WO2013122254A1 - Solar simulator - Google Patents

Solar simulator Download PDF

Info

Publication number
WO2013122254A1
WO2013122254A1 PCT/JP2013/054063 JP2013054063W WO2013122254A1 WO 2013122254 A1 WO2013122254 A1 WO 2013122254A1 JP 2013054063 W JP2013054063 W JP 2013054063W WO 2013122254 A1 WO2013122254 A1 WO 2013122254A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar simulator
light
light source
lamp
source lamp
Prior art date
Application number
PCT/JP2013/054063
Other languages
French (fr)
Japanese (ja)
Inventor
光博 下斗米
治 補永
広太 魚岸
Original Assignee
日清紡メカトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日清紡メカトロニクス株式会社 filed Critical 日清紡メカトロニクス株式会社
Priority to KR1020147025584A priority Critical patent/KR20140128431A/en
Priority to CN201380016319.7A priority patent/CN104205623A/en
Publication of WO2013122254A1 publication Critical patent/WO2013122254A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S8/00Lighting devices intended for fixed installation
    • F21S8/006Solar simulators, e.g. for testing photovoltaic panels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • H02S50/10Testing of PV devices, e.g. of PV modules or single PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention secures sufficient illuminance at a measurement location even when the voltage of a light source lamp of a solar simulator for measuring the current-voltage characteristics (hereinafter also simply referred to as characteristics) of a photoelectric conversion element such as a solar cell or the like is lowered. It relates to a solar simulator that can.
  • the amount of light from the lamp is Since the illuminance distribution is such that there are many in the center of the battery and few in the periphery of the solar cell, in order to secure the necessary illuminance on the effective irradiation surface of the solar simulator that measures the output of the solar cell, a lamp is conventionally used. It is necessary to arrange a plurality. Moreover, the shape (outer shape) of a large-sized solar cell is various, and there is a horizontally long shape.
  • a solar simulator in which about two lamps having a lamp length of about 2000 mm are arranged is used.
  • a conventional solar simulator light emitting circuit using a xenon lamp as a light source, when a plurality of xenon lamps emit light, the light emitting circuit is provided for each lamp, so the power supply unit occupies the solar simulator.
  • a plurality of xenon lamps are used in a single solar simulator and a light-emitting circuit is provided for each lamp, the amount of light emitted by each lamp varies with time (difference).
  • a capacitor to be used as a power source for a light emitting circuit in a solar simulator that emits a single lamp with a single light emitting circuit it is essential to have a suitable withstand voltage performance. Since a commercially available capacitor to satisfy is generally about several ⁇ F to several tens of ⁇ F, when such a commercially available product is used, light emission can be maintained only for about 1 msec. In addition, when the capacitor discharges, the amount of light emitted from the xenon lamp changes depending on the voltage fluctuation associated with the discharge curve of the capacitor, so that a stable amount of light cannot be obtained.
  • the output characteristics of a solar cell when measuring the output characteristics of a solar cell, the output characteristics are measured by emitting light several tens of times to about 130 times for one solar cell as a measurement target. It is. Therefore, when measuring the output characteristics of a large-sized solar cell by emitting a plurality of lamps in such a situation, there is a problem that it becomes more difficult to make the illuminance uniform, and it may be impossible in practice. .
  • the light emission time of the lamp needs to be several hundred milliseconds to several seconds.
  • the main discharge voltage supply source is configured as a large-sized and large-capacity power source for long-time light emission.
  • the light source lamp is, for example, a xenon lamp having a distance between the discharge electrodes of about 1000 mm, a potential of about 2000 V to 3000 V is required, and a current of about 30 A flows in the main discharge.
  • a power supply satisfying the specifications of a high potential and a large current is a large power supply of about 60 KW to 90 KW.
  • the power supply device becomes enormous. As a result, there is a problem that the solar simulator is increased in size and the apparatus cost is increased.
  • the conventional techniques as described above are all known from Patent Document 1 and the like, but as described above, all have problems.
  • the present invention can effectively irradiate light emitted from a light source lamp to a solar cell that is an object to be measured in a solar simulator, and can reduce the lamp voltage to the light source lamp. It is an object of the present invention to provide a solar simulator that realizes reduction in the number of lamps and downsizing of a power source device for a light source lamp.
  • the solar simulator of the first invention that solves the above-described problem is a solar simulator that turns on a light source lamp, irradiates the measured light through an optical filter, and measures the output characteristics of the measured object.
  • a film-like sheet having a high reflectance is attached or attached to all or a part of the inner wall portion of the frame including the light source lamp and the optical filter of the solar simulator.
  • the film-like sheet having a high reflectance includes not only a sheet having flexibility but also a sheet having no flexibility.
  • the film sheet having a high reflectance is attached or attached to all or a part of the inner wall inside the frame of the solar simulator, the emitted light from the light source lamp is emitted from the inner wall of the solar simulator. Even if it irradiates a part, it reflects without being absorbed by the film sheet of high reflectivity, and is effectively irradiated to the solar cell which is a measurement object of the solar simulator. Therefore, the voltage value applied to the light source lamp can be reduced by about 20% to 30% compared to the conventional solar simulator. Thereby, the power consumption of the power supply device of the light source lamp is reduced, and the power supply device can be reduced in size. In addition, the number of installed light source lamps (number) can be reduced.
  • a solar simulator according to a second aspect of the present invention is a solar simulator that turns on a light source lamp, irradiates the measured light through the optical filter and irradiates the measured object, and measures the output characteristics of the measured object. And a film-like sheet having a high reflectance is attached to or attached to all or a part of the inner wall portion of the frame including the optical filter therein and the reflection plate inside the frame. According to the solar simulator of the second invention, the effect of the first invention is more remarkably exhibited because the film sheet of high reflectivity is affixed to all or part of the inner wall inside the frame of the solar simulator and the reflector. can do.
  • the solar simulator of the third invention is characterized in that, in the first invention or the second invention, one of the light source lamps is installed in a frame. According to the solar simulator of the third invention, since the light emitted from the light source lamp is effectively applied to the object to be measured, the number of light source lamps can be reduced and the number of light source lamps can be reduced to one. Can be In addition, since a single light source lamp is used, adjustment work at the time of assembling to equalize the illuminance of the object to be measured is simplified and the control method of the apparatus is simplified compared to a conventional apparatus in which a plurality of lamps are installed. The As a result, the cost of the apparatus can be greatly reduced.
  • FIG. 1 is a plan view of an example of the solar simulator of the present invention.
  • FIG. 2 is a cross-sectional view seen from the front in the X direction of FIG.
  • FIG. 3 is a left sectional view of FIG. 4 is a right sectional view of FIG. 5 is a cross-sectional view seen from the front in the Y direction of FIG.
  • F frame (F1 to F5) A Solar cell S High reflectivity film-like sheet (sheet material S) T terminal box 1 optical filter 2 light source lamp (xenon lamp) DESCRIPTION OF SYMBOLS 3 Reflector 4 Reflector 5 Reflector 6 Reflector 7 Reflector 8 Acrylic plate 9 Reflector 10 Reflector 11 Reference cell 12 Masking member (light quantity adjusting member)
  • FIG. 1 is a plan view of an example of the solar simulator of the present invention
  • FIG. 2 is a cross-sectional view as viewed from the front in the X direction of FIG. 1
  • FIG. 3 is a left-side cross-sectional view of FIG. 5 is a cross-sectional view seen from the front in the Y direction of FIG. ⁇ 1> Configuration of Solar Simulator of the Present Invention
  • F is a frame having a generally box shape
  • 1 is an optical filter.
  • Reference numeral 2 denotes a light source lamp (xenon lamp or the like), which is installed below the optical filter 1 in the frame F with a lamp mounting bracket 2a erected.
  • one light source lamp 2 is installed. If the light source lamp is the solar simulator of the present invention, it is sufficient to install one light source lamp by a solar simulator that measures a solar cell having a size of about 2 m ⁇ 3 m.
  • Reference numerals 3, 4, 5, 6, and 7 are reflectors installed below the optical filter 1 inside the frame.
  • Reference numerals 3 and 4 are reflectors inclined at the lower part of the frame as shown in FIG. 2 and installed in the width direction of the frames F3 and F4.
  • Reference numeral 5 is a reflector installed on the bottom surface inside the frame (corresponding to the frame F5).
  • 6 and 7 are reflectors installed on the inner side surfaces (portions corresponding to the frames F1 and F2) inside the frame.
  • Reference numeral 8 denotes an acrylic plate attached to the top of the frame F in a top plate shape.
  • A is a solar cell, which is a measurement object, arranged on the upper part of the acrylic plate 8.
  • a masking member (light quantity adjusting member) 12 is provided on the optical filter 1, at an appropriate location (the number is not given in the drawing). The masking member 12 can adjust the unevenness of the illuminance applied to the solar cell A to make the illuminance uniform.
  • Reference numeral 11 denotes an illuminance measurement reference cell attached to the inner periphery of the upper portion of the frame F, and is used for adjusting the solar simulator.
  • the solar simulator of the present invention is provided with a control device and a power supply device for controlling the illuminance and lighting cycle of the light source lamp, but the illustration is omitted.
  • a highly reflective film sheet hereinafter abbreviated as “sheet material S”), which will be described later, is formed on the inner wall portion of the frame F below the optical filter inside the frame F and the reflecting plates 3, 4, 5, 6, 7. Affixed or attached.
  • sheet material S is attached to the location where the sheet material S with high reflectivity is attached or attached.
  • the sheet material S can be attached or attached to the surface of the sheet material S opposite to the reflective portion with an adhesive or a double-sided sheet, or attached with a bolt or the like.
  • the lamp voltage to the light source lamp can be reduced from the conventional 3000V to about 2600V.
  • the load on the light source lamp and the power supply for emitting the light source lamp during the measurement is reduced, and unnecessary lamp pause time can be eliminated, and the measurement time can be shortened.
  • the number of light source lamps can be reduced to one, and the configuration of the apparatus can be simplified.
  • adjustment work at the time of assembling to equalize the illuminance of the object to be measured is simplified and the control method of the apparatus is simplified compared to a conventional apparatus in which a plurality of lamps are installed. The As a result, the cost of the apparatus can be greatly reduced.
  • Reference numerals 9 and 10 are reflection plates installed on the inner wall of the optical filter 1 inside the frame, and are indicated by two-dot chain lines in the drawing. Usually, an aluminum plate or the like is used, but a configuration in which the sheet material S is attached or attached may be used. Thereby, the effect of the present invention can be remarkably exhibited.
  • ⁇ 2> High Reflectance Film-like Sheet In the present invention, the sheet material S is attached or attached to the inner wall of the frame F and the reflectors 3, 4, 5, 6, 7, 9, 10 as shown in the figure.
  • the sheet material S is a resin sheet having a thickness of about 1 mm, and the total reflectance of the surface thereof is 80% to 99%.
  • the sheet material S may be a resinous sheet, a sheet having flexibility, or a sheet having no flexibility. Further, most of the reflectance of the sheet material S is diffuse reflection in which light enters the sheet material S and is reflected. Therefore, compared with the aluminum material that is a direct reflection member that has been used so far, the aluminum material is locally reflected, so that the light uniformity (uniformity of illuminance) in the solar cell A that is the object to be measured is ensured. It is difficult.
  • the sheet material S diffuse reflection is mainly used, and the amount of light can be easily increased while maintaining the light uniformity (uniformity of illuminance) in the solar cell A. Accordingly, when a portion with low illuminance is locally generated in the solar cell A during adjustment of the solar simulator of the present invention, the illuminance uniformity can be realized by using an aluminum material which is a direct reflecting member.
  • the solar cell A is arranged as an object to be measured on the acrylic plate 8, and a terminal drawn from the terminal box T of the solar cell and a solar probe measurement probe (both not shown) are connected.
  • a control device not shown
  • the light source lamp 2 is turned on, and each lamp is monitored by the illuminance measurement reference cell 11 to obtain the required illuminance on the measurement surface and supplied from the lamp power supply device. Control power.
  • the control device measures the output current and output voltage from the solar battery A, and stores the data in a computer such as a personal computer.
  • the necessary data is processed by the computer, and the IV curve that is the output characteristic of the solar cell A is displayed on the display.
  • the method for adjusting the solar simulator of the present invention is as follows. 1) That is, the solar simulator of the present invention is provided with the reflectors 3 to 7 in which the sheet material S is attached or attached in the light source lamp 2 or the frame F in order to obtain illuminance uniformity in the manufacturing stage.
  • the solar cell A which is a measurement object, has substantially the same sensitivity even when it is obliquely or scattered light, so that it can be measured without being particularly concerned with parallel light.
  • a light source lamp is installed in the lower part of the solar simulator frame, and the emitted light is transmitted through the optical filter thereabove.
  • the description was given with an apparatus that irradiates a solar cell, which is an object to be measured, placed on the acrylic plate above the frame and measures its output characteristics.
  • the present invention is not limited to this, and a configuration in which a light source lamp is installed above a solar cell as a measurement object and an optical filter is further installed between the solar cell as the measurement object and the light source lamp. It is also applicable to the device.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Photovoltaic Devices (AREA)
  • Planar Illumination Modules (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

 Provided is a solar simulator in which the lamp voltage for a light-source lamp can be reduced, the number of light-source lamps can be reduced, and the size of a power source device for the light-source lamp can be reduced. A solar simulator in which emitted light resulting from the illumination of a light-source lamp is passed through an optical filter and irradiated onto an object to be measured, and the output characteristics of the object to be measured are measured, the solar simulator being configured such that a high reflectance film-shaped sheet is applied or attached to part or all of an inner wall section of a frame which contains the optical filter and the light-source lamp therein.

Description

ソーラシミュレータSolar simulator
 本発明は太陽電池などの光電変換素子やそのパネル体の電流電圧特性(以下、単に特性ともいう)を測定するためのソーラシミュレータの光源ランプの電圧を低くしても測定箇所の照度を十分確保できるソーラシミュレータに関する。 The present invention secures sufficient illuminance at a measurement location even when the voltage of a light source lamp of a solar simulator for measuring the current-voltage characteristics (hereinafter also simply referred to as characteristics) of a photoelectric conversion element such as a solar cell or the like is lowered. It relates to a solar simulator that can.
 太陽電池はクリーンなエネルギ源として増々その重要性が認められて需要が高まり、また、大型機器類のパワーエネルギ源から精密な電子機器分野での小型電源まで、様々な分野での需要も高まっている。
 太陽電池が様々な分野で広く利用されるには、当該電池の特性、とりわけ出力特性が正確に測定されていないと、太陽電池を使用する側においても様々な不都合が予測される。このため従来から太陽電池の出力特性を測定するための擬似太陽光照射装置(以下、ソーラシミュレータという)が提案され実用にも供されている。
 このようなソーラシミュレータにより太陽電池の出力特性を測定する場合、例えばサイズ(有効照射面の大きさ)が1m×1m角以上の大型の太陽電池の出力特性を測定する場合、ランプの光量は太陽電池の中央部は多く、太陽電池の周辺部は少ないような照度分布になるので、太陽電池の出力測定を行うソーラシミュレータの有効照射面における必要な照度を確保するためには、従来はランプを複数個配置することが必要となる。また大型の太陽電池の形状(外形)は様々であり横長の形状のものもある。例えば、サイズが1m×4m角程度の大型太陽電池に対しては、ランプ長さ2000mm程度のものを2本程度配置したソーラシミュレータが使用される。
 ところで、キセノンランプを光源とする従来のソーラシミュレータ用発光回路では、複数個のキセノンランプを発光させる場合には、その発光回路は各ランプ毎に配備していたのでソーラシミュレータ内において電源装置の占めるスペ−スが大きくなり装置全体が大型化してしまう問題があった。
 また、1台のソーラシミュレータ内に複数個のキセノンランプを使用し各ランプ毎に個別に発光回路が設けられていると、各ランプによる照射光量には時間的変化(差異)があるので、大型太陽電池に対する有効照射面における照度を均一化することは極めて難しいのが現状である。
 さらに、単一の発光回路で単一のランプを発光させるソーラシミュレータにおいて発光回路の電源として用いるコンデンサの選定には、相応の耐圧性能を有することが必須条件であるが、このような耐圧条件を満たす市販のコンデンサは数μF~数十μF程度のものが一般的であるため、そのような市販品を使用した場合、約1m秒程度の時間しか発光を維持できない。また、コンデンサが放電する場合、そのコンデンサの放電カーブに伴う電圧変動に依存してキセノンランプの発光光量が変化するため、安定的な光量が得られない。このため、太陽電池の出力特性を測定する際には、測定対象である1つの太陽電池に対して数10回~130回程度の発光を行うことで出力特性の測定を行っているのが現状である。従って、このような状況で大型の太陽電池を、複数ランプを発光させて出力特性を測定する場合、照度の均一化がさらに困難になるという問題があり、現実的には不可能という場合もある。
 また、応答性の遅い太陽電池の出力測定を行う場合は、ランプの発光時間を数100m秒~数秒とする必要がある。この長時間発光を行う発光回路では、長時間発光のために、主放電の電圧供給源を大型,大容量の電源として構成している。しかし乍ら、光源ランプが、例えば、放電電極間の距離が1000mm程度のキセノンランプであると、2000V~3000V程度の電位を必要とし、なおかつ主放電には30A程度の電流が流れるので、このような高電位,大電流の仕様を満たす電源には60KW~90KW程度の大型電源となる。このような従来の発光回路では、複数ランプを発光させる必要のある大型の太陽電池の出力特性を測定する場合、電源装置が巨大化することになる。この結果、ソーラシミュレータの大型化を招来して装置コストの増大を招くという問題がある。
 上述のような従来技術は、特許文献1などによりいずれも公知であるが、いずれも問題点があることは、上記に述べた通りである。
 またキセノンランプが発光した光は、ソーラシミュレータの内壁部や内部の部材に吸収され、有効に被測定物である太陽電池に照射されないという問題もある。このような問題により大型化した太陽電池の出力特性を測定するソーラシミュレーラの電源装置の巨大化を招来する。
特公平6−105280号公報
The importance of solar cells as a clean energy source has been recognized and the demand has increased, and the demand in various fields has increased from the power energy source of large devices to small power sources in the field of precision electronics. Yes.
In order for a solar cell to be widely used in various fields, various inconveniences are expected on the side of using the solar cell unless the characteristics of the battery, particularly the output characteristics, are measured accurately. For this reason, conventionally, a pseudo-sunlight irradiation device (hereinafter referred to as a solar simulator) for measuring the output characteristics of a solar cell has been proposed and put into practical use.
When measuring the output characteristics of a solar cell using such a solar simulator, for example, when measuring the output characteristics of a large-sized solar cell having a size (effective irradiation surface size) of 1 m × 1 m square or more, the amount of light from the lamp is Since the illuminance distribution is such that there are many in the center of the battery and few in the periphery of the solar cell, in order to secure the necessary illuminance on the effective irradiation surface of the solar simulator that measures the output of the solar cell, a lamp is conventionally used. It is necessary to arrange a plurality. Moreover, the shape (outer shape) of a large-sized solar cell is various, and there is a horizontally long shape. For example, for a large solar cell having a size of about 1 m × 4 m square, a solar simulator in which about two lamps having a lamp length of about 2000 mm are arranged is used.
By the way, in a conventional solar simulator light emitting circuit using a xenon lamp as a light source, when a plurality of xenon lamps emit light, the light emitting circuit is provided for each lamp, so the power supply unit occupies the solar simulator. There is a problem that the space becomes large and the entire apparatus becomes large.
In addition, if a plurality of xenon lamps are used in a single solar simulator and a light-emitting circuit is provided for each lamp, the amount of light emitted by each lamp varies with time (difference). At present, it is extremely difficult to make the illuminance on the effective irradiation surface of the solar cell uniform.
Furthermore, in selecting a capacitor to be used as a power source for a light emitting circuit in a solar simulator that emits a single lamp with a single light emitting circuit, it is essential to have a suitable withstand voltage performance. Since a commercially available capacitor to satisfy is generally about several μF to several tens of μF, when such a commercially available product is used, light emission can be maintained only for about 1 msec. In addition, when the capacitor discharges, the amount of light emitted from the xenon lamp changes depending on the voltage fluctuation associated with the discharge curve of the capacitor, so that a stable amount of light cannot be obtained. For this reason, when measuring the output characteristics of a solar cell, the output characteristics are measured by emitting light several tens of times to about 130 times for one solar cell as a measurement target. It is. Therefore, when measuring the output characteristics of a large-sized solar cell by emitting a plurality of lamps in such a situation, there is a problem that it becomes more difficult to make the illuminance uniform, and it may be impossible in practice. .
In addition, when measuring the output of a solar cell with a slow response, the light emission time of the lamp needs to be several hundred milliseconds to several seconds. In the light emitting circuit that emits light for a long time, the main discharge voltage supply source is configured as a large-sized and large-capacity power source for long-time light emission. However, if the light source lamp is, for example, a xenon lamp having a distance between the discharge electrodes of about 1000 mm, a potential of about 2000 V to 3000 V is required, and a current of about 30 A flows in the main discharge. A power supply satisfying the specifications of a high potential and a large current is a large power supply of about 60 KW to 90 KW. In such a conventional light emitting circuit, when measuring the output characteristics of a large-sized solar cell that needs to emit light from a plurality of lamps, the power supply device becomes enormous. As a result, there is a problem that the solar simulator is increased in size and the apparatus cost is increased.
The conventional techniques as described above are all known from Patent Document 1 and the like, but as described above, all have problems.
In addition, the light emitted from the xenon lamp is absorbed by the inner wall portion and internal members of the solar simulator, and there is a problem that the solar cell as the object to be measured is not effectively irradiated. Due to such a problem, the power supply device of a solar simulator that measures the output characteristics of a large-sized solar cell is increased.
Japanese Examined Patent Publication No. 6-105280
 本発明は、上述のような従来技術に鑑み、ソーラシミュレータにおいて光源ランプからの発光光が被測定物である太陽電池に有効に照射し、光源ランプへのランプ電圧を削減することができ、光源ランプの本数削減及び光源ランプの電源装置の小型化を実現したソーラシミュレータを提供することを、その課題とするものである。 In view of the prior art as described above, the present invention can effectively irradiate light emitted from a light source lamp to a solar cell that is an object to be measured in a solar simulator, and can reduce the lamp voltage to the light source lamp. It is an object of the present invention to provide a solar simulator that realizes reduction in the number of lamps and downsizing of a power source device for a light source lamp.
 上記課題を解決する第1発明のソーラシミュレータは、光源ランプを点灯させその発光光を、光学フィルタを透過させて被測定物に照射し、被測定物の出力特性を測定するソーラシミュレータにおいて、前記ソーラシミュレータの光源ランプ及び光学フィルタをその内部に含むフレームの内壁部の全部又は一部に高反射率を有するフィルム状シートを貼付け又は取付けしたことを特徴とする。以下本発明では高反射率を有するフィルム状シートとは、柔軟性を有するシート状のものだけでなく柔軟性を有しないシート状のものも含まれる。
 第1発明のソーラシミュレータによれば、ソーラシミュレータのフレーム内部の内壁の全部または一部に高い反射率のフィルム状シートを貼付け又は取付けしているので、光源ランプからの発光光はソーラシミュレータの内壁部を照射しても高反射率のフィルム状シートに吸収されることが無く反射し、ソーラシミュレータの被測定物である太陽電池に有効に照射される。したがって光源ランプに印加する電圧値を従来の構成のソーラシミュレータに比較して約20%から30%分削減することができる。これにより光源ランプの電源装置の消費電力が削減され、電源装置を小型化することができる。また光源ランプの設置数量(本数)を削減することができる。これらによりソーラシミュレータの制御装置を簡素化することができコストも削減することができる。
 第2発明のソーラシミュレータは、光源ランプを点灯させその発光光を、光学フィルタを透過させて被測定物に照射し、被測定物の出力特性を測定するソーラシミュレータにおいて、前記ソーラシミュレータの光源ランプ及び光学フィルタをその内部に含むフレームの内壁部の全部又は一部及び前記フレームの内部の反射板に高反射率を有するフィルム状シートを貼付け又は取付けしたことを特徴とする。
 第2発明のソーラシミュレータによれば、ソーラシミュレータのフレーム内部の内壁の全部または一部及び反射板に高い反射率のフィルム状シートを貼付けしているので、第1発明の効果を更に顕著に発現することができる。
 第3発明のソーラシミュレータは、第1発明または第2発明において、フレーム内に、前記光源ランプを1本設置したことを特徴とする。
 第3発明のソーラシミュレータによれば、光源ランプからの発光光は、有効に被測定物に照射されるので、光源ランプの設置本数を削減し1本化することができ、装置の構成を簡単化することができる。また光源ランプを1本化しているのでランプを複数本設置した従来の装置に比較して被測定物の照度の均一化の組立時の調整作業が簡略化され、装置の制御方式も簡略化される。これにより装置のコストを大幅に削減することができる。
The solar simulator of the first invention that solves the above-described problem is a solar simulator that turns on a light source lamp, irradiates the measured light through an optical filter, and measures the output characteristics of the measured object. A film-like sheet having a high reflectance is attached or attached to all or a part of the inner wall portion of the frame including the light source lamp and the optical filter of the solar simulator. Hereinafter, in the present invention, the film-like sheet having a high reflectance includes not only a sheet having flexibility but also a sheet having no flexibility.
According to the solar simulator of the first invention, since the film sheet having a high reflectance is attached or attached to all or a part of the inner wall inside the frame of the solar simulator, the emitted light from the light source lamp is emitted from the inner wall of the solar simulator. Even if it irradiates a part, it reflects without being absorbed by the film sheet of high reflectivity, and is effectively irradiated to the solar cell which is a measurement object of the solar simulator. Therefore, the voltage value applied to the light source lamp can be reduced by about 20% to 30% compared to the conventional solar simulator. Thereby, the power consumption of the power supply device of the light source lamp is reduced, and the power supply device can be reduced in size. In addition, the number of installed light source lamps (number) can be reduced. By these, the control apparatus of a solar simulator can be simplified and cost can also be reduced.
A solar simulator according to a second aspect of the present invention is a solar simulator that turns on a light source lamp, irradiates the measured light through the optical filter and irradiates the measured object, and measures the output characteristics of the measured object. And a film-like sheet having a high reflectance is attached to or attached to all or a part of the inner wall portion of the frame including the optical filter therein and the reflection plate inside the frame.
According to the solar simulator of the second invention, the effect of the first invention is more remarkably exhibited because the film sheet of high reflectivity is affixed to all or part of the inner wall inside the frame of the solar simulator and the reflector. can do.
The solar simulator of the third invention is characterized in that, in the first invention or the second invention, one of the light source lamps is installed in a frame.
According to the solar simulator of the third invention, since the light emitted from the light source lamp is effectively applied to the object to be measured, the number of light source lamps can be reduced and the number of light source lamps can be reduced to one. Can be In addition, since a single light source lamp is used, adjustment work at the time of assembling to equalize the illuminance of the object to be measured is simplified and the control method of the apparatus is simplified compared to a conventional apparatus in which a plurality of lamps are installed. The As a result, the cost of the apparatus can be greatly reduced.
 図1は、本発明のソーラシミュレータの一例の平面図。
 図2は、図1のX方向の正面から見た断面図。
 図3は、図2の左側断面図。
 図4は、図2の右側断面図。
 図5は、図1のY方向の正面から見た断面図。
FIG. 1 is a plan view of an example of the solar simulator of the present invention.
FIG. 2 is a cross-sectional view seen from the front in the X direction of FIG.
FIG. 3 is a left sectional view of FIG.
4 is a right sectional view of FIG.
5 is a cross-sectional view seen from the front in the Y direction of FIG.
 F   フレーム(F1からF5)
 A   太陽電池
 S   高反射率フィルム状シート(シート材S)
 T   端子ボックス
 1   光学フィルタ
 2   光源ランプ(キセノンランプ)
 3   反射板
 4   反射板
 5   反射板
 6   反射板
 7   反射板
 8   アクリル板
 9   反射板
 10  反射板
 11  リファレンスセル
 12  マスキング部材(光量調整部材)
F frame (F1 to F5)
A Solar cell S High reflectivity film-like sheet (sheet material S)
T terminal box 1 optical filter 2 light source lamp (xenon lamp)
DESCRIPTION OF SYMBOLS 3 Reflector 4 Reflector 5 Reflector 6 Reflector 7 Reflector 8 Acrylic plate 9 Reflector 10 Reflector 11 Reference cell 12 Masking member (light quantity adjusting member)
 次に、本発明の実施の形態例を図により説明する。図1は本発明のソーラシミュレータの一例の平面図、図2は図1のX方向の正面から見た断面図、図3は図2の左側断面図、図4は図2の右側断面図、図5は図1のY方向の正面から見た断面図である。
<1>本発明のソーラシミュレータの構成
 図において、Fは概ね箱状をなすフレーム、1は光学フィルタである。2は光源ランプ(キセノンランプ等)でありランプ取付用ブラケット2aを立設してフレームF内の光学フィルタ1の下部に設置されている。本実施形態の説明では、光源ランプ2は1本設置されている。光源ランプは、本発明のソーラシミュレータであれば、被測定物である太陽電池の大きさが2m×3m程度の大きさのものを測定するソーラシミュレータで1本設置すれば良い。
 3,4、5,6、7はフレーム内部の光学フィルタ1の下部に設置した反射板である。3,4は、図2に示すとおりフレームの下部に傾斜しフレームF3、F4の幅方向に設置した反射板であり、5はフレーム内部の底面(フレームF5に相当する部分)に設置した反射板であり、6、7はフレーム内部の内側側面(フレームF1、F2に相当する部分)に設置した反射板である。8はフレームFの上部に、天板状にして取付けたアクリル板である。Aはアクリル板8の上部に配置された被測定対象である太陽電池である。また光学フィルタ1上には、マスキング部材(光量調整部材)12が適宜の場所に設けられている(図面には番号は付していない)。このマスキング部材12により太陽電池Aに照射される照度の場所ムラを調整し照度を均一にすることができる。なお、11はフレームFの上部において内側の周縁に取付けた照度測定用リファレンスセルであり、ソーラシミュレータの調整用に使用する。尚本発明のソーラシミュレータには、光源ランプの照度や点灯周期などを制御する制御装置や電源装置が設けられているが、図示は省略している。
 本発明においては後述する高反射のフィルム状シート(以下シート材Sと略称する)をフレームFの内部の光学フィルタの下部のフレームFの内壁部と反射板3,4、5,6、7に貼付け又は取付けしている。この高反射率のシート材Sを貼付け又は取付けしている箇所には図面中に記号S又は(S)を付している。シート材Sの貼付け又は取付けは、このシート材Sの反射部分と反対側の面に接着剤や両面シートなどにより貼付け、またはボルト等により取付けすることができる。この高反射率のシート材Sを貼付け又は取付けすることにより光源ランプからの発光光がフレームFの内壁部や反射板に照射さても吸収されずほぼ全てが反射し最終的には光学フィルタ1とアクリル板8を透過し被測定物である太陽電池Aに照射される。本実施形態では、光源ランプへのランプ電圧を従来の3000Vから2600V程度に削減することができる。
 以上の構成とすることにより、従来のソーラシミュレータに比べて光源ランプからの発熱が低減するので光源ランプ、フィルタ等の光学部品の寿命が向上するという効果を発現することができる。更にソーラシミュレータに設ける吸引ファン等による冷却装置を簡素化することできる。また測定中の光源ランプ及び光源ランプ発光用の電源装置の負荷が低減され不要なランプ休止時間を無くすことができ測定時間の短縮を実現することもできる。
 また以上の構成とすることにより、光源ランプの設置本数を削減し1本化することができ、装置の構成を簡単化することができる。また光源ランプを1本化しているのでランプを複数本設置した従来の装置に比較して被測定物の照度の均一化の組立時の調整作業が簡略化され、装置の制御方式も簡略化される。これにより装置のコストを大幅に削減することができる。
 9,10はフレーム内部の光学フィルタ1の上部の内壁に設置した反射板であり、図面においては2点鎖線で表示している。通常は,アルミ板等を使用しているが、シート材Sを貼り付け又は取付けした構成としても良い。これにより本発明の効果を顕著に発現させることができる。
<2>高反射率フィルム状シート
 本発明では、図示するようにフレームFの内壁部と反射板3,4、5,6、7、9、10にシート材Sを貼付け又は取付けしている。このシート材Sは、厚さが約1mm程度の樹脂製のシートであり、その表面の全反射率は、80%から99%である。このシート材Sの全反射率が80%未満の場合は、ソーラシミュレータのランプ電圧を低減させる効果が発現しなくなる虞がある。一方このシート材Sの全反射率が99%を超えたものは実現性が困難である。また本発明ではシート材Sとは、樹脂性シートや柔軟性を有するシート状のものとしても良いし、柔軟性を有しないシート状のものとしても良い。
 またこのシート材Sは、反射率のうちの大部分は、シート材S内に光が進入し反射する拡散反射である。従って今まで使用している直接反射部材であるアルミ材と比較すると、アルミ材は局所的に反射されるので、被測定物である太陽電池Aにおける光均一性(照度の均一性)を確保することが難しい。一方本シート材Sの場合は拡散反射が主であり、太陽電池Aにおける光均一性(照度の均一性)を保ちながら光量を増加させることが容易にできる。従って本発明のソーラシミュレータの調整時に太陽電池Aにおいて局所的に照度の低い部分が発生した場合は、直接反射部材であるアルミ材を使用し照度の均一性を実現することができる。
<3>本発明のソーラシミュレータの使用方法
 次に、上記のように構成される本発明の一例のソーラシミュレータの使用方法について説明する。
1)まず、アクリル板8上に被測定対象として太陽電池Aを配置し、太陽電池の端子ボックスTから引き出されている端子とソーラシミュレータの測定プローブ(共に図示せず)を接続する。
2)図示しない制御装置の操作により測定を開始すると、光源ランプ2が点灯し、各ランプは測定面での必要照度を得るために照度測定リファレンスセル11によりモニタリングし、ランプの電源装置から供給する電力を制御する。
3)上記により必要な照度を得た時点で、制御装置は太陽電池Aからの出力電流及び出力電圧を測定し、パソコン等のコンピュータ内部にデータを保存する。
4)コンピュータで必要なデータを処理し、太陽電池Aの出力特性であるI−Vカーブをディスプレイ上に表示させる。
<4>本発明のソーラシミュレータの調整方法
 また、本発明のソーラシミュレータの調整方法は次の通りである。
1)即ち、本発明のソーラシミュレータは、製作段階で、照度の均一性を得るために、光源ランプ2もしくはフレームF内にシート材Sを貼り付け又は取付けした反射板3から7を設け、また、測定対象である太陽電池Aは斜めからの光や散乱光であっても略同じ感度を持っているので、特に平行光に拘ることなく、測定できるようにする。
2)基準となる小型の太陽電池AR(太陽電池セル)を、照射面の各領域を順番に移動させながら、各領域で同じランプ照度で照射した場合の、太陽電池Aから発生される電力を測定し、領域毎の明暗を識別して、光学フィルタ1の上面にマスキング部材12(光量調整部材)を適宜配置し、被測定物である太陽電池Aに相当する部分の照度を均一に調節する。
3)光源ランプ2の交換時は、光源ランプを点灯し、そのときの照度をリファレンスセル11により測定し、その値を予めコンピュータ内に保存している基準となるデータと比較して、ランプの特性を検知し、測定時に必要な個々のランプに供給する電力値を算出する。
 尚本発明の実施形態の説明においては、図1から図5に示すようにソーラシミュレータのフレ−ム内の下部に光源ランプを設置し、その発光光をその上方にある光学フィルタを透過させてフレーム上部のアクリル板に配置した被測定物である太陽電池に照射しその出力特性を測定する形態の装置で説明を行った。しかし本発明は、それに限定されるものではなく、被測定物である太陽電池の上方に光源ランプを設置し、さらに被測定物である太陽電池と光源ランプの間に光学フィルタを設置した構成の装置にも適用可能である。
Next, embodiments of the present invention will be described with reference to the drawings. 1 is a plan view of an example of the solar simulator of the present invention, FIG. 2 is a cross-sectional view as viewed from the front in the X direction of FIG. 1, FIG. 3 is a left-side cross-sectional view of FIG. 5 is a cross-sectional view seen from the front in the Y direction of FIG.
<1> Configuration of Solar Simulator of the Present Invention In the figure, F is a frame having a generally box shape, and 1 is an optical filter. Reference numeral 2 denotes a light source lamp (xenon lamp or the like), which is installed below the optical filter 1 in the frame F with a lamp mounting bracket 2a erected. In the description of the present embodiment, one light source lamp 2 is installed. If the light source lamp is the solar simulator of the present invention, it is sufficient to install one light source lamp by a solar simulator that measures a solar cell having a size of about 2 m × 3 m.
Reference numerals 3, 4, 5, 6, and 7 are reflectors installed below the optical filter 1 inside the frame. Reference numerals 3 and 4 are reflectors inclined at the lower part of the frame as shown in FIG. 2 and installed in the width direction of the frames F3 and F4. Reference numeral 5 is a reflector installed on the bottom surface inside the frame (corresponding to the frame F5). 6 and 7 are reflectors installed on the inner side surfaces (portions corresponding to the frames F1 and F2) inside the frame. Reference numeral 8 denotes an acrylic plate attached to the top of the frame F in a top plate shape. A is a solar cell, which is a measurement object, arranged on the upper part of the acrylic plate 8. On the optical filter 1, a masking member (light quantity adjusting member) 12 is provided at an appropriate location (the number is not given in the drawing). The masking member 12 can adjust the unevenness of the illuminance applied to the solar cell A to make the illuminance uniform. Reference numeral 11 denotes an illuminance measurement reference cell attached to the inner periphery of the upper portion of the frame F, and is used for adjusting the solar simulator. The solar simulator of the present invention is provided with a control device and a power supply device for controlling the illuminance and lighting cycle of the light source lamp, but the illustration is omitted.
In the present invention, a highly reflective film sheet (hereinafter abbreviated as “sheet material S”), which will be described later, is formed on the inner wall portion of the frame F below the optical filter inside the frame F and the reflecting plates 3, 4, 5, 6, 7. Affixed or attached. In the drawing, the symbol S or (S) is attached to the location where the sheet material S with high reflectivity is attached or attached. The sheet material S can be attached or attached to the surface of the sheet material S opposite to the reflective portion with an adhesive or a double-sided sheet, or attached with a bolt or the like. By sticking or attaching this highly reflective sheet material S, even if the light emitted from the light source lamp irradiates the inner wall or reflector of the frame F, it is not absorbed and almost all of the light is reflected and finally the optical filter 1. It passes through the acrylic plate 8 and is irradiated to the solar cell A that is the object to be measured. In this embodiment, the lamp voltage to the light source lamp can be reduced from the conventional 3000V to about 2600V.
With the above configuration, since heat generation from the light source lamp is reduced as compared with the conventional solar simulator, an effect that the lifetime of optical components such as the light source lamp and the filter is improved can be exhibited. Furthermore, a cooling device such as a suction fan provided in the solar simulator can be simplified. In addition, the load on the light source lamp and the power supply for emitting the light source lamp during the measurement is reduced, and unnecessary lamp pause time can be eliminated, and the measurement time can be shortened.
In addition, with the above configuration, the number of light source lamps can be reduced to one, and the configuration of the apparatus can be simplified. In addition, since a single light source lamp is used, adjustment work at the time of assembling to equalize the illuminance of the object to be measured is simplified and the control method of the apparatus is simplified compared to a conventional apparatus in which a plurality of lamps are installed. The As a result, the cost of the apparatus can be greatly reduced.
Reference numerals 9 and 10 are reflection plates installed on the inner wall of the optical filter 1 inside the frame, and are indicated by two-dot chain lines in the drawing. Usually, an aluminum plate or the like is used, but a configuration in which the sheet material S is attached or attached may be used. Thereby, the effect of the present invention can be remarkably exhibited.
<2> High Reflectance Film-like Sheet In the present invention, the sheet material S is attached or attached to the inner wall of the frame F and the reflectors 3, 4, 5, 6, 7, 9, 10 as shown in the figure. The sheet material S is a resin sheet having a thickness of about 1 mm, and the total reflectance of the surface thereof is 80% to 99%. If the total reflectance of the sheet material S is less than 80%, the effect of reducing the lamp voltage of the solar simulator may not be exhibited. On the other hand, if the total reflectance of the sheet material S exceeds 99%, it is difficult to realize. In the present invention, the sheet material S may be a resinous sheet, a sheet having flexibility, or a sheet having no flexibility.
Further, most of the reflectance of the sheet material S is diffuse reflection in which light enters the sheet material S and is reflected. Therefore, compared with the aluminum material that is a direct reflection member that has been used so far, the aluminum material is locally reflected, so that the light uniformity (uniformity of illuminance) in the solar cell A that is the object to be measured is ensured. It is difficult. On the other hand, in the case of the sheet material S, diffuse reflection is mainly used, and the amount of light can be easily increased while maintaining the light uniformity (uniformity of illuminance) in the solar cell A. Accordingly, when a portion with low illuminance is locally generated in the solar cell A during adjustment of the solar simulator of the present invention, the illuminance uniformity can be realized by using an aluminum material which is a direct reflecting member.
<3> Method of Using Solar Simulator of the Present Invention Next, a method of using the example solar simulator configured as described above will be described.
1) First, the solar cell A is arranged as an object to be measured on the acrylic plate 8, and a terminal drawn from the terminal box T of the solar cell and a solar probe measurement probe (both not shown) are connected.
2) When measurement is started by operating a control device (not shown), the light source lamp 2 is turned on, and each lamp is monitored by the illuminance measurement reference cell 11 to obtain the required illuminance on the measurement surface and supplied from the lamp power supply device. Control power.
3) When the necessary illuminance is obtained as described above, the control device measures the output current and output voltage from the solar battery A, and stores the data in a computer such as a personal computer.
4) The necessary data is processed by the computer, and the IV curve that is the output characteristic of the solar cell A is displayed on the display.
<4> Method for Adjusting Solar Simulator of the Present Invention The method for adjusting the solar simulator of the present invention is as follows.
1) That is, the solar simulator of the present invention is provided with the reflectors 3 to 7 in which the sheet material S is attached or attached in the light source lamp 2 or the frame F in order to obtain illuminance uniformity in the manufacturing stage. The solar cell A, which is a measurement object, has substantially the same sensitivity even when it is obliquely or scattered light, so that it can be measured without being particularly concerned with parallel light.
2) The electric power generated from the solar cell A when a small solar cell AR (solar cell) serving as a reference is irradiated with the same lamp illuminance in each region while sequentially moving each region on the irradiation surface. Measure and identify the brightness and darkness of each region, and appropriately arrange the masking member 12 (light quantity adjusting member) on the upper surface of the optical filter 1 to uniformly adjust the illuminance of the portion corresponding to the solar cell A as the object to be measured. .
3) When the light source lamp 2 is replaced, the light source lamp is turned on, the illuminance at that time is measured by the reference cell 11, and the value is compared with the reference data stored in the computer in advance. The characteristic is detected, and the power value supplied to the individual lamps required for measurement is calculated.
In the description of the embodiment of the present invention, as shown in FIGS. 1 to 5, a light source lamp is installed in the lower part of the solar simulator frame, and the emitted light is transmitted through the optical filter thereabove. The description was given with an apparatus that irradiates a solar cell, which is an object to be measured, placed on the acrylic plate above the frame and measures its output characteristics. However, the present invention is not limited to this, and a configuration in which a light source lamp is installed above a solar cell as a measurement object and an optical filter is further installed between the solar cell as the measurement object and the light source lamp. It is also applicable to the device.

Claims (3)

  1.  光源ランプを点灯させその発光光を、光学フィルタを透過させて被測定物に照射し、被測定物の出力特性を測定するソーラシミュレータにおいて、
     前記ソーラシミュレータの光源ランプ及び光学フィルタをその内部に含むフレームの内壁部の全部又は一部に高反射率を有するフィルム状シートを貼付け又は取付けしたことを特徴とするソーラシミュレータ。
    In the solar simulator that turns on the light source lamp and irradiates the measured light through the optical filter to the measured object, and measures the output characteristics of the measured object.
    A solar simulator characterized in that a film-like sheet having high reflectivity is attached or attached to all or part of an inner wall portion of a frame including a light source lamp and an optical filter of the solar simulator.
  2.  光源ランプを点灯させその発光光を、光学フィルタを透過させて被測定物に照射し、被測定物の出力特性を測定するソーラシミュレータにおいて、
     前記ソーラシミュレータの光源ランプ及び光学フィルタをその内部に含むフレームの内壁部の全部又は一部及び前記フレームの内部の反射板に高反射率を有するフィルム状シートを貼付け又は取付けしたことを特徴とするソーラシミュレータ。
    In the solar simulator that turns on the light source lamp and irradiates the measured light through the optical filter to the measured object, and measures the output characteristics of the measured object.
    A film-like sheet having high reflectivity is attached or attached to all or a part of the inner wall portion of the frame including the light source lamp and the optical filter of the solar simulator and the reflection plate inside the frame. Solar simulator.
  3.  フレーム内に、前記光源ランプを1本設置したことを特徴とする請求項1または請求項2に記載のソーラシミュレータ。 The solar simulator according to claim 1 or 2, wherein one of the light source lamps is installed in a frame.
PCT/JP2013/054063 2012-02-13 2013-02-13 Solar simulator WO2013122254A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020147025584A KR20140128431A (en) 2012-02-13 2013-02-13 Solar simulator
CN201380016319.7A CN104205623A (en) 2012-02-13 2013-02-13 Solar simulator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-27933 2012-02-13
JP2012027933A JP2013164354A (en) 2012-02-13 2012-02-13 Solar simulator

Publications (1)

Publication Number Publication Date
WO2013122254A1 true WO2013122254A1 (en) 2013-08-22

Family

ID=48984361

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/054063 WO2013122254A1 (en) 2012-02-13 2013-02-13 Solar simulator

Country Status (5)

Country Link
JP (1) JP2013164354A (en)
KR (1) KR20140128431A (en)
CN (1) CN104205623A (en)
TW (1) TWI551808B (en)
WO (1) WO2013122254A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109768770A (en) * 2019-01-10 2019-05-17 成都中建材光电材料有限公司 A kind of solar panel detecting device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0943602A (en) * 1995-07-26 1997-02-14 Hitachi Ltd Display device
JPH1082913A (en) * 1996-09-06 1998-03-31 Nec Shizuoka Ltd Light guiding plate device
JPH11283427A (en) * 1998-03-31 1999-10-15 Toshiba Lighting & Technology Corp Back light device
JP2002048704A (en) * 2000-08-07 2002-02-15 Nisshinbo Ind Inc Solar simulator
JP2003028785A (en) * 2001-07-13 2003-01-29 Nisshinbo Ind Inc Pseudo sunlight irradiation device
WO2011115030A1 (en) * 2010-03-16 2011-09-22 山下電装株式会社 Solar simulator
WO2011152082A1 (en) * 2010-06-04 2011-12-08 富士電機株式会社 Solar simulator and solar cell inspection apparatus

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN85201213U (en) * 1985-04-18 1986-02-26 山东纺织工学院 Daylight simulator
CN101004243A (en) * 2006-12-12 2007-07-25 东莞市科锐德数码光电科技有限公司 Lighting conversion body between LED in high luminous quantity and daylight
US8220941B2 (en) * 2007-03-13 2012-07-17 The Boeing Company Compact high intensity solar simulator
JP2010027826A (en) * 2008-07-18 2010-02-04 Nisshinbo Holdings Inc Solar simulator, and method of measuring multi-junction solar cell
WO2011152081A1 (en) * 2010-06-04 2011-12-08 富士電機株式会社 Solar simulator and solar cell inspection device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0943602A (en) * 1995-07-26 1997-02-14 Hitachi Ltd Display device
JPH1082913A (en) * 1996-09-06 1998-03-31 Nec Shizuoka Ltd Light guiding plate device
JPH11283427A (en) * 1998-03-31 1999-10-15 Toshiba Lighting & Technology Corp Back light device
JP2002048704A (en) * 2000-08-07 2002-02-15 Nisshinbo Ind Inc Solar simulator
JP2003028785A (en) * 2001-07-13 2003-01-29 Nisshinbo Ind Inc Pseudo sunlight irradiation device
WO2011115030A1 (en) * 2010-03-16 2011-09-22 山下電装株式会社 Solar simulator
WO2011152082A1 (en) * 2010-06-04 2011-12-08 富士電機株式会社 Solar simulator and solar cell inspection apparatus

Also Published As

Publication number Publication date
TWI551808B (en) 2016-10-01
CN104205623A (en) 2014-12-10
KR20140128431A (en) 2014-11-05
TW201350729A (en) 2013-12-16
JP2013164354A (en) 2013-08-22

Similar Documents

Publication Publication Date Title
US8096671B1 (en) Light emitting diode illumination system
JP3972056B1 (en) Lighting device
CN103562625A (en) Flat panel lighting device and driving circuitry
WO2007091741A1 (en) Illumination device
KR20090128533A (en) Light emitting device
JP2011243894A (en) Organic el lighting device
JP3987103B1 (en) Lighting device
JP2009205810A (en) Illumination device
CN201819150U (en) Light source reflector and back light module
WO2013122254A1 (en) Solar simulator
JP3207085U (en) Solar simulator
JP2014013276A (en) Independent internally irradiated-type signboard
JP2010182646A (en) Lamp unit and pseudo-sunlight irradiation device
CN201016710Y (en) Luminous source box of hot-rolled strip steel on-line width gauge system for linear array CCD camera shooting
JP5476101B2 (en) Lighting device
US8482224B2 (en) Light emitting apparatus
US20140146531A1 (en) Illumination device with combination of discrete light emitting diode and organic light emitting diode components
JP2008305785A (en) Luminaire
KR101722819B1 (en) Lighting apparatus of self-charging system
KR200455825Y1 (en) Circle flat lighting apparatus using LED
USRE47776E1 (en) Methods and apparatus for compensating a removal of LEDs from an LED array
KR20120036645A (en) Led lighting apparatus with life cycle estimation system
KR20100107892A (en) Solar simulator
JP2009187763A (en) Light source device
JP2011029033A (en) Illumination system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13749718

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147025584

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13749718

Country of ref document: EP

Kind code of ref document: A1