WO2013125215A1 - 冷凍機 - Google Patents

冷凍機 Download PDF

Info

Publication number
WO2013125215A1
WO2013125215A1 PCT/JP2013/000934 JP2013000934W WO2013125215A1 WO 2013125215 A1 WO2013125215 A1 WO 2013125215A1 JP 2013000934 W JP2013000934 W JP 2013000934W WO 2013125215 A1 WO2013125215 A1 WO 2013125215A1
Authority
WO
WIPO (PCT)
Prior art keywords
stage compressor
passage
refrigerant
passage portion
intermediate cooler
Prior art date
Application number
PCT/JP2013/000934
Other languages
English (en)
French (fr)
Inventor
直人 阪井
隼人 坂本
正史 山内
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Publication of WO2013125215A1 publication Critical patent/WO2013125215A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/04Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
    • F25B1/053Compression machines, plants or systems with non-reversible cycle with compressor of rotary type of turbine type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • F04D17/12Multi-stage pumps
    • F04D17/122Multi-stage pumps the individual rotor discs being, one for each stage, on a common shaft and axially spaced, e.g. conventional centrifugal multi- stage compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/582Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps
    • F04D29/5826Cooling at least part of the working fluid in a heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/39Dispositions with two or more expansion means arranged in series, i.e. multi-stage expansion, on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/072Intercoolers therefor

Definitions

  • the present invention relates to a refrigerator, and particularly to a refrigerator using a low-pressure refrigerant that needs to be operated at a negative pressure.
  • a chilled water circulation type cooling system that circulates cold water (about 5-7 ° C) throughout the building is used.
  • the cold water used in this system is cooled by a refrigerator installed in the basement of the building.
  • Refrigerators use a refrigerant to cool, and conventionally, chlorofluorocarbon gas has been used for this refrigerant.
  • chlorofluorocarbons adversely affect the global environment, refrigerators that use substances other than chlorofluorocarbon as a refrigerant have been studied, and refrigerators using water, which is a familiar substance, have also been proposed. Even if the refrigerant is different, the basic configuration of the refrigerator does not change.
  • a multi-stage compressor composed of a plurality of compressors may be employed for the refrigerator.
  • this multi-stage compressor is adopted in order to realize a high compression ratio, but it is also an advantage of the multi-stage compressor that an intercooler can be installed between each compressor.
  • a multi-stage compressor may be adopted even for a refrigerator that uses chlorofluorocarbon gas as a refrigerant.
  • Patent Document 1 discloses an intermediate cooler (intermediate cooling system) used in a refrigerator using water as a refrigerant.
  • the intercooling system (60) described in Patent Document 1 is a so-called direct contact intercooler, and is configured such that water is vaporized in the interstage duct (45). As a result, the working fluid (5) flowing through the interstage duct (45), that is, the water vapor is cooled.
  • the direct contact type intercooler the vaporized refrigerant is directly taken into the subsequent compressor, so that if the amount of the vaporized refrigerant increases, the load on the subsequent compressor increases, resulting in the efficiency of the refrigerator. Will fall.
  • the direct contact type intercooler there is a limit in cooling capacity because there is a trade-off relationship between the power reduction of the subsequent compressor due to the intermediate cooling and the power increase due to the increase in the flow rate.
  • a refrigerator using a low-pressure refrigerant there is a need to lower the maximum temperature, and therefore further improvement of the cooling capacity of the intermediate cooler is desired.
  • the present invention has been made in view of the above problems, and aims to increase the cooling capacity of an intermediate cooler in a refrigerator using a low-pressure refrigerant.
  • a refrigerator according to the present invention is a refrigerator using a low-pressure refrigerant that needs to be operated at a negative pressure, and includes a first stage compressor that compresses a gaseous refrigerant in a gaseous state, and the first stage compressor.
  • a second stage compressor for further compressing the compressed gaseous refrigerant, an intermediate passage for guiding the gaseous refrigerant from the first stage compressor to the second stage compressor, and a first intermediate cooling disposed in the intermediate passage.
  • a second intermediate cooler disposed in the intermediate passage and downstream of the first intermediate cooler, and the gaseous refrigerant compressed by the first stage compressor and the second stage compressor
  • a condenser that cools and liquefies with cooling water supplied from the apparatus; and an evaporator that vaporizes the liquid refrigerant liquefied by the condenser and cools the object to be cooled with the heat of vaporization generated at that time
  • the temperature of the gaseous refrigerant at the outlet is higher than the temperature of the cooling water.
  • the first intermediate cooler indirectly cools the gaseous refrigerant in the intermediate passage using the cooling water supplied from the cooling device.
  • the second intermediate cooler is a direct contact type intermediate cooler that cools the gaseous refrigerant in the intermediate passage by vaporizing the liquid refrigerant liquefied by the condenser in the intermediate passage.
  • the first-stage compressor and the second-stage compressor are coaxially arranged in a horizontal direction and arranged such that their inlets are located outside in the axial direction.
  • the intermediate passage is located on the radially outer side of the second stage compressor and the first passage portion for guiding the gaseous refrigerant discharged from the first stage compressor to the radially outer side.
  • the condenser is disposed radially outside the second stage compressor, and the first intermediate cooler and the second intermediate cooler are disposed in the second passage portion of the intermediate passage. May be.
  • the first stage compressor and the second stage compressor are centrifugal compressors arranged side by side on the same axis, and the intermediate passage extends from the first stage compressor.
  • a third passage portion that leads to an inlet of the second stage compressor that is located on the inner side in the direction, wherein the first intermediate cooler and the second intermediate cooler are the third passage portion of the intermediate passage. May be arranged.
  • the first intermediate cooler and the second intermediate cooler may be disposed in the second passage portion of the intermediate passage.
  • the axial distance between the first stage compressor and the second stage compressor can be reduced. Shortening the axial distance of a rotary machine such as a centrifugal compressor brings great advantages to the design of the shaft system of the rotary shaft, not to mention miniaturization of equipment.
  • the first intermediate cooler and the second intermediate cooler are arranged in the second passage portion, the flow passage areas in the first intermediate cooler and the second intermediate cooler can be increased. Thus, the pressure loss of the refrigerant in the intermediate passage can be suppressed.
  • a flow passage section of the second passage may be formed in a linear shape or a linear frame shape. According to such a configuration, the first intermediate cooler and the second intermediate cooler can be formed in a simple linear shape, and manufacturing is facilitated.
  • the cooling capacity of the intermediate cooler can be increased.
  • FIG. 1 is a system diagram of a refrigerator according to the first embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view around the first stage compressor and the second stage compressor according to the first embodiment of the present invention.
  • 3 is a cross-sectional view taken along the line III-III in FIG.
  • FIG. 4 is a view showing a modification of the first embodiment of the present invention, and corresponds to FIG.
  • FIG. 5 is a schematic cross-sectional view around the first stage compressor and the second stage compressor according to the second embodiment of the present invention.
  • FIG. 6 is a schematic cross-sectional view around the first stage compressor and the second stage compressor according to the third embodiment of the present invention.
  • 7 is a cross-sectional view taken along arrow VII-VII in FIG.
  • FIG. 8 is a view showing a modification of the third embodiment of the present invention, and corresponds to FIG.
  • FIG. 1 is a system diagram of the refrigerator 100 according to the present embodiment.
  • the refrigerator 100 according to this embodiment includes a first stage compressor 10, a second stage compressor 20, an intermediate passage 30, a first intermediate cooler 40, and a second intermediate cooling.
  • the apparatus 50, the condenser 60, the 1st pressure reduction part 70, the 2nd pressure reduction part 80, and the evaporator 90 are provided.
  • the refrigerant circulates clockwise.
  • each component will be described in order.
  • the temperature and pressure of the refrigerant shown below are only a guide and are not limited thereto.
  • the refrigerant of the refrigerator 100 is a low-pressure refrigerant, and more specifically water.
  • low-pressure refrigerant refers to a refrigerant that needs to be operated at a negative pressure.
  • chlorofluorocarbon which is not a low-pressure refrigerant
  • the refrigerant operates in a positive pressure range of about 3 atm (about 304 kPa) to 10 atm (about 1013 kPa) in the refrigerator, whereas the refrigerant is a low-pressure refrigerant.
  • the first stage compressor 10 is a compressor located on the upstream side of the second stage compressor 20.
  • the first stage compressor 10 is a centrifugal compressor, and takes in a refrigerant (gas refrigerant) in a gaseous state from the evaporator 90 and compresses it.
  • the first stage compressor 10 may be an axial compressor.
  • the refrigerant in the first stage compressor 10 is 0.9 kPa at the inlet and 2.4 kPa at the outlet.
  • the refrigerant that was about 7 ° C. at the inlet rises to about 100 ° C. at the outlet.
  • the temperature of the gaseous refrigerant at the outlet of the first stage compressor 10 becomes higher than the outside air temperature (for example, 32 ° C.).
  • the temperature of the refrigerant at the outlet of the first stage compressor is about 30 ° C. and does not always become higher than the outside air temperature.
  • the second stage compressor 20 is a compressor located downstream of the first stage compressor 10.
  • the second stage compressor 20 is a centrifugal compressor (may be an axial flow compressor) similarly to the first stage compressor 10, and further compresses the gaseous refrigerant compressed by the first stage compressor 10.
  • FIG. 2 is a schematic sectional view around the first stage compressor 10 and the second stage compressor 20.
  • the vertical direction of the paper surface corresponds to the vertical direction of the refrigerator 100
  • the horizontal direction of the paper surface corresponds to the horizontal direction of the refrigerator 100.
  • the left side of FIG. 2 is referred to as the front side
  • the right side of the paper is referred to as the rear side. As shown in FIG.
  • the first stage compressor 10 and the second stage compressor 20 are connected back to back via the rotating shaft 11. That is, the first-stage compressor 10 and the second-stage compressor 20 are arranged so that they are coaxially aligned in the horizontal direction and the inlets are positioned on the outside in the axial direction.
  • the intermediate passage 30 is a passage that guides the gaseous refrigerant from the first stage compressor 10 to the second stage compressor 20.
  • the intermediate passage 30 of the present embodiment is mainly configured by a first passage portion 31, a second passage portion 32, and a third passage portion 33.
  • the first passage portion 31 extends radially outward from the outlet of the first stage compressor 10 and is configured to guide the gaseous refrigerant discharged from the first stage compressor 10 outward in the radial direction.
  • path part 32 is located in the radial direction outer side of the 2nd stage compressor 20, and is comprised so that the gaseous refrigerant which passed the 1st channel
  • path part 33 is formed toward the radial inside from the axial direction back side edge part of the 2nd channel
  • FIG. 3 is a view taken in the direction of arrows III-III in FIG.
  • the second passage portion 32 has a channel cross-section formed in a rectangular frame shape (straight frame shape).
  • the shape of the channel cross-section is not limited to this.
  • the second passage portion 32 is divided into upper and lower portions, and each passage section may be formed to extend in the horizontal direction, and is formed in an annular shape (not shown). It may be.
  • the second intermediate cooler 50 does not need to be formed in a curved shape, and can have a simple linear structure.
  • the first intermediate cooler 40 is a cooler disposed in the intermediate passage 30 and upstream of the second intermediate cooler 50.
  • the first intermediate cooler 40 is disposed in the second passage portion 32 of the intermediate passage 30 as shown in FIG.
  • the first intermediate cooler 40 has a shape corresponding to the cross-sectional shape (rectangular frame shape) of the second passage portion 32.
  • the first intermediate cooler 40 has a prismatic shape, and is fitted into each of the upper, lower, left, and right frame sides that form a rectangular frame that is a cross-sectional shape of the second passage portion 32.
  • the 1st intermediate cooler 40 is each fitted in the path divided
  • the first intermediate cooler 40 includes a metal pipe 41 and a plurality of metal fins 42.
  • the metal pipe 41 is arranged so as to cross the middle passage 30 along the upper, lower, left and right frame sides.
  • the fins 42 are disposed along the metal pipe 41 and parallel to the flow direction of the gaseous refrigerant. That is, the fins 42 are disposed perpendicular to the metal pipe 41.
  • the first intermediate cooler 40 has the above-described configuration, and the gaseous refrigerant discharged from the first stage compressor 10 passes between the metal pipe 41 and the fins 42 of the first intermediate cooler 40. Then, it flows to the second intermediate cooler 50 side.
  • cooling water 44 is supplied from the cooling tower 43 to the metal pipe 41 of the first intermediate cooler 40.
  • the cooling water 44 is also supplied to the condenser 60.
  • the temperatures of the cooling water 44, the metal pipe 41, and the fins 42 are ideally outside air temperatures (for example, 32 ° C.).
  • the temperature (about 100 degreeC) of the gaseous refrigerant in the exit of the 1st stage compressor 10 is always higher than external temperature (for example, 32 degreeC)
  • a gaseous refrigerant is the metal piping 41 and Sufficient cooling is achieved by contacting the surface of the fin 42.
  • the first intermediate cooler 40 of the present embodiment is an indirect contact type intermediate cooler in which the cooling water 44 and the gaseous refrigerant do not directly contact each other, when passing through the first intermediate cooler 40, the gas The amount of refrigerant does not increase.
  • the second intermediate cooler 50 is a cooler disposed in the intermediate passage 30 and downstream of the first intermediate cooler 40. As shown in FIG. 2, the second intermediate cooler 50 is disposed in the second passage portion 32 of the intermediate passage 30, and the external shape thereof is substantially the same as that of the first intermediate cooler 40. However, the second intermediate cooler 50 has a liquid holding body 51 therein.
  • the liquid holding body 51 is a member that holds the liquid refrigerant liquefied by the condenser 60 while being exposed to the gaseous refrigerant in the intermediate passage 30 and can be formed of a filler such as Raschig ring or a nonwoven fabric.
  • the liquid refrigerant held by the liquid holding body 51 is vaporized in the intermediate passage 30, whereby the gaseous refrigerant passing through the intermediate passage 30 can be cooled.
  • cooling may be performed by a method such as an economizer used in a chlorofluorocarbon machine.
  • the second intermediate cooler 50 is supplied with a liquid refrigerant of about 20 ° C.
  • the gaseous refrigerant whose temperature which passed the 1st intermediate cooler 40 is about 40 degreeC falls to about 25 degreeC by passing the 2nd intermediate cooler 50 further.
  • the temperature of the gas refrigerant at the inlet of the second stage compressor 20 is set to about 25 ° C.
  • the temperature of the gas refrigerant at the outlet of the second stage compressor 20 that is, the maximum temperature of the refrigerator 100. Can be suppressed.
  • the second intermediate cooler 50 of the present embodiment is a direct contact type intermediate cooler in which the gas refrigerant and the liquid refrigerant are in direct contact, but the gas refrigerant has already been cooled by the first intermediate cooler 40. Therefore, the amount of increase in the gaseous refrigerant when passing through the second intermediate cooler 50 can be suppressed.
  • the first intermediate cooler 40 and the second intermediate cooler 50 may cause the pressure of the gas refrigerant to decrease (pressure loss), but in the present embodiment, the first intermediate cooler 40 and the second intermediate cooler are used.
  • the pressure loss is suppressed by arranging 50 in the second passage portion 32 of the intermediate passage 30. That is, the pressure loss is caused by the fact that the flow passage area is reduced and the passage flow velocity is increased.
  • the second passage portion 32 of the intermediate passage 30 is located at the outer peripheral portion, so the flow passage area is increased. The pressure loss in the first intermediate cooler 40 and the second intermediate cooler 50 is suppressed larger than the other passage portions.
  • the condenser 60 is a device that liquefies the gaseous refrigerant compressed by the first stage compressor 10 and the second stage compressor 20.
  • the condenser 60 has a heat exchange tube 61, and the cooling water 44 is supplied from the cooling tower 43 into the heat exchange tube 61.
  • both may be arranged in series so that the cooling water 44 flows in order from the condenser 60 to the first intermediate cooler 40.
  • both the intermediate coolers 40 are arranged in parallel so that the cooling water 44 having the lowest temperature is supplied to both of the intermediate coolers 40.
  • the surface of the heat exchange tube 61 is cooled only to the temperature of the cooling water 44 (for example, 32 ° C.), but the refrigerant is compressed to 6.3 kPa by the first stage compressor 10 and the second stage compressor 20. Therefore, the gaseous refrigerant touching the heat exchange tube 61 is sufficiently cooled and condensed.
  • the condenser 60 of the present embodiment is disposed so as to be surrounded by the intermediate passage 30.
  • the liquefied refrigerant (liquid refrigerant) accumulates at the bottom of the condenser 60, and the accumulated liquid refrigerant flows to the evaporator 90 side through the drain pipe 62 penetrating the intermediate passage.
  • the condenser 60 is disposed inside the intermediate passage 30 for the following reason. That is, when the second-stage compressor 20 is disposed inside the intermediate passage 30 as in the present embodiment, the compressed refrigerant needs to be sent to the outside of the intermediate passage 30 across the intermediate passage 30.
  • the refrigerant can be sent out of the intermediate passage 30 by a pipe having a small diameter (the drain pipe 62 described above). If the refrigerant is sent out to the outside of the intermediate passage 30 in the form of gas, an exhaust pipe having a very large diameter must be installed in the intermediate passage 30, and the exhaust pipe adversely affects the flow of the gaseous refrigerant. It is clear to give.
  • the bottom portion of the condenser 60 in which the liquefied liquid refrigerant is accumulated is located in the vicinity of the second passage portion 32. Therefore, if the first intermediate cooler 40 and the second intermediate cooler 50 are disposed in the third passage portion 33, the temperature of the second passage portion 32 located near the liquid refrigerant that has been cooled and accumulated is increased. A high gaseous refrigerant will flow. That is, the liquid catalyst cooled to about 32 ° C. by the condenser 60 will be warmed to a gas refrigerant of about 100 ° C., reducing the condenser performance and deteriorating the efficiency of the refrigerator.
  • the first intermediate cooler 40 and the second intermediate cooler 50 are arranged in the second passage portion 32 of the intermediate passage 30, the gas flowing in the second passage portion 32.
  • the temperature of the refrigerant is lowered. Therefore, it is possible to prevent the liquid refrigerant cooled by the condenser 60 from being warmed by the gas refrigerant passing through the intermediate passage 30.
  • the first decompression unit 70 is a part for reducing the pressure of the liquid refrigerant.
  • a pressure reducing valve is employed as the first pressure reducing unit 70, but other configurations such as a structure using a height difference of the piping position may be employed.
  • the first decompression unit 70 is provided in the main pipe 71 that guides the liquid refrigerant from the condenser 60 to the evaporator 90.
  • the first decompression unit 70 is located on the upstream side of the second decompression unit 80 so that the liquid refrigerant has the same pressure as the pressure of the gas refrigerant (about 2.4 kPa) compressed by the first stage compressor 10. Depressurize to.
  • the liquid refrigerant decompressed by the first decompression unit 70 is supplied to the second intermediate cooler 50 via the branch pipe 72.
  • the second decompression unit 80 is a part for lowering the pressure of the liquid refrigerant, like the first decompression unit 70.
  • a pressure reducing valve is also used for the second pressure reducing unit 80.
  • the second decompression unit 80 is downstream of the branch point of the first decompression unit 70 and the branch pipe 72 in the main pipe 71 that guides the liquid refrigerant from the condenser 60 to the evaporator 90. That is, it is disposed immediately upstream of the evaporator 90.
  • the second decompression unit 80 decompresses the liquid refrigerant until it reaches a temperature required by the evaporator 90.
  • the evaporator 90 requires liquid refrigerant having a temperature of 7 ° C. If the pressure of the liquid refrigerant at 2.4 kPa and the temperature of 20 ° C. is reduced to 0.9 kPa, the temperature of the liquid refrigerant will be 7 ° C.
  • the evaporator 90 is a device that vaporizes the liquid refrigerant liquefied by the condenser 60 and cools the cooling target 101 with the heat of vaporization generated at that time.
  • the cooling object 101 cooled by the evaporator 90 is cold water used for cooling the building in this embodiment.
  • the evaporator 90 has a heat exchange tube 91.
  • a cooling object 101 (cold water used for cooling) flows in the heat exchange tube 91. Then, when the liquid refrigerant is jetted onto the surface of the heat exchange tube 91, the liquid refrigerant that has touched the surface of the heat exchange tube 91 is vaporized, thereby cooling the cooling target 101 in the heat exchange tube 91.
  • the cooling object 101 (cold water) that was 12 ° C. when entering the evaporator 90 is cooled to 7 ° C. when leaving the evaporator 90. Then, the gas refrigerant evaporated (vaporized) by the evaporator 90 is supplied to the first stage compressor 10 again.
  • the cycle of compression, solidification, and evaporation is repeated in a range where the water, which is a refrigerant, has a negative pressure.
  • the refrigerant temperature (eg, 100 ° C.) at the outlet of the first stage compressor 10 is much higher than the atmospheric temperature (eg, 32 ° C.).
  • the gaseous refrigerant can be cooled by the cooling water 44 of the cooling tower 43.
  • the first intermediate cooler 40 is an indirect contact type intermediate cooler, the amount of gaseous refrigerant does not increase when passing through the first intermediate cooler 40.
  • the gaseous refrigerant cooled by the first intermediate cooler 40 is further cooled, so that the efficiency of the second stage compressor 20 is improved and the maximum temperature in the refrigerator 100 (second The outlet temperature of the stage compressor 20) can be suppressed.
  • FIG. 5 is a schematic sectional view around the first stage compressor 10 and the second stage compressor 20 of the present embodiment.
  • the refrigerator 200 according to the present embodiment is basically the same as the refrigerator 100 according to the first embodiment except that the arrangement of the second stage compressor 20 and the condenser 60 is different from that of the first embodiment. It is a configuration. More specifically, in the present embodiment, the first stage compressor 10 and the second stage compressor 20 are arranged on the same axis so that the inlets are located on the front side, and the condenser 60 is an intermediate passage. It is arranged at an arbitrary position outside the 30. Thus, even if the first stage compressor 10 and the second stage compressor 20 are not arranged back to back, the first intercooler 40 and the second intercooler 50 described above are provided, so that the intercooler Can improve the cooling capacity.
  • the intermediate passage 30 includes the first passage portion 31 that guides the gaseous refrigerant discharged from the first stage compressor 10 to the outside in the radial direction and the gaseous refrigerant that has passed through the first passage portion 31 in the axial direction. And a third passage portion 33 that guides the gaseous refrigerant that has passed through the second passage portion 32 to the inlet of the second-stage compressor 20 located radially inward.
  • the first intermediate cooler 40 and the second intermediate cooler 50 are disposed in the second passage portion 32 of the intermediate passage 30.
  • the first intermediate cooler 40 and the second intermediate cooler 50 are disposed in the second passage portion 32 of the intermediate passage 30, compared to the case where the first intermediate cooler 40 and the second intermediate cooler 50 are disposed in the third passage 33. The pressure loss of the gaseous refrigerant due to the first intermediate cooler 40 and the second intermediate cooler 50 can be suppressed.
  • FIG. 6 is a schematic sectional view around the first stage compressor 10 and the second stage compressor 20 of the present embodiment.
  • the refrigerator 300 according to this embodiment is different from the second embodiment in the arrangement of the first intermediate cooler 40 and the second intermediate cooler 50, but otherwise the second embodiment.
  • This is basically the same configuration as the refrigerator 200 according to the above. More specifically, the first intermediate cooler 40 and the second intermediate cooler 50 are disposed in the third passage portion 33 of the intermediate passage 30.
  • FIG. 7 is a view taken along arrow VII-VII in FIG.
  • the first intermediate cooler 40 and the second intermediate cooler 50 of the present embodiment are formed in a prismatic shape as in the case of the first embodiment.
  • the first intermediate cooler 40 is disposed around the vicinity of the inlet of the second stage compressor 20, and the second intermediate cooler 50 is disposed radially inward thereof.
  • the first intermediate cooler 40 and the second intermediate cooler 50 are combined to form a rectangular frame as a whole.
  • the second passage portion 32 is divided into upper and lower portions, and each channel section is formed to extend in the horizontal direction, as shown in FIG.
  • the first intermediate cooler 40 and the second intermediate cooler 50 may be arranged.
  • first intermediate cooler 40 and the second intermediate cooler 50 may be disposed so as to extend in the horizontal direction at two locations above and below the third passage portion 33.
  • first intermediate cooler 40 and the second intermediate cooler 50 of the present embodiment are formed in a straight line (a prismatic shape) and can be easily manufactured. .
  • the refrigerator according to the embodiments of the present invention has been described, the specific configuration is not limited to these embodiments, and even if there is a design change or the like without departing from the gist of the present invention. Included in the invention.
  • the refrigerators 100, 200, and 300 described above include only the first-stage compressor 10 and the second-stage compressor 20, but the present invention even if the refrigerator includes more compressors. include.
  • the refrigerator according to the present invention is useful in the technical field of a refrigerator because it can increase the cooling capacity of the intermediate cooler in a refrigerator using a low-pressure refrigerant.
  • first stage compressor 20 second stage compressor 30 intermediate passage 31 first passage portion 32 second passage portion 33 third passage portion 40 first intermediate cooler 41 metal pipe 43 cooling tower (cooling device) 44 Cooling water 50 Second intermediate cooler 51 Liquid holder 60 Condenser 70 First decompression unit 90 Evaporating units 100, 200, 300 Refrigerator

Abstract

 本発明に係る冷凍機(100)は、第1中間冷却器(40)と、第1中間冷却器(40)の下流に配置された第2中間冷却器(50)と、を備えている。このうち第1中間冷却器(40)は、冷却装置(43)から供給された冷却水(44)を用いて間接的に中間通路(30)内の気体冷媒を冷却する間接接触型の中間冷却器である。一方、第2中間冷却器(50)は、凝縮器(60)によって液化された液体冷媒を中間通路(30)内で気化させることで中間通路(30)内の気体冷媒を冷却する直接接触型の中間冷却器である。

Description

冷凍機
 本発明は冷凍機に関し、特に負圧での作動が必要な低圧冷媒を用いた冷凍機に関する。
 ビルなどの大型の建物では、冷水(5~7°C程度)を建物全体に循環させて冷房を行う、冷水循環型の冷房システムが採用されている。このシステムで用いる冷水は、建物の地下などに設置された冷凍機によって冷却される。冷凍機は冷媒を用いて冷却を行うが、従来、この冷媒にはフロンガスが用いられてきた。しかしながら、フロンガスは地球環境に悪影響を及ぼすことから、フロンガス以外の物質を冷媒とする冷凍機が検討されており、身近な物質である水を用いた冷凍機も提案されている。冷媒が異なっても冷凍機の基本構成は変わらないが、水のように負圧での動作が必要な低圧冷媒を冷媒として使用する場合には、圧縮率の高い圧縮機を用いる必要がある。また、圧縮機から排出される冷媒の温度も高くなることから、最高温度となる部分の周辺は高温に耐えることができる材料や構造を採用する必要がある。
 冷凍機には、複数の圧縮機からなる多段圧縮機が採用されることがある。低圧冷媒を用いた冷凍機の場合は、高い圧縮比を実現するためにこの多段圧縮機を採用するが、各圧縮機の間に中間冷却器を設置できることも多段圧縮機の利点である。そのため、フロンガスを冷媒とする冷凍機であっても、多段圧縮機を採用することがある。中間冷却器を設置することで、後段の圧縮機の入口における冷媒の温度が下がり、後段の圧縮機の負荷が減ることで冷凍機の効率を向上させることができる。また、冷凍機の中で最も高温となる圧縮機出口の冷媒温度を下げることが可能となる。
 特許文献1では、水を冷媒とする冷凍機に用いる中間冷却器(中間冷却システム)が開示されている。特許文献1に記載の中間冷却システム(60)は、いわゆる直接接触型の中間冷却器であり、水が段間ダクト(45)内で気化するように構成されている。これにより段間ダクト(45)内を流れる作動流体(5)、つまり水蒸気は冷却される。
特開2009-221966号公報
 しかしながら、直接接触型の中間冷却器では、気化した冷媒はそのまま後段の圧縮機に取り込まれるため、気化させる冷媒の量が増えると後段の圧縮機の負荷が増加し、その結果、冷凍機の効率が低下してしまう。このように、直接接触型の中間冷却器では、中間冷却による後段圧縮機の動力低減と流量増大による動力の増加がトレードオフの関係にあるため、冷却能力に限界があった。また、特に、低圧冷媒を用いた冷凍機では、最高温度を下げる必要性もあるため、中間冷却器の更なる冷却能力の向上が望まれている。
 本発明は、以上のような課題に鑑みてなされたものであり、低圧冷媒を用いた冷凍機において、中間冷却器の冷却能力を高めることを目的としている。
 本発明に係る冷凍機は、負圧での作動が必要な低圧冷媒を用いた冷凍機であって、気体状態にある気体冷媒を圧縮する第1段圧縮機と、前記第1段圧縮機で圧縮された気体冷媒をさらに圧縮する第2段圧縮機と、前記第1段圧縮機から前記第2段圧縮機へ気体冷媒を導く中間通路と、前記中間通路内に配置された第1中間冷却器と、前記中間通路内であって前記第1中間冷却器の下流に配置された第2中間冷却器と、前記第1段圧縮機及び前記第2段圧縮機によって圧縮された気体冷媒を冷却装置から供給された冷却水で冷却し液化する凝縮器と、前記凝縮器で液化された液体冷媒を気化し、そのとき生じる気化熱で冷却対象を冷却する蒸発器と、を備え、前記第1段圧縮機は、出口における気体冷媒の温度が前記冷却水の温度よりも高くなるような圧縮比特性を有し、前記第1中間冷却器は、前記冷却装置から供給された冷却水を用いて間接的に前記中間通路内の気体冷媒を冷却する間接接触型の中間冷却器であり、前記第2中間冷却器は、前記凝縮器によって液化された液体冷媒を前記中間通路内で気化させることで前記中間通路内の気体冷媒を冷却する直接接触型の中間冷却器である。
 かかる構成では、低圧冷媒を用いた場合に第1段圧縮機の出口における冷媒の温度が冷却水の温度よりも高くなることに着目し、まず冷却塔などの冷却装置から供給される冷却水を利用して、冷却水と冷媒間で質量の交換を行うことのない、つまり第2段圧縮機に流入する気体冷媒の量が増えることのない間接接触型の中間冷却器により冷却水の温度程度まで冷却を行った後、より冷却能力の高い直接接触型の中間冷却器によってさらに気体冷媒の冷却を行っている。そのため、全体として第2段圧縮機に流入する気体冷媒の量を抑えつつ、効率よく気体冷媒を冷却することができる。
 また、上記の冷凍機において、前記第1段圧縮機及び前記第2段圧縮機は、同軸上で水平方向に並び、かつ、互いに入口が軸方向外側に位置するように配置された遠心圧縮機であって、前記中間通路は、前記第1段圧縮機から排出された気体冷媒を半径方向外側に導く第1通路部と、前記第2段圧縮機の半径方向外側に位置して前記第1通路部を通過した気体冷媒を軸方向に導く第2通路部と、該第2通路部を通過した気体冷媒を半径方向内側に位置する前記第2段圧縮機の入口へ導く第3通路部と、を有し、前記凝縮器は前記第2段圧縮機の半径方向外側に配置され、前記第1中間冷却器及び前記第2中間冷却器は、前記中間通路のうち前記第2通路部に配置されていてもよい。
 かかる構成によれば、スペースを有効に活用できるとともに、凝縮器の底に溜まる液体冷媒が中間通路を流れる中間冷却される前の気体冷媒によって熱せられるのを抑えることができる。
 また、上記の冷凍機において、前記第1段圧縮機及び前記第2段圧縮機は、同軸上に並んで配置された遠心圧縮機であって、前記中間通路は、前記第1段圧縮機から排出された気体冷媒を半径方向外側に導く第1通路部と、該第1通路部を通過した気体冷媒を軸方向に導く第2通路部と、該第2通路部を通過した気体冷媒を半径方向内側に位置する前記第2段圧縮機の入口へ導く第3通路部と、を有し、前記第1中間冷却器及び前記第2中間冷却器は、前記中間通路のうち前記第3通路部に配置されていてもよい。また、前記第1中間冷却器及び前記第2中間冷却器は、前記中間通路のうち前記第2通路部に配置されていてもよい。
 第1中間冷却器及び第2中間冷却器が第3通路に配置されている場合には、第1段圧縮機と第2段圧縮機の軸方向距離を縮めることができる。遠心圧縮機のような回転機械の軸方向距離の短縮は、機器の小型化は言うまでもなく、回転軸の軸系設計に大きな利点をもたらす。また、第1中間冷却器及び第2中間冷却器が第2通路部に配置されている場合には、第1中間冷却器及び第2中間冷却器における流路面積を大きくすることができ、これにより中間通路内における冷媒の圧力損失を抑えることができる。
 また、前記第2通路に前記第1中間冷却器及び前記第2中間冷却器が配置される冷凍機において、前記第2通路の流路断面は直線状又は直線枠状に形成されていてもよい。かかる構成によれば、第1中間冷却器及び第2中間冷却器を直線状の単純な形状にすることができ、製造が容易となる。
 上述のように、本発明によれば、低圧冷媒を用いた冷凍機において、中間冷却器の冷却能力を高めることができる。
図1は、本発明の第1実施形態に係る冷凍機の系統図である。 図2は、本発明の第1実施形態に係る第1段圧縮機及び第2段圧縮機周辺の概略断面図である。 図3は、図2のIII-III矢視断面図である。 図4は、本発明の第1実施形態の変形例を示した図であって、図3に相当する図である。 図5は、本発明の第2実施形態に係る第1段圧縮機及び第2段圧縮機周辺の概略断面図である。 図6は、本発明の第3実施形態に係る第1段圧縮機及び第2段圧縮機周辺の概略断面図である。 図7は、図6のVII-VII矢視断面図である。 図8は、本発明の第3実施形態の変形例を示した図であって、図7に相当する図である。
 以下、本発明の実施形態について説明する。なお、以下では全ての図を通じて同一または相当する構成要素には同一の参照符号を付し、重複する説明は省略する。
 (第1実施形態)
 まず、図1から図4を参照して、第1実施形態に係る冷凍機100について説明する。ここで、図1は、本実施形態に係る冷凍機100の系統図である。図1に示すように、本実施形態に係る冷凍機100は、第1段圧縮機10と、第2段圧縮機20と、中間通路30と、第1中間冷却器40と、第2中間冷却器50と、凝縮器60と、第1減圧部70と、第2減圧部80と、蒸発器90とを備えている。なお、図1において冷媒は時計回りに循環する。以下、各構成要素について順に説明する。また、以下で示す冷媒の温度や圧力は、あくまでも目安であって、これに限るものではない。
 なお、本実施形態に係る冷凍機100の冷媒は低圧冷媒であり、より具体的には水である。ここでいう「低圧冷媒」とは、負圧での作動が必要な冷媒をいう。例えば、冷媒として低圧冷媒ではないフロンガスを用いた場合、冷媒は冷凍機内においておよそ3気圧(約304kPa)から10気圧(約1013kPa)といった正圧の範囲で作動するのに対し、冷媒として低圧冷媒である水を用いた場合、冷凍機内においておよそ0.01気圧(約1kPa)から0.1気圧(約10kPa)といった負圧の範囲で作動させる必要がある。
 第1段圧縮機10は、第2段圧縮機20よりも上流側に位置する圧縮機である。第1段圧縮機10は、遠心圧縮機であり、気体状態にある冷媒(気体冷媒)を蒸発器90から取り込んで圧縮する。なお、第1段圧縮機10は、軸流圧縮機であってもよい。第1段圧縮機10における冷媒は、入口で0.9kPa、出口では2.4kPaとなる。これにより入口で約7°Cであった冷媒は出口では約100°Cにまで上昇する。このように、第1段圧縮機10の出口における気体冷媒の温度は、外気温度(例えば、32°C)よりも高くなる。なお、冷媒としてフロンガスを用いた場合、第1段圧縮機の出口における冷媒の温度は30°C程度であり、常に外気温度よりも高くなるわけではない。
 第2段圧縮機20は、第1段圧縮機10よりも下流側に位置する圧縮機である。第2段圧縮機20は、第1段圧縮機10と同じく遠心圧縮機であり(軸流圧縮機であってもよい)、第1段圧縮機10で圧縮された気体冷媒をさらに圧縮する。ここで、図2は、第1段圧縮機10及び第2段圧縮機20周辺の概略断面図である。なお、図2において、紙面上下方向が冷凍機100の鉛直方向にあたり、紙面左右方向が冷凍機100の水平方向にあたる。また、図2の紙面左側を前方側と称し、紙面右側を後方側と称して説明する。図2に示すように、第1段圧縮機10と第2段圧縮機20は、回転シャフト11を介して背中合わせに連結されている。つまり、第1段圧縮機10と第2段圧縮機20は、同軸上で水平方向に並んで、かつ、互いに入口が軸方向外側に位置するように配置されている。
 中間通路30は、第1段圧縮機10から第2段圧縮機20へ気体冷媒を導く通路である。図2に示すように、本実施形態の中間通路30は、第1通路部31、第2通路部32、及び第3通路部33によって主に構成されている。第1通路部31は、第1段圧縮機10の出口から半径方向外側に広がっており、第1段圧縮機10から排出された気体冷媒を半径方向外側に導くように構成されている。第2通路部32は、第2段圧縮機20の半径方向外側に位置しており、第1通路部31を通過した気体冷媒を軸方向後方側に導くように構成されている。第3通路部33は、第2通路部32の軸方向後方側端部から半径方向内側に向かって形成されており、第2通路部32を通過した気体冷媒を半径方向内側に位置する第2段圧縮機20の入口へと導くように構成されている。
 ここで、図3は、図2におけるIII-III矢視図である。図3に示すように、第2通路部32は、流路断面が矩形枠状(直線枠状)に形成されている。しかしながら、流路断面の形状はこのようなものに限定されない。例えば、第2通路部32は、図4に示すように、上下に分かれており、それぞれ流路断面が水平方向に延びるように形成されていてもよく、また、図示しないが円環状に形成されていてもよい。ただし、第2通路部32を流路断面が直線状(図4で示す形状)又は直線枠状(図3で示す形状)となるように形成することで、後述する第1中間冷却器40及び第2中間冷却器50を曲線状に形成する必要がなく、直線状の単純な構造にすることができる。
 第1中間冷却器40は、中間通路30内であって第2中間冷却器50の上流側に配置された冷却器である。第1中間冷却器40は、図2に示すように中間通路30のうち第2通路部32内に配置されている。第1中間冷却器40は、第2通路部32の断面形状(矩形枠状)に対応した形状を有している。具体的には、第1中間冷却器40は角柱状の形状を有しており、第2通路部32の断面形状である矩形枠を構成する上下左右の各枠辺に嵌め込まれている。なお、第2通路部32の流路断面が図4のように形成されている場合には、第1中間冷却器40は上下に分かれた通路にそれぞれはめ込まれる。第1中間冷却器40は、金属配管41と複数の金属製のフィン42を有している。金属配管41は、上下左右の各枠辺に沿って中間通路30内を横切るようにして配置されている。一方、フィン42は、金属配管41に沿って、かつ、気体冷媒の流れ方向に対して平行に配置されている。つまり、フィン42は金属配管41に対して垂直に配置されている。第1中間冷却器40は、以上のような構成を有しており、第1段圧縮機10から排出された気体冷媒は、第1中間冷却器40の金属配管41とフィン42の間を通って、第2中間冷却器50側へと流れていく。
 ここで、図1に示すように、第1中間冷却器40の金属配管41には、冷却塔43から冷却水44が供給される。なお、この冷却水44は、凝縮器60にも供給されている。冷却塔43は屋外に設置されているため、冷却水44、金属配管41、及びフィン42の温度は、理想的には外気温度(例えば、32°C)となる。そして、上述したように、第1段圧縮機10の出口における気体冷媒の温度(100°C程度)は、外気温度(例えば、32°C)よりも常に高いため、気体冷媒は金属配管41及びフィン42の表面に接触することで十分冷却される。具体的には、100°C程度であった気体冷媒は、第1中間冷却器40を通過することで40°C程度にまで冷却される。なお、上述したように、冷媒がフロンガスであれば、第1段圧縮機10の出口における気体冷媒の温度は30°C程度となるため、冷却塔43から供給される冷却水44(32°C程度)によって冷却することは不可能である。つまり、冷媒が低圧冷媒であるときにはじめて冷却塔43から供給される冷却水44を用いて気体冷媒を冷却することができる。さらに、本実施形態の第1中間冷却器40は、冷却水44と気体冷媒が直接接触することのない間接接触型の中間冷却器であるため、第1中間冷却器40を通過する際、気体冷媒の量が増えることはない。
 第2中間冷却器50は、中間通路30内であって第1中間冷却器40の下流側に配置された冷却器である。第2中間冷却器50は、図2に示すように中間通路30のうち第2通路部32内に配置されており、その外観形状は第1中間冷却器40とほぼ同じである。ただし、第2中間冷却器50は、その内部に液保持体51を有している。液保持体51は、凝縮器60によって液化された液体冷媒を中間通路30において気体冷媒にさらしながら保持する部材であって、例えばラシヒリングのような充填材や不織布によって形成することができる。液保持体51で保持された液体冷媒が中間通路30内で気化することで、中間通路30を通過する気体冷媒を冷却することができる。その他の手段としてフロン機で用いられるエコノマイザのような方法で冷却しても良い。後述するように、第2中間冷却器50には、約20°Cの液体冷媒が供給される。そして、第1中間冷却器40を通過した温度が約40°Cである気体冷媒は、第2中間冷却器50をさらに通過することで約25°Cにまで低下する。このように、第2段圧縮機20の入口における気体冷媒の温度を約25°Cにすることで、第2段圧縮機20の出口における気体冷媒の温度(つまり、冷凍機100の最高温度)を抑制することができる。
 以上のとおり、本実施形態の第2中間冷却器50は、気体冷媒と液体冷媒が直接接触する直接接触型の中間冷却器であるが、気体冷媒は既に第1中間冷却器40で冷却されているため、第2中間冷却器50を通過する際に気体冷媒が増加する量を抑えることができる。また、第1中間冷却器40及び第2中間冷却器50は、気体冷媒の圧力が低下(圧力損失)する原因となりかねないが、本実施形態では第1中間冷却器40及び第2中間冷却器50を中間通路30の第2通路部32に配置することで、圧力損失を抑えている。つまり、圧力損失は、流路面積が小さくなり、通過流速が増加することがその要因の一つであるが、中間通路30のうち第2通路部32はより外周部にあるため流路面積が他の通路部よりも大きく、第1中間冷却器40及び第2中間冷却器50における圧力損失を抑えている。
 凝縮器60は、第1段圧縮機10及び第2段圧縮機20によって圧縮された気体冷媒を液化する装置である。凝縮器60は熱交換チューブ61を有しており、その熱交換チューブ61内に冷却塔43から冷却水44が供給される。冷却水44の流路上において、凝縮器60から第1中間冷却器40へと順に冷却水44が流れるように両者を直列に配置してもよいが、図1に示すように凝縮器60と第1中間冷却器40の両方に最も温度が低い状態の冷却水44が供給されるよう両者を並列に配置するのが望ましい。熱交換チューブ61の表面は、冷却水44の温度程度(例えば、32°C)までしか冷却されないが、第1段圧縮機10及び第2段圧縮機20によって冷媒は6.3kPaまで圧縮されているため、熱交換チューブ61に触れた気体冷媒は十分に冷却されて凝縮する。
 また、図2に示すように、本実施形態の凝縮器60は中間通路30によって囲まれるようにして配置されている。液化した冷媒(液体冷媒)は凝縮器60の底部分に溜まり、溜まった液体冷媒は中間通路を貫通する排水管62を通って、蒸発器90側へと流れる。このように、凝縮器60が中間通路30の内側に配置されているのは、次の理由による。つまり、本実施形態のように第2段圧縮機20が中間通路30の内側に配置されている場合、圧縮された冷媒は中間通路30を横切って中間通路30の外側に送り出す必要があるが、このとき冷媒を気体ではなく液体とすることで体積が小さくなり、径の小さな配管(上記の排水管62)で冷媒を中間通路30の外側に送り出すことができるからである。仮に、冷媒を気体のままで中間通路30の外側に送り出すのであれば、非常に径の大きい排気管を中間通路30内に設置しなければならず、その排気管が気体冷媒の流れに悪影響を与えることは明らかである。
 また、図2に示すように、液化された液体冷媒が溜まる凝縮器60の底部分は、第2通路部32の近傍に位置している。そのため、仮に第1中間冷却器40及び第2中間冷却器50が第3通路部33内に配置されると、冷却されて溜まった液体冷媒の近傍に位置する第2通路部32には温度の高い気体冷媒が流れることになる。つまり、凝縮器60で32°C程度にまで冷却された液体触媒が、100°C程度の気体冷媒に暖められてしまうことになり、凝縮器性能を低下させ、冷凍機の効率が悪化する。これに対し、本実施形態では、中間通路30の第2通路部32内に第1中間冷却器40及び第2中間冷却器50が配置されていることから、第2通路部32内を流れる気体冷媒の温度は低くなる。そのため、凝縮器60によって冷却された液体冷媒が、中間通路30を通過する気体冷媒によって暖められるのを抑えることができる。
 第1減圧部70は、液体冷媒の圧力を下げるための部分である。本実施形態では、第1減圧部70として減圧弁を採用しているが、配管位置の高低差を利用した構造など他の構成を採用してもよい。図1に示すように、第1減圧部70は、凝縮器60から蒸発器90へ液体冷媒を導く主配管71に設けられている。第1減圧部70は、第2減圧部80の上流側に位置しており、液体冷媒が第1段圧縮機10によって圧縮された気体冷媒の圧力(2.4kPa程度)と同じ圧力となるように減圧する。なお、圧力が6.3kPaで温度が37°Cの液体冷媒を2.4kPaまで減圧すれば、液体冷媒の温度は20°Cとなる。第1減圧部70によって減圧された液体冷媒は、分岐配管72を介して第2中間冷却器50に供給される。
 第2減圧部80は、第1減圧部70と同様、液体冷媒の圧力を下げるための部分である。本実施形態では第2減圧部80についても減圧弁が採用されている。図1に示すように、第2減圧部80は、凝縮器60から蒸発器90へと液体冷媒を導く主配管71のうち、第1減圧部70及び分岐配管72の分岐点よりも下流側、つまり蒸発器90のすぐ上流側に配置されている。第2減圧部80は、液体冷媒を蒸発器90で必要される温度となるまで減圧する。なお、蒸発器90では、温度が7°Cの液体冷媒を必要としている。圧力が2.4kPaで温度が20°Cの液体冷媒を0.9kPaまで減圧すれば、液体冷媒の温度は7°Cとなる。
 蒸発器90は、凝縮器60によって液化された液体冷媒を気化させ、そのとき生じる気化熱で冷却対象101を冷却する装置である。蒸発器90によって冷却する冷却対象101は、本実施形態ではビルの冷房に使用する冷水である。蒸発器90は、凝縮器60と同様に熱交換チューブ91を有している。この熱交換チューブ91内には、冷却対象101(冷房に使用する冷水)が流れる。そして、この熱交換チューブ91の表面に液体冷媒を噴射すると、熱交換チューブ91の表面に触れた液体冷媒が気化し、これにより熱交換チューブ91内の冷却対象101が冷却される。例えば、蒸発器90に入ってきたときには12°Cであった冷却対象101(冷水)は、蒸発器90を出て行くときには7°Cにまで冷却される。そして、蒸発器90で蒸発した(気化した)気体冷媒は、再度第1段圧縮機10に供給される。このように、本実施形態では、冷媒である水が負圧の範囲で、圧縮、凝固、蒸発のサイクルを繰り返している。
 以上が、本実施形態に係る冷凍機100の説明である。以上のように、冷媒として低圧冷媒を用いた場合、第1段圧縮機10の出口における冷媒の温度(例えば100°C)は大気温度(例えば、32°C)よりもはるかに高くなるため、第1中間冷却器40において冷却塔43の冷却水44による気体冷媒の冷却が可能となる。また、第1中間冷却器40は、間接接触型の中間冷却器であるため、第1中間冷却器40を通過する際、気体冷媒の量が増えることはない。そして、第2中間冷却器50では、第1中間冷却器40によって冷却した気体冷媒をさらに冷却するため、第2段圧縮機20の効率が向上するとともに、冷凍機100内の最高温度(第2段圧縮機20の出口温度)を抑えることができる。
 (第2実施形態)
 次に、図5を参照して、本発明の第2実施形態に係る冷凍機200について説明する。ここで、図5は、本実施形態の第1段圧縮機10及び第2段圧縮機20周辺の概略断面図である。本実施形態に係る冷凍機200は、第2段圧縮機20及び凝縮器60の配置が第1実施形態の場合と異なるが、それ以外は第1実施形態に係る冷凍機100と基本的に同じ構成である。より具体的には、本実施形態において第1段圧縮機10及び第2段圧縮機20は、同軸上に並んで入口が前方側に位置するように配置されており、凝縮器60は中間通路30の外側における任意の位置に配置されている。このように第1段圧縮機10と第2段圧縮機20が背中合わせで配置されない場合であっても、上述した第1中間冷却器40と第2中間冷却器50を設けることで、中間冷却器の冷却能力を高めることができる。
 なお、本実施形態では、中間通路30は、第1段圧縮機10から排出された気体冷媒を半径方向外側に導く第1通路部31と、第1通路部31を通過した気体冷媒を軸方向に導く第2通路部32と、第2通路部32を通過した気体冷媒を半径方向内側に位置する第2段圧縮機20の入口へ導く第3通路部33と、を有している。そして、第1中間冷却器40及び第2中間冷却器50は、中間通路30のうち第2通路部32に配置されている。このように、第1中間冷却器40及び第2中間冷却器50は、中間通路30のうちの第2通路部32に配置されているため、第3通路33に配置される場合に比べ、第1中間冷却器40及び第2中間冷却器50による気体冷媒の圧力損失を抑えることができる。
 (第3実施形態)
 次に、図6から図8を参照して、本発明の第3実施形態に係る冷凍機300について説明する。ここで、図6は、本実施形態の第1段圧縮機10及び第2段圧縮機20周辺の概略断面図である。図6に示すように、本実施形態に係る冷凍機300は、第1中間冷却器40と第2中間冷却器50の配置が第2実施形態の場合と異なるが、それ以外は第2実施形態に係る冷凍機200と基本的に同じ構成である。より具体的には、第1中間冷却器40及び第2中間冷却器50は、中間通路30の第3通路部33に配置されている。かかる構成によれば、第1中間冷却器40及び第2中間冷却器50を第2通路部32に配置する場合に比べ第2通路部32の軸方向長さを小さくすることが可能となり、ひいては冷凍機300の軸方向の長さを小さくすることができる。
 ここで、図7は、図6におけるVII-VII矢視図である。本実施形態の第1中間冷却器40及び第2中間冷却器50は、第1実施形態の場合と同様に角柱状に形成されている。そして、第2段圧縮機20の入口付近を中心にして、第1中間冷却器40が配置されており、その半径方向内側には第2中間冷却器50が配置されている。第1中間冷却器40及び第2中間冷却器50は、いずれも組み合わさって全体として矩形枠状に構成される。なお、第2通路部32が第1実施形態の図4に示すように、上下に分かれており、それぞれ流路断面が水平方向に延びるように形成されている場合には、図8のようにして第1中間冷却器40及び第2中間冷却器50を配置してもよい。つまり、第1中間冷却器40及び第2中間冷却器50は、第3通路部33の上下2箇所に水平方向に延びるようにして配置してもよい。なお、第1実施形態の場合と同様に、本実施形態の第1中間冷却器40及び第2中間冷却器50は直線状(角柱状)に形成されているため、容易に製造することができる。
 以上、本発明の実施形態に係る冷凍機について説明したが、具体的な構成はこれらの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計の変更等があっても本発明に含まれる。例えば、以上で説明した冷凍機100、200、300は、第1段圧縮機10と第2段圧縮機20のみを備えているが、冷凍機がさらに多くの圧縮機を備えていても本発明に含まれる。
 本発明に係る冷凍機は、低圧冷媒を用いた冷凍機において、中間冷却器の冷却能力を高めることができるため、冷凍機の技術分野において有益である。
10 第1段圧縮機
20 第2段圧縮機
30 中間通路
31 第1通路部
32 第2通路部
33 第3通路部
40 第1中間冷却器
41 金属配管
43 冷却塔(冷却装置)
44 冷却水
50 第2中間冷却器
51 液保持体
60 凝縮器
70 第1減圧部
90 蒸発部
100、200、300 冷凍機

Claims (5)

  1.  負圧での作動が必要な低圧冷媒を用いた冷凍機であって、
     気体状態にある気体冷媒を圧縮する第1段圧縮機と、
     前記第1段圧縮機で圧縮された気体冷媒をさらに圧縮する第2段圧縮機と、
     前記第1段圧縮機から前記第2段圧縮機へ気体冷媒を導く中間通路と、
     前記中間通路内に配置された第1中間冷却器と、
     前記中間通路内であって前記第1中間冷却器の下流に配置された第2中間冷却器と、
     前記第1段圧縮機及び前記第2段圧縮機によって圧縮された気体冷媒を冷却装置から供給された冷却水で冷却し液化する凝縮器と、
     前記凝縮器で液化された液体冷媒を気化し、そのとき生じる気化熱で冷却対象を冷却する蒸発器と、を備え、
     前記第1段圧縮機は、出口における気体冷媒の温度が前記冷却水の温度よりも高くなるような圧縮比特性を有し、
     前記第1中間冷却器は、前記冷却装置から供給された冷却水を用いて間接的に前記中間通路内の気体冷媒を冷却する間接接触型の中間冷却器であり、
     前記第2中間冷却器は、前記凝縮器によって液化された液体冷媒を前記中間通路内で気化させることで前記中間通路内の気体冷媒を冷却する直接接触型の中間冷却器である、冷凍機。
  2.  前記第1段圧縮機及び前記第2段圧縮機は、同軸上で水平方向に並び、かつ、互いに入口が軸方向外側に位置するように配置された遠心圧縮機であって、
     前記中間通路は、前記第1段圧縮機から排出された気体冷媒を半径方向外側に導く第1通路部と、前記第2段圧縮機の半径方向外側に位置して前記第1通路部を通過した気体冷媒を軸方向に導く第2通路部と、該第2通路部を通過した気体冷媒を半径方向内側に位置する前記第2段圧縮機の入口へ導く第3通路部と、を有し、
     前記凝縮器は前記第2段圧縮機の半径方向外側に配置され、
     前記第1中間冷却器及び前記第2中間冷却器は、前記中間通路のうち前記第2通路部に配置されている、請求項1に記載の冷凍機。
  3.  前記第1段圧縮機及び前記第2段圧縮機は、同軸上に並んで配置された遠心圧縮機であって、
     前記中間通路は、前記第1段圧縮機から排出された気体冷媒を半径方向外側に導く第1通路部と、該第1通路部を通過した気体冷媒を軸方向に導く第2通路部と、該第2通路部を通過した気体冷媒を半径方向内側に位置する前記第2段圧縮機の入口へ導く第3通路部と、を有し、
     前記第1中間冷却器及び前記第2中間冷却器は、前記中間通路のうち前記第3通路部に配置されている、請求項1に記載の冷凍機。
  4.  前記第1段圧縮機及び前記第2段圧縮機は、同軸上に並んで配置された遠心圧縮機であって、
     前記中間通路は、前記第1段圧縮機から排出された気体冷媒を半径方向外側に導く第1通路部と、該第1通路部を通過した気体冷媒を軸方向に導く第2通路部と、該第2通路部を通過した気体冷媒を半径方向内側に位置する前記第2段圧縮機の入口へ導く第3通路部と、を有し、
     前記第1中間冷却器及び前記第2中間冷却器は、前記中間通路のうち前記第2通路部に配置されている、請求項1に記載の冷凍機。
  5.  前記第2通路の流路断面は直線状又は直線枠状に形成されている、請求項2又は4に記載の冷凍機。
PCT/JP2013/000934 2012-02-23 2013-02-20 冷凍機 WO2013125215A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-037021 2012-02-23
JP2012037021A JP5941297B2 (ja) 2012-02-23 2012-02-23 冷凍機

Publications (1)

Publication Number Publication Date
WO2013125215A1 true WO2013125215A1 (ja) 2013-08-29

Family

ID=49005411

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/000934 WO2013125215A1 (ja) 2012-02-23 2013-02-20 冷凍機

Country Status (2)

Country Link
JP (1) JP5941297B2 (ja)
WO (1) WO2013125215A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019043009A1 (de) * 2017-08-30 2019-03-07 Efficient Energy Gmbh Wärmepumpe mit geschlossener zwischenkühlung und verfahren zum pumpen von wärme oder verfahren zum herstellen der wärmepumpe
WO2019042825A3 (de) * 2017-08-29 2019-04-25 Efficient Energy Gmbh Wärmepumpe mit einer kühlvorrichtung zum kühlen eines leitraums oder eines saugmunds

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59105100U (ja) * 1982-12-29 1984-07-14 大阪瓦斯株式会社 中間冷却器付遠心圧縮機
JP2009221966A (ja) * 2008-03-17 2009-10-01 Tokyo Electric Power Co Inc:The 多段圧縮機、圧縮機、及び冷凍機
JP2010091135A (ja) * 2008-10-03 2010-04-22 Tokyo Electric Power Co Inc:The 二段圧縮式給湯装置およびその起動制御方法
JP2011075254A (ja) * 2009-10-01 2011-04-14 Kawasaki Heavy Ind Ltd ターボ冷凍機

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59105100U (ja) * 1982-12-29 1984-07-14 大阪瓦斯株式会社 中間冷却器付遠心圧縮機
JP2009221966A (ja) * 2008-03-17 2009-10-01 Tokyo Electric Power Co Inc:The 多段圧縮機、圧縮機、及び冷凍機
JP2010091135A (ja) * 2008-10-03 2010-04-22 Tokyo Electric Power Co Inc:The 二段圧縮式給湯装置およびその起動制御方法
JP2011075254A (ja) * 2009-10-01 2011-04-14 Kawasaki Heavy Ind Ltd ターボ冷凍機

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019042825A3 (de) * 2017-08-29 2019-04-25 Efficient Energy Gmbh Wärmepumpe mit einer kühlvorrichtung zum kühlen eines leitraums oder eines saugmunds
US11754325B2 (en) 2017-08-29 2023-09-12 Efficient Energy Gmbh Heat pump having a cooling device for cooling a guide space or a suction mouth
WO2019043009A1 (de) * 2017-08-30 2019-03-07 Efficient Energy Gmbh Wärmepumpe mit geschlossener zwischenkühlung und verfahren zum pumpen von wärme oder verfahren zum herstellen der wärmepumpe
GB2579928A (en) * 2017-08-30 2020-07-08 Efficient Energy Gmbh Heat pump having closed intermediate cooling and method for pumping heat or method for producing the heat pump
GB2579928B (en) * 2017-08-30 2022-03-30 Efficient Energy Gmbh Heat pump with closed intermediate cooling and method for pumping heat or method for producing the heat pump

Also Published As

Publication number Publication date
JP5941297B2 (ja) 2016-06-29
JP2013170808A (ja) 2013-09-02

Similar Documents

Publication Publication Date Title
US20190063801A1 (en) Evaporator and centrifugal chiller provided with the same
US9377226B2 (en) Evaporator and turbo chiller including the same
JP2017146068A (ja) 冷凍機およびその制御方法
KR101173157B1 (ko) 수냉식 응축기 및 과냉각용 수냉식 열교환기를 구비하는 차량용 공조 시스템
EP2787314B1 (en) Double-pipe heat exchanger and air conditioner using same
JP2007024412A (ja) エジェクタ式冷凍サイクル
US20160363351A1 (en) Heat exchange apparatus and heat pump apparatus
JP6313090B2 (ja) ターボ冷凍機の蒸発器、および該蒸発器を備えたターボ冷凍機
JP2008039208A (ja) 冷却空気供給設備
WO2012144182A1 (ja) 凝縮装置
JP5941297B2 (ja) 冷凍機
US9890973B2 (en) Turbo refrigerator
JP2010266198A (ja) エジェクタ式冷凍サイクル
JP2000097519A (ja) 空調装置及びそれに用いる凝縮器
JP5270523B2 (ja) 冷凍冷蔵庫
EP3141857B1 (en) Radiator and supercritical pressure refrigeration cycle using the same
JP2008138895A (ja) 蒸発器ユニット
JP5491818B2 (ja) ターボ冷凍機
JP6176470B2 (ja) 冷凍機
JP2012102992A (ja) 室外機のパラレルフロー多段凝縮過冷却器
JP5582713B2 (ja) ヒートポンプ装置
JP2016070566A (ja) 放熱器および冷凍サイクル装置
KR102104893B1 (ko) 증발기 및 이를 포함하는 터보 냉동기
JP2007078317A (ja) 冷却装置用熱交換器及び冷却装置
WO2016039114A1 (ja) ターボ冷凍機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13751727

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13751727

Country of ref document: EP

Kind code of ref document: A1