材料をいう。 Here, the impurity diffusion layer forming composition contains a compound containing a donor element or a compound containing an acceptor element, and is applied to a semiconductor substrate and then applied to the compound containing the donor element in the compound containing the donor element or the acceptor element. A material that can form an impurity diffusion layer in a semiconductor substrate by thermally diffusing an acceptor element into the semiconductor substrate.
 本発明の不純物拡散層形成組成物は脂肪酸アミドを含有することから、スクリーン印刷機にて半導体基板に印刷する際に応力が加えられると低粘度化して流動性を示し、スクリーン版のメッシュをすり抜けて半導体基板上に印刷物として、スクリーンのパターンに応じたパターン状の不純物拡散層形成組成物層を形成する。一方で、一旦、半導体基板上に印刷物として形成された不純物拡散層形成組成物層は、応力が加えられない限り低粘度化することなく、その形状を維持できる状態となる。したがって、本発明の不純物拡散層形成組成物を半導体基板上にパターン状に付与してパターン状の不純物拡散層形成組成物層を形成したとき、不純物拡散層形成組成物層が液だれを起こして半導体基板上の面方向で不純物拡散層形成組成物層の接触面積が拡大するのが抑えられる。 Since the impurity diffusion layer forming composition of the present invention contains a fatty acid amide, when a stress is applied when printing on a semiconductor substrate with a screen printing machine, the viscosity is lowered and fluidity is exhibited, and the screen plate meshes through. Then, a patterned impurity diffusion layer forming composition layer corresponding to the screen pattern is formed on the semiconductor substrate as a printed material. On the other hand, the impurity diffusion layer forming composition layer once formed as a printed matter on the semiconductor substrate is in a state where its shape can be maintained without being reduced in viscosity unless stress is applied. Therefore, when the impurity diffusion layer forming composition of the present invention is applied in a pattern on a semiconductor substrate to form a patterned impurity diffusion layer forming composition layer, the impurity diffusion layer forming composition layer causes dripping. Expansion of the contact area of the impurity diffusion layer forming composition layer in the surface direction on the semiconductor substrate is suppressed.
 また、本発明の不純物拡散層形成組成物を用いることで、不純物拡散層形成組成物層のパターン形状が維持されるため、半導体基板において不純物拡散層形成組成物層に対応した領域に不純物拡散層が形成される。 Further, since the pattern shape of the impurity diffusion layer forming composition layer is maintained by using the impurity diffusion layer forming composition of the present invention, the impurity diffusion layer is formed in a region corresponding to the impurity diffusion layer forming composition layer in the semiconductor substrate. Is formed.
 特に、ドナー元素を含む化合物又はアクセプタ元素を含む化合物がガラス粒子の形態の場合には、ドナー成分又はアクセプタ成分が熱処理(焼成)中でも揮散しにくいため、揮散ガスの発生によって所望の特定領域以外に不純物拡散層が形成されるということがより効果的に抑制される。したがって、ドナー元素を含む化合物又はアクセプタ元素を含む化合物がガラス粒子の形態の場合には、半導体基板の特定領域に、他の領域よりも不純物濃度の高い不純物拡散層を形成することが可能となる。 In particular, when the compound containing the donor element or the compound containing the acceptor element is in the form of glass particles, the donor component or the acceptor component is difficult to volatilize even during heat treatment (firing), so that the generation of the volatilizing gas generates a region other than the desired specific region. The formation of the impurity diffusion layer is more effectively suppressed. Therefore, when the compound containing a donor element or the compound containing an acceptor element is in the form of glass particles, an impurity diffusion layer having a higher impurity concentration than other regions can be formed in a specific region of the semiconductor substrate. .
 したがって、本発明の不純物拡散層形成組成物を適用すれば、選択エミッタ構造の太陽電池素子の製造において、電極位置に対応する領域に容易に不純物拡散層を形成することも可能である。 Therefore, by applying the impurity diffusion layer forming composition of the present invention, it is possible to easily form an impurity diffusion layer in a region corresponding to the electrode position in the production of a solar cell element having a selective emitter structure.
 また、ガラス粒子の形態のドナー元素を含む化合物又はアクセプタ元素を含む化合物を用いた不純物拡散層形成組成物を適用することで、従来の気相反応法とは異なり、所望の部位にのみ不純物拡散層が形成され、不要な部位に不純物拡散層が形成されるのが抑制される。したがって、本発明の不純物拡散層形成組成物を適用すれば、従来の気相反応法を用いた太陽電池素子の製造で必須のサイドエッチング工程が不要となり、工程が簡易化される。 Also, by applying an impurity diffusion layer forming composition using a compound containing a donor element in the form of glass particles or a compound containing an acceptor element, impurity diffusion can be performed only at a desired site, unlike a conventional gas phase reaction method. A layer is formed, and the formation of an impurity diffusion layer in an unnecessary portion is suppressed. Therefore, when the impurity diffusion layer forming composition of the present invention is applied, the side etching step essential in the production of the solar cell element using the conventional gas phase reaction method becomes unnecessary, and the process is simplified.
 また、ガラス粒子の形態のドナー元素を含む化合物を用いた不純物拡散層形成組成物を適用することで、裏面に形成されるn型拡散層をp型拡散層へ変換するという気相反応法における工程も不要となる。そのため、裏面のp型拡散層の形成方法、裏面電極の材質、形状及び厚さが制限されず、適用する製造方法、材質及び形状の選択肢が広がる。また詳細は後述するが、裏面電極の厚さに起因した半導体基板内の内部応力の発生が抑えられ、半導体基板の反りも抑えられる。 Further, by applying an impurity diffusion layer forming composition using a compound containing a donor element in the form of glass particles, an n-type diffusion layer formed on the back surface is converted to a p + -type diffusion layer. The process in (1) is also unnecessary. Therefore, the method for forming the p + -type diffusion layer on the back surface and the material, shape, and thickness of the back electrode are not limited, and the options of the manufacturing method, material, and shape to be applied are expanded. Moreover, although mentioned later for details, generation | occurrence | production of the internal stress in the semiconductor substrate resulting from the thickness of a back surface electrode is suppressed, and the curvature of a semiconductor substrate is also suppressed.
(ドナー元素を含む化合物)
 ドナー元素とは、半導体基板中に拡散することによってn型拡散層を形成することが可能な元素である。ドナー元素としては第15族の元素が使用でき、P(リン)、Sb(アンチモン)、As(ヒ素)等が挙げられる。安全性等の観点から、ドナー元素を含む化合物はP及びSbの少なくとも一方を含有することが好適であり、P(リン)がより好適である。
(Compound containing donor element)
A donor element is an element that can form an n-type diffusion layer by diffusing into a semiconductor substrate. As the donor element, a Group 15 element can be used, and examples thereof include P (phosphorus), Sb (antimony), and As (arsenic). From the viewpoint of safety and the like, the compound containing a donor element preferably contains at least one of P and Sb, and more preferably P (phosphorus).
 ドナー元素を含む化合物としては特に制限はなく、例えば、ドナー元素を含む酸化物が挙げられる。ドナー元素を含む酸化物として、P、P等のドナー元素単独の酸化物;P、P等のドナー元素含有物質の他にガラス成分物質を構成成分とするガラス粒子(ドナー元素を含むガラス粒子);リン含有酸化ケイ素化合物、リンシリサイド、リンをドープしたシリコン粒子、リン酸カルシウム、リン酸、リン酸二水素アンモニウム等のリンを含有する無機リン化合物;ホスホン酸、亜ホスホン酸、ホスフィン酸、亜ホスフィン酸、ホスフィン、ホスフィンオキシド、リン酸エステル、亜リン酸エステル等の有機リン化合物を例示することができる。 There is no restriction | limiting in particular as a compound containing a donor element, For example, the oxide containing a donor element is mentioned. As an oxide containing a donor element, an oxide of a donor element such as P 2 O 5 or P 2 O 3 ; a glass component substance as a constituent component in addition to a donor element-containing substance such as P 2 O 5 or P 2 O 3 Glass particles (glass particles containing a donor element); inorganic phosphorus compounds containing phosphorus such as phosphorus-containing silicon oxide compounds, phosphorus silicides, silicon particles doped with phosphorus, calcium phosphate, phosphoric acid, ammonium dihydrogen phosphate; Examples thereof include organic phosphorus compounds such as acid, phosphonous acid, phosphinic acid, phosphinic acid, phosphine, phosphine oxide, phosphate ester, and phosphite ester.
 これらの中でもP、P等のドナー元素単独の酸化物;ドナー元素を含むガラス粒子;リン含有酸化ケイ素化合物;及び半導体基板へのドナー元素の熱拡散時の熱処理温度(例えば、800℃以上)においてPを含む化合物へ変化し得る化合物(リン酸二水素アンモニウム、リン酸、亜ホスホン酸、ホスフィン酸、亜ホスフィン酸、ホスフィン、ホスフィンオキシド、リン酸エステル、亜リン酸エステル等)からなる群より選ばれる1種以上を用いることが好ましく、これらの中でも、融点(熱拡散時の熱処理温度によりPを含む化合物へ変化しうる化合物の場合には、生成したPを含む化合物の融点)が1000℃以下である化合物を用いることがより好ましい。融点が1000℃以下の化合物は、半導体基板へ熱拡散する際に溶融状態となりやすく、半導体基板へより均一にドナー元素を拡散することができるためである。また、融点が1000℃を超える化合物であっても、融点が1000℃未満の化合物を更に添加することで、ドナー元素を含む化合物から、融点が1000℃未満の化合物を介して半導体基板へドナー元素が拡散することができる。 Among these, an oxide of a donor element such as P 2 O 3 or P 2 O 5 ; a glass particle containing a donor element; a phosphorus-containing silicon oxide compound; and a heat treatment temperature during thermal diffusion of the donor element to a semiconductor substrate (for example, , 800 ° C. or higher) a compound that can be changed to a compound containing P 2 O 5 (ammonium dihydrogen phosphate, phosphoric acid, phosphonous acid, phosphinic acid, phosphinic acid, phosphine, phosphine oxide, phosphoric acid ester, phosphorus phosphite) It is preferable to use one or more selected from the group consisting of acid esters and the like, and among these, in the case of a compound that can change to a compound containing P 2 O 5 depending on the melting point (heat treatment temperature during thermal diffusion) It is more preferable to use a compound having a melting point of the compound containing P 2 O 5 of 1000 ° C. or lower. This is because a compound having a melting point of 1000 ° C. or lower is likely to be in a molten state when thermally diffusing into the semiconductor substrate, and the donor element can be more uniformly diffused into the semiconductor substrate. Moreover, even if it is a compound with melting | fusing point over 1000 degreeC, by adding the compound with melting | fusing point less than 1000 degreeC, it is a donor element from the compound containing a donor element to a semiconductor substrate through a compound with melting | fusing point less than 1000 degreeC. Can diffuse.
 また、半導体基板において、不純物拡散層形成組成物を塗布した領域以外の領域で不純物濃度を低く抑える観点からは、ドナー元素を含む化合物として、ドナー元素を含むガラス粒子又はリン含有酸化ケイ素化合物を用いることが好ましく、ドナー元素を含むガラス粒子を用いることがより好ましい。 Further, in the semiconductor substrate, glass particles containing a donor element or phosphorus-containing silicon oxide compounds are used as the compound containing a donor element from the viewpoint of keeping the impurity concentration low in a region other than the region where the impurity diffusion layer forming composition is applied. It is preferable to use glass particles containing a donor element.
 ドナー元素を含む化合物がガラス粒子である場合、その粒子の形態としては、固体の粒子が分散媒に分散した状態であっても、分散媒に一部溶解した状態であってもよい。粒子形状としては、略球状、扁平状、ブロック状、板状、鱗片状等が挙げられる。不純物拡散層形成組成物とした場合の基板への付与性及び均一拡散性の点から、粒子形状は、略球状、扁平状又は板状であることが望ましい。 When the compound containing a donor element is a glass particle, the form of the particle may be a state where solid particles are dispersed in a dispersion medium or a state where the particles are partially dissolved in the dispersion medium. Examples of the particle shape include a substantially spherical shape, a flat shape, a block shape, a plate shape, and a scale shape. From the viewpoint of imparting to the substrate and uniform diffusibility when the impurity diffusion layer forming composition is used, the particle shape is preferably substantially spherical, flat or plate-like.
 ドナー元素を含む化合物が固体の粒子状である場合、粒子の粒径は、100μm以下であることが好ましい。100μm以下の粒径を有する粒子を用いた場合には、平滑な不純物拡散層形成組成物層が得られやすい。更に、粒子の粒径は50μm以下であることがより望ましい。なお、前記粒子の粒径の下限は特に制限されないが、0.01μm以上であることが好ましく、0.1μm以上であることがより好ましい。
 ここで、ドナー元素を含む化合物が固体の粒子状である場合の粒子の粒径は体積平均粒子径を表し、レーザー散乱回折法粒度分布測定装置等により測定することができる。
When the compound containing a donor element is solid particles, the particle diameter is preferably 100 μm or less. When particles having a particle size of 100 μm or less are used, a smooth impurity diffusion layer forming composition layer is easily obtained. Furthermore, the particle size of the particles is more preferably 50 μm or less. The lower limit of the particle size of the particles is not particularly limited, but is preferably 0.01 μm or more, and more preferably 0.1 μm or more.
Here, the particle size of the particles in the case where the compound containing the donor element is in the form of solid particles represents the volume average particle size, and can be measured by a laser scattering diffraction particle size distribution analyzer or the like.
 ここで、体積平均粒子径は、粒子に照射したレーザー光の散乱光強度と角度の関係を検出し、Mie散乱理論に基づいて算出することができる。測定する際の分散媒に特に制限はないが、測定対象とする粒子が溶解しない分散媒を用いることが好ましい。
 ドナー元素を含む化合物は分散媒に溶解した状態であってもよく、その場合は、不純物拡散層形成組成物の調製に用いるドナー元素を含む化合物の形状には特に制限はない。
Here, the volume average particle diameter can be calculated based on the Mie scattering theory by detecting the relationship between the scattered light intensity and the angle of the laser light applied to the particles. Although there is no restriction | limiting in particular in the dispersion medium at the time of measuring, It is preferable to use the dispersion medium which the particle | grains made into a measurement object do not melt | dissolve.
The compound containing a donor element may be in a state dissolved in a dispersion medium. In that case, the shape of the compound containing a donor element used for preparing the impurity diffusion layer forming composition is not particularly limited.
 前記ドナー元素を含む化合物は、ドナー元素を含むガラス粒子の形態であるものを用いることが好ましい。ここで、ガラスとはその原子配列にX線回折スペクトルにおいて明確な結晶状態が認められず、不規則な網目構造をもち、かつ、ガラス転移現象を示す物質を指す。ドナー元素を含むガラス粒子を用いることで、不純物拡散層形成組成物を付与した領域以外へのドナー元素の拡散(アウトディフュージョンという)をより効果的に抑制できる傾向にあり、裏面又は側面に不要なn型拡散層が形成されることが抑制できる。つまり、本発明の不純物拡散層形成組成物がドナー元素を含むガラス粒子を含有することで、より選択的な領域にn型拡散層を形成することができる。 The compound containing a donor element is preferably a glass particle containing a donor element. Here, glass refers to a substance that has no irregular crystal structure in its X-ray diffraction spectrum, has an irregular network structure, and exhibits a glass transition phenomenon. By using glass particles containing a donor element, the diffusion of the donor element to a region other than the region to which the impurity diffusion layer forming composition is applied (referred to as out-diffusion) tends to be more effectively suppressed, which is unnecessary on the back surface or side surface. Formation of the n-type diffusion layer can be suppressed. That is, when the impurity diffusion layer forming composition of the present invention contains glass particles containing a donor element, an n-type diffusion layer can be formed in a more selective region.
 ドナー元素を含むガラス粒子について、詳細に説明する。なお、不純物拡散層形成組成物に含有されるガラス粒子は、熱拡散時の熱処理(焼成)温度(約800℃~2000℃)で溶融して、n型拡散層の上にガラス層を形成する。そのためアウトディフュージョンをより抑制できる。n型拡散層の形成後、n型拡散層の上に形成されたガラス層は、エッチング(例えば、フッ酸水溶液)により除去することができる。 The glass particles containing the donor element will be described in detail. The glass particles contained in the impurity diffusion layer forming composition are melted at a heat treatment (firing) temperature (about 800 ° C. to 2000 ° C.) during thermal diffusion to form a glass layer on the n-type diffusion layer. . Therefore, out diffusion can be further suppressed. After the formation of the n-type diffusion layer, the glass layer formed on the n-type diffusion layer can be removed by etching (for example, a hydrofluoric acid aqueous solution).
 ドナー元素を含むガラス粒子は、例えばドナー元素含有物質とガラス成分物質とを含んで形成できる。ドナー元素をガラス粒子に導入するために用いるドナー元素含有物質としては、P(リン)及びSb(アンチモン)の少なくとも一方を含有する化合物であることが好ましく、P(リン)を含有する化合物であることがより好ましく、P及びPからなる群より選ばれる1種以上であることが更に好ましく、Pであることが特に好ましい。 The glass particles containing a donor element can be formed including, for example, a donor element-containing material and a glass component material. The donor element-containing material used for introducing the donor element into the glass particles is preferably a compound containing at least one of P (phosphorus) and Sb (antimony), and is a compound containing P (phosphorus). It is more preferable that it is at least one selected from the group consisting of P 2 O 3 and P 2 O 5, and particularly preferable is P 2 O 5 .
 ドナー元素を含むガラス粒子中におけるドナー元素含有物質の含有率は特に制限されない。例えば、ドナー元素の拡散性の観点から、0.5質量%以上、100質量%以下であることが好ましく、2質量%以上、80質量%以下であることがより好ましい。
 更に、前記ドナー元素を含むガラス粒子は、ドナー元素の拡散性の観点から、ドナー元素含有物質としてP及びPからなる群より選ばれる1種以上を、0.5質量%以上、100質量%以下で含むことが好ましく、5質量%以上、99質量%以下で含むことがより好ましく、15質量%以上、80質量%以下で含むことが特に好ましい。
The content of the donor element-containing substance in the glass particles containing the donor element is not particularly limited. For example, from the viewpoint of the diffusibility of the donor element, the content is preferably 0.5% by mass or more and 100% by mass or less, and more preferably 2% by mass or more and 80% by mass or less.
Furthermore, the glass particle containing the donor element contains 0.5% by mass or more of at least one selected from the group consisting of P 2 O 3 and P 2 O 5 as a donor element-containing substance from the viewpoint of diffusibility of the donor element. The content is preferably 100% by mass or less, more preferably 5% by mass or more and 99% by mass or less, and particularly preferably 15% by mass or more and 80% by mass or less.
 また、ドナー元素を含むガラス粒子は、必要に応じてその成分比率を調整することによって、溶融温度、軟化温度、ガラス転移温度、化学的耐久性等を制御することが可能である。ドナー元素を含むガラス粒子は、以下に記すガラス成分物質の1種以上を含むことが好ましい。 Further, the glass particles containing a donor element can control the melting temperature, the softening temperature, the glass transition temperature, the chemical durability, etc. by adjusting the component ratio as necessary. It is preferable that the glass particle containing a donor element contains 1 or more types of the glass component substance described below.
 ガラス成分物質としては、SiO、KO、NaO、LiO、BaO、SrO、CaO、MgO、BeO、ZnO、PbO、CdO、V、SnO、ZrO、WO、MoO、MnO、La、Nb、Ta、Y、CsO、TiO2、GeO2、TeO、Lu等が挙げられる。中でもSiO、KO、NaO、LiO、BaO、SrO、CaO、MgO、BeO、ZnO、PbO、CdO、V、SnO、ZrO、MoO、GeO、Y、CsO及びTiOからなる群より選択される1種以上を用いることが好ましく、SiO、KO、NaO、LiO、BaO、SrO、CaO、MgO、BeO、ZnO、PbO、CdO、V、SnO、ZrO及びMoOからなる群より選択される1種以上を用いることがより好ましい。 Examples of glass component materials include SiO 2 , K 2 O, Na 2 O, Li 2 O, BaO, SrO, CaO, MgO, BeO, ZnO, PbO, CdO, V 2 O 5 , SnO, ZrO 2 , WO 3 , Examples include MoO 3 , MnO, La 2 O 3 , Nb 2 O 5 , Ta 2 O 5 , Y 2 O 3 , CsO 2 , TiO 2 , GeO 2 , TeO 2 , and Lu 2 O 3 . Among them SiO 2, K 2 O, Na 2 O, Li 2 O, BaO, SrO, CaO, MgO, BeO, ZnO, PbO, CdO, V 2 O 5, SnO, ZrO 2, MoO 3, GeO 2, Y 2 It is preferable to use one or more selected from the group consisting of O 3 , CsO 2 and TiO 2 , SiO 2 , K 2 O, Na 2 O, Li 2 O, BaO, SrO, CaO, MgO, BeO, ZnO. It is more preferable to use one or more selected from the group consisting of PbO, CdO, V 2 O 5 , SnO, ZrO 2 and MoO 3 .
 ドナー元素を含むガラス粒子の具体例としては、前記ドナー元素含有物質と前記ガラス成分物質の双方を含む系が挙げられる。具体的には、P-SiO系(ドナー元素含有物質-ガラス成分物質の順で記載、以下同様)、P-KO系、P-NaO系、P-LiO系、P-BaO系、P-SrO系、P-CaO系、P-MgO系、P-BeO系、P-ZnO系、P-CdO系、P-PbO系、P-V系、P-SnO系、P-GeO系、P-TeO系等のドナー元素含有物質としてPを含む系のガラス粒子、前記Pの代わりにPを含む系又はSbを含む系のガラス粒子等が挙げられる。
 なお、P-Sb系、P-As系等のように、2種類以上のドナー元素含有物質を含むガラス粒子でもよい。
 上記では2成分を含む複合ガラスを例示したが、P-SiO-V、P-SiO-CaO等、3成分以上の物質を含むガラス粒子でもよい。
Specific examples of the glass particles containing a donor element include a system containing both the donor element-containing substance and the glass component substance. Specifically, P 2 O 5 —SiO 2 system (in the order of donor element-containing material—glass component material, the same applies hereinafter), P 2 O 5 —K 2 O system, P 2 O 5 —Na 2 O system , P 2 O 5 —Li 2 O system, P 2 O 5 —BaO system, P 2 O 5 —SrO system, P 2 O 5 —CaO system, P 2 O 5 —MgO system, P 2 O 5 —BeO system , P 2 O 5 —ZnO, P 2 O 5 —CdO, P 2 O 5 —PbO, P 2 O 5 —V 2 O 5 , P 2 O 5 —SnO, P 2 O 5 —GeO 2 system, the glass particles of the system containing P 2 O 5 as a donor element-containing substance such as P 2 O 5 -TeO 2 system, a P 2 O 3 system containing or Sb 2 O 3 in place of the P 2 O 5 Examples thereof include glass particles of the containing system.
Note that glass particles containing two or more kinds of donor element-containing substances such as P 2 O 5 —Sb 2 O 3 series, P 2 O 5 —As 2 O 3 series, and the like may be used.
In the above, a composite glass containing two components is exemplified, but glass particles containing three or more components such as P 2 O 5 —SiO 2 —V 2 O 5 and P 2 O 5 —SiO 2 —CaO may be used.
 前記ガラス粒子は、P、P及びSbからなる群より選択される1種以上のドナー元素含有物質と、SiO、KO、NaO、LiO、BaO、SrO、CaO、MgO、BeO、ZnO、PbO、CdO、V、SnO、ZrO、MoO、GeO、Y、CsO及びTiOからなる群より選択される1種以上のガラス成分物質と、を含有することが好ましく、P及びPからなる群より選択される1種以上のドナー元素含有物質と、SiO、KO、NaO、LiO、BaO、SrO、CaO、MgO、BeO、ZnO、PbO、CdO、V、SnO、ZrO及びMoOからなる群より選択される1種以上のガラス成分物質と、を含有することがより好ましく、Pであるドナー元素含有物質と、SiO、ZnO、CaO、NaO、LiO及びBaOからなる群より選択される1種以上のガラス成分物質とを含有することが更に好ましい。これにより、形成されるn型拡散層のシート抵抗をより低くすることが可能となる。 The glass particles include at least one donor element-containing material selected from the group consisting of P 2 O 3 , P 2 O 5 and Sb 2 O 3 , SiO 2 , K 2 O, Na 2 O, Li 2 O. , BaO, SrO, CaO, MgO, BeO, ZnO, PbO, CdO, V 2 O 5 , SnO, ZrO 2 , MoO 3 , GeO 2 , Y 2 O 3 , CsO 2 and TiO 2. It is preferable to contain one or more glass component materials, and one or more donor element-containing materials selected from the group consisting of P 2 O 3 and P 2 O 5 , SiO 2 , K 2 O, Na 2 O, Li 2 O, BaO , SrO, CaO, MgO, BeO, ZnO, PbO, CdO, and V 2 O 5, SnO, 1 or more of the glass component material selected from the group consisting of ZrO 2 and MoO 3 More preferably contains, P 2 O 5 and a donor element-containing material which is, SiO 2, ZnO, CaO, Na 2 O, 1 or more of the glass component material selected from the group consisting of Li 2 O and BaO It is more preferable to contain. Thereby, the sheet resistance of the n-type diffusion layer to be formed can be further reduced.
 ガラス粒子がSiO及びGeOからなる群より選択されるガラス成分物質(以下、「特定ガラス成分物質」ともいう)を含む場合、ガラス粒子中の特定ガラス成分物質の含有比率は、溶融温度、軟化温度、ガラス転移温度、化学的耐久性を考慮して適宜設定することが望ましい。一般には特定ガラス成分物質が、ガラス粒子100質量%中に、0.01質量%以上、80質量%以下であることが好ましく、0.1質量%以上、50質量%以下であることがより好ましい。0.01質量%以上であると、n型拡散層を効率よく形成することができる。また80質量%以下であると、不純物拡散層形成組成物を付与していない部分へのn型拡散層の形成をより効果的に抑制できる。 When the glass particles include a glass component material selected from the group consisting of SiO 2 and GeO 2 (hereinafter, also referred to as “specific glass component material”), the content ratio of the specific glass component material in the glass particles is the melting temperature, It is desirable to set appropriately considering the softening temperature, glass transition temperature, and chemical durability. In general, the specific glass component substance is preferably 0.01% by mass or more and 80% by mass or less, more preferably 0.1% by mass or more and 50% by mass or less in 100% by mass of the glass particles. . An n-type diffused layer can be efficiently formed as it is 0.01 mass% or more. Moreover, formation of the n-type diffusion layer in the part which has not provided the impurity diffusion layer forming composition as it is 80 mass% or less can be suppressed more effectively.
 ガラス粒子は、特定ガラス成分物質以外に網目修飾酸化物(例えばアルカリ酸化物、アルカリ土類酸化物)及び単独ではガラス化しない中間酸化物の少なくとも1種を含んでいてもよい。具体的には、P-SiO-CaO系ガラスの場合には、網目修飾酸化物であるCaOの含有比率は、1質量%以上、30質量%以下であることが好ましく、5質量%以上、20質量%以下であることがより好ましい。 In addition to the specific glass component substance, the glass particles may contain at least one of a network modification oxide (for example, an alkali oxide or an alkaline earth oxide) and an intermediate oxide that does not vitrify alone. Specifically, in the case of P 2 O 5 —SiO 2 —CaO-based glass, the content ratio of CaO that is a network modification oxide is preferably 1% by mass or more and 30% by mass or less. % Or more and 20% by mass or less is more preferable.
 ガラス粒子の軟化点は、拡散処理時の拡散性、液だれの観点から、200℃~1000℃であることが好ましく、300℃~900℃であることがより好ましい。なお、ガラス粒子の軟化点は示差熱・熱重量同時測定装置を用いて、示差熱(DTA)曲線により求められる。具体的には、DTA曲線の低温から第3番目のピークの値を軟化点とすることができる。 The softening point of the glass particles is preferably 200 ° C. to 1000 ° C., and more preferably 300 ° C. to 900 ° C., from the viewpoints of diffusibility during the diffusion treatment and dripping. The softening point of the glass particles can be obtained from a differential heat (DTA) curve using a differential heat / thermogravimetric simultaneous measurement apparatus. Specifically, the value of the third peak from the low temperature of the DTA curve can be set as the softening point.
 ドナー元素を含むガラス粒子は、以下の手順で作製される。
 最初に原料、例えば、前記ドナー元素含有物質と前記ガラス成分物質を秤量し、るつぼに充填する。るつぼの材質としては白金、白金-ロジウム、イリジウム、アルミナ、石英、炭素等が挙げられ、溶融温度、雰囲気、溶融物質との反応性等を考慮して適宜選ばれる。
 次に、電気炉でガラス組成に応じた温度で加熱して融液とする。このとき融液が均一となるよう攪拌することが望ましい。続いて得られた融液をジルコニア基板、カーボン基板等の上に流し出して融液をガラス化する。最後にガラスを粉砕し粉末状とする。粉砕にはジェットミル、ビーズミル、ボールミル等公知の方法が適用できる。
Glass particles containing a donor element are produced by the following procedure.
First, raw materials, for example, the donor element-containing material and the glass component material are weighed and filled in a crucible. Examples of the material for the crucible include platinum, platinum-rhodium, iridium, alumina, quartz, carbon and the like, which are appropriately selected in consideration of the melting temperature, atmosphere, reactivity with the molten material, and the like.
Next, it heats with the temperature according to a glass composition with an electric furnace, and is set as a melt. At this time, it is desirable to stir the melt uniformly. Subsequently, the obtained melt is poured onto a zirconia substrate, a carbon substrate, or the like to vitrify the melt. Finally, the glass is crushed into powder. A known method such as a jet mill, a bead mill, or a ball mill can be applied to the pulverization.
 また、ドナー元素を含む化合物は、リン含有酸化ケイ素化合物であってもよい。ここで、リン含有酸化ケイ素化合物について、詳細に説明する。リン含有酸化ケイ素化合物はゾル-ゲル反応に基づいてリン化合物と酸化ケイ素前駆体とを出発原料として合成された化合物を意味し、上記ガラス粒子とは合成方法が異なることを区別できるようにリン含有酸化ケイ素化合物と表記することとする。ここでいうゾル-ゲル反応とは、酸化ケイ素前駆体であるシリケートの加水分解とシラノール基の縮合反応であり、結果としてケイ素-酸素結合を構造単位とする三次元架橋したシリカゲルマトリックスを形成する反応である。 Further, the compound containing a donor element may be a phosphorus-containing silicon oxide compound. Here, the phosphorus-containing silicon oxide compound will be described in detail. Phosphorus-containing silicon oxide compound means a compound synthesized based on a sol-gel reaction using a phosphorus compound and a silicon oxide precursor as starting materials, and contains phosphorus so that it can be distinguished from the above glass particles in the synthesis method. It will be described as a silicon oxide compound. The sol-gel reaction here refers to the hydrolysis of silicate, a silicon oxide precursor, and the condensation reaction of silanol groups, resulting in the formation of a three-dimensionally crosslinked silica gel matrix with silicon-oxygen bonds as structural units. It is.
 酸化ケイ素前駆体とリン化合物とを反応させて得られるリン含有酸化ケイ素化合物は、リン化合物が酸化ケイ素(シロキサン)のネットワーク中に分散した構造となるため、リン化合物単独での性質と大きく異なる、例えば、リン化合物の揮散性が抑制されるため、シリコン基板等の半導体基板へn型拡散層を形成する高温においてアウトディフュージョンが抑制される。 The phosphorus-containing silicon oxide compound obtained by reacting the silicon oxide precursor with the phosphorus compound has a structure in which the phosphorus compound is dispersed in the network of silicon oxide (siloxane), so that the properties of the phosphorus compound alone are greatly different. For example, since the volatility of the phosphorus compound is suppressed, out diffusion is suppressed at a high temperature at which an n-type diffusion layer is formed on a semiconductor substrate such as a silicon substrate.
 リン含有酸化ケイ素化合物はn型拡散層形成組成物中に添加される前に予め水洗することで、酸化ケイ素(シロキサン)のネットワークに包含されていないリン化合物を除去してもよい。このようにすることで、アウトディフュージョンを更に抑制できる。 The phosphorus compound not included in the silicon oxide (siloxane) network may be removed by washing with water before the phosphorus-containing silicon oxide compound is added to the n-type diffusion layer forming composition. By doing in this way, out diffusion can further be suppressed.
 上記リン含有酸化ケイ素化合物の合成方法としては、酸化ケイ素前駆体としてのシリコンアルコキシドと、リン化合物と、ゾル-ゲル反応に用いる溶媒と、水と、酸又はアルカリ触媒とを混合し、所定の温度でアルコール、水を除去することでシリコンアルコキシドの加水分解反応と脱水縮合反応が生じ、シロキサンのネットワーク中にリン化合物を含んだ酸化ケイ素化合物を合成できる。また、吸湿性も抑えることができるため、分散媒との反応及び水分との反応が抑制され、不純物拡散層形成組成物中での化学的安定性を向上させることができる。 As a method for synthesizing the phosphorus-containing silicon oxide compound, a silicon alkoxide as a silicon oxide precursor, a phosphorus compound, a solvent used in a sol-gel reaction, water, and an acid or alkali catalyst are mixed, and a predetermined temperature is set. By removing alcohol and water, hydrolytic reaction and dehydration condensation reaction of silicon alkoxide occur, and a silicon oxide compound containing a phosphorus compound in a siloxane network can be synthesized. Moreover, since hygroscopicity can also be suppressed, reaction with a dispersion medium and reaction with moisture are suppressed, and chemical stability in the impurity diffusion layer forming composition can be improved.
 シリコンアルコキシドとしては、シリコンメトキシド、シリコンエトキシド、シリコンプロポキシド、シリコンブトキシド等を例示することができ、入手の容易さからシリコンメトキシド及びシリコンエトキシドからなる群より選択される少なくとも1種を用いることが好ましい。 Examples of the silicon alkoxide include silicon methoxide, silicon ethoxide, silicon propoxide, silicon butoxide and the like, and at least one selected from the group consisting of silicon methoxide and silicon ethoxide is available because of availability. It is preferable to use it.
 ゾル-ゲル反応に用いる溶媒は、酸化ケイ素前駆体の重合体を溶解するものであれば特に制限はなく、エタノール、イソプロパノール等のアルコール類;アセトニトリル、グルタロジニトリル、メトキシアセトニトリル、プロピオニトリル、ベンゾニトリル等のニトリル化合物;ジオキサン、テトラヒドロフラン等の環状エーテル類;などを用いることが好ましい。
 これらの溶媒は1種を単独で用いても2種以上を併用してもよい。溶媒の量は酸化ケイ素前駆体に対して100等量以下が好ましく、より好ましくは1等量~10等量である。溶媒の量が多くなりすぎると酸化ケイ素前駆体のゾル-ゲル反応が遅くなる傾向がある。
The solvent used in the sol-gel reaction is not particularly limited as long as it dissolves the silicon oxide precursor polymer; alcohols such as ethanol and isopropanol; acetonitrile, glutaronitrile, methoxyacetonitrile, propionitrile, benzo Nitrile compounds such as nitriles; cyclic ethers such as dioxane and tetrahydrofuran; and the like are preferably used.
These solvents may be used alone or in combination of two or more. The amount of the solvent is preferably 100 equivalents or less with respect to the silicon oxide precursor, more preferably 1 equivalent to 10 equivalents. When the amount of the solvent is too large, the sol-gel reaction of the silicon oxide precursor tends to be slow.
 更に、加水分解及び脱水縮重合を調節する触媒として、酸又はアルカリを用いることが好ましい。アルカリ触媒としては、水酸化ナトリウム等のアルカリ金属の水酸化物、アンモニア、水酸化テトラメチルアンモニウムなどが一般的である。酸触媒としては無機プロトン酸又は有機プロトン酸を用いることができる。無機プロトン酸としては、塩酸、硫酸、硼酸、硝酸、過塩素酸、テトラフルオロ硼酸、ヘキサフルオロ砒素酸、臭化水素酸等が挙げられる。有機プロトン酸としては、酢酸、シュウ酸、メタンスルホン酸等が挙げられる。
 触媒の量によりゾルの溶媒への溶解度が変化するため、ゾルが可溶な溶解度になるように触媒の使用量を調節すればよく、具体的には、触媒は酸化ケイ素前駆体に対して0.0001等量~1等量で用いることが好ましい。
Furthermore, it is preferable to use an acid or an alkali as a catalyst for controlling hydrolysis and dehydration condensation polymerization. As the alkali catalyst, alkali metal hydroxide such as sodium hydroxide, ammonia, tetramethylammonium hydroxide and the like are generally used. An inorganic protonic acid or an organic protonic acid can be used as the acid catalyst. Examples of the inorganic protonic acid include hydrochloric acid, sulfuric acid, boric acid, nitric acid, perchloric acid, tetrafluoroboric acid, hexafluoroarsenic acid, hydrobromic acid and the like. Examples of the organic protonic acid include acetic acid, oxalic acid, methanesulfonic acid and the like.
Since the solubility of the sol in the solvent varies depending on the amount of the catalyst, the amount of the catalyst used may be adjusted so that the solubility of the sol is soluble. Specifically, the catalyst is 0 with respect to the silicon oxide precursor. It is preferably used in an amount of 0.0001 equivalent to 1 equivalent.
 また、金属の硝酸塩、アンモニウム塩、塩化物塩、硫酸塩等の塩を含む溶液を、酸化ケイ素前駆体のゾル溶液へ添加し、次いでゾル-ゲル反応を進行させることによりリン含有酸化ケイ素化合物を調製してもよい。塩としては、特には限定されず、硝酸アルミニウム、硝酸鉄、オキシ硝酸ジルコニウム、塩化チタン、塩化アルミニウム、オキシ塩化ジルコニウム、オキシ硝酸ジルコニウム、硫酸チタン、硫酸アルミニウム等が挙げられる。溶媒としては、塩を溶解するものであれば特に制限はなく、エチレンカーボネート、プロピレンカーボネート等のカーボネート化合物;3-メチル-2-オキサゾリジノン、N-メチルピロリドン等の複素環化合物;ジオキサン、テトラヒドロフラン等の環状エーテル化合物;ジエチルエーテル、エチレングリコールジアルキルエーテル、プロピレングリコールジアルキルエーテル、ポリエチレングリコールジアルキルエーテル、ポリプロピレングリコールジアルキルエーテル等の鎖状エーテル化合物;メタノール、エタノール、イソプロパノール、エチレングリコールモノアルキルエーテル、プロピレングリコールモノアルキルエーテル、ポリエチレングリコールモノアルキルエーテル、ポリプロピレングリコールモノアルキルエーテル等のアルコール化合物;エチレングリコール、プロピレングリコール、ポリエチレングリコール、ポリプロピレングリコール、グリセリン等の多価アルコール類;アセトニトリル、グルタロジニトリル、メトキシアセトニトリル、プロピオニトリル、ベンゾニトリル等のニトリル化合物;カルボン酸エステル、リン酸エステル、ホスホン酸エステル等のエステル化合物;ジメチルスルホキシド、スルホラン、ジメチルホルムアミド、ジメチルアセトアミド等の非プロトン極性物質;トルエン、キシレン等の低極性溶剤;メチレンクロリド、エチレンクロリド等の塩素系溶剤;水などを用いること
ができる
Further, a solution containing a metal nitrate, ammonium salt, chloride salt, sulfate or the like is added to the sol solution of the silicon oxide precursor, and then the sol-gel reaction is allowed to proceed to thereby convert the phosphorus-containing silicon oxide compound. It may be prepared. The salt is not particularly limited, and examples thereof include aluminum nitrate, iron nitrate, zirconium oxynitrate, titanium chloride, aluminum chloride, zirconium oxychloride, zirconium oxynitrate, titanium sulfate, and aluminum sulfate. The solvent is not particularly limited as long as it dissolves a salt. Carbonate compounds such as ethylene carbonate and propylene carbonate; heterocyclic compounds such as 3-methyl-2-oxazolidinone and N-methylpyrrolidone; dioxane, tetrahydrofuran and the like Cyclic ether compounds; chain ether compounds such as diethyl ether, ethylene glycol dialkyl ether, propylene glycol dialkyl ether, polyethylene glycol dialkyl ether, polypropylene glycol dialkyl ether; methanol, ethanol, isopropanol, ethylene glycol monoalkyl ether, propylene glycol monoalkyl ether , Polyethylene glycol monoalkyl ether, polypropylene glycol monoalkyl ether, etc. Alcohol compounds; Polyhydric alcohols such as ethylene glycol, propylene glycol, polyethylene glycol, polypropylene glycol, and glycerin; Nitrile compounds such as acetonitrile, glutarodinitrile, methoxyacetonitrile, propionitrile, and benzonitrile; Carboxylic acid esters and phosphoric acid esters Ester compounds such as phosphonic acid esters; aprotic polar substances such as dimethyl sulfoxide, sulfolane, dimethylformamide and dimethylacetamide; low polar solvents such as toluene and xylene; chlorinated solvents such as methylene chloride and ethylene chloride; be able to
 ゾル-ゲル反応に用いるリン化合物としては、リン酸、リン酸水素アンモニウム塩、五酸化二リン、三酸化二リン、亜リン酸、ホスホン酸、亜ホスホン酸、ホスフィン酸、ホスフィン、リン酸エステル及び亜リン酸エステルから選ばれる少なくとも1種を用いることが好ましい。これらの中でもリン酸エステル又は亜リン酸エステルを用いることが好ましい。エステル化合物を用いることで、シリコンアルコキシドと混合した状態でゾル-ゲル反応が進行する際に、P-O-Si結合を形成しやすくなり、アウトディフュージョンが抑制される傾向がある。 Phosphorus compounds used in the sol-gel reaction include phosphoric acid, ammonium hydrogen phosphate, diphosphorus pentoxide, diphosphorus trioxide, phosphorous acid, phosphonic acid, phosphonous acid, phosphinic acid, phosphine, phosphate ester and It is preferable to use at least one selected from phosphites. Among these, it is preferable to use phosphate ester or phosphite ester. By using an ester compound, when the sol-gel reaction proceeds in a state of being mixed with silicon alkoxide, P—O—Si bonds are likely to be formed, and outdiffusion tends to be suppressed.
 上記リン酸エステルとしては一般式(I)で表される化合物が、亜リン酸エステルとしては一般式(II)で表される化合物が挙げられる。ここで、一般式(I)又は一般式(II)において、R~Rは各々独立に、炭素数1~12の1価の有機基である。
Figure JPOXMLDOC01-appb-C000001
 
Examples of the phosphate ester include compounds represented by general formula (I), and examples of the phosphite ester include compounds represented by general formula (II). Here, in the general formula (I) or the general formula (II), R 1 to R 6 are each independently a monovalent organic group having 1 to 12 carbon atoms.
Figure JPOXMLDOC01-appb-C000001
 一般式(I)及び一般式(II)におけるR~Rで表される1価の有機基としては特に制限はなく、各々独立に、アルキル基、官能基を有する有機基、ヘテロ原子を有する有機基、及び不飽和結合を有する有機基が挙げられる。 The monovalent organic group represented by R 1 to R 6 in general formula (I) and general formula (II) is not particularly limited, and each independently represents an alkyl group, an organic group having a functional group, or a hetero atom. And an organic group having an unsaturated bond.
 R~Rで表されるアルキル基は、直鎖状、分岐状及び環状のいずれであってもよく、直鎖状又は分岐状であることが好ましい。また、R~Rで表されるアルキル基は、炭素数が1~10であることが好ましく、炭素数が1~6であることがより好ましく、炭素数が1~3であることが更に好ましい。R~Rで表されるアルキル基としては、具体的には、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基等が挙げられる。 The alkyl group represented by R 1 to R 6 may be linear, branched or cyclic, and is preferably linear or branched. The alkyl group represented by R 1 to R 6 preferably has 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms, and 1 to 3 carbon atoms. Further preferred. Specific examples of the alkyl group represented by R 1 to R 6 include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group, and a decyl group. Can be mentioned.
 R~Rで表される官能基を有する有機基において、前記官能基としては、クロロ基、ブロモ基、フルオロ基等が挙げられる。また、R~Rで表される官能基を有する有機基は、炭素数が1~10であることが好ましく、炭素数が1~6であることがより好ましく、炭素数が1~3であることが更に好ましい。R~Rで表される官能基を有する有機基としては、具体的には、クロロエチル基、フルオロエチル基、クロロプロピル基、ジクロロプロピル基、フルオロプロピル基、ジフルオロプロピル基、クロロフェニル基、フルオロフェニル基等が挙げられる。 In the organic group having a functional group represented by R 1 to R 6 , examples of the functional group include a chloro group, a bromo group, and a fluoro group. In addition, the organic group having a functional group represented by R 1 to R 6 preferably has 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms, and 1 to 3 carbon atoms. More preferably. Specific examples of the organic group having the functional group represented by R 1 to R 6 include chloroethyl group, fluoroethyl group, chloropropyl group, dichloropropyl group, fluoropropyl group, difluoropropyl group, chlorophenyl group, fluoro A phenyl group etc. are mentioned.
 R~Rで表されるヘテロ原子を有する有機基において、ヘテロ原子としては、窒素原子、酸素原子、硫黄原子が挙げられる。また、R~Rで表されるヘテロ原子を有する有機基は、炭素数が1~12であることが好ましく、炭素数が1~6であることがより好ましく、炭素数が1~3であることが更に好ましい。R~Rで表されるヘテロ原子を有する有機基としては、具体的には、ジメチルアミノ基、ジエチルアミノ基、ジフェニルアミノ基、メチルスルホキシド基、エチルスルホキシド基、フェニルスルホキシド基等が挙げられる。 In the organic group having a hetero atom represented by R 1 to R 6 , examples of the hetero atom include a nitrogen atom, an oxygen atom, and a sulfur atom. The organic group having a hetero atom represented by R 1 to R 6 preferably has 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, and 1 to 3 carbon atoms. More preferably. Specific examples of the organic group having a hetero atom represented by R 1 to R 6 include a dimethylamino group, a diethylamino group, a diphenylamino group, a methyl sulfoxide group, an ethyl sulfoxide group, and a phenyl sulfoxide group.
 R~Rで表される不飽和結合を有する有機基は、炭素数が2~10であることが好ましく、炭素数が2~8であることがより好ましく、炭素数が2~4であることが更に好ましい。R~Rで表される不飽和結合を有する有機基は、具体的には、エチレニル基、エチニル基、プロペニル基、プロピニル基、ブテニル基、ブチニル基、フェニル基等が挙げられる。 The organic group having an unsaturated bond represented by R 1 to R 6 preferably has 2 to 10 carbon atoms, more preferably 2 to 8 carbon atoms, and 2 to 4 carbon atoms. More preferably it is. Specific examples of the organic group having an unsaturated bond represented by R 1 to R 6 include an ethylenyl group, an ethynyl group, a propenyl group, a propynyl group, a butenyl group, a butynyl group, and a phenyl group.
 このなかでも、R~Rの1価の有機基は、アルキル基であることが好ましく、炭素数1~10のアルキル基であることがより好ましい。
 ゾル-ゲル反応に用いるリン化合物としては、リン酸トリメチル、リン酸トリエチル、リン酸トリプロピル、及びリン酸トリブチルから選択される少なくとも1種を用いることが好ましい。
Among these, the monovalent organic group of R 1 to R 6 is preferably an alkyl group, and more preferably an alkyl group having 1 to 10 carbon atoms.
As the phosphorus compound used in the sol-gel reaction, it is preferable to use at least one selected from trimethyl phosphate, triethyl phosphate, tripropyl phosphate, and tributyl phosphate.
 リン含有酸化ケイ素化合物中におけるリン化合物の含有率は特に制限されない。例えば、ドナー元素の拡散性の観点から0.5質量%以上99質量%以下であることが好ましく、5質量%以上95質量%以下であることがより好ましい。 The content of the phosphorus compound in the phosphorus-containing silicon oxide compound is not particularly limited. For example, from the viewpoint of the diffusibility of the donor element, it is preferably 0.5% by mass or more and 99% by mass or less, and more preferably 5% by mass or more and 95% by mass or less.
(アクセプタ元素を含む化合物)
 アクセプタ元素とは、半導体基板中に拡散することによってp型拡散層を形成することが可能な元素である。アクセプタ元素としては第13族の元素が使用でき、安全性等の観点から、B(ホウ素)及びAl(アルミニウム)の少なくとも一方を含有することが好適である。
 アクセプタ元素を含む化合物としては特に制限はない。アクセプタ元素を含む金属酸化物として、B、Al等のアクセプタ元素単独の酸化物;B、Al等のアクセプタ元素含有物質の他にガラス成分物質を構成成分とするガラス粒子(アクセプタ元素を含むガラス粒子);ホウ素又はアルミニウムをドープしたシリコン粒子、窒化ホウ素(BN)、ホウ酸カルシウム、ホウ酸等の無機ホウ素化合物;ホウ素含有酸化ケイ素化合物;アルミニウムアルコキシド、アルキルアルミニウム等の有機アルミニウム化合物;などを例示することができる。
(Compound containing acceptor element)
An acceptor element is an element that can form a p-type diffusion layer by diffusing into a semiconductor substrate. As the acceptor element, a Group 13 element can be used, and from the viewpoint of safety and the like, it is preferable to contain at least one of B (boron) and Al (aluminum).
There is no restriction | limiting in particular as a compound containing an acceptor element. As a metal oxide containing an acceptor element, an oxide of a single acceptor element such as B 2 O 3 or Al 2 O 3 ; a glass component substance is formed in addition to an acceptor element-containing substance such as B 2 O 3 or Al 2 O 3 Glass particles as components (glass particles containing an acceptor element); silicon particles doped with boron or aluminum, inorganic boron compounds such as boron nitride (BN), calcium borate, boric acid; boron-containing silicon oxide compounds; aluminum alkoxides, And organic aluminum compounds such as alkylaluminum;
 これらの中でもBN、B、アクセプタ元素を含むガラス粒子、ホウ素含有酸化ケイ素化合物、及び半導体基板へホウ素が熱拡散する温度領域(例えば800℃以上)においてBを含む化合物へ変化し得る化合物(例えば、ホウ酸)からなる群より選ばれる1種以上を用いることが好ましい。 Among these, BN, B 2 O 3 , glass particles containing an acceptor element, a boron-containing silicon oxide compound, and a change to a compound containing B 2 O 3 in a temperature region (for example, 800 ° C. or higher) where boron is thermally diffused into a semiconductor substrate. It is preferable to use one or more selected from the group consisting of possible compounds (for example, boric acid).
 また、アクセプタ元素を含む化合物は、BN粒子、アクセプタ元素を含むガラス粒子又はホウ素含有酸化ケイ素化合物粒子であることが好ましく、BN粒子又はアクセプタ元素を含むガラス粒子であることがより好ましい。アクセプタ元素を含むガラス粒子又はBN粒子を用いることで、アウトディフュージョンをより効果的に抑制できる傾向にあり、p型拡散層形成組成物を付与した領域以外に不要なp型拡散層が形成されることが抑制できる。つまり、アクセプタ元素を含むガラス粒子又はBN粒子を含むことで、より選択的な領域にp型拡散層を形成することができる。 Further, the compound containing an acceptor element is preferably BN particles, glass particles containing an acceptor element or boron-containing silicon oxide compound particles, and more preferably glass particles containing a BN particle or an acceptor element. By using glass particles or BN particles containing an acceptor element, the out-diffusion tends to be more effectively suppressed, and an unnecessary p-type diffusion layer is formed in addition to the region to which the p-type diffusion layer forming composition is applied. Can be suppressed. That is, a p-type diffusion layer can be formed in a more selective region by including glass particles or BN particles containing an acceptor element.
 アクセプタ元素を含むガラス粒子は、例えばアクセプタ元素含有物質とガラス成分物質とを含んで形成できる。アクセプタ元素をガラス粒子に導入するために用いるアクセプタ元素含有物質としては、B及びAlからなる群より選ばれる1種以上を含有する化合物であることが好ましい。 The glass particles containing an acceptor element can be formed including, for example, an acceptor element-containing substance and a glass component substance. The acceptor element-containing material used for introducing the acceptor element into the glass particles is preferably a compound containing at least one selected from the group consisting of B 2 O 3 and Al 2 O 3 .
 アクセプタ元素を含むガラス粒子中におけるアクセプタ元素含有物質の含有率は特に制限されない。例えば、アクセプタ元素の拡散性の観点から、0.5質量%以上、100質量%以下であることが好ましく、2質量%以上、80質量%以下であることがより好ましい。 The content of the acceptor element-containing substance in the glass particles containing the acceptor element is not particularly limited. For example, from the viewpoint of acceptor element diffusivity, it is preferably 0.5% by mass or more and 100% by mass or less, and more preferably 2% by mass or more and 80% by mass or less.
 更に、アクセプタ元素の拡散性の観点から、不純物拡散層形成組成物中に、アクセプタ元素含有物質としてB及びAlからなる群より選ばれる1種以上を、0.5質量%以上100質量%以下で含むことが好ましく、5質量%以上99質量%以下で含むことがより好ましく、15質量%以上80質量%以下で含むことがさらに好ましく、30質量%以上80質量%以下で含むことが特に好ましい。 Furthermore, from the viewpoint of acceptor element diffusivity, 0.5% by mass or more of at least one selected from the group consisting of B 2 O 3 and Al 2 O 3 as the acceptor element-containing substance is contained in the impurity diffusion layer forming composition. It is preferably contained at 100% by mass or less, more preferably 5% by mass or more and 99% by mass or less, further preferably 15% by mass or more and 80% by mass or less, and more preferably 30% by mass or more and 80% by mass or less. It is particularly preferable to include it.
 アクセプタ元素を含む化合物がガラス粒子である場合、ガラス成分物質としては、SiO、KO、NaO、LiO、BaO、SrO、CaO、MgO、BeO、ZnO、PbO、CdO、V、SnO、ZrO、WO、MoO、Y、CsO、TiO、TeO、La、Nb、Ta、GeO、Lu及びMnOからなる群より選択される少なくとも1種を用いることが好ましく、SiO、KO、NaO、LiO、BaO、SrO、CaO、MgO、BeO、ZnO、PbO、CdO、V、SnO、ZrO、MoO、GeO、Y、CsO及びTiOからなる群より選択される少なくとも1種を用いることがより好ましく、SiO、KO、NaO、LiO、BaO、SrO、CaO、MgO、BeO、ZnO、PbO、CdO、V、SnO、ZrO及びMoOからなる群より選択される少なくとも1種を用いることが、軟化点を上記規定の範囲内とし、また半導体基板の熱膨張係数との差を小さくする観点から更に好ましい。 When the compound containing the acceptor element is a glass particle, the glass component materials include SiO 2 , K 2 O, Na 2 O, Li 2 O, BaO, SrO, CaO, MgO, BeO, ZnO, PbO, CdO, V 2 O 5 , SnO, ZrO 2 , WO 3 , MoO 3 , Y 2 O 3 , CsO 2 , TiO 2 , TeO 2 , La 2 O 3 , Nb 2 O 5 , Ta 2 O 5 , GeO 2 , Lu 2 O 3 and it is preferable to use at least one selected from the group consisting of MnO, SiO 2, K 2 O , Na 2 O, Li 2 O, BaO, SrO, CaO, MgO, BeO, ZnO, PbO, CdO, V 2 O 5, SnO, the use of the ZrO 2, MoO 3, GeO 2 , Y 2 O 3, CsO 2 and at least one selected from the group consisting of TiO 2 More preferably, SiO 2, K 2 O, Na 2 O, Li 2 O, BaO, SrO, CaO, MgO, BeO, ZnO, PbO, CdO, V 2 O 5, SnO, from the group consisting of ZrO 2 and MoO 3 It is more preferable to use at least one selected from the viewpoints of setting the softening point within the specified range and reducing the difference from the thermal expansion coefficient of the semiconductor substrate.
 ガラス粒子の具体例としては、アクセプタ元素含有物質と前記ガラス成分物質の双方を含むガラス粒子が挙げられ、B-SiO系(アクセプタ元素含有物質-ガラス成分物質の順で記載、以下同様)、B-ZnO系、B-PbO系、B単独系等のアクセプタ元素含有物質としてBを含む系、Al-SiO系等のアクセプタ元素含有物質としてAlを含む系などのガラス粒子が挙げられる。
 上記では1成分又は2成分を含むガラス粒子を例示したが、B-SiO-CaO等、3成分以上を含むガラス粒子でもよい。
 また、Al-B系等のように、2種類以上のアクセプタ元素含有物質を含むガラス粒子でもよい。
Specific examples of the glass particles include glass particles containing both the acceptor element-containing substance and the glass component substance, and are described in the order of B 2 O 3 —SiO 2 (acceptor element-containing substance-glass component substance, hereinafter The same), B 2 O 3 —ZnO system, B 2 O 3 —PbO system, B 2 O 3 single system and the like containing B 2 O 3 as the acceptor element-containing substance, Al 2 O 3 —SiO 2 system, etc. Examples of the acceptor element-containing substance include glass particles such as a system containing Al 2 O 3 .
In the above, glass particles containing one component or two components are exemplified, but glass particles containing three or more components such as B 2 O 3 —SiO 2 —CaO may be used.
Further, glass particles containing two or more kinds of acceptor element-containing substances such as Al 2 O 3 —B 2 O 3 system may be used.
 前記アクセプタ元素を含むガラス粒子(ガラス粒子の形態であるアクセプタ元素を含む化合物)は、B及びAlからなる群より選択される少なくとも1種のアクセプタ元素含有物質と、SiO、KO、NaO、LiO、BaO、SrO、CaO、MgO、BeO、ZnO、PbO、CdO、V、SnO、ZrO、WO、MoO、Y、CsO、TiO、TeO、La、Nb、Ta、GeO、Lu及びMnOからなる群より選択される少なくとも1種のガラス成分物質と、を含有することが好ましく、B及びAlからなる群より選択される少なくとも1種のアクセプタ元素含有物質と、SiO、KO、NaO、LiO、BaO、SrO、CaO、MgO、BeO、ZnO、PbO、CdO、V、SnO、ZrO、MoO、GeO、Y、CsO及びTiOからなる群より選択される少なくとも1種のガラス成分物質と、を含有することがより好ましく、B及びAlからなる群より選択される少なくとも1種のアクセプタ元素含有物質と、SiO、KO、NaO、LiO、BaO、SrO、CaO、MgO、BeO、ZnO、PbO、CdO、V、SnO、ZrO及びMoOからなる群より選択される少なくとも1種のガラス成分物質と、を含有することが更に好ましく、B及びAlからなる群より選択される少なくとも1種のアクセプタ元素含有物質と、SiO、KO、NaO、LiO、BaO、SrO、CaO、MgO、BeO、ZnO及びZrOからなる群より選択される少なくとも1種のガラス成分物質と、を含有することが特に好ましい。
 更に、ガラス粒子が、アクセプタ元素含有物質としてAlを含み、且つガラス成分物質としてSiO、ZnO、CaO、NaO、LiO及びBaOからなる群より選択される少なくとも1種を含むことが好ましい。アクセプタ元素含有物質であるBを単独で使用するよりも、これらの成分物質が併存する場合には、形成された不純物拡散層のシート抵抗がより低くなり、またアウトディフュージョンをより抑制することが可能となる。
The acceptor element-containing glass particles (compound containing acceptor elements in the form of glass particles) include at least one acceptor element-containing substance selected from the group consisting of B 2 O 3 and Al 2 O 3 , and SiO 2. , K 2 O, Na 2 O, Li 2 O, BaO, SrO, CaO, MgO, BeO, ZnO, PbO, CdO, V 2 O 5 , SnO, ZrO 2 , WO 3 , MoO 3 , Y 2 O 3 , At least one glass component material selected from the group consisting of CsO 2 , TiO 2 , TeO 2 , La 2 O 3 , Nb 2 O 5 , Ta 2 O 5 , GeO 2 , Lu 2 O 3 and MnO. It is preferable to contain, at least one acceptor element-containing material selected from the group consisting of B 2 O 3 and Al 2 O 3 , SiO 2 , K 2 O, Na From 2 O, Li 2 O, BaO, SrO, CaO, MgO, BeO, ZnO, PbO, CdO, V 2 O 5 , SnO, ZrO 2 , MoO 3 , GeO 2 , Y 2 O 3 , CsO 2 and TiO 2 It is more preferable to contain at least one glass component material selected from the group consisting of: at least one acceptor element-containing material selected from the group consisting of B 2 O 3 and Al 2 O 3 ; and SiO 2 2 , at least selected from the group consisting of K 2 O, Na 2 O, Li 2 O, BaO, SrO, CaO, MgO, BeO, ZnO, PbO, CdO, V 2 O 5 , SnO, ZrO 2 and MoO 3. And at least one acceptor element selected from the group consisting of B 2 O 3 and Al 2 O 3. An element-containing material and at least one glass component material selected from the group consisting of SiO 2 , K 2 O, Na 2 O, Li 2 O, BaO, SrO, CaO, MgO, BeO, ZnO, and ZrO 2 ; It is particularly preferable to contain
Furthermore, the glass particles include Al 2 O 3 as the acceptor element-containing material, and at least one selected from the group consisting of SiO 2 , ZnO, CaO, Na 2 O, Li 2 O, and BaO as the glass component material. It is preferable to include. When these component substances coexist, B 2 O 3 which is an acceptor element-containing substance is used alone, the sheet resistance of the formed impurity diffusion layer is lower, and the out diffusion is further suppressed. It becomes possible.
 アクセプタ元素を含む化合物がガラス粒子である場合、その粒子の形態及び体積平均粒子径としては、上記ドナー元素を含むガラス粒子と同様のものが挙げられる。アクセプタ元素を含む化合物は分散媒に溶解した状態であってもよく、その場合は、ガラス粒子の形状には特に制限はない。 When the compound containing the acceptor element is a glass particle, the form and volume average particle diameter of the particle may be the same as the glass particle containing the donor element. The compound containing an acceptor element may be in a state dissolved in a dispersion medium. In that case, the shape of the glass particles is not particularly limited.
 アクセプタ元素を含むガラス粒子は、上記ドナー元素を含むガラス粒子と同様の手順で、但しドナー元素含有物質をアクセプタ元素含有物質に代えて作製される。 The glass particles containing the acceptor element are produced in the same procedure as the glass particles containing the donor element, except that the donor element-containing substance is replaced with the acceptor element-containing substance.
 アクセプタ元素を含む化合物として窒化ホウ素(BN)を用いる場合、BNの結晶形は、六方晶(hexagonal)、立方晶(cubic)、菱面体晶(rhombohedral)のいずれであってもよく、粒子径を容易に制御できることから六方晶が好ましい。
 BNの調製方法は特に制限されず、通常の方法で調製することができる。具体的には、ホウ素粉末を窒素気流中で1500℃以上に加熱する方法、融解した無水ホウ酸と窒素あるいはアンモニアをリン酸カルシウム存在下で反応させる方法、ホウ酸又はホウ化アルカリと、尿素、グアニジン、メラミン等の有機窒素化合物を高温の窒素-アンモニア雰囲気中で反応させる方法、融解ホウ酸ナトリウムと塩化アンモニウムをアンモニア雰囲気中で反応させる方法、三塩化ホウ素とアンモニアを高温で反応させる方法などを例示することができる。上記以外の製造方法でもなんら問題ない。上記製造方法の中では、高純度のBNを得ることができることから、三塩化ホウ素とアンモニアを高温で反応させる方法を用いることが好ましい。
When boron nitride (BN) is used as the compound containing an acceptor element, the crystal form of BN may be any of hexagonal, cubic, rhombohedral, Hexagonal crystals are preferred because they can be easily controlled.
The method for preparing BN is not particularly limited, and can be prepared by a usual method. Specifically, a method in which boron powder is heated to 1500 ° C. or higher in a nitrogen stream, a method in which molten boric acid and nitrogen or ammonia are reacted in the presence of calcium phosphate, boric acid or an alkali boride, urea, guanidine, Illustrates a method of reacting an organic nitrogen compound such as melamine in a high temperature nitrogen-ammonia atmosphere, a method of reacting molten sodium borate and ammonium chloride in an ammonia atmosphere, a method of reacting boron trichloride and ammonia at a high temperature, etc. be able to. There is no problem even in manufacturing methods other than the above. Among the above production methods, it is preferable to use a method in which boron trichloride and ammonia are reacted at a high temperature because high-purity BN can be obtained.
 また、アクセプタ元素を含む化合物は、ホウ素含有酸化ケイ素化合物であってもよい。ここでホウ素含有酸化ケイ素化合物について、詳細に説明する。ホウ素含有酸化ケイ素化合物はゾル-ゲル反応に基づいてホウ素化合物と酸化ケイ素前駆体を反応させて合成された化合物を意味し、上記ガラス粒子とは、合成方法が異なることを区別できるように、ホウ素含有酸化ケイ素化合物と表記することとする。 The compound containing an acceptor element may be a boron-containing silicon oxide compound. Here, the boron-containing silicon oxide compound will be described in detail. The boron-containing silicon oxide compound means a compound synthesized by reacting a boron compound and a silicon oxide precursor based on a sol-gel reaction, and the boron particles can be distinguished from the glass particles so that the synthesis method is different. It will be described as a contained silicon oxide compound.
 酸化ケイ素前駆体とホウ素化合物とを反応させて得られるホウ素含有酸化ケイ素化合物は、ホウ素化合物が酸化ケイ素(シロキサン)のネットワーク中に分散した構造となるため、ホウ素化合物の揮発性が抑制され、シリコン基板等の半導体基板へp型拡散層を形成する高温においてアウトディフュージョンが抑制される。 The boron-containing silicon oxide compound obtained by reacting a silicon oxide precursor with a boron compound has a structure in which the boron compound is dispersed in a silicon oxide (siloxane) network, so that the volatility of the boron compound is suppressed, and silicon Outdiffusion is suppressed at a high temperature at which a p-type diffusion layer is formed on a semiconductor substrate such as a substrate.
 ホウ素含有酸化ケイ素化合物はp型拡散層形成組成物に添加される前に予め水洗することで、酸化ケイ素(シロキサン)のネットワークに包含されていないホウ素化合物を除去してもよい。このようにすることで、アウトディフュージョンを更に効果的に抑制できる。 The boron-containing silicon oxide compound may be washed with water before being added to the p-type diffusion layer forming composition to remove boron compounds not included in the silicon oxide (siloxane) network. By doing in this way, out diffusion can be controlled more effectively.
 上記ホウ素含有酸化ケイ素化合物の合成方法としては、リン化合物をホウ素化合物に置き換えた以外は、上述のリン含有酸化ケイ素化合物の合成方法と同様の方法が挙げられる。また、シリコンアルコキシド、ゾル-ゲル反応に用いる溶媒、加水分解及び脱水縮重合を調節する触媒として用いる酸及びアルカリとしては、上記リン含有酸化ケイ素化合物の合成方法で挙げたものと同様のものが挙げられる。 Examples of the method for synthesizing the boron-containing silicon oxide compound include the same method as the method for synthesizing the phosphorus-containing silicon oxide compound described above except that the phosphorus compound is replaced with a boron compound. Examples of the silicon alkoxide, the solvent used for the sol-gel reaction, and the acid and alkali used as a catalyst for controlling hydrolysis and dehydration condensation polymerization are the same as those mentioned in the method for synthesizing the phosphorus-containing silicon oxide compound. It is done.
 また、金属の硝酸塩、アンモニウム塩、塩化物塩、硫酸塩等の塩を含む溶液を、酸化ケイ素前駆体のゾル溶液へ添加し、次いでゾル-ゲル反応を進行させることによりホウ素含有酸化ケイ素化合物を調製してもよい。ここで用いることが可能な金属の硝酸塩、アンモニウム塩、塩化物塩、硫酸塩、及び塩の溶媒としては、上記リン含有酸化ケイ素化合物の合成方法で挙げたものと同様のものが挙げられる。 In addition, a solution containing a metal nitrate, ammonium salt, chloride salt, sulfate salt or the like is added to the silicon oxide precursor sol solution, and then the sol-gel reaction is allowed to proceed to thereby form a boron-containing silicon oxide compound. It may be prepared. Examples of the metal nitrate, ammonium salt, chloride salt, sulfate, and salt solvent that can be used here are the same as those mentioned in the method for synthesizing the phosphorus-containing silicon oxide compound.
 ゾル-ゲル反応に用いるホウ素化合物としては、酸化ホウ素、ホウ酸等が挙げられる。酸化ホウ素とはB2O3で表される化合物であり、結晶化物であっても、ガラス質であってもどちらでもよい。ホウ酸とはHBO又はB(OH)で表される化合物である。これらの化合物は水に溶解してHBOの状態で存在する。酸化ホウ素及びホウ酸以外にも、水に溶解してHBOとなる化合物であれば、副原料として用いるホウ素化合物の種類に制限されない。水に溶解してHBOとなる化合物としては、例えばホウ酸エステルが挙げられる。 Examples of the boron compound used for the sol-gel reaction include boron oxide and boric acid. Boron oxide is a compound represented by B2O3, which may be a crystallized product or a glassy material. Boric acid is a compound represented by H 3 BO 3 or B (OH) 3 . These compounds are dissolved in water and exist in the state of H 3 BO 3 . In addition to boron oxide and boric acid, any compound that can be dissolved in water to form H 3 BO 3 is not limited to the type of boron compound used as an auxiliary material. Examples of the compound that dissolves in water to become H 3 BO 3 include boric acid esters.
 上記ホウ酸エステルとしては、下記一般式(III)で表される化合物が挙げられる。ここで、一般式(III)におけるR~Rは各々独立に、炭素数1~12の有機基又は水素原子であり、R~Rのうち少なくとも1つは有機基である。
Figure JPOXMLDOC01-appb-C000002
 
Examples of the boric acid ester include compounds represented by the following general formula (III). Here, R 7 to R 9 in the general formula (III) are each independently an organic group having 1 to 12 carbon atoms or a hydrogen atom, and at least one of R 7 to R 9 is an organic group.
Figure JPOXMLDOC01-appb-C000002
 一般式(III)におけるR~Rで表される有機基としては特に制限はなく、各々独立に、アルキル基、官能基を有する有機基、ヘテロ原子を有する有機基、及び不飽和結合を有する有機基が挙げられる。 The organic group represented by R 7 to R 9 in the general formula (III) is not particularly limited, and each independently represents an alkyl group, an organic group having a functional group, an organic group having a hetero atom, and an unsaturated bond. The organic group which has is mentioned.
 R~Rで表されるアルキル基は、直鎖状、分岐状及び環状のいずれであってもよく、直鎖状又は分岐状であることが好ましい。また、R~Rで表されるアルキル基は、炭素数が1~10であることが好ましく、炭素数が1~6であることがより好ましく、炭素数が1~3であることが更に好ましい。R~Rで表されるアルキル基は、具体的には、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基等が挙げられる。 The alkyl group represented by R 7 to R 9 may be linear, branched or cyclic, and is preferably linear or branched. The alkyl group represented by R 7 to R 9 preferably has 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms, and 1 to 3 carbon atoms. Further preferred. Specific examples of the alkyl group represented by R 7 to R 9 include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group, and a decyl group. It is done.
 R~Rで表される官能基を有する有機基において、前記官能基としては、クロロ基、ブロモ基、フルオロ基等が挙げられる。また、R~Rで表される官能基を有する有機基としては、炭素数が1~10であることが好ましく、炭素数が1~6であることがより好ましく、炭素数が1~3であることが更に好ましい。R~Rで表される官能基を有する有機基としては、具体的には、クロロエチル基、フルオロエチル基、クロロプロピル基、ジクロロプロピル基、フルオロプロピル基、ジフルオロプロピル基、クロロフェニル基、フルオロフェニル基等が挙げられる。 In the organic group having a functional group represented by R 7 to R 9 , examples of the functional group include a chloro group, a bromo group, and a fluoro group. The organic group having a functional group represented by R 7 to R 9 preferably has 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms, and 1 to 10 carbon atoms. More preferably, it is 3. Specific examples of the organic group having a functional group represented by R 7 to R 9 include chloroethyl group, fluoroethyl group, chloropropyl group, dichloropropyl group, fluoropropyl group, difluoropropyl group, chlorophenyl group, fluoro A phenyl group etc. are mentioned.
 R~Rで表されるヘテロ原子を有する有機基において、ヘテロ原子としては、窒素原子、酸素原子、硫黄原子が挙げられる。また、R~Rで表されるヘテロ原子を有する有機基は、炭素数が1~12であることが好ましく、炭素数が1~6であることがより好ましく、炭素数が1~3であることが更に好ましい。R~Rで表されるヘテロ原子を有する有機基としては、具体的には、ジメチルアミノ基、ジエチルアミノ基、ジフェニルアミノ基、メチルスルホキシド基、エチルスルホキシド基、フェニルスルホキシド基等が挙げられる。 In the organic group having a hetero atom represented by R 7 to R 9 , examples of the hetero atom include a nitrogen atom, an oxygen atom, and a sulfur atom. The organic group having a hetero atom represented by R 7 to R 9 preferably has 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, and 1 to 3 carbon atoms. More preferably. Specific examples of the organic group having a hetero atom represented by R 7 to R 9 include a dimethylamino group, a diethylamino group, a diphenylamino group, a methyl sulfoxide group, an ethyl sulfoxide group, and a phenyl sulfoxide group.
 R~Rで表される不飽和結合を有する有機基は、炭素数が2~10であることが好ましく、炭素数が2~8であることがより好ましく、炭素数が2~4であることが更に好ましい。R~Rで表される不飽和結合を有する有機基としては、具体的には、エチレニル基、エチニル基、プロペニル基、プロピニル基、ブテニル基、ブチニル基、フェニル基等が挙げられる。 The organic group having an unsaturated bond represented by R 7 to R 9 preferably has 2 to 10 carbon atoms, more preferably 2 to 8 carbon atoms, and 2 to 4 carbon atoms. More preferably it is. Specific examples of the organic group having an unsaturated bond represented by R 7 to R 9 include an ethylenyl group, an ethynyl group, a propenyl group, a propynyl group, a butenyl group, a butynyl group, and a phenyl group.
 このなかでも、R~Rの1価の有機基は、アルキル基であることが好ましく、炭素数1~10のアルキル基であることがより好ましい。
 ゾル-ゲル反応に用いるホウ酸エステルとしては、ホウ酸トリメチル、ホウ酸トリエチル、ホウ酸トリプロピル、及びホウ酸トリブチルからなる群より選択される少なくとも1種を用いることが好ましい。
Among these, the monovalent organic group of R 7 to R 9 is preferably an alkyl group, and more preferably an alkyl group having 1 to 10 carbon atoms.
As the borate ester used in the sol-gel reaction, it is preferable to use at least one selected from the group consisting of trimethyl borate, triethyl borate, tripropyl borate, and tributyl borate.
 不純物拡散層形成組成物中のドナー元素を含む化合物又はアクセプタ元素を含む化合物の含有率は、塗布性、ドナー元素を含む化合物又はアクセプタ元素を含む化合物の拡散性等を考慮して決定される。一般には、不純物拡散層形成組成物中のドナー元素を含む化合物又はアクセプタ元素を含む化合物の含有率は、不純物拡散層形成組成物中に、0.1質量%以上95質量%以下であることが好ましく、1質量%以上90質量%以下であることがより好ましく、1質量%以上80質量%以下であることが更に好ましく、2質量%以上50質量%以下であることが特に好ましく、5質量%以上20質量%以下であることが極めて好ましい。
 不純物拡散層形成組成物中のドナー元素を含む化合物又はアクセプタ元素を含む化合物の含有率が、0.1質量%以上であると、不純物拡散層を十分に形成することができ、95質量%以下であると、不純物拡散層形成組成物中のドナー元素を含む化合物又はアクセプタ元素を含む化合物の分散性が良好になり、半導体基板への塗布性が向上する。
The content of the compound containing the donor element or the compound containing the acceptor element in the impurity diffusion layer forming composition is determined in consideration of the coating property, the diffusibility of the compound containing the donor element or the compound containing the acceptor element, and the like. In general, the content of the compound containing a donor element or the compound containing an acceptor element in the impurity diffusion layer forming composition is 0.1% by mass or more and 95% by mass or less in the impurity diffusion layer forming composition. It is preferably 1% by mass or more and 90% by mass or less, more preferably 1% by mass or more and 80% by mass or less, particularly preferably 2% by mass or more and 50% by mass or less, and 5% by mass. It is very preferable that it is 20% by mass or less.
When the content of the compound containing a donor element or the compound containing an acceptor element in the impurity diffusion layer forming composition is 0.1% by mass or more, the impurity diffusion layer can be sufficiently formed, and is 95% by mass or less. When it is, the dispersibility of the compound containing the donor element or the compound containing the acceptor element in the impurity diffusion layer forming composition is improved, and the coating property to the semiconductor substrate is improved.
(分散媒)
 本発明の不純物拡散層形成組成物は、分散媒を含有する。
 分散媒とは、組成物中において前記ドナー元素を含む化合物又はアクセプタ元素を含む化合物及び脂肪酸アミドを分散又は溶解させる媒体である。具体的に分散媒は、少なくとも溶剤又は水を含むことが好ましい。また分散媒としては、溶剤又は水に加え、後述する有機バインダを含有するものであってもよい。
(Dispersion medium)
The impurity diffusion layer forming composition of the present invention contains a dispersion medium.
The dispersion medium is a medium in which the compound containing the donor element or the compound containing the acceptor element and the fatty acid amide are dispersed or dissolved in the composition. Specifically, the dispersion medium preferably contains at least a solvent or water. Moreover, as a dispersion medium, in addition to a solvent or water, you may contain the organic binder mentioned later.
 溶剤としては、アセトン、メチルエチルケトン、メチル-n-プロピルケトン、メチルイソプロピルケトン、メチル-n-ブチルケトン、メチルイソブチルケトン、メチル-n-ペンチルケトン、メチル-n-ヘキシルケトン、ジエチルケトン、ジプロピルケトン、ジイソブチルケトン、トリメチルノナノン、シクロヘキサノン、シクロペンタノン、メチルシクロヘキサノン、2,4-ペンタンジオン、アセトニルアセトン等のケトン系溶剤;ジエチルエーテル、メチルエチルエーテル、メチル-n-プロピルエーテル、ジイソプロピルエーテル、テトラヒドロフラン、メチルテトラヒドロフラン、ジオキサン、ジメチルジオキサン、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジ-n-プロピルエーテル、エチレングリコールジブチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールメチルエチルエーテル、ジエチレングリコールメチル-n-プロピルエーテル、ジエチレングリコールメチル-n-ブチルエーテル、ジエチレングリコールジ-n-プロピルエーテル、ジエチレングリコールジ-n-ブチルエーテル、ジエチレングリコールメチル-n-ヘキシルエーテル、トリエチレングリコールジメチルエーテル、トリエチレングリコールジエチルエーテル、トリエチレングリコールメチルエチルエーテル、トリエチレングリコールメチル-n-ブチルエーテル、トリエチレングリコールジ-n-ブチルエーテル、トリエチレングリコールメチル-n-ヘキシルエーテル、テトラエチレングリコールジエチルエーテル、テトラエチレングリコールメチルエチルエーテル、テトラエチレングリコールメチル-n-ブチルエーテル、テトラエチレングリコールジ-n-ブチルエーテル、テトラエチレングリコールメチル-n-ヘキシルエーテル、テトラエチレングリコールジ-n-ブチルエーテル、プロピレングリコールジメチルエーテル、プロピレングリコールジエチルエーテル、プロピレングリコールジ-n-プロピルエーテル、プロピレングリコールジブチルエーテル、ジプロピレングリコールジメチルエーテル、ジプロピレングリコールジエチルエーテル、ジプロピレングリコールメチルエチルエーテル、ジプロピレングリコールメチル-n-ブチルエーテル、ジプロピレングリコールジ-n-プロピルエーテル、ジプロピレングリコールジ-n-ブチルエーテル、ジプロピレングリコールメチル-n-ヘキシルエーテル、トリプロピレングリコールジメチルエーテル、トリプロピレングリコールジエチルエーテル、トリプロピレングリコールメチルエチルエーテル、トリプロピレングリコールメチル-n-ブチルエーテル、トリプロピレングリコールジ-n-ブチルエーテル、トリプロピレングリコールメチル-n-ヘキシルエーテル、テトラプロピレングリコールジメチルエーテル、テトラプロピレングリコールジエチルエーテル、テトラプロピレングリコールメチルエチルエーテル、テトラプロピレングリコールメチル-n-ブチルエーテル、テトラプロピレングリコールジ-n-ブチルエーテル、テトラプロピレングリコールメチル-n-ヘキシルエーテル、テトラプロピレングリコールジ-n-ブチルエーテル等のエーテル系溶剤;酢酸メチル、酢酸エチル、酢酸n-プロピル、酢酸イソプロピル、酢酸n-ブチル、酢酸イソブチル、酢酸2-ブチル、酢酸n-ペンチル、酢酸2-ペンチル、酢酸3-メトキシブチル、酢酸メチルペンチル、酢酸2-エチルブチル、酢酸2-エチルヘキシル、酢酸2-(2-ブトキシエトキシ)エチル、酢酸ベンジル、酢酸シクロヘキシル、酢酸メチルシクロヘキシル、酢酸ノニル、アセト酢酸メチル、アセト酢酸エチル、酢酸ジエチレングリコールメチルエーテル、酢酸ジエチレングリコールモノエチルエーテル、酢酸ジプロピレングリコールメチルエーテル、酢酸ジプロピレングリコールエチルエーテル、ジ酢酸グリコール、酢酸メトキシトリグリコール、プロピオン酸エチル、プロピオン酸n-ブチル、プロピオン酸イソアミル、シュウ酸ジエチル、シュウ酸ジ-n-ブチル、乳酸メチル、乳酸エチル、乳酸n-ブチル、乳酸n-アミル、エチレングリコールメチルエーテルプロピオネート、エチレングリコールエチルエーテルプロピオネート、エチレングリコールメチルエーテルアセテート、エチレングリコールエチルエーテルアセテート、プロピレングリコールメチルエーテルアセテート、プロピレングリコールエチルエーテルアセテート、プロピレングリコールプロピルエーテルアセテート、γ-ブチロラクトン、γ-バレロラクトン等のエステル系溶剤;アセトニトリル、N-メチルピロリジノン、N-エチルピロリジノン、N-プロピルピロリジノン、N-ブチルピロリジノン、N-ヘキシルピロリジノン、N-シクロヘキシルピロリジノン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド等の非プロトン性極性溶剤;メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、イソブタノール、2-ブタノール、t-ブタノール、n-ペンタノール、イソペンタノール、2-メチルブタノール、2-ペンタノール、t-ペンタノール、3-メトキシブタノール、n-ヘキサノール、2-メチルペンタノール、2-ヘキサノール、2-エチルブタノール、sec-ヘプタノール、n-オクタノール、2-エチルヘキサノール、2-オクタノール、n-ノニルアルコール、n-デカノール、2-ウンデシルアルコール、トリメチルノニルアルコール、2-テトラデシルアルコール、2-ヘプタデシルアルコール、フェノール、シクロヘキサノール、メチルシクロヘキサノール、ベンジルアルコール、エチレングリコール、1,2-プロピレングリコール、1,3-ブチレングリコール、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、トリプロピレングリコール等のアルコール系溶剤;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノフェニルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノ-n-ブチルエーテル、ジエチレングリコールモノ-n-ヘキシルエーテル、エトキシトリグリコール、テトラエチレングリコールモノ-n-ブチルエーテル、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、トリプロピレングリコールモノメチルエーテル等のグリコールモノエーテル系溶剤;α-テルピネオール(α-ターピネオール)、ジヒドロテルピネオール(ジヒドロターピネオール)等のテルピネオール(ターピネオール)、α-テルピネン、ミルセン、アロオシメン、リモネン、ジペンテン、α-ピネン、β-ピネン、カルボン、オシメン、フェランドレン等のテルペン系溶剤;水などが挙げられる。
 これら溶剤のなかでも、ケトン系溶剤としてはアセトン、エーテル系溶剤としてはジエチレングリコールジ-n-ブチルエーテル、エステル系溶剤としては酢酸2-(2-ブトキシエトキシ)エチル、非プロトン性極性溶剤としてはN-メチルピロリジノン又はN,N-ジメチルホルムアミド、テルピネオール(ターピネオール)としてはα-テルピネオール(α-ターピネオール)又はジヒドロテルピネオール(ジヒドロターピネオール)、テルペン系溶剤としてはα-テルピネン又はα-ピネンが好ましく用いられる。これらは1種類を単独で又は2種類以上を組み合わせて使用される。
Solvents include acetone, methyl ethyl ketone, methyl-n-propyl ketone, methyl isopropyl ketone, methyl-n-butyl ketone, methyl isobutyl ketone, methyl-n-pentyl ketone, methyl-n-hexyl ketone, diethyl ketone, dipropyl ketone, Ketone solvents such as diisobutylketone, trimethylnonanone, cyclohexanone, cyclopentanone, methylcyclohexanone, 2,4-pentanedione, acetonylacetone; diethyl ether, methyl ethyl ether, methyl-n-propyl ether, diisopropyl ether, tetrahydrofuran , Methyltetrahydrofuran, dioxane, dimethyldioxane, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol di-n Propyl ether, ethylene glycol dibutyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol methyl ethyl ether, diethylene glycol methyl-n-propyl ether, diethylene glycol methyl n-butyl ether, diethylene glycol di-n-propyl ether, diethylene glycol di-n-butyl ether, Diethylene glycol methyl-n-hexyl ether, triethylene glycol dimethyl ether, triethylene glycol diethyl ether, triethylene glycol methyl ethyl ether, triethylene glycol methyl n-butyl ether, triethylene glycol di-n-butyl ether, triethylene glycol methyl-n - Xyl ether, tetraethylene glycol diethyl ether, tetraethylene glycol methyl ethyl ether, tetraethylene glycol methyl-n-butyl ether, tetraethylene glycol di-n-butyl ether, tetraethylene glycol methyl-n-hexyl ether, tetraethylene glycol di-n -Butyl ether, propylene glycol dimethyl ether, propylene glycol diethyl ether, propylene glycol di-n-propyl ether, propylene glycol dibutyl ether, dipropylene glycol dimethyl ether, dipropylene glycol diethyl ether, dipropylene glycol methyl ethyl ether, dipropylene glycol methyl-n -Butyl ether, dipropylene glycol di- n-propyl ether, dipropylene glycol di-n-butyl ether, dipropylene glycol methyl-n-hexyl ether, tripropylene glycol dimethyl ether, tripropylene glycol diethyl ether, tripropylene glycol methyl ethyl ether, tripropylene glycol methyl-n-butyl ether , Tripropylene glycol di-n-butyl ether, tripropylene glycol methyl-n-hexyl ether, tetrapropylene glycol dimethyl ether, tetrapropylene glycol diethyl ether, tetrapropylene glycol methyl ethyl ether, tetrapropylene glycol methyl n-butyl ether, tetrapropylene glycol Di-n-butyl ether, tetrapropylene glycol Ether solvents such as rumethyl-n-hexyl ether, tetrapropylene glycol di-n-butyl ether; methyl acetate, ethyl acetate, n-propyl acetate, isopropyl acetate, n-butyl acetate, isobutyl acetate, 2-butyl acetate, n-acetate -Pentyl, 2-pentyl acetate, 3-methoxybutyl acetate, methyl pentyl acetate, 2-ethylbutyl acetate, 2-ethylhexyl acetate, 2- (2-butoxyethoxy) ethyl acetate, benzyl acetate, cyclohexyl acetate, methylcyclohexyl acetate, acetic acid Nonyl, methyl acetoacetate, ethyl acetoacetate, acetic acid diethylene glycol methyl ether, acetic acid diethylene glycol monoethyl ether, acetic acid dipropylene glycol methyl ether, acetic acid dipropylene glycol ethyl ether, diacetic acid glyco , Methoxytriglycol acetate, ethyl propionate, n-butyl propionate, isoamyl propionate, diethyl oxalate, di-n-butyl oxalate, methyl lactate, ethyl lactate, n-butyl lactate, n-amyl lactate, ethylene glycol Methyl ether propionate, ethylene glycol ethyl ether propionate, ethylene glycol methyl ether acetate, ethylene glycol ethyl ether acetate, propylene glycol methyl ether acetate, propylene glycol ethyl ether acetate, propylene glycol propyl ether acetate, γ-butyrolactone, γ- Ester solvents such as valerolactone; acetonitrile, N-methylpyrrolidinone, N-ethylpyrrolidinone, N-propylpyrrolidinone Aprotic polar solvents such as N-butylpyrrolidinone, N-hexylpyrrolidinone, N-cyclohexylpyrrolidinone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethylsulfoxide; methanol, ethanol, n-propanol, isopropanol, n -Butanol, isobutanol, 2-butanol, t-butanol, n-pentanol, isopentanol, 2-methylbutanol, 2-pentanol, t-pentanol, 3-methoxybutanol, n-hexanol, 2-methyl Pentanol, 2-hexanol, 2-ethylbutanol, sec-heptanol, n-octanol, 2-ethylhexanol, 2-octanol, n-nonyl alcohol, n-decanol, 2-undecyl alcohol, trimethyl Lunonyl alcohol, 2-tetradecyl alcohol, 2-heptadecyl alcohol, phenol, cyclohexanol, methylcyclohexanol, benzyl alcohol, ethylene glycol, 1,2-propylene glycol, 1,3-butylene glycol, diethylene glycol, dipropylene glycol , Alcohol solvents such as triethylene glycol and tripropylene glycol; ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monophenyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol mono-n-butyl ether, diethylene glycol mono- n-hexyl ether, ethoxytriglycol, teto Glycol monoether solvents such as ethylene glycol mono-n-butyl ether, propylene glycol monomethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, tripropylene glycol monomethyl ether; α-terpineol (α-terpineol), dihydroterpineol Terpeneol (terpineol) such as (dihydroterpineol), terpene solvents such as α-terpinene, myrcene, alloocimene, limonene, dipentene, α-pinene, β-pinene, carvone, osymene and ferrandrene; water and the like.
Among these solvents, acetone is the ketone solvent, diethylene glycol di-n-butyl ether is the ether solvent, 2- (2-butoxyethoxy) ethyl acetate is the ester solvent, and N- is the aprotic polar solvent. Methylpyrrolidinone or N, N-dimethylformamide, terpineol (terpineol) is preferably α-terpineol (α-terpineol) or dihydroterpineol (dihydroterpineol), and terpene solvent is preferably α-terpinene or α-pinene. These are used singly or in combination of two or more.
 なお、不純物拡散層形成組成物とした場合、基板への塗布性の観点からは、α-テルピネオール、ジヒドロターピネオール、ジエチレングリコールモノ-n-ブチルエーテル、(ブチルカルビトール)、酢酸ジエチレングリコールモノ-n-ブチルエーテル(ブチルカルビトールアセテート)及び酢酸2-(2-ブトキシエトキシ)エチルからなる群より選択される少なくとも1種が好ましく、α-テルピネオール、ジエチレングリコールモノ-n-ブチルエーテル及び酢酸2-(2-ブトキシエトキシ)エチルからなる群より選択される少なくとも1種がより好ましく、α-テルピネオール及びジエチレングリコールモノ-n-ブチルエーテルからなる群より選択される少なくとも1種が更に好ましい。 In the case of an impurity diffusion layer forming composition, α-terpineol, dihydroterpineol, diethylene glycol mono-n-butyl ether, (butyl carbitol), diethylene glycol mono-n-butyl ether ( Butyl carbitol acetate) and at least one selected from the group consisting of 2- (2-butoxyethoxy) ethyl acetate, α-terpineol, diethylene glycol mono-n-butyl ether and 2- (2-butoxyethoxy) ethyl acetate More preferably, at least one selected from the group consisting of: at least one selected from the group consisting of α-terpineol and diethylene glycol mono-n-butyl ether is even more preferable.
 不純物拡散層形成組成物中の分散媒の含有率は、塗布性、ドナー元素又はアクセプタ元素の濃度を考慮し決定される。例えば不純物拡散層形成組成物中、分散媒の含有率は、5質量%以上99質量%以下であることが好ましく、20質量%以上95質量%以下であることがより好ましく、40質量%以上90質量%以下であることが更に好ましい。 The content of the dispersion medium in the impurity diffusion layer forming composition is determined in consideration of the coating property and the concentration of the donor element or the acceptor element. For example, in the impurity diffusion layer forming composition, the content of the dispersion medium is preferably 5% by mass to 99% by mass, more preferably 20% by mass to 95% by mass, and 40% by mass to 90% by mass. More preferably, it is at most mass%.
(脂肪酸アミド)
 本発明の不純物拡散層形成組成物は、脂肪酸アミドを含有する。脂肪酸アミドは、不純物拡散層形成組成物に揺変性を与え、温度一定下で応力を加えるとゾル状になり、これを放置すると再びゲル状に戻る性質を付与する。具体的には、スクリーン印刷機にて対象物に不純物拡散層形成組成物を印刷する際に、スクレッパ又はスキージの稼動により、接する不純物拡散層形成組成物に応力が加えられると、不純物拡散層形成組成物が低粘度化して流動性を示し、スクリーン版のメッシュをすり抜けて対象物上に印刷物を形成する。また、一度対象物上に印刷物として形成された不純物拡散層形成組成物は、応力が加えられない限り低粘度化することなく、その形状を維持する。
(Fatty acid amide)
The impurity diffusion layer forming composition of the present invention contains a fatty acid amide. Fatty acid amide imparts thixotropic properties to the impurity diffusion layer forming composition, and becomes a sol form when stress is applied at a constant temperature, and gives a property of returning to a gel form when left standing. Specifically, when printing an impurity diffusion layer forming composition on an object with a screen printing machine, if stress is applied to the contacted impurity diffusion layer forming composition due to operation of a scraper or a squeegee, the impurity diffusion layer formation is performed. The composition is reduced in viscosity and exhibits fluidity, and passes through the screen plate mesh to form a printed material on the object. Moreover, the impurity diffusion layer forming composition once formed as a printed matter on the object maintains its shape without decreasing the viscosity unless stress is applied.
 脂肪酸アミドを用いることで、不純物拡散層形成組成物に適度なせん断粘度を付与することができ、良好な付与適性を与えることができる。具体的には、後述のチクソトロピック特性(チキソ性)の値を適切に調整することができる。 By using a fatty acid amide, an appropriate diffusion viscosity can be imparted to the impurity diffusion layer forming composition, and good impartability can be imparted. Specifically, the value of thixotropic characteristics (thixotropic properties) described later can be adjusted appropriately.
 つまり、不純物拡散層形成組成物に脂肪酸アミドを用いることで、半導体基板上の一部領域に付与して不純物拡散層形成組成物層を形成したときに、半導体基板上の面方向で不純物拡散層形成組成物層の接触面積が拡がるのが抑えられる。また、半導体基板の特定部位に他の領域よりも不純物濃度の高い不純物拡散層を形成することが可能となる。 That is, by using a fatty acid amide for the impurity diffusion layer forming composition, when the impurity diffusion layer forming composition layer is formed by being applied to a partial region on the semiconductor substrate, the impurity diffusion layer is formed in the surface direction on the semiconductor substrate. Expansion of the contact area of the forming composition layer is suppressed. In addition, an impurity diffusion layer having an impurity concentration higher than that of other regions can be formed at a specific portion of the semiconductor substrate.
 また、脂肪酸アミドは、熱処理時に残渣が発生するのを抑制することができる。これは、脂肪酸アミドの熱分解性が良く(約400℃以下で分解する)、脂肪酸アミド由来の残渣が発生しにくいためと考えられる。なお、半導体基板上の面方向で不純物拡散層形成組成物層の接触面積の拡がりを抑制するために無機材料を使用した場合には、乾燥及び脱脂を経て有機成分を取り除いた後も残存し、拡散処理時にドナー元素を含む化合物又はアクセプタ元素を含む化合物の組成を変えてしまい、結果としてドナー元素又はアクセプタ元素のドーピングに影響を及ぼす可能性がある。 Moreover, fatty acid amide can suppress the generation of residues during heat treatment. This is presumably because the fatty acid amide has good thermal decomposability (decomposes at about 400 ° C. or lower) and hardly generates fatty acid amide-derived residues. In addition, when an inorganic material is used to suppress the spread of the contact area of the impurity diffusion layer forming composition layer in the surface direction on the semiconductor substrate, it remains after removing organic components through drying and degreasing, The composition of the compound containing the donor element or the acceptor element may be changed during the diffusion treatment, and as a result, the doping of the donor element or the acceptor element may be affected.
 脂肪酸アミドとしては、一般式(1)で示される脂肪酸モノアミド、一般式(2)又は(3)で示されるN-置換脂肪酸アミド、一般式(4)で示されるN-置換脂肪酸アミドアミン等が挙げられる。 Examples of fatty acid amides include fatty acid monoamides represented by general formula (1), N-substituted fatty acid amides represented by general formula (2) or (3), and N-substituted fatty acid amide amines represented by general formula (4). It is done.
 RCONH・・・・(1)
 RCONH-R-NHCOR・・・・(2)
 RNHCO-R-CONHR・・・・(3)
 RCONH-R-N(R・・・・(4)
R 1 CONH 2 (1)
R 1 CONH—R 2 —NHCOR 1 (2)
R 1 NHCO—R 2 —CONHR 1 (3)
R 1 CONH—R 2 —N (R 3 ) 2 ... (4)
 一般式(1)、(2)、(3)及び(4)中、R及びRは各々独立に炭素数1~30のアルキル基又はアルケニル基を示し、Rは炭素数1~10のアルキレン基を示す。R及びRは同一であっても異なっていてもよい。 In general formulas (1), (2), (3) and (4), R 1 and R 3 each independently represents an alkyl group or alkenyl group having 1 to 30 carbon atoms, and R 2 represents 1 to 10 carbon atoms. The alkylene group is shown. R 1 and R 3 may be the same or different.
 一般式(1)、(2)、(3)及び(4)中、R及びRで表されるアルキル基及びアルケニル基は、各々独立に、炭素数1~30である。Rで表されるアルキル基及びアルケニル基は、各々独立に、炭素数5~25であることが好ましく、炭素数10~20であることがより好ましく、炭素数15~18であることが更に好ましい。Rで表されるアルキル基及びアルケニル基は、各々独立に、炭素数1~10であることが好ましく、炭素数1~6であることがより好ましく、炭素数1~3であることが更に好ましい。Rは炭素数1~30のアルキル基であることが好ましく、炭素数1~10のアルキル基であることがより好ましく、炭素数1~6のアルキル基であることがさらに好ましく、炭素数1~3のアルキル基であることが特に好ましい。 In general formulas (1), (2), (3) and (4), the alkyl group and alkenyl group represented by R 1 and R 3 each independently have 1 to 30 carbon atoms. The alkyl group and alkenyl group represented by R 1 each independently preferably has 5 to 25 carbon atoms, more preferably 10 to 20 carbon atoms, and further preferably 15 to 18 carbon atoms. preferable. The alkyl group and alkenyl group represented by R 3 each independently preferably has 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms, and further preferably 1 to 3 carbon atoms. preferable. R 3 is preferably an alkyl group having 1 to 30 carbon atoms, more preferably an alkyl group having 1 to 10 carbon atoms, still more preferably an alkyl group having 1 to 6 carbon atoms, and a carbon number of 1 Particularly preferred are ˜3 alkyl groups.
 R及びRで表される炭素数1~30のアルキル基及びアルケニル基は、各々独立に、直鎖状、分岐状、環状のいずれであってもよく、直鎖状又は分岐状であることが好ましい。 The alkyl group and alkenyl group having 1 to 30 carbon atoms represented by R 1 and R 3 may each independently be linear, branched or cyclic, and are linear or branched. It is preferable.
 R及びRで表される炭素数1~30のアルキル基及びアルケニル基としては、メチル基、エチル基、プロピル基、ブチル基、イソプロピル基、イソブチル基、デシル基、ドデシル基、オクタデシル基、ヘキサデセニル基、ヘンイコセニル基等が挙げられる。
 また、R及びRで表される炭素数1~30のアルキル基及びアルケニル基は、無置換であっても置換基を有していてもよい。このような置換基としては、水酸基、クロロ基、ブロモ基、フルオロ基、アルデヒド基、アシル基、ニトロ基、アミノ基、スルホン酸基、アルコキシ基、アシルオキシ基等が挙げられる。
Examples of the alkyl group and alkenyl group having 1 to 30 carbon atoms represented by R 1 and R 3 include methyl group, ethyl group, propyl group, butyl group, isopropyl group, isobutyl group, decyl group, dodecyl group, octadecyl group, Examples include a hexadecenyl group and a hencicosenyl group.
In addition, the alkyl group and alkenyl group having 1 to 30 carbon atoms represented by R 1 and R 3 may be unsubstituted or may have a substituent. Examples of such a substituent include a hydroxyl group, a chloro group, a bromo group, a fluoro group, an aldehyde group, an acyl group, an nitro group, an amino group, a sulfonic acid group, an alkoxy group, and an acyloxy group.
 一般式(2)、(3)及び(4)中、Rで表されるアルキレン基は、各々独立に、炭素数1~10であり、炭素数1~8であることが好ましく、炭素数1~6であることがより好ましく、炭素数1~4であることが更に好ましい。
 Rで表される炭素数1~10のアルキレン基は、具体的には、エチレン基、プロピレン基、ブチレン基、オクチレン基等が挙げられる。
In general formulas (2), (3), and (4), each alkylene group represented by R 2 independently has 1 to 10 carbon atoms, preferably 1 to 8 carbon atoms, It is more preferably 1 to 6 and still more preferably 1 to 4 carbon atoms.
Specific examples of the alkylene group having 1 to 10 carbon atoms represented by R 2 include an ethylene group, a propylene group, a butylene group, and an octylene group.
 一般式(1)で示される脂肪酸モノアミドの具体例としては、ラウリン酸アミド、パルミチン酸アミド、ステアリン酸アミド、オレイン酸アミド、エルカ酸アミド等が挙げられる。 Specific examples of the fatty acid monoamide represented by the general formula (1) include lauric acid amide, palmitic acid amide, stearic acid amide, oleic acid amide, erucic acid amide and the like.
 また、一般式(2)で示されるN-置換脂肪酸アミドの具体例としては、N,N’-エチレンビスラウリン酸アミド、N,N’-メチレンビスステアリン酸アミド、N,N’-エチレンビスステアリン酸アミド、N,N’-エチレンビスオレイン酸アミド、N,N’-エチレンビスベヘン酸アミド、N,N’-エチレンビス-12-ヒドロキシステアリン酸アミド、N,N’-ブチレンビスステアリン酸アミド、N,N’-ヘキサメチレンビスステアリン酸アミド、N,N’-ヘキサメチレンビスオレイン酸アミド、N,N’-キシリレンビスステアリン酸アミド等が挙げられる。 Specific examples of the N-substituted fatty acid amide represented by the general formula (2) include N, N′-ethylenebislauric acid amide, N, N′-methylenebisstearic acid amide, N, N′-ethylenebisamide. Stearic acid amide, N, N′-ethylenebisoleic acid amide, N, N′-ethylenebisbehenic acid amide, N, N′-ethylenebis-12-hydroxystearic acid amide, N, N′-butylene bisstearic acid Examples thereof include amide, N, N′-hexamethylenebisstearic acid amide, N, N′-hexamethylenebisoleic acid amide, N, N′-xylylene bisstearic acid amide, and the like.
 また、一般式(3)で示されるN-置換脂肪酸アミドの具体例としては、N,N’-ジオレイルアジピン酸アミド、N,N’-ジステアリルアジピン酸アミド、N,N’-ジオレイルセバシン酸アミド、N,N’-ジステアリルセバシン酸アミド、N,N’-ジステアリルテレフタル酸アミド、N,N’-ジステアリルイソフタル酸アミド等が挙げられる。 Specific examples of the N-substituted fatty acid amide represented by the general formula (3) include N, N′-dioleyl adipate amide, N, N′-distearyl adipate amide, N, N′-dioleyl. Examples include sebacic acid amide, N, N′-distearyl sebacic acid amide, N, N′-distearyl terephthalic acid amide, N, N′-distearyl isophthalic acid amide, and the like.
 また、一般式(4)で示されるN-置換脂肪酸アミドアミンの具体例としては、ステアリン酸ジメチルアミノプロピルアミド、ステアリン酸ジエチルアミノエチルアミド、ラウリン酸ジメチルアミノプロピルアミド、ミリスチン酸ジメチルアミノプロピルアミド、パルミチン酸ジメチルアミノプロピルアミド、ステアリン酸ジメチルアミノプロピルアミド、ベヘン酸ジメチルアミノプロピルアミド、オレイン酸ジメチルアミノプロピルアミド、イソステアリン酸ジメチルアミノプロピルアミド、リノール酸ジメチルアミノプロピルアミド、リシノレイン酸ジメチルアミノプロピルアミド、ヒドロキシステアリン酸ジメチルアミノプロピルアミド、ステアリン酸N,N-ビス(ヒドロキシメチル)アミノプロピルアミド、ラウリン酸ジエチルアミノエチルアミド、ミリスチン酸ジエチルアミノエチルアミド、パルミチン酸ジエチルアミノエチルアミド、ステアリン酸ジエチルアミノエチルアミド、ベヘン酸ジエチルアミノエチルアミド、オレイン酸ジエチルアミノエチルアミド、リノール酸ジエチルアミノエチルアミド、リシノレイン酸ジエチルアミノエチルアミド、イソステアリン酸ジエチルアミノエチルアミド、ヒドロキシステアリン酸ジエチルアミノエチルアミド、ステアリン酸N,N-ビス(ヒドロキシエチル)アミノエチルアミド、ラウリン酸ジエチルアミノプロピルアミド、ミリスチン酸ジエチルアミノプロピルアミド、パルミチン酸ジエチルアミノプロピルアミド、ステアリン酸ジエチルアミノプロピルアミド、ベヘン酸ジエチルアミノプロピルアミド、オレイン酸ジエチルアミノプロピルアミド、リノール酸ジエチルアミノプロピルアミド、リシノレイン酸ジエチルアミノプロピルアミド、イソステアリン酸ジエチルアミノプロピルアミド、ヒドロキシステアリン酸ジエチルアミノプロピルアミド、ステアリン酸N,N-ビス(ヒドロキシエチル)アミノプロピルアミド等が挙げられる。 Specific examples of the N-substituted fatty acid amidoamine represented by the general formula (4) include stearic acid dimethylaminopropylamide, stearic acid diethylaminoethylamide, lauric acid dimethylaminopropylamide, myristic acid dimethylaminopropylamide, palmitic acid. Dimethylaminopropylamide, stearic acid dimethylaminopropylamide, behenic acid dimethylaminopropylamide, oleic acid dimethylaminopropylamide, isostearic acid dimethylaminopropylamide, linoleic acid dimethylaminopropylamide, ricinoleic acid dimethylaminopropylamide, hydroxystearic acid Dimethylaminopropylamide, stearic acid N, N-bis (hydroxymethyl) aminopropylamide, diethyl laurate Minoethylamide, myristic acid diethylaminoethylamide, palmitic acid diethylaminoethylamide, stearic acid diethylaminoethylamide, behenic acid diethylaminoethylamide, oleic acid diethylaminoethylamide, linoleic acid diethylaminoethylamide, ricinoleic acid diethylaminoethylamide, isostearic acid diethylaminoethyl Amides, hydroxystearic acid diethylaminoethylamide, stearic acid N, N-bis (hydroxyethyl) aminoethylamide, lauric acid diethylaminopropylamide, myristic acid diethylaminopropylamide, palmitic acid diethylaminopropylamide, stearic acid diethylaminopropylamide, behenic acid Diethylaminopropylamide, oleic acid Ethyl aminopropyl amide, linoleic acid diethylaminopropylamide, ricinoleic acid diethylaminopropylamide, isostearic acid diethylaminopropylamide, hydroxystearic acid diethylaminopropylamide, stearic acid N, N- bis (hydroxyethyl) aminopropyl amide.
 これらの脂肪酸アミドの中でも、分散媒への溶解性の観点から、ステアリン酸アミド、N,N’-メチレンビスステアリン酸アミド、及びステアリン酸ジメチルアミノプロピルアミドからなる群より選択される少なくとも1種を用いることが好ましく、ステアリン酸アミド及びN,N’-メチレンビスステアリン酸アミドから選択される少なくとも1種を用いることがより好ましい。 Among these fatty acid amides, at least one selected from the group consisting of stearic acid amide, N, N′-methylenebisstearic acid amide, and stearic acid dimethylaminopropylamide from the viewpoint of solubility in a dispersion medium. It is preferable to use at least one selected from stearamide and N, N′-methylenebisstearic acid amide.
 脂肪酸アミドは、400℃以下で蒸散又は分解することが好ましく、300℃以下で蒸散又は分解することがより好ましく、250℃以下で蒸散又は分解することが更に好ましい。
 脂肪酸アミドの蒸散又は分解する温度の下限値は特に制限は無い。不純物拡散層形成組成物を付与して形成したパターン状の不純物拡散層形成組成物層の形状を焼成時にある程度維持させる観点からは、脂肪酸アミドの蒸散又は分解は、80℃以上であることが好ましく、100℃以上であることがより好ましく、150℃以上であることが更に好ましい。
The fatty acid amide is preferably evaporated or decomposed at 400 ° C. or lower, more preferably evaporated or decomposed at 300 ° C. or lower, and further preferably evaporated or decomposed at 250 ° C. or lower.
There is no particular limitation on the lower limit of the temperature at which the fatty acid amide evaporates or decomposes. From the viewpoint of maintaining the shape of the patterned impurity diffusion layer forming composition layer formed by applying the impurity diffusion layer forming composition to some extent during firing, the transpiration or decomposition of the fatty acid amide is preferably 80 ° C. or higher. The temperature is more preferably 100 ° C. or higher, and further preferably 150 ° C. or higher.
 脂肪酸アミドの蒸散又は分解温度は、熱重量分析装置を用い、重量保持率が20%以下となる温度を調べることによって測定される。 The transpiration or decomposition temperature of the fatty acid amide is measured by examining the temperature at which the weight retention is 20% or less using a thermogravimetric analyzer.
 脂肪酸アミドは1種を単独で用いても2種以上を併用してもよい。
 脂肪酸アミドの含有率は、不純物拡散層形成組成物100質量%に対して、1質量%以上30質量%以下であることが好ましく、3質量%以上25質量%以下であることがより好ましく、5質量%以上20質量%以下であることが更に好ましい。1質量%以上30質量%以下とすることで不純物拡散層形成組成物のチクソトロピック特性を適切に付与しやすい傾向がある。
Fatty acid amides may be used alone or in combination of two or more.
The content of the fatty acid amide is preferably 1% by mass or more and 30% by mass or less, more preferably 3% by mass or more and 25% by mass or less, with respect to 100% by mass of the impurity diffusion layer forming composition. More preferably, it is at least 20% by mass. By setting the content to 1% by mass or more and 30% by mass or less, the thixotropic characteristics of the impurity diffusion layer forming composition tend to be easily imparted appropriately.
 本発明の不純物拡散層形成組成物では、残渣をより抑制する観点から、ドナー元素を含む化合物又はアクセプタ元素を含む化合物が450℃~900℃の軟化点を有し、かつ、脂肪酸アミドが40℃~400℃の蒸散又は分解温度を有することが好ましく、より好ましくは、ドナー元素を含む化合物又はアクセプタ元素を含む化合物が450℃~850℃の軟化点を有し、かつ、脂肪酸アミドが60℃~380℃の蒸散又は分解温度を有する場合であり、更に好ましくは、ドナー元素を含む化合物又はアクセプタ元素を含む化合物が500℃~800℃の軟化点を有し、かつ、脂肪酸アミドが150℃~350℃の蒸散又は分解温度を有する場合である。 In the impurity diffusion layer forming composition of the present invention, from the viewpoint of further suppressing residues, the compound containing a donor element or the compound containing an acceptor element has a softening point of 450 ° C. to 900 ° C., and the fatty acid amide is 40 ° C. It is preferable to have a transpiration or decomposition temperature of ˜400 ° C., more preferably, the compound containing a donor element or the compound containing an acceptor element has a softening point of 450 ° C. to 850 ° C., and the fatty acid amide is from 60 ° C. In which the compound containing the donor element or the acceptor element has a softening point of 500 ° C. to 800 ° C., and the fatty acid amide is 150 ° C. to 350 ° C. It has a transpiration or decomposition temperature of 0C.
(その他添加剤)
 本発明の不純物拡散層形成組成物は、ドナー元素を含む化合物又はアクセプタ元素を含む化合物、脂肪酸アミド、及び分散媒の他に、必要に応じて、有機バインダ、界面活性剤、無機粉末(無機フィラー)、アルコキシシラン、シリコーン樹脂、還元性化合物等を含有することができる。
(Other additives)
In addition to a compound containing a donor element or a compound containing an acceptor element, a fatty acid amide, and a dispersion medium, the impurity diffusion layer forming composition of the present invention includes an organic binder, a surfactant, an inorganic powder (inorganic filler) as necessary. ), An alkoxysilane, a silicone resin, a reducing compound, and the like.
-有機バインダ-
 本発明の不純物拡散層形成組成物は、有機バインダの1種以上を更に含有してもよい。
 有機バインダを含むことで、不純物拡散層形成組成物としての粘度を調整したり、チキソ性を付与したりすることができ、半導体基板への付与性がより向上する。有機バインダとしては、例えば、アルキド樹脂;ポリビニルブチラール樹脂;ポリビニルアルコール樹脂;ポリアクリルアミド樹脂;ポリビニルアミド樹脂;ポリビニルピロリドン樹脂;ポリエチレンオキサイド樹脂;ポリスルホン樹脂;アクリルアミドアルキルスルホン樹脂;セルロースエーテル、カルボキシメチルセルロース、ヒドロキシエチルセルロース、エチルセルロース等のセルロース誘導体;ゼラチン、ゼラチン誘導体;澱粉、澱粉誘導体;アルギン酸ナトリウム、アルギン酸ナトリウム誘導体;キサンタン、キサンタン誘導体;グア、グア誘導体;スクレログルカン、スクレログルカン誘導体;トラガカント、トラガカント誘導体;デキストリン、デキストリン誘導体;(メタ)アクリル酸樹脂;アルキル(メタ)アクリレート樹脂、ジメチルアミノエチル(メタ)アクリレート樹脂等の(メタ)アクリル酸エステル樹脂;ブタジエン樹脂;スチレン樹脂;及びこれらの共重合体を適宜選択しうる。これらは1種類を単独で又は2種類以上を組み合わせて使用される。有機バインダを用いる場合は、分解性、取り扱いの簡便性の観点から、セルロース誘導体、(メタ)アクリル酸樹脂、(メタ)アクリル酸エステル樹脂又はポリエチレンオキサイド樹脂を用いることが好ましい。
-Organic binder-
The impurity diffusion layer forming composition of the present invention may further contain one or more organic binders.
By including the organic binder, the viscosity as the impurity diffusion layer forming composition can be adjusted, or thixotropy can be imparted, and the impartability to the semiconductor substrate is further improved. Examples of the organic binder include an alkyd resin; a polyvinyl butyral resin; a polyvinyl alcohol resin; a polyacrylamide resin; a polyvinyl amide resin; a polyvinyl pyrrolidone resin; a polyethylene oxide resin; a polysulfone resin; Cellulose derivatives such as ethyl cellulose; gelatin, gelatin derivatives; starch, starch derivatives; sodium alginate, sodium alginate derivatives; xanthan, xanthan derivatives; gua, gua derivatives; Dextrin derivative; (meth) acrylic resin; alkyl (meth) acrylate Resin, (meth) acrylic acid esters such as dimethyl aminoethyl (meth) acrylate resin resin; butadiene resin; a styrene resin; and may appropriately select these copolymers. These are used singly or in combination of two or more. When using an organic binder, it is preferable to use a cellulose derivative, a (meth) acrylic acid resin, a (meth) acrylic acid ester resin or a polyethylene oxide resin from the viewpoint of degradability and easy handling.
 有機バインダの分子量は、特に制限されず、組成物としての所望の粘度を鑑みて適宜調整することが好ましい。なお、有機バインダを含有する場合の含有量は、不純物拡散層形成組成物中に、0.5質量%以上30質量%以下であることが好ましく、3質量%以上25質量%以下であることがより好ましく、3質量%以上20質量%以下であることが更に好ましい。 The molecular weight of the organic binder is not particularly limited, and is preferably adjusted appropriately in view of the desired viscosity as the composition. In addition, content in the case of containing an organic binder is preferably 0.5% by mass or more and 30% by mass or less, and preferably 3% by mass or more and 25% by mass or less in the impurity diffusion layer forming composition. More preferably, it is 3 mass% or more and 20 mass% or less.
-界面活性剤-
 本発明の不純物拡散層形成組成物は、界面活性剤の1種以上を更に含有してもよい。
 界面活性剤としては、ノニオン系界面活性剤、カチオン系界面活性剤、アニオン系界面活性剤等が挙げられる。中でも、半導体基板への重金属等の不純物の持ち込みが少ないことからノニオン系界面活性剤又はカチオン系界面活性剤が好ましい。
 ノニオン系界面活性剤としては、シリコン系界面活性剤、フッ素系界面活性剤、炭化水素系界面活性剤等が例示される。中でも拡散等の加熱時に速やかに除去されることから、炭化水素系界面活性剤が好ましい。
-Surfactant-
The impurity diffusion layer forming composition of the present invention may further contain one or more surfactants.
Examples of the surfactant include a nonionic surfactant, a cationic surfactant, and an anionic surfactant. Among these, nonionic surfactants or cationic surfactants are preferable because impurities such as heavy metals are not brought into the semiconductor substrate.
Examples of nonionic surfactants include silicon surfactants, fluorine surfactants, hydrocarbon surfactants, and the like. Of these, hydrocarbon surfactants are preferred because they are quickly removed during heating such as diffusion.
 炭化水素系界面活性剤としては、エチレンオキサイド-プロピレンオキサイドのブロック共重合体、アセチレングリコール化合物等が例示される。半導体基板のシート抵抗値のバラツキをより低減する観点から、アセチレングリコール化合物が好ましい。 Examples of hydrocarbon surfactants include ethylene oxide-propylene oxide block copolymers, acetylene glycol compounds, and the like. From the viewpoint of further reducing variation in the sheet resistance value of the semiconductor substrate, an acetylene glycol compound is preferred.
-無機フィラー-
 本発明の不純物拡散層形成組成物は、無機フィラーの1種以上を更に含有してもよい。
 無機フィラーとしてはシリカ(酸化ケイ素)、クレイ、炭化ケイ素、窒化ケイ素等を例示することができるが、これらの中でもシリカを成分として含むフィラーを用いることが好ましい。ここで、クレイとは層状粘土鉱物を示し、具体的にはカオリナイト、イモゴライト、モンモリロナイト、スメクタイト、セリサイト、イライト、タルク、スチーブンサイト、ゼオライト等が挙げられる。
-Inorganic filler-
The impurity diffusion layer forming composition of the present invention may further contain one or more inorganic fillers.
Examples of the inorganic filler include silica (silicon oxide), clay, silicon carbide, silicon nitride and the like. Among these, it is preferable to use a filler containing silica as a component. Here, clay refers to a layered clay mineral, and specific examples include kaolinite, imogolite, montmorillonite, smectite, sericite, illite, talc, stevensite, and zeolite.
 無機フィラーを添加することで、不純物拡散層形成組成物を塗布、乾燥する工程における不純物拡散層形成組成物層の滲み及び熱だれ発生によるパターンの半導体基板上での接触面積の拡大をより効果的に抑制することができる。塗布時に発生する滲みについては、分散媒と無機フィラーが相互作用することによって分散媒の滲みが抑制されるものと考えられる。また、乾燥時の滲み及び熱だれは、分散媒を分解、揮発させる100℃~500℃程度の温度において、例えば、後述のポリエチレングリコール等の還元性化合物が融解するために発生すると考えられるが、融解したポリエチレングリコールと無機フィラーとの間で相互作用することによって、滲み及び熱だれが抑制されるものと考えられる。 By adding an inorganic filler, it is more effective to expand the contact area of the pattern on the semiconductor substrate due to bleeding and dripping of the impurity diffusion layer forming composition layer in the process of applying and drying the impurity diffusion layer forming composition. Can be suppressed. Regarding bleeding that occurs during coating, it is considered that the dispersion medium and the inorganic filler interact to suppress the bleeding of the dispersion medium. Further, it is considered that bleeding and heat dripping at the time of drying occur at a temperature of about 100 ° C. to 500 ° C. at which the dispersion medium is decomposed and volatilized, for example, because a reducing compound such as polyethylene glycol described later melts. It is considered that the bleeding and heat dripping are suppressed by the interaction between the melted polyethylene glycol and the inorganic filler.
 無機フィラーのBET比表面積は1m/g~300m/gであることが好ましく、10m/g~200m/gであることがより好ましい。
 無機フィラーの中でもフュームドシリカ(Fumed Silica)を用いることが好ましい。ここでいうフュームドシリカとは、超微粒子(BET比表面積30m/g~500m/g)状無水シリカをいい、四塩化ケイ素等のシラン類を、酸素と水素の炎中で加水分解して製造される。気相法で合成されるため、一次粒子径が小さく、BET比表面積が大きくなる。高BET比表面積の無機フィラーを用いることで、乾燥工程において低粘度化した分散媒(溶剤)との間の物理的、ファンデルワールス力による相互作用によって、不純物拡散層形成組成物の粘度の低下を抑制しやすくなる傾向にある。BET比表面積は-196℃における窒素の吸着等温線から算出できる。例えば、BELSORP(日本ベル株式会社製)を用いて測定することができる。
The BET specific surface area of the inorganic filler is preferably 1 m 2 / g to 300 m 2 / g, and more preferably 10 m 2 / g to 200 m 2 / g.
Among inorganic fillers, it is preferable to use fumed silica. As used herein, fumed silica refers to anhydrous silica in the form of ultrafine particles (BET specific surface area of 30 m 2 / g to 500 m 2 / g), and hydrolyzes silanes such as silicon tetrachloride in a flame of oxygen and hydrogen. Manufactured. Since it is synthesized by the gas phase method, the primary particle size is small and the BET specific surface area is large. By using an inorganic filler having a high BET specific surface area, the viscosity of the composition for forming an impurity diffusion layer is reduced by the interaction with the dispersion medium (solvent) whose viscosity has been lowered in the drying process due to physical and van der Waals forces. Tends to be suppressed. The BET specific surface area can be calculated from an adsorption isotherm of nitrogen at −196 ° C. For example, it can be measured using BELSORP (manufactured by Nippon Bell Co., Ltd.).
 前記フュームドシリカは親水性であっても疎水性であってもどちらでもよいが、疎水化処理により疎水性とされたフュームドシリカを用いることが好ましい。疎水性とする方法としては、無水シリカ粒子の表面を、メチル基、エチル基、プロピル基、ブチル基、フェニル基等の有機官能基を有するシランカップリング剤などで、ディップ、スプレー等により表面処理する方法を挙げることができる。ここでフュームドシリカが疎水性であるとは、水-メタノールの比を変えて該溶液に対する粒子の浮遊割合を測定する方法によって求められる疎水化度において、浮遊量0%となるメタノール濃度が30容量%以上である場合をいう。 The fumed silica may be either hydrophilic or hydrophobic, but it is preferable to use fumed silica made hydrophobic by a hydrophobizing treatment. Hydrophobic silica particles can be treated with a silane coupling agent having an organic functional group such as methyl, ethyl, propyl, butyl, or phenyl with a surface treatment by dipping or spraying. The method of doing can be mentioned. Here, the fumed silica is hydrophobic if the methanol concentration at which the floating amount becomes 0% is 30% in the degree of hydrophobicity determined by the method of measuring the floating ratio of particles with respect to the solution by changing the water-methanol ratio. This refers to the case where the volume is at least%.
 無機フィラーを用いる場合において、不純物拡散層形成組成物中の無機フィラーの含有率は0.01質量%~20質量%であることが好ましく、0.1質量%~10質量%であることがより好ましく、更に好ましくは0.5質量%~3質量%である。0.01質量以上とすることで、乾燥工程における熱だれの発生をより効果的に抑制する効果が得られ、20質量%以下とすることで不純物拡散層形成組成物の塗布特性(細線形成性、印刷時のにじみ抑制、熱乾燥時の熱だれ抑制)をより効果的に確保することができる。 In the case of using an inorganic filler, the content of the inorganic filler in the impurity diffusion layer forming composition is preferably 0.01% by mass to 20% by mass, more preferably 0.1% by mass to 10% by mass. Preferably, it is 0.5 to 3% by mass. By setting it to 0.01 mass or more, the effect of more effectively suppressing the occurrence of heat dripping in the drying process is obtained, and by setting it to 20 mass% or less, the coating characteristics (fine wire formability) of the impurity diffusion layer forming composition In addition, it is possible to more effectively ensure suppression of bleeding during printing and suppression of dripping during heat drying.
 無機フィラーを用いる場合において、前記脂肪酸アミドと前記無機フィラーとの比(質量基準)は、10:90~99:1が好ましく、30:70~95:5が更に好ましい。 In the case of using an inorganic filler, the ratio (mass basis) between the fatty acid amide and the inorganic filler is preferably 10:90 to 99: 1, and more preferably 30:70 to 95: 5.
 前記不純物拡散層形成組成物が無機フィラーを含む場合、無機フィラーは不純物拡散層形成組成物中で分散していることが好ましい。無機フィラーの分散方法に特に制限はなく、無機フィラーが不純物拡散層形成組成物に含まれる分散媒に溶解する場合は特に分散する必要はない。無機フィラーが前記分散媒に溶解しない場合、超音波分散、ビーズミル、ボールミル、ホモジナイザー、サンドミル、ロール、ニーダー、ディゾルバー、攪拌羽根を用いて分散することが好ましい。 When the impurity diffusion layer forming composition contains an inorganic filler, the inorganic filler is preferably dispersed in the impurity diffusion layer forming composition. There is no restriction | limiting in particular in the dispersion | distribution method of an inorganic filler, When an inorganic filler melt | dissolves in the dispersion medium contained in an impurity diffusion layer forming composition, it is not necessary to disperse | distribute in particular. When the inorganic filler does not dissolve in the dispersion medium, it is preferable to disperse using an ultrasonic dispersion, a bead mill, a ball mill, a homogenizer, a sand mill, a roll, a kneader, a dissolver, and a stirring blade.
-アルコキシシラン-
 本発明の不純物拡散層形成組成物は、アルコキシシランの1種以上を更に含んでいてもよい。アルコキシシランを含むことで、不純物拡散層形成組成物の乾燥時における不純物拡散層形成組成物の粘度を保持しやすい傾向にある。アルコキシシランを構成するアルコキシ基としては、直鎖状又は分岐鎖状のアルコキシ基であることが好ましく、より好ましくは炭素数1~24の直鎖状又は分岐鎖状のアルコキシ基であり、更に好ましくは炭素数1~10の直鎖状又は分岐鎖状のアルコキシ基であり、特に好ましくは炭素数1~4の直鎖状又は分岐鎖状のアルコキシ基である。
-Alkoxysilane-
The impurity diffusion layer forming composition of the present invention may further contain one or more alkoxysilanes. By including the alkoxysilane, the viscosity of the impurity diffusion layer forming composition tends to be maintained when the impurity diffusion layer forming composition is dried. The alkoxy group constituting the alkoxysilane is preferably a linear or branched alkoxy group, more preferably a linear or branched alkoxy group having 1 to 24 carbon atoms, still more preferably Is a linear or branched alkoxy group having 1 to 10 carbon atoms, particularly preferably a linear or branched alkoxy group having 1 to 4 carbon atoms.
 前記アルコキシ基におけるアルキル基として具体的には、メチル基、エチル基、プロピル基、ブチル基、イソプロピル基、イソブチル基、ペンチル基、ヘキシル基、オクチル基、2-エチルヘキシル基、t-オクチル基、デシル基、ドデシル基、テトラデシル基、2-ヘキシルデシル基、ヘキサデシル基、オクタデシル基、シクロヘキシルメチル基、オクチルシクロヘキシル基等を挙げることができる。
 これらの中でもテトラメトキシシラン、テトラエトキシシラン、又はテトライソプロポキシシランを用いることが好ましい。
Specific examples of the alkyl group in the alkoxy group include methyl group, ethyl group, propyl group, butyl group, isopropyl group, isobutyl group, pentyl group, hexyl group, octyl group, 2-ethylhexyl group, t-octyl group, decyl group. Group, dodecyl group, tetradecyl group, 2-hexyldecyl group, hexadecyl group, octadecyl group, cyclohexylmethyl group, octylcyclohexyl group and the like.
Among these, it is preferable to use tetramethoxysilane, tetraethoxysilane, or tetraisopropoxysilane.
 本発明の不純物拡散層形成組成物がアルコキシシランを含有する場合のアルコキシシランの含有率に特に制限は無く、0.1質量%~30質量%であることが好ましく、1質量%~20質量%であることがより好ましく、2質量%~10質量%であることが更に好ましい。 When the impurity diffusion layer forming composition of the present invention contains alkoxysilane, the content of alkoxysilane is not particularly limited and is preferably 0.1% by mass to 30% by mass, and preferably 1% by mass to 20% by mass. More preferably, it is more preferably 2% by mass to 10% by mass.
-シリコーン樹脂-
 本発明の不純物拡散層形成組成物は、シリコーン樹脂の1種以上を更に含んでいてもよい。シリコーン樹脂を含むことで、不純物拡散層形成組成物の印刷物の膜厚の均一性を向上できる傾向にある。シリコーン樹脂としては、オルガノポリシロキサン、変性シリコーン樹脂等を例示することができる。
-Silicone resin-
The impurity diffusion layer forming composition of the present invention may further contain one or more silicone resins. By including the silicone resin, the film thickness uniformity of the printed matter of the impurity diffusion layer forming composition tends to be improved. Examples of the silicone resin include organopolysiloxane and modified silicone resin.
-還元性化合物-
 前記不純物拡散層形成組成物は、還元性化合物の1種以上を更に含有してもよい。還元性化合物としては、ポリエチレングリコール、ポリプロピレングリコール等のポリアルキレングリコール及びポリアルキレングリコールの末端アルキル化物;グルコース、フルクトース、ガラクトース等の単糖類及び単糖類の誘導体;スクロース、マルトース等の二糖類及び二糖類の誘導体;並びに多糖類及び多糖類の誘導体;などを挙げることができる。これらの有機化合物の中でも、ポリアルキレングリコールが好ましく、ポリプロピレングリコールが更に好ましい。還元性化合物を更に加えることで、ドナー元素又はアクセプタ元素の半導体基板への拡散が容易になる場合がある。
-Reducing compounds-
The impurity diffusion layer forming composition may further contain one or more reducing compounds. Examples of the reducing compound include polyalkylene glycols such as polyethylene glycol and polypropylene glycol, and terminal alkylated products of polyalkylene glycols; monosaccharides such as glucose, fructose and galactose, and derivatives of monosaccharides; disaccharides and disaccharides such as sucrose and maltose And polysaccharides and polysaccharide derivatives; and the like. Among these organic compounds, polyalkylene glycol is preferable, and polypropylene glycol is more preferable. By further adding a reducing compound, the diffusion of the donor element or the acceptor element into the semiconductor substrate may be facilitated.
-その他の含有物-
 本発明の不純物拡散層形成組成物は、電極形成用組成物と区別されることから、導電物質である金属を主成分とせず、金属の含有率は50質量%未満であり、30質量%以下であることが好ましく、10質量%以下であることがより好ましく、5質量%以下であることが更に好ましい。そして、本発明の不純物拡散層形成組成物は、ドナー元素含有化合物中及びアクセプタ元素含有化合物中以外に、金属を実質的に含有しないこと(0.5質量%以下)が好ましく、金属を含有しないこと(0質量%)がより好ましい。
-Other inclusions-
Since the impurity diffusion layer forming composition of the present invention is distinguished from the electrode forming composition, the metal as a conductive material is not a main component, and the metal content is less than 50% by mass and 30% by mass or less. Preferably, it is 10 mass% or less, more preferably 5 mass% or less. And it is preferable that the impurity diffusion layer forming composition of this invention does not contain a metal substantially (0.5 mass% or less) other than in a donor element containing compound and an acceptor element containing compound, and does not contain a metal. (0% by mass) is more preferable.
(不純物拡散層形成組成物の製造方法)
 本発明の不純物拡散層形成組成物の製造方法は特に制限されない。例えばドナー元素を含む化合物又はアクセプタ元素を含む化合物、脂肪酸アミド、分散媒及び必要に応じて加えられる成分をブレンダー、ミキサ、乳鉢、ローター等を用いて混合することで得ることができる。また、混合する際は、必要に応じて熱を加えてもよい。混合に際して加熱する場合、その温度は例えば30℃~100℃とすることができる。
(Method for producing impurity diffusion layer forming composition)
The method for producing the impurity diffusion layer forming composition of the present invention is not particularly limited. For example, it can be obtained by mixing a compound containing a donor element or a compound containing an acceptor element, a fatty acid amide, a dispersion medium and components added as necessary using a blender, a mixer, a mortar, a rotor or the like. Moreover, when mixing, you may add a heat | fever as needed. When heating at the time of mixing, the temperature can be, for example, 30 ° C. to 100 ° C.
(不純物拡散層形成組成物の物性値等の測定方法)
 なお、前記不純物拡散層形成組成物中に含まれる成分、及び各成分の含有量はTG/DTA等の熱分析、NMR、HPLC、GPC、GC-MS、IR、MALDI-MSなどを用いて確認することができる。
(Measuring method of physical properties of impurity diffusion layer forming composition)
The components contained in the impurity diffusion layer forming composition and the content of each component are confirmed using thermal analysis such as TG / DTA, NMR, HPLC, GPC, GC-MS, IR, MALDI-MS, etc. can do.
 本発明の不純物拡散層形成組成物の粘弾性に特に制限はないが、付与性を考慮して、せん断速度0.01s-1のときのせん断粘度(25℃)が、50Pa・s以上、10000Pa・s以下であることが好ましく、100Pa・s以上、6000Pa・s以下であることがより好ましい。せん断速度0.01s-1のときのせん断粘度(25℃)が50Pa・s以上であると、スクリーン印刷における塗膜の厚みが均一になる傾向にあり、10000Pa・s以下であると、スクリーンマスク版の目詰まりが起き難くなる傾向にある。 The viscoelasticity of the impurity diffusion layer forming composition of the present invention is not particularly limited, but considering the impartability, the shear viscosity (25 ° C.) at a shear rate of 0.01 s −1 is 50 Pa · s or more and 10,000 Pa. It is preferably s or less, and more preferably 100 Pa · s or more and 6000 Pa · s or less. If the shear viscosity (25 ° C.) at a shear rate of 0.01 s −1 is 50 Pa · s or more, the thickness of the coating film in screen printing tends to be uniform, and if it is 10000 Pa · s or less, a screen mask There is a tendency that clogging of the plate is less likely to occur.
 不純物拡散層形成組成物のチクソトロピック特性(以下、チキソ性と記す)に特に制限は無いが、25℃でせん断速度がx[s-1]のときのせん断粘度ηの対数をlog10)と表記し、チキソ性を示すTI値を[log100.01)-log1010)]としたときに、TI値は0.5以上、6.0以下であることが好ましく、0.5以上、4.0以下であることがより好ましく、0.5以上、3.0以下であることが更に好ましい。TI値が0.5以上であると、スクリーン印刷後の不純物拡散層形成組成物層の液だれが起き難く、6.0以下であると、連続印刷時の付与量が安定する傾向にある。また、このことは他の付与方法、例えばインクジェット法においても同様の効果が得られる。
 また、せん断粘度は、粘弾性測定装置(Anton Paar社製レオメーターMCR301)を用いて測定することができる。
Thixotropic properties of the impurity diffusion layer forming composition (hereinafter referred to as thixotropy) is not particularly limited, the logarithm of the shear viscosity eta x at a shear rate of at 25 ° C. is x [s -1] log 10 ( denoted as eta x), the TI value indicating the thixotropy when the [log 10 (η 0.01) -log 10 (η 10)], TI value of 0.5 or more, is 6.0 or less It is preferably 0.5 or more and 4.0 or less, more preferably 0.5 or more and 3.0 or less. When the TI value is 0.5 or more, dripping of the impurity diffusion layer forming composition layer after screen printing hardly occurs, and when it is 6.0 or less, the application amount during continuous printing tends to be stable. In addition, the same effect can be obtained in other application methods such as an ink jet method.
Further, the shear viscosity can be measured using a viscoelasticity measuring apparatus (Rheometer MCR301 manufactured by Anton Paar).
<不純物拡散層付き半導体基板の製造方法、及び太陽電池素子の製造方法>
 本発明の不純物拡散層付き半導体基板の製造方法は、半導体基板上の全部又は一部に、本発明の不純物拡散層形成組成物を付与して不純物拡散層形成組成物層を形成する工程と、前記不純物拡散層形成組成物層が形成された前記半導体基板に熱処理を施す工程と、を有する。また、本発明の太陽電池素子の製造方法は、半導体基板上の全部又は一部に、本発明の不純物拡散層形成組成物を付与して不純物拡散層形成組成物層を形成する工程と、前記不純物拡散層形成組成物層が形成された前記半導体基板に熱処理を施して不純物拡散層を形成する工程と、形成された前記不純物拡散層上に電極を形成する工程と、を有する。本発明の不純物拡散層付き半導体基板の製造方法及び太陽電池素子の製造方法は、必要に応じてその他の工程を更に有していてもよい。
<Manufacturing method of semiconductor substrate with impurity diffusion layer and manufacturing method of solar cell element>
The method for producing a semiconductor substrate with an impurity diffusion layer of the present invention includes a step of forming the impurity diffusion layer forming composition layer by applying the impurity diffusion layer forming composition of the present invention to all or part of the semiconductor substrate; Heat-treating the semiconductor substrate on which the impurity diffusion layer forming composition layer is formed. Further, the method for producing a solar cell element of the present invention includes a step of forming the impurity diffusion layer forming composition layer by applying the impurity diffusion layer forming composition of the present invention to all or part of the semiconductor substrate, The semiconductor substrate on which the impurity diffusion layer forming composition layer is formed includes a step of performing a heat treatment to form an impurity diffusion layer, and a step of forming an electrode on the formed impurity diffusion layer. The method for producing a semiconductor substrate with an impurity diffusion layer and the method for producing a solar cell element of the present invention may further include other steps as necessary.
 以下に、本発明の不純物拡散層付き半導体基板の製造方法、及び太陽電池素子の製造方法について、図1を参照しながら説明する。図1は、本発明の太陽電池素子の製造方法の一例を概念的に表す模式断面図である。以降の図面においては、共通する構成要素に同じ符号を付す。また、各構成要素の大きさは一例であり、各構成要素間の大きさの相対的な関係を制限するものではない。なお、図1ではn型の不純物拡散層(n型拡散層)の製造工程を示すが、本発明の不純物拡散層形成組成物はp型の不純物拡散層(p型拡散層)の製造工程においても同様に用いることができる。 Hereinafter, a method for manufacturing a semiconductor substrate with an impurity diffusion layer and a method for manufacturing a solar cell element according to the present invention will be described with reference to FIG. FIG. 1 is a schematic cross-sectional view conceptually showing an example of a method for producing a solar cell element of the present invention. In the subsequent drawings, common constituent elements are denoted by the same reference numerals. Moreover, the magnitude | size of each component is an example, and does not restrict | limit the relative relationship of the magnitude | size between each component. 1 shows the manufacturing process of the n-type impurity diffusion layer (n-type diffusion layer), the impurity diffusion layer forming composition of the present invention is used in the manufacturing process of the p-type impurity diffusion layer (p-type diffusion layer). Can be used similarly.
 図1(1)では、p型半導体基板10であるシリコン基板にアルカリ溶液を付与してダメージ層を除去し、テクスチャー構造をエッチングにて得る。
 詳細には、インゴットからスライスした際に発生するシリコン基板表面のダメージ層を20質量%苛性ソーダで除去する。次いで1質量%苛性ソーダと10質量%イソプロピルアルコールの混合液によりエッチングを行い、受光面(表面)側にテクスチャー構造を形成する(図中ではテクスチャー構造の記載を省略する)。太陽電池素子は、受光面(表面)側にテクスチャー構造を形成することにより、光閉じ込め効果が促され、高効率化が図られる。
In FIG. 1A, an alkaline solution is applied to a silicon substrate which is a p-type semiconductor substrate 10 to remove a damaged layer, and a texture structure is obtained by etching.
Specifically, the damaged layer on the surface of the silicon substrate generated when slicing from the ingot is removed with 20% by mass caustic soda. Next, etching is performed with a mixed solution of 1% by mass caustic soda and 10% by mass isopropyl alcohol to form a texture structure on the light receiving surface (surface) side (the description of the texture structure is omitted in the figure). In the solar cell element, by forming a texture structure on the light receiving surface (surface) side, a light confinement effect is promoted, and high efficiency is achieved.
 図1(2)では、p型半導体基板10の表面すなわち受光面となる面に、上記n型拡散層形成組成物を付与して、n型拡散層形成組成物層11を形成する。なお、本発明に係るn型拡散層形成組成物を用いれば、半導体基板上に細線状に付与した場合であってもパターンの幅太りを抑えることが可能である。本発明では、付与方法には制限がないが、スクリーン印刷等の印刷法、スピン法、刷毛塗り、スプレー法、ドクターブレード法、ロールコーター法、インクジェット法などが挙げられる。
 上記n型拡散層形成組成物の塗布量としては特に制限は無いが、例えば、ドナー元素を含む化合物又はアクセプタ元素を含む化合物の量として、0.01g/m~100g/mとすることが好ましく、0.1g/m~10g/mであることがより好ましい。
In FIG. 1 (2), the n-type diffusion layer forming composition layer 11 is formed by applying the n-type diffusion layer forming composition to the surface of the p-type semiconductor substrate 10, that is, the surface serving as the light receiving surface. In addition, if the composition for forming an n-type diffusion layer according to the present invention is used, it is possible to suppress an increase in the width of the pattern even when it is applied in a thin line shape on a semiconductor substrate. In the present invention, the application method is not limited, and examples thereof include a printing method such as screen printing, a spin method, a brush coating, a spray method, a doctor blade method, a roll coater method, and an ink jet method.
The coating amount of the n-type diffusion layer forming composition is not particularly limited. For example, the amount of the compound containing a donor element or the compound containing an acceptor element should be 0.01 g / m 2 to 100 g / m 2. Is preferable, and more preferably 0.1 g / m 2 to 10 g / m 2 .
 また、線幅の設計値に対する線太りの比率(形成されたn型拡散層形成組成物層の線幅/設計値×100)は、200%以内であることが好ましく、180%以内であることがより好ましく、150%以内であることがさらに好ましく、120%以内であることが特に好ましい。 Further, the ratio of the line thickness to the design value of the line width (line width of the formed n-type diffusion layer forming composition layer / design value × 100) is preferably within 200%, and within 180%. Is more preferably 150% or less, and particularly preferably 120% or less.
 なお、不純物拡散層形成組成物の組成によっては、塗布後に、不純物拡散層形成組成物中に含まれる溶剤を分解又は揮発させるための乾燥工程が必要な場合がある。この場合には、80℃~300℃程度の温度で、ホットプレートを使用する場合は1分~10分、乾燥機等を用いる場合は10分~30分程度で乾燥させる。この乾燥条件は、不純物拡散層形成組成物の溶剤組成に依存しており、本発明では特に上記条件に限定されない。 Depending on the composition of the impurity diffusion layer forming composition, a drying step for decomposing or volatilizing the solvent contained in the impurity diffusion layer forming composition may be necessary after coating. In this case, drying is performed at a temperature of about 80 ° C. to 300 ° C. for about 1 to 10 minutes when using a hot plate, and about 10 to 30 minutes when using a dryer or the like. The drying conditions depend on the solvent composition of the impurity diffusion layer forming composition and are not particularly limited to the above conditions in the present invention.
 図1(3)では、上記n型拡散層形成組成物11を塗布した半導体基板10を、熱処理(熱拡散処理)する。熱処理の温度は特に制限はないが、600℃~1200℃であることが好ましく、750℃~1050℃であることがより好ましい。また、熱処理の時間は特に制限はないが、1分~30分間で行なうことが好ましい。この熱処理により半導体基板中へドナー元素が拡散し、n型拡散層12が形成される。熱処理には公知の連続炉、バッチ炉等が適用できる。また、熱処理時の炉内雰囲気は、空気、酸素、窒素等に適宜調整することもできる。 1 (3), the semiconductor substrate 10 coated with the n-type diffusion layer forming composition 11 is heat-treated (thermal diffusion treatment). The temperature of the heat treatment is not particularly limited, but is preferably 600 ° C. to 1200 ° C., more preferably 750 ° C. to 1050 ° C. The time for the heat treatment is not particularly limited, but it is preferably 1 to 30 minutes. By this heat treatment, the donor element diffuses into the semiconductor substrate, and the n-type diffusion layer 12 is formed. A known continuous furnace, batch furnace, or the like can be applied to the heat treatment. Moreover, the furnace atmosphere at the time of heat processing can also be suitably adjusted to air, oxygen, nitrogen, etc.
 n型拡散層12の表面には、リン酸ガラス等のガラス層(不図示)が形成されているため、このリン酸ガラスをエッチングにより除去する。エッチングとしては、ふっ酸等の酸に浸漬する方法、苛性ソーダ等のアルカリに浸漬する方法など公知の方法が適用できる。 Since a glass layer (not shown) such as phosphate glass is formed on the surface of the n-type diffusion layer 12, this phosphate glass is removed by etching. As the etching, a known method such as a method of immersing in an acid such as hydrofluoric acid or a method of immersing in an alkali such as caustic soda can be applied.
 なお、選択エミッタ構造の太陽電池素子の製造では、図1(4)に示すように、電極位置にn型拡散層12を形成し、その他の受光面領域には、n型拡散層12よりもドナー元素の拡散濃度が低いn型拡散層13を形成する。n型拡散層13の形成方法としては特に制限はなく、ドナー元素の含有率が低い不純物拡散層形成組成物を用いる方法、オキシ塩化リンによる気相反応法等が挙げられる。 In the manufacture of a solar cell element having a selective emitter structure, as shown in FIG. 1 (4), an n-type diffusion layer 12 is formed at the electrode position, and the other light-receiving surface regions are formed more than the n-type diffusion layer 12. An n-type diffusion layer 13 having a low donor element diffusion concentration is formed. The method for forming the n-type diffusion layer 13 is not particularly limited, and examples thereof include a method using an impurity diffusion layer forming composition having a low donor element content and a gas phase reaction method using phosphorus oxychloride.
 図1(2)及び(3)に示される、本発明のn型拡散層形成組成物層11を用いてn型拡散層12を形成する本発明の不純物拡散層(n型拡散層)付き半導体基板の形成方法では、所望の部位にのみn型拡散層12が形成され、n型拡散層形成組成物層が形成された領域以外の領域、裏面及び側面には不要なn型拡散層が形成されない。
 したがって、従来広く採用されている気相反応法によりn型拡散層を形成する方法では、側面に形成された不要なn型拡散層を除去するためのサイドエッチ工程が必須であったが、本発明の製造方法によれば、サイドエッチ工程が不要となり、工程が簡易化される。ただし、n型拡散層13の形成において気相反応法を用いた場合にはサイドエッチング工程が必要となる。
The semiconductor with an impurity diffusion layer (n-type diffusion layer) of the present invention, which is shown in FIGS. 1 (2) and (3) and forms the n-type diffusion layer 12 using the n-type diffusion layer forming composition layer 11 of the present invention. In the substrate forming method, the n-type diffusion layer 12 is formed only in a desired portion, and unnecessary n-type diffusion layers are formed in the region other than the region where the n-type diffusion layer forming composition layer is formed, the back surface, and the side surface. Not.
Therefore, in the conventional method of forming an n-type diffusion layer by a gas phase reaction method, a side etch process for removing an unnecessary n-type diffusion layer formed on a side surface is essential. According to the manufacturing method of the invention, the side etch process is not required, and the process is simplified. However, when the vapor phase reaction method is used in forming the n-type diffusion layer 13, a side etching process is required.
 図1(5)では、n型拡散層12の上に反射防止膜14を形成する。反射防止膜14は公知の技術を適用して形成される。例えば、反射防止膜14がシリコン窒化膜の場合には、SiH4とNH3の混合ガスを原料とするプラズマCVD法により形成する。このとき、水素が結晶中に拡散し、シリコン原子の結合に寄与しない軌道、即ちダングリングボンドと水素が結合し、欠陥を不活性化(水素パッシベーション)する。
 より具体的には、上記混合ガス流量比NH/SiHが0.05~1.0、反応室の圧力が13.3Pa(0.1Torr)~266.6Pa(2Torr)、成膜時の温度が300℃~550℃、プラズマの放電のための周波数が100kHz以上の条件下で形成される。反射防止膜の膜厚に特に制限は無いが、10nm~300nmとすることが好ましく、30nm~150nmとすることがより好ましい。
In FIG. 1 (5), an antireflection film 14 is formed on the n-type diffusion layer 12. The antireflection film 14 is formed by applying a known technique. For example, when the antireflection film 14 is a silicon nitride film, it is formed by a plasma CVD method using a mixed gas of SiH4 and NH3 as a raw material. At this time, hydrogen diffuses into the crystal, and orbits that do not contribute to the bonding of silicon atoms, that is, dangling bonds and hydrogen are combined to inactivate defects (hydrogen passivation).
More specifically, the mixed gas flow ratio NH 3 / SiH 4 is 0.05 to 1.0, the reaction chamber pressure is 13.3 Pa (0.1 Torr) to 266.6 Pa (2 Torr), It is formed under conditions where the temperature is 300 ° C. to 550 ° C. and the frequency for plasma discharge is 100 kHz or more. The thickness of the antireflection film is not particularly limited, but is preferably 10 nm to 300 nm, and more preferably 30 nm to 150 nm.
 図1(6)では、表面(受光面)の反射防止膜14上に、表面電極用金属ペーストをスクリーン印刷法で印刷付与し、乾燥させ、表面電極用金属ペースト層15’を形成する。表面電極用金属ペーストは、(1)金属粒子と(2)ガラス粒子とを必須成分とし、必要に応じて(3)樹脂バインダ、(4)その他の添加剤等を含む。 In FIG. 1 (6), a surface electrode metal paste is printed on the antireflection film 14 on the surface (light receiving surface) by screen printing and dried to form a surface electrode metal paste layer 15 '. The metal paste for a surface electrode includes (1) metal particles and (2) glass particles as essential components, and includes (3) a resin binder, (4) other additives, and the like as necessary.
 次いで、上記裏面の高濃度電界層16及び裏面電極17を形成する。一般的にはアルミニウムを含む裏面電極用金属ペーストを用いて、裏面電極用金属ペースト層を形成し、これを焼成処理することで裏面電極17を形成すると同時に裏面にp型拡散層(高濃度電界層)16を形成する。このとき裏面に、モジュール工程における太陽電池素子間の接続のために、一部に銀電極形成用銀ペーストを付与してもよい。 Next, the high-concentration electric field layer 16 and the back surface electrode 17 on the back surface are formed. In general, a back electrode metal paste layer containing aluminum is used to form a back electrode metal paste layer, which is fired to form the back electrode 17 and at the same time a p + -type diffusion layer (high concentration on the back surface). Electric field layer) 16 is formed. At this time, a silver paste for forming a silver electrode may be partially applied to the back surface for connection between solar cell elements in the module process.
 従来の製造方法では、上記のようにアルミニウム等を用いて裏面に形成されたn型拡散層をp型拡散層へ変換する必要があった。この方法においてp型拡散層への変換を充分なものとし、更にp拡散層の高濃度電界層を形成するためには、ある程度以上のアルミニウム量が必要であることから、アルミニウム層を厚く形成する必要があった。しかしながら、アルミニウムの熱膨張率は、基板として用いるシリコンの熱膨張率と大きく異なることから、焼成及び冷却の過程で半導体基板中に大きな内部応力が発生し、半導体基板であるシリコン基板の反りの原因となっていた。
 この内部応力は、結晶の結晶粒界に損傷を与え、電力損失が大きくなるという課題があった。また、反りは、モジュール工程における太陽電池素子の搬送時、タブ線と呼ばれる銅線との接続時等において、セルを破損させ易くしていた。近年では、スライス加工技術の向上から、半導体基板の厚みが薄型化されつつあり、更に太陽電池素子が割れ易い傾向にある。
In the conventional manufacturing method, it was necessary to convert the n-type diffusion layer formed on the back surface using aluminum or the like as described above into the p-type diffusion layer. In this method, the conversion to the p-type diffusion layer is sufficient, and in order to form the high concentration electric field layer of the p + diffusion layer, an aluminum amount of a certain amount or more is required. There was a need to do. However, since the thermal expansion coefficient of aluminum is significantly different from that of silicon used as a substrate, a large internal stress is generated in the semiconductor substrate during the firing and cooling process, causing the warpage of the silicon substrate as the semiconductor substrate. It was.
This internal stress has a problem that the crystal grain boundary is damaged and the power loss increases. Further, the warp easily causes the cell to be damaged when the solar cell element is transported in the module process or when it is connected to a copper wire called a tab wire. In recent years, the thickness of the semiconductor substrate is being reduced due to the improvement of the slice processing technique, and the solar cell element tends to be easily broken.
 しかしながら、図1(2)及び(3)のn型拡散層の形成において、本発明のn型拡散層形成組成物を用いれば、裏面に不要なn型拡散層が形成されないことから、n型拡散層からp型拡散層への変換を行う必要がなくなり、アルミニウム層を厚くする必然性がなくなる。その結果、半導体基板内における内部応力の発生及び半導体基板の反りを抑えることができる。結果として、電力損失の増大を抑制でき、太陽電池素子の破損を抑えることが可能となる。 However, in the formation of the n-type diffusion layer of FIGS. 1 (2) and (3), if the n-type diffusion layer forming composition of the present invention is used, an unnecessary n-type diffusion layer is not formed on the back surface. It is not necessary to convert the diffusion layer to the p-type diffusion layer, and the necessity of increasing the thickness of the aluminum layer is eliminated. As a result, generation of internal stress in the semiconductor substrate and warpage of the semiconductor substrate can be suppressed. As a result, an increase in power loss can be suppressed and damage to the solar cell element can be suppressed.
 また、本発明のn型拡散層形成組成物を用いる場合、裏面のp型拡散層(高濃度電界層)16の製造方法はアルミニウムを含む裏面電極用金属ペーストによる方法に限定されることなく、従来公知のいずれの方法も採用でき、製造方法の選択肢が広がる。例えば、B(ボロン)などの第13族の元素を含むp型拡散層形成組成物を付与し、p型拡散層(高濃度電界層)16を形成することができる。このp型拡散層形成組成物として、本発明のp型拡散層形成組成物を用いることができる。 Moreover, when using the n type diffused layer formation composition of this invention, the manufacturing method of the p + type diffused layer (high concentration electric field layer) 16 of a back surface is not limited to the method by the metal paste for back surface electrodes containing aluminum. Any of the conventionally known methods can be adopted, and the options for the manufacturing method are expanded. For example, a p-type diffusion layer forming composition containing a Group 13 element such as B (boron) can be applied to form the p + -type diffusion layer (high concentration electric field layer) 16. As this p-type diffusion layer forming composition, the p-type diffusion layer forming composition of the present invention can be used.
 また、本発明の製造方法において、裏面電極17に用いる材料は第13族のアルミニウムに限定されず、Ag(銀)、Cu(銅)等を適用することができ、裏面の表面電極17の厚さも従来のものよりも薄く形成することが可能となる。裏面電極17の材質及び形成方法は特に限定されないが、例えば、アルミニウム、銀、銅等の金属を含む裏面電極用ペーストを塗布し、乾燥させて、裏面電極17を形成してもよい。 In the manufacturing method of the present invention, the material used for the back electrode 17 is not limited to Group 13 aluminum, and Ag (silver), Cu (copper), or the like can be applied. In addition, it can be formed thinner than the conventional one. The material and forming method of the back electrode 17 are not particularly limited. For example, the back electrode 17 may be formed by applying and drying a back electrode paste containing a metal such as aluminum, silver, or copper.
 図1(7)では、電極を焼成して、太陽電池素子を完成させる。600℃~900℃の範囲で数秒~数分間焼成することができる。このとき表面側では電極用金属ペーストに含まれるガラス粒子によって絶縁膜である反射防止膜14が溶融し、更に半導体基板10表面も一部溶融して、電極用金属ペースト中の金属粒子(例えば、銀粒子)が半導体基板10と接触部を形成し凝固する。これにより、形成した表面電極15と半導体基板10とが導通される。これはファイアースルーと称されている。 In FIG. 1 (7), the electrode is fired to complete the solar cell element. Firing can be performed in the range of 600 ° C. to 900 ° C. for several seconds to several minutes. At this time, on the surface side, the antireflection film 14 which is an insulating film is melted by the glass particles contained in the electrode metal paste, and the surface of the semiconductor substrate 10 is also partially melted, so that the metal particles in the electrode metal paste (for example, Silver particles) form contact portions with the semiconductor substrate 10 and solidify. Thereby, the formed surface electrode 15 and the semiconductor substrate 10 are electrically connected. This is called fire-through.
 表面電極15の形状について図2に基づき説明する。表面電極15は、バスバー電極30、及び該バスバー電極30と交差しているフィンガー電極32で構成される。図2(A)は、表面電極15を、バスバー電極30、及び該バスバー電極30と交差しているフィンガー電極32からなる構成とした太陽電池素子を表面から見た平面図であり、図2(B)は、図2(A)の一部を拡大して示す斜視図である。 The shape of the surface electrode 15 will be described with reference to FIG. The surface electrode 15 includes a bus bar electrode 30 and finger electrodes 32 intersecting with the bus bar electrode 30. FIG. 2A is a plan view of a solar cell element in which the surface electrode 15 includes a bus bar electrode 30 and a finger electrode 32 intersecting with the bus bar electrode 30 as viewed from the surface. FIG. 2B is an enlarged perspective view illustrating a part of FIG.
 このような表面電極15は、例えば、前述したように金属ペーストをスクリーン印刷等で付与し、これを焼成処理することで形成することができる。また電極材料のメッキ、高真空中における電子ビーム加熱による電極材料の蒸着等の手段により形成することができる。バスバー電極30とフィンガー電極32とからなる表面電極15は受光面側の電極として一般的に用いられていて周知であり、受光面側のバスバー電極及びフィンガー電極の公知の形成手段を適用することができる。 Such a surface electrode 15 can be formed, for example, by applying a metal paste by screen printing or the like as described above and baking the metal paste. Further, it can be formed by means such as plating of electrode material, vapor deposition of electrode material by electron beam heating in high vacuum. The surface electrode 15 composed of the bus bar electrode 30 and the finger electrode 32 is generally used as an electrode on the light receiving surface side and is well known, and it is possible to apply known forming means for the bus bar electrode and finger electrode on the light receiving surface side. it can.
 上記では、表面にn型拡散層、裏面にp型拡散層を形成し、更にそれぞれの層の上に表面電極及び裏面電極を設けた太陽電池素子について説明したが、本発明の不純物拡散層形成組成物を用いればバックコンタクト型の太陽電池素子を作製することも可能である。
 バックコンタクト型の太陽電池素子は、電極を全て裏面に設けて受光面の面積を大きくするものである。つまりバックコンタクト型の太陽電池素子では、裏面にn型拡散部位及びp型拡散部位の両方を形成しpn接合構造とする必要がある。本発明の不純物拡散層形成組成物は、特定の部位にのみ不純物拡散部位を形成することが可能であり、よってバックコンタクト型の太陽電池素子の製造に好適に適用することができる。
 前記太陽電池素子の製造方法で製造される太陽電池素子の形状及び大きさに制限はないが、一辺が125mm~156mmの正方形であることが好ましい。
In the above description, the solar cell element in which the n-type diffusion layer is formed on the front surface, the p + -type diffusion layer is formed on the back surface, and the front surface electrode and the back surface electrode are provided on the respective layers has been described. If the forming composition is used, a back contact type solar cell element can be produced.
The back contact type solar cell element has all electrodes provided on the back surface to increase the area of the light receiving surface. That is, in the back contact type solar cell element, it is necessary to form both the n-type diffusion region and the p + -type diffusion region on the back surface to form a pn junction structure. The impurity diffusion layer forming composition of the present invention can form an impurity diffusion site only at a specific site, and therefore can be suitably applied to the production of a back contact type solar cell element.
Although there is no restriction | limiting in the shape and magnitude | size of the solar cell element manufactured with the said manufacturing method of a solar cell element, It is preferable that one side is a square with 125 mm-156 mm.
<太陽電池>
 前記製造方法で製造された太陽電池素子は、太陽電池の製造に用いられる。太陽電池は、前記製造方法で製造された太陽電池素子の1種以上を含み、太陽電池素子の電極上に配線材料が配置されて構成される。太陽電池は更に必要に応じて、配線材料を介して複数の太陽電池素子が連結され、更に封止材で封止されて構成されていてもよい。
 前記配線材料及び封止材としては特に制限されず、当業界で通常用いられているものから適宜選択することができる。
 太陽電池の形状及び大きさに特に制限はないが、0.5m~3mであることが好ましい。
<Solar cell>
The solar cell element manufactured by the manufacturing method is used for manufacturing a solar cell. The solar cell includes at least one type of solar cell element manufactured by the manufacturing method, and is configured by arranging a wiring material on the electrode of the solar cell element. If necessary, the solar cell may be constituted by connecting a plurality of solar cell elements via a wiring material and further sealing with a sealing material.
The wiring material and the sealing material are not particularly limited, and can be appropriately selected from those usually used in the industry.
There is no particular limitation on the shape and size of the solar cell, but it is preferably 0.5 m 2 to 3 m 2 .
 以下、本発明の実施例を更に具体的に説明するが、本発明はこれらの実施例に制限するものではない。なお、特に記述が無い限り、薬品は全て試薬を使用した。また「%」は断りがない限り「質量%」を意味する。
 また、各実施例及び比較例で使用したドーパント源化合物の成分を表1にまとめて示す。なお、実施例において、ドナー元素を含む化合物又はアクセプタ元素を含む化合物をドーパント源化合物と表記する。
Examples of the present invention will be described more specifically below, but the present invention is not limited to these examples. Unless otherwise stated, all chemicals used reagents. “%” Means “% by mass” unless otherwise specified.
Moreover, the component of the dopant source compound used by each Example and the comparative example is put together in Table 1, and is shown. In Examples, a compound containing a donor element or a compound containing an acceptor element is referred to as a dopant source compound.
[実施例1]
<合成例1>
(ドーパント源化合物1の合成)
 SiO(和光純薬工業株式会社製)、P(和光純薬工業株式会社製)、CaCO(和光純薬工業株式会社製)を原料として用い、それぞれのモル比がSiO:P:CaO=30:60:10となるように混合し、アルミナ坩堝に入れて、1400℃まで400℃/hで昇温後、1時間保持し、次いで急冷した。これを自動乳鉢混練装置を用いて粉砕して、ドナー元素を含むガラス(P-SiO-CaO系ガラス)粒子を得た。
[Example 1]
<Synthesis Example 1>
(Synthesis of dopant source compound 1)
SiO 2 (manufactured by Wako Pure Chemical Industries, Ltd.), P 2 O 5 (manufactured by Wako Pure Chemical Industries, Ltd.), CaCO 3 (manufactured by Wako Pure Chemical Industries, Ltd.) are used as raw materials, and the respective molar ratios are SiO 2 : P 2 O 5: CaO = 30 : 60: 10 were mixed so that, placed in an alumina crucible, after heating at 400 ° C. / h up to 1400 ° C., held for 1 hour and then quenched. This was pulverized using an automatic mortar kneader to obtain glass (P 2 O 5 —SiO 2 —CaO glass) particles containing a donor element.
 得られたガラス粒子の粉末X線回折(XRD)パターンをNiフィルターを用いたCu-Kα線を用いて、X線回折装置(株式会社リガク製、RINT-2000)により測定したところ、得られたガラス粒子は非晶質であることが確認された。 When the powder X-ray diffraction (XRD) pattern of the obtained glass particles was measured with an X-ray diffractometer (RINT-2000, manufactured by Rigaku Corporation) using Cu-Kα rays using a Ni filter, it was obtained. The glass particles were confirmed to be amorphous.
 得られたガラス粒子を30g、分散媒としてテルピネオール(日本テルペン化学株式会社)を、遊星ボールミル(フリッチュ社製)を用い、1mmのイットリア安定化ジルコニアビーズを用いて粉砕し、30%ガラス粒子分散テルピネオール溶液を調製した。ガラス粒子の体積平均粒子径をレーザー回折式粒度分布測定装置により測定したところ、0.3μmであった。得られた30%ガラス粒子分散テルピネオール溶液中のガラス粒子をドーパント源化合物1とする。 30 g of the obtained glass particles and terpineol (Nippon Terpene Chemical Co., Ltd.) as a dispersion medium were ground using a planetary ball mill (manufactured by Fritsch) using 1 mm yttria-stabilized zirconia beads, and 30% glass particle-dispersed terpineol. A solution was prepared. It was 0.3 micrometer when the volume average particle diameter of the glass particle was measured with the laser diffraction type particle size distribution measuring apparatus. Let the glass particle in the obtained 30% glass particle dispersion | distribution terpineol solution be the dopant source compound 1. FIG.
(不純物拡散層形成組成物1の調製)
 エチルセルロース(日進化成株式会社製エトセルSTD200、エチル化率50%)2.8g、及びステアリン酸アミド(分解温度:285℃、融点:98℃~102℃、和光純薬工業社製)10gをテルピネオール(日本テルペン化学株式会社、ターピネオール-LW)53.9gに加え、160℃で30分間かけて溶解した。次いで、100℃まで降温したあと、この溶液に合成例1で得られた30%ガラス粒子分散テルピネオール溶液33.3gを加え、100℃のままで30分間攪拌した後、室温まで冷却してペースト化し、不純物拡散層形成組成物1を調製した。
(Preparation of Impurity Diffusion Layer-Forming Composition 1)
Terpineol with 2.8 g of ethyl cellulose (Etsucel STD200, Nihon Kasei Co., Ltd., ethylation rate 50%) and 10 g of stearamide (decomposition temperature: 285 ° C., melting point: 98 ° C.-102 ° C., manufactured by Wako Pure Chemical Industries, Ltd.) In addition to 53.9 g (Nippon Terpene Chemical Co., Ltd., Terpineol-LW), it was dissolved at 160 ° C. over 30 minutes. Next, after the temperature was lowered to 100 ° C., 33.3 g of the 30% glass particle-dispersed terpineol solution obtained in Synthesis Example 1 was added to this solution, stirred at 100 ° C. for 30 minutes, and then cooled to room temperature to form a paste. An impurity diffusion layer forming composition 1 was prepared.
(せん断粘度の測定)
 なお、不純物拡散層形成組成物1のせん断粘度は、粘弾性測定装置(Anton Paar社製レオメーターMCR301)を用いて、せん断速度0.01s-1~10s-1の範囲内で、室温(25℃)における値を測定した。
 なお、せん断粘度は、コーンプレート(直径50mm、コーン角1°)を装着した回転式のせん断粘度計を用いて、温度25℃で測定される。
 不純物拡散層形成組成物1は、せん断速度0.01s-1におけるせん断粘度が、378Pa.s、一方、せん断速度10s-1におけるせん断粘度が23Pa・sを示し、せん断粘度の対数値の差(TI値)が1.22であった。
(Measurement of shear viscosity)
The impurity diffusion layer forming composition 1 has a shear viscosity of room temperature (25) within a shear rate of 0.01 s −1 to 10 s −1 using a viscoelasticity measuring device (Rheometer MCR301 manufactured by Anton Paar). C.) was measured.
The shear viscosity is measured at a temperature of 25 ° C. using a rotary shear viscometer equipped with a cone plate (diameter 50 mm, cone angle 1 °).
The impurity diffusion layer forming composition 1 has a shear viscosity of 378 Pa.s at a shear rate of 0.01 s −1 . On the other hand, the shear viscosity at a shear rate of 10 s −1 was 23 Pa · s, and the logarithmic value difference (TI value) of the shear viscosity was 1.22.
(線太りの測定)
 次に、上述の不純物拡散層形成組成物1をスクリーン印刷によって、p型シリコンウエハ表面に細線状に塗布し、150℃のホットプレート上で1分間乾燥させた。なお、不純物拡散層形成組成物1は、乾燥後に3mg/cmとなる量で付与した。スクリーン印刷版は150μm幅の細線を得るよう設計されたものを使用し、スキージ速度とスクレッパ速度はいずれも200mm/secとした。細線の太さをオリンパス株式会社製光学顕微鏡にて測長したところ、180μmであり、設計値からの線太りは35μm以内であった。
(Measurement of line weight)
Next, the impurity diffusion layer forming composition 1 described above was applied to the surface of the p-type silicon wafer in a fine line shape by screen printing and dried on a hot plate at 150 ° C. for 1 minute. The impurity diffusion layer forming composition 1 was applied in an amount of 3 mg / cm 2 after drying. The screen printing plate used was designed to obtain a thin line with a width of 150 μm, and the squeegee speed and scraper speed were both 200 mm / sec. When the thickness of the thin line was measured with an optical microscope manufactured by Olympus Corporation, it was 180 μm, and the line thickness from the design value was within 35 μm.
(シート抵抗の測定)
 別途、上述の不純物拡散層形成組成物1をp型シリコンウエハ表面にベタ状に塗布し、150℃のホットプレート上で1分間乾燥させた後、空気を5L/min.で流した900℃のトンネル炉(横型チューブ拡散炉 ACCURON CQ-1200、株式会社国際電気製)で10分間、熱処理(熱拡散処理)を行った。その後、p型シリコン基板表面上に形成されたガラス層を除去するため、基板を、2.5質量%HF水溶液に5分間浸漬し、次いで流水洗浄、超音波洗浄、乾燥を行って、n型拡散層が形成されたp型シリコン基板を得た。
(Sheet resistance measurement)
Separately, the impurity diffusion layer forming composition 1 described above was applied to the surface of the p-type silicon wafer in a solid form, dried on a hot plate at 150 ° C. for 1 minute, and then air was supplied at 5 L / min. Heat treatment (thermal diffusion treatment) was performed for 10 minutes in a 900 ° C. tunnel furnace (horizontal tube diffusion furnace ACCURON CQ-1200, manufactured by Kokusai Electric Co., Ltd.) flowed in Thereafter, in order to remove the glass layer formed on the surface of the p-type silicon substrate, the substrate is immersed in a 2.5% by mass HF aqueous solution for 5 minutes, and then washed with running water, ultrasonically washed, and dried to obtain n-type. A p-type silicon substrate on which a diffusion layer was formed was obtained.
 不純物拡散層形成組成物1をベタ状に塗布した側の表面のシート抵抗は40Ω/□であり、P(リン)が拡散しn型拡散層が形成されていた。裏面のシート抵抗は1000Ω/□以上で測定不能であり、n型拡散層は形成されていなかった。
 なお、シート抵抗は三菱化学株式会社製Loresta-EP MCP-T360型低抵抗率計を用いて四探針法により測定した。
The sheet resistance of the surface on which the impurity diffusion layer forming composition 1 was applied in a solid form was 40Ω / □, and P (phosphorus) was diffused to form an n-type diffusion layer. The sheet resistance on the back surface was 1000Ω / □ or more, which was not measurable, and the n-type diffusion layer was not formed.
The sheet resistance was measured by a four-probe method using a Loresta-EP MCP-T360 type low resistivity meter manufactured by Mitsubishi Chemical Corporation.
[実施例2]
 エチルセルロース1g、ステアリン酸アミド10gをテルピネオール55.7gに加え、160℃で30分間かけて溶解した。次いで、100℃まで降温したあと、この溶液に合成例1で得られた30%ガラス粒子分散テルピネオール溶液33.3gを加え、30分間攪拌した後、室温まで冷却してペースト化し、不純物拡散層形成組成物2を調製した。
[Example 2]
1 g of ethyl cellulose and 10 g of stearamide were added to 55.7 g of terpineol and dissolved at 160 ° C. over 30 minutes. Next, after the temperature was lowered to 100 ° C., 33.3 g of the 30% glass particle-dispersed terpineol solution obtained in Synthesis Example 1 was added to this solution, stirred for 30 minutes, cooled to room temperature, and pasted to form an impurity diffusion layer. Composition 2 was prepared.
 実施例1と同法にて不純物拡散層形成組成物2のせん断粘度(25℃)を調べたところ、せん断速度0.01s-1におけるせん断粘度が50Pa.s、一方、せん断速度10s-1におけるせん断粘度が1.36Pa・sを示し、せん断粘度の対数値の差(TI値)が1.57であった。 When the shear viscosity (25 ° C.) of the impurity diffusion layer forming composition 2 was examined by the same method as in Example 1, the shear viscosity at a shear rate of 0.01 s −1 was 50 Pa.s. On the other hand, the shear viscosity at a shear rate of 10 s −1 was 1.36 Pa · s, and the logarithmic value difference (TI value) of the shear viscosity was 1.57.
 次に、上述の不純物拡散層形成組成物2をスクリーン印刷によってp型シリコンウエハ表面に細線状に塗布し、150℃のホットプレート上で1分間乾燥させた。スクリーン印刷版は150μm幅の細線を得るよう設計されたものを使用し、スキージ速度とスクレッパ速度はいずれも300mm/secとした。細線の太さをオリンパス株式会社製光学顕微鏡にて測長したところ、185μmであり、設計値からの線太りは35μm以内であった。 Next, the impurity diffusion layer forming composition 2 described above was applied to the surface of the p-type silicon wafer by screen printing in a thin line shape and dried on a hot plate at 150 ° C. for 1 minute. The screen printing plate used was designed to obtain a thin line with a width of 150 μm, and the squeegee speed and scraper speed were both 300 mm / sec. When the thickness of the thin line was measured with an optical microscope manufactured by Olympus Corporation, it was 185 μm, and the line thickness from the design value was within 35 μm.
 別途、上述の不純物拡散層形成組成物2をp型シリコンウエハ表面にベタ状に塗布し、150℃のホットプレート上で1分間乾燥させた後、空気を5L/min.で流した900℃のトンネル炉(横型チューブ拡散炉 ACCURON CQ-1200、株式会社国際電気製)で10分間、熱処理(熱拡散処理)を行った。その後、p型シリコン基板表面上に形成されたガラス層を除去するため、基板を2.5質量%HF水溶液に5分間浸漬し、次いで流水洗浄、超音波洗浄、乾燥を行って、n型拡散層が形成されたp型シリコン基板を得た。 Separately, the impurity diffusion layer forming composition 2 described above was applied to the surface of the p-type silicon wafer in a solid form, dried on a hot plate at 150 ° C. for 1 minute, and then air was supplied at 5 L / min. Heat treatment (thermal diffusion treatment) was carried out for 10 minutes in a tunnel furnace (horizontal tube diffusion furnace ACCURON CQ-1200, manufactured by Kokusai Electric Co., Ltd.) at 900 ° C. that was flowed in Thereafter, in order to remove the glass layer formed on the surface of the p-type silicon substrate, the substrate is immersed in an aqueous 2.5% by mass HF solution for 5 minutes, and then washed with running water, ultrasonically washed, and dried, thereby performing n-type diffusion. A p-type silicon substrate having a layer formed thereon was obtained.
 不純物拡散層形成組成物2を塗布した側の表面のシート抵抗は40Ω/□であり、P(リン)が拡散しn型拡散層が形成されていた。裏面のシート抵抗は1000Ω/□以上で測定不能であり、n型拡散層は形成されていなかった。 The sheet resistance of the surface on which the impurity diffusion layer forming composition 2 was applied was 40Ω / □, and P (phosphorus) was diffused to form an n-type diffusion layer. The sheet resistance on the back surface was 1000Ω / □ or more, which was not measurable, and the n-type diffusion layer was not formed.
[実施例3]
 実施例1のステアリン酸アミドをN,N’-メチレンビスステアリン酸アミドに代えた以外は、実施例1と同様に実施し、不純物拡散層形成組成物3を得た。
[Example 3]
An impurity diffusion layer forming composition 3 was obtained in the same manner as in Example 1 except that stearic acid amide in Example 1 was replaced with N, N′-methylenebisstearic acid amide.
 実施例1と同法にて不純物拡散層形成組成物3のせん断粘度を調べたところ、せん断速度0.01s-1におけるせん断粘度が390Pa.s(25℃)、一方、せん断速度10s-1におけるせん断粘度が27Pa・sを示し、せん断粘度の対数値の差(TI値)が1.16であった。 When the shear viscosity of the impurity diffusion layer forming composition 3 was examined in the same manner as in Example 1, the shear viscosity at a shear rate of 0.01 s −1 was 390 Pa.s. On the other hand, the shear viscosity at a shear rate of 10 s −1 was 27 Pa · s, and the logarithmic value difference (TI value) of the shear viscosity was 1.16.
 次に、上述の不純物拡散層形成組成物3をスクリーン印刷によってp型シリコンウエハ表面に細線状に塗布し、150℃のホットプレート上で1分間乾燥させた。スクリーン印刷版は150μm幅の細線を得るよう設計されたものを使用し、スキージ速度とスクレッパ速度はいずれも300mm/secとした。細線の太さをオリンパス株式会社製光学顕微鏡にて測長したところ、175μmであり、設計値からの線太りは35μm以内であった。 Next, the impurity diffusion layer forming composition 3 described above was applied to the surface of the p-type silicon wafer by screen printing in a thin line shape and dried on a hot plate at 150 ° C. for 1 minute. The screen printing plate used was designed to obtain a thin line with a width of 150 μm, and the squeegee speed and scraper speed were both 300 mm / sec. When the thickness of the thin line was measured with an optical microscope manufactured by Olympus Corporation, it was 175 μm, and the line thickness from the design value was within 35 μm.
 別途、上述の不純物拡散層形成組成物3をp型シリコンウエハ表面にベタ状に塗布し、150℃のホットプレート上で1分間乾燥させた後、空気を5L/min.で流した900℃のトンネル炉(横型チューブ拡散炉 ACCURON CQ-1200、株式会社国際電気製)で10分間、熱処理(熱拡散処理)を行った。その後、p型シリコン基板表面上に形成されたガラス層を除去するため、基板を、2.5質量%HF水溶液に5分間浸漬し、次いで流水洗浄、超音波洗浄、乾燥を行って、n型拡散層が形成されたp型シリコン基板を得た。 Separately, the impurity diffusion layer forming composition 3 described above was applied to the surface of the p-type silicon wafer in a solid form, dried on a hot plate at 150 ° C. for 1 minute, and then air was supplied at 5 L / min. Heat treatment (thermal diffusion treatment) was carried out for 10 minutes in a tunnel furnace (horizontal tube diffusion furnace ACCURON CQ-1200, manufactured by Kokusai Electric Co., Ltd.) at 900 ° C. that was flowed in Thereafter, in order to remove the glass layer formed on the surface of the p-type silicon substrate, the substrate is immersed in a 2.5% by mass HF aqueous solution for 5 minutes, and then washed with running water, ultrasonically washed, and dried to obtain n-type. A p-type silicon substrate on which a diffusion layer was formed was obtained.
 不純物拡散層形成組成物3を塗布した側の表面のシート抵抗は40Ω/□であり、P(リン)が拡散しn型拡散層が形成されていた。裏面のシート抵抗は1000Ω/□以上で測定不能であり、n型拡散層は形成されていなかった。 The sheet resistance of the surface on which the impurity diffusion layer forming composition 3 was applied was 40Ω / □, and P (phosphorus) was diffused to form an n-type diffusion layer. The sheet resistance on the back surface was 1000Ω / □ or more, which was not measurable, and the n-type diffusion layer was not formed.
[実施例4]
 実施例1のステアリン酸アミドをステアリン酸ジメチルアミノプロピルアミド(Croda社製)に代えた以外は、実施例1と同様に実施し、不純物拡散層形成組成物4を得た。
[Example 4]
An impurity diffusion layer forming composition 4 was obtained in the same manner as in Example 1 except that stearic acid amide in Example 1 was replaced with dimethylaminopropylamide stearate (Croda).
 実施例1と同様の方法で不純物拡散層形成組成物4のせん断粘度を調べたところ、せん断速度0.01s-1におけるせん断粘度が280Pa.s(25℃)、一方、せん断速度10s-1におけるせん断粘度が25Pa・sを示し、せん断粘度の対数値の差(TI値)が1.05であった。 When the shear viscosity of the impurity diffusion layer forming composition 4 was examined in the same manner as in Example 1, the shear viscosity at a shear rate of 0.01 s −1 was 280 Pa · s. On the other hand, the shear viscosity at a shear rate of 10 s −1 was 25 Pa · s, and the logarithmic value difference (TI value) of the shear viscosity was 1.05.
 次に、実施例1と同様の方法で、但し不純物拡散層形成組成物4に代えて、細線の太さを測長したところ、170μmであり、設計値からの線太りは35μm以内であった。 Next, in the same manner as in Example 1, except that the thickness of the fine line was measured instead of the impurity diffusion layer forming composition 4, it was 170 μm, and the line thickness from the design value was within 35 μm. .
 別途、実施例1と同様の方法で、但し不純物拡散層形成組成物4に代えて、n型拡散層が形成されたp型シリコン基板を得た。不純物拡散層形成組成物4を塗布した側の表面のシート抵抗は40Ω/□であり、P(リン)が拡散しn型拡散層が形成されていた。裏面のシート抵抗は1000Ω/□以上で測定不能であり、n型拡散層は形成されていなかった。 Separately, a p-type silicon substrate on which an n-type diffusion layer was formed was obtained in the same manner as in Example 1, except that instead of the impurity diffusion layer forming composition 4. The sheet resistance of the surface on which the impurity diffusion layer forming composition 4 was applied was 40Ω / □, and P (phosphorus) diffused to form an n-type diffusion layer. The sheet resistance on the back surface was 1000Ω / □ or more, which was not measurable, and the n-type diffusion layer was not formed.
[実施例5]
 実施例1と同様にして、但しテルピネオールをジヒドロテルピネオールに代えて、30%ガラス粒子分散ジヒドロテルピネオール溶液を調製した。
 エチルセルロース3.0g、ステアリン酸アミド10gをジヒロドテルピネオール(日本テルペン化学株式会社製)53.7gに加え、160℃で30分間かけて溶解した。次いで、100℃まで降温したあと、この溶液に30%ガラス粒子分散ジヒドロテルピネオール溶液33.3gを加え、30分間攪拌した後、室温まで冷却してペースト化し、不純物拡散層形成組成物5を調製した。
[Example 5]
In the same manner as in Example 1, except that terpineol was replaced with dihydroterpineol, a 30% glass particle-dispersed dihydroterpineol solution was prepared.
3.0 g of ethyl cellulose and 10 g of stearamide were added to 53.7 g of dihydrodoterpineol (manufactured by Nippon Terpene Chemical Co., Ltd.) and dissolved at 160 ° C. over 30 minutes. Next, after the temperature was lowered to 100 ° C., 33.3 g of a 30% glass particle-dispersed dihydroterpineol solution was added to this solution, stirred for 30 minutes, and then cooled to room temperature to form a paste, whereby an impurity diffusion layer forming composition 5 was prepared. .
 実施例1と同様の方法で不純物拡散層形成組成物5のせん断粘度を調べたところ、せん断速度0.01s-1におけるせん断粘度が378Pa.s(25℃)、一方、せん断速度10s-1におけるせん断粘度が30Pa・sを示し、せん断粘度の対数値の差(TI値)が1.10であった。 When the shear viscosity of the impurity diffusion layer forming composition 5 was examined in the same manner as in Example 1, the shear viscosity at a shear rate of 0.01 s −1 was 378 Pa.s. On the other hand, the shear viscosity at a shear rate of 10 s −1 was 30 Pa · s, and the logarithmic value difference (TI value) of the shear viscosity was 1.10.
 次に、実施例1と同様の方法で、但し不純物拡散層形成組成物5に代えて、細線の太さを測長したところ、170μmであり、設計値からの線太りは35μm以内であった。 Next, in the same manner as in Example 1, except that the thickness of the thin line was measured instead of the impurity diffusion layer forming composition 5, it was 170 μm, and the line thickness from the design value was within 35 μm. .
 別途、実施例1と同様の方法で、但し不純物拡散層形成組成物5に代えて、n型拡散層が形成されたp型シリコン基板を得た。不純物拡散層形成組成物5を塗布した側の表面のシート抵抗は40Ω/□であり、P(リン)が拡散しn型拡散層が形成されていた。裏面のシート抵抗は1000Ω/□以上で測定不能であり、n型拡散層は形成されていなかった。 Separately, a p-type silicon substrate on which an n-type diffusion layer was formed was obtained in the same manner as in Example 1, but in place of the impurity diffusion layer forming composition 5. The sheet resistance of the surface on which the impurity diffusion layer forming composition 5 was applied was 40Ω / □, and P (phosphorus) was diffused to form an n-type diffusion layer. The sheet resistance on the back surface was 1000Ω / □ or more, which was not measurable, and the n-type diffusion layer was not formed.
[実施例6]
 エチルセルロース3.0g、ステアリン酸アミド10g、アエロジル200(フュームドシリカ、日本アエロジ株式会社ル製)1gをジヒロドテルピネオール52.7gに加え、160℃で30分間攪拌した。次いで、100℃まで降温したあと、この溶液に合成例1で得られた30%ガラス粒子分散ジヒドロテルピネオール溶液33.3gを加え、30分間攪拌した後、室温まで冷却してペースト化し、不純物拡散層形成組成物6を調製した。
[Example 6]
3.0 g of ethyl cellulose, 10 g of stearamide, and 1 g of Aerosil 200 (fumed silica, manufactured by Nippon Aerosil Co., Ltd.) were added to 52.7 g of dihydroterpineol and stirred at 160 ° C. for 30 minutes. Next, after the temperature was lowered to 100 ° C., 33.3 g of the 30% glass particle-dispersed dihydroterpineol solution obtained in Synthesis Example 1 was added to this solution, stirred for 30 minutes, and then cooled to room temperature to form a paste. Forming composition 6 was prepared.
 実施例1と同様の方法で不純物拡散層形成組成物6のせん断粘度を調べたところ、せん断速度0.01s-1におけるせん断粘度が380Pa.s(25℃)、一方、せん断速度10s-1におけるせん断粘度が18Pa・sを示し、せん断粘度の対数値の差(TI値)が1.32であった。 When the shear viscosity of the impurity diffusion layer forming composition 6 was examined in the same manner as in Example 1, the shear viscosity at a shear rate of 0.01 s −1 was 380 Pa · s. On the other hand, the shear viscosity at a shear rate of 10 s −1 was 18 Pa · s, and the logarithmic value difference (TI value) of the shear viscosity was 1.32.
 次に、実施例1と同様の方法で、但し不純物拡散層形成組成物6に代えて、細線の太さを測長したところ、175μmであり、設計値からの線太りは35μm以内であった。 Next, when the thickness of the thin wire was measured in the same manner as in Example 1 except that it was replaced with the impurity diffusion layer forming composition 6, it was 175 μm, and the thickness from the design value was within 35 μm. .
 別途、実施例1と同様の方法で、但し不純物拡散層形成組成物6に代えて、n型拡散層が形成されたp型シリコン基板を得た。不純物拡散層形成組成物6を塗布した側の表面のシート抵抗は40Ω/□であり、P(リン)が拡散しn型拡散層が形成されていた。裏面のシート抵抗は1000Ω/□以上で測定不能であり、n型拡散層は形成されていなかった。 Separately, a p-type silicon substrate on which an n-type diffusion layer was formed was obtained in the same manner as in Example 1, except that instead of the impurity diffusion layer forming composition 6. The sheet resistance of the surface on which the impurity diffusion layer forming composition 6 was applied was 40Ω / □, and P (phosphorus) was diffused to form an n-type diffusion layer. The sheet resistance on the back surface was 1000Ω / □ or more, which was not measurable, and the n-type diffusion layer was not formed.
[実施例7]
 アエロジル200の代わりにアエロジル90G(フュームドシリカ、日本アエロジル株式会社製)を用いた以外は実施例6と同様にして不純物拡散層形成組成物7を調製した。
[Example 7]
Impurity diffusion layer forming composition 7 was prepared in the same manner as in Example 6 except that Aerosil 90G (fumed silica, manufactured by Nippon Aerosil Co., Ltd.) was used instead of Aerosil 200.
 実施例1と同様の方法で不純物拡散層形成組成物7のせん断粘度を調べたところ、せん断速度0.01s-1におけるせん断粘度が350Pa.s(25℃)、一方、せん断速度10s-1におけるせん断粘度が25Pa・sを示し、せん断粘度の対数値の差(TI値)が1.15であった。 When the shear viscosity of the impurity diffusion layer forming composition 7 was examined in the same manner as in Example 1, the shear viscosity at a shear rate of 0.01 s −1 was 350 Pa.s. On the other hand, the shear viscosity at a shear rate of 10 s −1 was 25 Pa · s, and the logarithmic value difference (TI value) of the shear viscosity was 1.15.
 次に、実施例1と同様の方法で、但し不純物拡散層形成組成物7に代えて、細線の太さを測長したところ、175μmであり、設計値からの線太りは35μm以内であった。 Next, in the same manner as in Example 1, except that the thickness of the fine line was measured in place of the impurity diffusion layer forming composition 7, it was 175 μm, and the line thickness from the design value was within 35 μm. .
 別途、実施例1と同様の方法で、但し不純物拡散層形成組成物7に代えて、n型拡散層が形成されたp型シリコン基板を得た。不純物拡散層形成組成物7を塗布した側の表面のシート抵抗は40Ω/□であり、P(リン)が拡散しn型拡散層が形成されていた。裏面のシート抵抗は1000Ω/□以上で測定不能であり、n型拡散層は形成されていなかった。 Separately, a p-type silicon substrate on which an n-type diffusion layer was formed was obtained in the same manner as in Example 1, except that instead of the impurity diffusion layer forming composition 7. The sheet resistance of the surface on which the impurity diffusion layer forming composition 7 was applied was 40Ω / □, and P (phosphorus) diffused to form an n-type diffusion layer. The sheet resistance on the back surface was 1000Ω / □ or more, which was not measurable, and the n-type diffusion layer was not formed.
[実施例8]
 アエロジル200の代わりにアエロジルRY200(フュームドシリカ、日本アエロジル株式会社製)を用いた以外は実施例6と同様にして不純物拡散層形成組成物8を調製した。
[Example 8]
Impurity diffusion layer forming composition 8 was prepared in the same manner as in Example 6 except that Aerosil RY200 (fumed silica, manufactured by Nippon Aerosil Co., Ltd.) was used instead of Aerosil 200.
 実施例1と同様の方法で不純物拡散層形成組成物8のせん断粘度を調べたところ、せん断速度0.01s-1におけるせん断粘度が405Pa.s(25℃)、一方、せん断速度10s-1におけるせん断粘度が22Pa・sを示し、せん断粘度の対数値の差(TI値)が1.27であった。 When the shear viscosity of the impurity diffusion layer forming composition 8 was examined in the same manner as in Example 1, the shear viscosity at a shear rate of 0.01 s −1 was 405 Pa.s. On the other hand, the shear viscosity at a shear rate of 10 s −1 was 22 Pa · s, and the logarithmic value difference (TI value) of the shear viscosity was 1.27.
 次に、実施例1と同様の方法で、但し不純物拡散層形成組成物8に代えて、細線の太さを測長したところ、170μmであり、設計値からの線太りは35μm以内であった。 Next, in the same manner as in Example 1, except that the thickness of the fine line was measured instead of the impurity diffusion layer forming composition 8, it was 170 μm, and the line thickness from the design value was within 35 μm. .
 別途、実施例1と同様の方法で、但し不純物拡散層形成組成物8に代えて、n型拡散層が形成されたp型シリコン基板を得た。不純物拡散層形成組成物8を塗布した側の表面のシート抵抗は40Ω/□であり、P(リン)が拡散しn型拡散層が形成されていた。裏面のシート抵抗は1000Ω/□以上で測定不能であり、n型拡散層は形成されていなかった。 Separately, a p-type silicon substrate on which an n-type diffusion layer was formed was obtained in the same manner as in Example 1, except that instead of the impurity diffusion layer forming composition 8. The sheet resistance of the surface on which the impurity diffusion layer forming composition 8 was applied was 40Ω / □, and P (phosphorus) was diffused to form an n-type diffusion layer. The sheet resistance on the back surface was 1000Ω / □ or more, which was not measurable, and the n-type diffusion layer was not formed.
[実施例9]
 合成例1と同様の方法で、但しガラス粒子の濃度が40%となるように配合して、40%ガラス粒子分散テルピネオール溶液を調製した。次いで、エチルセルロース3.0g、ステアリン酸アミド10gをテルピネオール37.0gに加え、160℃で30分間かけて溶解した。次いで、100℃まで降温したあと、この溶液に40%ガラス粒子分散テルピネオール溶液50.0gを加え、30分間攪拌した後、室温まで冷却してペースト化し、不純物拡散層形成組成物9を調製した。
[Example 9]
A 40% glass particle-dispersed terpineol solution was prepared in the same manner as in Synthesis Example 1, except that the concentration of glass particles was 40%. Next, 3.0 g of ethyl cellulose and 10 g of stearamide were added to 37.0 g of terpineol and dissolved at 160 ° C. over 30 minutes. Next, after the temperature was lowered to 100 ° C., 50.0 g of 40% glass particle-dispersed terpineol solution was added to this solution, stirred for 30 minutes, and then cooled to room temperature to form a paste, thereby preparing an impurity diffusion layer forming composition 9.
 実施例1と同様の方法で不純物拡散層形成組成物9のせん断粘度を調べたところ、せん断速度0.01s-1におけるせん断粘度が430Pa.s(25℃)、一方、せん断速度10s-1におけるせん断粘度が25Pa・sを示し、せん断粘度の対数値の差(TI値)が1.23であった。 When the shear viscosity of the impurity diffusion layer forming composition 9 was examined in the same manner as in Example 1, the shear viscosity at a shear rate of 0.01 s −1 was 430 Pa.s. On the other hand, the shear viscosity at a shear rate of 10 s −1 was 25 Pa · s, and the logarithmic value difference (TI value) of the shear viscosity was 1.23.
 次に、実施例1と同様の方法で、但し不純物拡散層形成組成物9に代えて、細線の太さを測長したところ、170μmであり、設計値からの線太りは35μm以内であった。 Next, in the same manner as in Example 1, except that the thickness of the fine line was measured instead of the impurity diffusion layer forming composition 9, it was 170 μm, and the line thickness from the design value was within 35 μm. .
 別途、実施例1と同様の方法で、但し不純物拡散層形成組成物9に代えて、n型拡散層が形成されたp型シリコン基板を得た。不純物拡散層形成組成物9を塗布した側の表面のシート抵抗は40Ω/□であり、P(リン)が拡散しn型拡散層が形成されていた。裏面のシート抵抗は1000Ω/□以上で測定不能であり、n型拡散層は形成されていなかった。 Separately, a p-type silicon substrate on which an n-type diffusion layer was formed was obtained in the same manner as in Example 1, but in place of the impurity diffusion layer forming composition 9. The sheet resistance on the surface on which the impurity diffusion layer forming composition 9 was applied was 40Ω / □, and P (phosphorus) diffused to form an n-type diffusion layer. The sheet resistance on the back surface was 1000Ω / □ or more, which was not measurable, and the n-type diffusion layer was not formed.
[実施例10]
<合成例2>
(ドーパント源化合物2の合成)
 テトラエトキシシラン(和光純薬工業製)10gをエタノール40gに溶解した。これに10%硝酸水溶液を10g加えた。次いで、リン酸トリエチル(東京化成工業製)7.0gを加え、1時間25℃にて撹拌した。次いで、60℃にて蒸発乾固した。ついで、100℃にて1時間乾燥した。得られた粉末をメノウ乳鉢で粉砕して、ドーパント源化合物2を得た。レーザー回折法で測定した平均二次粒子径は6μmであった。
[Example 10]
<Synthesis Example 2>
(Synthesis of dopant source compound 2)
10 g of tetraethoxysilane (manufactured by Wako Pure Chemical Industries) was dissolved in 40 g of ethanol. To this, 10 g of a 10% nitric acid aqueous solution was added. Subsequently, 7.0 g of triethyl phosphate (manufactured by Tokyo Chemical Industry Co., Ltd.) was added and stirred at 25 ° C. for 1 hour. Subsequently, it evaporated to dryness at 60 degreeC. Subsequently, it dried at 100 degreeC for 1 hour. The obtained powder was pulverized in an agate mortar to obtain a dopant source compound 2. The average secondary particle diameter measured by the laser diffraction method was 6 μm.
(不純物拡散層形成組成物の調製)
 ドーパント源化合物1の代わりにドーパント源化合物2を用いた以外は、実施例1と同様にして、不純物拡散層形成組成物10を得た。
(Preparation of impurity diffusion layer forming composition)
Impurity diffusion layer forming composition 10 was obtained in the same manner as in Example 1 except that dopant source compound 2 was used instead of dopant source compound 1.
(せん断粘度の測定)
 実施例1と同様の方法で不純物拡散層形成組成物10のせん断粘度を調べたところ、せん断速度0.01s-1におけるせん断粘度が368Pa.s(25℃)、一方、せん断速度10s-1におけるせん断粘度が28Pa・sを示し、せん断粘度の対数値の差(TI値)が1.12であった。
(Measurement of shear viscosity)
When the shear viscosity of the impurity diffusion layer forming composition 10 was examined in the same manner as in Example 1, the shear viscosity at a shear rate of 0.01 s −1 was 368 Pa · s. On the other hand, the shear viscosity at a shear rate of 10 s −1 was 28 Pa · s, and the logarithmic value difference (TI value) of the shear viscosity was 1.12.
(線太りの測定)
 次に、実施例1と同様の方法で、但し不純物拡散層形成組成物10に代えて、細線の太さを測長したところ、180μmであり、設計値からの線太りは35μm以内であった。
(Measurement of line weight)
Next, in the same manner as in Example 1, except that the thickness of the thin line was measured instead of the impurity diffusion layer forming composition 10, it was 180 μm, and the line thickness from the design value was within 35 μm. .
(シート抵抗の測定)
 別途、実施例1と同様の方法で、但し不純物拡散層形成組成物10に代えて、n型拡散層が形成されたp型シリコン基板を得た。不純物拡散層形成組成物10を塗布した側の表面のシート抵抗は45Ω/□であり、P(リン)が拡散しn型拡散層が形成されていた。裏面のシート抵抗は450Ω/□であった。
(Sheet resistance measurement)
Separately, a p-type silicon substrate on which an n-type diffusion layer was formed was obtained in the same manner as in Example 1, except that instead of the impurity diffusion layer forming composition 10. The sheet resistance of the surface on which the impurity diffusion layer forming composition 10 was applied was 45Ω / □, and P (phosphorus) diffused to form an n-type diffusion layer. The sheet resistance on the back surface was 450Ω / □.
[実施例11]
 ドーパント源化合物3としてリン酸二水素アンモニウム(和光純薬工業製)をそのまま用いた。5質量%の濃度となるようにアエロジル(RY200、日本アエロジル製)とテルピネオールを混合し、遊星ボールミルを用い、3mmのイットリア安定化ジルコニアビーズを用いて粉砕して、5%アエロジル/テルピネオール分散液を調製した。ドーパント源化合物1の代わりにドーパント源化合物3を用いた以外は、実施例1と同様にして、不純物拡散層形成組成物11を調製した。なお、ドーパント源化合物3/ステアリン酸アミド/エチルセルロース/テルピネオール/テトラエトキシシラン(和光純薬工業製)/アエロジルRY200=15/6/2/74/2/1(質量比)となるように乳鉢で混合して、不純物拡散層形成組成物11を調製した。
[Example 11]
As the dopant source compound 3, ammonium dihydrogen phosphate (manufactured by Wako Pure Chemical Industries) was used as it was. Aerosil (RY200, manufactured by Nippon Aerosil) and terpineol were mixed to a concentration of 5% by mass, pulverized with 3 mm yttria-stabilized zirconia beads using a planetary ball mill, and a 5% aerosil / terpineol dispersion was obtained. Prepared. Impurity diffusion layer forming composition 11 was prepared in the same manner as in Example 1 except that dopant source compound 3 was used instead of dopant source compound 1. In addition, in a mortar so as to be dopant source compound 3 / stearic acid amide / ethyl cellulose / terpineol / tetraethoxysilane (manufactured by Wako Pure Chemical Industries) / Aerosil RY200 = 15/6/2/74/2/1 (mass ratio) By mixing, an impurity diffusion layer forming composition 11 was prepared.
 実施例1と同様の方法で不純物拡散層形成組成物11のせん断粘度を調べたところ、せん断速度0.01s-1におけるせん断粘度が282Pa.s(25℃)、一方、せん断速度10s-1におけるせん断粘度が25Pa・sを示し、せん断粘度の対数値の差(TI値)が1.05であった。 When the shear viscosity of the impurity diffusion layer forming composition 11 was examined in the same manner as in Example 1, the shear viscosity at a shear rate of 0.01 s −1 was 282 Pa.s. On the other hand, the shear viscosity at a shear rate of 10 s −1 was 25 Pa · s, and the logarithmic value difference (TI value) of the shear viscosity was 1.05.
 次に、実施例1と同様の方法で、但し不純物拡散層形成組成物11に代えて、細線の太さを測長したところ、175μmであり、設計値からの線太りは35μm以内であった。 Next, when the thickness of the thin line was measured in the same manner as in Example 1 except that it was replaced with the impurity diffusion layer forming composition 11, it was 175 μm, and the line thickness from the design value was within 35 μm. .
 別途、実施例1と同様の方法で、但し不純物拡散層形成組成物11に代えて、n型拡散層が形成されたp型シリコン基板を得た。不純物拡散層形成組成物11を塗布した側の表面のシート抵抗は40Ω/□であり、P(リン)が拡散しn型拡散層が形成されていた。
裏面のシート抵抗は300Ω/□であった。
Separately, a p-type silicon substrate on which an n-type diffusion layer was formed was obtained in the same manner as in Example 1, except that the impurity diffusion layer-forming composition 11 was used. The sheet resistance of the surface on which the impurity diffusion layer forming composition 11 was applied was 40Ω / □, and P (phosphorus) was diffused to form an n-type diffusion layer.
The sheet resistance on the back surface was 300Ω / □.
[実施例12]
<合成例3>
(ドーパント源化合物4の合成)
 SiO(和光純薬工業株式会社製)、B(和光純薬工業株式会社製)、ZnO(和光純薬工業株式会社製)を原料として用い、それぞれのモル比がSiO:B:ZnO=10:40:50となるように混合し、アルミナ坩堝に入れて、1400℃まで400℃/hで昇温後、1時間保持し、次いで急冷した。これを自動乳鉢混練装置を用いて粉砕して、ドナー元素を含むガラス粒子を得た。得られたガラス粒子は非晶質であることが確認された。
[Example 12]
<Synthesis Example 3>
(Synthesis of dopant source compound 4)
SiO 2 (manufactured by Wako Pure Chemical Industries, Ltd.), B 2 O 3 (manufactured by Wako Pure Chemical Industries, Ltd.), ZnO (manufactured by Wako Pure Chemical Industries, Ltd.) are used as raw materials, and the respective molar ratios are SiO 2 : B. The mixture was mixed so that 2 O 3 : ZnO = 10: 40: 50, put in an alumina crucible, heated to 1400 ° C. at 400 ° C./h, held for 1 hour, and then rapidly cooled. This was pulverized using an automatic mortar kneader to obtain glass particles containing a donor element. The obtained glass particles were confirmed to be amorphous.
 ドーパント源化合物1の代わりにドーパント源化合物4を用いた以外は、実施例1と同様にして、不純物拡散層形成組成物12を調製した。なお、ドーパント源化合物4/ステアリン酸アミド/エチルセルロース/テルピネオール/アエロジル200=10/6/2/81/1(質量比)となるように乳鉢で混合して、不純物拡散層形成組成物12を調製した。 Impurity diffusion layer forming composition 12 was prepared in the same manner as in Example 1 except that dopant source compound 4 was used instead of dopant source compound 1. In addition, it mixes with a mortar so that it may become dopant source compound 4 / stearic acid amide / ethylcellulose / terpineol / aerosil 200 = 10/6/2/81/1 (mass ratio), and the impurity diffusion layer forming composition 12 is prepared. did.
(せん断粘度の測定)
 実施例1と同様の方法で不純物拡散層形成組成物12のせん断粘度を調べたところ、せん断速度0.01s-1におけるせん断粘度が286Pa.s(25℃)、一方、せん断速度10s-1におけるせん断粘度が29Pa・sを示し、せん断粘度の対数値の差(TI値)が0.98であった。
(Measurement of shear viscosity)
When the shear viscosity of the impurity diffusion layer forming composition 12 was examined in the same manner as in Example 1, the shear viscosity at a shear rate of 0.01 s −1 was 286 Pa.s. On the other hand, the shear viscosity at a shear rate of 10 s −1 was 29 Pa · s, and the logarithmic value difference (TI value) of the shear viscosity was 0.98.
(線太りの測定)
 次に、実施例1と同様の方法で、但し不純物拡散層形成組成物12に代えて、細線の太さを測長したところ、170μmであり、設計値からの線太りは35μm以内であった。
(Measurement of line weight)
Next, in the same manner as in Example 1, except that the thickness of the fine line was measured instead of the impurity diffusion layer forming composition 12, it was 170 μm, and the line thickness from the design value was within 35 μm. .
(シート抵抗の測定)
 別途、実施例1と同様の方法で、但し不純物拡散層形成組成物12に代えて、n型拡散層が形成されたp型シリコン基板を得た。不純物拡散層形成組成物12を塗布した側の表面のシート抵抗は40Ω/□であり、P(リン)が拡散しn型拡散層が形成されていた。裏面のシート抵抗は800Ω/□であった。
(Sheet resistance measurement)
Separately, a p-type silicon substrate on which an n-type diffusion layer was formed was obtained in the same manner as in Example 1, except that instead of the impurity diffusion layer forming composition 12. The sheet resistance of the surface on which the impurity diffusion layer forming composition 12 was applied was 40Ω / □, and P (phosphorus) was diffused to form an n-type diffusion layer. The sheet resistance on the back surface was 800Ω / □.
[実施例13]
<合成例4>
(ドーパント源化合物5の合成)
 トリイソプロピルボレート(東京化成工業製)1.0gをエタノール3gに溶解し、次いでテトラエトキシシラン(和光純薬工業製)1.1gを加えた。これに10%硝酸水溶液を1.0gを加えた。これを、40℃にて還流しながら1時間攪拌後、100℃にて攪拌しながら蒸発乾固した。得られた粉末をメノウ乳鉢で粉砕した。レーザー回折法で測定した平均二次粒子径は6μmであった。
[Example 13]
<Synthesis Example 4>
(Synthesis of dopant source compound 5)
1.0 g of triisopropyl borate (manufactured by Tokyo Chemical Industry Co., Ltd.) was dissolved in 3 g of ethanol, and then 1.1 g of tetraethoxysilane (manufactured by Wako Pure Chemical Industries, Ltd.) was added. To this was added 1.0 g of a 10% nitric acid aqueous solution. This was stirred for 1 hour while refluxing at 40 ° C., and then evaporated to dryness while stirring at 100 ° C. The obtained powder was pulverized in an agate mortar. The average secondary particle diameter measured by the laser diffraction method was 6 μm.
 ドーパント源1の代わりにドーパント源化合物5を用いた以外は、実施例1と同様にして、不純物拡散層形成組成物13を調製した。なお、ドーパント源化合物5/ステアリン酸アミド/エチルセルロース/テルピネオール=10/6/2/82(質量比)となるように乳鉢で混合して、不純物拡散層形成組成物13を調製した。 Impurity diffusion layer forming composition 13 was prepared in the same manner as in Example 1 except that dopant source compound 5 was used instead of dopant source 1. In addition, it mixed with the mortar so that it might become dopant source compound 5 / stearic acid amide / ethylcellulose / terpineol = 10/6/2/82 (mass ratio), and the impurity diffusion layer forming composition 13 was prepared.
(せん断粘度の測定)
 実施例1と同様の方法で不純物拡散層形成組成物13のせん断粘度を調べたところ、せん断速度0.01s-1におけるせん断粘度が260Pa.s(25℃)、一方、せん断速度10s-1におけるせん断粘度が20Pa・sを示し、せん断粘度の対数値の差(TI値)が1.11となり、高いチキソ性が得られた。
(Measurement of shear viscosity)
When the shear viscosity of the impurity diffusion layer forming composition 13 was examined in the same manner as in Example 1, the shear viscosity at a shear rate of 0.01 s −1 was 260 Pa.s. On the other hand, the shear viscosity at a shear rate of 10 s −1 was 20 Pa · s, the logarithmic value difference (TI value) of the shear viscosity was 1.11, and high thixotropy was obtained.
(線太りの測定)
 次に、実施例1と同様の方法で、但し不純物拡散層形成組成物13に代えて、細線の太さを測長したところ、170μmであり、設計値からの線太りは35μm以内であった。
(Measurement of line weight)
Next, in the same manner as in Example 1, except that the thickness of the thin line was measured instead of the impurity diffusion layer forming composition 13, it was 170 μm, and the line thickness from the design value was within 35 μm. .
(シート抵抗の測定)
 別途、実施例1と同様の方法で、但し不純物拡散層形成組成物13に代えて、n型拡散層が形成されたp型シリコン基板を得た。不純物拡散層形成組成物13を塗布した側の表面のシート抵抗は40Ω/□であり、P(リン)が拡散しn型拡散層が形成されていた。裏面のシート抵抗は200Ω/□であった。
(Sheet resistance measurement)
Separately, a p-type silicon substrate on which an n-type diffusion layer was formed was obtained in the same manner as in Example 1, except that instead of the impurity diffusion layer forming composition 13. The sheet resistance of the surface on which the impurity diffusion layer forming composition 13 was applied was 40Ω / □, and P (phosphorus) diffused to form an n-type diffusion layer. The sheet resistance on the back surface was 200Ω / □.
<実施例14>
 ドーパント源化合物6として酸化ホウ素(和光純薬工業製)をそのまま用いた。ドーパント源化合物1の代わりにドーパント源化合物6を用いた以外は、実施例1と同様にして、不純物拡散層形成組成物14を調製した。ドーパント源化合物6/ステアリン酸アミド/エチルセルロース/テルピネオール/テトラエトキシシラン/アエロジル200=15/6/2/74/2/1(質量比)となるように乳鉢で混合して、不純物拡散層形成組成物14を調製した。
<Example 14>
Boron oxide (manufactured by Wako Pure Chemical Industries, Ltd.) was used as the dopant source compound 6 as it was. Impurity diffusion layer forming composition 14 was prepared in the same manner as in Example 1 except that dopant source compound 6 was used instead of dopant source compound 1. Dopant source compound 6 / stearic acid amide / ethyl cellulose / terpineol / tetraethoxysilane / aerosil 200 = 15/6/2/74/2/1 (mass ratio) and mixed in a mortar to form an impurity diffusion layer forming composition Article 14 was prepared.
 実施例1と同様の方法で不純物拡散層形成組成物14のせん断粘度を調べたところ、せん断速度0.01s-1におけるせん断粘度が385Pa.s(25℃)、一方、せん断速度10s-1におけるせん断粘度が18Pa・sを示し、せん断粘度の対数値の差(TI値)が1.33となり、高いチキソ性が得られた。 When the shear viscosity of the impurity diffusion layer forming composition 14 was examined in the same manner as in Example 1, the shear viscosity at a shear rate of 0.01 s −1 was 385 Pa.s. On the other hand, the shear viscosity at a shear rate of 10 s −1 was 18 Pa · s, the logarithmic value difference (TI value) of the shear viscosity was 1.33, and high thixotropy was obtained.
(線太りの測定)
 次に、実施例1と同様の方法で、但し不純物拡散層形成組成物14に代えて、細線の太さを測長したところ、175μmであり、設計値からの線太りは35μm以内であった。
(Measurement of line weight)
Next, when the thickness of the thin line was measured in the same manner as in Example 1, but instead of the impurity diffusion layer forming composition 14, it was 175 μm, and the line thickness from the design value was within 35 μm. .
(シート抵抗の測定)
 別途、実施例1と同様の方法で、但し不純物拡散層形成組成物14に代えて、n型拡散層が形成されたp型シリコン基板を得た。不純物拡散層形成組成物14を塗布した側の表面のシート抵抗は45Ω/□であり、P(リン)が拡散しn型拡散層が形成されていた。裏面のシート抵抗は150Ω/□であった。
(Sheet resistance measurement)
Separately, a p-type silicon substrate on which an n-type diffusion layer was formed was obtained in the same manner as in Example 1, except that instead of the impurity diffusion layer forming composition 14. The sheet resistance of the surface on which the impurity diffusion layer forming composition 14 was applied was 45Ω / □, and P (phosphorus) was diffused to form an n-type diffusion layer. The sheet resistance on the back surface was 150Ω / □.
[比較例1]
 P-SiO-CaOガラス(P:50%、SiO:43%、CaO:7%)粉末10質量%、エチルセルロース6.8質量%、テルピネオール83.2質量%、を混合してペースト化し、脂肪酸アミドを含まない不純物拡散層形成組成物1’を調製した。
[Comparative Example 1]
P 2 O 5 —SiO 2 —CaO glass (P 2 O 5 : 50%, SiO 2 : 43%, CaO: 7%) powder 10% by mass, ethyl cellulose 6.8% by mass, terpineol 83.2% by mass, By mixing and pasting, an impurity diffusion layer forming composition 1 ′ containing no fatty acid amide was prepared.
 不純物拡散層形成組成物1’について、実施例1と同様にしてせん断粘度を調べたところ、せん断速度0.01s-1におけるせん断粘度が176Pa.s(25℃)、一方、せん断速度10s-1におけるせん断粘度が68Pa・sを示し、せん断粘度の対数値(TI値)の差が0.41となり、十分なチキソ性が得られなかった。 The impurity diffusion layer forming composition 1 ′ was examined for shear viscosity in the same manner as in Example 1. As a result, the shear viscosity at a shear rate of 0.01 s −1 was 176 Pa.s. On the other hand, the shear viscosity at a shear rate of 10 s −1 was 68 Pa · s, the difference in logarithmic value (TI value) of the shear viscosity was 0.41, and sufficient thixotropy was not obtained.
 この不純物拡散層形成組成物1’を用いて、実施例1と同様に、スキージ速度とスクレッパ速度をいずれも300mm/secとしたスクリーン印刷を行い、p型シリコンウエハ表面に細線状に塗布したところ、不純物拡散層形成組成物1’が細線状に印刷されず、所々に断線が見られた。
 以上の結果を纏めて表2、表3及び表4に示した。なお、表2~表4中の「-」は未配号又は未評価であることを示す。
When this impurity diffusion layer forming composition 1 ′ was used, screen printing was performed at a squeegee speed and a scraper speed of 300 mm / sec both in the same manner as in Example 1 and applied to the surface of a p-type silicon wafer in a fine line shape. The impurity diffusion layer forming composition 1 ′ was not printed in a thin line shape, and disconnections were observed in some places.
The above results are summarized in Table 2, Table 3 and Table 4. In Tables 2 to 4, “-” indicates unsigned or not evaluated.
Figure JPOXMLDOC01-appb-T000003
 
Figure JPOXMLDOC01-appb-T000003
 
Figure JPOXMLDOC01-appb-T000004
 
Figure JPOXMLDOC01-appb-T000004
 
Figure JPOXMLDOC01-appb-T000005
 
Figure JPOXMLDOC01-appb-T000005
 
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 上記表に示すように、ドナー元素を含む化合物又はアクセプタ元素を含む化合物と、分散媒、及び脂肪酸アミドと、を含有する不純物拡散層形成組成物を用いることで、細線状のパターンで不純物拡散層形成組成物を半導体基板上に塗布したときに線太りを抑えることが可能であり、更に所望の特定領域に、特定のサイズで不純物拡散層を形成することができる。本発明では、脂肪酸アミドを用いることで、不純物拡散層形成組成物に適度なせん断粘度を付与することができ、良好な印刷性を与えることができ、所望の特定領域に不純物拡散層を形成することができる。 As shown in the above table, by using an impurity diffusion layer forming composition containing a compound containing a donor element or a compound containing an acceptor element, a dispersion medium, and a fatty acid amide, the impurity diffusion layer has a thin line pattern. When the forming composition is applied onto a semiconductor substrate, it is possible to suppress line thickening, and it is possible to form an impurity diffusion layer with a specific size in a desired specific region. In the present invention, by using the fatty acid amide, an appropriate diffusion viscosity can be imparted to the impurity diffusion layer forming composition, good printability can be imparted, and the impurity diffusion layer is formed in a desired specific region. be able to.
[実施例15]
 p型シリコン基板(5cm×5cm)の表面の全面ではなく半面に塗布すること以外は実施例1と同様にn型拡散層形成を行った。
 不純物拡散層形成組成物1を塗布した部分の表面のシート抵抗は38Ω/□であり、Pが拡散しn型拡散層が形成されていた。他方、不純物拡散層形成組成物1を塗布しなかった部分の表面のシート抵抗は測定不能であり、n型拡散層は形成されておらず、n型拡散層形成組成物を塗布した部分に選択的にn型拡散層が形成された。また、裏面のシート抵抗は測定不能であり、n型拡散層は実質的に形成されていないと判断された。
[Example 15]
An n-type diffusion layer was formed in the same manner as in Example 1 except that the p-type silicon substrate (5 cm × 5 cm) was coated on the half surface instead of the entire surface.
The sheet resistance of the surface of the portion where the impurity diffusion layer forming composition 1 was applied was 38 Ω / □, and P was diffused to form an n-type diffusion layer. On the other hand, the sheet resistance of the surface of the portion where the impurity diffusion layer forming composition 1 is not applied cannot be measured, the n-type diffusion layer is not formed, and is selected as the portion where the n-type diffusion layer forming composition is applied. Thus, an n-type diffusion layer was formed. Further, the sheet resistance on the back surface was not measurable, and it was determined that the n-type diffusion layer was not substantially formed.
[実施例16]
 実施例15と同様にして、但し不純物拡散層形成組成物1の代わりに実施例10の不純物拡散層形成組成物10を用いてn型拡散層形成を行った。
 不純物拡散層形成組成物1を塗布した部分の表面のシート抵抗は45Ω/□であり、Pが拡散しn型拡散層が形成されていた。他方、不純物拡散層形成組成物1を塗布しなかった部分の表面のシート抵抗は450Ω/□であった。
[Example 16]
In the same manner as in Example 15, except that the impurity diffusion layer forming composition 10 of Example 10 was used instead of the impurity diffusion layer forming composition 1, an n-type diffusion layer was formed.
The sheet resistance of the surface of the portion where the impurity diffusion layer forming composition 1 was applied was 45Ω / □, and P was diffused to form an n-type diffusion layer. On the other hand, the sheet resistance of the surface where the impurity diffusion layer forming composition 1 was not applied was 450Ω / □.
 日本特許出願2012-037385号、日本特許出願2012-107517号及び日本特許出願2012-239146号の開示はその全体が参照により本明細書に取り込まれる。本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書に参照により取り込まれる。 The disclosures of Japanese Patent Application No. 2012-037385, Japanese Patent Application No. 2012-107517 and Japanese Patent Application No. 2012-239146 are incorporated herein by reference in their entirety. All documents, patent applications, and technical standards mentioned in this specification are to the same extent as if each individual document, patent application, and technical standard were specifically and individually stated to be incorporated by reference, Incorporated herein by reference.

Claims (22)

  1.  ドナー元素を含む化合物又はアクセプタ元素を含む化合物と、分散媒と、脂肪酸アミドと、を含有する不純物拡散層形成組成物。 An impurity diffusion layer forming composition containing a compound containing a donor element or a compound containing an acceptor element, a dispersion medium, and a fatty acid amide.
  2.  前記脂肪酸アミドが、下記一般式(1)、(2)、(3)及び(4)で表される化合物からなる群より選択される少なくとも1種を含有する請求項1に記載の不純物拡散層形成組成物。
     RCONH・・・・(1)
     RCONH-R-NHCOR・・・・(2)
     RNHCO-R-CONHR・・・・(3)
     RCONH-R-N(R・・・・(4)
    〔一般式(1)、(2)、(3)及び(4)中、R及びRは各々独立に炭素数1~30のアルキル基又はアルケニル基を示し、Rは炭素数1~10のアルキレン基を示す。
    及びRは同一であっても異なっていてもよい。〕
    2. The impurity diffusion layer according to claim 1, wherein the fatty acid amide contains at least one selected from the group consisting of compounds represented by the following general formulas (1), (2), (3), and (4). Forming composition.
    R 1 CONH 2 (1)
    R 1 CONH—R 2 —NHCOR 1 (2)
    R 1 NHCO—R 2 —CONHR 1 (3)
    R 1 CONH—R 2 —N (R 3 ) 2 ... (4)
    [In the general formulas (1), (2), (3) and (4), R 1 and R 3 each independently represents an alkyl group or alkenyl group having 1 to 30 carbon atoms, and R 2 represents 1 to carbon atoms. 10 alkylene groups are shown.
    R 1 and R 3 may be the same or different. ]
  3.  前記脂肪酸アミドが、ステアリン酸アミド、N,N’-メチレンビスステアリン酸アミド、及びステアリン酸ジメチルアミノプロピルアミドからなる群より選択される少なくとも1種を含有する請求項1又は請求項2に記載の不純物拡散層形成組成物。 3. The fatty acid amide according to claim 1, wherein the fatty acid amide contains at least one selected from the group consisting of stearic acid amide, N, N′-methylenebisstearic acid amide, and stearic acid dimethylaminopropylamide. Impurity diffusion layer forming composition.
  4.  前記脂肪酸アミドの分解温度が、400℃以下である請求項1~請求項3のいずれか1項に記載の不純物拡散層形成組成物。 4. The impurity diffusion layer forming composition according to claim 1, wherein the fatty acid amide has a decomposition temperature of 400 ° C. or lower.
  5.  更に無機フィラーを含む請求項1~請求項4のいずれか1項に記載の不純物拡散層形成組成物。 The impurity diffusion layer forming composition according to any one of claims 1 to 4, further comprising an inorganic filler.
  6.  前記無機フィラーはフュームドシリカである請求項5に記載の不純物拡散層形成組成物。 The impurity diffusion layer forming composition according to claim 5, wherein the inorganic filler is fumed silica.
  7.  前記フュームドシリカは表面が疎水化処理されている、請求項6に記載の不純物拡散層形成組成物。 7. The impurity diffusion layer forming composition according to claim 6, wherein the fumed silica has a surface hydrophobized.
  8.  前記ドナー元素を含む化合物が、P(リン)を含有する化合物である請求項1~請求項7のいずれか1項に記載の不純物拡散層形成組成物。 The impurity diffusion layer forming composition according to any one of claims 1 to 7, wherein the compound containing the donor element is a compound containing P (phosphorus).
  9.  前記ドナー元素を含む化合物が、ガラス粒子の形態である請求項1~請求項8のいずれか1項に記載の不純物拡散層形成組成物。 9. The impurity diffusion layer forming composition according to claim 1, wherein the compound containing a donor element is in the form of glass particles.
  10.  前記ガラス粒子が、P及びPからなる群より選択される1種以上のドナー元素含有物質と、SiO、KO、NaO、LiO、BaO、SrO、CaO、MgO、BeO、ZnO、PbO、CdO、V、SnO、ZrO及びMoOからなる群より選択される1種以上のガラス成分物質と、を含有する請求項9に記載の不純物拡散層形成組成物。 The glass particles include one or more donor element-containing materials selected from the group consisting of P 2 O 3 and P 2 O 5 , SiO 2 , K 2 O, Na 2 O, Li 2 O, BaO, SrO, The impurity according to claim 9, comprising at least one glass component substance selected from the group consisting of CaO, MgO, BeO, ZnO, PbO, CdO, V 2 O 5 , SnO, ZrO 2 and MoO 3. Diffusion layer forming composition.
  11.  前記ガラス粒子中のP及びPの含有率が、15質量%以上80質量%以下である請求項10に記載の不純物拡散層形成組成物。 The impurity diffusion layer forming composition according to claim 10, wherein the content of P 2 O 3 and P 2 O 5 in the glass particles is 15% by mass or more and 80% by mass or less.
  12.  前記アクセプタ元素を含む化合物が、B(ホウ素)又はAl(アルミニウム)を含有する請求項1~請求項7のいずれか1項に記載の不純物拡散層形成組成物。 The composition for forming an impurity diffusion layer according to any one of claims 1 to 7, wherein the compound containing the acceptor element contains B (boron) or Al (aluminum).
  13.  前記アクセプタ元素を含む化合物が、ガラス粒子の形態である請求項12に記載の不純物拡散層形成組成物。 13. The impurity diffusion layer forming composition according to claim 12, wherein the compound containing the acceptor element is in the form of glass particles.
  14.  前記ガラス粒子が、B及びAlからなる群より選択される1種以上のアクセプタ元素含有物質と、SiO、KO、NaO、LiO、BaO、SrO、CaO、MgO、BeO、ZnO、PbO、CdO、V、SnO、ZrO、MoO、GeO、Y、CsO及びTiOからなる群より選択される少なくとも1種のガラス成分物質と、を含有する請求項13に記載の不純物拡散層形成用組成物。 The glass particles include at least one acceptor element-containing material selected from the group consisting of B 2 O 3 and Al 2 O 3 , SiO 2 , K 2 O, Na 2 O, Li 2 O, BaO, SrO, At least one glass selected from the group consisting of CaO, MgO, BeO, ZnO, PbO, CdO, V 2 O 5 , SnO, ZrO 2 , MoO 3 , GeO 2 , Y 2 O 3 , CsO 2 and TiO 2. The composition for forming an impurity diffusion layer according to claim 13, comprising a component substance.
  15.  前記ガラス粒子中のB及びAlの含有率が、15質量%以上80質量%以下である請求項14に記載の不純物拡散層形成組成物。 The impurity diffusion layer forming composition according to claim 14, wherein the content of B 2 O 3 and Al 2 O 3 in the glass particles is 15% by mass or more and 80% by mass or less.
  16.  前記アクセプタ元素を含む化合物はBN(窒化ホウ素)である請求項1~請求項7のいずれか1項に記載の不純物拡散層形成組成物。 The composition for forming an impurity diffusion layer according to any one of claims 1 to 7, wherein the compound containing the acceptor element is BN (boron nitride).
  17.  前記ガラス粒子の含有率が、1質量%以上80質量%以下である請求項9~請求項11、請求項13~請求項15のいずれか1項に記載の不純物拡散層形成組成物。 The impurity diffusion layer forming composition according to any one of claims 9 to 11, and 13 to 15, wherein a content of the glass particles is 1% by mass or more and 80% by mass or less.
  18.  前記脂肪酸アミドを1質量%以上30質量%以下含有する請求項1~請求項17のいずれか1項に記載の不純物拡散層形成組成物。 The impurity diffusion layer forming composition according to any one of claims 1 to 17, wherein the fatty acid amide is contained in an amount of 1% by mass to 30% by mass.
  19.  無機フィラーを含み、前記無機フィラーを0.01質量%以上、20質量%以下含有する請求項5~請求項18のいずれか1項に記載の不純物拡散層形成組成物。 The impurity diffusion layer forming composition according to any one of claims 5 to 18, comprising an inorganic filler and containing the inorganic filler in an amount of 0.01% by mass to 20% by mass.
  20.  せん断速度が0.01[s-1]のときのせん断粘度(25℃)をη0.01とし、せん断速度が10[s-1]のときのせん断粘度(25℃)をη10としたとき、[log10(η0.01)-log10(η10)]で示されるTI値が0.5~3.0である請求項1~請求項19のいずれか1項に記載の不純物拡散層形成組成物。 The shear viscosity (25 ° C.) when the shear rate is 0.01 [s −1 ] is η 0.01, and the shear viscosity (25 ° C.) when the shear rate is 10 [s −1 ] is η 10 . The impurity according to any one of claims 1 to 19, wherein a TI value represented by [log 100.01 ) -log 1010 )] is 0.5 to 3.0. Diffusion layer forming composition.
  21.  半導体基板上の全部又は一部に、請求項1~請求項20のいずれか1項に記載の不純物拡散層形成組成物を付与して不純物拡散層形成組成物層を形成する工程と、前記不純物拡散層形成組成物層が形成された前記半導体基板に熱処理を施す工程と、を有する不純物拡散層付き半導体基板の製造方法。 A step of forming an impurity diffusion layer forming composition layer by applying the impurity diffusion layer forming composition according to any one of claims 1 to 20 to all or part of a semiconductor substrate, and the impurities And a step of heat-treating the semiconductor substrate on which the diffusion layer forming composition layer is formed.
  22.  半導体基板上の全部又は一部に、請求項1~請求項20のいずれか1項に記載の不純物拡散層形成組成物を付与して不純物拡散層形成組成物層を形成する工程と、前記不純物拡散層形成組成物層が形成された前記半導体基板に熱処理を施して不純物拡散層を形成する工程と、形成された前記不純物拡散層上に電極を形成する工程と、を有する太陽電池素子の製造方法。 A step of forming an impurity diffusion layer forming composition layer by applying the impurity diffusion layer forming composition according to any one of claims 1 to 20 to all or part of a semiconductor substrate, and the impurities Manufacturing a solar cell element comprising: a step of forming a diffusion layer by performing a heat treatment on the semiconductor substrate on which the diffusion layer forming composition layer is formed; and a step of forming an electrode on the formed impurity diffusion layer Method.
PCT/JP2013/050307 2012-02-23 2013-01-10 Impurity-diffusion-layer-forming composition, method for manufacturing semiconductor substrate with impurity-diffusion layer, and method for manufacturing solar cell element WO2013125254A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014500611A JP5655974B2 (en) 2012-02-23 2013-01-10 Impurity diffusion layer forming composition, method for manufacturing semiconductor substrate with impurity diffusion layer, and method for manufacturing solar cell element

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2012-037385 2012-02-23
JP2012037385 2012-02-23
JP2012107517 2012-05-09
JP2012-107517 2012-05-09
JP2012-239146 2012-10-30
JP2012239146 2012-10-30

Publications (1)

Publication Number Publication Date
WO2013125254A1 true WO2013125254A1 (en) 2013-08-29

Family

ID=49005448

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/050307 WO2013125254A1 (en) 2012-02-23 2013-01-10 Impurity-diffusion-layer-forming composition, method for manufacturing semiconductor substrate with impurity-diffusion layer, and method for manufacturing solar cell element

Country Status (3)

Country Link
JP (2) JP5655974B2 (en)
TW (1) TW201335119A (en)
WO (1) WO2013125254A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015088029A1 (en) * 2013-12-12 2015-06-18 日立化成株式会社 Production method for semiconductor substrate, semiconductor substrate, production method for solar cell element, and solar cell element
WO2015093608A1 (en) * 2013-12-20 2015-06-25 日立化成株式会社 Method for manufacturing semiconductor substrate, semiconductor substrate, method for manufacturing solar cell element, and solar cell element
JPWO2016121641A1 (en) * 2015-01-30 2017-11-09 東レ株式会社 Impurity diffusion composition, semiconductor device manufacturing method using the same, and solar cell
EP3608368A4 (en) * 2017-04-07 2020-09-23 Harima Chemicals, Inc. Inorganic particle dispersion

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002539615A (en) * 1999-03-11 2002-11-19 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング Dopant paste for forming p, p + and n, n + regions in a semiconductor
JP2010205965A (en) * 2009-03-04 2010-09-16 Sharp Corp Method for manufacturing semiconductor device
WO2011090216A1 (en) * 2010-01-25 2011-07-28 日立化成工業株式会社 n-TYPE DIFFUSION LAYER FORMING COMPOSITION, METHOD FOR MANUFACTURING n-TYPE DIFFUSION LAYER, AND METHOD FOR MANUFACTURING SOLAR CELL

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090092745A1 (en) * 2007-10-05 2009-04-09 Luca Pavani Dopant material for manufacturing solar cells
JP5875867B2 (en) * 2009-10-15 2016-03-02 日立化成株式会社 Conductive adhesive, solar cell, manufacturing method thereof, and solar cell module
JP5447397B2 (en) * 2010-02-03 2014-03-19 日立化成株式会社 P-type diffusion layer forming composition, method for producing p-type diffusion layer, and method for producing solar battery cell
JP6467214B2 (en) * 2014-12-16 2019-02-06 花王株式会社 Pants-type absorbent article

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002539615A (en) * 1999-03-11 2002-11-19 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング Dopant paste for forming p, p + and n, n + regions in a semiconductor
JP2010205965A (en) * 2009-03-04 2010-09-16 Sharp Corp Method for manufacturing semiconductor device
WO2011090216A1 (en) * 2010-01-25 2011-07-28 日立化成工業株式会社 n-TYPE DIFFUSION LAYER FORMING COMPOSITION, METHOD FOR MANUFACTURING n-TYPE DIFFUSION LAYER, AND METHOD FOR MANUFACTURING SOLAR CELL

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015088029A1 (en) * 2013-12-12 2015-06-18 日立化成株式会社 Production method for semiconductor substrate, semiconductor substrate, production method for solar cell element, and solar cell element
JP2015115487A (en) * 2013-12-12 2015-06-22 日立化成株式会社 Manufacturing method of semiconductor substrate, semiconductor substrate, manufacturing method of solar cell element, and solar cell element
CN105814665A (en) * 2013-12-12 2016-07-27 日立化成株式会社 Production method for semiconductor substrate, semiconductor substrate, production method for solar cell element, and solar cell element
TWI658500B (en) * 2013-12-12 2019-05-01 日立化成股份有限公司 Method of producing semiconductor substrate, semiconductor substrate, method of producing photovoltaic cell and photovoltaic cell
WO2015093608A1 (en) * 2013-12-20 2015-06-25 日立化成株式会社 Method for manufacturing semiconductor substrate, semiconductor substrate, method for manufacturing solar cell element, and solar cell element
CN105830200A (en) * 2013-12-20 2016-08-03 日立化成株式会社 Method for manufacturing semiconductor substrate, semiconductor substrate, method for manufacturing solar cell element, and solar cell element
JPWO2015093608A1 (en) * 2013-12-20 2017-03-23 日立化成株式会社 Semiconductor substrate manufacturing method, semiconductor substrate, solar cell element manufacturing method, and solar cell element
JPWO2016121641A1 (en) * 2015-01-30 2017-11-09 東レ株式会社 Impurity diffusion composition, semiconductor device manufacturing method using the same, and solar cell
EP3608368A4 (en) * 2017-04-07 2020-09-23 Harima Chemicals, Inc. Inorganic particle dispersion

Also Published As

Publication number Publication date
JPWO2013125254A1 (en) 2015-07-30
JP2014220511A (en) 2014-11-20
JP5655974B2 (en) 2015-01-21
TW201335119A (en) 2013-09-01

Similar Documents

Publication Publication Date Title
WO2013125252A1 (en) Impurity diffusion layer forming composition, method of manufacturing semiconductor substrate having impurity diffusion layer, and method of manufacturing solar cell element
JP2013235942A (en) Impurity diffusion layer-forming composition, method for manufacturing impurity diffusion layer, method for manufacturing solar battery device, and solar battery
JP5655974B2 (en) Impurity diffusion layer forming composition, method for manufacturing semiconductor substrate with impurity diffusion layer, and method for manufacturing solar cell element
JP5935255B2 (en) Impurity diffusion layer forming composition for inkjet, method for producing impurity diffusion layer, method for producing solar cell element, and method for producing solar cell
JP2016189485A (en) N-type diffusion layer forming composition, manufacturing method of semiconductor substrate having n-type diffusion layer and manufacturing method of solar cell element
JP5339014B1 (en) Barrier layer forming composition, solar cell substrate manufacturing method, and solar cell element manufacturing method
KR20140032492A (en) Composition that forms n-type diffusion layer, n-type diffusion layer manufacturing method and solar cell element manufacturing method
JP2016213229A (en) Method for manufacturing silicon substrate having p-type diffusion layer, and method for manufacturing solar battery element
JP5935254B2 (en) Impurity diffusion layer forming composition, method for producing impurity diffusion layer, method for producing solar cell element, and method for producing solar cell
JP5541138B2 (en) P-type diffusion layer forming composition, method for producing p-type diffusion layer, and method for producing solar battery cell
JP5610100B2 (en) N-type diffusion layer forming composition, n-type diffusion layer manufacturing method, and solar cell manufacturing method
JP5892178B2 (en) N-type diffusion layer forming composition set, method for manufacturing semiconductor substrate with n-type diffusion layer, and method for manufacturing solar cell element
TWI482302B (en) Composition for forming n-type diffusion layer, method for forming n-type diffusion layer, and method for producing photovoltaic cell element
JP2018174276A (en) Method for manufacturing p-type diffusion layer-attached semiconductor substrate, p-type diffusion layer-attached semiconductor substrate, solar battery device, and method for manufacturing solar battery device
JP2017059835A (en) Impurity diffusion layer-forming composition, method for manufacturing impurity diffusion layer, method for manufacturing solar battery element, and solar battery
JP2013026525A (en) P-type diffusion layer forming composition, manufacturing method of p-type diffusion layer, manufacturing method of solar cell element, and solar cell
JP2016213230A (en) Method for manufacturing semiconductor substrate with p-type diffusion layer, semiconductor substrate with p-type diffusion layer, method for manufacturing solar battery device, and solar battery device
WO2018012547A1 (en) Method for producing semiconductor substrate with p-type diffusion layer, semiconductor substrate with p-type diffusion layer, method for producing solar cell element, and solar cell element
JP2018174275A (en) Method for manufacturing p-type diffusion layer-attached semiconductor substrate, p-type diffusion layer-attached semiconductor substrate, solar battery device, and method for manufacturing solar battery device
JP2016213231A (en) Method for manufacturing semiconductor substrate with p-type diffusion layer, semiconductor substrate with p-type diffusion layer, method for manufacturing solar battery device, and solar battery device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13751444

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014500611

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13751444

Country of ref document: EP

Kind code of ref document: A1