WO2013122251A1 - Damping force control valve and shock absorber - Google Patents

Damping force control valve and shock absorber Download PDF

Info

Publication number
WO2013122251A1
WO2013122251A1 PCT/JP2013/053845 JP2013053845W WO2013122251A1 WO 2013122251 A1 WO2013122251 A1 WO 2013122251A1 JP 2013053845 W JP2013053845 W JP 2013053845W WO 2013122251 A1 WO2013122251 A1 WO 2013122251A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve body
working fluid
damping force
port
valve
Prior art date
Application number
PCT/JP2013/053845
Other languages
French (fr)
Japanese (ja)
Inventor
福田 博美
Original Assignee
ヤマハ発動機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハ発動機株式会社 filed Critical ヤマハ発動機株式会社
Publication of WO2013122251A1 publication Critical patent/WO2013122251A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/44Means on or in the damper for manual or non-automatic adjustment; such means combined with temperature correction
    • F16F9/46Means on or in the damper for manual or non-automatic adjustment; such means combined with temperature correction allowing control from a distance, i.e. location of means for control input being remote from site of valves, e.g. on damper external wall
    • F16F9/464Control of valve bias or pre-stress, e.g. electromagnetically

Definitions

  • the present invention relates to a damping force control valve and a shock absorber.
  • a motor vehicle, a motorcycle and the like are provided with a shock absorber (shock absorber) in order to attenuate vibrations generated in the vehicle.
  • the shock absorber usually comprises a cylinder, in which a piston and a support shaft for supporting the piston are provided.
  • the inside of the cylinder is separated into two oil chambers by the piston, and the piston moves according to the expansion and contraction of the shock absorber, whereby the oil moves between the two oil chambers.
  • the oil movement path is provided with an orifice, valve, etc. with a relatively narrow flow path area, and the fluid resistance when passing through these narrow flow paths generates a damping force and is generated in the vehicle Damping vibration.
  • shock absorber As a conventional shock absorber, there is a shock absorber provided with a damping force control valve (variable orifice) whose opening degree can be adjusted by electronic control.
  • damping force control valve variable orifice
  • shock absorbers there are a shock absorber in which the valve is installed in the cylinder and a shock absorber in which the valve is installed outside the cylinder. In either case, the valve depends on the traveling conditions.
  • the damping force can be controlled by adjusting the opening degree of.
  • a damping force control valve As a conventional damping force control valve, there is, for example, a damping force control valve provided with a stepping motor.
  • the position of the valve body is adjusted by the stepping motor to change the opening degree of the valve. Therefore, it is hard to produce the position change of the valve body by hydraulic force, and position control of a valve body can be performed comparatively correctly.
  • the rotational angle changes due to the integration of the pulses, and the linear velocity of the valve is determined by the pitch of the screw that converts the rotational movement into the linear movement. Since it is necessary to stop the valve body against oil pressure, the pitch of the screw can not be increased. Therefore, it takes a relatively long time to move the valve body to the target position. As a result, there is a problem that excellent responsiveness can not be obtained.
  • damping force control by electronic control is that damping force can be adjusted according to driving conditions, but as described above, if excellent responsiveness can not be obtained, damping force can be accurate according to driving conditions. It is difficult to adjust well, and the merit of damping control by electronic control can not be fully utilized.
  • a damping force control valve provided with a solenoid (see, for example, Patent Document 1).
  • a hollow cylindrical valve body 200 linearly reciprocated by a solenoid is formed in the first working fluid chamber 234
  • the guide holes 234c are inserted.
  • the first working fluid chamber 234 communicates with a second working fluid chamber (not shown) via the passage 200 e of the valve body 200 inserted into the guide hole 234 c.
  • the second working fluid chamber corresponds to the oil chamber 112 in Patent Document 1.
  • a port 234 b is provided in the first working fluid chamber 234 at a position facing the end face 200 c of the valve body 200.
  • a gap between the end face 200c of the valve body 200 and the port 234b is a flow path of the working fluid.
  • the opening degree of the flow path is changed by the position of the end face 200c of the valve body 200, whereby the damping force is controlled. According to such a damping force control valve, since the position of the valve body 200 is adjusted by the solenoid, the valve body 200 can be quickly moved to the target position.
  • valve body 200 is in the form of a hollow cylinder, and includes the passage 200e that communicates the first working fluid chamber 234 with the second working fluid chamber, the valve 200 is a valve compared to when using a columnar valve body.
  • the amount (volume) of the working fluid with which the valve body 200 pushes away when the body 200 moves back and forth is small.
  • first working fluid chamber 234 and the second working fluid chamber are in communication with each other, a pressure difference between the first working fluid chamber 234 and the second working fluid chamber is unlikely to occur. Therefore, the valve body 200 is unlikely to receive the resistance of the working fluid when performing linear reciprocation. Therefore, according to the damping force control valve shown in Patent Document 1, it is possible to solve the problem that excellent responsiveness can not be obtained when a stepping motor is used.
  • the distance between the end face 200c of the valve body 200 and the port 234b is the flow path of the working fluid, and the opening degree of the flow path depends on the position of the end face 200c of the valve body 200. Be changed. Specifically, when the end face 200c of the valve body 200 and the port 234b are positioned on the same plane, the flow path is fully closed. When the valve body 200 is slightly moved from the fully closed state, the valve body 200 and the port 234b are separated, and the state of the minute opening as shown in FIG. 8 is obtained.
  • the damping force control valve disclosed in Patent Document 1 has room for improvement in the position controllability of the valve body 200 at the time of the minute opening.
  • An object of the present invention is to provide a damping force control valve which is excellent in position controllability of a valve body at the time of a minute opening degree, and which has a wide range of an opening degree which can be accurately controlled.
  • the valve body 200 has a hollow cylindrical shape, and the first working fluid chamber 234 and the second working fluid chamber (not shown) are separated via the passage 200 e of the valve body 200. It is in communication. Therefore, as described above, the valve body 200 is unlikely to receive the resistance of the working fluid when performing the linear reciprocating motion. As a result, the movement of the valve body 200 with low power becomes possible, and the downsizing and weight reduction of the valve are realized. However, in other words, this means that the valve body 200 is susceptible to fluid force.
  • the problems described above do not occur in a damping force control valve provided with a stepping motor. This is because, when the position of the valve body is adjusted by the stepping motor, the valve body does not move even when receiving a fluid force, and therefore the position of the valve body does not change due to the flow of the working fluid.
  • the above finding is a generation mechanism of a problem unique to a damping force control valve provided with a solenoid, and the present inventors obtained the above finding and completed the present invention based on the above finding.
  • the damping force control valve is A hollow cylindrical valve body linearly reciprocated by a solenoid; A first working fluid chamber including a guide hole through which the valve body is inserted, and a port formed at a position facing the end face of the valve body; A second working fluid chamber in communication with the first working fluid chamber via a passage in the valve body; Equipped with A gap between the end face of the valve body and the port is a flow passage through which the working fluid passes, The opening degree of the flow passage is changed by the position of the end face of the valve body, whereby the damping force is controlled, When the opening degree of the flow path is minimum, the gap between the valve body and the port is fully closed, and when the opening degree of the flow path is maximum, the valve body is separated from the port; The valve body has a closed portion corresponding to the port when fully closed, The port and the port are provided on the outer periphery of the valve body on the downstream side of the flow direction in which the working fluid in the first working
  • the communication passage is formed on the outer periphery of the valve body on the downstream side of the closed portion corresponding to the port when fully closed.
  • the valve body has, for example, a protrusion on the downstream side of the closed portion (seal portion), and a communication passage is formed on the outer periphery of the protrusion. Therefore, when the valve body moves from the fully closed position in the direction opposite to the downstream side, a part (protrusion) of the valve body is located in the port rather than immediately separating the valve body and the port. Condition occurs. In this state, the port and the first working fluid chamber are separated by a portion (protrusion) of the valve body, and the port and the first working fluid chamber are communicated by the communication passage. And when an opening degree is the largest, a valve body and a port will separate.
  • the valve body is always separated from the port when the flow path is open.
  • the configuration of (1) when the flow path is opened, first, a part of the valve body is in the state of being located in the port, and then the valve body is in the state of separating from the port.
  • the differential pressure before and after the valve is inversely proportional to the square of the opening area.
  • the opening area is proportional to the product of the diameter of the port and the stroke of the valve body, but the diameter of the port does not change.
  • the differential pressure across the valve is inversely proportional to the square of the stroke of the valve body. Therefore, the change of the pressure of the working fluid with respect to the change of the stroke becomes large at the minute opening degree (that is, when the stroke is small).
  • the relationship between the stroke of the valve body and the pressure of the working fluid be linear.
  • the change in the area of the flow path of the working fluid with respect to the position change of the valve body at the small opening degree becomes small, so the relationship between the stroke of the valve body at the small opening degree and the pressure of the working fluid Can be approached linearly.
  • the damping force control valve of (1) is excellent in the position controllability of the valve body at the time of the minute opening degree, and the range of the opening degree which can be accurately controlled is wide.
  • the communication passage be arranged in a point-symmetrical manner with respect to the axis of the valve body as viewed in the axial direction of the valve body.
  • the communication passages are arranged point-symmetrically, it is difficult to stabilize the valve body on the axis because there is a minute gap between the valve body and the bearing. Therefore, the flow of the working fluid may fluctuate, and as a result, the flow may become unstable.
  • the flow of the working fluid can be stabilized by intentionally making the communication passage point-symmetrical. As a result, the radial position of the valve body is stabilized, and fluctuations in fluid force can be suppressed. As a result, stability and accuracy of position control of the valve body in the axial direction can be improved.
  • the inventor does not necessarily have to form a communication passage in the entire outer periphery of the valve, and a part of the outer periphery It has been found that, if the valve is formed in the above, it is possible to improve the position controllability of the valve at the time of the minute opening, and further to realize the downsizing and weight reduction of the valve.
  • the conventional damping force control valve shown in FIG. 8 is fully closed when the end face 200c of the valve body 200 is located on the same plane as the port 234b, so the valve body 200 does not enter the port 234b.
  • a part of the valve body enters the port. Therefore, in the invention of (4), the outer periphery on the downstream side of the valve body is tapered, and the thickness of the valve body is made thinner as it approaches the downstream side of the valve body, so that the end face of the valve body can be more smoothly. Can be inserted into the port.
  • the shock absorber preferably includes the damping force control valve according to any one of (1) to (5).
  • the shock absorber of (6) is configured to flow the working fluid in a direction in which the working fluid in the first working fluid chamber is discharged to the outside of the first working fluid via the port in the damping force control valve. Is preferred.
  • the working fluid in the damping force control valve, the working fluid can be flowed in the direction in which the position of the valve body is relatively stable. Therefore, the range of damping force that can be accurately controlled is wider, and higher responsiveness can be realized.
  • (A) is a longitudinal cross-sectional view which shows typically the damping force control valve which concerns on one Embodiment of this invention
  • (b) is the partial expanded sectional view. It is a longitudinal cross-sectional view which shows typically a mode at the time of the micro opening degree (b), the full opening state (c) at the time of full closing (a) of the damping force control valve shown in FIG. (A) is a partial expanded side view which shows typically the downstream end of the valve body shown in FIG. 1, (b) is an A direction view of (a), (c) is (a) Is a view of the valve body shown in FIG.
  • FIG. (A) is a partial expanded side view which shows typically the modification of the downstream end of a valve body
  • (b) is an A direction view of (a)
  • (c) is (a) It is the figure which looked at the valve body shown to in the reverse direction U.
  • FIG. (A) to (i) are side views schematically showing an example of the downstream end shape of the valve body.
  • It is a hydraulic circuit figure which shows an example of the shock absorber provided with the damping force control valve shown in FIG.
  • It is a hydraulic circuit figure which shows an example of the shock absorber provided with the damping force control valve shown in FIG.
  • It is a partial expanded sectional view which shows typically the conventional damping force control valve in the time of micro opening degree.
  • FIG. 1 (a) is a longitudinal cross-sectional view which shows typically the damping force control valve 10 which concerns on one Embodiment of this invention
  • FIG. 1 (b) is the elements on larger scale sectional drawing.
  • FIG. 1 (a) shows a state when the damping force control valve 10 is fully closed
  • FIG. 1 (b) shows a state when the minute opening degree.
  • the direction in which the working fluid of the first working fluid chamber 30 is discharged through the first port 30a is referred to as the downstream direction D.
  • a direction opposite to the downstream direction D along the axial direction S of the valve body 20 is referred to as an opposite direction U.
  • the damping force control valve 10 includes a hollow cylindrical outer cylinder 11 (housing).
  • the outer cylinder 11 includes an opening 11 a on the downstream direction D side and an opening 11 b on the opposite direction U side.
  • the inner cylinder 12 is fitted into the opening 11 b of the outer cylinder 11.
  • the opposite direction U side end of the outer cylinder 11 is bent inward and abuts against the inner cylinder 12 in the axial direction S, whereby the outer cylinder 11 and the inner cylinder 12 are prevented.
  • the outer cylinder 11 has a flange portion 11 c that annularly protrudes toward the axial center at a substantially central portion in the axial direction S.
  • the flange portion 11c has a cylindrical portion 11d extending toward the opening 11b at its inner edge.
  • the cylindrical guide member 13 is inserted into the cylindrical portion 11 d.
  • the guide member 13 has a flange portion 13a on the downstream direction D side.
  • the flanges 11c and 13a are in contact with each other. Thereby, in the outer cylinder 11, the movement to the opposite direction U side of the guide member 13 is regulated.
  • the guide member 13 is provided with a guide hole 13b.
  • a hollow cylindrical valve body 20 is slidably inserted into the guide hole 13b.
  • the valve body 20 has an end face 20a on the downstream direction D side and an end face 20b on the opposite direction U side.
  • the valve body 20 is formed with a passage 21 extending from the end face 20a to the end face 20b.
  • the passage 21 includes a large diameter portion 21 a including an end surface 20 a on the downstream direction D side, and a communication portion 21 b extending toward the second working fluid chamber 40 from the opposite direction U side end of the large diameter portion 21 a.
  • the communicating portion 21 b is a columnar space, and the diameter is constant.
  • the opening area of the passage 21 (large diameter part 21a) at the end face 20a on the downstream direction D side of the valve body 20 is larger than the opening area of the communication part 21b.
  • the diameter of the communication portion 21b is the smallest. That is, in the damping force control valve 10, the communication portion 21b is the smallest diameter portion in the passage 21.
  • the boundary between the large diameter portion 21 a and the communication portion 21 b in the axial direction S is located in the first working fluid chamber 30.
  • the end face 20 a on the downstream direction D side of the valve body 20 faces the first port 30 a of the first working fluid chamber 30.
  • the end surface 20a does not abut on the wall surface (bottom surface 26a) of the first working fluid chamber 30.
  • the valve body 20 is made of a nonmagnetic material.
  • a hollow cylindrical support member 14 is installed on the opposite direction U side of the cylindrical portion 11 d.
  • the support member 14 faces the cylindrical portion 11 d coaxially with the cylindrical portion 11 d.
  • the supporting member 14 has an opening 14a formed on the downstream direction D side, an opening 14b formed on the opposite direction U side, and a guide portion 14c which annularly protrudes toward the axial center at a substantially central portion in the axial direction S Have.
  • An annular bearing 20c is installed on the inner peripheral side of the guide portion 14c.
  • the valve body 20 is inserted into the bearing 20c, and the bearing 20c slidably supports the valve body 20.
  • a spring receiving member 15 is fixed on the inner peripheral surface of the support member 14 closer to the opening 14 b than the guide portion 14 c.
  • An annular seal 16 (e.g., an O-ring) for sealing between the support member 14 and the spring receiving member 15 is provided on the outer peripheral surface of the spring receiving member 15.
  • a cap 17 is provided at the opposite direction U side end of the support member 14. The cap 17 closes the opening 14 b.
  • a second working fluid chamber 40 is formed between the guide portion 14 c and the spring receiving member 15.
  • the end face 20 b of the valve body 20 is exposed in the second working fluid chamber 40.
  • the coil spring 18 is supported by the end face 20 b of the valve body 20 and the spring receiving member 15.
  • the coil spring 18 biases the valve body 20 in the downstream direction D.
  • a cylindrical cylindrical member 19 is provided to connect the cylindrical portion 11 d and the support member 14.
  • the cylindrical member 19 is made of a nonmagnetic material.
  • a bobbin 22 is provided in the outer cylinder 11, a bobbin 22 is provided.
  • the bobbin 22 covers the outer peripheral surface of the support member 14 and the outer peripheral surface of the cylindrical member 19.
  • a solenoid coil 23 is wound around the bobbin 22.
  • An annular plate-like cap 24 is attached between the bobbin 22 and the inner cylinder 12 on the inner peripheral surface of the outer cylinder 11.
  • the cap 24 is made of a magnetic material (for example, iron).
  • a cylindrical plunger 25 is fixed between the guide member 13 and the guide portion 14c.
  • the inner diameter of the cylindrical portion 11 d is larger than the outer diameter of the plunger 25.
  • the inner diameter of the portion closer to the opening 14 a than the guide portion 14 c is larger than the outer diameter of the plunger 25. Therefore, the plunger 25 can move in the axial direction S between the guide member 13 and the guide portion 14c.
  • the damping force control valve 10 by adjusting the magnetic flux density of the magnetic field generated by the solenoid coil 23, the plunger 25 can be moved in the axial direction S between the guide member 13 and the guide portion 14c. Thereby, the valve body 20 moves in the axial direction S.
  • the solenoid coil 23 and the coil spring 18 constitute a solenoid.
  • the installation space 25 a of the plunger 25 is formed by the cylindrical portion 11 d, the guide member 13, the guide portion 14 c and the cylindrical member 19.
  • the working fluid HO is also filled in the installation space 25a.
  • the space 25 a communicates with the first working fluid chamber 30 via a gap between the outer peripheral surface of the valve body 20 and the inner peripheral surface of the guide member 13.
  • the space 25 a communicates with the second working fluid chamber 40 through a gap between the outer peripheral surface of the valve body 20 and the inner peripheral surface of the guide portion 14 c.
  • a substantially cylindrical valve head 26 with a bottom is disposed on the side of the opening 11 a in the outer cylinder 11 so as to contact the flange portion 13 a of the guide member 13.
  • the valve head 26 has a bottomed cylindrical shape.
  • a first port 30 a is formed at the center of the bottom surface 26 a of the valve head 26.
  • the first port 30 a is installed at a position facing the end face 20 a of the valve body 20.
  • the working fluid path 31 extends from the first port 30a in the downstream direction D.
  • the valve head 26 is provided with a second port 30 b on the outer peripheral wall 26 c of the valve head 26.
  • the working fluid passage 32 extends radially from the second port 30b.
  • a first working fluid chamber 30 is constituted by the valve head 26 and the guide member 13.
  • the first working fluid chamber 30 is provided with a guide hole 13 b.
  • the first working fluid chamber 30 and the second working fluid chamber 40 are disposed opposite to each other with the valve body 20 interposed therebetween.
  • the end face 20 a of the valve body 20 is disposed on the first working fluid chamber 30 side.
  • the first working fluid chamber 30 and the second working fluid chamber 40 are in communication via the passage 21 of the valve body 20.
  • a space in the first working fluid chamber 30 is located around the outer peripheral surface of the valve body 20. The working fluid flows from the working fluid passage 32 along the radial direction of the valve body 20 into the first working fluid chamber 30.
  • a circlip 33 as a fixture is fixed to the outer periphery of the valve body 20.
  • a fixing tool is not limited to a circlip.
  • a coil spring 34 as a biasing body is installed between the circlip 33 and the bottom surface 26 a of the valve head 26 on the downstream direction D side of the circlip 33.
  • the valve body 20 is inserted into the coil spring 34.
  • the diameter of the coil spring 34 increases. Therefore, the flow path of the working fluid from the working fluid path 32 to the working fluid path 31 via the first working fluid chamber 30 is less likely to be blocked by the coil spring 34.
  • a coil spring 35 as an urging body is installed between the circlip 33 and the downstream side surface 13c of the guide member 13 on the opposite direction U side of the circlip 33 as a fixing tool.
  • the valve body 20 is inserted through the coil spring 35. As the reverse direction U is approached, the diameter of the coil spring 35 increases.
  • an urging body is not limited to a coil spring,
  • conventionally well-known urging bodies such as a leaf
  • reference numeral 50 denotes a closed portion corresponding to the first port 30a when fully closed (see FIG. 1). In other words, when the blocking portion 50 is present at the same position as the first port 30 a in the axial direction of the valve body 20, the damping force control valve 10 is in the closed state.
  • the protrusion 51 is located on the downstream direction D side of the closing portion 50.
  • the end face 20a of the valve body 20 includes a flat portion 20d and an inclined portion 20e which is inclined in the opposite direction U from the flat portion 20d.
  • the inclined portion 20 e faces in the outer peripheral direction.
  • a communication passage 52 for communicating the first port 30a with the first working fluid chamber 30 is formed on the outer periphery of the valve body 20 in the protrusion 51. Further, as shown in FIG. 1 (b), the communication passage 52 is formed in a part (approximately half in the figure) of the outer periphery of the valve body 20.
  • the communication passage 52 is disposed in an astigmatic manner with respect to the axis C of the valve body 20 as viewed in the axial direction S of the valve body 20. That is, it is unevenly distributed in the outer periphery of the valve body 20 on the basis of the axis C of the valve body 20.
  • the projecting portion 51 located in the downstream direction D of the closing portion 50 is located in the first port 30a, while the communication passage 52 is the first port 30a and the first port 30a. It communicates with the working fluid chamber 30.
  • the first port 30a and the first working fluid chamber 30 communicate with each other through the communication passage 52 while a part of the protrusion 51 is positioned in the first port 30a. .
  • FIG. 2 is a longitudinal sectional view schematically showing the damping force control valve shown in FIG. 1 when fully closed (a), when it is slightly open (b), and when it is fully opened (c).
  • valve body 20 When the solenoid coil 23 is not energized, as shown in FIG. 2A, the valve body 20 is positioned on the downstream direction D side by the coil springs 18, 34, 35, and the first port 30a is closed. Thereby, the flow path (flow path T in FIGS. 2B and 2C) from the working fluid path 32 to the working fluid path 31 via the first working fluid chamber 30 is blocked.
  • the end face 20a includes the flat portion 20d and the inclined portion 20e which is inclined in the opposite direction D from the flat portion 20d.
  • the flat portion 20d is located on the downstream direction D side of the first port 30a and enters the working fluid passage 31.
  • the edge on the opposite direction U side of the inclined portion 20 e is present at the same position as the first port 30 a in the axial direction S of the valve body 20.
  • the damping force control valve 10 When the solenoid coil 23 is energized and the damping force control valve 10 is adjusted to a minute opening (for example, about 0.5 mm), as shown in FIG. 2B, the flat portion 20 d and the first port 30 a It exists in the same position in the axial direction S of the valve body 20. On the other hand, there is an interval between the inclined portion 20e and the first port 30a. This interval is the flow path T of the working fluid. At the minute opening degree, since the flow path T of the working fluid is narrow, the flow X of the working fluid passing through the flow path T is relatively fast. The flow X of the working fluid collides with the inner wall of the working fluid passage 31, and a part of the flow X goes in the downstream direction D as it is.
  • a minute opening for example, about 0.5 mm
  • a part of the flow X becomes a flow Y in the opposite direction U. Since the large diameter portion 21a is formed at the downstream direction D side end of the valve body 20, the flow Y of the working fluid swirls in the large diameter portion 21a and diffuses into the flow X of the working fluid while diffusing. It is easy to return. That is, the large diameter portion 21a has a rectifying action, and regulates the flow of the working fluid in the downstream direction D. Thereby, the increase in the pressure difference between the working fluid passage 31 and the second working fluid chamber 40 is prevented, and the force applied to the valve body 20 toward the first port 30 a can be suppressed.
  • the damping force control valve 10 is excellent in position controllability of the valve body 20 at the time of the minute opening degree, and the range of the controllable opening degree is wide, and higher responsiveness can be realized.
  • the flow path T is a part of the outer peripheral edge of the valve body 20 and the first It is a distance from a part of the outer peripheral edge of one port 30a. Therefore, the change in the opening area of the flow passage T with respect to the stroke (displacement amount in the axial direction S) of the valve body 20 is relatively small.
  • the valve body 20 When the solenoid coil 23 is energized and the opening of the damping force control valve 10 is adjusted to the maximum (for example, an interval of about 2 mm), as shown in FIG. 2C, the valve body 20 is moved from the first port 30a. Leave. When the valve body 20 and the first port 30a are separated, the flow path T is a distance between the entire outer peripheral edge of the valve body 20 and the entire outer peripheral edge of the first port 30a. Therefore, the change in the opening area of the flow passage T with respect to the stroke of the valve body 20 is relatively large.
  • the change in the opening area of the flow passage T with respect to the stroke of the valve body 20 is small when the opening degree is small, and the opening of the flow path T with respect to the stroke of the valve body 20 when the opening degree is large.
  • the change in area is large.
  • FIG.3 (a) is a partial expanded side view which shows typically the downstream end of the valve body shown in FIG. 1, (b) is an A direction view of (a), (c) is It is the figure which looked at the valve body shown to (a) in the reverse direction U.
  • FIG. 1 is a partial expanded side view which shows typically the downstream end of the valve body shown in FIG. 1
  • (b) is an A direction view of (a)
  • (c) is It is the figure which looked at the valve body shown to (a) in the reverse direction U.
  • an outer peripheral tapered portion 20 f is formed on the valve body 20.
  • the length of the outer peripheral tapered portion 20f is shorter than the length of the large diameter portion 21a.
  • the outer circumferential tapered portion 20 f is formed in the projecting portion 51.
  • the first port portion 30a and the first working fluid chamber 30 communicate with each other in the outer peripheral tapered portion 20f.
  • the outer circumferential tapered portion 20f constitutes a communication passage.
  • the thickness of the valve body 20 becomes thinner as it approaches the downstream direction D, but does not become zero. Therefore, in the outer peripheral tapered portion 20 f, the first working fluid chamber 30 and the passage 21 of the valve body 20 do not directly communicate with each other.
  • the inclined portion 20e also constitutes the communication passage 52 (see FIG. 1B) as described above.
  • the first working fluid chamber 30 and the first port 30 a communicate with each other, and the first working fluid chamber 30 and the passage 21 of the valve body 20 directly communicate with each other.
  • the communication passage formed by the outer peripheral tapered portion 20f is different from the communication passage formed by the inclined portion 20e.
  • the communication passage in the present invention preferably communicates the first working fluid chamber 30 with the first port 30 a and the passage 21. This is because the working fluid can flow more smoothly.
  • the angle which the outer periphery taper part 20f and the axial direction S comprise is not specifically limited, For example, it is preferable that it is 10 degrees or less.
  • FIG. Fig.4 (a) is a partial expanded side view which shows typically the modification of the downstream end of a valve body, (b) is an A direction view of (a), (c) is It is the figure which looked at the valve body shown to a) in the reverse direction U.
  • FIG. Fig.4 (a) is a partial expanded side view which shows typically the modification of the downstream end of a valve body, (b) is an A direction view of (a), (c) is It is the figure which looked at the valve body shown to a) in the reverse direction U.
  • the valve body 20 shown in FIG. 4 is the same as the valve body shown in FIG. 3 except for the shape of the large diameter portion 21a.
  • the same components as those shown in FIGS. 1 and 2 are denoted by the same reference numerals, and the description thereof will be omitted or simplified.
  • the large diameter portion 21a shown in FIG. 4 has a cylindrical space. Even with the valve body 20 shown in FIG. 4, the working fluid flowing in from the communication passage flows like the flow X of the working fluid shown in FIG. 2 (b), similarly to the valve body 20 shown in FIGS. .
  • 5 (a) to 5 (i) are longitudinal cross-sectional views schematically showing examples of the downstream side end shape of the valve body.
  • the cylindrical large diameter portion 21a is formed so as to include the end face 20a on the downstream direction D side of the valve body 20.
  • a communicating portion 21b is formed on the opposite direction U side of the large diameter portion 21a.
  • the axis C of the valve body 20 is the same as the axis of the communicating portion.
  • the axis C of the valve body 20 is different from the axis C 'of the large diameter portion 21a.
  • an outer peripheral tapered portion 20f is formed on the outer peripheral edge of the end face 20a.
  • a communication passage is formed by the outer peripheral tapered portion 20f.
  • the large diameter portion 21 a is formed so as to include the end face 20 a on the downstream direction D side of the valve body 20.
  • the large diameter portion 21a is composed of a cylindrical portion located on the downstream direction D side and a tapered portion located on the opposite direction U side, and the axial line C 'is between the cylindrical portion and the tapered portion.
  • the axis C ' is different from the axis C of the valve body 20.
  • an outer peripheral tapered portion 20f is formed on the outer peripheral edge of the end face 20a.
  • a communication passage is formed by the outer peripheral tapered portion 20f.
  • the large diameter portion 21a is formed so as to include the end face 20a on the downstream direction D side of the valve body 20.
  • the large diameter portion 21a has a tapered shape.
  • An outer peripheral tapered portion 20f is formed on the outer peripheral edge of the end face 20a.
  • a communication passage is formed by the outer peripheral tapered portion 20f.
  • the cylindrical large diameter portion 21a is formed so as to include the end face 20a on the downstream direction D side of the valve body 20.
  • the axes of the valve body 20 and the large diameter portion 21a coincide with each other.
  • an outer peripheral tapered portion 20f is formed on the outer peripheral side of the end face 20a.
  • a communication passage is formed by the outer peripheral tapered portion 20f.
  • the large diameter portion 21a is formed so as to include the end face 20a on the downstream direction D side of the valve body 20.
  • the large diameter portion 21a is composed of a cylindrical portion located on the downstream direction D side and a tapered portion located on the opposite direction U side, and the axis of the valve body 20, the cylindrical portion and the tapered portion And the axis of.
  • an outer peripheral tapered portion 20f is formed on the outer peripheral side of the end face 20a.
  • a communication passage is formed by the outer peripheral tapered portion 20f.
  • FIG.5 (f) has shown the valve body of FIG. 3 and the same shape.
  • the large diameter portion 21 a is formed on the downstream direction D side of the valve body 20.
  • the large diameter portion 21a has a tapered shape.
  • An outer peripheral tapered portion 20f is formed on the outer peripheral edge of the end face 20a.
  • approximately half of the end face 20a of the valve body 20 is slanted, and the end face 20a includes a flat portion 20d and an inclined portion 20e which is inclined in the opposite direction D from the flat portion 20d.
  • the inclined portion 20e is flat.
  • a communication path is formed by the inclined portion 20e and the outer peripheral tapered portion 20f.
  • valve body 20 of FIG. 5 (g) is the same as FIG. 5 (d) except that the end face 20a is subjected to slant processing.
  • a communication path is formed by the inclined portion 20e and the outer peripheral tapered portion 20f.
  • valve body 20 of FIG. 5 (h) is the same as FIG. 5 (e) except that the end face 20a is subjected to slant processing.
  • a communication passage is formed between the inclined portion 20e and the outer peripheral tapered portion 20f.
  • the valve body 20 of FIG. 5 (i) is the same as the valve body 20 of FIG. 5 (f) except that the inclined portion 20e is a curved surface (convex surface).
  • a communication passage is formed between the inclined portion 20e and the outer peripheral tapered portion 20f.
  • the valve body 20 of FIG. 5 (j) is the same as FIG. 5 (f) except that the axis C of the valve 20 and the axis C 'of the tapered large diameter portion 21a are shifted.
  • a communication passage is formed between the inclined portion 20e and the outer peripheral tapered portion 20f.
  • 6 and 7 are hydraulic circuit diagrams showing a shock absorber 100 provided with the damping force control valve 10 shown in FIG.
  • the shock absorber 100 is provided with a hydraulic cylinder 112.
  • a piston assembly 144 is installed in the hydraulic cylinder 112 in the hydraulic cylinder 112 .
  • the hydraulic cylinder 112 is divided into two working fluid chambers 158 and 160 by a piston assembly 144.
  • One end of the piston rod 162 is inserted into the hydraulic cylinder 112 from one end side of the hydraulic cylinder 112 and is fixed to the piston assembly 144.
  • the other end of the piston rod 162 is connected to the vehicle body side (not shown) of the vehicle.
  • the other end of the hydraulic cylinder 112 is connected to the wheel side (not shown) of the vehicle body.
  • the piston assembly 144 includes a plurality of shims damping valves 148 damping valves 148, 150.
  • the damping valve 148 can flow the working fluid from the working fluid chamber 160 to the working fluid chamber 158, at which time a damping force is generated (elongation damping).
  • the working fluid can not flow in the opposite direction.
  • the damping valve 150 can flow the working fluid from the working fluid chamber 158 to the working fluid chamber 160, at which time a damping force is generated (shrinkage damping).
  • a damping force adjustment device 116 is installed between the working fluid chamber 158 and the reservoir tank 114.
  • the damping force control valve 10 a damping valve 116b composed of a plurality of shims, and a check valve 116c are installed in parallel.
  • the damping valve 116 b can flow the working fluid from the hydraulic cylinder 112 side to the reservoir tank 114 side, and can not flow the working fluid in the opposite direction.
  • the check valve 116 c can flow the working fluid from the reservoir tank 114 side to the hydraulic cylinder 112 side.
  • the working fluid can not flow in the opposite direction.
  • the working fluid O and the gas G are contained in the reservoir tank 114, and the working fluid O and the gas G are in contact at the interface OS.
  • the working fluid O is, for example, working oil or the like.
  • the gas G is, for example, nitrogen gas or air.
  • the damping force control valve 10 causes the working fluid to flow from the working fluid passage 32 to the working fluid passage 31 via the first working fluid chamber 30. Can. Further, the damping force control valve 10 can also flow the working fluid in the opposite direction. Further, as shown in FIGS. 6 and 7, the damping force control valve 10 is installed as a bypass for the damping valve 116b.
  • the working fluid of the volume of the piston rod 162 that has entered the hydraulic cylinder 112 is discharged from the hydraulic cylinder 112 and moves to the reservoir tank 114.
  • the damping force control valve 10 and the damping valve 116b are in a bypass relationship with each other, and the working fluid HO discharged from the hydraulic cylinder 112 passes through the damping force control valve 10 and the damping valve 116b as shown in FIG. It flows into the reservoir tank 114.
  • the damping force control valve 10 the working fluid flows in the direction of being discharged from the first working fluid chamber 30 via the first port 30a.
  • the resistance when flowing through the damping force adjusting device 116 increases the pressure of the working fluid in the hydraulic cylinder 112 and resists the movement of the piston rod 162 in the X1 direction (cylinder The pressure of the working fluid (cross sectional area of the piston rod 162), that is, the compression damping force (1) is generated.
  • the opening degree of the damping force control valve 10 is adjusted, the ratio of the flow rate between the damping valve 116 b and the damping force control valve 10 changes, so that the resistance of the damping valve 116 is adjusted and the compression acting on the piston rod 162 Damping force is adjusted.
  • the working fluid flows from the working fluid chamber 158 toward the working fluid chamber 160 also in the damping valve 150 of the piston assembly 144, and the resistance at that time acts on the piston assembly 144 and the compression damping force (2) on the piston rod 162 Is added as
  • the shock absorber 100 when the piston assembly 144 moves in the X2 direction, as shown in FIG. 7, the working fluid of the volume from which the piston rod 162 is withdrawn passes through the check valve 116 c without resistance and returns to the hydraulic cylinder 112.
  • the damping force control valve 10 part of the damping force at the time of compression can be adjusted by the damping force control valve 10.
  • the compression damping force (1) generated by the approach of the piston rod 162 in the damping forces during compression ie, the above-mentioned compression damping forces (1) and (2)
  • the shock absorber 100 may be capable of adjusting all of the damping force at the time of compression by the damping force control valve 10.
  • a check valve may be provided to flow the working fluid from the working fluid chamber 158 to the working fluid chamber 160.
  • the shock absorber 100 configured as described above, when the piston assembly 144 moves in the X1 direction, the above-described compression damping force (1) is generated, but the above-described compression damping force (2) is not generated. Therefore, by adjusting the compression damping force (1), it is possible to adjust all of the damping forces at the time of compression.
  • a communication passage for connecting the first port 30a and the first working fluid chamber 30 is formed on the outer periphery of the projecting portion 51 of the valve body 20.
  • the communication passage is formed by the inclined portion 20e and the outer peripheral tapered portion 20f. Therefore, when the valve body 20 moves in the opposite direction U from the state in which the first port 30 a is closed by the closing portion 50, the protrusion 51 is first positioned in the first port 50. Then, the valve body 20 is separated from the first port 30a. Accordingly, it is possible to reduce the change in the area of the flow path of the working fluid with respect to the change in the position of the valve body 20 at the minute opening degree.
  • the communication passage 52 is disposed in a point-symmetrical manner with respect to the axis C of the valve body 20, so that the flow of the working fluid can be stabilized. Thereby, the fluctuation of the fluid force can be suppressed, and as a result, the stability and accuracy of position control of the valve body in the axial direction can be improved.
  • the communication passage 52 is formed in a part of the outer periphery of the valve body 20, improvement of the position controllability of the valve body 20 at the minute opening degree, downsizing of the valve It is possible to realize weight reduction at a high level.
  • valve body 20 when the valve body 20 includes the outer peripheral tapered portion 20f and the thickness of the valve body 20 becomes thinner toward the downstream direction D side of the valve body 20, the end face 20a of the valve body 20 can be made more smoothly. It can be inserted into port 30a.
  • the communication path 52 establishes communication between the first port 30a and the first working fluid chamber 30. Therefore, when the flow path of the damping force control valve 10 opens from the closed state, first, a part of the valve body 20 remains in the first port 30a, and then the valve body 20 is moved from the first port 30a. It will be away.
  • the protrusion 51 is located in the first port 20, as shown in FIG. 1B, when the first port 30a and the first working fluid chamber 30 are divided by the protrusion 51, The passage 52 allows the first port 30a and the first working fluid chamber 30 to communicate with each other. Therefore, it is possible to reduce the change in the area of the flow path of the working fluid with respect to the change in the position of the valve body 20 at the minute opening degree.
  • the arrangement method of a damping force adjustment device is not limited to the above-mentioned example.
  • the shock absorber 100 shown in FIGS. 6 and 7 is configured to allow the working fluid to flow in both directions with respect to the damping force control valve 10, the present invention is not limited to this example.
  • the working fluid can be made to flow in a direction in which the working fluid is discharged from at least the first working fluid chamber 30 via the first port 30a.
  • the shock absorber 100 may be configured to flow the working fluid in a direction to discharge the working fluid from the first working fluid chamber 30 via the first port 30a at the time of extension, and at the time of retraction, the first working fluid chamber 30 may be configured to flow the working fluid in the direction of discharging the working fluid via the first port 30a.
  • valve body shape of a valve body is not limited to the above-mentioned example.
  • the valve body may have a hollow rectangular tube shape.
  • shape of the working fluid passage is not limited to the above-described example, and the cross section of the working fluid passage may be polygonal or elliptical.
  • the entire end face 20 a of the valve body 20 may be inclined with respect to the axial direction S.
  • a proportional solenoid is used as the solenoid has been described.
  • the present invention is not limited to this example, and an ON / OFF solenoid may be used as the solenoid, for example.
  • damping force control valve 20 valve body 21 passage 21a large diameter portion 21b communicating portion 23 solenoid coil 26 valve bed 30 first working fluid chamber 30a first port 40 second working fluid chamber 50 closing portion 51 projecting portion 52 communicating path

Abstract

A damping force control valve (10) having improved damping force control characteristics during minute opening. The damping force control valve (10) comprises: a valve body (20) reciprocally moved by a solenoid (23); a first working fluid chamber (30) comprising a port (30a); and a second working fluid chamber (40) connected to a passage (21). The damping force is controlled by the degree of opening of a communications passage (52) that is the gap between an end surface (20a) of the valve body (20) and the port (30a). Variation of the cross-sectional area of the communications passage relative to the stroke of the valve (20), during minute opening, is reduced by forming a sloping section (20e) and an outer peripheral tapered section (20f), at a position lower than a closed section (50) of the valve body (20) being the position where the communications passage (52) is closed.

Description

減衰力制御弁及びショックアブソーバDamping force control valve and shock absorber
 本発明は、減衰力制御弁及びショックアブソーバに関する。 The present invention relates to a damping force control valve and a shock absorber.
 一般に、自動車および自動二輪車等には、車両において発生する振動を減衰するためにショックアブソーバ(緩衝器)が設けられている。ショックアブソーバは、通常、シリンダを備え、シリンダ内に、ピストンと、ピストンを支持する支持軸とが設けられている。シリンダ内は、ピストンによって、2つのオイル室に分離されており、ショックアブソーバの伸縮に合わせてピストンが動き、これにより、2つのオイル室の間でオイルが移動する。オイルの移動経路には、比較的流路面積の狭いオリフィス、バルブ等が設けられており、これらの面積の狭い流路を通過するときの流体抵抗により、減衰力を発生させ、車両に発生する振動を減衰させる。 In general, a motor vehicle, a motorcycle and the like are provided with a shock absorber (shock absorber) in order to attenuate vibrations generated in the vehicle. The shock absorber usually comprises a cylinder, in which a piston and a support shaft for supporting the piston are provided. The inside of the cylinder is separated into two oil chambers by the piston, and the piston moves according to the expansion and contraction of the shock absorber, whereby the oil moves between the two oil chambers. The oil movement path is provided with an orifice, valve, etc. with a relatively narrow flow path area, and the fluid resistance when passing through these narrow flow paths generates a damping force and is generated in the vehicle Damping vibration.
 従来のショックアブソーバとして、電子制御により開度の調整が可能な減衰力制御弁(可変オリフィス)を備えたショックアブソーバが存在する。このようなショックアブソーバとしては、バルブがシリンダ内に設置されたショックアブソーバと、バルブがシリンダ外に設置されたショックアブソーバとが存在するが、いずれの場合であっても、走行条件に応じてバルブの開度を調整することにより、減衰力を制御することができる。 As a conventional shock absorber, there is a shock absorber provided with a damping force control valve (variable orifice) whose opening degree can be adjusted by electronic control. As such shock absorbers, there are a shock absorber in which the valve is installed in the cylinder and a shock absorber in which the valve is installed outside the cylinder. In either case, the valve depends on the traveling conditions. The damping force can be controlled by adjusting the opening degree of.
 従来の減衰力制御弁としては、例えば、ステッピングモータを備えた減衰力制御弁が存在する。このような減衰力制御弁では、ステッピングモータにより弁体の位置を調整してバルブの開度を変更する。そのため、流体力による弁体の位置変化が生じ難く、弁体の位置制御を比較的正確に行うことができる。一方、ステッピングモータでは、パルスの積算によって回転角が変化し、回転運動を直線運動に変換するネジのピッチによって、弁体の直進速度が決まる。油圧に対して弁体を静止させる必要があるため、ネジのピッチを大きくできない。そのため、弁体を目的の位置まで移動させるまでに比較的長い時間を要する。その結果、優れた応答性が得られないという問題がある。 As a conventional damping force control valve, there is, for example, a damping force control valve provided with a stepping motor. In such a damping force control valve, the position of the valve body is adjusted by the stepping motor to change the opening degree of the valve. Therefore, it is hard to produce the position change of the valve body by hydraulic force, and position control of a valve body can be performed comparatively correctly. On the other hand, in the stepping motor, the rotational angle changes due to the integration of the pulses, and the linear velocity of the valve is determined by the pitch of the screw that converts the rotational movement into the linear movement. Since it is necessary to stop the valve body against oil pressure, the pitch of the screw can not be increased. Therefore, it takes a relatively long time to move the valve body to the target position. As a result, there is a problem that excellent responsiveness can not be obtained.
 電子制御による減衰力制御の利点としては、走行条件に応じて減衰力を調整できる点が挙げられるが、上述したように優れた応答性が得られなければ、走行条件に応じて減衰力を精度良く調整することは困難であり、電子制御による減衰力制御のメリットを充分に活かすことができない。 An advantage of damping force control by electronic control is that damping force can be adjusted according to driving conditions, but as described above, if excellent responsiveness can not be obtained, damping force can be accurate according to driving conditions. It is difficult to adjust well, and the merit of damping control by electronic control can not be fully utilized.
 また、従来の減衰力制御弁としては、ソレノイドを備えた減衰力制御弁が存在する(例えば、特許文献1参照)。特許文献1に示す減衰力制御弁では、図8(特許文献1の図6参照)に示すように、ソレノイドにより直線往復動する中空筒状の弁体200が、第一作動流体室234に形成されたガイド孔234cに挿通されている。第一作動流体室234は、ガイド孔234cに挿通された弁体200の通路200eを介して、第二作動流体室(図示せず)と連通している。なお、第二作動流体室は、特許文献1における油室112に相当する。また、第一作動流体室234には、弁体200の端面200cと対向する位置にポート234bが設けられている。弁体200の端面200cとポート234bとの間隙が、作動流体の流路である。流路の開度は、弁体200の端面200cの位置によって変更され、これにより減衰力が制御される。このような減衰力制御弁によれば、ソレノイドにより弁体200の位置を調整するので、弁体200を目的の位置まで速やかに移動させることができる。さらに、弁体200は、中空筒状であり、第一作動流体室234と第二作動流体室とを連通する通路200eを備えているので、柱状の弁体を用いる場合と比較して、弁体200の進退時に弁体200が押し退ける作動流体の量(体積)が少ない。また、第一作動流体室234と第二作動流体室とが連通しているので、第一作動流体室234と第二作動流体室との圧力差が生じ難い。そのため、弁体200は直線往復動を行うときに作動流体の抵抗を受け難い。従って、特許文献1に示す減衰力制御弁によれば、ステッピングモータを用いた場合に優れた応答性が得られない、という問題を解消することができる。 Further, as a conventional damping force control valve, there is a damping force control valve provided with a solenoid (see, for example, Patent Document 1). In the damping force control valve shown in Patent Document 1, as shown in FIG. 8 (see FIG. 6 of Patent Document 1), a hollow cylindrical valve body 200 linearly reciprocated by a solenoid is formed in the first working fluid chamber 234 The guide holes 234c are inserted. The first working fluid chamber 234 communicates with a second working fluid chamber (not shown) via the passage 200 e of the valve body 200 inserted into the guide hole 234 c. The second working fluid chamber corresponds to the oil chamber 112 in Patent Document 1. Further, a port 234 b is provided in the first working fluid chamber 234 at a position facing the end face 200 c of the valve body 200. A gap between the end face 200c of the valve body 200 and the port 234b is a flow path of the working fluid. The opening degree of the flow path is changed by the position of the end face 200c of the valve body 200, whereby the damping force is controlled. According to such a damping force control valve, since the position of the valve body 200 is adjusted by the solenoid, the valve body 200 can be quickly moved to the target position. Furthermore, since the valve body 200 is in the form of a hollow cylinder, and includes the passage 200e that communicates the first working fluid chamber 234 with the second working fluid chamber, the valve 200 is a valve compared to when using a columnar valve body. The amount (volume) of the working fluid with which the valve body 200 pushes away when the body 200 moves back and forth is small. Further, since the first working fluid chamber 234 and the second working fluid chamber are in communication with each other, a pressure difference between the first working fluid chamber 234 and the second working fluid chamber is unlikely to occur. Therefore, the valve body 200 is unlikely to receive the resistance of the working fluid when performing linear reciprocation. Therefore, according to the damping force control valve shown in Patent Document 1, it is possible to solve the problem that excellent responsiveness can not be obtained when a stepping motor is used.
 また、特許文献1に示す減衰力制御弁では、上述したように、弁体200が直線往復動を行うときに作動流体の抵抗を受け難いので、弁体200の駆動電力を低くすることができる。その結果、比較的小さなソレノイドを使うことができるので、減衰力制御弁の小型化及び軽量化が可能になる。このように、特許文献1に示す減衰力制御弁では、応答性の向上と、弁の小型化及び軽量化との両方を実現することができる。
 自動二輪車や自動車等の車両の分野では、機器の設置スペースが限られているので、弁の設置スペースをなるべく小さくしたいという要請が極めて強い。また、走行性能の向上の観点から、弁の軽量化の要請も非常に強い。従って、弁の小型化及び軽量化は、本分野において、非常に大きな技術的意義を有する。
Further, in the damping force control valve shown in Patent Document 1, as described above, since it is difficult for the valve body 200 to receive the resistance of the working fluid when performing linear reciprocation, the drive power of the valve body 200 can be lowered. . As a result, since a relatively small solenoid can be used, downsizing and weight reduction of the damping force control valve become possible. As described above, in the damping force control valve shown in Patent Document 1, it is possible to realize both the improvement of the response and the reduction in size and weight of the valve.
In the field of vehicles such as motorcycles and automobiles, there is a strong demand for reducing the installation space of the valve as much as possible because the installation space of the equipment is limited. In addition, from the viewpoint of improvement of running performance, the demand for weight reduction of the valve is also very strong. Therefore, the miniaturization and weight reduction of the valve have very great technical significance in the present field.
国際公開第2011/078317号パンフレットInternational Publication No. 2011/078317 brochure
 しかしながら、特許文献1に示す減衰力制御弁を用いたショックアブソーバでは、図8に示すように、作動流体の流路(弁体の端面とポートとの間隙)が微小な開度であるときに、弁体200が目的の位置で安定しない場合があった。 However, in the shock absorber using the damping force control valve shown in Patent Document 1, as shown in FIG. 8, when the flow path of the working fluid (the gap between the end face of the valve body and the port) has a minute opening degree. The valve body 200 may not be stable at the target position.
 また、特許文献1に示す減衰力制御弁では、弁体200の端面200cとポート234bとの間隔が作動流体の流路であり、流路の開度が、弁体200の端面200cの位置によって変更される。具体的に、弁体200の端面200cとポート234bとが同一平面上に位置したときに、流路が全閉となる。この全閉状態から弁体200を若干量移動させると、弁体200とポート234bとが離れ、図8に示すような微小開度の状態となる。そのため、微小開度時において、端面200cの位置変化に対する作動流体の流路の面積変化が大きく、減衰力の制御特性が鋭敏になる。この状態では、減衰力制御のための入力の変化量に対する出力の反応量が大きいため、微小開度時における減衰力制御を精度よく行うことが難しいという問題があった。 Further, in the damping force control valve shown in Patent Document 1, the distance between the end face 200c of the valve body 200 and the port 234b is the flow path of the working fluid, and the opening degree of the flow path depends on the position of the end face 200c of the valve body 200. Be changed. Specifically, when the end face 200c of the valve body 200 and the port 234b are positioned on the same plane, the flow path is fully closed. When the valve body 200 is slightly moved from the fully closed state, the valve body 200 and the port 234b are separated, and the state of the minute opening as shown in FIG. 8 is obtained. Therefore, at the minute opening degree, the area change of the flow path of the working fluid with respect to the position change of the end face 200c is large, and the control characteristic of the damping force becomes sharp. In this state, the amount of reaction of the output with respect to the amount of change in the input for damping force control is large, so there is a problem that it is difficult to perform damping force control accurately at the time of the minute opening.
 このように、特許文献1に示す減衰力制御弁には、微小開度時での弁体200の位置制御性について、改善の余地があった。 As described above, the damping force control valve disclosed in Patent Document 1 has room for improvement in the position controllability of the valve body 200 at the time of the minute opening.
本発明は、微小開度時における弁体の位置制御性に優れ、精度良く制御可能な開度の範囲が広い減衰力制御弁を提供することを目的としている。 An object of the present invention is to provide a damping force control valve which is excellent in position controllability of a valve body at the time of a minute opening degree, and which has a wide range of an opening degree which can be accurately controlled.
 本発明者は、上述した課題に対して検討を行い、以下の知見を得た。
 図8に示す減衰力制御弁では、弁体200は、中空筒状であり、弁体200の通路200eを介して、第一作動流体室234と第二作動流体室(図示せず)とを連通している。そのため、上述したように、弁体200は、直線往復動を行うときに作動流体の抵抗を受け難い。これにより、低電力での弁体200の移動が可能になり、弁の小型化及び軽量化を実現している。しかし、言い換えれば、これは、弁体200が流体力を受け易いことを意味している。
The inventors examined the above-mentioned problems and obtained the following findings.
In the damping force control valve shown in FIG. 8, the valve body 200 has a hollow cylindrical shape, and the first working fluid chamber 234 and the second working fluid chamber (not shown) are separated via the passage 200 e of the valve body 200. It is in communication. Therefore, as described above, the valve body 200 is unlikely to receive the resistance of the working fluid when performing the linear reciprocating motion. As a result, the movement of the valve body 200 with low power becomes possible, and the downsizing and weight reduction of the valve are realized. However, in other words, this means that the valve body 200 is susceptible to fluid force.
 図8に示す減衰力制御弁では、弁体200の端面200cとポート234bとの間隔(作動流体の流路)が狭いときに、車両に力が加わりサスペンションを伸縮させ、作動流体が第一作動流体室234から上記間隔を介して第一作動流体室234外に排出される場合、上記間隔が狭いので、作動流体の流れSが速くなる。一方、全閉時には、作動流体の流れSは生じない。このように、微小開度時において弁体200が若干量移動すると、作動流体の流れSの速度が大きく変化する。 In the damping force control valve shown in FIG. 8, when the distance between the end face 200c of the valve body 200 and the port 234b (flow path of working fluid) is narrow, a force is applied to the vehicle to extend or contract the suspension, and the working fluid is the first action When the fluid chamber 234 is discharged to the outside of the first working fluid chamber 234 via the above-mentioned interval, the flow S of the working fluid is accelerated because the above-mentioned interval is narrow. On the other hand, when fully closed, the flow S of the working fluid does not occur. As described above, when the valve body 200 slightly moves at the minute opening degree, the speed of the flow S of the working fluid changes significantly.
 作動流体の流れSの速度が大きく変化すると、弁体200に対する流体力も大きく変動する。上述したように、弁体200は流体力を受け易いため、流体力の大きな変動によって、弁体200の位置が不安定になる。そこで、弁体の位置制御を精度よく行いたいが、上述したように、微小開度時における減衰力の制御特性が鋭敏であり、弁体200の位置制御が難しい。また、弁体200の位置を変化させるたびに、作動流体の流れSが変化し、流体力の変動によって弁体200の位置が不安定になる。
 このように、特許文献1に示す減衰力制御弁では、上述した幾つかの要因が複合的に関連し合い、微小開度時における弁体200の位置制御が難しくなっているのである。
When the speed of the flow S of the working fluid changes significantly, the fluid force on the valve body 200 also largely changes. As described above, since the valve body 200 is susceptible to fluid force, a large fluctuation in fluid force causes the position of the valve body 200 to be unstable. Therefore, although it is desirable to perform position control of the valve body with high accuracy, as described above, the control characteristics of the damping force at the time of the minute opening degree are sharp, and position control of the valve body 200 is difficult. Also, each time the position of the valve body 200 is changed, the flow S of the working fluid changes, and the fluctuation of the fluid force makes the position of the valve body 200 unstable.
As described above, in the damping force control valve shown in Patent Document 1, the above-described several factors are related in a combined manner, making it difficult to control the position of the valve body 200 at the minute opening degree.
 上述した課題は、ステッピングモータを備えた減衰力制御弁では生じない。なぜなら、ステッピングモータにより弁体の位置を調整する場合、弁体は流体力を受けても移動しないので、作動流体の流れによって弁体の位置が変化しないからである。
 上記知見は、ソレノイドを備えた減衰力制御弁に特有の課題の発生メカニズムであり、本発明者は、上記知見を得て、上記知見に基づいて、本発明を完成させた。
The problems described above do not occur in a damping force control valve provided with a stepping motor. This is because, when the position of the valve body is adjusted by the stepping motor, the valve body does not move even when receiving a fluid force, and therefore the position of the valve body does not change due to the flow of the working fluid.
The above finding is a generation mechanism of a problem unique to a damping force control valve provided with a solenoid, and the present inventors obtained the above finding and completed the present invention based on the above finding.
 即ち、本発明は、以下の構成を採用する。
 (1) 減衰力制御弁であって、
 前記減衰力制御弁は、
ソレノイドにより直線往復動する中空筒状の弁体と、
前記弁体が挿通されるガイド孔と、前記弁体の端面と対向する位置に形成されたポートとを備えた第一作動流体室と、
前記弁体内の通路を介して、前記第一作動流体室と連通する第二作動流体室と、
を備え、
 前記弁体の前記端面と前記ポートとの間隙は、作動流体が通過する流路であり、
 前記流路の開度は、前記弁体の前記端面の位置によって変更され、これにより減衰力が制御され、
 前記流路の開度が最小のとき、前記弁体と前記ポートとの間隙が全閉となる一方、前記流路の開度が最大のとき、前記弁体は前記ポートから離れており、
 前記弁体は、全閉時に前記ポートと対応する閉塞部を備え、
 前記閉塞部よりも、前記第一作動流体室内の作動流体が前記ポートを介して前記第一作動流体室外へ排出される流れの向きの下流側において、前記弁体の外周には、前記ポートと前記第一作動流体室とを連通するための連通路が形成されている。
That is, the present invention adopts the following configuration.
(1) Damping force control valve
The damping force control valve is
A hollow cylindrical valve body linearly reciprocated by a solenoid;
A first working fluid chamber including a guide hole through which the valve body is inserted, and a port formed at a position facing the end face of the valve body;
A second working fluid chamber in communication with the first working fluid chamber via a passage in the valve body;
Equipped with
A gap between the end face of the valve body and the port is a flow passage through which the working fluid passes,
The opening degree of the flow passage is changed by the position of the end face of the valve body, whereby the damping force is controlled,
When the opening degree of the flow path is minimum, the gap between the valve body and the port is fully closed, and when the opening degree of the flow path is maximum, the valve body is separated from the port;
The valve body has a closed portion corresponding to the port when fully closed,
The port and the port are provided on the outer periphery of the valve body on the downstream side of the flow direction in which the working fluid in the first working fluid chamber is discharged to the outside of the first working fluid chamber through the port than the closed portion. A communication passage is formed to communicate with the first working fluid chamber.
 (1)の構成によれば、全閉時にポートと対応する閉塞部よりも下流側における弁体の外周に連通路が形成されている。弁体は、例えば、閉塞部(シール部)よりも下流側に突出部を備えており、突出部の外周に連通路が形成されている。従って、弁体が、全閉時の位置から、下流側と反対の方向に移動するとき、直ちに弁体とポートとが離れるのではなく、弁体の一部(突出部)がポート内に位置する状態が生じる。この状態では、弁体の一部(突出部)によってポートと第一作動流体室とが区画される一方、連通路によってポートと第一作動流体室とが連通する。そして、開度が最大のときには、弁体とポートとが離れる。 According to the configuration of (1), the communication passage is formed on the outer periphery of the valve body on the downstream side of the closed portion corresponding to the port when fully closed. The valve body has, for example, a protrusion on the downstream side of the closed portion (seal portion), and a communication passage is formed on the outer periphery of the protrusion. Therefore, when the valve body moves from the fully closed position in the direction opposite to the downstream side, a part (protrusion) of the valve body is located in the port rather than immediately separating the valve body and the port. Condition occurs. In this state, the port and the first working fluid chamber are separated by a portion (protrusion) of the valve body, and the port and the first working fluid chamber are communicated by the communication passage. And when an opening degree is the largest, a valve body and a port will separate.
 要するに、図8に示す従来の減衰力制御弁では、流路が開いているときには、必ず、弁体がポートから離れている。これに対し、(1)の構成では、流路が開くときに、先ず、弁体の一部がポート内に位置する状態になり、それから、弁体がポートから離れた状態になる。これにより、微小開度時における弁体の位置変化に対する作動流体の流路の面積変化を小さくすることができる。その結果、微小開度時における鋭敏な減衰力の制御特性を抑制することができる。 In short, in the conventional damping force control valve shown in FIG. 8, the valve body is always separated from the port when the flow path is open. On the other hand, in the configuration of (1), when the flow path is opened, first, a part of the valve body is in the state of being located in the port, and then the valve body is in the state of separating from the port. Thereby, it is possible to reduce the change in the area of the flow path of the working fluid with respect to the change in the position of the valve body at the minute opening degree. As a result, it is possible to suppress the control characteristic of the sharp damping force at the minute opening degree.
 弁体のストローク(弁体の端面とポートとの距離)と作動流体の圧力との関係から説明すると、流量が一定である場合、弁前後の差圧は、開口面積の二乗に反比例する。図8に示す従来の減衰力制御弁において、開口面積は、ポートの径と弁体のストロークとの積に比例するが、ポートの径は変化しない。従って、弁前後の差圧は、弁体のストロークの二乗に反比例する。そのため、微小開度時(即ちストロークが小さいとき)にストロークの変化に対する作動流体の圧力の変化が大きくなる。制御の容易性の観点からみれば、弁体のストロークと作動流体の圧力との関係は線形性を有することが望ましい。(1)の構成によれば、微小開度時における弁体の位置変化に対する作動流体の流路の面積変化が小さくなるので、微小開度時における弁体のストロークと作動流体の圧力との関係を線形に近付けることができる。 Describing from the relationship between the stroke of the valve body (the distance between the end face of the valve body and the port) and the pressure of the working fluid, when the flow rate is constant, the differential pressure before and after the valve is inversely proportional to the square of the opening area. In the conventional damping force control valve shown in FIG. 8, the opening area is proportional to the product of the diameter of the port and the stroke of the valve body, but the diameter of the port does not change. Thus, the differential pressure across the valve is inversely proportional to the square of the stroke of the valve body. Therefore, the change of the pressure of the working fluid with respect to the change of the stroke becomes large at the minute opening degree (that is, when the stroke is small). From the viewpoint of controllability, it is desirable that the relationship between the stroke of the valve body and the pressure of the working fluid be linear. According to the configuration of (1), the change in the area of the flow path of the working fluid with respect to the position change of the valve body at the small opening degree becomes small, so the relationship between the stroke of the valve body at the small opening degree and the pressure of the working fluid Can be approached linearly.
 更に、作動流体の流路の面積変化を小さくすることができるので、作動流体の流れS(図8参照)の速度変化を緩和することができる。従って、流体力の変動を抑え、これにより、弁体の位置を安定させることができる。従って、(1)の減衰力制御弁は、微小開度時における弁体の位置制御性に優れ、精度良く制御可能な開度の範囲が広い。 Furthermore, since the change in area of the flow path of the working fluid can be reduced, the change in speed of the flow S (see FIG. 8) of the working fluid can be mitigated. Therefore, the fluctuation of the fluid force can be suppressed, whereby the position of the valve can be stabilized. Therefore, the damping force control valve of (1) is excellent in the position controllability of the valve body at the time of the minute opening degree, and the range of the opening degree which can be accurately controlled is wide.
 (2) (1)の減衰力制御弁であって、
 前記連通路は、前記弁体の軸線方向からみて前記弁体の軸線を基準として非点対称に配置されていることが好ましい。
(2) The damping force control valve of (1),
It is preferable that the communication passage be arranged in a point-symmetrical manner with respect to the axis of the valve body as viewed in the axial direction of the valve body.
 連通路が点対称に配置されている場合、弁体と軸受との微小な隙間が存在するため、弁体を軸線上に安定させることは難しい。そのため、作動流体の流れが変動してしまい、結果として、流れが不安定になるおそれがある。
 これに対し、(2)の構成によれば、連通路を敢えて非点対称とすることにより、作動流体の流れを安定させることができる。これにより、弁体の径方向の位置が安定し、流体力の変動を抑えることができ、その結果、軸線方向における弁体の位置制御の安定性及び正確性を向上させることができる。
In the case where the communication passages are arranged point-symmetrically, it is difficult to stabilize the valve body on the axis because there is a minute gap between the valve body and the bearing. Therefore, the flow of the working fluid may fluctuate, and as a result, the flow may become unstable.
On the other hand, according to the configuration of (2), the flow of the working fluid can be stabilized by intentionally making the communication passage point-symmetrical. As a result, the radial position of the valve body is stabilized, and fluctuations in fluid force can be suppressed. As a result, stability and accuracy of position control of the valve body in the axial direction can be improved.
 (3) (1)又は(2)の減衰力制御弁であって、
 前記連通路は、前記弁体の外周の一部に形成されていることが好ましい。
(3) The damping force control valve according to (1) or (2), wherein
It is preferable that the communication passage is formed in a part of the outer periphery of the valve body.
 弁体のストロークの変化に対する作動流体の流路の面積変化を緩やかにするために、例えば、弁体の閉塞部よりも下流側の部分(突出部)を長くすることが考えられる。しかし、下流側の部分を長くすると、弁体全体が長くなる。また、長いストロークを確保すると、小型のソレノイドを用いることが困難になる。弁の小型化及び軽量化の観点から、その事態は避けたい。そこで、本発明者は、検討を行い、微小開度時における弁体の位置制御性を改善させるためには、必ずしも弁体の外周の全域に連通路を形成する必要がなく、外周の一部に形成すれば、微小開度時における弁体の位置制御性を改善することができ、更に弁の小型化及び軽量化を実現することができることを見出した。 In order to moderate the change in the area of the flow path of the working fluid with respect to the change in the stroke of the valve body, for example, it is conceivable to lengthen the portion (protrusion) downstream of the closed portion of the valve body. However, if the downstream portion is made longer, the entire valve body becomes longer. In addition, securing a long stroke makes it difficult to use a small solenoid. I would like to avoid that situation from the viewpoint of reducing the size and weight of the valve. Therefore, in order to investigate and improve the position controllability of the valve at the time of the minute opening, the inventor does not necessarily have to form a communication passage in the entire outer periphery of the valve, and a part of the outer periphery It has been found that, if the valve is formed in the above, it is possible to improve the position controllability of the valve at the time of the minute opening, and further to realize the downsizing and weight reduction of the valve.
 (3)の構成によれば、微小開度時における弁体の位置制御性の改善と、弁の小型化及び軽量化とを高いレベルで実現できる。 According to the configuration of (3), it is possible to realize the improvement of the position controllability of the valve body at the minute opening degree, and the downsizing and weight reduction of the valve at a high level.
 (4) (1)~(3)のいずれか1の減衰力制御弁であって、
 前記弁体における下流側の外周にはテーパが形成されており、前記弁体の肉厚は、前記弁体の下流側に近づくにつれて薄くなることが好ましい。
(4) The damping force control valve according to any one of (1) to (3), wherein
It is preferable that a taper is formed on the outer periphery on the downstream side of the valve body, and the thickness of the valve body becomes thinner toward the downstream side of the valve body.
 図8に示す従来の減衰力制御弁は、弁体200の端面200cがポート234bと同一平面上に位置するときに全閉となるので、弁体200がポート234bに入り込まない。しかし、本発明では、弁体の一部がポートに入り込む。そこで、(4)の発明では、弁体における下流側の外周にテーパを形成し、弁体の肉厚を弁体の下流側に近付づくにつれて薄くすることにより、より円滑に弁体の端面をポートに挿入できる。 The conventional damping force control valve shown in FIG. 8 is fully closed when the end face 200c of the valve body 200 is located on the same plane as the port 234b, so the valve body 200 does not enter the port 234b. However, in the present invention, a part of the valve body enters the port. Therefore, in the invention of (4), the outer periphery on the downstream side of the valve body is tapered, and the thickness of the valve body is made thinner as it approaches the downstream side of the valve body, so that the end face of the valve body can be more smoothly. Can be inserted into the port.
 (5) (1)~(4)のいずれか1の減衰力制御弁であって、
 前記連絡路は、前記閉塞部の下流側の前記弁体の一部が前記ポート内に位置するときに前記ポートと前記第一作動流体室とを連通することが好ましい。
(5) The damping force control valve according to any one of (1) to (4), wherein
Preferably, the communication path establishes communication between the port and the first working fluid chamber when a portion of the valve downstream of the blocking portion is located in the port.
 (5)の構成によれば、流路が開くときに、先ず、弁体の一部がポート内に残った状態になり、それから、弁体がポートから離れた状態になる。弁体の一部がポート内に位置する状態では、弁体の一部(突出部)によってポートと第一作動流体室とが区画されているときに、連通路によってポートと第一作動流体室とが連通する。従って、微小開度時における弁体の位置変化に対する作動流体の流路の面積変化を小さくすることができる。 According to the configuration of (5), when the flow path is opened, first, a part of the valve body remains in the port, and then the valve body is separated from the port. When a portion of the valve body is located in the port, the port and the first working fluid chamber are separated by the communication passage when the port and the first working fluid chamber are separated by the portion (projecting portion) of the valve body And communicate with each other. Therefore, it is possible to reduce the change in the area of the flow path of the working fluid with respect to the change in the position of the valve body at the minute opening degree.
 (6) ショックアブソーバであって、
 前記ショックアブソーバは、(1)~(5)のいずれか1の減衰力制御弁を備えていることが好ましい。
(6) A shock absorber,
The shock absorber preferably includes the damping force control valve according to any one of (1) to (5).
 (6)の構成によれば、(1)~(5)のいずれか1の減衰力制御弁を備えるので、精度良く制御可能な減衰力の範囲が広く、高い応答性を実現できる。 According to the configuration of (6), since the damping force control valve according to any one of (1) to (5) is provided, the range of damping force that can be accurately controlled is wide, and high responsiveness can be realized.
 (7) (6)のショックアブソーバであって、
 前記ショックアブソーバは、前記減衰力制御弁において、前記第一作動流体室内の作動流体が前記ポートを介して前記第一作動流体室外へ排出される方向に作動流体を流すように構成されていることが好ましい。
(7) The shock absorber of (6),
The shock absorber is configured to flow the working fluid in a direction in which the working fluid in the first working fluid chamber is discharged to the outside of the first working fluid via the port in the damping force control valve. Is preferred.
 (7)の構成によれば、減衰力制御弁において、弁体の位置が比較的安定する方向に作動流体を流すことができる。従って、精度良く制御可能な減衰力の範囲がより広く、より高い応答性を実現できる。 According to the configuration of (7), in the damping force control valve, the working fluid can be flowed in the direction in which the position of the valve body is relatively stable. Therefore, the range of damping force that can be accurately controlled is wider, and higher responsiveness can be realized.
 この発明の上述の目的およびその他の目的、特徴、局面および利点は、添付図面に関連して行われる以下のこの発明の実施形態の詳細な説明から一層明らかとなろう。 The above and other objects, features, aspects and advantages of the present invention will become more apparent from the following detailed description of embodiments of the present invention taken in conjunction with the accompanying drawings.
 本発明によれば、微小開度時における弁体の位置制御性に優れ、精度良く制御可能な開度の範囲が広い減衰力制御弁を提供できる。 According to the present invention, it is possible to provide a damping force control valve which is excellent in position controllability of the valve body at the time of the minute opening, and which has a wide range of the controllable opening degree.
(a)は、本発明の一実施形態に係る減衰力制御弁を模式的に示す縦断面図であり、(b)は、その部分拡大断面図である。(A) is a longitudinal cross-sectional view which shows typically the damping force control valve which concerns on one Embodiment of this invention, (b) is the partial expanded sectional view. 図1に示す減衰力制御弁の全閉時(a)、微小開度時(b)、全開時(c)の様子を模式的に示す縦断面図である。It is a longitudinal cross-sectional view which shows typically a mode at the time of the micro opening degree (b), the full opening state (c) at the time of full closing (a) of the damping force control valve shown in FIG. (a)は、図1に示す弁体の下流側端を模式的に示す部分拡大側面図であり、(b)は、(a)のA方向視図であり、(c)は、(a)に示す弁体を反対方向Uに見た図である。(A) is a partial expanded side view which shows typically the downstream end of the valve body shown in FIG. 1, (b) is an A direction view of (a), (c) is (a) Is a view of the valve body shown in FIG. (a)は、弁体の下流側端の変形例を模式的に示す部分拡大側面図であり、(b)は、(a)のA方向視図であり、(c)は、(a)に示す弁体を反対方向Uに見た図である。(A) is a partial expanded side view which shows typically the modification of the downstream end of a valve body, (b) is an A direction view of (a), (c) is (a) It is the figure which looked at the valve body shown to in the reverse direction U. FIG. (a)~(i)は、弁体の下流側端形状の例を模式的に示す側面図である。(A) to (i) are side views schematically showing an example of the downstream end shape of the valve body. 図1に示す減衰力制御弁を備えたショックアブソーバの一例を示す油圧回路図である。It is a hydraulic circuit figure which shows an example of the shock absorber provided with the damping force control valve shown in FIG. 図1に示す減衰力制御弁を備えたショックアブソーバの一例を示す油圧回路図である。It is a hydraulic circuit figure which shows an example of the shock absorber provided with the damping force control valve shown in FIG. 微小開度時における従来の減衰力制御弁を模式的に示す部分拡大断面図である。It is a partial expanded sectional view which shows typically the conventional damping force control valve in the time of micro opening degree.
 以下、図面を参照してこの発明の実施の形態について説明する。
 図1(a)は、本発明の一実施形態に係る減衰力制御弁10を模式的に示す縦断面図であり、(b)は、その部分拡大断面図である。
 図1(a)では、減衰力制御弁10の全閉時の様子を示しており、(b)では、微小開度時の様子を示している。
 以下の説明においては、第一作動流体室30の作動流体が第一ポート30aを介して排出される方向を、下流方向Dと称する。また、弁体20の軸線方向Sに沿って下流方向Dと反対の方向を、反対方向Uと称する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
Fig.1 (a) is a longitudinal cross-sectional view which shows typically the damping force control valve 10 which concerns on one Embodiment of this invention, (b) is the elements on larger scale sectional drawing.
FIG. 1 (a) shows a state when the damping force control valve 10 is fully closed, and FIG. 1 (b) shows a state when the minute opening degree.
In the following description, the direction in which the working fluid of the first working fluid chamber 30 is discharged through the first port 30a is referred to as the downstream direction D. Further, a direction opposite to the downstream direction D along the axial direction S of the valve body 20 is referred to as an opposite direction U.
 減衰力制御弁10は、中空筒状の外筒11(ハウジング)を備える。外筒11は、下流方向D側に開口11aを備え、反対方向U側に開口11bを備える。外筒11の開口11bには、内筒12が嵌め込まれている。外筒11の反対方向U側端は、内側に曲げられ、軸線方向Sにおいて内筒12と当接しており、これにより、外筒11と内筒12とが防止されている。外筒11は、軸線方向Sにおける略中央部において軸心に向かって環状に突出するフランジ部11cを有する。フランジ部11cは、その内縁部において開口11bに向かって延びる筒状部11dを有する。筒状部11dには、筒状のガイド部材13が挿入される。ガイド部材13は、下流方向D側にフランジ部13aを有する。フランジ部11c、13aは、互いに当接している。これにより、外筒11内において、ガイド部材13の反対方向U側への移動が規制される。ガイド部材13は、ガイド孔13bを備えている。ガイド孔13bには、中空円筒状の弁体20が摺動可能に挿入されている。 The damping force control valve 10 includes a hollow cylindrical outer cylinder 11 (housing). The outer cylinder 11 includes an opening 11 a on the downstream direction D side and an opening 11 b on the opposite direction U side. The inner cylinder 12 is fitted into the opening 11 b of the outer cylinder 11. The opposite direction U side end of the outer cylinder 11 is bent inward and abuts against the inner cylinder 12 in the axial direction S, whereby the outer cylinder 11 and the inner cylinder 12 are prevented. The outer cylinder 11 has a flange portion 11 c that annularly protrudes toward the axial center at a substantially central portion in the axial direction S. The flange portion 11c has a cylindrical portion 11d extending toward the opening 11b at its inner edge. The cylindrical guide member 13 is inserted into the cylindrical portion 11 d. The guide member 13 has a flange portion 13a on the downstream direction D side. The flanges 11c and 13a are in contact with each other. Thereby, in the outer cylinder 11, the movement to the opposite direction U side of the guide member 13 is regulated. The guide member 13 is provided with a guide hole 13b. A hollow cylindrical valve body 20 is slidably inserted into the guide hole 13b.
 弁体20は、下流方向D側の端面20aと、反対方向U側の端面20bとを有している。弁体20は、端面20aから端面20bまで延びる通路21が形成されている。通路21は、下流方向D側の端面20aを含む大径部21aと、大径部21aの反対方向U側端から第二作動流体室40に向けて延びる連通部21bとを含む。連通部21bは、柱状空間であり、径は一定である。弁体20の下流方向D側の端面20aにおける通路21(大径部21a)の開口面積は、連通部21bの開口面積よりも大きい。通路21において、連通部21bの径が最も小さい。即ち、減衰力制御弁10において、連通部21bが、通路21内の最小径部である。軸線方向Sにおける大径部21aと連通部21bとの境界は、第一作動流体室30内に位置している。 The valve body 20 has an end face 20a on the downstream direction D side and an end face 20b on the opposite direction U side. The valve body 20 is formed with a passage 21 extending from the end face 20a to the end face 20b. The passage 21 includes a large diameter portion 21 a including an end surface 20 a on the downstream direction D side, and a communication portion 21 b extending toward the second working fluid chamber 40 from the opposite direction U side end of the large diameter portion 21 a. The communicating portion 21 b is a columnar space, and the diameter is constant. The opening area of the passage 21 (large diameter part 21a) at the end face 20a on the downstream direction D side of the valve body 20 is larger than the opening area of the communication part 21b. In the passage 21, the diameter of the communication portion 21b is the smallest. That is, in the damping force control valve 10, the communication portion 21b is the smallest diameter portion in the passage 21. The boundary between the large diameter portion 21 a and the communication portion 21 b in the axial direction S is located in the first working fluid chamber 30.
 弁体20の下流方向D側の端面20aは、第一作動流体室30の第一ポート30aと対向している。端面20aは、第一作動流体室30の壁面(底面26a)と当接しない。弁体20は、非磁性材料によって構成される。筒状部11dの反対方向U側に、中空筒状の支持部材14が設置されている。支持部材14は、筒状部11dと同軸上において筒状部11dと対向する。支持部材14は、下流方向D側に形成された開口14aと、反対方向U側に形成された開口14bと、軸線方向Sにおける略中央部において軸心に向かって環状に突出するガイド部14cとを有する。ガイド部14cの内周側には、円環状の軸受20cが設置されている。軸受20cには、弁体20が挿通されており、軸受20cは、弁体20を摺動可能に支持する。支持部材14の内周面において、ガイド部14cよりも開口14b側には、バネ受け部材15が固定されている。バネ受け部材15の外周面には、支持部材14とバネ受け部材15との間を密閉するための環状シール16(例えば、Oリング)が設けられている。支持部材14の反対方向U側端には、キャップ17が設けられている。キャップ17は、開口14bを塞いでいる。支持部材14内において、ガイド部14cとバネ受け部材15との間には、第二作動流体室40が形成されている。 The end face 20 a on the downstream direction D side of the valve body 20 faces the first port 30 a of the first working fluid chamber 30. The end surface 20a does not abut on the wall surface (bottom surface 26a) of the first working fluid chamber 30. The valve body 20 is made of a nonmagnetic material. A hollow cylindrical support member 14 is installed on the opposite direction U side of the cylindrical portion 11 d. The support member 14 faces the cylindrical portion 11 d coaxially with the cylindrical portion 11 d. The supporting member 14 has an opening 14a formed on the downstream direction D side, an opening 14b formed on the opposite direction U side, and a guide portion 14c which annularly protrudes toward the axial center at a substantially central portion in the axial direction S Have. An annular bearing 20c is installed on the inner peripheral side of the guide portion 14c. The valve body 20 is inserted into the bearing 20c, and the bearing 20c slidably supports the valve body 20. A spring receiving member 15 is fixed on the inner peripheral surface of the support member 14 closer to the opening 14 b than the guide portion 14 c. An annular seal 16 (e.g., an O-ring) for sealing between the support member 14 and the spring receiving member 15 is provided on the outer peripheral surface of the spring receiving member 15. A cap 17 is provided at the opposite direction U side end of the support member 14. The cap 17 closes the opening 14 b. In the support member 14, a second working fluid chamber 40 is formed between the guide portion 14 c and the spring receiving member 15.
 第二作動流体室40内に弁体20の端面20bが露出している。第二作動流体室40内において、弁体20の端面20bと、バネ受け部材15とによって、コイルバネ18が支持される。コイルバネ18は、弁体20を下流方向Dに向けて付勢している。筒状部11dと支持部材14とを接続するように、筒状の筒部材19が設けられている。筒部材19は、非磁性材料によって構成される。外筒11内には、ボビン22が設けられている。ボビン22は、支持部材14の外周面、及び筒部材19の外周面を覆う。ボビン22には、ソレノイドコイル23が巻かれている。外筒11の内周面において、ボビン22と、内筒12との間には、円環板状のキャップ24が取り付けられている。キャップ24は、磁性材料(例えば鉄)によって構成される。 The end face 20 b of the valve body 20 is exposed in the second working fluid chamber 40. In the second working fluid chamber 40, the coil spring 18 is supported by the end face 20 b of the valve body 20 and the spring receiving member 15. The coil spring 18 biases the valve body 20 in the downstream direction D. A cylindrical cylindrical member 19 is provided to connect the cylindrical portion 11 d and the support member 14. The cylindrical member 19 is made of a nonmagnetic material. In the outer cylinder 11, a bobbin 22 is provided. The bobbin 22 covers the outer peripheral surface of the support member 14 and the outer peripheral surface of the cylindrical member 19. A solenoid coil 23 is wound around the bobbin 22. An annular plate-like cap 24 is attached between the bobbin 22 and the inner cylinder 12 on the inner peripheral surface of the outer cylinder 11. The cap 24 is made of a magnetic material (for example, iron).
 弁体20の外周面において、ガイド部材13と、ガイド部14cとの間には、筒状のプランジャ25が固定されている。筒状部11dの内径は、プランジャ25の外径よりも大きい。また、支持部材14において、ガイド部14cよりも開口14a側の部分の内径は、プランジャ25の外径よりも大きい。したがって、プランジャ25は、ガイド部材13とガイド部14cとの間において軸線方向Sに移動できる。減衰力制御弁10においては、ソレノイドコイル23によって発生される磁界の磁束密度を調整することによって、プランジャ25をガイド部材13とガイド部14cとの間で軸線方向Sに移動させることができる。それにより、弁体20が軸線方向Sに移動する。ソレノイドコイル23とコイルバネ18とはソレノイドを構成する。プランジャ25の設置空間25aは、筒状部11d、ガイド部材13、ガイド部14cおよび筒部材19によって形成される。設置空間25a内にも、作動流体HOが充填されている。空間25aは、弁体20の外周面とガイド部材13の内周面との隙間を介して第一作動流体室30に連通している。空間25aは、弁体20の外周面とガイド部14cの内周面との隙間を介して第二作動流体室40に連通している。 On the outer peripheral surface of the valve body 20, a cylindrical plunger 25 is fixed between the guide member 13 and the guide portion 14c. The inner diameter of the cylindrical portion 11 d is larger than the outer diameter of the plunger 25. Further, in the support member 14, the inner diameter of the portion closer to the opening 14 a than the guide portion 14 c is larger than the outer diameter of the plunger 25. Therefore, the plunger 25 can move in the axial direction S between the guide member 13 and the guide portion 14c. In the damping force control valve 10, by adjusting the magnetic flux density of the magnetic field generated by the solenoid coil 23, the plunger 25 can be moved in the axial direction S between the guide member 13 and the guide portion 14c. Thereby, the valve body 20 moves in the axial direction S. The solenoid coil 23 and the coil spring 18 constitute a solenoid. The installation space 25 a of the plunger 25 is formed by the cylindrical portion 11 d, the guide member 13, the guide portion 14 c and the cylindrical member 19. The working fluid HO is also filled in the installation space 25a. The space 25 a communicates with the first working fluid chamber 30 via a gap between the outer peripheral surface of the valve body 20 and the inner peripheral surface of the guide member 13. The space 25 a communicates with the second working fluid chamber 40 through a gap between the outer peripheral surface of the valve body 20 and the inner peripheral surface of the guide portion 14 c.
 外筒11内において開口11a側には、ガイド部材13のフランジ部13aに接触するように、有底の略円筒形状のバルブヘッド26が設置されている。バルブヘッド26は、有底筒状を有する。バルブヘッド26の底面26aの中央には、第一ポート30aが形成されている。第一ポート30aは、弁体20の端面20aと対向する位置に設置されている。バルブヘッド26では、第一ポート30aから下流方向Dに向けて、作動流体路31が延びている。バルブヘッド26は、バルブヘッド26の外周壁26cに、第二ポート30bを備えている。バルブヘッド26では、第二ポート30bから径方向に向けて、作動流体路32が延びている。 A substantially cylindrical valve head 26 with a bottom is disposed on the side of the opening 11 a in the outer cylinder 11 so as to contact the flange portion 13 a of the guide member 13. The valve head 26 has a bottomed cylindrical shape. A first port 30 a is formed at the center of the bottom surface 26 a of the valve head 26. The first port 30 a is installed at a position facing the end face 20 a of the valve body 20. In the valve head 26, the working fluid path 31 extends from the first port 30a in the downstream direction D. The valve head 26 is provided with a second port 30 b on the outer peripheral wall 26 c of the valve head 26. In the valve head 26, the working fluid passage 32 extends radially from the second port 30b.
 バルブヘッド26とガイド部材13とによって、第一作動流体室30が構成されている。第一作動流体室30は、ガイド孔13bを備えている。第一作動流体室30と第二作動流体室40とは、弁体20を挟んで対向配置されている。弁体20の端面20aは、第一作動流体室30側に配置されている。第一作動流体室30と第二作動流体室40とは、弁体20の通路21を介して連通している。弁体20の外周面の周囲には、第一作動流体室30内の空間が位置している。作動流体は、作動流体路32から弁体20の径方向に沿って第一作動流体室30内に流入する。 A first working fluid chamber 30 is constituted by the valve head 26 and the guide member 13. The first working fluid chamber 30 is provided with a guide hole 13 b. The first working fluid chamber 30 and the second working fluid chamber 40 are disposed opposite to each other with the valve body 20 interposed therebetween. The end face 20 a of the valve body 20 is disposed on the first working fluid chamber 30 side. The first working fluid chamber 30 and the second working fluid chamber 40 are in communication via the passage 21 of the valve body 20. A space in the first working fluid chamber 30 is located around the outer peripheral surface of the valve body 20. The working fluid flows from the working fluid passage 32 along the radial direction of the valve body 20 into the first working fluid chamber 30.
 第一作動流体室30内では、ガイド部材13の下流側面13cと、バルブヘッド26の底面26aとが軸線方向Sに沿って対向している。第一作動流体室30内において、弁体20の外周には、固定具としてのサークリップ33が固定されている。なお、固定具はサークリップに限定されない。 In the first working fluid chamber 30, the downstream side surface 13c of the guide member 13 and the bottom surface 26a of the valve head 26 are opposed in the axial direction S. In the first working fluid chamber 30, a circlip 33 as a fixture is fixed to the outer periphery of the valve body 20. In addition, a fixing tool is not limited to a circlip.
 サークリップ33の下流方向D側において、サークリップ33とバルブヘッド26の底面26aとの間に、付勢体としてのコイルバネ34が設置されている。コイルバネ34には、弁体20が挿通されている。下流方向Dに近づくにつれて、コイルバネ34の径は大きくなっている。従って、作動流体路32から第一作動流体室30を介して作動流体路31に至る作動流体の流路が、コイルバネ34によって妨げられ難い。 Between the circlip 33 and the bottom surface 26 a of the valve head 26 on the downstream direction D side of the circlip 33, a coil spring 34 as a biasing body is installed. The valve body 20 is inserted into the coil spring 34. As the downstream direction D is approached, the diameter of the coil spring 34 increases. Therefore, the flow path of the working fluid from the working fluid path 32 to the working fluid path 31 via the first working fluid chamber 30 is less likely to be blocked by the coil spring 34.
 固定具としてのサークリップ33の反対方向U側において、サークリップ33とガイド部材13の下流側面13cとの間に、付勢体としてのコイルバネ35が設置されている。コイルバネ35には、弁体20が挿通されている。反対方向Uに近づくにつれて、コイルバネ35の径が大きくなっている。 A coil spring 35 as an urging body is installed between the circlip 33 and the downstream side surface 13c of the guide member 13 on the opposite direction U side of the circlip 33 as a fixing tool. The valve body 20 is inserted through the coil spring 35. As the reverse direction U is approached, the diameter of the coil spring 35 increases.
 コイルバネ18、34、35は、軸線方向Sに沿って、弁体20に対して力を加える。減衰力制御弁10では、ソレノイドコイル23の非通電時に、コイルバネ18、34、35によって、弁体20が移動し、弁体20が第一ポート30aを塞ぐ。なお、付勢体は、コイルバネに限定されず、例えば、板バネ等の従来公知の付勢体を採用できる。 The coil springs 18, 34, 35 apply a force to the valve body 20 along the axial direction S. In the damping force control valve 10, when the solenoid coil 23 is not energized, the valve body 20 is moved by the coil springs 18, 34, 35, and the valve body 20 closes the first port 30a. In addition, an urging body is not limited to a coil spring, For example, conventionally well-known urging bodies, such as a leaf | plate spring, are employable.
 次に、図1(b)を用いて、弁体20の先端形状について説明する。
 図中、符号50は、全閉時(図1参照)に第一ポート30aと対応する閉塞部である。言い換えると、閉塞部50が、弁体20の軸線方向において第一ポート30aと同位置に存在するとき、減衰力制御弁10は閉状態である。
Next, the tip shape of the valve body 20 will be described using FIG. 1 (b).
In the figure, reference numeral 50 denotes a closed portion corresponding to the first port 30a when fully closed (see FIG. 1). In other words, when the blocking portion 50 is present at the same position as the first port 30 a in the axial direction of the valve body 20, the damping force control valve 10 is in the closed state.
 弁体20において、閉塞部50の下流方向D側には、突出部51が位置する。弁体20の端面20aは、平坦部20dと、平坦部20dから反対方向Uに向けて傾斜する傾斜部20eとからなる。傾斜部20eは、外周方向を向いている。図1(b)に示す微小開度時、突出部51における弁体20の外周には、第一ポート30aと第一作動流体室30とを連通するための連通路52が形成されている。また、連通路52は、図1(b)に示すように弁体20の外周の一部(図中では略半分)に形成されている。このように、連通路52は、弁体20の軸線方向Sからみて弁体20の軸線Cを基準として非点対称に配置されている。即ち、弁体20の軸線Cを基準として、弁体20の外周において偏在している。 In the valve body 20, the protrusion 51 is located on the downstream direction D side of the closing portion 50. The end face 20a of the valve body 20 includes a flat portion 20d and an inclined portion 20e which is inclined in the opposite direction U from the flat portion 20d. The inclined portion 20 e faces in the outer peripheral direction. At the minute opening shown in FIG. 1B, a communication passage 52 for communicating the first port 30a with the first working fluid chamber 30 is formed on the outer periphery of the valve body 20 in the protrusion 51. Further, as shown in FIG. 1 (b), the communication passage 52 is formed in a part (approximately half in the figure) of the outer periphery of the valve body 20. As described above, the communication passage 52 is disposed in an astigmatic manner with respect to the axis C of the valve body 20 as viewed in the axial direction S of the valve body 20. That is, it is unevenly distributed in the outer periphery of the valve body 20 on the basis of the axis C of the valve body 20.
 図1(b)に示す微小開度時では、閉塞部50の下流方向Dに位置する突出部51は、第一ポート30a内に位置する一方、連通路52は、第一ポート30aと第一作動流体室30とを連通する。このように、減衰力制御弁10では、突出部51の一部が第一ポート30a内に位置しつつ、連通路52を介して、第一ポート30aと第一作動流体室30とが連通する。 At the time of the minute opening shown in FIG. 1 (b), the projecting portion 51 located in the downstream direction D of the closing portion 50 is located in the first port 30a, while the communication passage 52 is the first port 30a and the first port 30a. It communicates with the working fluid chamber 30. As described above, in the damping force control valve 10, the first port 30a and the first working fluid chamber 30 communicate with each other through the communication passage 52 while a part of the protrusion 51 is positioned in the first port 30a. .
 次に、図2を用いて、減衰力制御弁の動作について説明する。
 図2は、図1に示す減衰力制御弁の全閉時(a)、微小開度時(b)、全開時(c)の様子を模式的に示す縦断面図である。
Next, the operation of the damping force control valve will be described with reference to FIG.
FIG. 2 is a longitudinal sectional view schematically showing the damping force control valve shown in FIG. 1 when fully closed (a), when it is slightly open (b), and when it is fully opened (c).
 ソレノイドコイル23の非通電時には、図2(a)に示すように、コイルバネ18、34、35により、弁体20が下流方向D側に位置し、第一ポート30aが閉じられている。これにより、作動流体路32から第一作動流体室30を介して作動流体路31に至る流路(図2(b)、(c)における流路T)が遮断される。 When the solenoid coil 23 is not energized, as shown in FIG. 2A, the valve body 20 is positioned on the downstream direction D side by the coil springs 18, 34, 35, and the first port 30a is closed. Thereby, the flow path (flow path T in FIGS. 2B and 2C) from the working fluid path 32 to the working fluid path 31 via the first working fluid chamber 30 is blocked.
 弁体20の端面20a(図1参照)の略半分には、スラント加工が施されている。これにより、端面20aは、平坦部20dと、平坦部20dから反対方向Dに向けて傾斜する傾斜部20eとからなる。図2(a)では、平坦部20dは、第一ポート30aよりも下流方向D側に位置し、作動流体路31に入り込んでいる。傾斜部20eの反対方向U側の端縁は、弁体20の軸線方向Sにおいて第一ポート30aと同位置に存在する。 About half of the end face 20a (see FIG. 1) of the valve body 20 is slanted. Thus, the end face 20a includes the flat portion 20d and the inclined portion 20e which is inclined in the opposite direction D from the flat portion 20d. In FIG. 2A, the flat portion 20d is located on the downstream direction D side of the first port 30a and enters the working fluid passage 31. The edge on the opposite direction U side of the inclined portion 20 e is present at the same position as the first port 30 a in the axial direction S of the valve body 20.
 ソレノイドコイル23に通電され、減衰力制御弁10が微小開度(例えば、約0.5mm)に調整されるときには、図2(b)に示すように、平坦部20dと第一ポート30aとが弁体20の軸線方向Sにおいて同位置に存在する。一方、傾斜部20eと、第一ポート30aとの間には間隔が空いている。この間隔が、作動流体の流路Tである。微小開度時では、作動流体の流路Tが狭いので、流路Tを通過する作動流体の流れXは比較的速い。作動流体の流れXは、作動流体路31の内壁に衝突し、流れXの一部は、そのまま下流方向Dに向かう。また、流れXの一部は、反対方向Uに向かう流れYになる。弁体20の下流方向D側端には、大径部21aが形成されているので、作動流体の流れYは、大径部21a内で渦を成して拡散しながら作動流体の流れXに戻り易い。つまり、大径部21aは、整流作用を有し、作動流体の流れを下流方向Dに向けて整える。これにより、作動流体路31と第二作動流体室40との圧力差の増大が防止され、第一ポート30aに向けて弁体20に加わる力を抑制できる。また、大径部21aが形成されているので、作動流体の流れXが端面20a(傾斜部20e)に沿って流れる距離が短い。従って、第一ポート30aに向けて弁体20に加わる力を抑制することができる。これにより、減衰力制御弁10は、微小開度時における弁体20の位置制御性に優れ、精度良く制御可能な開度の範囲が広く、より高い応答性を実現できる。 When the solenoid coil 23 is energized and the damping force control valve 10 is adjusted to a minute opening (for example, about 0.5 mm), as shown in FIG. 2B, the flat portion 20 d and the first port 30 a It exists in the same position in the axial direction S of the valve body 20. On the other hand, there is an interval between the inclined portion 20e and the first port 30a. This interval is the flow path T of the working fluid. At the minute opening degree, since the flow path T of the working fluid is narrow, the flow X of the working fluid passing through the flow path T is relatively fast. The flow X of the working fluid collides with the inner wall of the working fluid passage 31, and a part of the flow X goes in the downstream direction D as it is. Also, a part of the flow X becomes a flow Y in the opposite direction U. Since the large diameter portion 21a is formed at the downstream direction D side end of the valve body 20, the flow Y of the working fluid swirls in the large diameter portion 21a and diffuses into the flow X of the working fluid while diffusing. It is easy to return. That is, the large diameter portion 21a has a rectifying action, and regulates the flow of the working fluid in the downstream direction D. Thereby, the increase in the pressure difference between the working fluid passage 31 and the second working fluid chamber 40 is prevented, and the force applied to the valve body 20 toward the first port 30 a can be suppressed. Further, since the large diameter portion 21a is formed, the distance by which the flow X of the working fluid flows along the end face 20a (the inclined portion 20e) is short. Accordingly, it is possible to suppress the force applied to the valve body 20 toward the first port 30a. As a result, the damping force control valve 10 is excellent in position controllability of the valve body 20 at the time of the minute opening degree, and the range of the controllable opening degree is wide, and higher responsiveness can be realized.
 また、図2(b)に示すように、弁体20の外周縁の一部が第一ポート30a内に位置しているとき、流路Tは、弁体20の外周縁の一部と第一ポート30aの外周縁の一部との間隔である。従って、弁体20のストローク(軸線方向Sの変位量)に対する流路Tの開口面積の変化が比較的小さい。 Further, as shown in FIG. 2B, when a part of the outer peripheral edge of the valve body 20 is located in the first port 30a, the flow path T is a part of the outer peripheral edge of the valve body 20 and the first It is a distance from a part of the outer peripheral edge of one port 30a. Therefore, the change in the opening area of the flow passage T with respect to the stroke (displacement amount in the axial direction S) of the valve body 20 is relatively small.
 ソレノイドコイル23に通電され、減衰力制御弁10の開度が最大(例えば、約2mmの間隔)に調整されるときには、図2(c)に示すように、弁体20が第一ポート30aから離れる。弁体20と第一ポート30aとが離れているときには、流路Tは、弁体20の全外周縁と第一ポート30aの全外周縁との間隔である。従って、弁体20のストロークに対する流路Tの開口面積の変化が比較的大きい。 When the solenoid coil 23 is energized and the opening of the damping force control valve 10 is adjusted to the maximum (for example, an interval of about 2 mm), as shown in FIG. 2C, the valve body 20 is moved from the first port 30a. Leave. When the valve body 20 and the first port 30a are separated, the flow path T is a distance between the entire outer peripheral edge of the valve body 20 and the entire outer peripheral edge of the first port 30a. Therefore, the change in the opening area of the flow passage T with respect to the stroke of the valve body 20 is relatively large.
 このように、減衰力制御弁10では、微小開度時には、弁体20のストロークに対する流路Tの開口面積の変化が小さく、開度が大きい時には、弁体20のストロークに対する流路Tの開口面積の変化が大きい。これにより、微小開度時における鋭敏な減衰力の制御特性を抑制しつつ、精度良く制御可能な開度の範囲を広げることができる。 Thus, in the damping force control valve 10, the change in the opening area of the flow passage T with respect to the stroke of the valve body 20 is small when the opening degree is small, and the opening of the flow path T with respect to the stroke of the valve body 20 when the opening degree is large. The change in area is large. As a result, it is possible to widen the range of the precisely controllable opening degree while suppressing the control characteristic of the sharp damping force at the minute opening degree.
 
 図3(a)は、図1に示す弁体の下流側端を模式的に示す部分拡大側面図であり、(b)は、(a)のA方向視図であり、(c)は、(a)に示す弁体を反対方向Uに見た図である。

Fig.3 (a) is a partial expanded side view which shows typically the downstream end of the valve body shown in FIG. 1, (b) is an A direction view of (a), (c) is It is the figure which looked at the valve body shown to (a) in the reverse direction U. FIG.
 図3に示すように、弁体20には、外周テーパ部20fが形成されている。軸線方向Sにおいて、外周テーパ部20fの長さは、大径部21aの長さよりも短い。 As shown in FIG. 3, an outer peripheral tapered portion 20 f is formed on the valve body 20. In the axial direction S, the length of the outer peripheral tapered portion 20f is shorter than the length of the large diameter portion 21a.
 外周テーパ部20fは、突出部51に形成されている。突出部51が第一ポート部30a内に位置するとき(図1参照)、外周テーパ部20fにおいて、第一ポート部30aと第一作動流体室30とが連通する。外周テーパ部20fは、連通路を構成する。外周テーパ部20fでは、下流方向Dに近づくにつれて弁体20の肉厚は薄くなるが0にならない。従って、外周テーパ部20fでは、第一作動流体室30と弁体20の通路21とは直接連通しない。 The outer circumferential tapered portion 20 f is formed in the projecting portion 51. When the projecting portion 51 is positioned in the first port portion 30a (see FIG. 1), the first port portion 30a and the first working fluid chamber 30 communicate with each other in the outer peripheral tapered portion 20f. The outer circumferential tapered portion 20f constitutes a communication passage. In the outer circumferential tapered portion 20 f, the thickness of the valve body 20 becomes thinner as it approaches the downstream direction D, but does not become zero. Therefore, in the outer peripheral tapered portion 20 f, the first working fluid chamber 30 and the passage 21 of the valve body 20 do not directly communicate with each other.
 傾斜部20eも、上述したように連通路52(図1(b)参照)を構成する。傾斜部20eでは、第一作動流体室30と第一ポート30aとが連通し、且つ第一作動流体室30と弁体20の通路21とが直接連通する。このように、外周テーパ部20fにより構成される連通路と、傾斜部20eにより構成される連通路とは異なる。本発明における連通路は、第一作動流体室30と、第一ポート30a及び通路21とを連通することが好ましい。作動流体をよりスムーズに流すことができるからである。なお、外周テーパ部20fと軸線方向Sとが成す角は、特に限定されないが、例えば、10°以下であることが好ましい。 The inclined portion 20e also constitutes the communication passage 52 (see FIG. 1B) as described above. In the inclined portion 20 e, the first working fluid chamber 30 and the first port 30 a communicate with each other, and the first working fluid chamber 30 and the passage 21 of the valve body 20 directly communicate with each other. As described above, the communication passage formed by the outer peripheral tapered portion 20f is different from the communication passage formed by the inclined portion 20e. The communication passage in the present invention preferably communicates the first working fluid chamber 30 with the first port 30 a and the passage 21. This is because the working fluid can flow more smoothly. In addition, although the angle which the outer periphery taper part 20f and the axial direction S comprise is not specifically limited, For example, it is preferable that it is 10 degrees or less.
 次に、本発明の他の実施形態について、図4を用いて説明する。
 図4(a)は、弁体の下流側端の変形例を模式的に示す部分拡大側面図であり、(b)は、(a)のA方向視図であり、(c)は、(a)に示す弁体を反対方向Uに見た図である。
Next, another embodiment of the present invention will be described with reference to FIG.
Fig.4 (a) is a partial expanded side view which shows typically the modification of the downstream end of a valve body, (b) is an A direction view of (a), (c) is It is the figure which looked at the valve body shown to a) in the reverse direction U. FIG.
 図4に示す弁体20は、大径部21aの形状を除いて、図3に示す弁体と同じである。図4では、図1及び図2に示す構成と同じ構成については同じ符号を付しており、以下において、その説明を省略又は簡略化する。 The valve body 20 shown in FIG. 4 is the same as the valve body shown in FIG. 3 except for the shape of the large diameter portion 21a. In FIG. 4, the same components as those shown in FIGS. 1 and 2 are denoted by the same reference numerals, and the description thereof will be omitted or simplified.
 図4に示す大径部21aは、円柱状の空間を有している。図4に示す弁体20であっても、図1~3に示す弁体20と同様に、連通路から流入する作動流体は、図2(b)に示す作動流体の流れXのように流れる。 The large diameter portion 21a shown in FIG. 4 has a cylindrical space. Even with the valve body 20 shown in FIG. 4, the working fluid flowing in from the communication passage flows like the flow X of the working fluid shown in FIG. 2 (b), similarly to the valve body 20 shown in FIGS. .
 図5(a)~(i)は、弁体の下流側端形状の例を模式的に示す縦断面図である。 5 (a) to 5 (i) are longitudinal cross-sectional views schematically showing examples of the downstream side end shape of the valve body.
 図5(a)では、弁体20の下流方向D側の端面20aを含むように、円筒状の大径部21aが形成されている。大径部21aの反対方向U側には連通部21bが形成されている。弁体20の軸線Cは、連通部の軸線と同じである。弁体20の軸線Cは、大径部21aの軸線C´と異なっている。また、端面20aの外周縁には、外周テーパ部20fが形成されている。外周テーパ部20fによって連通路が形成される。 In FIG. 5A, the cylindrical large diameter portion 21a is formed so as to include the end face 20a on the downstream direction D side of the valve body 20. A communicating portion 21b is formed on the opposite direction U side of the large diameter portion 21a. The axis C of the valve body 20 is the same as the axis of the communicating portion. The axis C of the valve body 20 is different from the axis C 'of the large diameter portion 21a. In addition, an outer peripheral tapered portion 20f is formed on the outer peripheral edge of the end face 20a. A communication passage is formed by the outer peripheral tapered portion 20f.
 図5(b)では、弁体20の下流方向D側の端面20aを含むように、大径部21aが形成されている。大径部21aは、下流方向D側に位置する円筒状の部分と、反対方向U側に位置するテーパ状の部分とからなり、円筒状の部分とテーパ状の部分とでは、軸線C´が共通しているが、軸線C´は、弁体20の軸線Cと異なっている。また、端面20aの外周縁には、外周テーパ部20fが形成されている。外周テーパ部20fによって連通路が形成される。 In FIG. 5 (b), the large diameter portion 21 a is formed so as to include the end face 20 a on the downstream direction D side of the valve body 20. The large diameter portion 21a is composed of a cylindrical portion located on the downstream direction D side and a tapered portion located on the opposite direction U side, and the axial line C 'is between the cylindrical portion and the tapered portion. Although common, the axis C 'is different from the axis C of the valve body 20. In addition, an outer peripheral tapered portion 20f is formed on the outer peripheral edge of the end face 20a. A communication passage is formed by the outer peripheral tapered portion 20f.
 図5(c)では、弁体20の下流方向D側の端面20aを含むように、大径部21aが形成されている。大径部21aは、テーパ形状を有している。端面20aの外周縁には、外周テーパ部20fが形成されている。外周テーパ部20fによって連通路が形成される。 In FIG. 5C, the large diameter portion 21a is formed so as to include the end face 20a on the downstream direction D side of the valve body 20. The large diameter portion 21a has a tapered shape. An outer peripheral tapered portion 20f is formed on the outer peripheral edge of the end face 20a. A communication passage is formed by the outer peripheral tapered portion 20f.
 図5(d)では、弁体20の下流方向D側に端面20aを含むように、円筒状の大径部21aが形成されている。弁体20と大径部21aとでは軸線が合致している。また、端面20aの外周側には、外周テーパ部20fが形成されている。外周テーパ部20fによって連通路が形成される。 In FIG. 5D, the cylindrical large diameter portion 21a is formed so as to include the end face 20a on the downstream direction D side of the valve body 20. The axes of the valve body 20 and the large diameter portion 21a coincide with each other. In addition, an outer peripheral tapered portion 20f is formed on the outer peripheral side of the end face 20a. A communication passage is formed by the outer peripheral tapered portion 20f.
 図5(e)では、弁体20の下流方向D側の端面20aを含むように、大径部21aが形成されている。大径部21aは、下流方向D側に位置する円筒状の部分と、反対方向U側に位置するテーパ状の部分とからなり、弁体20の軸線と、円筒状の部分及びテーパ状の部分の軸線とが共通している。また、端面20aの外周側には、外周テーパ部20fが形成されている。外周テーパ部20fによって連通路が形成される。 In FIG. 5E, the large diameter portion 21a is formed so as to include the end face 20a on the downstream direction D side of the valve body 20. The large diameter portion 21a is composed of a cylindrical portion located on the downstream direction D side and a tapered portion located on the opposite direction U side, and the axis of the valve body 20, the cylindrical portion and the tapered portion And the axis of. In addition, an outer peripheral tapered portion 20f is formed on the outer peripheral side of the end face 20a. A communication passage is formed by the outer peripheral tapered portion 20f.
 図5(f)は、図3と同形状の弁体を示している。図5(f)では、弁体20の下流方向D側に大径部21aが形成されている。大径部21aは、テーパ形状を有している。端面20aの外周縁には、外周テーパ部20fが形成されている。また、弁体20の端面20aの略半分には、スラント加工が施されており、端面20aは、平坦部20dと、平坦部20dから反対方向Dに向けて傾斜する傾斜部20eとからなる。傾斜部20eは平坦である。傾斜部20eと外周テーパ部20fとによって連通路が形成される。 FIG.5 (f) has shown the valve body of FIG. 3 and the same shape. In (f) of FIG. 5, the large diameter portion 21 a is formed on the downstream direction D side of the valve body 20. The large diameter portion 21a has a tapered shape. An outer peripheral tapered portion 20f is formed on the outer peripheral edge of the end face 20a. Further, approximately half of the end face 20a of the valve body 20 is slanted, and the end face 20a includes a flat portion 20d and an inclined portion 20e which is inclined in the opposite direction D from the flat portion 20d. The inclined portion 20e is flat. A communication path is formed by the inclined portion 20e and the outer peripheral tapered portion 20f.
 図5(g)の弁体20は、端面20aにスラント加工が施されている点を除いて、図5(d)と同様である。傾斜部20eと外周テーパ部20fとによって連通路が形成される。 The valve body 20 of FIG. 5 (g) is the same as FIG. 5 (d) except that the end face 20a is subjected to slant processing. A communication path is formed by the inclined portion 20e and the outer peripheral tapered portion 20f.
 図5(h)の弁体20は、端面20aにスラント加工が施されている点を除いて、図5(e)と同様である。傾斜部20eと外周テーパ部20fとにとって連通路が形成される。 The valve body 20 of FIG. 5 (h) is the same as FIG. 5 (e) except that the end face 20a is subjected to slant processing. A communication passage is formed between the inclined portion 20e and the outer peripheral tapered portion 20f.
 図5(i)の弁体20は、傾斜部20eが曲面(凸面)である点を除いて、図5(f)の弁体20と同じである。傾斜部20eと外周テーパ部20fとにとって連通路が形成される。 The valve body 20 of FIG. 5 (i) is the same as the valve body 20 of FIG. 5 (f) except that the inclined portion 20e is a curved surface (convex surface). A communication passage is formed between the inclined portion 20e and the outer peripheral tapered portion 20f.
 図5(j)の弁体20は、弁体20の軸線Cと、テーパ状の大径部21aの軸線C´とがズレている点を除いて、図5(f)と同じである。傾斜部20eと外周テーパ部20fとにとって連通路が形成される。図5に示すように、本発明では、弁体20の端面20aの一部に形成された傾斜部20eを備え、傾斜部20eは、弁体20の径方向の外側をむいていることが好ましい。比較的開度の小さいときに弁体20のストロークによる連通路の開口面積の変化を小さくできるからである。 The valve body 20 of FIG. 5 (j) is the same as FIG. 5 (f) except that the axis C of the valve 20 and the axis C 'of the tapered large diameter portion 21a are shifted. A communication passage is formed between the inclined portion 20e and the outer peripheral tapered portion 20f. As shown in FIG. 5, in the present invention, it is preferable to have an inclined portion 20 e formed on a part of the end face 20 a of the valve body 20, and the inclined portion 20 e is facing the outside of the valve body 20 in the radial direction. . This is because the change in the opening area of the communication passage due to the stroke of the valve body 20 can be reduced when the opening degree is relatively small.
 次に、本発明の一実施形態に係るショックアブソーバ100について説明する。
 図6及び図7は、図1に示す減衰力制御弁10を備えたショックアブソーバ100を示す油圧回路図である。
Next, a shock absorber 100 according to an embodiment of the present invention will be described.
6 and 7 are hydraulic circuit diagrams showing a shock absorber 100 provided with the damping force control valve 10 shown in FIG.
 ショックアブソーバ100は、油圧シリンダ112を備える。油圧シリンダ112内には、ピストンアセンブリ144が設置されている。油圧シリンダ112内は、ピストンアセンブリ144によって、2つの作動流体室158、160に区画されている。ピストンロッド162の一端は、油圧シリンダ112の一端側から、油圧シリンダ112内に挿入されており、ピストンアセンブリ144に固定されている。ピストンロッド162の他端は、車両の車体側(図示せず)に接続されている。また、油圧シリンダ112の他端は、車体の車輪側(図示せず)に接続されている。 The shock absorber 100 is provided with a hydraulic cylinder 112. In the hydraulic cylinder 112, a piston assembly 144 is installed. The hydraulic cylinder 112 is divided into two working fluid chambers 158 and 160 by a piston assembly 144. One end of the piston rod 162 is inserted into the hydraulic cylinder 112 from one end side of the hydraulic cylinder 112 and is fixed to the piston assembly 144. The other end of the piston rod 162 is connected to the vehicle body side (not shown) of the vehicle. The other end of the hydraulic cylinder 112 is connected to the wheel side (not shown) of the vehicle body.
 ピストンアセンブリ144は、複数枚のシムからなる減衰バルブ148減衰バルブ148、150を備えている。減衰バルブ148は、作動流体室160から作動流体室158へ作動流体を流すことができ、このときに減衰力が発生する(伸び減衰)。その逆方向には作動流体を流すことはできない。減衰バルブ150は、作動流体室158から作動流体室160へ作動流体を流すことができ、このときに減衰力が発生する(縮み減衰)。 The piston assembly 144 includes a plurality of shims damping valves 148 damping valves 148, 150. The damping valve 148 can flow the working fluid from the working fluid chamber 160 to the working fluid chamber 158, at which time a damping force is generated (elongation damping). The working fluid can not flow in the opposite direction. The damping valve 150 can flow the working fluid from the working fluid chamber 158 to the working fluid chamber 160, at which time a damping force is generated (shrinkage damping).
 作動流体室158と、リザーバタンク114との間には、減衰力調整装置116が設置されている。減衰力調整装置116では、減衰力制御弁10と、複数枚のシムからなる減衰バルブ116bと、チェックバルブ116cとが並列に設置されている。減衰バルブ116bは、油圧シリンダ112側からリザーバタンク114側に作動流体を流すことができ、その逆方向には作動流体を流すことができない。チェックバルブ116cは、リザーバタンク114側から油圧シリンダ112側に作動流体を流すことができる。その逆方向には作動流体を流すことができない。リザーバタンク114内には、作動流体Oと気体Gとが収容されており、作動流体Oと気体Gとが界面OSで接触している。作動流体Oは、例えば、作動油等である。気体Gは、例えば、窒素ガスや空気等である。 A damping force adjustment device 116 is installed between the working fluid chamber 158 and the reservoir tank 114. In the damping force adjustment device 116, the damping force control valve 10, a damping valve 116b composed of a plurality of shims, and a check valve 116c are installed in parallel. The damping valve 116 b can flow the working fluid from the hydraulic cylinder 112 side to the reservoir tank 114 side, and can not flow the working fluid in the opposite direction. The check valve 116 c can flow the working fluid from the reservoir tank 114 side to the hydraulic cylinder 112 side. The working fluid can not flow in the opposite direction. The working fluid O and the gas G are contained in the reservoir tank 114, and the working fluid O and the gas G are in contact at the interface OS. The working fluid O is, for example, working oil or the like. The gas G is, for example, nitrogen gas or air.
 減衰力制御弁10は、図2(b)、(c)に示す状態においては、作動流体を、作動流体路32から第一作動流体室30を介して作動流体路31に向かう方向に流すことができる。また、減衰力制御弁10は、その逆方向に作動流体を流すことも可能である。また、減衰力制御弁10は、図6及び図7に示すように、減衰バルブ116bに対するバイパスとして設置されている。 In the state shown in FIGS. 2B and 2C, the damping force control valve 10 causes the working fluid to flow from the working fluid passage 32 to the working fluid passage 31 via the first working fluid chamber 30. Can. Further, the damping force control valve 10 can also flow the working fluid in the opposite direction. Further, as shown in FIGS. 6 and 7, the damping force control valve 10 is installed as a bypass for the damping valve 116b.
 ピストンアセンブリ144がX1方向に移動するとき、油圧シリンダ112内に入ったピストンロッド162の体積分の作動流体が、油圧シリンダ112から排出され、リザーバタンク114に移動する。減衰力制御弁10と減衰バルブ116bとは互いにバイパスの関係にあり、油圧シリンダ112から排出された作動流体HOは、図6に示すように、減衰力制御弁10および減衰バルブ116bを通過してリザーバタンク114に流入する。減衰力制御弁10では、作動流体が第一作動流体室30から第一ポート30aを介して排出される向きに流れる。減衰力調整装置116(減衰バルブ116b及び減衰力制御弁10)を流れる時の抵抗が、油圧シリンダ112内の作動流体の圧力を増大させ、ピストンロッド162のX1方向の移動に抵抗する力(シリンダ内の作動流体の圧力×ピストンロッド162の断面積)、即ち圧縮減衰力(1)が発生する。ここで減衰力制御弁10の開度を調整すると、減衰バルブ116bと減衰力制御弁10との流量の割合が変化するので、減衰バルブ116の抵抗が調整されて、ピストンロッド162に作用する圧縮減衰力が調整される。また、ピストンアセンブリ144の減衰バルブ150にも作動流体室158から作動流体室160の方向に作動流体が流れ、そのときの抵抗がピストンアセンブリ144に作用し、ピストンロッド162に圧縮減衰力(2)として付加される。 When the piston assembly 144 moves in the X1 direction, the working fluid of the volume of the piston rod 162 that has entered the hydraulic cylinder 112 is discharged from the hydraulic cylinder 112 and moves to the reservoir tank 114. The damping force control valve 10 and the damping valve 116b are in a bypass relationship with each other, and the working fluid HO discharged from the hydraulic cylinder 112 passes through the damping force control valve 10 and the damping valve 116b as shown in FIG. It flows into the reservoir tank 114. In the damping force control valve 10, the working fluid flows in the direction of being discharged from the first working fluid chamber 30 via the first port 30a. The resistance when flowing through the damping force adjusting device 116 (the damping valve 116b and the damping force control valve 10) increases the pressure of the working fluid in the hydraulic cylinder 112 and resists the movement of the piston rod 162 in the X1 direction (cylinder The pressure of the working fluid (cross sectional area of the piston rod 162), that is, the compression damping force (1) is generated. Here, when the opening degree of the damping force control valve 10 is adjusted, the ratio of the flow rate between the damping valve 116 b and the damping force control valve 10 changes, so that the resistance of the damping valve 116 is adjusted and the compression acting on the piston rod 162 Damping force is adjusted. Also, the working fluid flows from the working fluid chamber 158 toward the working fluid chamber 160 also in the damping valve 150 of the piston assembly 144, and the resistance at that time acts on the piston assembly 144 and the compression damping force (2) on the piston rod 162 Is added as
 一方、ピストンアセンブリ144がX2方向に移動するとき、図7に示すように、ピストンロッド162が退出した体積分の作動流体が、チェックバルブ116cを抵抗なく通過して油圧シリンダ112に戻る。
 このように、ショックアブソーバ100では、圧縮時の減衰力の一部を減衰力制御弁10により調整可能である。具体的には、ショックアブソーバ100では、圧縮時の減衰力(即ち、上記の圧縮減衰力(1)及び(2))のうち、ピストンロッド162の進入により発生する圧縮減衰力(1)を調整することができる。
 なお、本発明は、この例に限定されず、ショックアブソーバ100は、例えば、圧縮時の減衰力の全部を減衰力制御弁10により調整可能であってもよい。具体的には、図6及び図7に示す例において、減衰バルブ150に代えて、作動流体室158から作動流体室160に作動流体を流すチェックバルブが設けられていてもよい。このように構成されたショックアブソーバ100では、ピストンアセンブリ144がX1方向に移動するとき、上記の圧縮減衰力(1)が生じるが、上記の圧縮減衰力(2)が生じない。従って、圧縮減衰力(1)を調整することにより、圧縮時の減衰力の全部を調整することができる。
On the other hand, when the piston assembly 144 moves in the X2 direction, as shown in FIG. 7, the working fluid of the volume from which the piston rod 162 is withdrawn passes through the check valve 116 c without resistance and returns to the hydraulic cylinder 112.
Thus, in the shock absorber 100, part of the damping force at the time of compression can be adjusted by the damping force control valve 10. Specifically, in the shock absorber 100, the compression damping force (1) generated by the approach of the piston rod 162 in the damping forces during compression (ie, the above-mentioned compression damping forces (1) and (2)) is adjusted can do.
The present invention is not limited to this example, and for example, the shock absorber 100 may be capable of adjusting all of the damping force at the time of compression by the damping force control valve 10. Specifically, in the example shown in FIG. 6 and FIG. 7, instead of the damping valve 150, a check valve may be provided to flow the working fluid from the working fluid chamber 158 to the working fluid chamber 160. In the shock absorber 100 configured as described above, when the piston assembly 144 moves in the X1 direction, the above-described compression damping force (1) is generated, but the above-described compression damping force (2) is not generated. Therefore, by adjusting the compression damping force (1), it is possible to adjust all of the damping forces at the time of compression.
 以上、減衰力制御弁10では、弁体20の突出部51の外周には、第一ポート30aと第一作動流体室30とを連通するための連通路が形成されている。具体的には、傾斜部20eと外周テーパ部20fとによって連通路が形成されている。従って、弁体20が、閉塞部50により第一ポート30aを閉じた状態から、反対方向Uに移動するときに、先ず、突出部51が第一ポート50内に位置する状態になる。それから、弁体20が第一ポート30aから離れた状態になる。これにより、微小開度時における弁体20の位置変化に対する作動流体の流路の面積変化を小さくすることができる。その結果、微小開度時における鋭敏な減衰力の制御特性を抑制することができ、微小開度時における弁体のストロークと作動流体の圧力との関係を線形に近付けることができる。更に、作動流体の流路の面積変化を小さくすることができるので、作動流体の流れXの速度変化を緩和することができる。従って、流体力の変動を抑え、これにより、弁体の位置を安定させることができる。 As described above, in the damping force control valve 10, a communication passage for connecting the first port 30a and the first working fluid chamber 30 is formed on the outer periphery of the projecting portion 51 of the valve body 20. Specifically, the communication passage is formed by the inclined portion 20e and the outer peripheral tapered portion 20f. Therefore, when the valve body 20 moves in the opposite direction U from the state in which the first port 30 a is closed by the closing portion 50, the protrusion 51 is first positioned in the first port 50. Then, the valve body 20 is separated from the first port 30a. Accordingly, it is possible to reduce the change in the area of the flow path of the working fluid with respect to the change in the position of the valve body 20 at the minute opening degree. As a result, it is possible to suppress the control characteristic of the sharp damping force at the minute opening degree, and to make the relationship between the stroke of the valve body at the minute opening degree and the pressure of the working fluid close to linear. Furthermore, since the change in area of the working fluid flow path can be reduced, the change in velocity of the working fluid flow X can be mitigated. Therefore, the fluctuation of the fluid force can be suppressed, whereby the position of the valve can be stabilized.
 また、減衰力制御弁10では、連通路52は、弁体20の軸線Cを基準として非点対称に配置されているので、作動流体の流れを安定させることができる。これにより、流体力の変動を抑えることができ、その結果、軸線方向における弁体の位置制御の安定性及び正確性を向上させることができる。 Further, in the damping force control valve 10, the communication passage 52 is disposed in a point-symmetrical manner with respect to the axis C of the valve body 20, so that the flow of the working fluid can be stabilized. Thereby, the fluctuation of the fluid force can be suppressed, and as a result, the stability and accuracy of position control of the valve body in the axial direction can be improved.
 また、減衰力制御弁10では、連通路52は、弁体20の外周の一部に形成されているので、微小開度時における弁体20の位置制御性の改善と、弁の小型化及び軽量化とを高いレベルで実現できる。 Further, in the damping force control valve 10, since the communication passage 52 is formed in a part of the outer periphery of the valve body 20, improvement of the position controllability of the valve body 20 at the minute opening degree, downsizing of the valve It is possible to realize weight reduction at a high level.
 また、弁体20が外周テーパ部20fを備え、弁体20の肉厚が、弁体20の下流方向D側に近づくにつれて薄くなる場合には、より円滑に弁体20の端面20aを第一ポート30aに挿入できる。 In addition, when the valve body 20 includes the outer peripheral tapered portion 20f and the thickness of the valve body 20 becomes thinner toward the downstream direction D side of the valve body 20, the end face 20a of the valve body 20 can be made more smoothly. It can be inserted into port 30a.
 さらに、突出部51が第一ポート30a内に位置するときに、連絡路52が第一ポート30aと第一作動流体室30とを連通する。従って、減衰力制御弁10の流路が閉状態から開くときに、先ず、弁体20の一部が第一ポート30a内に残った状態になり、それから、弁体20が第一ポート30aから離れた状態になる。突出部51が第一ポート20内に位置する状態では、図1(b)に示すように、突出部51によって第一ポート30aと第一作動流体室30とが区画されているときに、連通路52によって第一ポート30aと第一作動流体室30とが連通する。従って、微小開度時における弁体20の位置変化に対する作動流体の流路の面積変化を小さくすることができる。 Furthermore, when the protrusion 51 is located in the first port 30a, the communication path 52 establishes communication between the first port 30a and the first working fluid chamber 30. Therefore, when the flow path of the damping force control valve 10 opens from the closed state, first, a part of the valve body 20 remains in the first port 30a, and then the valve body 20 is moved from the first port 30a. It will be away. In the state where the protrusion 51 is located in the first port 20, as shown in FIG. 1B, when the first port 30a and the first working fluid chamber 30 are divided by the protrusion 51, The passage 52 allows the first port 30a and the first working fluid chamber 30 to communicate with each other. Therefore, it is possible to reduce the change in the area of the flow path of the working fluid with respect to the change in the position of the valve body 20 at the minute opening degree.
 上述の実施形態では、減衰力制御弁10を油圧シリンダ112に接続する場合について説明したが、減衰力調整装置の配置方法は上述の例に限定されない。図6及び図7に示すショックアブソーバ100は、減衰力制御弁10に対して作動流体を両方向に流すことができるように構成されていたが、本発明は、この例に限定されない。本発明では、少なくとも第一作動流体室30から第一ポート30aを介して作動流体を排出する方向に作動流体を流すことができるように構成されていることが好ましい。また、ショックアブソーバ100は、伸長時に第一作動流体室30から第一ポート30aを介して作動流体を排出する方向に作動流体を流すように構成されていてもよく、縮退時に第一作動流体室30から第一ポート30aを介して作動流体を排出する方向に作動流体を流すように構成されていてもよい。 Although the above-mentioned embodiment explained the case where damping force control valve 10 was connected to hydraulic cylinder 112, the arrangement method of a damping force adjustment device is not limited to the above-mentioned example. Although the shock absorber 100 shown in FIGS. 6 and 7 is configured to allow the working fluid to flow in both directions with respect to the damping force control valve 10, the present invention is not limited to this example. In the present invention, preferably, the working fluid can be made to flow in a direction in which the working fluid is discharged from at least the first working fluid chamber 30 via the first port 30a. In addition, the shock absorber 100 may be configured to flow the working fluid in a direction to discharge the working fluid from the first working fluid chamber 30 via the first port 30a at the time of extension, and at the time of retraction, the first working fluid chamber 30 may be configured to flow the working fluid in the direction of discharging the working fluid via the first port 30a.
 上述の実施形態では、円筒状の弁体について説明したが、弁体の形状は上記の例に限定されない。たとえば、弁体が中空角筒形状を有していてもよい。また、作動流体路の形状も上述の例に限定されず、作動流体路の断面が多角形状であってもよく、楕円形状であってもよい。また、弁体20の端面20a全体が軸線方向Sに対して傾斜していてもよい。また、本実施形態では、ソレノイドとして、比例ソレノイドが用いられる場合について説明した。但し、本発明は、この例に限定されず、ソレノイドとして、例えば、ON/OFFソレノイドが用いられてもよい。 Although the above-mentioned embodiment explained cylindrical valve body, shape of a valve body is not limited to the above-mentioned example. For example, the valve body may have a hollow rectangular tube shape. Further, the shape of the working fluid passage is not limited to the above-described example, and the cross section of the working fluid passage may be polygonal or elliptical. Further, the entire end face 20 a of the valve body 20 may be inclined with respect to the axial direction S. Further, in the present embodiment, the case where a proportional solenoid is used as the solenoid has been described. However, the present invention is not limited to this example, and an ON / OFF solenoid may be used as the solenoid, for example.
 以上、この発明の好ましい実施形態について説明されたが、この発明の範囲および精神を逸脱しない限りにおいて種々の変更が可能であることは明らかである。この発明の範囲は、添付された請求の範囲のみによって限定される。 Although the preferred embodiments of the present invention have been described above, it is apparent that various modifications can be made without departing from the scope and spirit of the present invention. The scope of the present invention is limited only by the appended claims.
10 減衰力制御弁
20 弁体
21 通路
21a 大径部
21b 連通部
23 ソレノイドコイル
26 バルブベッド
30 第一作動流体室
30a 第一ポート
40 第二作動流体室
50 閉塞部
51 突出部
52 連通路
10 damping force control valve 20 valve body 21 passage 21a large diameter portion 21b communicating portion 23 solenoid coil 26 valve bed 30 first working fluid chamber 30a first port 40 second working fluid chamber 50 closing portion 51 projecting portion 52 communicating path

Claims (7)

  1.  減衰力制御弁であって、
     前記減衰力制御弁は、
    ソレノイドにより直線往復動する中空筒状の弁体と、
    前記弁体が挿通されるガイド孔と、前記弁体の端面と対向する位置に形成されたポートとを備えた第一作動流体室と、
    前記弁体内の通路を介して、前記第一作動流体室と連通する第二作動流体室と、
    を備え、
     前記弁体の前記端面と前記ポートとの間隙は、作動流体が通過する流路であり、
     前記流路の開度は、前記弁体の前記端面の位置によって変更され、これにより減衰力が制御され、
     前記流路の開度が最小のとき、前記弁体と前記ポートとの間隙が全閉となる一方、前記流路の開度が最大のとき、前記弁体は前記ポートから離れており、
     前記弁体は、全閉時に前記ポートと対応する閉塞部を備え、
     前記閉塞部よりも、前記第一作動流体室内の作動流体が前記ポートを介して前記第一作動流体室外へ排出される流れの向きの下流側において、前記弁体の外周には、前記ポートと前記第一作動流体室とを連通するための連通路が形成されている。
    Damping force control valve,
    The damping force control valve is
    A hollow cylindrical valve body linearly reciprocated by a solenoid;
    A first working fluid chamber including a guide hole through which the valve body is inserted, and a port formed at a position facing the end face of the valve body;
    A second working fluid chamber in communication with the first working fluid chamber via a passage in the valve body;
    Equipped with
    A gap between the end face of the valve body and the port is a flow passage through which the working fluid passes,
    The opening degree of the flow passage is changed by the position of the end face of the valve body, whereby the damping force is controlled,
    When the opening degree of the flow path is minimum, the gap between the valve body and the port is fully closed, and when the opening degree of the flow path is maximum, the valve body is separated from the port;
    The valve body has a closed portion corresponding to the port when fully closed,
    The port and the port are provided on the outer periphery of the valve body on the downstream side of the flow direction in which the working fluid in the first working fluid chamber is discharged to the outside of the first working fluid chamber through the port than the closed portion. A communication passage is formed to communicate with the first working fluid chamber.
  2.  請求項1に記載の減衰力制御弁であって、
     前記連通路は、前記弁体の軸線方向からみて前記弁体の軸線を基準として非点対称に配置されている。
    The damping force control valve according to claim 1, wherein
    The communication passage is disposed in an astigmatic manner with respect to the axis of the valve as viewed from the axial direction of the valve.
  3.  請求項1又は2に記載の減衰力制御弁であって、
     前記連通路は、前記弁体の外周の一部に形成されている。
    The damping force control valve according to claim 1 or 2, wherein
    The communication passage is formed at a part of the outer periphery of the valve body.
  4.  請求項1~3のいずれか1に記載の減衰力制御弁であって、
     前記弁体の先端側の外周にはテーパが形成されており、前記弁体の肉厚は、前記弁体の下流側に近づくにつれて薄くなる。
    The damping force control valve according to any one of claims 1 to 3, wherein
    A taper is formed on the outer periphery on the tip side of the valve body, and the thickness of the valve body becomes thinner toward the downstream side of the valve body.
  5.  請求項1~4のいずれか1に記載の減衰力制御弁であって、
     前記連絡路は、前記閉塞部の下流側の前記弁体の一部が前記ポート内に位置するときに前記ポートと前記第一作動流体室とを連通する。
    The damping force control valve according to any one of claims 1 to 4, wherein
    The communication path establishes communication between the port and the first working fluid chamber when a portion of the valve downstream of the blocking portion is located in the port.
  6.  ショックアブソーバであって、
     前記ショックアブソーバは、請求項1~5のいずれか1に記載の減衰力制御弁を備えている。
    A shock absorber,
    The shock absorber is provided with the damping force control valve according to any one of claims 1 to 5.
  7.  請求項6に記載のショックアブソーバであって、
     前記ショックアブソーバは、前記減衰力制御弁において、前記第一作動流体室内の作動流体が前記ポートを介して前記第一作動流体室外へ排出される方向に作動流体を流すように構成されている。
    The shock absorber according to claim 6, wherein
    The shock absorber is configured to flow the working fluid in a direction in which the working fluid in the first working fluid chamber is discharged to the outside of the first working fluid via the port in the damping force control valve.
PCT/JP2013/053845 2012-02-17 2013-02-18 Damping force control valve and shock absorber WO2013122251A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012033434A JP2013170601A (en) 2012-02-17 2012-02-17 Damping force control valve and shock absorber
JP2012-033434 2012-02-17

Publications (1)

Publication Number Publication Date
WO2013122251A1 true WO2013122251A1 (en) 2013-08-22

Family

ID=48984358

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/053845 WO2013122251A1 (en) 2012-02-17 2013-02-18 Damping force control valve and shock absorber

Country Status (2)

Country Link
JP (1) JP2013170601A (en)
WO (1) WO2013122251A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0579527A (en) * 1991-05-17 1993-03-30 Tokico Ltd Damping force adjusting type hydraulic buffer
WO2011078317A1 (en) * 2009-12-25 2011-06-30 ヤマハ発動機株式会社 Shock absorber
JP2012002336A (en) * 2010-06-21 2012-01-05 Hitachi Automotive Systems Ltd Shock absorber

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0579527A (en) * 1991-05-17 1993-03-30 Tokico Ltd Damping force adjusting type hydraulic buffer
WO2011078317A1 (en) * 2009-12-25 2011-06-30 ヤマハ発動機株式会社 Shock absorber
JP2012002336A (en) * 2010-06-21 2012-01-05 Hitachi Automotive Systems Ltd Shock absorber

Also Published As

Publication number Publication date
JP2013170601A (en) 2013-09-02

Similar Documents

Publication Publication Date Title
US20200300330A1 (en) Methods and apparatus for position sensitive suspension damping
KR102588959B1 (en) buffer
US8695766B2 (en) Shock absorber
US9388877B2 (en) Pressure shock absorbing apparatus
US8132654B2 (en) Hydraulic damper with compensation chamber
EP1925845B1 (en) A hydraulic suspension damper
EP2233775B1 (en) Hydraulic suspension damper
WO2018163868A1 (en) Damper
KR101321386B1 (en) Shock absorber
JP6351336B2 (en) Shock absorber
US11519476B2 (en) Vibration damper for a vehicle
WO2013122250A1 (en) Damping force control valve and shock absorber
WO2013122251A1 (en) Damping force control valve and shock absorber
WO2018163444A1 (en) Pressure buffering device
EP2770227A2 (en) Damping force control valve and shock absorber
JP2019044877A (en) Damping force variable valve
US20220412428A1 (en) Shock absorber
JP2021156376A (en) Shock absorber
WO2013122252A1 (en) Shock absorber
US20230341023A1 (en) Shock absorber
KR20240026243A (en) Damping force adjustable shock absorbers, damping valves and solenoids
CN117916489A (en) Buffer device
KR20030011769A (en) Improved shock absorber
JPH0681881A (en) Damping force variable shock absorber
JPH0727165A (en) Damping force variable type shock absorber

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13748464

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13748464

Country of ref document: EP

Kind code of ref document: A1