WO2013122275A1 - Weighted interpolation method and ultrasonic diagnostic apparatus using same - Google Patents

Weighted interpolation method and ultrasonic diagnostic apparatus using same Download PDF

Info

Publication number
WO2013122275A1
WO2013122275A1 PCT/KR2012/001288 KR2012001288W WO2013122275A1 WO 2013122275 A1 WO2013122275 A1 WO 2013122275A1 KR 2012001288 W KR2012001288 W KR 2012001288W WO 2013122275 A1 WO2013122275 A1 WO 2013122275A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
ultrasonic
unit
ultrasound
focusing
Prior art date
Application number
PCT/KR2012/001288
Other languages
French (fr)
Korean (ko)
Inventor
배무호
노세범
Original Assignee
알피니언메디칼시스템 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 알피니언메디칼시스템 주식회사 filed Critical 알피니언메디칼시스템 주식회사
Publication of WO2013122275A1 publication Critical patent/WO2013122275A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/13Tomography
    • A61B8/14Echo-tomography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52077Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging with means for elimination of unwanted signals, e.g. noise or interference
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8909Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration
    • G01S15/8915Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array
    • G01S15/8927Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array using simultaneously or sequentially two or more subarrays or subapertures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52023Details of receivers
    • G01S7/52034Data rate converters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8997Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using synthetic aperture techniques

Definitions

  • the present embodiment relates to a weight interpolation method and an ultrasonic diagnostic apparatus using the same.
  • an interpolation signal for interpolating weights is applied to an intermediate focusing signal formed by focusing an ultrasonic echo signal received from a probe, thereby reducing discontinuity of the ultrasonic signal and improving image quality. It relates to a weight interpolation method to increase the) and an ultrasonic diagnostic apparatus using the same.
  • Ultrasound systems are widely used in the medical field because they are non-invasive and non-destructive characteristics of an object as a diagnostic system that is widely applied.
  • an ultrasound system transmits an ultrasound beam consisting of a group of ultrasound signals to an object and receives an ultrasound beam reflected from the object to form an ultrasound image of the object.
  • the ultrasound diagnosis apparatus electrically stimulates a transducer element and transmits an ultrasound signal to the human body.
  • the ultrasonic signal transmitted to the human body is reflected at the boundary of the discontinuous human tissue, the ultrasonic echo signal reflected from the boundary of the human tissue and transmitted to the conversion element is focused and converted into an electrical signal for signal processing.
  • the converted electrical signal is amplified and signal processed to generate ultrasonic image data about the tissue.
  • the ultrasound diagnosis apparatus includes a focusing unit for controlling a pattern for beam focusing by applying weights to determine ultrasound distribution, beam width, noise, time delay, and the like, for each transducer element. .
  • the number of conversion elements is small, so that a focusing unit for applying weights to each of the conversion elements is possible. There is no problem. Therefore, by applying a time delay value to a signal of a predetermined number of converters adjacent to the probe, a sub-aperture for focusing into one signal is specified, thereby reducing the number of signals to which the weight is applied.
  • the present embodiment when diagnosing by using the ultrasonic wave, by applying an interpolation signal for interpolating the weight to the intermediate focusing signal formed by focusing the ultrasonic echo signal received from the probe, discontinuity of the ultrasonic signal
  • the main object of the present invention is to provide a weight interpolation method and an ultrasound diagnostic apparatus using the same to reduce the weight and increase the quality of an image.
  • a sub-aperture for transmitting an ultrasonic signal to the object and receiving an ultrasonic echo signal reflected from the object, and transmitting and receiving the ultrasonic signal and the ultrasonic echo signal ( Probes including Sub-Aperture; An ultrasound diagnosis unit generating the ultrasound signal, focusing the beam by applying a predetermined weight to the ultrasound echo signal to form an intermediate focus signal; And an image processing unit configured to form an image based on the intermediate focusing signal, and output the image through a display unit, wherein the ultrasound diagnosis unit generates an interpolation signal for interpolating the intermediate focusing signal using a correlation analysis function. It provides an ultrasound diagnostic apparatus comprising an interpolation.
  • the transmission beam focusing unit for generating an ultrasonic signal for diagnosing the object through the sub aperture of the probe;
  • a reception beam focusing unit configured to focus the ultrasonic echo signal received from the probe after applying a predetermined weight to form an intermediate focusing signal;
  • An interpolation unit generating an interpolation signal to interpolate the intermediate focusing signal between adjacent sub apertures;
  • a signal processor configured to perform filtering to remove the clutter signal included in the intermediate focus signal, wherein the probe includes a plurality of sub apertures having a plurality of conversion elements arranged in a mesh structure.
  • the transmission beam focusing unit for generating an ultrasonic signal for diagnosing the object through the sub aperture of the probe;
  • a reception beam focusing unit configured to focus the ultrasonic echo signal received from the probe after applying a predetermined weight to form an intermediate focusing signal;
  • An interpolation unit generating an interpolation signal to interpolate the intermediate focusing signal between adjacent sub apertures;
  • a sensitivity controller for controlling a gain of the intermediate focusing signal;
  • a signal processor configured to perform filtering to remove the clutter signal included in the intermediate focus signal, wherein the probe includes a plurality of sub apertures having a plurality of conversion elements arranged in a mesh structure.
  • the ultrasound signal formed in the ultrasound diagnostic unit is transmitted to the object through the sub aperture of the probe, and from the object An ultrasonic transceiving process for receiving the reflected ultrasonic echo signal;
  • an image processing unit configured to form an image based on the reception focus signal, and to output the image through a display unit provided with the image.
  • an interpolation signal for interpolating weights is applied to an intermediate focusing signal formed by focusing an ultrasonic echo signal received from a probe to solve discontinuities between sub-apertures, and a clutter level.
  • an intermediate focusing signal formed by focusing an ultrasonic echo signal received from a probe to solve discontinuities between sub-apertures, and a clutter level.
  • FIG. 1 is a block diagram schematically showing an ultrasound diagnostic apparatus according to the present embodiment
  • FIG. 2 is a block diagram schematically showing the ultrasonic diagnostic unit according to the present embodiment
  • FIG. 3 is an exemplary diagram for explaining an arrangement structure of a conversion element included in a sub aperture according to the present embodiment
  • FIG. 4 is an exemplary view for explaining an ultrasound diagnostic unit according to the present embodiment
  • FIG. 5 is a flowchart illustrating an ultrasound diagnosis method using weight interpolation according to the present embodiment.
  • the transducer array provided in the probe 110 according to the object Transducer Array
  • the larger the aperture value the larger the array of transducers to be applied and the wider the ultrasonic range being transmitted.
  • the sub-aperture 112 according to the present embodiment groups a plurality of transducer elements, focuses them into one ultrasonic signal, transmits a strong ultrasonic signal to the object, and corresponds to ultrasonic waves.
  • the sub-aperture 112 When receiving the echo signal, it refers to a group for forming the intermediate focusing signal for each sub aperture (112).
  • the sub-aperture 112 receives a predetermined voltage through the central transducer conversion element and operates by applying the same to all the conversion elements included in the sub aperture 112.
  • the weight described in the present embodiment is a value set by the user to determine the distribution of the ultrasound, the beam width, the noise, the time delay, etc. for forming the image according to the object, and the specific gravity of the preset value in the ultrasound signal.
  • the weight can be applied by multiplying by.
  • Such a weight may be determined to be an optimal value through simulation.
  • the image described in this embodiment is a concept including a B-mode image or a C-mode image. That is, the B-mode is a gray scale image and refers to an image mode representing the movement of the object, and the C-mode is a color flow image and refers to an image mode representing the flow of blood flow or the movement of the object.
  • BC-Mode Image is an image mode that displays the flow of the blood flow or the object movement using the Doppler Effect (Bopper Effect), and provides a B-mode image and a C-mode image at the same time
  • An imaging mode that provides anatomical information as well as blood flow and subject movement information.
  • the ultrasound diagnosis apparatus is a device capable of simultaneously providing a B-mode image and a C-mode image, which is a color flow image.
  • the B-mode image is an image provided by the ultrasound diagnostic apparatus.
  • FIG. 1 is a block diagram schematically illustrating an ultrasound diagnostic apparatus according to an exemplary embodiment.
  • the probe 110 includes a transducer element.
  • the probe 110 transmits an ultrasonic signal to an object by using the provided transducer element and receives an ultrasonic echo signal reflected from the object.
  • the conversion element converts the electrical signal into an ultrasonic signal and transmits it to the object, and converts the ultrasonic echo signal reflected from the object into an electrical signal.
  • the probe 110 includes a sub-aperture 112 that combines a plurality of conversion elements to focus a plurality of ultrasonic signals into one ultrasonic signal.
  • the sub-aperture 112 will be described for the structure for transmitting the ultrasound signal received from the ultrasound diagnosis unit 120 to the object, the sub-aperture 112 arranges the conversion elements in a mesh structure, Receives an ultrasound signal from the ultrasound diagnosis unit 120 using a conversion element located in the center of the aperture 112, and applies the received ultrasound signal to a plurality of conversion elements included in the sub aperture 112 to the object.
  • Send Send.
  • the ultrasound diagnosis unit 120 generates an ultrasound signal, transmits the ultrasound signal to the probe 110, and receives an ultrasound echo signal from the probe 110 to form and interpolate an intermediate focused signal.
  • the ultrasound diagnosis unit 120 generates an ultrasound signal for transmission to the object based on the electric signal supplied from the pulse transmitter 130.
  • the ultrasound echo signal received by the conversion element included in the probe 110 is focused to form an intermediate focusing signal, and an interpolation signal is applied to the intermediate focusing signal to form a reception focusing signal.
  • an interpolation signal is applied to the intermediate focusing signal to form a reception focusing signal.
  • the ultrasound diagnosis unit 120 removes the clutter signal included in the reception focus signal to sharpen the reception focus signal, and digitally processes the reception focus signal to generate frame data and transmit the generated data to the image processor 150. .
  • the pulse transmitter 130 supplies an electric signal to the ultrasound diagnosis unit 120 through a user's manipulation or input. That is, the pulse transmitter 130 refers to a module for making and supplying an electric signal capable of generating ultrasonic waves transmitted from the probe 110 to the object.
  • the electrical signal supplied to the ultrasound diagnosis unit 120 is preferably a pulse signal, but is not necessarily limited thereto.
  • the user input unit 140 receives an instruction by user's manipulation or input.
  • the user command may be a setting command for controlling the ultrasound diagnosis apparatus.
  • the user may control the intensity of the electrical signal generated by the pulse transmitter 130, and may control the mode selection of the image and the weight and interpolation signal for implementing the image.
  • the image processor 150 forms a B-mode or C-mode image based on the ultrasound signal information received from the ultrasound diagnosis unit 120.
  • the B-mode or C-mode image is output through the display unit 160.
  • FIG. 2 is a block diagram schematically showing the ultrasound diagnosis unit according to the present embodiment.
  • the ultrasound diagnosis unit 120 includes a transmission beam focusing unit 210, a reception beam focusing unit 220, an interpolation unit 230, and a signal processor 240.
  • the ultrasound diagnosis unit 120 includes only the transmission beam focusing unit 210, the reception beam focusing unit 220, the interpolation unit 230, and the signal processing unit 240. It is merely an example of a technical idea, and a person of ordinary skill in the art to which the present embodiment pertains may vary with respect to the components included in the ultrasound diagnosis unit 120 without departing from the essential characteristics of the present embodiment. Modifications and variations will be applicable.
  • each module is described as being implemented inside the ultrasound diagnosis unit 120, but is not necessarily limited thereto and may be implemented as an external separate module as necessary.
  • the transmission beam focusing unit 210 generates an ultrasonic signal for transmitting to the object based on the electrical signal supplied from the pulse transmitter 130, while the conversion element of the probe 110 transmits the ultrasonic signal to the object.
  • transmitting to the refers to a module for controlling the ultrasonic signal so that the transmitted ultrasonic signal is focused on a predetermined focal point (Focal Point).
  • the transmission beam focusing unit 210 may apply weights to some or all of the ultrasonic distribution, beam width, noise, time delay, etc. to focus the ultrasonic signal.
  • the transmission beam focusing unit 210 applies a weight for the time delay when focusing the ultrasonic signal
  • the weight of the time delay is applied to the ultrasonic signals of the plurality of conversion elements inversely proportional to the distance from the object.
  • the signal may be focused on a predetermined focus of the object at the same time.
  • the reception beam focusing unit 220 focuses the ultrasonic echo signal received from the probe 110 to form an intermediate focusing signal.
  • the reception beam focusing unit 220 applies a weight to the ultrasonic echo signal inversely proportional to the distance from the object in consideration of the time to reach the probe 110 from the object, and then adds the ultrasonic echo signals to add an intermediate focus. Form a signal.
  • an interpolation signal is applied to the intermediate focusing signal.
  • the reception beam focusing unit 220 adds a time delay to the ultrasonic echo signal and adds the intermediate focused signal in consideration of the time when the ultrasonic echo signal reflected from the object reaches each conversion element of the probe 110. That is, in the reception beam focusing unit 220, an intermediate focusing signal is formed at each sub aperture 112, and the intermediate focusing signal is obtained by interpolating the interpolation signal received from the interpolation unit 230 to solve the discontinuity between the intermediate focusing signals. It is applied to form a receive focus signal.
  • the interpolation signal is preferably applied between the intermediate focusing signals corresponding to the adjacent sub apertures 112.
  • the interpolator 230 is a module for interpolating the intermediate focusing signal generated by the reception beam focusing unit 220.
  • an interpolation signal is formed using a predetermined function to interpolate a plurality of intermediate focusing signals generated by the reception beam focusing unit 220.
  • the predetermined function for forming the interpolation signal is preferably a correlation analysis function, but is not necessarily limited thereto.
  • the predetermined function may be changed according to a user's manipulation or input, or may be preset in the ultrasound diagnosis apparatus.
  • the signal processor 240 refers to a module that digitally processes the signal generated by the reception beam focusing unit 220.
  • the signal processor 240 generates the frame data by digitally processing the received focus signal generated by the reception beam focusing unit 220, and the frame data is connected to the ultrasound diagnosis unit 120. 150).
  • the signal processor 240 sharpens the reception focus signal by removing the clutter signal included in the reception focus signal received from the reception beam focusing unit 220. In other words, the signal processor 240 removes the negative electrode or the noise in order to sharpen the main electrode of the reception focus signal.
  • 3 is an exemplary diagram for describing an arrangement structure of the conversion elements included in the sub aperture 112 according to the present embodiment.
  • SA0 and SA1 described in FIG. 3 mean a sub aperture 112, and e (0,0) to e (2,5) are notation for indicating a conversion element included in the sub aperture 112. This notation is only for distinguishing the component from other components, and the nature, order or order of the components are not limited by the terms.
  • the sub-aperture 112 of the probe 110 arranges the conversion elements in a mesh structure, and transmits and receives an ultrasonic signal to and from an object using a conversion element located in the center of each sub aperture 112.
  • the conversion elements e (0,0) to e (2,5) are arranged in a mesh structure connected by a resistance, and when transmitting an ultrasonic signal to an object, e (1,1), sub in the sub aperture SA0.
  • the aperture SA1 receives an ultrasound signal from the ultrasound diagnosis unit 120 through e (1,4).
  • the ultrasound diagnosis unit 120 applies the weights of the ultrasonic distribution, beam width, noise, time delay, etc. to the ultrasound signal to focus the ultrasound signal on the object, and converts the elements e (1,1) and e (1,4). ) Can be sent.
  • FIG 4 is an exemplary view for explaining an ultrasound diagnosis unit according to the present embodiment.
  • the ultrasound diagnosis unit 120 includes an amplification module 410, a time gain compensation module 420, a gain control module 430, and a gain control module 440. It includes.
  • each module of the ultrasonic diagnostic unit 120 Referring to each module of the ultrasonic diagnostic unit 120 according to an embodiment of the present invention.
  • the amplification module 410 amplifies the ultrasonic echo signal received from the object. Since the ultrasonic echo signal received from the object is small in size, the ultrasonic echo signal is amplified before applying the weight or time delay value.
  • the time gain compensation module 420 refers to a module for changing the amplitude of amplification according to the time when the ultrasound echo signal is reflected from the object based on a preset time gain compensation value according to a user's manipulation or input. For example, the ultrasonic echo signal reflected with a depth of time and reflected at a deep depth of the object is amplified by a predetermined ratio more than the ultrasonic echo signal reflected at a shallow depth.
  • the gain control module 430 refers to a module for controlling the gain of the ultrasound signal when the ultrasound signal is transmitted to the object.
  • the gain control is a method for obtaining an image such as to increase the ultrasound output without increasing the ultrasound output to the object.
  • the gain value control is preferably to use an overall gain control method, but is not necessarily limited thereto.
  • the gain control module 440 is a module for controlling all the conversion elements in the ultrasound diagnosis unit 120 and refers to a module for controlling gains for the ultrasound signals and the ultrasound echo signals transmitted and received to the object.
  • the gain control module 440 may control the gain by summing the global gain and the interpolation signal in order to control the transmission / reception signal for the conversion element.
  • the global gain means a gain input from the user in order to control the overall gain of the ultrasound diagnosis unit 120.
  • FIG. 5 is a flowchart illustrating an ultrasound diagnosis method using weight interpolation according to the present embodiment.
  • the probe 110 transmits the ultrasound signal formed by the ultrasound diagnosis unit 120 to the object and receives the ultrasound echo signal reflected from the object (S510).
  • the probe 110 transmits and receives an ultrasound signal and an ultrasound echo signal to and from an object through a predetermined number of conversion elements.
  • the ultrasound diagnosis unit 120 forms an intermediate focusing signal for each sub aperture 112 including a predetermined number of conversion elements by applying a weight to the ultrasound echo signal received from the probe 110 (S520).
  • the ultrasound diagnosis unit 120 interpolates the adjacent intermediate focusing signals by applying an interpolation signal to the intermediate focusing signals of the adjacent sub apertures in order to solve discontinuities of the plurality of intermediate focusing signals (S530).
  • the ultrasound diagnosis unit 120 forms an interpolation signal using a predetermined function to interpolate a plurality of intermediate focusing signals.
  • the predetermined function for forming the interpolation signal is preferably a correlation analysis function, but is not necessarily limited thereto.
  • the predetermined function may be changed according to a user's manipulation or input, or may be preset in the ultrasound diagnosis apparatus.
  • the weights and the interpolation signals may be different from each other in steps S520 and S530, but the weights and the interpolation signals may be the same according to a user's manipulation or input.
  • the ultrasound diagnosis unit 120 forms a reception focus signal based on the intermediate focus signal to which the interpolation signal is applied, and filters the reception focus signal to remove the clutter signal (S540).
  • filtering means removing negative or noise to sharpen the main pole of the received focus signal.
  • the image processor 150 may be configured to form an image based on the reception focus signal, and may be output through the display unit 160 having the formed image (S550).
  • steps S510 to S550 are described as being sequentially executed. However, this is merely illustrative of the technical idea of the present embodiment, and a person skilled in the art to which the present embodiment belongs may understand the present embodiment. 5 may be modified and modified by changing the order described in FIG. 5 or executing one or more steps of steps S510 to S550 in parallel without departing from the essential characteristics, and therefore, FIG. It is not limited.

Abstract

Disclosed are a weighted interpolation method and an ultrasonic diagnostic apparatus using same. Provided is an ultrasonic diagnostic apparatus comprising a probe for transmitting an ultrasonic signal to an object and receiving an ultrasonic echo signal reflected from the object, which includes a sub-aperture for transceiving the ultrasonic signal and the ultrasonic echo signal; an ultrasonic diagnostic unit for generating the ultrasonic signal, applying a predetermined weight to the ultrasonic echo signal and focusing the ultrasonic echo signal to form an intermediate focused signal; and an image processing unit for forming an image based on the intermediate focused signal and outputting the image through a display unit. The ultrasonic diagnostic unit includes an interpolation portion for generating an interpolation signal for interpolating the intermediate focused signal using a correlation analysis function. According to an embodiment of the present invention, the received focused signal formed by focusing the ultrasonic echo signal received from the sub-aperture of the probe is interpolated to solve problems of discontinuity of sub-apertures, and a clutter level is lowered to improve a contrast resolution of an image, improving the quality of the image as a result.

Description

가중치 보간 방법 및 이를 이용한 초음파 진단장치Weight Interpolation Method and Ultrasonic Diagnostic Device
본 실시예는 가중치 보간 방법 및 이를 이용한 초음파 진단장치에 관한 것이다. 더욱 상세하게는, 초음파를 이용하여 진단할 때, 프로브로부터 수신된 초음파 에코 신호를 집속하여 형성된 중간 집속신호에 가중치를 보간하기 위한 보간 신호를 적용함으로써, 초음파 신호의 불연속을 줄이고 영상의 퀄리티(Quality)를 높이도록 하는 가중치 보간 방법 및 이를 이용한 초음파 진단장치에 관한 것이다.The present embodiment relates to a weight interpolation method and an ultrasonic diagnostic apparatus using the same. In more detail, when diagnosing by using ultrasonic waves, an interpolation signal for interpolating weights is applied to an intermediate focusing signal formed by focusing an ultrasonic echo signal received from a probe, thereby reducing discontinuity of the ultrasonic signal and improving image quality. It relates to a weight interpolation method to increase the) and an ultrasonic diagnostic apparatus using the same.
이 부분에 기술된 내용은 단순히 본 실시예에 대한 배경 정보를 제공할 뿐 종래기술을 구성하는 것은 아니다.The contents described in this section merely provide background information on the present embodiment and do not constitute a prior art.
초음파 시스템은 다양하게 응용되고 있는 진단 시스템으로서 대상체에 무침습 및 비파괴 특성을 갖고 있기 때문에, 의료 분야에 널리 이용되고 있다. 일반적으로, 초음파 시스템은 일군의 초음파 신호로 이루어진 초음파 빔을 대상체에 송신하고 대상체로부터 반사되는 초음파 빔을 수신하여 대상체의 초음파 영상을 형성한다. Ultrasound systems are widely used in the medical field because they are non-invasive and non-destructive characteristics of an object as a diagnostic system that is widely applied. In general, an ultrasound system transmits an ultrasound beam consisting of a group of ultrasound signals to an object and receives an ultrasound beam reflected from the object to form an ultrasound image of the object.
즉, 초음파 진단 장치는 변환소자(Transducer Element)를 전기적으로 자극하여 초음파 신호를 인체에 송신한다. 인체에 송신된 초음파 신호는 불연속적인 인체 조직의 경계에서 반사되고, 인체 조직의 경계로부터 반사되어 변환소자에 전달되는 초음파 에코 신호는 집속되고, 신호처리를 위하여 전기적 신호로 변환된다. 변환된 전기적 신호를 증폭 및 신호 처리하여 조직에 대한 초음파 영상 데이터를 생성한다. That is, the ultrasound diagnosis apparatus electrically stimulates a transducer element and transmits an ultrasound signal to the human body. The ultrasonic signal transmitted to the human body is reflected at the boundary of the discontinuous human tissue, the ultrasonic echo signal reflected from the boundary of the human tissue and transmitted to the conversion element is focused and converted into an electrical signal for signal processing. The converted electrical signal is amplified and signal processed to generate ultrasonic image data about the tissue.
일반적으로 초음파 진단 장치는 각각의 변환소자마다 초음파 에코 신호에 초음파의 분포, 빔폭, 노이즈, 시간 지연 등을 결정하기 위해 가중치를 적용하여 빔집속에 대한 패턴(Pattern)을 제어하기 위한 집속부를 구비한다. 1차원 어레이 프로브에서는 변환소자의 개수가 적어 변환소자마다 가중치를 적용하기 위한 집속부의 구현이 가능하였으나, 2차원 어레이 프로브에서는 변환소자의 개수가 늘어나 각각의 변환소자마다 가중치를 적용하기 위한 집속부를 구현할 수 없는 문제점이 있다. 그러므로, 프로브에서 인접한 소정의 개수의 변환소자의 신호에 시간 지연값을 적용하여 하나의 신호로 집속하기 위한 서브애퍼처(Sub-Aperture)를 지정하여, 가중치를 적용하는 신호의 개수를 감소시킨다. In general, the ultrasound diagnosis apparatus includes a focusing unit for controlling a pattern for beam focusing by applying weights to determine ultrasound distribution, beam width, noise, time delay, and the like, for each transducer element. . In the one-dimensional array probe, the number of conversion elements is small, so that a focusing unit for applying weights to each of the conversion elements is possible. There is no problem. Therefore, by applying a time delay value to a signal of a predetermined number of converters adjacent to the probe, a sub-aperture for focusing into one signal is specified, thereby reducing the number of signals to which the weight is applied.
하지만, 각 서브애퍼처의 초음파 신호 간에 불연속 현상이 나타나고, 불연속 현상으로 인해 클러터 레벨(Clutter Level)이 상승하여 빔포밍 성능이 저하되는 문제점이 있고, 이러한 문제점으로 인해 영상의 퀄리티(Quality)도 저하된다.However, there is a problem in that discontinuity occurs between the ultrasonic signals of each sub-aperture, and the clutter level increases due to the discontinuity, thereby degrading beamforming performance. Due to these problems, the quality of the image is also reduced. Degrades.
전술한 문제점을 해결하기 위해 본 실시예는, 초음파를 이용하여 진단할 때, 프로브로부터 수신된 초음파 에코 신호를 집속하여 형성된 중간 집속신호에 가중치를 보간하기 위한 보간 신호를 적용함으로써, 초음파 신호의 불연속을 줄이고 영상의 퀄리티를 높이도록 하는 가중치 보간 방법 및 이를 이용한 초음파 진단장치를 제공하는 데 주된 목적이 있다.In order to solve the above-mentioned problem, the present embodiment, when diagnosing by using the ultrasonic wave, by applying an interpolation signal for interpolating the weight to the intermediate focusing signal formed by focusing the ultrasonic echo signal received from the probe, discontinuity of the ultrasonic signal The main object of the present invention is to provide a weight interpolation method and an ultrasound diagnostic apparatus using the same to reduce the weight and increase the quality of an image.
전술한 목적을 달성하기 위해 본 실시예의 일 측면에 의하면, 대상체로 초음파 신호를 송신하고 상기 대상체로부터 반사되는 초음파 에코 신호를 수신하되, 상기 초음파 신호 및 상기 초음파 에코 신호를 송수신하기 위한 서브애퍼처(Sub-Aperture)를 포함하는 프로브(Probe); 상기 초음파 신호를 생성하고, 상기 초음파 에코 신호에 소정의 가중치(Weight)를 적용한 후 집속하여 중간 집속신호를 형성하는 초음파 진단부; 및 상기 중간 집속신호에 기초하여 영상을 형성하며, 상기 영상을 디스플레이부를 통해 출력되도록 하는 영상 처리부를 포함하되, 상기 초음파 진단부는 상기 중간 집속신호를 보간하기 위한 보간신호를 상관분석 함수를 이용하여 생성하는 보간부를 포함하는 것을 특징으로 하는 초음파 진단 장치를 제공한다.According to an aspect of the present embodiment to achieve the above object, a sub-aperture for transmitting an ultrasonic signal to the object and receiving an ultrasonic echo signal reflected from the object, and transmitting and receiving the ultrasonic signal and the ultrasonic echo signal ( Probes including Sub-Aperture; An ultrasound diagnosis unit generating the ultrasound signal, focusing the beam by applying a predetermined weight to the ultrasound echo signal to form an intermediate focus signal; And an image processing unit configured to form an image based on the intermediate focusing signal, and output the image through a display unit, wherein the ultrasound diagnosis unit generates an interpolation signal for interpolating the intermediate focusing signal using a correlation analysis function. It provides an ultrasound diagnostic apparatus comprising an interpolation.
또한, 본 실시에의 다른 측면에 의하면, 프로브의 서브애퍼처를 통해 대상체를 진단하기 위한 초음파 신호를 생성하는 송신 빔집속부; 상기 프로브로부터 수신된 상기 초음파 에코 신호를 소정의 가중치를 적용한 후 집속하여 중간 집속신호를 형성하는 수신 빔집속부; 인접한 상기 서브애퍼처 간의 상기 중간 집속신호를 보간하기 위해 보간 신호를 생성하는 보간부; 및 상기 중간 집속신호에 포함된 클러터 신호를 제거하기 위한 필터링을 수행하는 신호처리부를 포함하되, 상기 프로브는 복수 개의 변환소자를 그물형 구조로 배열한 상기 서브애퍼처를 복수 개 포함하는 것을 특징으로 하는 초음파 진단부를 제공한다.In addition, according to another aspect of the present invention, the transmission beam focusing unit for generating an ultrasonic signal for diagnosing the object through the sub aperture of the probe; A reception beam focusing unit configured to focus the ultrasonic echo signal received from the probe after applying a predetermined weight to form an intermediate focusing signal; An interpolation unit generating an interpolation signal to interpolate the intermediate focusing signal between adjacent sub apertures; And a signal processor configured to perform filtering to remove the clutter signal included in the intermediate focus signal, wherein the probe includes a plurality of sub apertures having a plurality of conversion elements arranged in a mesh structure. An ultrasonic diagnostic unit is provided.
또한, 본 실시에의 다른 측면에 의하면, 프로브의 서브애퍼처를 통해 대상체를 진단하기 위한 초음파 신호를 생성하는 송신 빔집속부; 상기 프로브로부터 수신된 상기 초음파 에코 신호를 소정의 가중치를 적용한 후 집속하여 중간 집속신호를 형성하는 수신 빔집속부; 인접한 상기 서브애퍼처 간의 상기 중간 집속신호를 보간하기 위해 보간 신호를 생성하는 보간부; 상기 중간 집속신호의 이득(Gain)을 제어하기 위한 감도 제어부; 및 상기 중간 집속신호에 포함된 클러터 신호를 제거하기 위한 필터링을 수행하는 신호처리부를 포함하되, 상기 프로브는 복수 개의 변환소자를 그물형 구조로 배열한 상기 서브애퍼처를 복수 개 포함하는 것을 특징으로 하는 초음파 진단부를 제공한다.In addition, according to another aspect of the present invention, the transmission beam focusing unit for generating an ultrasonic signal for diagnosing the object through the sub aperture of the probe; A reception beam focusing unit configured to focus the ultrasonic echo signal received from the probe after applying a predetermined weight to form an intermediate focusing signal; An interpolation unit generating an interpolation signal to interpolate the intermediate focusing signal between adjacent sub apertures; A sensitivity controller for controlling a gain of the intermediate focusing signal; And a signal processor configured to perform filtering to remove the clutter signal included in the intermediate focus signal, wherein the probe includes a plurality of sub apertures having a plurality of conversion elements arranged in a mesh structure. An ultrasonic diagnostic unit is provided.
또한, 본 실시에의 다른 측면에 의하면, 가중치 보간을 이용하여 초음파 진단을 하기 위한 초음파 진단 장치에 있어서, 초음파 진단부에서 형성된 초음파 신호를 프로브의 서브애퍼처를 통해 대상체로 전송하고, 상기 대상체로부터 반사되는 초음파 에코 신호를 수신하는 초음파 송수신 과정; 상기 초음파 진단부에서 상기 서브애퍼처를 통해 수신된 상기 초음파 에코 신호에 가중치를 적용하여 중간 집속신호를 형성하는 중간 집속신호 형성과정; 상기 초음파 진단부에서 복수 개의 서브애퍼처에서 생성된 상기 중간 집속신호 간의 불연속성을 해결하기 위해 상기 중간 집속신호의 가중치를 보간하는 중간 집속신호 보간과정; 상기 초음파 진단부에서 보간된 상기 중간 집속신호를 이용하여 수신 집속 신호를 형성하고, 클러터 신호를 제거하기 위한 필터링을 수행하는 신호처리 과정; 및 영상 처리부는 상기 수신 집속 신호에 기초하여 영상이 형성되도록 하며, 상기 영상을 구비된 디스플레이부를 통해 출력되도록 동작하는 영상 처리 과정을 포함하는 것을 특징으로 하는 가중치 보간을 이용한 초음파 진단 방법을 제공한다.In addition, according to another aspect of the present invention, in the ultrasound diagnostic apparatus for ultrasound diagnosis using weight interpolation, the ultrasound signal formed in the ultrasound diagnostic unit is transmitted to the object through the sub aperture of the probe, and from the object An ultrasonic transceiving process for receiving the reflected ultrasonic echo signal; An intermediate focusing signal forming process of forming an intermediate focusing signal by applying a weight to the ultrasonic echo signal received through the sub aperture in the ultrasonic diagnostic unit; An intermediate focusing signal interpolation process of interpolating weights of the intermediate focusing signals to solve the discontinuity between the intermediate focusing signals generated by a plurality of sub apertures in the ultrasound diagnosis unit; A signal processing step of forming a reception focus signal by using the intermediate focus signal interpolated by the ultrasound diagnosis unit and performing filtering to remove a clutter signal; And an image processing unit configured to form an image based on the reception focus signal, and to output the image through a display unit provided with the image.
이상에서 설명한 바와 같이 본 실시예에 의하면, 프로브로부터 수신된 초음파 에코 신호를 집속하여 형성된 중간 집속신호에 가중치를 보간하기 위한 보간 신호를 적용하여 서브애퍼처 간의 불연속을 해결하고, 클러터 레벨(Clutter Level)을 낮춰 영상의 대조 능력(Contrast Resolution)를 향상시키고, 결과적으로 이미지의 질(Quality)을 향상시킬 수 있는 효과가 있다.As described above, according to the present embodiment, an interpolation signal for interpolating weights is applied to an intermediate focusing signal formed by focusing an ultrasonic echo signal received from a probe to solve discontinuities between sub-apertures, and a clutter level. By lowering the level, the contrast resolution of the image is improved, and as a result, the quality of the image can be improved.
도 1은 본 실시예에 따른 초음파 진단 장치를 개략적으로 나타낸 블록 구성도,1 is a block diagram schematically showing an ultrasound diagnostic apparatus according to the present embodiment;
도 2는 본 실시예에 따른 초음파 진단부를 개략적으로 나타낸 블록 구성도,2 is a block diagram schematically showing the ultrasonic diagnostic unit according to the present embodiment;
도 3은 본 실시예에 따른 서브애퍼처에 포함된 변환소자의 배열구조를 설명하기 위한 예시도,3 is an exemplary diagram for explaining an arrangement structure of a conversion element included in a sub aperture according to the present embodiment;
도 4는 본 실시예에 따른 초음파 진단부를 설명하기 위한 예시도,4 is an exemplary view for explaining an ultrasound diagnostic unit according to the present embodiment;
도 5는 본 실시예에 따른 가중치 보간을 이용한 초음파 진단 방법을 설명하기 위한 순서도이다.5 is a flowchart illustrating an ultrasound diagnosis method using weight interpolation according to the present embodiment.
이하, 본 실시예를 첨부된 도면을 참조하여 상세하게 설명한다.Hereinafter, the present embodiment will be described in detail with reference to the accompanying drawings.
본 실시예에 기재된 애퍼처(Aperture)는 프로브(Probe, 110)에서 대상체로 초음파 신호를 송신하고 그에 대응하는 초음파 에코 신호를 수신할 때, 대상체에 따라 프로브(110)에 구비된 트랜스듀서 어레이(Transducer Array)를 조절할 수 있는 모듈을 말한다. 예컨대, 이러한 애퍼처 값이 클수록 적용되는 트랜스듀서 어레이가 많아져서 송신되는 초음파 범위가 넓어질 수 있으며, 애퍼처 값이 작을수록 적용되는 트랜스듀서 어레이가 작아져서 송신되는 초음파 범위가 좁아질 수 있다. 또한, 본 실시예에 기재된 서브애퍼처(Sub-Aperture, 112)는 복수 개의 트랜스듀서 변환소자(Transducer Element)를 그룹화하여 하나의 초음파 신호로 집속하여 강한 초음파 신호를 대상체로 송신하고 그에 대응하는 초음파 에코 신호를 수신할 때, 서브애퍼처(112) 별로 중간 집속신호를 형성하는 그룹을 의미한다. 여기서, 서브애퍼처(112)는 중앙의 트랜스듀서 변환소자를 통해 소정의 전압을 인가받아 서브애퍼처(112) 내에 포함된 모든 변환소자에 동일하게 적용하여 동작한다.When the aperture described in the present embodiment transmits an ultrasonic signal from the probe 110 to the object and receives an ultrasonic echo signal corresponding thereto, the transducer array provided in the probe 110 according to the object ( Transducer Array). For example, the larger the aperture value, the larger the array of transducers to be applied and the wider the ultrasonic range being transmitted. The smaller the aperture value is, the smaller the transducer array is to be applied and the narrower the ultrasonic range being transmitted. In addition, the sub-aperture 112 according to the present embodiment groups a plurality of transducer elements, focuses them into one ultrasonic signal, transmits a strong ultrasonic signal to the object, and corresponds to ultrasonic waves. When receiving the echo signal, it refers to a group for forming the intermediate focusing signal for each sub aperture (112). Here, the sub-aperture 112 receives a predetermined voltage through the central transducer conversion element and operates by applying the same to all the conversion elements included in the sub aperture 112.
또한, 본 실시예에 기재된 가중치(Weight)는 대상체에 따라 영상을 형성하기 위한 초음파의 분포, 빔폭, 노이즈, 시간 지연 등을 결정하기 위해 사용자가 설정한 값으로서, 초음파 신호에 기 설정된 값의 비중을 곱하는 방식으로 해당 가중치를 적용할 수 있다. 이러한, 가중치는 시뮬레이션을 통해 최적의 값으로 결정할 수 있다.In addition, the weight described in the present embodiment is a value set by the user to determine the distribution of the ultrasound, the beam width, the noise, the time delay, etc. for forming the image according to the object, and the specific gravity of the preset value in the ultrasound signal. The weight can be applied by multiplying by. Such a weight may be determined to be an optimal value through simulation.
또한, 본 실시예에 기재된 영상은 B-모드 영상 또는 C-모드 영상을 포함하는 개념이다. 즉, B-모드는 그레이 스케일의 영상으로서, 대상체의 움직임을 나타내는 영상 모드를 말하며, C-모드는 컬러 플로우 영상으로서, 혈류의 흐름이나 대상체의 움직임을 나타내는 영상 모드를 말한다. 한편, BC-모드 영상(BC-Mode Image)은 도플러 효과(Doppler Effect)를 이용하여 혈류의 흐름이나 대상체의 움직임을 표시하는 영상 모드로서, B-모드 영상과 C-모드 영상을 동시에 제공하며, 혈류 및 대상체의 움직임 정보와 함께 해부학적인 정보까지도 제공하는 영상 모드를 말한다. 한편, 본 발명에 기재된 초음파 진단 장치는 B-모드 영상(B-Mode Image)과 컬러 플로우 영상(Color Flow Image)인 C-모드 영상(C-Mode Image)을 동시에 제공할 수 있는 장치이나, 설명의 편의상 본 발명에서는 초음파 진단 장치가 제공하는 영상인 B-모드 영상인 것으로 가정하여 기재토록 한다.In addition, the image described in this embodiment is a concept including a B-mode image or a C-mode image. That is, the B-mode is a gray scale image and refers to an image mode representing the movement of the object, and the C-mode is a color flow image and refers to an image mode representing the flow of blood flow or the movement of the object. On the other hand, BC-Mode Image (BC-Mode Image) is an image mode that displays the flow of the blood flow or the object movement using the Doppler Effect (Bopper Effect), and provides a B-mode image and a C-mode image at the same time An imaging mode that provides anatomical information as well as blood flow and subject movement information. Meanwhile, the ultrasound diagnosis apparatus according to the present invention is a device capable of simultaneously providing a B-mode image and a C-mode image, which is a color flow image. For convenience of the present invention, it is assumed that the B-mode image is an image provided by the ultrasound diagnostic apparatus.
도 1은 본 실시예에 따른 초음파 진단 장치를 개략적으로 나타낸 블록 구성도이다.1 is a block diagram schematically illustrating an ultrasound diagnostic apparatus according to an exemplary embodiment.
프로브(110)는 변환소자(Transducer Element)를 구비하며, 구비된 변환소자를 이용하여 대상체로 초음파 신호를 송신하고 대상체로부터 반사되는 초음파 에코 신호를 수신한다. 여기서, 변환소자는 전기 신호를 초음파 신호로 변환하여 대상체에 전송하고, 대상체로부터 반사되는 초음파 에코 신호를 전기 신호로 변환한다.The probe 110 includes a transducer element. The probe 110 transmits an ultrasonic signal to an object by using the provided transducer element and receives an ultrasonic echo signal reflected from the object. Here, the conversion element converts the electrical signal into an ultrasonic signal and transmits it to the object, and converts the ultrasonic echo signal reflected from the object into an electrical signal.
본 실시예에 따른 프로브(110)는 복수 개의 초음파 신호를 하나의 초음파 신호로 집속하기 위해 복수 개의 변환소자를 결합한 서브애퍼처(Sub-Aperture, 112)를 구비한다. 여기서, 서브애퍼처(112)가 초음파 진단부(120)로부터 수신된 초음파 신호를 대상체로 송신하기 위한 구조에 대해 설명하자면, 서브애퍼처(112)는 그물형 구조로 변환소자를 배열하되, 서브애퍼처(112)의 중앙에 위치한 변환소자를 이용하여 초음파 진단부(120)로부터 초음파 신호를 수신하고, 수신된 초음파 신호를 서브애퍼처(112) 내에 포함된 복수 개의 변환소자에 인가하여 대상체로 송신한다.The probe 110 according to the present exemplary embodiment includes a sub-aperture 112 that combines a plurality of conversion elements to focus a plurality of ultrasonic signals into one ultrasonic signal. Here, the sub-aperture 112 will be described for the structure for transmitting the ultrasound signal received from the ultrasound diagnosis unit 120 to the object, the sub-aperture 112 arranges the conversion elements in a mesh structure, Receives an ultrasound signal from the ultrasound diagnosis unit 120 using a conversion element located in the center of the aperture 112, and applies the received ultrasound signal to a plurality of conversion elements included in the sub aperture 112 to the object. Send.
초음파 진단부(120)는 초음파 신호를 생성하여 프로브(110)에 전송하고, 프로브(110)로부터 초음파 에코 신호를 수신하여 중간 단계의 집속신호를 형성 및 보간하는 모듈을 말한다. The ultrasound diagnosis unit 120 generates an ultrasound signal, transmits the ultrasound signal to the probe 110, and receives an ultrasound echo signal from the probe 110 to form and interpolate an intermediate focused signal.
본 실시예에 따른 초음파 진단부(120)는 펄스 송신부(130)로부터 공급된 전기신호에 기초하여 대상체로 송신하기 위한 초음파 신호를 생성한다. 또한, 프로브(110)에 구비된 변환소자에 의해 수신된 초음파 에코 신호를 집속하여 중간 집속신호를 형성하고, 중간 집속신호에 보간 신호를 적용하여 수신 집속 신호를 형성한다. 더 자세히 설명하자면, 프로브(110)에 구비된 변환소자에 의해 수신된 초음파 에코 신호를 집속하여 각각의 서브애퍼처(112)마다 중간 집속신호를 형성하고, 각 중간 집속신호 간의 불연속을 해결하기 위해 보간 신호를 중간 집속신호에 적용하여 수신 집속 신호를 형성한다.The ultrasound diagnosis unit 120 according to the present embodiment generates an ultrasound signal for transmission to the object based on the electric signal supplied from the pulse transmitter 130. In addition, the ultrasound echo signal received by the conversion element included in the probe 110 is focused to form an intermediate focusing signal, and an interpolation signal is applied to the intermediate focusing signal to form a reception focusing signal. In more detail, to focus the ultrasonic echo signal received by the conversion element provided in the probe 110 to form an intermediate focusing signal for each sub aperture 112, and to solve the discontinuity between each intermediate focusing signal. The interpolation signal is applied to the intermediate focusing signal to form a reception focusing signal.
또한, 초음파 진단부(120)는 수신 집속 신호에 포함된 클러터 신호를 제거하여 수신 집속 신호를 선명하게 하고, 수신 집속 신호를 디지털 신호처리하여 프레임 데이터를 생성하여 영상 처리부(150)로 전송한다. In addition, the ultrasound diagnosis unit 120 removes the clutter signal included in the reception focus signal to sharpen the reception focus signal, and digitally processes the reception focus signal to generate frame data and transmit the generated data to the image processor 150. .
펄스 송신부(130)는 사용자의 조작 또는 입력을 통해 초음파 진단부(120)에 전기신호를 공급한다. 즉, 펄스 송신부(130)는 프로브(110)에서 대상체로 송신하는 초음파를 발생시킬 수 있는 전기신호를 만들어 공급하는 모듈을 의미한다. 여기서, 초음파 진단부(120)에 공급되는 전기신호는 펄스 신호인 것이 바람직하나 반드시 이에 한정되는 것은 아니다.The pulse transmitter 130 supplies an electric signal to the ultrasound diagnosis unit 120 through a user's manipulation or input. That is, the pulse transmitter 130 refers to a module for making and supplying an electric signal capable of generating ultrasonic waves transmitted from the probe 110 to the object. Here, the electrical signal supplied to the ultrasound diagnosis unit 120 is preferably a pulse signal, but is not necessarily limited thereto.
사용자 입력부(140)는 사용자의 조작 또는 입력에 의한 명령(Instructions)을 입력받는다. 여기서, 사용자 명령은 초음파 진단 장치를 제어하기 위한 설정 명령 등이 될 수 있다. 예컨대, 사용자는 펄스 송신부(130)에서 생성되는 전기신호의 세기를 제어할 수 있고, 영상의 모드 선택 및 영상을 구현하기 위한 가중치 및 보간 신호를 제어할 수 있다.The user input unit 140 receives an instruction by user's manipulation or input. Here, the user command may be a setting command for controlling the ultrasound diagnosis apparatus. For example, the user may control the intensity of the electrical signal generated by the pulse transmitter 130, and may control the mode selection of the image and the weight and interpolation signal for implementing the image.
영상 처리부(150)는 초음파 진단부(120)로부터 수신된 초음파 신호정보에 기초하여 B-모드 또는 C-모드 영상을 형성한다. 아울러, B-모드 또는 C-모드 영상이 디스플레이부(160)를 통해 출력하도록 동작한다.The image processor 150 forms a B-mode or C-mode image based on the ultrasound signal information received from the ultrasound diagnosis unit 120. In addition, the B-mode or C-mode image is output through the display unit 160.
도 2는 본 실시예에 따른 초음파 진단부를 개략적으로 나타낸 블록 구성도이다.2 is a block diagram schematically showing the ultrasound diagnosis unit according to the present embodiment.
본 실시예에 따른 초음파 진단부(120)는 송신 빔집속부(210), 수신 빔집속부(220), 보간부(230) 및 신호 처리부(240)를 포함한다. 본 실시예에서는 초음파 진단부(120)가 송신 빔집속부(210), 수신 빔집속부(220), 보간부(230) 및 신호 처리부(240)만을 포함하는 것으로 기재하고 있으나, 이는 본 실시예의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 실시예가 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 실시예의 본질적인 특성에서 벗어나지 않는 범위에서 초음파 진단부(120)에 포함되는 구성 요소에 대하여 다양하게 수정 및 변형하여 적용 가능할 것이다. 또한, 각각의 모듈들은 초음파 진단부(120)의 내부에 구현되는 것으로 기재하고 있으나 반드시 이에 한정되는 것은 아니며 필요에 따라 외부 별도 모듈로 구현될 수도 있다.The ultrasound diagnosis unit 120 according to the present embodiment includes a transmission beam focusing unit 210, a reception beam focusing unit 220, an interpolation unit 230, and a signal processor 240. In the present exemplary embodiment, the ultrasound diagnosis unit 120 includes only the transmission beam focusing unit 210, the reception beam focusing unit 220, the interpolation unit 230, and the signal processing unit 240. It is merely an example of a technical idea, and a person of ordinary skill in the art to which the present embodiment pertains may vary with respect to the components included in the ultrasound diagnosis unit 120 without departing from the essential characteristics of the present embodiment. Modifications and variations will be applicable. In addition, each module is described as being implemented inside the ultrasound diagnosis unit 120, but is not necessarily limited thereto and may be implemented as an external separate module as necessary.
본 실시예에 따른 송신 빔집속부(210)는 펄스 송신부(130)로부터 공급된 전기신호에 기초하여 대상체로 송신하기 위한 초음파 신호를 생성하는 한편, 프로브(110)의 변환소자가 초음파 신호를 대상체로 전송할 때, 전송된 초음파 신호가 기 설정된 초점(Focal Point)에 집속되도록 초음파 신호를 제어하는 모듈을 말한다. 여기서, 송신 빔집속부(210)는 초음파 신호를 집속하기 위해 초음파의 분포, 빔폭, 노이즈, 시간 지연 등의 일부 또는 전부에 대한 가중치를 초음파 신호에 적용할 수 있다. 예컨대, 송신 빔집속부(210)가 초음파 신호를 집속할 때 시간 지연에 대한 가중치를 적용할 경우, 복수 개의 변환소자의 초음파 신호에 대상체로부터 거리에 반비례하게 시간 지연에 대한 가중치를 적용하여, 초음파 신호가 대상체의 기 설정된 초점에 동시에 집속될 수 있도록 한다.The transmission beam focusing unit 210 according to the present embodiment generates an ultrasonic signal for transmitting to the object based on the electrical signal supplied from the pulse transmitter 130, while the conversion element of the probe 110 transmits the ultrasonic signal to the object. When transmitting to the, refers to a module for controlling the ultrasonic signal so that the transmitted ultrasonic signal is focused on a predetermined focal point (Focal Point). Here, the transmission beam focusing unit 210 may apply weights to some or all of the ultrasonic distribution, beam width, noise, time delay, etc. to focus the ultrasonic signal. For example, when the transmission beam focusing unit 210 applies a weight for the time delay when focusing the ultrasonic signal, the weight of the time delay is applied to the ultrasonic signals of the plurality of conversion elements inversely proportional to the distance from the object. The signal may be focused on a predetermined focus of the object at the same time.
수신 빔집속부(220)는 프로브(110)로부터 수신된 초음파 에코 신호를 집속하여 중간 집속신호를 형성한다. 또한, 수신 빔집속부(220)는 대상체로부터 프로브(110)에 도달하는 시간을 고려하여 초음파 에코 신호에 대상체로부터 거리에 반비례하게 시간 지연에 대한 가중치를 적용한 후, 초음파 에코 신호를 합산하여 중간 집속신호를 형성한다.The reception beam focusing unit 220 focuses the ultrasonic echo signal received from the probe 110 to form an intermediate focusing signal. In addition, the reception beam focusing unit 220 applies a weight to the ultrasonic echo signal inversely proportional to the distance from the object in consideration of the time to reach the probe 110 from the object, and then adds the ultrasonic echo signals to add an intermediate focus. Form a signal.
본 실시예에 따른 수신 빔집속부(220)가 수신 집속 신호를 형성할 때, 중간 집속신호에 보간 신호를 적용한다. 수신 빔집속부(220)는 대상체로부터 반사된 초음파 에코 신호가 프로브(110)의 각 변환소자에 도달하는 시간을 고려하여, 초음파 에코 신호에 시간 지연을 가한 후 합산하여 중간 집속신호를 형성한다. 즉, 수신 빔집속부(220)는 각각의 서브애퍼처(112)마다 중간 집속신호가 형성되고, 각 중간 집속신호 간의 불연속성을 해결하기 위해 보간부(230)로부터 수신된 보간 신호를 중간 집속신호에 적용하여 수신 집속 신호를 형성한다. 여기서, 보간 신호는 서로 인접한 서브애퍼처(112)에 해당하는 중간 집속신호 간에 적용하는 것이 바람직하다.When the reception beam focusing unit 220 according to the present embodiment forms a reception focusing signal, an interpolation signal is applied to the intermediate focusing signal. The reception beam focusing unit 220 adds a time delay to the ultrasonic echo signal and adds the intermediate focused signal in consideration of the time when the ultrasonic echo signal reflected from the object reaches each conversion element of the probe 110. That is, in the reception beam focusing unit 220, an intermediate focusing signal is formed at each sub aperture 112, and the intermediate focusing signal is obtained by interpolating the interpolation signal received from the interpolation unit 230 to solve the discontinuity between the intermediate focusing signals. It is applied to form a receive focus signal. Here, the interpolation signal is preferably applied between the intermediate focusing signals corresponding to the adjacent sub apertures 112.
본 실시예에 따른 보간부(230)는 수신 빔집속부(220)에서 생성된 중간 집속신호를 보간하기 위한 모듈이다. 더 자세히 설명하자면 수신 빔집속부(220)에서 생성된 복수 개의 중간 집속신호를 보간하기 위해 소정의 함수를 이용하여 보간 신호를 형성한다. 여기서, 보간 신호를 형성하기 위한 소정의 함수는 상관분석 함수인 것이 바람직하나 반드시 이에 한정되는 것은 아니며, 사용자의 조작 또는 입력에 따라 변경될 수 있거나 초음파 진단 장치에 기 설정되어 있을 수도 있다.The interpolator 230 according to the present embodiment is a module for interpolating the intermediate focusing signal generated by the reception beam focusing unit 220. In more detail, an interpolation signal is formed using a predetermined function to interpolate a plurality of intermediate focusing signals generated by the reception beam focusing unit 220. Here, the predetermined function for forming the interpolation signal is preferably a correlation analysis function, but is not necessarily limited thereto. The predetermined function may be changed according to a user's manipulation or input, or may be preset in the ultrasound diagnosis apparatus.
신호 처리부(240)는 수신 빔집속부(220)에서 생성된 신호에 대하여 디지털 신호처리하는 모듈을 의미한다. The signal processor 240 refers to a module that digitally processes the signal generated by the reception beam focusing unit 220.
본 실시예에 따른 신호 처리부(240)는 수신 빔집속부(220)에서 생성된 수신 집속 신호를 디지털 신호처리하여 프레임 데이터를 생성하고, 이 프레임 데이터를 초음파 진단부(120)와 연결된 영상 처리부(150)로 전송한다. 또한, 신호 처리부(240)는 수신 빔집속부(220)로부터 수신된 수신 집속 신호에 포함된 클러터 신호를 제거하여 수신 집속 신호를 선명하게 한다. 즉, 신호처리부(240)는 수신 집속 신호의 주극(Mainlobe)을 선명하게 하기 위해 부극(Sidelobe) 또는 잡음을 제거하는 것을 의미한다.The signal processor 240 according to the present exemplary embodiment generates the frame data by digitally processing the received focus signal generated by the reception beam focusing unit 220, and the frame data is connected to the ultrasound diagnosis unit 120. 150). In addition, the signal processor 240 sharpens the reception focus signal by removing the clutter signal included in the reception focus signal received from the reception beam focusing unit 220. In other words, the signal processor 240 removes the negative electrode or the noise in order to sharpen the main electrode of the reception focus signal.
도 3은 본 실시예에 따른 서브애퍼처(112)에 포함된 변환소자의 배열구조를 설명하기 위한 예시도이다.3 is an exemplary diagram for describing an arrangement structure of the conversion elements included in the sub aperture 112 according to the present embodiment.
도 3에 기재된 SA0 및 SA1은 서브애퍼처(112)를 의미하고, e(0,0) 내지 e(2,5)는 서브애퍼처(112)에 포함된 변환소자를 나타내기 위한 표기로서, 이러한 표기는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등이 한정되지 않는다.SA0 and SA1 described in FIG. 3 mean a sub aperture 112, and e (0,0) to e (2,5) are notation for indicating a conversion element included in the sub aperture 112. This notation is only for distinguishing the component from other components, and the nature, order or order of the components are not limited by the terms.
도 3에서 프로브(110)의 서브애퍼처(112)는 변환소자를 그물형 구조로 배열하고, 각 서브애퍼처(112)의 중앙에 위치한 변환소자를 이용하여 초음파 신호를 대상체로 송수신한다. 예컨대, 변환소자 e(0,0) 내지 e(2,5)는 저항으로 연결된 그물형 구조로 배열되고, 대상체로 초음파 신호를 송신할 때, 서브애퍼처 SA0에서는 e(1,1), 서브애퍼처 SA1에서는 e(1,4)를 통해 초음파 신호를 초음파 진단부(120)로부터 수신한다. 여기서, 초음파 진단부(120)는 초음파 신호를 대상체로 집속하기 위해 초음파의 분포, 빔폭, 노이즈, 시간 지연 등에 대한 가중치를 초음파 신호에 적용하여 변환소자 e(1,1) 및 e(1,4)에 전송할 수 있다.In FIG. 3, the sub-aperture 112 of the probe 110 arranges the conversion elements in a mesh structure, and transmits and receives an ultrasonic signal to and from an object using a conversion element located in the center of each sub aperture 112. For example, the conversion elements e (0,0) to e (2,5) are arranged in a mesh structure connected by a resistance, and when transmitting an ultrasonic signal to an object, e (1,1), sub in the sub aperture SA0. The aperture SA1 receives an ultrasound signal from the ultrasound diagnosis unit 120 through e (1,4). Here, the ultrasound diagnosis unit 120 applies the weights of the ultrasonic distribution, beam width, noise, time delay, etc. to the ultrasound signal to focus the ultrasound signal on the object, and converts the elements e (1,1) and e (1,4). ) Can be sent.
또한, 대상체로부터 초음파 에코 신호를 수신 시, SA0에 포함된 e(0,0) 내지 e(0,2), e(1,0) 내지 e (1,2) 및 e(2,0) 내지 e(2,2)는 대상체로부터 반사된 초음파 에코 신호를 수신하고, 수신된 초음파 에코 신호를 초음파 진단부(120)에 전송하여 중간 집속신호가 형성되도록 한다.In addition, when receiving an ultrasound echo signal from the object, e (0,0) to e (0,2), e (1,0) to e (1,2) and e (2,0) to e (2,2) receives the ultrasound echo signal reflected from the object and transmits the received ultrasound echo signal to the ultrasound diagnosis unit 120 to form an intermediate focusing signal.
도 4는 본 실시예에 따른 초음파 진단부를 설명하기 위한 예시도이다.4 is an exemplary view for explaining an ultrasound diagnosis unit according to the present embodiment.
본 발명의 일 실시예에 따른 초음파 진단부(120)는 증폭 모듈(410), 시간이득보상(Time Gain Compensation) 모듈(420), 이득(Gain) 제어모듈(430) 및 이득 주제어모듈(440)을 포함한다. The ultrasound diagnosis unit 120 according to an embodiment of the present invention includes an amplification module 410, a time gain compensation module 420, a gain control module 430, and a gain control module 440. It includes.
본 발명의 일 실시예에 따른 초음파 진단부(120)의 각 모듈에 대해 설명하자면 다음과 같다.Referring to each module of the ultrasonic diagnostic unit 120 according to an embodiment of the present invention.
증폭 모듈(410)은 대상체로부터 수신된 초음파 에코 신호를 증폭하는 역할을 한다. 대상체로부터 수신된 초음파 에코 신호는 그 크기가 작으므로 가중치 또는 시간 지연값을 적용하기 전에 초음파 에코 신호를 증폭시키는 모듈이다.The amplification module 410 amplifies the ultrasonic echo signal received from the object. Since the ultrasonic echo signal received from the object is small in size, the ultrasonic echo signal is amplified before applying the weight or time delay value.
시간이득보상 모듈(420)은 사용자의 조작 또는 입력에 따라 기 설정된 시간이득보상 값에 근거하여 초음파 에코 신호가 대상체로부터 반사되는 시간에 따라 증폭 크기를 변화시키는 모듈을 말한다. 예를 들어, 대상체의 깊이(Depth)가 깊은 곳에서 반사되어 시간 지연을 가지고 반사된 초음파 에코 신호는 깊이가 얕은 곳에서 반사되는 초음파 에코 신호보다 소정의 비율만큼 더 증폭된다.The time gain compensation module 420 refers to a module for changing the amplitude of amplification according to the time when the ultrasound echo signal is reflected from the object based on a preset time gain compensation value according to a user's manipulation or input. For example, the ultrasonic echo signal reflected with a depth of time and reflected at a deep depth of the object is amplified by a predetermined ratio more than the ultrasonic echo signal reflected at a shallow depth.
이득 제어모듈(430)은 초음파 신호를 대상체로 송신할 때, 초음파 신호의 이득을 제어하기 위한 모듈을 의미한다. 여기서, 이득의 제어는 대상체에 초음파 출력을 높이지 않고, 초음파 출력을 높이는 것과 같은 영상을 얻기 위한 방법으로서, 초음파 신호에 이득값을 증가시키면 밝은 영상을 얻을 수 있다. 또한, 이득값 제어는 전체 이득(Overall Gain) 제어 방식을 사용하는 것이 바람직하나 반드시 이에 한정되는 것은 아니다.The gain control module 430 refers to a module for controlling the gain of the ultrasound signal when the ultrasound signal is transmitted to the object. Here, the gain control is a method for obtaining an image such as to increase the ultrasound output without increasing the ultrasound output to the object. When the gain value is increased in the ultrasound signal, a bright image may be obtained. In addition, the gain value control is preferably to use an overall gain control method, but is not necessarily limited thereto.
이득 주제어모듈(440)은 초음파 진단부(120)에서 모든 변환소자를 제어하기 위한 모듈로서, 대상체로 송수신되는 초음파 신호 및 초음파 에코 신호에 대한 이득을 제어하는 모듈을 의미한다. 여기서, 이득 주제어모듈(440)은 변환소자에 대한 송수신 신호를 제어하기 위해 글로벌 이득과 보간 신호를 합산하여 이득을 제어할 수 있다. 여기서, 글로벌 이득은 초음파 진단부(120)의 전체의 이득을 제어하기 위해 사용자로부터 입력된 이득을 의미한다.The gain control module 440 is a module for controlling all the conversion elements in the ultrasound diagnosis unit 120 and refers to a module for controlling gains for the ultrasound signals and the ultrasound echo signals transmitted and received to the object. Here, the gain control module 440 may control the gain by summing the global gain and the interpolation signal in order to control the transmission / reception signal for the conversion element. Here, the global gain means a gain input from the user in order to control the overall gain of the ultrasound diagnosis unit 120.
도 5는 본 실시예에 따른 가중치 보간을 이용한 초음파 진단 방법을 설명하기 위한 순서도이다.5 is a flowchart illustrating an ultrasound diagnosis method using weight interpolation according to the present embodiment.
*프로브(110)는 초음파 진단부(120)에서 형성된 초음파 신호를 대상체로 송신하고, 대상체로부터 반사되는 초음파 에코 신호를 수신한다(S510). 여기서, 프로브(110)는 소정의 개수의 변환소자를 통해 초음파 신호 및 초음파 에코 신호를 대상체로 송수신한다.The probe 110 transmits the ultrasound signal formed by the ultrasound diagnosis unit 120 to the object and receives the ultrasound echo signal reflected from the object (S510). Here, the probe 110 transmits and receives an ultrasound signal and an ultrasound echo signal to and from an object through a predetermined number of conversion elements.
초음파 진단부(120)는 프로브(110)로부터 수신된 초음파 에코 신호에 가중치를 적용하여 소정의 개수의 변환소자가 포함된 서브애퍼처(112)마다 중간 집속신호를 형성한다(S520). 또한, 초음파 진단부(120)는 복수 개의 중간 집속신호의 불연속을 해결하기 위해 인접한 서브애퍼처의 중간 집속신호에 보간 신호를 적용하여 인접한 중간 집속신호를 보간한다(S530). 여기서, 초음파 진단부(120)는 복수 개의 중간 집속신호를 보간하기 위해 소정의 함수를 이용하여 보간 신호를 형성한다. 여기서, 보간 신호를 형성하기 위한 소정의 함수는 상관분석 함수인 것이 바람직하나 반드시 이에 한정되는 것은 아니며, 사용자의 조작 또는 입력에 따라 변경될 수 있거나 초음파 진단 장치에 기 설정되어 있을 수도 있다. 단계 S520 및 S530에서 가중치 및 보간 신호는 서로 상이한 값이 바람직하나 반드시 이에 한정되는 것은 아니며 사용자의 조작 또는 입력에 따라 가중치 및 보간 신호는 동일할 수도 있다.The ultrasound diagnosis unit 120 forms an intermediate focusing signal for each sub aperture 112 including a predetermined number of conversion elements by applying a weight to the ultrasound echo signal received from the probe 110 (S520). In addition, the ultrasound diagnosis unit 120 interpolates the adjacent intermediate focusing signals by applying an interpolation signal to the intermediate focusing signals of the adjacent sub apertures in order to solve discontinuities of the plurality of intermediate focusing signals (S530). Here, the ultrasound diagnosis unit 120 forms an interpolation signal using a predetermined function to interpolate a plurality of intermediate focusing signals. Here, the predetermined function for forming the interpolation signal is preferably a correlation analysis function, but is not necessarily limited thereto. The predetermined function may be changed according to a user's manipulation or input, or may be preset in the ultrasound diagnosis apparatus. The weights and the interpolation signals may be different from each other in steps S520 and S530, but the weights and the interpolation signals may be the same according to a user's manipulation or input.
초음파 진단부(120)는 보간 신호를 적용한 중간 집속신호에 근거하여 수신 집속 신호를 형성하고, 클러터 신호를 제거하기 위해 수신 집속 신호를 필터링한다(S540). 여기서, 필터링은 수신 집속 신호의 주극을 선명하게 하기 위해 부극 또는 잡음을 제거하는 것을 의미한다. The ultrasound diagnosis unit 120 forms a reception focus signal based on the intermediate focus signal to which the interpolation signal is applied, and filters the reception focus signal to remove the clutter signal (S540). Here, filtering means removing negative or noise to sharpen the main pole of the received focus signal.
영상 처리부(150)는 수신 집속 신호에 기초하여 영상이 형성되도록 하며, 형성된 영상을 구비된 디스플레이부(160)를 통해 출력되도록 동작한다(S550). The image processor 150 may be configured to form an image based on the reception focus signal, and may be output through the display unit 160 having the formed image (S550).
도 5에서는 단계 S510 내지 단계 S550을 순차적으로 실행하는 것으로 기재하고 있으나, 이는 본 실시예의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 실시예가 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 실시예의 본질적인 특성에서 벗어나지 않는 범위에서 도 5에 기재된 순서를 변경하여 실행하거나 단계 S510 내지 단계 S550 중 하나 이상의 단계를 병렬적으로 실행하는 것으로 다양하게 수정 및 변형하여 적용 가능할 것이므로, 도 5는 시계열적인 순서로 한정되는 것은 아니다.In FIG. 5, steps S510 to S550 are described as being sequentially executed. However, this is merely illustrative of the technical idea of the present embodiment, and a person skilled in the art to which the present embodiment belongs may understand the present embodiment. 5 may be modified and modified by changing the order described in FIG. 5 or executing one or more steps of steps S510 to S550 in parallel without departing from the essential characteristics, and therefore, FIG. It is not limited.
이상의 설명은 본 실시예의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 실시예가 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 실시예의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 실시예들은 본 실시예의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 실시예의 기술 사상의 범위가 한정되는 것은 아니다. 본 실시예의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 실시예의 권리범위에 포함되는 것으로 해석되어야 할 것이다.The above description is merely illustrative of the technical idea of the present embodiment, and those skilled in the art to which the present embodiment belongs may make various modifications and changes without departing from the essential characteristics of the present embodiment. Therefore, the present embodiments are not intended to limit the technical idea of the present embodiment but to describe the present invention, and the scope of the technical idea of the present embodiment is not limited by these embodiments. The scope of protection of the present embodiment should be interpreted by the following claims, and all technical ideas within the scope equivalent thereto should be construed as being included in the scope of the present embodiment.
CROSS-REFERENCE TO RELATED APPLICATIONCROSS-REFERENCE TO RELATED APPLICATION
본 특허출원은 2012년 02월 17일 한국에 출원한 특허출원번호 제 10-2012-0016364 호에 대해 미국 특허법 119(a)조(35 U.S.C § 119(a))에 따라 우선권을 주장하면, 그 모든 내용은 참고문헌으로 본 특허출원에 병합된다. 아울러, 본 특허출원은 미국 이외에 국가에 대해서도 위와 동일한 이유로 우선권을 주장하면 그 모든 내용은 참고문헌으로 본 특허출원에 병합된다.If this patent application claims priority under No. 119 (a) (35 USC § 119 (a)) of the Patent Application No. 10-2012-0016364 filed to Korea on February 17, 2012, All content is incorporated by reference in this patent application. In addition, if this patent application claims priority for the same reason for countries other than the United States, all its contents are incorporated into this patent application by reference.

Claims (15)

  1. 대상체로 초음파 신호를 송신하고 상기 대상체로부터 반사되는 초음파 에코 신호를 수신하되, 상기 초음파 신호 및 상기 초음파 에코 신호를 송수신하기 위한 서브애퍼처(Sub-Aperture)를 포함하는 프로브(Probe);A probe including a sub-aperture for transmitting an ultrasound signal to an object and receiving an ultrasound echo signal reflected from the object, for transmitting and receiving the ultrasound signal and the ultrasound echo signal;
    상기 초음파 신호를 생성하고, 상기 초음파 에코 신호에 소정의 가중치(Weight)를 적용한 후 집속하여 중간 집속신호를 형성하는 초음파 진단부; 및An ultrasound diagnosis unit generating the ultrasound signal, focusing the beam by applying a predetermined weight to the ultrasound echo signal to form an intermediate focus signal; And
    상기 중간 집속신호에 기초하여 영상을 형성하며, 상기 영상을 디스플레이부를 통해 출력되도록 하는 영상 처리부를 포함하되,An image processor configured to form an image based on the intermediate focusing signal, and output the image through a display unit;
    상기 초음파 진단부는 상기 중간 집속신호를 보간하기 위한 보간신호를 상관분석 함수를 이용하여 생성하는 보간부를 포함하는 것을 특징으로 하는 초음파 진단 장치.The ultrasonic diagnostic unit comprises an interpolation unit for generating an interpolation signal for interpolating the intermediate focusing signal using a correlation analysis function.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 프로브는,The probe,
    복수 개의 변환소자를 결합하여 형성한 상기 서브애퍼처를 복수 개 포함하되,It includes a plurality of the sub aperture formed by combining a plurality of conversion elements,
    상기 서브애퍼처는 중앙에 위치한 변환소자를 이용하여 상기 초음파 진단부로부터 상기 초음파 신호를 수신하고, 수신된 상기 초음파 신호를 상기 서브애퍼처 내의 상기 복수 개의 변환소자에 인가하는 것을 특징으로 하는 초음파 진단 장치.The sub-aperture receives the ultrasound signal from the ultrasound diagnosis unit using a conversion element located at the center, and applies the received ultrasound signal to the plurality of conversion elements in the sub aperture. Device.
  3. 제 2 항에 있어서,The method of claim 2,
    상기 서브애퍼처는,The sub aperture is,
    복수 개의 변환소자를 그물형 구조로 배열하는 것을 하는 것을 특징으로 하는 초음파 진단 장치.Ultrasonic diagnostic apparatus characterized by arranging a plurality of conversion elements in a mesh structure.
  4. 제 3 항에 있어서,The method of claim 3, wherein
    상기 서브애퍼처는,The sub aperture is,
    적어도 9개의 상기 변환소자를 결합하여 형성되는 것을 특징으로 하는 초음파 진단 장치.Ultrasonic diagnostic apparatus, characterized in that formed by combining at least nine of the conversion elements.
  5. 제 1 항에 있어서,The method of claim 1,
    상기 초음파 진단부는,The ultrasonic diagnostic unit,
    상기 초음파 신호를 생성하는 송신 빔집속부; 및A transmission beam focusing unit generating the ultrasonic signal; And
    상기 초음파 에코 신호에 상기 가중치를 적용한 후 집속하여 복수 개의 상기 서브애퍼처마다 하나의 중간 집속신호를 형성하는 수신 빔집속부A reception beam focusing unit configured to focus and apply the weight to the ultrasonic echo signal to form one intermediate focusing signal for each of the plurality of sub apertures;
    를 포함하는 것을 특징으로 하는 초음파 진단 장치.Ultrasonic diagnostic apparatus comprising a.
  6. 제 5 항에 있어서,The method of claim 5,
    상기 수신 빔집속부는,The reception beam focusing unit,
    복수 개의 상기 중간 집속신호 간의 불연속을 해결하기 위해 인접한 상기 중간 집속신호에 상기 보간 신호를 적용하는 것을 특징으로 하는 초음파 진단 장치.And the interpolation signal is applied to the adjacent intermediate focusing signal to solve the discontinuity between the plurality of intermediate focusing signals.
  7. 제 1 항에 있어서,The method of claim 1,
    상기 가중치는,The weight is,
    초음파의 분포, 빔폭, 노이즈, 시간 지연 중 적어도 어느 하나를 결정하기 위해 사용자가 설정한 값으로서, 설정된 값의 비중을 곱하는 방식으로 상기 가중치를 적용하는 것을 특징으로 하는 초음파 진단 장치.And a weight set by a user to determine at least one of ultrasonic distribution, beam width, noise, and time delay, and applying the weight by multiplying a specific gravity of the set value.
  8. 프로브의 서브애퍼처를 통해 대상체를 진단하기 위한 초음파 신호를 생성하는 송신 빔집속부;A transmission beam focusing unit configured to generate an ultrasonic signal for diagnosing an object through a sub aperture of the probe;
    상기 프로브로부터 수신된 상기 초음파 에코 신호를 소정의 가중치를 적용한 후 집속하여 중간 집속신호를 형성하는 수신 빔집속부;A reception beam focusing unit configured to focus the ultrasonic echo signal received from the probe after applying a predetermined weight to form an intermediate focusing signal;
    인접한 상기 서브애퍼처 간의 상기 중간 집속신호를 보간하기 위해 보간 신호를 생성하는 보간부; 및 An interpolation unit generating an interpolation signal to interpolate the intermediate focusing signal between adjacent sub apertures; And
    상기 중간 집속신호에 포함된 클러터 신호를 제거하기 위한 필터링을 수행하는 신호처리부를 포함하되,Including a signal processor for filtering to remove the clutter signal included in the intermediate focus signal,
    상기 프로브는 복수 개의 변환소자를 그물형 구조로 배열한 상기 서브애퍼처를 복수 개 포함하는 것을 특징으로 하는 초음파 진단부.And the probe includes a plurality of sub apertures having a plurality of conversion elements arranged in a mesh structure.
  9. 제 8 항에 있어서,The method of claim 8,
    상기 송신 빔집속부는,The transmission beam focusing unit,
    상기 초음파 신호가 상기 프로브에서 상기 대상체의 기 설정된 지점(Focal Point)에 도달하도록 하기 위해 소정의 가중치를 적용하는 것을 특징으로 하는 초음파 진단부.And applying a predetermined weight to the ultrasound signal to reach a predetermined point of the object in the probe.
  10. 제 8 항에 있어서,The method of claim 8,
    상기 수신 빔집속부는,The reception beam focusing unit,
    복수 개의 상기 서브애퍼처에서 수신되는 상기 초음파 에코 신호 간의 불연속을 해결하기 위해 상기 보간부로부터 생성된 상기 보간 신호를 상기 초음파 에코 신호에 적용하는 것을 특징으로 하는 초음파 진단부.And the interpolation signal generated from the interpolation unit is applied to the ultrasonic echo signal to solve the discontinuity between the ultrasonic echo signals received at the plurality of sub apertures.
  11. 제 10 항에 있어서,The method of claim 10,
    상기 서브애퍼처는,The sub aperture is,
    소정의 개수의 변환소자를 포함하되, 사용자의 조작 또는 입력 따라 상기 변환소자의 개수의 변경이 가능한 것을 특징으로 하는 초음파 진단부.Ultrasonic diagnostic unit comprising a predetermined number of conversion elements, it is possible to change the number of the conversion elements in accordance with the user's operation or input.
  12. 제 8 항에 있어서,The method of claim 8,
    상기 신호 처리부는,The signal processing unit,
    상기 송신 빔집속부에서 상기 초음파 신호를 생성하기 위한 전기신호를 제공하고, 상기 중간 집속신호에 포함된 상기 클러터 신호를 제거하기 위한 필터링을 수행하는 것을 특징으로 하는 초음파 진단부.And an ultrasonic signal for providing the electrical signal for generating the ultrasonic signal in the transmission beam focusing unit, and performing filtering to remove the clutter signal included in the intermediate focusing signal.
  13. 프로브의 서브애퍼처를 통해 대상체를 진단하기 위한 초음파 신호를 생성하는 송신 빔집속부;A transmission beam focusing unit configured to generate an ultrasonic signal for diagnosing an object through a sub aperture of the probe;
    상기 프로브로부터 수신된 상기 초음파 에코 신호를 소정의 가중치를 적용한 후 집속하여 중간 집속신호를 형성하는 수신 빔집속부;A reception beam focusing unit configured to focus the ultrasonic echo signal received from the probe after applying a predetermined weight to form an intermediate focusing signal;
    인접한 상기 서브애퍼처 간의 상기 중간 집속신호를 보간하기 위해 보간 신호를 생성하는 보간부;An interpolation unit generating an interpolation signal to interpolate the intermediate focusing signal between adjacent sub apertures;
    상기 중간 집속신호의 이득(Gain)을 제어하기 위한 감도 제어부; 및A sensitivity controller for controlling a gain of the intermediate focusing signal; And
    상기 중간 집속신호에 포함된 클러터 신호를 제거하기 위한 필터링을 수행하는 신호처리부를 포함하되,Including a signal processor for filtering to remove the clutter signal included in the intermediate focus signal,
    상기 프로브는 복수 개의 변환소자를 그물형 구조로 배열한 상기 서브애퍼처를 복수 개 포함하는 것을 특징으로 하는 초음파 진단부.And the probe includes a plurality of sub apertures having a plurality of conversion elements arranged in a mesh structure.
  14. 상기 제 13 항에 있어서,The method of claim 13,
    상기 감도 제어부는,The sensitivity control unit,
    상기 프로브에 포함된 모든 변환소자의 이득을 제어하기 위해 상기 송신 빔집속부 및 상기 수신 빔집속부에 연결되어 구현되는 것을 특징으로 하는 초음파 진단부.And an ultrasonic diagnostic unit connected to the transmission beam focusing unit and the reception beam focusing unit to control gains of all the conversion elements included in the probe.
  15. 가중치 보간을 이용하여 초음파 진단을 하기 위한 초음파 진단 장치에 있어서,An ultrasound diagnostic apparatus for performing ultrasound diagnosis using weighted interpolation,
    초음파 진단부에서 형성된 초음파 신호를 프로브의 서브애퍼처를 통해 대상체로 전송하고, 상기 대상체로부터 반사되는 초음파 에코 신호를 수신하는 초음파 송수신 과정;An ultrasound transmission / reception process of transmitting an ultrasound signal formed by the ultrasound diagnosis unit to the object through a sub aperture of the probe and receiving an ultrasound echo signal reflected from the object;
    상기 초음파 진단부에서 상기 서브애퍼처를 통해 수신된 상기 초음파 에코 신호에 가중치를 적용하여 중간 집속신호를 형성하는 중간 집속신호 형성과정;Forming an intermediate focusing signal by applying a weight to the ultrasonic echo signal received through the sub aperture in the ultrasonic diagnostic unit;
    상기 초음파 진단부에서 복수 개의 서브애퍼처에서 생성된 상기 중간 집속신호 간의 불연속성을 해결하기 위해 상기 중간 집속신호의 가중치를 보간하는 중간 집속신호 보간과정;An intermediate focusing signal interpolation process of interpolating weights of the intermediate focusing signals in order to solve the discontinuity between the intermediate focusing signals generated by a plurality of sub apertures in the ultrasound diagnosis unit;
    상기 초음파 진단부에서 보간된 상기 중간 집속신호를 이용하여 수신 집속 신호를 형성하고, 클러터 신호를 제거하기 위한 필터링을 수행하는 신호처리 과정; 및A signal processing step of forming a reception focus signal by using the intermediate focus signal interpolated by the ultrasound diagnosis unit and performing filtering to remove a clutter signal; And
    영상 처리부는 상기 수신 집속 신호에 기초하여 영상이 형성되도록 하며, 상기 영상을 구비된 디스플레이부를 통해 출력되도록 동작하는 영상 처리 과정The image processor is configured to form an image based on the received focus signal, and to be output through a display unit provided with the image.
    을 포함하는 것을 특징으로 하는 가중치 보간을 이용한 초음파 진단 방법.Ultrasonic diagnostic method using a weight interpolation, characterized in that it comprises a.
PCT/KR2012/001288 2012-02-17 2012-02-21 Weighted interpolation method and ultrasonic diagnostic apparatus using same WO2013122275A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020120016364A KR101356616B1 (en) 2012-02-17 2012-02-17 Method and Ultrasound Diagnosis System Using Weighted Interpolation
KR10-2012-0016364 2012-02-17

Publications (1)

Publication Number Publication Date
WO2013122275A1 true WO2013122275A1 (en) 2013-08-22

Family

ID=48984376

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/001288 WO2013122275A1 (en) 2012-02-17 2012-02-21 Weighted interpolation method and ultrasonic diagnostic apparatus using same

Country Status (2)

Country Link
KR (1) KR101356616B1 (en)
WO (1) WO2013122275A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015056823A1 (en) * 2013-10-17 2015-04-23 알피니언메디칼시스템 주식회사 Ultrasonic probe having vibration generating function and ultrasonic diagnostic apparatus comprising same
KR102089799B1 (en) * 2017-11-06 2020-03-16 한남대학교 산학협력단 Analogue beam former of ultrasonic imaging device
KR102173404B1 (en) 2018-11-15 2020-11-03 서강대학교산학협력단 Beamformer and ultrasound imaging device including the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010024871A (en) * 1998-11-20 2001-03-26 요트.게.아. 롤페즈 Ultrasonic diagnostic imaging system with cordless scanheads
KR20090042183A (en) * 2007-10-25 2009-04-29 주식회사 메디슨 Apparatus and method for creating tissue doppler image using syntheic image
KR100971434B1 (en) * 2008-07-09 2010-07-21 주식회사 메디슨 Ultrasound system and method for processing ultrasound data
KR20110096902A (en) * 2010-02-23 2011-08-31 서강대학교산학협력단 Method and apparatus of forming multiple scanning lines

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5590658A (en) * 1995-06-29 1997-01-07 Teratech Corporation Portable ultrasound imaging system
WO2007133882A2 (en) 2006-05-12 2007-11-22 Koninklijke Philips Electronics, N.V. Retrospective dynamic transmit focusing for spatial compounding

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010024871A (en) * 1998-11-20 2001-03-26 요트.게.아. 롤페즈 Ultrasonic diagnostic imaging system with cordless scanheads
KR20090042183A (en) * 2007-10-25 2009-04-29 주식회사 메디슨 Apparatus and method for creating tissue doppler image using syntheic image
KR100971434B1 (en) * 2008-07-09 2010-07-21 주식회사 메디슨 Ultrasound system and method for processing ultrasound data
KR20110096902A (en) * 2010-02-23 2011-08-31 서강대학교산학협력단 Method and apparatus of forming multiple scanning lines

Also Published As

Publication number Publication date
KR101356616B1 (en) 2014-02-04
KR20130095006A (en) 2013-08-27

Similar Documents

Publication Publication Date Title
JP4727319B2 (en) Delay evaluation method and system for ultrasonic imaging
JP4620261B2 (en) Ultrasound imaging with higher order nonlinear components
JP5470260B2 (en) Organizational Doppler image forming apparatus and method using composite image
EP1548462B1 (en) Ultrasonic diagnostic Doppler equipment and method
EP3263036A1 (en) Method and system for performing retrospective dynamic transmit focussing beamforming on ultrasound signals
JPH1128209A (en) Ultrasonic imaging method and system
JP4864353B2 (en) Adaptive ultrasound imaging system
US9717477B2 (en) Ultrasonic diagnosis device and ultrasonic image acquisition method
US7666142B2 (en) Ultrasound doppler diagnostic apparatus and image data generating method
CN103181779A (en) Ultrasonic energy conversion device and ultrasonic imaging system and method
JPH03188841A (en) Ultrasonic diagnostic device
WO2015133677A1 (en) Device for reducing speckle in ultrasound image
CN108652660A (en) Diffraction correction for the decay behavior in medical diagnostic ultrasound
WO2013122275A1 (en) Weighted interpolation method and ultrasonic diagnostic apparatus using same
JP2014528339A (en) 3D (3D) transverse vibration vector velocity ultrasound image
JP2011212440A (en) Method and apparatus for ultrasound signal acquisition and processing
US20100113926A1 (en) System and method for clutter filter processing for improved adaptive beamforming
JP5455567B2 (en) Ultrasonic diagnostic equipment
US7946991B2 (en) Ultrasonic doppler blood flow measuring device
CN102551793A (en) Ultrasonic high frame rate tissue Doppler imaging method and device
JP6838174B2 (en) Ultrasonic probe and processing method
CN109223035B (en) Ultrasonic signal processing method, device, equipment and storage medium
JP6223036B2 (en) Subject information acquisition apparatus, subject information acquisition method, and program
WO2012067391A2 (en) Color flow imaging method, and ultrasonic device therefor
JP2006192031A (en) Ultrasonic image diagnostic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12868424

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12868424

Country of ref document: EP

Kind code of ref document: A1