WO2013122336A1 - Method for preparing tricalcium phosphate using pore forming agent, and tricalcium phosphate prepared thereby - Google Patents

Method for preparing tricalcium phosphate using pore forming agent, and tricalcium phosphate prepared thereby Download PDF

Info

Publication number
WO2013122336A1
WO2013122336A1 PCT/KR2013/000529 KR2013000529W WO2013122336A1 WO 2013122336 A1 WO2013122336 A1 WO 2013122336A1 KR 2013000529 W KR2013000529 W KR 2013000529W WO 2013122336 A1 WO2013122336 A1 WO 2013122336A1
Authority
WO
WIPO (PCT)
Prior art keywords
tricalcium phosphate
phosphate
calcium
pore
prepared
Prior art date
Application number
PCT/KR2013/000529
Other languages
French (fr)
Korean (ko)
Inventor
김승수
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Publication of WO2013122336A1 publication Critical patent/WO2013122336A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J6/00Heat treatments such as Calcining; Fusing ; Pyrolysis
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/32Phosphates of magnesium, calcium, strontium, or barium

Definitions

  • the present invention relates to a method for preparing tricalcium phosphate using a pore generating agent and to a tricalcium phosphate prepared according to the present invention.
  • the third type calcium phosphate ⁇ - Tricalcium phosphate, ⁇ -TCP.
  • Calcium Phosphate Bone Cement is a biomedical device used in orthopedic dentistry and plastic surgery as bone joints, bone fillers, and bone tissue growth promoters. It is a kind of material that can be injected into the affected area using a syringe. Invasive theraphy has recently been widely practiced. Phosphate kalseum golsi "Moment when woke clinical wrist and a fracture or bone defect occurs, etc. joint near the skull, spine, such as knees, and used mainly for the purpose of bone layered and bonded, especially in recent years, the spine augmentation in osteoporosis patients Phosphate bone cement is used on the back.
  • Calcium phosphate bone cement usually contains brusite cement and apatite
  • apatite is classified as cement.
  • Brucite cement has the advantage of fast curing time, but the low mechanical strength and high biodegradation rate make it difficult to use for bone reinforcement.
  • apatite cement has a high mechanical strength and a low biodegradation rate, which is suitable for bone tissue augmentation.
  • various methods are used to enhance the curing time as follows: 1) microparticle formation of the semicoating; 2) reducing the liquid phase ratio; 3) use of high solubility semi-aerated water; 4) use of nuclear material; 5) Lower solubility of the final product (M. Bohner, J. Mater. Chem., 17, 3980, (2007)).
  • ⁇ -type tricalcium phosphate is the only self-curing calcium phosphate which hardens only in calcium phosphate compounds and is used as a raw material for apatite cement. It is greatly influenced by its purity. Synthesis of a type-based tricalcium phosphate is generally prepared by reacting 1 mol of carbonate and 2 mol of dicalcium phosphate anhydrus (dicalcium phosphate anhydrous, DCPA, DCP) at a temperature of 1300 ° C and then cooling it.
  • DCPA dicalcium phosphate anhydrous
  • ⁇ -type tricalcium phosphate When water is used as a cold liquid, ⁇ -type tricalcium phosphate is converted into a hydroxide hydroxide when it comes into contact with water. When using other organic solvents, ⁇ -type tricalcium phosphate with 1000 V or more is used. Contact may cause a fire. In addition, while chlorine solvents are not a fire hazard, they are highly toxic and dangerous to use. When cooling with liquid nitrogen, ⁇ -calcium phosphate (alpha) of 1000 ° C or higher comes into contact with liquid nitrogen. Liquid nitrogen boils and drops come up, so workers have a dangerous problem.
  • the present inventors are working to develop a method for safely and efficiently producing high purity ⁇ -type tricalcium phosphate, and forming pores in the triphosphate by adding a pore generating agent, By using dry ice as a solvent, ⁇ -type tricalcium phosphate was rapidly engraved without phase change to develop a manufacturing method capable of safely producing high-purity ⁇ -type tricalcium phosphate and completed the present invention.
  • step 1 a step of mixing a raw material of tricalcium phosphate and a pore forming agent
  • a method for preparing tricalcium phosphate using a pore-generating agent comprising the step (step 3) of calcining the calcined body calcined in step 2 above.
  • the present invention provides tricalcium phosphate prepared by the above method.
  • the pores are added to the tricalcium phosphate by adding a pore generating agent, and air can be smoothly introduced and exited through the formed pores.
  • the efficiency can be further improved.
  • high purity ⁇ -type tricalcium phosphate can be safely manufactured, and the prepared tricalcium phosphate has excellent semi-permanence, and thus a bone cement composition including the same. Has the effect of exhibiting the Faron curing time.
  • Figure 1 is a photograph of the third phosphate prepared in Example 1 according to the present invention observed with a scanning electron microscope;
  • Figure 2 is a photograph of the third phosphate prepared in Example 3 according to the present invention observed with a scanning electron microscope;
  • Figure 3 is a photograph of the third phosphate prepared in Example 4 according to the present invention observed with a scanning electron microscope;
  • Example 4 is a photograph of a third calcium phosphate prepared in Example 6 according to the present invention observed with a scanning electron microscope;
  • Example 5 is a photograph of a third calcium phosphate prepared in Example 7 according to the present invention observed with a scanning electron microscope;
  • step 2 Calcination of the mixture mixed in step 1 to a temperature of 1200 to 1400 ° C. (step 2);
  • a method for preparing tricalcium phosphate using a pore-generating agent comprising the step (step 3) of calcining the calcined body calcined in step 2 above.
  • step 1 is a step of mixing a raw material of the tricalcium phosphate and a pore forming agent.
  • ⁇ 4i> 3 as a starting material for the preparation of calcium phosphate are the acid kalseum (CaC0 3) and the use of dibasic calcium phosphate hydrates, and or acid kalseum (CaC0 3) and a second phosphate kalseum anhydrous (CaHP0 4)
  • the carbon carbonate (CaC0 3 ) and the calcium pyrophosphate (Ca 2 0 7 P 2 ) can also be used as raw materials.
  • a plurality of pores can be formed in the tricalcium phosphate prepared by using dicalcium phosphate hydrate, dicalcium phosphate anhydride or calcium pyrophosphate together with calcium carbonate as described above. .
  • step 1 a pore forming agent is mixed with the raw material and more pores are formed in the third phosphate prepared through this.
  • the pores formed by the pore-generating agent further improves the cooling efficiency when the tricalcium phosphate is removed, thereby improving the production efficiency of the tricalcium phosphate.
  • the pore generating agent is not particularly limited as long as it is an organic substance vaporized or burned at a high temperature. However, since the raw material begins to react at around 800 ° C., the pore generating material is mostly burned at a temperature of 800 ° C. or less. It is preferable that it is a substance which does not affect. In addition, the low toxicity of the combustion material of the pore generating material is preferred. - Accordingly, the pore-generating agent may be polylactic acid or polyglycolic acid.
  • polyglycolic acid polyhydroxyalkanoate
  • polyester nylon
  • acrylic resin polyvinyl alcohol
  • polyurethane polyglycol
  • naphthalene Cellulose, alginic acid, carrageenan, starch, carbohydrates, sugar, etc.
  • They are mostly burned and removed at temperatures below 800 ° C, and have the advantage of generating little toxic substances during combustion.
  • the addition amount of the pore generating material is not particularly limited, but if an excessive amount is used, the volume of the pore generating material to be combusted may be large and the production efficiency may be lowered. Therefore, preferably it is preferably mixed at a ratio of 20 to 500% by volume relative to the volume of the tricalcium phosphate raw material, and more preferably at a ratio of 50 to 200% by volume. If the amount of the pore-generating agent is less than 20% by volume, open pores are not generated, and thus, the corner air does not penetrate well into the third phosphate. In addition, when the addition amount of the pore-generating agent exceeds 500 volume 3 ⁇ 4, while the pores are formed smoothly, there is a problem that the production efficiency is lowered because there are too many materials to burn.
  • the calcium carbonate and the dicalcium phosphate hydrate, or the calcium carbonate and the dicalcium phosphate anhydride, or the calcium carbonate and the pyramid pyrophosphate are 1: 1 to 2 It is preferable to mix in molar ratio, and it can determine within the said range according to the chemical equivalence ratio of the chemical reaction in which tricalcium phosphate is formed. If the mixing is performed at a molar ratio outside the above range, there is a problem in that a compound other than the tertiary phosphate is formed when the mixing is performed at a ratio less than.
  • the mixing of the step 1 is preferably carried out through the homogenous mixing of the raw materials and the ball milling which can be micronized, but is not limited thereto, and a mixing method capable of homogeneously mixing the raw materials is provided. It can be carried out by appropriate selection.
  • step 2 is a step of calcining the mixture mixed in step 1 to a temperature of 1200 to 1400 ° C.
  • Calcium triphosphate can be prepared by reacting the raw materials through the calcination of step 2, and reacting to tricalcium phosphate when using bibasic calcium phosphate anhydride as the raw material. Is shown in Scheme 1 below.
  • the site where the pore-generating agent was present is formed as pores, and crab diphosphate anhydride or chamomile pyrophosphate is used as the raw material. Even if used, it is possible to form pores in the third phosphate produced. As the pores formed as described above, the outside air flows smoothly during the next engraving process to improve cooling efficiency, thereby improving production efficiency.
  • the calcination is preferably carried out in silver to 1200 to 1400 ° C ⁇ because the ⁇ -type triphosphate is more stable at a temperature below 1150 ° C, ⁇ type
  • the calcination of step 2 is preferably performed for 6 to 10 hours.
  • the reaction to calcium triphosphate may not be completely performed, and when the calcination is performed for more than 10 hours, there is a problem that a loss of process time occurs.
  • step 3 is a step of focusing the calcined body calcined in step 2 above.
  • Incidental tricalcium phosphate formed through the calcination of step 2 is a very important process element to maintain the purity of the ⁇ -type tricalcium phosphate. That is, since ⁇ -type tricalcium phosphate is more stable at a temperature of 1150 or less, a large amount of ⁇ -type tricalcium phosphate may be formed when tri-calcium phosphate formed through calcination. Therefore, in step 3 according to the present invention, the third calcium phosphate formed through the calcination of step 2 is detected, and in particular, the calcined body calcined in step 2 using dry ice is fed. Cooling to minimize the formation of ⁇ -type tricalcium phosphate to produce tricalcium phosphate showing high purity of ⁇ -type tricalcium phosphate.
  • step 3 by performing the engraving using dry ice, it is possible to quench the crater triphosphate formed through the calcination of the step 2 to the high purity ⁇ -type triphosphate Can be manufactured and can prevent any safety problems. .
  • the angle of the step 3 according to the present invention can be performed at a cooling rate of 50 to 200 ° C / min using dry ice, through which it is possible to produce a high purity ⁇ -type calcium triphosphate have.
  • ⁇ -type tricalcium phosphate may be formed during the angle of incidence, and the angle of incidence of step 3 exceeds 200 ° C / min.
  • an excessive amount of dry ice is used to increase the process cost.
  • the present invention It provides a third phosphate prepared by the above production method.
  • the tricalcium phosphate according to the present invention includes a plurality of pores formed through a pore generating agent, and thus, a- type tricalcium phosphate ( ⁇ -Tricalcium phosphate, ⁇ -TCP) may be smoothly generated. Can you see it? Since the ⁇ -type tricalcium phosphate generates apatite, which is the same substance as bone tissue in vivo, it may exhibit high biocompatibility when applied to bone cement and thus may be used in various medical fields such as implants.
  • the crab tricalcium phosphate according to the present invention contains ⁇ -type tricalcium phosphate (a—Tricalcium phosphate, ⁇ -TCP) 80% or more.
  • ⁇ -type tricalcium phosphate (a—Tricalcium phosphate, ⁇ -TCP) 80% or more.
  • the ⁇ -type tricalcium phosphate has better reaction properties than the ⁇ -type triphosphate, and thus exhibits a faster curing rate, and is more preferable to apply to bone cement because it is cured without the use of an acidic substance. That is, it can be seen that the tricalcium phosphate according to the present invention contains ⁇ -type triphosphate with high purity and thus is suitable for application to bone cement.
  • a bone cement composition comprising the tricalcium phosphate.
  • the bone cement composition comprising ⁇ -type tricalcium phosphate with high purity and exhibiting high porosity may exhibit excellent biocompatibility and fast curing rate, and thus various medical fields Can be applied to
  • Step 1 1 mole (100.09 g) of calcium carbonate (CaC0 3 ), dicalcium phosphate dihydrate
  • Step 2 The tricalcium phosphate was prepared by placing the mixture in which mixing was performed in Step 1 in a crucible and calcining for 12 hours in an electric furnace at a temperature of 1300 ° C.
  • step 3 The third calcium phosphate calcined and prepared in step 2 was separated from the crucible, and immediately placed in a container containing an appropriate amount of dry ice, and the top of the container was covered with an appropriate amount of dry ice, and left for 20 minutes. The excursion was performed.
  • Tricalcium phosphate was prepared in the same manner as in Example 1 except that 2 mol (272.12 g) of (CaHP0 4 ) and 100 g of naphthalene were mixed with water.
  • step 1 of Example 1 1 mol (100.09 g) of calcium carbonate (CaC0 3 ), 1 mol (254 g) of calcium pyrophosphate (CP 2 0 7 ), and 70 g of cellulose powder were common. Except for the combined, it was carried out in the same manner as in Example 1 to prepare a crab calcium phosphate.
  • a tertiary phosphate was prepared in the same manner as in Example 1, except that 2 mol (272.12 g) of (CaHP0 4 ) and 100 g of polyvinyl alcohol beads were mixed.
  • Tricalcium phosphate was prepared in the same manner as in Example 1 except that 2 mol (272.12 g) of (CaHP0 4 ) and 100 g of polylactic acid beads were mixed.
  • Example 6 Preparation of Tricalcium Phosphate 6 ci22> except that the sum of the calcium carbonate (CaC0 3) phosphate with 1 mol (100.09 g), calcium pie (C3 ⁇ 4P 2 0 7) 1 mole (254 g) and starch beads 100 g in step 1 of Example 1 common was prepared in the same manner as in Example 1 to prepare a tricalcium phosphate.
  • step 1 of Example 1 1 mol (100.09 g) of calcium carbonate (CaC0 3 ), 1 mol (254 g) of calcium pyrophosphate (Ca 2 P 2 0 7 ), and 150 g of alginic acid beads were mixed. Except that was carried out in the same manner as in Example 1 to prepare a third phosphate.
  • step 1 of Example 1 add 1 mol (100.09 g) of calcium carbonate (CaC0 3 ) and 1 mol (254 g) of calcium pyrophosphate (Ca 2 P 2 0 7 ) together with ethane in a ball mill. With the time mixture,.
  • Example 3 the third calcium phosphate was prepared in the same manner as in Example 1, except that dry ice was not used in the first step and phase angle was performed using an electric fan in the silver.
  • Example 1 In the same manner, tricalcium phosphate was prepared.
  • the tricalcium phosphate prepared in Examples 1, 3, 4, 6 and 7 exhibited higher porosity than the tricalcium phosphate prepared in Comparative Examples 1 and 2. It can be seen that. As such, the reason why the tricalcium phosphate prepared in the above examples shows high porosity is that a plurality of pores are formed by adding a pore generating agent. It can be easily penetrated to the inside, thereby reducing the cornering time.

Abstract

The present invention relates to a method for preparing tricalcium phosphate using a pore forming agent, and tricalcium phosphate prepared thereby, and more specifically, provides a method for preparing tricalcium phosphate using a pore forming agent, comprising the steps of: (step 1) mixing a source material for tricalcium phosphate and a pore forming agent; (step 2) calcining the mixture mixed in step 1 at 1,200-1,400 ℃; and (step 3) cooling the calcined product calcined in step 2. According to the present invention, the method for preparing tricalcium phosphate using a pore forming agent forms pores in tricalcium phosphate by adding a pore forming agent and allows air to smoothly come in and out through the formed pores, and thus can further improve cooling efficiency.

Description

【명세서】  【Specification】
【발명의 명칭】  [Name of invention]
기공 생성제를 이용한 제 3인산칼슘의 제조방법 및 이에 따라 제조되는 계 3인 산칼슘  Method for preparing tricalcium phosphate using pore-forming agent and calcium phosphate triphosphate prepared accordingly
【기술분야】  Technical Field
<ι> 본 발명은 기공 생성제를 이용한 제 3인산칼슴의 제조방법 및 이에 따라 제조 되는 제 3인산칼슘에 관한 것으로, 상세하게는 기공 생성제를 이용하여 α형 제 3인 산칼슘 ( α-Tricalcium phosphate, α-TCP)을 제조하는 방법에 관한 것이다.  The present invention relates to a method for preparing tricalcium phosphate using a pore generating agent and to a tricalcium phosphate prepared according to the present invention. Specifically, the third type calcium phosphate (α- Tricalcium phosphate, α-TCP).
[배경기술】  Background Art
<2> 인산칼슘 골시멘트는 정형외과 치과, 성형외과 등에서 골접합, 골충전제, 골조직 성장촉진제 등으로 사용되는 생체의료용:소재의 일종으로 주사기를 사용하 여 환부에 주입할 수 있어 최소절개술 (non-invasive theraphy)이 가능함에 따라 최 근 널리 시술되고 있다. 인산칼슴 골시'멘트는 임상적으로 손목 및 무릎 등의 관절 부근, 두개골, 요추 등에서 골절이나 골결손이 일어났을 경우, 골층진 및 접합을 목적으로 주로 사용되고 있으며, 특히 최근에는 골다공증 환자의 척추보강술 등에 인산칼슴 골시멘트가사용되고 있다. <2> Calcium Phosphate Bone Cement is a biomedical device used in orthopedic dentistry and plastic surgery as bone joints, bone fillers, and bone tissue growth promoters. It is a kind of material that can be injected into the affected area using a syringe. Invasive theraphy has recently been widely practiced. Phosphate kalseum golsi "Moment when woke clinical wrist and a fracture or bone defect occurs, etc. joint near the skull, spine, such as knees, and used mainly for the purpose of bone layered and bonded, especially in recent years, the spine augmentation in osteoporosis patients Phosphate bone cement is used on the back.
<3> 인산칼슘 골시멘트에는 보통 브루사이트 (brusite) 시멘트와 아파타이트<3> Calcium phosphate bone cement usually contains brusite cement and apatite
(apatite) 시멘트로 구분된다. 브루사이트 시멘트는 경화시간이 빠른 장점은 있으 나 기계적 강도가 낮고 생분해속도가 높아 골조직 보강술에는 사용하기 어려운 문 제가 있다. 반면, 아파타이트 시멘트는 기계적 강도가 높고 생분해속도가 낮아 골 조직 보강술에 적합한 장점이 있다. 그러나, 일반적으로 아파타이트 시멘트는 경화 시간이 느린 문제가 있다. 따라서, 경화시간을 증진시키기 위하여 하기와 같은 다 양한 방법이 사용되고 있다: 1) 반웅물의 미세입자화; 2) 액상 비율 축소; 3) 높은 용해도의 반웅물 사용; 4) 핵재의 사용; 5) 최종 생성물의 용해도 하강 (M. Bohner , J. Mater . Chem. , 17, 3980, (2007)). (apatite) is classified as cement. Brucite cement has the advantage of fast curing time, but the low mechanical strength and high biodegradation rate make it difficult to use for bone reinforcement. On the other hand, apatite cement has a high mechanical strength and a low biodegradation rate, which is suitable for bone tissue augmentation. In general, however, apatite cements have a problem of slow curing time. Therefore, various methods are used to enhance the curing time as follows: 1) microparticle formation of the semicoating; 2) reducing the liquid phase ratio; 3) use of high solubility semi-aerated water; 4) use of nuclear material; 5) Lower solubility of the final product (M. Bohner, J. Mater. Chem., 17, 3980, (2007)).
<4>  <4>
<5> α형 제 3인산칼슘은 인산칼슘 화합물 중에 유일하게 단독으로 경화가 일어나 는 자가경화형 인산칼슘으로서 아파타이트 시멘트의 원료로 사용되며, 아파타이트 시멘트의 경화속도 및 반웅성은 a형 제 3인산칼슘의 순도에 의해 큰 영향을 받는 다. a형 계 3인산칼슴의 합성은 일반적으로 탄산칼슴 1몰과 제 2인산칼슴 무수물 (dicalcium phosphate anhydrous , DCPA, DCP) 2몰을 1300 °C의 온도에서 반웅시킨 후 이를 냉각하여 제조한다. 이때 , 약 1150 °C 이하의 은도에서는 β형 제 3인산칼 슴이 더욱 안정하여 생성물을 서넁하게 되면 많은 양의 α형 제 3인산칼슘이 β형 제 3인산칼슘으로 변하여 α형 게 3인산칼슘의 생성량 및 순도가 낮아지고, 이에 따 라 제조된 인산칼슘의 반웅성도 낮아진다. <5> α-type tricalcium phosphate is the only self-curing calcium phosphate which hardens only in calcium phosphate compounds and is used as a raw material for apatite cement. It is greatly influenced by its purity. Synthesis of a type-based tricalcium phosphate is generally prepared by reacting 1 mol of carbonate and 2 mol of dicalcium phosphate anhydrus (dicalcium phosphate anhydrous, DCPA, DCP) at a temperature of 1300 ° C and then cooling it. At this time, in the silver below about 1150 ° C, β-type triphosphate When the breast is more stable and the product is slowed down, a large amount of α-type tricalcium phosphate is converted into β-type tricalcium phosphate, thereby lowering the production and purity of the α-type calcium triphosphate. The reaction is also lowered.
<6> 즉, 넁각조건에 따라 α형 제 3인산칼슘의 순도가 저하될 수 있는 문제가 있 으나, 종래에는 상온에서 냉각하거나 또는 넁각조건을 명확히 개시하고 있지 않다 (E. Ferni indez, et . al . , Journal of Biomedical Materials Research, Vol . 32, 367-374 (1996); Tobias J. Brunner , et. al . , J. Mater. Chem. , 2007, 17, 40724078; Saint-Jean, et. al. , Journal of Materials Science: Materials in Medicine (2005) , 16(11), 993-1001; M. Bohner , W02009/132466). That is, there is a problem that the purity of the α-type tricalcium phosphate may decrease depending on the angle conditions, but conventionally, cooling at room temperature or the angle conditions are not clearly disclosed (E. Ferni indez, et. al., Journal of Biomedical Materials Research, Vol. 32, 367-374 (1996); Tobias J. Brunner, et.al., J. Mater. Chem., 2007, 17, 40724078; Saint-Jean, et.al. , Journal of Materials Science: Materials in Medicine (2005), 16 (11), 993-1001; M. Bohner, W02009 / 132466).
<7>  <7>
<8> A. Bigi 등은 탄산칼슘과 제 2인산칼슘 2수화물 (dicalcium phosphate dihydrate, DCPD)을 반응시켜 α형 제 3인산칼슴을 제조하였으나 냉각조건에 따른 α형 제 3인산칼슴의 순도에 대해 전혀 언급하고 있지 않다 (Biomaterials 23 (2002) 1849). 또한, 미국공개특허 제 2003— 465595호 및 Kevor S. TenHuisen 등은 칼슴나이 트레이트 테트라히드레이트 (Calcium nitrate tetrahydrate)와 인산수소암모늄 (a隱 onium hydrogen phosphate)를 반웅시켜 α형 제 3인산칼슘을 제조한 바 있으나, 넁각조건에 따른 α형 제 3인산칼슘의 순도에 대해 전혀 언급하고 있지 않다 (Kevor S. TenHuisen and Paul W. Brown, Biomaterials 19 (1998) 2209-2217) . 나아가, Hugo Leonardo Rocha Alves 등은 탄산칼슘과 칼슴 파이로포스페이트 (calcium pyrophosphate)를 반웅시켜 α형 게 3인산칼슘을 제조하였으나 이들도 넁각조건에 따른 α형 제 3인산칼슘의 순도에 대해 전혀 언급하고 있지 않다 (J Mater Sci: Mater Med (2008) 19:2241).  <8> A. Bigi et al prepared α-type triphosphate by reacting calcium carbonate with dicalcium phosphate dihydrate (DCPD), but the purity of α-type triphosphate according to cooling conditions It is not mentioned at all (Biomaterials 23 (2002) 1849). In addition, U.S. Patent Publication No. 2003-465595 and Kevor S. TenHuisen et al. Reported that calcium nitrate tetrahydrate and a 隱 onium hydrogen phosphate were reacted to form α-type tricalcium phosphate. Although it has been prepared, it does not mention the purity of α-type tricalcium phosphate under different conditions (Kevor S. Ten Huisen and Paul W. Brown, Biomaterials 19 (1998) 2209-2217). Furthermore, Hugo Leonardo Rocha Alves et al prepared the α-type crab triphosphate by reacting calcium carbonate and calcium pyrophosphate. (J Mater Sci: Mater Med (2008) 19: 2241).
<9> 한편, 국제공개공보 W096/14265 및 미국등록특허 제 5709742호에서는 탄산칼 슘 1몰과 제 2인산칼슘 무수물 (Dicalcium phosphate anhydrous , DCPA, DCP) 2몰을 1300 °C의 도가니에서 반웅시킨 후, 넁각기체 또는 액체를 이용하여 넁각하여 α형 제 3인산칼슘을' 제조하되, 제조된 α형 게 3인산칼슘을 기계적으로 파괴하여 냉각속 도를 향상시킴으로써 α형 제 3인산칼슘의 생성량을 증가시키는 방법이 개시된 바 있다. Meanwhile, in International Publication No. W096 / 14265 and US Patent No. 5709742, 1 mol of calcium carbonate and 2 mol of dicalcium phosphate anhydrous (DCPA, DCP) were reacted in a crucible at 1300 ° C. after that, but the nyaenggak to prepare a third calcium phosphate α type "using a nyaenggak gas or liquid, the produced α-type to destroy the triphosphate calcium mechanically the production of α-type third calcium phosphate by improving the cooling speed Increasing methods have been disclosed.
<ιο> 그러나 상기 선행문헌과 같이 α형 제 3인산칼슘를 제조하는 경우, 다음과 같은 문제점이 있다:  However, when preparing α-type tricalcium phosphate as described above, there are the following problems:
<ιι> 1) 차가운 기체로 질소가스를 사용하여 냉각하는 경우, 넁각을 더욱 빠르게 수행하기 위하여 가스의 속도를 빠르게 하면, 제조된 인산칼슘 분말들이 가스에 의 해 비산되는 문제점이 있다. <ιι> 1) In case of cooling by using nitrogen gas as cold gas, if the gas velocity is increased to make the angle faster, the manufactured calcium phosphate powder There is a problem that is scattered.
<12> 2) 생성된 α형 제 3인산칼슘의 넁각속도를 향상시키기 위하여 기계적으로 파 괴시키는 경우 사용된 도가니로부터 a형 제 3인산칼슴을 분리해야 하지만 도가니 가 1000 V 이상의 매우 뜨거운 상태이기 때문에 작업하기 어려운 문제가 있으며, 또한 고온의 α형 제 3인산칼슘을 깨는 작업도 매우 위험하고 불편한 문제점이 있 다.  2) In case of mechanical destruction to improve the angle of rotation of the α-type tricalcium phosphate produced, it is necessary to separate the a-type tricalcium phosphate from the crucible used, but since the crucible is very hot over 1000 V There is a problem that is difficult to work, and also the operation of breaking high temperature α-type tricalcium phosphate is also very dangerous and inconvenient.
<13> 3) 차가운 액체로 물을 이용하는 경우에는 α형 제 3인산칼슘이 물과 접촉하 면 수산화아파타이트로 변하는 문제가 있고, 기타 유기용매를 이용하는 경우에는 1000 V 이상의 α형 제 3인산칼슴와 접촉하면 화재의 위험이 있다. 또한, 염소계 용매들은 화재위험은 없는 반면, 독성이 높아 사용하기 위험한 문제가 있으며, 액 체질소를 이용하여 냉각을 수행하는 경우에는 1000 °C 이상의 α형 제 3인산칼슘이 액체질소와 접촉함에 따라 액체질소가 끓으며 방울들이 튀어올라 작업자가 위험한 문제가 있다. 3) When water is used as a cold liquid, α-type tricalcium phosphate is converted into a hydroxide hydroxide when it comes into contact with water. When using other organic solvents, α-type tricalcium phosphate with 1000 V or more is used. Contact may cause a fire. In addition, while chlorine solvents are not a fire hazard, they are highly toxic and dangerous to use. When cooling with liquid nitrogen, α-calcium phosphate (alpha) of 1000 ° C or higher comes into contact with liquid nitrogen. Liquid nitrogen boils and drops come up, so workers have a dangerous problem.
<14>  <14>
<15> 한편, 제 3인산칼슘을 제조하기 위한 원료물질로 탄산칼슘과 제 2인산칼슴 2수 화물을 이용하는 경우에는 반웅 중 4몰의 물 (¾0)이 생성되고, 생성된 물이 기화되 며 기공이 형성된다. 반면, 원료물질로 탄산칼슘과 제 2인산칼슘 무수물을 이용하는 경우에는 반웅 중 1몰의 물 ( 0)이 생성되어 상대적으로 적은 수의 기공이 형성된 다. 이를 보완하기 위하여, 원료물질에 물을 더욱 첨가하여 제 3인산칼슘을 제조하 는 방안이 있으나, 기화시켜야 하는 기화물질 (물)이 많아 생산효율이 좋지않은 문 제가 있다.  On the other hand, when calcium carbonate and dibasic calcium phosphate dihydrate are used as raw materials for the production of tricalcium phosphate, 4 moles of water (¾0) is generated in the reaction, and the resulting water is vaporized. Pores are formed. On the other hand, when calcium carbonate and dicalcium phosphate anhydride are used as raw materials, one mole of water (0) is generated in the reaction and relatively few pores are formed. In order to compensate for this, there is a method of preparing tricalcium phosphate by further adding water to the raw material, but there is a problem of poor production efficiency due to the large amount of vaporized material (water) to be vaporized.
<16>  <16>
<17> 이에, 본 발명자들은 고순도의 α형 제 3인산칼슘을 안전하고 효율적으로 제 조할 수 있는 방법을 개발하기 위해 연구하던 중, 기공 생성제를 첨가하여 제 3인산 칼슴에 기공을 형성시키고, 넁매로 드라이아이스를 사용하여 α형 제 3인산칼슴을 상변화없이 급속넁각시켜 고순도의 α형 제 3인산칼슘을 안전하게 제조할 수 있는 제조방법을 개발하고 본 발명을 완성하였다.  In the meantime, the present inventors are working to develop a method for safely and efficiently producing high purity α-type tricalcium phosphate, and forming pores in the triphosphate by adding a pore generating agent, By using dry ice as a solvent, α-type tricalcium phosphate was rapidly engraved without phase change to develop a manufacturing method capable of safely producing high-purity α-type tricalcium phosphate and completed the present invention.
【발명의 상세한 설명; 1  [Detailed Description of the Invention; 1
【기술적 과제】  [Technical problem]
<18> 본 발명의 목적은 기공 생성제를 이용한 제 3인산칼슘의 제조방법 및 이에 따 라 제조되는 제 3인산칼슘을 제공하는 데 있다.  It is an object of the present invention to provide a method for preparing tricalcium phosphate using a pore-generating agent and tricalcium phosphate prepared accordingly.
[기술적 해결방법】 <19> 상기 목적을 달성하기 위하여, 본 발명은 [Technical Solution] In order to achieve the above object, the present invention
<20> 제 3인산칼슘의 원료물질 및 기공 생성제 (pore forming agent)를 흔합하는 단 계 (단계 1);  <20> a step of mixing a raw material of tricalcium phosphate and a pore forming agent (step 1);
<2i> 상기 ^계 1에서 흔합된 흔합물웁 1200 내지 1400 °C의 온도로 하소시키는 단계 (단계 2); 및 <2i> calcination to the temperature of 1200 to 1400 ° C. mixed in step ^ 1 (step 2); And
<22> 상기 단계 2에서 하소된 하소체를 넁각시키는 단계 (단계 3)를 포함하는 기공 생성제를 이용한 제 3인산칼슘의 제조방법을 제공한다.  Provided is a method for preparing tricalcium phosphate using a pore-generating agent comprising the step (step 3) of calcining the calcined body calcined in step 2 above.
<23>  <23>
<24> 또한 본 발명은 상기 제조방법을 통해 제조되는 제 3인산칼슘올 제공한다. In another aspect, the present invention provides tricalcium phosphate prepared by the above method.
【유리한 효과】 Advantageous Effects
<25> 본 발명에 따른 기공 생성제를 이용한 제 3인산칼슘의 제조방법은 기공 생성 제를 첨가하여 제 3인산칼슘에 기공을 형성시키며, 형성된 기공을 통해 공기의 출입 이 원활하게 이루어질 수 있어 냉각효율을 더욱 향상시킬 수 있다. 또한, 냉매로 드라이아이스를 사용하여 급속냉각을 수행하는 경우, 고순도의 α형 제 3인산칼슘을 안전하게 제조할 수 있으며, 제조된 제 3인산칼슘은 반웅성이 우수하여 이를 포함하 는 골시멘트 조성물은 빠론 경화시간을 나타낼 수 있는 효과가 있다.  In the method for preparing tricalcium phosphate using the pore generating agent according to the present invention, the pores are added to the tricalcium phosphate by adding a pore generating agent, and air can be smoothly introduced and exited through the formed pores. The efficiency can be further improved. In addition, when fast cooling is carried out using dry ice as a refrigerant, high purity α-type tricalcium phosphate can be safely manufactured, and the prepared tricalcium phosphate has excellent semi-permanence, and thus a bone cement composition including the same. Has the effect of exhibiting the Faron curing time.
【도면의 간단한 설명】  [Brief Description of Drawings]
<26> 도 1은 본 발명에 따른 실시예 1에서 제조된 제 3인산칼슴을 주사전자현미경 으로 관찰한사진이고; Figure 1 is a photograph of the third phosphate prepared in Example 1 according to the present invention observed with a scanning electron microscope;
<27> 도 2는 본 발명에 따른 실시예 3에서 제조된 제 3인산칼슴을 주사전자현미경 으로 관찰한사진이고;  Figure 2 is a photograph of the third phosphate prepared in Example 3 according to the present invention observed with a scanning electron microscope;
<28> 도 3은 본 발명에 따른 실시예 4에서 제조된 제 3인산칼슴을 주사전자현미경 으로 관찰한사진이고;  Figure 3 is a photograph of the third phosphate prepared in Example 4 according to the present invention observed with a scanning electron microscope;
<29> 도 4는 본 발명에 따른 실시예 6에서 제조된 제 3인산칼슘을 주사전자현미경 으로 관찰한 사진이고;  4 is a photograph of a third calcium phosphate prepared in Example 6 according to the present invention observed with a scanning electron microscope;
<30> 도 5는 본 발명에 따른 실시예 7에서 제조된 제 3인산칼슘을 주사전자현미경 으로 관찰한사진이고;  5 is a photograph of a third calcium phosphate prepared in Example 7 according to the present invention observed with a scanning electron microscope;
<31> 도 6은 비교예 1에서 제조된 제 3인산칼슘을 주사전자현미경으로 관찰한 사진 이고;  6 is a photograph of observing the tricalcium phosphate prepared in Comparative Example 1 with a scanning electron microscope;
<32> 도 7은 비교예 2에서 제조된 게 3인산칼슘을 주사전자현미경으로 관찰한 사진 이다 ·.  7 is a photograph of a crab triphosphate prepared in Comparative Example 2 observed with a scanning electron microscope.
【발명의 실시를 위한 최선의 형태】 <33> 본 발명은 [Best form for implementation of the invention] <33> The present invention
<34> 제 3인산칼슘의 원료물질 및 기공 생성제 (pore forming agent)를 흔합하는 단 계 (단계 1);  Step (1) of mixing a raw material of a tricalcium phosphate and a pore forming agent;
<35> 상기 단계 1에서 흔합된 흔합물을 1200 내지 1400 °C의 온도로 하소시키는 단계 (단계 2); 및 Calcination of the mixture mixed in step 1 to a temperature of 1200 to 1400 ° C. (step 2); And
<36> 상기 단계 2에서 하소된 하소체를 넁각시키는 단계 (단계 3)를 포함하는 기공 생성제를 이용한 제 3인산칼슘의 제조방법을 제공한다.  Provided is a method for preparing tricalcium phosphate using a pore-generating agent comprising the step (step 3) of calcining the calcined body calcined in step 2 above.
<37>  <37>
<38> 이하 본 발명에 따른 제 3인산칼슘의 제조방법올 각 단계별로 상세히 설명한 다- Hereinafter, the method for preparing tricalcium phosphate according to the present invention will be described in detail for each step.
<39> <39>
<40> 본 발명에 따른 제 3인산칼슘의 제조방법에 있어서, 단계 1은 제 3인산칼슘의 원료물질 및 기공 생성제 (pore forming agent)를 흔합하는 단계이다.  In the method for preparing tricalcium phosphate according to the present invention, step 1 is a step of mixing a raw material of the tricalcium phosphate and a pore forming agent.
<4i> 제 3인산칼슘을 제조하기 위한 원료물질로는 탄산칼슴 (CaC03) 및 제 2인산칼슘 수화물을 사용할 수 있으며 , 또는 탄산칼슴 (CaC03) 및 제 2인산칼슴 무수물 (CaHP04) 을 사용할 수 있고, 탄산칼슴 (CaC03) 및 칼슴 파이로포스페이트 (calcium pyrophosphate, Ca207P2) 또한 원료물질로 사용할 수 있다. <4i> 3 as a starting material for the preparation of calcium phosphate are the acid kalseum (CaC0 3) and the use of dibasic calcium phosphate hydrates, and or acid kalseum (CaC0 3) and a second phosphate kalseum anhydrous (CaHP0 4) The carbon carbonate (CaC0 3 ) and the calcium pyrophosphate (Ca 2 0 7 P 2 ) can also be used as raw materials.
<42> 원료물질로써, 상기한 바와 같이 제 2인산칼슘 수화물, 제 2인산칼슘 무수물 또는 칼슘 파이로포스페이트를 탄산칼슘과 함께 사용함으로써 제조되는 제 3인산칼 슘에 다수의 기공을 형성시킬 수 있다. 이는 원료물질들이 고온에서 반웅함에 따라 수분 ( 0)이 생성되고, 생성된 수분이 기화됨에 따라 수분이 빠져나간 자리가 기공 형성되는 것이다.  As a raw material, a plurality of pores can be formed in the tricalcium phosphate prepared by using dicalcium phosphate hydrate, dicalcium phosphate anhydride or calcium pyrophosphate together with calcium carbonate as described above. . This means that as the raw materials react at a high temperature, moisture (0) is generated, and as the generated moisture is vaporized, pores are formed in which the water escapes.
<43> 이때, 상기 단계 1에서는 기공 생성제 (pore forming agent)를 원료물질과 함 께 흔합하몌 이를 통해 제조되는 제 3인산칼슴에 더욱 많은 기공을 형성시킨다. 상 기 기공 생성제에 의해 형성된 기공들은 제 3인산칼슘을 넁각 시에 더욱 냉각효율을 향상시키며, 이에 따라 제 3인산칼슘의 생산효율이 향상된다.  In this case, in step 1, a pore forming agent is mixed with the raw material and more pores are formed in the third phosphate prepared through this. The pores formed by the pore-generating agent further improves the cooling efficiency when the tricalcium phosphate is removed, thereby improving the production efficiency of the tricalcium phosphate.
<44> 상기 기공 생성제로는 고온에서 기화되거나 연소되는 유기물이라면 특별히 제한되는 것은 아니지만, 원료물질이 800 °C 부근에서부터 반웅하기 시작하므로 기 공 생성재는 800 °C 이하의 온도에서 대부분 연소되어 반웅에 영향을 미치지 않는 물질인 것이 바람직하다. 또한, 기공 생성재의 연소물질의 독성이 낮은 것이 바람 직하다. - <45> 따라서, 상기 기공 생성제로는 폴리락틱산 (polylactic acid), 폴리글리콜산The pore generating agent is not particularly limited as long as it is an organic substance vaporized or burned at a high temperature. However, since the raw material begins to react at around 800 ° C., the pore generating material is mostly burned at a temperature of 800 ° C. or less. It is preferable that it is a substance which does not affect. In addition, the low toxicity of the combustion material of the pore generating material is preferred. - Accordingly, the pore-generating agent may be polylactic acid or polyglycolic acid.
(polyglycolic acid), 폴리하이드록시알카노에이트 (polyhydroxyalkanoate), 폴리에 스테르 (poly ester), 나일론, 아크릴수지, 폴리비닐알콜 (polyvinyl alcohol), 폴리 우레탄 (polyurethane), 폴리글리콜 (polyglycol), 나프탈렌, 셀를로오즈, 알긴산 (alginic acid), 카르기난 (Carrageenan), 녹말, 탄수화물, 설탕 등을 이용할 수 있 다. 이들은 800 °C 이하의 온도에서 대부분 연소되어 제거되며, 연소 시 독성물질 을 거의 발생하지 않는 장점이 있다. (polyglycolic acid), polyhydroxyalkanoate, polyester, nylon, acrylic resin, polyvinyl alcohol, polyurethane, polyglycol, naphthalene Cellulose, alginic acid, carrageenan, starch, carbohydrates, sugar, etc. may be used. They are mostly burned and removed at temperatures below 800 ° C, and have the advantage of generating little toxic substances during combustion.
<46> 상기 단계 1에 있어서, 기공 생성재의 첨가량은 특별히 제한되지는 않지만 과량이 사용되는 경우, 연소시켜야할 기공 생성재의 부피가 커 생산효율이 저하될 수 있다. 따라서, 바람직하게는 제 3인산칼슘 원료물질의 부피에 대하여 20 내지 500 부피 %의 비율로 흔합되는 것이 바람직하며, 50 내지 200 부피 %의 비율로 흔합 되는 것이 더욱 바람직하다. 기공 생성제의 첨가량이 20 부피 % 이하인 경우에는 개 기공 (open cell)이 생성되지 않아 넁각공기가 제 3인산칼슴 내부로 잘 침투하지 못 해 넁각이 원활히 이루어지지 않는 문제가 있다. 또한, 기공 생성제의 첨가량이 500 부피 ¾를 초과하는 경우에는 기공은 원활히 형성되는 반면, 연소시켜야할 물질 이 너무 많아 생산효율이 저하되는 문제가 있다.  In step 1, the addition amount of the pore generating material is not particularly limited, but if an excessive amount is used, the volume of the pore generating material to be combusted may be large and the production efficiency may be lowered. Therefore, preferably it is preferably mixed at a ratio of 20 to 500% by volume relative to the volume of the tricalcium phosphate raw material, and more preferably at a ratio of 50 to 200% by volume. If the amount of the pore-generating agent is less than 20% by volume, open pores are not generated, and thus, the corner air does not penetrate well into the third phosphate. In addition, when the addition amount of the pore-generating agent exceeds 500 volume ¾, while the pores are formed smoothly, there is a problem that the production efficiency is lowered because there are too many materials to burn.
<47>  <47>
<48> 한편, 상기 원료물질들의 흔합을 수행함에 있어서, 상기 탄산칼슘과 제 2인산 칼슘 수화물, 또는 탄산칼슘과 제 2인산칼슘 무수물, 또는 탄산칼슘과 칼슴 파이로 포스페이트는 1 : 1 내지 2의 몰비로 흔합되는 것이 바람직하며, 제 3인산칼슘이 형 성되는 화학반응의 화학적 당량비에 따라 상기 범위 내에서 결정할 수 있다. 만약, 상기 범위를 벗어나는 몰비로 흔합이 수행되는 경우에는 미만의 비율로 흔합이 수 행되는 경우에는 제 3인산칼슴이 아닌 다른 화합물이 형성되는 문제가 있다.  On the other hand, in performing the mixing of the raw materials, the calcium carbonate and the dicalcium phosphate hydrate, or the calcium carbonate and the dicalcium phosphate anhydride, or the calcium carbonate and the pyramid pyrophosphate are 1: 1 to 2 It is preferable to mix in molar ratio, and it can determine within the said range according to the chemical equivalence ratio of the chemical reaction in which tricalcium phosphate is formed. If the mixing is performed at a molar ratio outside the above range, there is a problem in that a compound other than the tertiary phosphate is formed when the mixing is performed at a ratio less than.
<4 >  <4>
<50> 상기 단계 1의 흔합은 원료물질들을 균질하게 흔합하고,미세입자화할 수 있 는 볼밀링을 통해 수행되는 것이 바람직하나, 이에 제한되는 것은 아니며 원료물질 들을 균질하게 흔합할 수 있는 흔합방법을 적절히 선택하여 수행할 수 있다.  The mixing of the step 1 is preferably carried out through the homogenous mixing of the raw materials and the ball milling which can be micronized, but is not limited thereto, and a mixing method capable of homogeneously mixing the raw materials is provided. It can be carried out by appropriate selection.
<51>  <51>
<52> 본 발명에 따른 제 3인산칼슘의 제조방법에 있어서, 단계 2는 상기 단계 1에 서 흔합된 흔합물을 1200 내지 1400 °C의 온도로 하소하는 단계이다. In the method for preparing tricalcium phosphate according to the present invention, step 2 is a step of calcining the mixture mixed in step 1 to a temperature of 1200 to 1400 ° C.
<53> 단계 2의 하소를 통해 원료물질들을 반응시켜 게 3인산칼슘을 제조할 수 있으 며, 원료물질로써 계 2인산칼슴 무수물을 사용하였을 경우, 제 3인산칼슘으로의 반웅 은 하기 반응식 1과 같다. Calcium triphosphate can be prepared by reacting the raw materials through the calcination of step 2, and reacting to tricalcium phosphate when using bibasic calcium phosphate anhydride as the raw material. Is shown in Scheme 1 below.
<반웅식 1> <Banungsik 1>
2CaHP04 + CaCOs 1300°Ο» Ca3(P04)2 + C02 + H20 상기 반웅식 1에 나타낸 바와 같이, 원료물질로 제 2인산칼슘 무수물과 탄산 칼슘을 사용하는 경우 고온에서 이들이 반웅하여 제 3인산칼슴을 형성하고, 이와 동 시에 1몰의 이산화탄소와 1몰의 물 (¾0)가 생성된다. 생성된 1몰의 물은 기화되며, 물이 존재하던 자리는 기공으로 형성된다. 또한, 원료물질로 제 2인산칼슘 이수화물을 반웅물로 사용하는 경우, 하기 반 웅식 2와 같이 1몰의 이산화탄소와 4몰의 물이 생성되어 기화되고 1몰의 제 3인산칼 슘이 생성된다. 2CaHP0 4 + CaCO s 1300 ° O »Ca 3 (P0 4 ) 2 + C0 2 + H 2 0 As shown in the above formula 1, when using dibasic calcium phosphate anhydride and calcium carbonate as raw materials, Reaction forms a tricalcium phosphate, which simultaneously produces one mole of carbon dioxide and one mole of water (¾0). One mole of water is vaporized, and the site where the water is present is formed by pores. In addition, when dibasic calcium phosphate dihydrate is used as a semi-acupuncture as a raw material, 1 mole of carbon dioxide and 4 moles of water are generated and vaporized, and 1 mole of tricalcium phosphate is produced as shown in the following semi-excited formula 2. .
<반응식 2> ' <Scheme 2>'
1300°C 1300 ° C
2CaHP042H20 + CaC03 ^ Ca3(P04)2 + C02 + 4H20 나아가, 탄산칼슘과 칼슴 파이로포스페이트 (calcium pyrophosphate)를 반응 물로 사용하는 경우, 하기 반응식 3과 같이 1몰의 제 3인산칼슘이 생성된다. 2CaHP0 4 2H 2 0 + CaC0 3 ^ Ca 3 (P0 4 ) 2 + C0 2 + 4H 2 0 Furthermore, when calcium carbonate and calcium pyrophosphate are used as a reaction product, 1 mole is used as in Scheme 3 below. Tricalcium phosphate of is produced.
<반웅식 3> <Banungsik 3>
CaC03 + Ca2P207 1 Ca3(P04)2 + C02 CaC0 3 + Ca 2 P 2 0 7 1 Ca 3 (P0 4 ) 2 + C0 2
즉, 제 2인산칼슘 이수화물을 원료물질로 사용하는 경우는 4몰의 물이 기화되 어 제거됨에 따라 제조된 게 3인산칼슘에 더욱 많은 기공을 형성시킬 수 있다. 이와 같이 제조된 제 3인산칼슴이 많은 기공을 포함함에 따라 제 3인산칼슘을 넁각 시 찬 공기가 쉽게 제 3인산칼슴의 내부로 들어갈 수 있어 냉각을 더욱 원활하게 수행할 수 있다. <7i> 반면, 제 2인산칼슴 무수물을 원료물질로 사용하는 경우에는 1몰의 물이 형성 되고 기화됨에 따라 상대적으로 적은 기공이 형성되며, 칼슘 파이로포스페이트를 원료로 사용하는 경우, 반웅을 통해 형성되는 물이 없기 때문에 기공을 형성시키는 것이 용이하지 않다. That is, in the case of using the dicalcium phosphate dihydrate as a raw material, more pores may be formed in the prepared calcium triphosphate as 4 moles of water is vaporized and removed. As the third phosphate prepared as described above contains many pores, cold air can easily enter the third phosphate when the third calcium phosphate is encapsulated, thereby allowing the cooling to be performed more smoothly. On the other hand, in the case of using dicalcium phosphate anhydride as a raw material, relatively small pores are formed as one mole of water is formed and vaporized, and when using calcium pyrophosphate as a raw material, It is not easy to form pores because no water is formed.
<72> 그러나, 상기 단계 1에서 원료물질과 함께 흔합된 기공 생성제가 연소되어 제거됨에 따라, 기공 생성제가 존재하였던 자리가 기공으로 형성되며, 원료물질로 게 2인산칼슘 무수물 또는 칼슴 파이로포스페이트를 사용하더라도 제조되는 제 3인산 칼슴에 기공을 형성시킬 수 있다. 이와 같이 형성된 기공으로는 다음의 넁각 공정 시 외부공기의 출입이 원활하게 이루어져 냉각효율을 향상시킬 수 있고, 이로 인해 생산효율이 향상된다.  However, as the pore-generating agent mixed with the raw material is burned and removed in step 1, the site where the pore-generating agent was present is formed as pores, and crab diphosphate anhydride or chamomile pyrophosphate is used as the raw material. Even if used, it is possible to form pores in the third phosphate produced. As the pores formed as described above, the outside air flows smoothly during the next engraving process to improve cooling efficiency, thereby improving production efficiency.
<73>  <73>
<74> 상기 단계 2에 있어서, 상기 하소는 1200 내지 1400 °C의 은도에석 수행되는 것이 바람직하다ᅳ 이는 1150 °C 이하의 온도에서는 β형 제 3인산칼슴이 더욱 안정 하기 때문으로, α형 제 3인산칼슴의 순도를 향상시키기 위해서는 단계 2의 하소를 1200 내지 1400 °C의 온도로 수행하는 것이 바람직하다. 만약, 상기 단계 2의 하소 를 1200 °C 미만의 온도에서 수행하는 경우, β형 제 3인산칼슘이 많이 형성되는 문 제가 있고, 상기 하소를 1400 °C를 초과하는 온도로 수행하는 경우 불필요한 수준 의 고온으로 가열하기 위한 시간적 및 경제적 손실이 발생하는 문제가 있다. In the step 2, the calcination is preferably carried out in silver to 1200 to 1400 ° C ᅳ because the β-type triphosphate is more stable at a temperature below 1150 ° C, α type In order to improve the purity of the third phosphate, it is preferable to perform the calcination of step 2 at a temperature of 1200 to 1400 ° C. If the calcination of step 2 is carried out at a temperature of less than 1200 ° C, there is a problem that a lot of β-type tricalcium phosphate is formed, and when the calcination is performed at a temperature exceeding 1400 ° C of unnecessary level There is a problem that a time and economic loss for heating to a high temperature occurs.
<75> 또한, 상기 단계 2의 하소는 6 내지 10 시간 동안 수행되는 것이 바람직하 다. 상기 하소를 6 시간 미만 동안 수행하는 경우에는 제 3인산칼슘으로의 반웅이 완전히 수행되지 않을 수 있고, 상기 하소를 10 시간을 초과하여 수행하는 경우에 는 공정시간의 손실이 발생하는 문제가 있다.  In addition, the calcination of step 2 is preferably performed for 6 to 10 hours. When the calcination is performed for less than 6 hours, the reaction to calcium triphosphate may not be completely performed, and when the calcination is performed for more than 10 hours, there is a problem that a loss of process time occurs.
<76>  <76>
<77> <77>
<78> 본 발명에 따른 제 3인산칼슘의 제조방법에 있어서, 단계 3은 상기 단계 2에 서 하소된 하소체를 넁각시키는 단계이다.  In the method for preparing tricalcium phosphate according to the present invention, step 3 is a step of focusing the calcined body calcined in step 2 above.
<79> 상기 단계 2의 하소를 통해 형성된 제 3인산칼슴을 넁각시키는 것은 α형 제 3 인산칼슘의 순도를 유지하기 위해서 매우 중요한 공정요소이다. 즉, 1150 이하 의 온도에서는 β형 제 3인산칼슘이 더욱 안정하기 때문에 하소를 통해 형성된 제 3 인산칼슘을 서넁하는 경우에는 β형 제 3인산칼슘이 많이 형성될 수 있다. 따라서, 본 발명에 따른 상기 단계 3에서는 상기 단계 2의 하소를 통해 형성된 제 3인산칼슘 을 넁각하며 , 특히 드라이 아이스를 이용하여 상기 단계 2에서 하소된 하소체를 급 냉함으로써 β형 제 3인산칼슘이 형성되는 것을 최소화하여 높은 α형 제 3인산칼슘 의 순도를 나타내는 제 3인산칼슘을 제조한하. Incidental tricalcium phosphate formed through the calcination of step 2 is a very important process element to maintain the purity of the α-type tricalcium phosphate. That is, since β-type tricalcium phosphate is more stable at a temperature of 1150 or less, a large amount of β-type tricalcium phosphate may be formed when tri-calcium phosphate formed through calcination. Therefore, in step 3 according to the present invention, the third calcium phosphate formed through the calcination of step 2 is detected, and in particular, the calcined body calcined in step 2 using dry ice is fed. Cooling to minimize the formation of β-type tricalcium phosphate to produce tricalcium phosphate showing high purity of α-type tricalcium phosphate.
<80>  <80>
<81> 한편 , 상기한 바와 같이 종래기술에서의 넁각은 단순 상온으로 냉각하는 것 은 언급하고 있을 뿐, 급넁수단에 대한 언급이 없다. 또한, 국제공개공보 W0 96/14265 및 미국등록특허 제 5709742호에서 개시한 바와 같이, 넁각기체 또는 액체 를 이용하여 넁각하고, 제조된 α형 제 3인산칼슴을 기계적으로 파괴하여 넁각속도 를 향상시키는 것은 다음과 같은 문제점이 있다  On the other hand, as described above, the angle of incidence in the prior art refers to simply cooling to room temperature, there is no mention of the feeding means. In addition, as disclosed in International Publication No. WO 96/14265 and U.S. Patent No. 5709742, using a gas or a liquid, each of the α-type triphosphate is mechanically destroyed to improve the angle of rotation. There are the following problems
<82>  <82>
<83> 1) 차가운 기체 (질소가스)를 사용하여 넁각하는 경우,분말들이 가스에 의해 비산되는 문제 ;  1) the problem of powders being scattered by the gas when cold using nitrogen gas;
<84> 2) 넁각속도 향상을 위해 기계적으로 파괴시키는 경우, 고온의 도가니를 분 리하는 작업 및 고온의 α형 제 3인산칼슘을 깨는 작업이 매우 위험한 문제 ; 2) the problem of separating the high temperature crucible and breaking the high temperature α- type tricalcium phosphate is very dangerous when mechanically broken to improve the angular velocity;
<85> 3) 물을 이용하는 경우에는 α형 게 3인산칼슘이 물과 접촉하여 수산화아파타 이트로 변하는 문제가 있고, 기타 유기용매를 이용하는 경우에는 화재의 위험이 있 으며, 염소계 용매들은 독성이 높아 사용하기 위험한 문제가 있고, 액체질소를 이' 용하여. 냉각을 수행하는 경우에는 1000 °C 이상의 α형 제 3인산칼슘이 액체질소와 접촉함에 따라 액체질소가 끓으며 방을들이 튀어올라 작업자가 위험한 문제가 있 다. 3) In case of using water, α-type crab calcium phosphate is changed into a hydroxide hydroxide in contact with water, and in case of using other organic solvents, there is a risk of fire, and chlorine solvents are toxic. dangerous to increase use issues, and the use of liquid nitrogen. When cooling is performed, liquid nitrogen boils and pops up the room as α-type tricalcium phosphate of 1000 ° C or more comes into contact with liquid nitrogen, which poses a dangerous problem for workers.
<86>  <86>
<87> 반면, 본 발명에 따른 상기 단계 3에서는 드라이아이스를 이용하여 넁각을 수행함에 따라, 상기 단계 2의 하소를 통해 형성된 게 3인산칼슘을 급넁시킬 수 있 어 고순도의 α형 제 3인산칼슴을 제조할 수 있으며 , 안전상의 어떠한 문제도 방지 할수 있다. .  On the other hand, in step 3 according to the present invention, by performing the engraving using dry ice, it is possible to quench the crater triphosphate formed through the calcination of the step 2 to the high purity α-type triphosphate Can be manufactured and can prevent any safety problems. .
<88> 이때, 본 발명에 따른 상기 단계 3의 넁각은 드라이아이스를 이용하여 50 내지 200 °C/분의 냉각속도로 수행될 수 있으며 , 이를 통해 고순도의 α형 제 3인산 칼슘을 제조할 수 있다. 상기 단계 3의 넁각이 50 °C/분 미만의 넁각속도로 수행되 는 경우에는 넁각과정 중 β형 제 3인산칼슘이 형성될 수 있으며, 상기 단계 3의 넁 각이 200 °C/분을 초과하는 넁각속도로 수행되는 경우에는, 과량의 드라이아이스가 사용되어 공정비용이 증가하는 문제가 있다. At this time, the angle of the step 3 according to the present invention can be performed at a cooling rate of 50 to 200 ° C / min using dry ice, through which it is possible to produce a high purity α-type calcium triphosphate have. When the angle of incidence of step 3 is performed at an angle of incidence of less than 50 ° C / min, β-type tricalcium phosphate may be formed during the angle of incidence, and the angle of incidence of step 3 exceeds 200 ° C / min. In the case where the excitation speed is performed at an excitation speed, an excessive amount of dry ice is used to increase the process cost.
<89>  <89>
<90> 또한, 본 발명은 <91> 상기 제조방법에 의해 제조되는 제 3인산칼슴을 제공한다. In addition, the present invention It provides a third phosphate prepared by the above production method.
<92>  <92>
<93> 본 발명에 따른 제 3인산칼슘은 기공 생성제를 통해 형성된 다수의 기공을 포 함하며 , 이에 따라 a형 제 3인산칼슘 ( α-Tricalcium phosphate, α-TCP)이 원활하 게 생성될 수 ϋ다. 상기 α형 제 3인산칼슘은 생체 내에서 골조직과 동일한 물질인 수산화아파타이트를 생성하므로 골시멘트에 적용 시 높은 생체적합성을 나타낼 수 있어 임플란트 등의 다양한 의료분야에서 이용할 수 있다. The tricalcium phosphate according to the present invention includes a plurality of pores formed through a pore generating agent, and thus, a- type tricalcium phosphate (α-Tricalcium phosphate, α-TCP) may be smoothly generated. Can you see it? Since the α-type tricalcium phosphate generates apatite, which is the same substance as bone tissue in vivo, it may exhibit high biocompatibility when applied to bone cement and thus may be used in various medical fields such as implants.
<94> 또한, 본 발명에 따른 상기 게 3인산칼슘은 α형 제 3인산칼슘 ( a— Tricalcium phosphate, α-TCP)을 80% 이상 포함한다. 이는 본 발명에 따른 제 3인산칼슴이 드 라이아이스를 통해 급냉됨에 따라, β형 제 3인산칼슴이 형성되는 것을 방지하기 때 문이다. 상기 α형 제 3인산칼슘은 β형 계 3인산칼슴보다 반웅성이 우수하여 더욱 빠른 경화속도를 나타낼 수 있고, 산성물질의 사용 없이도 경화가 되므로 골시멘트 에 적용하기 더욱 바람직하다. 즉, 본 발명에 따른 제 3인산칼슘이 α형 제 3인산칼 슴을 고순도로 포함함에 따라 골시멘트에 적용하기 적합한 것을 알수 있다. In addition, the crab tricalcium phosphate according to the present invention contains α-type tricalcium phosphate (a—Tricalcium phosphate, α-TCP) 80% or more. This is because the third type phosphate according to the present invention is quenched through the dry ice, thereby preventing the formation of the β-type third phosphate. The α-type tricalcium phosphate has better reaction properties than the β-type triphosphate, and thus exhibits a faster curing rate, and is more preferable to apply to bone cement because it is cured without the use of an acidic substance. That is, it can be seen that the tricalcium phosphate according to the present invention contains α-type triphosphate with high purity and thus is suitable for application to bone cement.
<95>  <95>
<%> 나아가, 본 발명은  <%> Furthermore, the present invention
<97> 상기 제 3인산칼슘을 포함하는 골시멘트 조성물을 제공한다.  Provided is a bone cement composition comprising the tricalcium phosphate.
<98>  <98>
<99> α형 제 3인산칼슘을 고순도로 포함하고, 높은 기공율을 나타내는 상기 제 3인 산칼슘을 포함하는 골시멘트 조성물은 우수한 생체적합성 및 빠른 경화속도를 나타 낼 수 있으며, 이에 따라 다양한 의료분야에 적용될 수 있다.  The bone cement composition comprising α-type tricalcium phosphate with high purity and exhibiting high porosity may exhibit excellent biocompatibility and fast curing rate, and thus various medical fields Can be applied to
【발명의 실사를 위한 형태】  [Form for live action of invention]
<100> 이하, 본 발명을 실시예를 통해 보다 구체적으로 설명한다. 그러나, 하기 실 시예는 본 발명을 설명하기 위한 것일 뿐, 하기 실시예에 의하여 본 발명의 권리범 위가 한정되는 것은 아니다.  Hereinafter, the present invention will be described in more detail with reference to Examples. However, the following examples are only for illustrating the present invention, and the scope of the present invention is not limited by the following examples.
<101>  <101>
d02> <실시예 1> 계 3인산칼슘의 제조 1 d02> <Example 1> Preparation of the system tricalcium phosphate 1
d03> 단계 1 : 탄산칼슴 (CaC03) 1몰 (100.09 g), 제 2인산칼슘 이수화물 d03> Step 1: 1 mole (100.09 g) of calcium carbonate (CaC0 3 ), dicalcium phosphate dihydrate
(CaHP042H20) 2 몰 (344.18 g) 및 나프탈렌 100 g을 에탄을과 함께 볼밀링 장치에 장입하고 8 시간 동안 흔합하였으며 , 흔합물을 분리한 후 건조시켜 에탄을을 제거 하였 '다. The did (CaHP0 4 2H 2 0) 2 mol (344.18 g) and charged to naphthalene 100 g of the ball-milling device with ethanol and was heunhap for 8 hours, followed by drying and then separating a common compound remove ethanol.
ΐΙ04> ίΐ05> 단계 2 : 상기 단계 1에서 흔합이 수행된 흔합물을 도가니에 넣고 1300 °C 온도인 전기로에서 12시간 동안 하소하여 반웅시킴으로써 제 3인산칼슘을 제조하였 다. ΐΙ04> Step 2: The tricalcium phosphate was prepared by placing the mixture in which mixing was performed in Step 1 in a crucible and calcining for 12 hours in an electric furnace at a temperature of 1300 ° C.
ί106> ί106>
ci07> 단계 3 : 상기 단계 2에서 하소되어 제조된 제 3인산칼슘을 도가니로부터 분 리한 후, 적당량의 드라이아이스가 담긴 용기에 즉시 넣고, 용기 상부를 적당량의 드라이아이스를 덮었으며, 20분간 방치하여 넁각을 수행하였다. step 3: The third calcium phosphate calcined and prepared in step 2 was separated from the crucible, and immediately placed in a container containing an appropriate amount of dry ice, and the top of the container was covered with an appropriate amount of dry ice, and left for 20 minutes. The excursion was performed.
cl08> cl08>
ίΐ0 > <실시예 2> 제 3인산칼슘의 제조 2 Example 2 Preparation of Tricalcium Phosphate 2
ciio> 상기 실시예 1의 단계 1에서 탄산칼슴 (CaC03) 1몰 (100.09 g) , 제 2인산칼슘 ciio> 1 mole (100.09 g) of calcium carbonate (CaC0 3 ) in step 1 of Example 1, dicalcium phosphate
(CaHP04) 2 몰 (272.12 g) 및 나프탈렌 100 g을 물과 함께 흔합한 것을 제외하고는 상기 실시예 1과 동일하게 수행하여 제 3인산칼슘을 제조하였다. Tricalcium phosphate was prepared in the same manner as in Example 1 except that 2 mol (272.12 g) of (CaHP0 4 ) and 100 g of naphthalene were mixed with water.
<111>  <111>
di.2> <실시예 3> 제 3인산칼슘의 제조 3 di.2> Example 3 Preparation of Tricalcium Phosphate 3
cii3> 상기 실시예 1의 단계 1에서 탄산칼슘 (CaC03) 1몰 (100.09 g) , 칼슘 파이로 포스페이트 (calcium pyrophosphate, C P207) 1 몰 (254 g) 및 샐를로스 분말 70 g 을 흔합한 것을 제외하고는 상기 실시예 1과 동일하게 수행하여 게 3인산칼슘을 제 조하였다. cii3> In step 1 of Example 1, 1 mol (100.09 g) of calcium carbonate (CaC0 3 ), 1 mol (254 g) of calcium pyrophosphate (CP 2 0 7 ), and 70 g of cellulose powder were common. Except for the combined, it was carried out in the same manner as in Example 1 to prepare a crab calcium phosphate.
ί114> ί114>
cii5> <실시예 4> 제 3인산칼슘의 제조 4 cii5> Example 4 Preparation of Tricalcium Phosphate 4
:116> 상기 실시예 1의 단계 1에서 탄산칼슘 (CaC03) 1몰 (100.09 g), 제 2인산칼슘 1 mole (100.09 g) of calcium carbonate (CaC0 3 ) in step 1 of Example 1, dicalcium phosphate
(CaHP04) 2 몰 (272.12 g) 및 폴리비닐알콜 비드 100 g을 흔합한 것을 제외하고는 상기 실시예 1과 동일하게 수행하여 제 3인산칼슴을 제조하였다. A tertiary phosphate was prepared in the same manner as in Example 1, except that 2 mol (272.12 g) of (CaHP0 4 ) and 100 g of polyvinyl alcohol beads were mixed.
:117>  : 117>
:118> <실시예 5> 제 3인산칼슴와제조 5  118> <Example 5> Triphosphate box production 5
:119> 상기 실시예 1의 단계 1에서 탄산칼슘 (CaC03) 1몰 (100.09 g) , 제 2인산칼슴 : 1 mol (100.09 g) of calcium carbonate (CaC0 3 ) in step 1 of Example 1, dibasic calcium phosphate
(CaHP04) 2 몰 (272.12 g) 및 폴리락틱산 (polylactic acid) 비드 100 g을 흔합한 것 을 제외하고는 상기 실시예 1과 동일하게 수행하여 제 3인산칼슘을 제조하였다.Tricalcium phosphate was prepared in the same manner as in Example 1 except that 2 mol (272.12 g) of (CaHP0 4 ) and 100 g of polylactic acid beads were mixed.
:120> : 120>
:121> <실시예 6> 제 3인산칼슘의 제조 6 ci22> 상기 실시예 1의 단계 1에서 탄산칼슘 (CaC03) 1몰 (100.09 g), 칼슘 파이로 포스페이트 (C¾P207) 1 몰 (254 g) 및 녹말 비드 100 g을 흔합한 것을 제외하고는 상기 실시예 1과 동일하게 수행하여 제 3인산칼슘을 제조하였다. Example 6 Preparation of Tricalcium Phosphate 6 ci22> except that the sum of the calcium carbonate (CaC0 3) phosphate with 1 mol (100.09 g), calcium pie (C¾P 2 0 7) 1 mole (254 g) and starch beads 100 g in step 1 of Example 1 common Was prepared in the same manner as in Example 1 to prepare a tricalcium phosphate.
cl23> cl23>
cl24> <실시예 7〉 제 3인산칼슘의 제조 7 <Example 7> Preparation of Tricalcium Phosphate 7
<125> 상기 실시예 1의 단계 1에서 탄산칼슘 (CaC03) 1몰 (100.09 g) , 칼슘 파이로 포스페이트 (Ca2P207) 1 몰 (254 g) 및 알긴산 비드 150 g을 흔합한 것을 제외하고는 상기 실시예 1과 동일하게 수행하여 제 3인산칼슴을 제조하였다. In step 1 of Example 1, 1 mol (100.09 g) of calcium carbonate (CaC0 3 ), 1 mol (254 g) of calcium pyrophosphate (Ca 2 P 2 0 7 ), and 150 g of alginic acid beads were mixed. Except that was carried out in the same manner as in Example 1 to prepare a third phosphate.
ί126> ί126>
<127> <비교예 1>  <127> <Comparative Example 1>
ci28> 상기 실시예 1의 단계 1에서 탄산칼슴 (CaC03) 1몰 (100.09 g) 및 제 2인산칼 슴 (CaHP04) 2 몰 (272.12 g)을 에탄을과 함께 볼밀에 넣고 8 시간 흔합한 것과, d29> 상기 실시예 1의 단계 3에서 드라이아이스를 이용하지 않고, 상온에서 선풍 기를 이용하여 넁각을 수행한 것을 제외하고는 상기 실시예 1과 동일하게 수행하여 제 3인산칼슘을 제조하였다. ci28> In Step 1 of the Example 1 acid kalseum (CaC0 3) 1 mole (100.09 g) and a second phosphate knife thoracic (CaHP0 4) 2 moles (272.12 g) is put into a ball mill together with ethanol 8 hours common combined And, d29> The third calcium phosphate was prepared in the same manner as in Example 1, except that in step 3 of Example 1, using a fan at room temperature without using dry ice.
<130>  <130>
ί131> <비교예 2> ί131> <Comparative Example 2>
ίΐ32> 상기 실시예 1의 단계 1에서 탄산칼슘 (CaC03) 1몰 (100.09 g)과 칼슘 파이 로포스페이트 (Ca2P207) 1 몰 (254 g)을 에탄을과 함께 볼밀에 넣고 8 시간 흔합한 것과, . In step 1 of Example 1, add 1 mol (100.09 g) of calcium carbonate (CaC0 3 ) and 1 mol (254 g) of calcium pyrophosphate (Ca 2 P 2 0 7 ) together with ethane in a ball mill. With the time mixture,.
<133> 상기 실시예 1의 단계 3에서 드라이아이스를 이용하지 않고, 상은에서 선풍 기를 이용하여 넁각을 수행한 것을 제외하고는 상기 실시예 1과 동일하게 수행하여 제 3인산칼슘을 제조하였다.  In Example 3, the third calcium phosphate was prepared in the same manner as in Example 1, except that dry ice was not used in the first step and phase angle was performed using an electric fan in the silver.
<134>  <134>
;135> 〈비교예 3>  135> <Comparative Example 3>
d36> 상기 실시예 1의 단계 1에서 탄산칼슘 (CaC03) 1몰 (100.09 g)과 제 2인산칼 슘 (CaHP04) 2 몰 (272.12 g)을 흔합한 것을 제외하고는 상기 실시예 1과 동일하게 수행하여 제 3인산칼슘을 제조하였다. d36> as in Example Calcium Carbonate in step 1 of the first (CaC0 3) and the above embodiment except that the combined common to one mole (100.09 g) and phosphate dibasic calcium (CaHP0 4) 2 moles (272.12 g) Example 1 In the same manner, tricalcium phosphate was prepared.
<137> <137>
l38> <실험예 1>주사전자현미경 관찰 <i39> 상기 실시예 1, 3, 4, 6 및 7과 비교예 1 및 2에서 제조된 제 3인산칼슴의 미 세구조를 주사전자현미경 (JSM-840A, JEOL Ltd.)을 이용하여 관찰하였고, 그 결과를 도 1 내지 도 7에 나타내었다. l38><Experimental Example 1> Scanning electron microscope observation <i39> The microstructures of the third phosphates prepared in Examples 1, 3, 4, 6 and 7 and Comparative Examples 1 and 2 were observed using a scanning electron microscope (JSM-840A, JEOL Ltd.). The results are shown in FIGS. 1 to 7.
ίΐ40> 도 1 내지 도 7에 나타낸 바와 같이 , 상기 실시예 1, 3, 4, 6 및 7에서 제조 된 제 3인산칼슘은 비교예 1 및 2에서 제조된 제 3인산칼슘 보다 높은 다공성을 나타 내는 것을 알 수 있다. 이와 같이, 상기 실시예들에서 제조된 제 3인산칼슘이 높은 다공성을 나타내는 이유는 기공 생성제를 첨가되어 다수의 기공이 형성되었기 때문 으로, 높은 다공성을 나타내는 상기 제 3인산칼슴은 급넁 시 외부 공기가 내부까지 쉽게 침투할 수 있도록 하며, 이에 따라 넁각시간을 단축하는 효과가 있다. 1 to 7, the tricalcium phosphate prepared in Examples 1, 3, 4, 6 and 7 exhibited higher porosity than the tricalcium phosphate prepared in Comparative Examples 1 and 2. It can be seen that. As such, the reason why the tricalcium phosphate prepared in the above examples shows high porosity is that a plurality of pores are formed by adding a pore generating agent. It can be easily penetrated to the inside, thereby reducing the cornering time.
<141>  <141>
cl42> <실험예 2> £1형 제 3인산칼슴의 순도 분석 <Example 2> Purity analysis of £ 1 type 3 phosphate
ίΐ43> 상기 실시예 1, 2, 비교예 1 및 비교예 2에서 제조된 제 3인산칼슴을 정성분 석하기 위하여, X-선 회절 분석기 (D/Max-2200 Ultima/PC)를 이용하여 X-선 회절 분 석 수행 및 순수한 α형 및 β형 제 3인산칼슘 특급 시약을 이용하여 검정선 및 검 정식을 작성하였으며, 작성된 검정식에 X-선 회절 분석 결과 (2Θ = 27.80의 피크면 적 및 2Θ = 22.86의 피크면적)를 대입하여 α형 제 3인산칼슘의 순도를 계산하였 고, 계산된 α형 제 3인산칼슘의 순도를 하기 표 1에 나타내었다. X-ray diffractometer (D / Max-2200 Ultima / PC) using an X-ray diffractometer (D / Max-2200 Ultima / PC) to analyze the third component phosphate prepared in Examples 1 and 2, Comparative Example 1 and Comparative Example 2 Assays and assays were prepared by performing ray diffraction analysis and pure α- and β-type tricalcium phosphate special reagents. X-ray diffraction analysis results (2Θ = 27.80 peak area and 2Θ) The purity of α-type tricalcium phosphate was calculated by substituting the peak area of = 22.86, and the calculated purity of α-type tricalcium phosphate is shown in Table 1 below.
d.44> d.44>
ίΙ45> 【표 1】 ίΙ45> 【Table 1】
Figure imgf000015_0001
Figure imgf000015_0001
d46> 상기 표 1에 나타낸 바와 같이, 실시예 1 내지 7에서 제조된 제 3인산칼슘의 α형 제 3인산칼슴의 순도가 비교예 1 내지 3에서 제조된 제 3인산칼슘의 순도보다 높은 것을 알 수 있다. 이를 통해, 본 발명에서 기공 생성제를 이용하여 기공을 형 성시키고, 드라이 아이스를 이용하여 급넁을 수행함으로써 α형 제 3인산칼슴의 순 도를 향상시킬 수 있음을 알수 있다. d46> As shown in Table 1, it was found that the purity of the α-type tricalcium phosphate of the third calcium phosphate prepared in Examples 1 to 7 was higher than that of the third calcium phosphate prepared in Comparative Examples 1 to 3. Can be. Through this, it can be seen that the purity of the α-type triphosphate can be improved by forming pores using the pore-generating agent, and performing rapid ablation using dry ice.

Claims

【청구의 범위】  [Range of request]
【청구항 11  [Claim 11
제 3인산칼슴의 원료물질 및 기공 생성제 (pore forming agent)를 흔합하는 단 계 (단계 1);  Mixing the raw material of the third phosphate and the pore forming agent (step 1);
. 상기 단계 1에서 흔합된 흔합물을 1200 내지 1400 °C의 온도로 하소시키는 단계 (단계 2); 및 . Calcining the mixture blended in step 1 to a temperature of 1200 to 1400 ° C. (step 2); And
상기 단계 2에서 하소된 하소체를 냉각시키는 단계 (단계 3)를 포함하 ¾ 기공 생성제를 이용한 제 3인산칼슴의 제조방법.  The method for producing a third phosphate decay using a ¾ pore generating agent comprising the step (step 3) of cooling the calcined calcined body in step 2.
【청구항 2】 [Claim 2]
제 1항에 있어서, 상기 단계 1의 원료물질은 탄산칼슘 (CaC03) 및 제 2인산칼슘 이수화물 (CaHP04.2¾0)인 것을 특징으로 하는 기공 생성제를 이용한 제 3인산칼슘의 제조방법 . The method of claim 1, wherein the raw material of step 1 is a process for producing a third a calcium phosphate with a pore-generating agent, characterized in that the calcium carbonate (CaC0 3) and a second calcium phosphate dihydrate (CaHP0 4 .2¾0).
【청구항 3] [Claim 3]
제 1항에 있어서, 상기 단계 1의 원료물질은 탄산칼슘 (CaC03) 및 제 2인산칼슴 무수물 (CaHPO 인 것을 특징으로 하는 기공 생성제를 이용한 제 3인산칼슘의 제조방 법. The method of claim 1, wherein the raw material of step 1 is calcium carbonate (CaC0 3 ) and dicalcium phosphate anhydride (CaHPO).
【청구항 4】 [Claim 4]
거 U항에 있어서, 상기 단계 1의 원료물질은 탄산칼슘 (CaC03) 및 칼슘 파이로 포스페이트 (calcium pyrophosphate, C¾07P2)인 것을 특징으로 하는 기공 생성제를 이용한 게 3인산칼슘의 제조방법 . The method of claim 5, wherein the raw material of step 1 is calcium carbonate (CaC0 3 ) and calcium pyrophosphate (calcium pyrophosphate, C¾0 7 P 2 ) characterized in that the method for producing crab triphosphate using a pore generating agent .
【청구항 5] [Claim 5]
제 3항 또는 제 4항에 있어서, 상기 단계 1의 원료물질은 증류수를 더 포함하 는 것을 특징으로 하는 기공 생성제를 이용한 제 3인산칼슴의 제조방법.  [5] The method of claim 3 or 4, wherein the raw material of step 1 further comprises distilled water.
【청구항 6] [Claim 6]
거 U항에 있어서, 상기 단계 1의 기공 생성제는 폴리락틱산 (polylactic acid), 폴리글리콜산 (polyglycolic acid), 폴리하이드록시알카노에이트 (polyhydroxyalkanoate), 폴리에스테르 (poly ester), 나일론, 아크릴수지, 폴리비 닐알콜 (polyvinyl alcohol), 폴리우레탄 (polyurethane) , 폴리글리콜 (polyglycol ) , 나프탈렌, 셀를로오즈, 알긴산 (alginic acid), 카르기난 (Carrageenan)ᅳ 녹말, 탄수 화물 및 설탕을 포함하는 군으로부터 선택되는 1종인 것을 특징으로 하는 기공 생 성제를 이용한 제 3인산칼슘의 제조방법. According to claim U, wherein the pore generating agent of step 1 polylactic acid (polylactic acid), polyglycolic acid (polyglycolic acid), polyhydroxyalkanoate (polyhydroxyalkanoate), polyester, nylon, acrylic resin, polyvinyl alcohol, polyurethane, polyglycol, naphthalene, cellulose, alginic acid, carbon Carrageenan 제조 Method of producing tricalcium phosphate using a pore generator, characterized in that the one selected from the group consisting of starch, carbohydrate and sugar.
【청구항 7】 [Claim 7]
제 1항에 있어서, 상기 단계 2의 하소는 6 내지 10 시간 동안 수행되는 것을 특징으로 하는 기공 생성제를 이용한 게 3인산칼슘의 제조방법.  The method of claim 1, wherein the calcining of step 2 is carried out for 6 to 10 hours.
【청구항 8】 [Claim 8]
제 1항에 있어서, 상기 단계 3의 넁각은 드라이아이스를 이용하여 수행되는 것을 특징으로 하는 기공 생성제를 이용한 제 3인산칼슘의 제조방법.  The method of claim 1, wherein the step 3 of the step 3 is performed using dry ice.
【청구항 9】 [Claim 9]
거 U항의 제조방법에 의해 제조되는 제 3인산칼슘.  Tricalcium phosphate prepared by the method of claim U.
【청구항 10] [Claim 10]
게 9항에 있어서 , 상기 제 3인산칼슘은 α형 제 3인산칼슘 ( a-Tricalcium phosphate, α-TCP)을 80% 이상 포함하는 것을 특징으로 하는 제 3인산칼슘.  The tricalcium phosphate of claim 9, wherein the tricalcium phosphate comprises at least 80% of an α-tricalcium phosphate (α-TCP).
【청구항 11】 [Claim 11]
제 9항의 제 3인산칼슴을 포함하는 골시멘트 조성물.  A bone cement composition comprising the tricalcium phosphate of claim 9.
PCT/KR2013/000529 2012-02-17 2013-01-23 Method for preparing tricalcium phosphate using pore forming agent, and tricalcium phosphate prepared thereby WO2013122336A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020120016387A KR101345794B1 (en) 2012-02-17 2012-02-17 Fabrication method for tricalcium phosphate using pore forming agent, and the tricalcium phosphate thereby
KR10-2012-0016387 2012-02-17

Publications (1)

Publication Number Publication Date
WO2013122336A1 true WO2013122336A1 (en) 2013-08-22

Family

ID=48984417

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/000529 WO2013122336A1 (en) 2012-02-17 2013-01-23 Method for preparing tricalcium phosphate using pore forming agent, and tricalcium phosphate prepared thereby

Country Status (2)

Country Link
KR (1) KR101345794B1 (en)
WO (1) WO2013122336A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102019891B1 (en) 2018-11-28 2019-09-09 주식회사 선광티앤에스 Residual radioactivity measurement system at site of nuclear facility using unmanned mobile equipment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5709742A (en) * 1994-11-04 1998-01-20 Norian Corporation Reactive tricalcium phosphate compositions
JP2004026648A (en) * 2002-06-20 2004-01-29 Merck Patent Gmbh Method for manufacture alpha- and beta-tricalcium phosphate powder
KR20070010919A (en) * 2005-07-20 2007-01-24 주식회사 오스코텍 PREPARATION METHOD OF POROUS beta;-TRICALCIUM PHOSPHATE GRANULES
KR20100041237A (en) * 2008-10-13 2010-04-22 (주) 코웰메디 Preparation method of porous tricalcium phosphate-based granules and preparation method of functional bone graft
KR20110120784A (en) * 2010-04-29 2011-11-04 유창국 Composition and manufacturing method for porous calcium phosphate granules by physical foaming

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5709742A (en) * 1994-11-04 1998-01-20 Norian Corporation Reactive tricalcium phosphate compositions
JP2004026648A (en) * 2002-06-20 2004-01-29 Merck Patent Gmbh Method for manufacture alpha- and beta-tricalcium phosphate powder
KR20070010919A (en) * 2005-07-20 2007-01-24 주식회사 오스코텍 PREPARATION METHOD OF POROUS beta;-TRICALCIUM PHOSPHATE GRANULES
KR20100041237A (en) * 2008-10-13 2010-04-22 (주) 코웰메디 Preparation method of porous tricalcium phosphate-based granules and preparation method of functional bone graft
KR20110120784A (en) * 2010-04-29 2011-11-04 유창국 Composition and manufacturing method for porous calcium phosphate granules by physical foaming

Also Published As

Publication number Publication date
KR20130095017A (en) 2013-08-27
KR101345794B1 (en) 2013-12-27

Similar Documents

Publication Publication Date Title
Ramesh et al. Characteristics and properties of hydoxyapatite derived by sol–gel and wet chemical precipitation methods
Wu et al. Preparation and characterization of hydroxyapatite synthesized from oyster shell powders
US9040156B2 (en) Whitlockite and method for manufacturing the same
JP6130098B2 (en) Gallium Calcium Phosphate Biomaterial
Fahami et al. Synthesis of calcium phosphate-based composite nanopowders by mechanochemical process and subsequent thermal treatment
Kannan et al. Aqueous precipitation method for the formation of Mg-stabilized β-tricalcium phosphate: An X-ray diffraction study
US11389564B2 (en) Whitlockite coating constructed on surface of calcium phosphate-based bioceramic substrate and preparation method therefor
Nomura et al. Fabrication of carbonate apatite blocks from set gypsum based on dissolutionprecipitation reaction in phosphate-carbonate mixed solution
Mohn et al. Reactivity of calcium phosphate nanoparticles prepared by flame spray synthesis as precursors for calcium phosphate cements
CN108421085B (en) Graphene and hydroxyapatite composite bionic bone material and preparation method thereof
Hsu The preparation of biphasic porous calcium phosphate by the mixture of Ca (H2PO4) 2· H2O and CaCO3
Greish et al. Formation of hydroxyapatite–polyphosphazene polymer composites at physiologic temperature
Ayed et al. Sintering of tricalcium phosphate–fluorapatite composites by addition of alumina
Guidara et al. Elaboration and characterization of alumina-fluorapatite composites
Volkmer et al. Novel method for the obtainment of nanostructured calcium phosphate cements: Synthesis, mechanical strength and cytotoxicity
Kjellin et al. Investigation of calcium phosphate formation from calcium propionate and triethyl phosphate
JP6035627B2 (en) Biomaterial composed of β-type tricalcium phosphate
WO2013122336A1 (en) Method for preparing tricalcium phosphate using pore forming agent, and tricalcium phosphate prepared thereby
KR100787526B1 (en) Synthesis of spherical shaped hydroxyapatite, alpha-tricalcium phosphate and beta-tricalcium phosphate nano powders depending on the ph by microwave assisted process
Natasha et al. Synthesis and properties of biphasic calcium phosphate prepared by different methods
KR101308952B1 (en) COMPOSITION FOR BONE CEMENT CONTAINING NANO-SIZED β-TRICALCIUM PHOSPHATE AND PREPARING METHOD FOR THEREOF
JP6109773B2 (en) Biomaterial ceramic sintered body and method for producing the same
JPH0415166B2 (en)
EP2668133B1 (en) A method of converting limestone into tri-calcium phosphate and tetra-calcium phosphate powder simultaneously.
Chen et al. Eu3+ doped monetite and its use as fluorescent agent for dental restorations

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13748726

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13748726

Country of ref document: EP

Kind code of ref document: A1