WO2013122023A1 - Spin implantation electrode structure and spin transport element - Google Patents

Spin implantation electrode structure and spin transport element Download PDF

Info

Publication number
WO2013122023A1
WO2013122023A1 PCT/JP2013/053179 JP2013053179W WO2013122023A1 WO 2013122023 A1 WO2013122023 A1 WO 2013122023A1 JP 2013053179 W JP2013053179 W JP 2013053179W WO 2013122023 A1 WO2013122023 A1 WO 2013122023A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
spin
ferromagnetic layer
channel layer
tunnel
Prior art date
Application number
PCT/JP2013/053179
Other languages
French (fr)
Japanese (ja)
Inventor
智生 佐々木
亨 及川
勇人 小池
Original Assignee
Tdk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk株式会社 filed Critical Tdk株式会社
Publication of WO2013122023A1 publication Critical patent/WO2013122023A1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • G11B5/3906Details related to the use of magnetic thin film layers or to their effects
    • G11B5/3909Arrangements using a magnetic tunnel junction
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/161Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect details concerning the memory cell structure, e.g. the layers of the ferromagnetic memory cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66984Devices using spin polarized carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/82Types of semiconductor device ; Multistep manufacturing processes therefor controllable by variation of the magnetic field applied to the device

Definitions

  • the present invention relates to a spin injection electrode structure and a spin transport element.
  • Non-Patent Documents 1 to 4 describe techniques for injecting spin into silicon.
  • Non-Patent Documents 1 to 3 report spin injection, conduction, and detection in silicon, but all are events at a low temperature of 150K or lower.
  • Non-Patent Document 4 although spin accumulation in silicon at 300 K is observed, the spin conduction phenomenon in silicon at room temperature has not been observed, and a wide range of applications cannot be expected at present.
  • Non-Patent Document 5 a spin conduction phenomenon in silicon at room temperature has been observed. However, its output is not sufficient to realize a wide range of applications.
  • Patent Document 1 discloses a method for suppressing spin scattering at the interface due to a shift in lattice constant between silicon and a tunnel film. According to Patent Document 1, by forming the first amorphous magnesium oxide on silicon, spin scattering due to lattice mismatch between silicon and magnesium oxide is suppressed, and the first amorphous magnesium oxide is formed on the first amorphous magnesium oxide. Due to the formation of monocrystalline magnesium oxide, high output is achieved by leaving a partial coherent effect. However, it is necessary to suppress spin scattering at the interface between the tunnel oxide magnesium oxide and the first ferromagnetic layer.
  • the present invention has been made to solve the above-described problems, and provides a spin injection electrode structure and a spin transport device that enable effective injection of spins in a semiconductor channel layer at room temperature than in the past. With the goal.
  • a spin injection electrode structure includes a semiconductor channel layer, a tunnel film provided on the semiconductor channel layer, a nonmagnetic spinel film provided on the tunnel film, and a nonmagnetic spinel. And a ferromagnetic layer provided on the film.
  • the tunnel film is not epitaxially grown on the semiconductor channel layer.
  • “not epitaxially growing” means that the semiconductor channel layer has a domain structure and is partially crystal-grown or has an amorphous structure, and different layers over a sufficiently large region. This indicates a state in which the interface is crystallized and maintains continuity. Thereby, spin scattering accompanying lattice mismatch is suppressed at the interface between the semiconductor channel layer and the tunnel film.
  • the tunnel film is made of an oxide containing any element of Al, Mg, Si, Zn, and Ti, and the film thickness is 0.6 nm or more and 2.0 nm or less.
  • the film thickness of the tunnel film is 2.0 nm or less, the film thickness when combined with the non-magnetic spinel film is thin, and the resistance value of the laminated film is small. Since noise can be suppressed, spin injection can be suitably performed.
  • the thickness of the tunnel film exceeds 2.0 nm, an increase in spin output is suppressed, and noise increases due to an increase in interface resistivity, so that a high signal ratio cannot be obtained.
  • the tunnel film has a thickness of 0.6 nm or more, a uniform tunnel film can be formed on the semiconductor channel layer. Note that when the thickness of the tunnel film is less than 0.6 nm, it is not formed as a film and does not function as a tunnel film because an island-like layer is formed.
  • the nonmagnetic spinel film is crystallized on the tunnel film. Further, it is an oxide containing any element of Al, Mg, and Zn, and preferably has a spinel structure.
  • the film thickness of the nonmagnetic spinel film is preferably 0.6 nm or more and 2.4 nm or less.
  • the film thickness of the nonmagnetic spinel film is 2.4 nm or less, the film thickness when combined with the tunnel film is thin, the resistance value of the laminated film is small, and a sufficient spin polarizability is obtained. If the film thickness of the nonmagnetic spinel film exceeds 2.4 nm, an increase in spin output is suppressed, and noise increases due to an increase in interface resistivity, so that a high signal ratio cannot be obtained.
  • the film thickness of the nonmagnetic spinel film is 0.6 nm or more, a uniform nonmagnetic spinel film can be formed on the tunnel film. Note that when the film thickness of the nonmagnetic spinel film is less than 0.6 nm, it is not formed as a film and does not function as a tunnel film because the layer is formed in an island shape.
  • the nonmagnetic spinel film is a crystalline film, and a ferromagnetic layer is epitaxially grown on the nonmagnetic spinel film by being crystallized on the tunnel film.
  • a ferromagnetic layer is epitaxially grown on the nonmagnetic spinel film by being crystallized on the tunnel film.
  • the crystal structure of the ferromagnetic layer is preferably a body-centered cubic lattice structure (BCC).
  • BCC body-centered cubic lattice structure
  • the ferromagnetic layer can be partially epitaxially grown on the nonmagnetic spinel film.
  • the ferromagnetic layer is a metal selected from the group consisting of Co, Fe, and Ni, an alloy containing one or more elements of the group, or a compound containing one or more elements selected from the group and B. Is preferred. Since these materials are ferromagnetic materials having a high spin polarizability, the function as a spin injection electrode can be suitably realized.
  • the ferromagnetic layer is more preferably a Heusler alloy.
  • the ferromagnetic layer includes an intermetallic compound having a chemical composition of X2YZ, X is a transition metal element or noble metal element of Co, Fe, Ni, or Cu group on the periodic table, and Y is Mn, V, It is a transition metal of Cr or Ti group and can take the element species of X, and Z is a typical element from Group III to Group V.
  • Co 2 FeSi or Co 2 MnSi can be used.
  • an antiferromagnetic layer formed on the ferromagnetic layer, and the antiferromagnetic layer preferably fixes the magnetization direction of the ferromagnetic layer.
  • the antiferromagnetic layer is exchange coupled with the ferromagnetic layer, unidirectional anisotropy can be imparted to the magnetization direction of the ferromagnetic layer.
  • a ferromagnetic layer having a higher coercive force in one direction can be obtained than when no antiferromagnetic layer is provided.
  • the spin transport device includes any one of the above-described spin injection electrode structures provided in the first part, and further includes a second tunnel film provided on the second part of the semiconductor channel layer, and a second tunnel film A second non-magnetic spinel film provided on the second non-magnetic spinel film; and a second ferromagnetic layer provided on the second non-magnetic spinel film.
  • the second tunnel film is an amorphous film, and the second nonmagnetic spinel film is crystallized on the second tunnel film. Therefore, the second ferromagnetic layer is preferably a film that is epitaxially grown on the second nonmagnetic spinel film.
  • the first and second ferromagnetic layers have a coercive force difference due to shape anisotropy.
  • an antiferromagnetic layer for providing a coercive force difference can be omitted.
  • the semiconductor channel layer preferably has a recess between the first portion and the second portion, and the depth of the recess is preferably 10 nm or more and 20 nm or less.
  • a silicon channel layer in which surface damage is suppressed can be used.
  • the spin transport device preferably has the above-described spin injection electrode structure, and can provide a spin transport device that enables effective injection of spin in the semiconductor channel layer at room temperature.
  • the electrode structure can suppress the spin scattering at the interface between the tunnel film and the ferromagnetic layer at the same time while suppressing the spin scattering at the interface between the semiconductor channel and the tunnel film as compared with the conventional tunnel film.
  • a spin injection electrode structure, a spin transport element, and a spin transport device that enable effective injection of spin in the semiconductor channel layer at room temperature.
  • FIG. 1 is a perspective view of the spin transport device according to the present embodiment.
  • FIG. 2A is a top view of the spin transport device according to the present embodiment.
  • FIG. 2B is an enlarged view of the region B shown in FIG.
  • FIG. 3 is a sectional view taken along line III-III in FIG.
  • FIG. 4 is a configuration diagram of the first tunnel film 16A, the first nonmagnetic spinel film 16B, the third tunnel film 16C, and the fourth tunnel film 16D that constitute the first spin filter film 13A and the second spin filter film 13B, respectively. is there.
  • FIG. 5 is a graph showing the relationship between the applied magnetic field and the voltage output in the NL measurement method.
  • FIG. 6 is a graph showing the relationship between the applied magnetic field and the voltage output in the NL-Hanle measurement method.
  • FIG. 1 is a perspective view of the spin transport device according to the present embodiment.
  • FIG. 2A is a top view of the spin transport device according to the present embodiment.
  • FIG. 2B is an enlarged view of the region B shown in FIG.
  • FIG. 3 is a sectional view taken along line III-III in FIG.
  • the spin transport device 1 includes silicon substrate 10, silicon oxide film 11, silicon channel layer 12, first spin filter film 13 ⁇ / b> A, and second substrate when silicon is used as a semiconductor.
  • the spin filter film 13B, the first ferromagnetic layer 14A, the second ferromagnetic layer 14B, the first reference electrode 15A, the second reference electrode 15B, the oxide film 7a, and the oxide film 7b are provided.
  • the silicon channel layer 12, the first spin filter film 13A, and the first ferromagnetic layer 14A constitute a spin injection electrode structure IE.
  • the first spin filter film 13A has a structure composed of a first tunnel film 16A and a first nonmagnetic spinel film 16B.
  • the second spin filter film 13B has a structure composed of a second tunnel film 16C and a second nonmagnetic spinel film 16D.
  • the silicon oxide film 11, and the silicon channel layer 12 for example, an SOI (Silicon On Insulator) substrate can be used.
  • the substrate 10 is a silicon substrate, and the silicon oxide film 11 is provided on the substrate 10.
  • the film thickness of the silicon oxide film 11 is 200 nm, for example.
  • the silicon channel layer 12 functions as a layer that conducts spin.
  • the upper surface of the silicon channel layer 12 is, for example, a (100) plane.
  • the silicon channel layer 12 has, for example, a rectangular shape with the X axis as the major axis direction when viewed from the Z axis direction (thickness direction).
  • the silicon channel layer 12 is made of silicon, and impurity ions for imparting one conductivity are added to the silicon channel layer 12 as necessary.
  • the ion concentration is, for example, 5.0 ⁇ 10 19 cm ⁇ 3 .
  • the film thickness of the silicon channel layer 12 is, for example, 100 nm.
  • the ion concentration is adjusted to a depth of 10 nm in the silicon channel layer 12 from the interface so that the Schottky barrier at the interface between the first spin filter film 13A or the second spin filter film 13B and the silicon channel layer 12 can be adjusted.
  • the silicon channel layer 12 may have a structure with a peak. Further, when the ion concentration of the silicon channel layer 12 is low, a method of applying a voltage to the silicon oxide film 11 and inducing carriers in the silicon channel layer 12 is also conceivable.
  • the silicon channel layer 12 has an inclined portion on the side surface, and the inclination angle ⁇ is 50 to 60 degrees.
  • the inclination angle ⁇ is an angle formed by the bottom and side surfaces of the silicon channel layer 12.
  • the silicon channel layer 12 can be formed by wet etching.
  • the silicon channel layer 12 includes a first convex portion (first portion) 12A, a second convex portion (second portion) 12B, a third convex portion (third portion) 12C, and a fourth convex portion ( 4th part) 12D and the main part 12E are included.
  • the first convex portion 12A, the second convex portion 12B, the third convex portion 12C, and the fourth convex portion 12D are portions that extend so as to protrude from the main portion 12E, and in this order a predetermined axis (shown in FIG. 3). In the example, they are arranged at a predetermined interval in the (X-axis) direction.
  • the film thickness (length in the Z-axis direction in the example shown in FIG. 3) H1 of the first convex portion 12A, the second convex portion 12B, the third convex portion 12C, and the fourth convex portion 12D is, for example, 20 nm.
  • the film thickness (length in the Z-axis direction in the example shown in FIG. 3) H2 of the main portion 12E is, for example, 80 nm.
  • a distance L1 between the first convex portion 12A and the third convex portion 12C is, for example, 100 ⁇ m or less.
  • the distance d between the central portion of the first convex portion 12A in the X-axis direction and the central portion of the second convex portion 12B in the X-axis direction is preferably equal to or less than the spin diffusion length.
  • the spin diffusion length in the silicon channel layer 12 at room temperature (300 K) is, for example, 0.8 ⁇ m.
  • the spins injected from the first ferromagnetic layer 14A into the first convex part 12A or the spins injected from the second ferromagnetic layer 14B into the second convex part 12B are the same as the first convex part 12A and the second convex part in the main part 12E.
  • the region between the convex portion 12B is diffused and conducted.
  • the first spin filter film 13A and the second spin filter film 13B efficiently perform the spin polarization of the ferromagnetic material (the first ferromagnetic layer 14A and the second ferromagnetic layer 14B) and the spin polarization of the silicon channel layer 12. It functions as a tunnel insulating film for connection.
  • the first spin filter film 13 ⁇ / b> A is provided on the first convex portion 12 ⁇ / b> A that is the first portion of the silicon channel layer 12.
  • the second spin filter film 13 ⁇ / b> B is provided on the second convex portion 12 ⁇ / b> B that is the second portion of the silicon channel layer 12.
  • the first spin filter film 13 ⁇ / b> A and the second spin filter film 13 ⁇ / b> B are crystals grown on, for example, the (100) plane of the silicon channel layer 12.
  • the first spin filter film 13A or the second spin filter film 13B By providing the first spin filter film 13A or the second spin filter film 13B, many spin-polarized electrons are injected from the first ferromagnetic layer 14A or the second ferromagnetic layer 14B to the silicon channel layer 12.
  • the potential output of the spin transport device 1 can be increased.
  • the sum of the film thicknesses of the first spin filter film 13A and the second spin filter film 13B is preferably 3.0 nm or less. In this case, since the interface resistivity can be lowered to 1 M ⁇ m 2 or less with respect to the obtained spin output, noise can be suppressed, so that spin injection and output can be suitably performed. Further, the film thicknesses of the first spin filter film 13A and the second spin filter film 13B are preferably 0.6 nm or more. In this case, the first spin filter film uniformly formed on the silicon channel layer 12 is used. The filter film 13A and the second spin filter film 13B can be used.
  • One of the first ferromagnetic layer 14A and the second ferromagnetic layer 14B functions as an electrode for injecting spin into the silicon channel layer 12, and the other as an electrode for detecting spin in the silicon channel layer 12. Function.
  • the first ferromagnetic layer 14A is provided on the first spin filter film 13A.
  • the second ferromagnetic layer 14B is provided on the second spin filter film 13B.
  • the first ferromagnetic layer 14A and the second ferromagnetic layer 14B are made of a ferromagnetic material.
  • a metal selected from the group consisting of Co and Fe, an alloy containing one or more elements of the group, or 1 selected from the group The compound which consists of the above element and B is mentioned.
  • the crystal structure of the first ferromagnetic layer 14A and the second ferromagnetic layer 14B is preferably a body-centered cubic lattice structure. Thereby, the first ferromagnetic layer can be partially epitaxially grown on the first spin filter film, and the second ferromagnetic layer can be partially epitaxially grown on the second spin filter film.
  • the first ferromagnetic layer 14A and the second ferromagnetic layer 14B have a rectangular parallelepiped shape with the major axis in the Y-axis direction. It is preferable that the first ferromagnetic layer 14A and the second ferromagnetic layer 14B have a coercive force difference due to the shape anisotropy of the first ferromagnetic layer 14A and the second ferromagnetic layer 14B.
  • the width (length in the X-axis direction) of the first ferromagnetic layer 14A is, for example, about 350 nm.
  • the width (length in the X-axis direction) of the second ferromagnetic layer 14B is, for example, about 2 ⁇ m.
  • the coercive force of the first ferromagnetic layer 14A is larger than the coercive force of the second ferromagnetic layer 14B.
  • the first reference electrode 15A and the second reference electrode 15B have a function as an electrode for flowing a detection current through the silicon channel layer 12 and a function as an electrode for reading an output by spin.
  • the first reference electrode 15 ⁇ / b> A is provided on the third protrusion 12 ⁇ / b> C of the silicon channel layer 12.
  • the second reference electrode 15 ⁇ / b> B is provided on the fourth protrusion 12 ⁇ / b> D of the silicon channel layer 12.
  • the first reference electrode 15A and the second reference electrode 15B are made of a conductive material, for example, a non-magnetic metal having a low resistance to Si such as Al.
  • the oxide film 7 a is formed on the side surface of the silicon channel layer 12.
  • the oxide film 7b includes the silicon channel layer 12, the oxide film 7a, the first spin filter film 13A, the second spin filter film 13B, the first ferromagnetic layer 14A, the second ferromagnetic layer 14B, the first reference electrode 15A, And on the side surface of the second reference electrode 15B.
  • the main ferromagnetic portion 12E where the first ferromagnetic layer 14A, the second ferromagnetic layer 14B, the first reference electrode 15A, and the second reference electrode 15B are not provided is oxidized.
  • a film 7b is formed.
  • the oxide film 7b is provided on the main portion 12E of the silicon channel layer 12 between the first spin filter film 13A and the second spin filter film 13B.
  • the oxide film 7b includes the silicon channel layer 12, the first spin filter film 13A, the second spin filter film 13B, the first ferromagnetic layer 14A, the second ferromagnetic layer 14B, the first reference electrode 15A, and the second reference electrode 15B. It functions as a protective film and suppresses deterioration of these layers.
  • the oxide film 7b is, for example, a silicon oxide film.
  • a wiring 18A is provided on the first reference electrode 15A and on the oxide film 7b (an inclined side surface of the silicon channel layer 12).
  • the wiring 18B is provided on the first ferromagnetic layer 14A and the oxide film 7b.
  • a wiring 18C is provided on the second ferromagnetic layer 14B and the oxide film 7b.
  • a wiring 18D is provided on the second reference electrode 15B and the oxide film 7b.
  • the wirings 18A to 18D are made of a conductive material such as Cu.
  • electrode pads E1 to E4 for measurement are provided at the respective ends of the wirings 18A to 18D. End portions of the wirings 18A to 18D and measurement electrode pads E1 to E4 are formed on the silicon oxide film 11.
  • the electrode pads E1 to E4 are made of a conductive material such as Au.
  • FIG. 4 is a cross-sectional view of the first spin filter film 13A and the second spin filter film 13B.
  • the first spin filter film 13A includes a first tunnel film 16A and a first nonmagnetic spinel film 16B.
  • the first tunnel film 16 ⁇ / b> A is not grown on the silicon channel layer 12 or grown in a sufficiently small region on the silicon channel layer 12.
  • the first nonmagnetic spinel film 16B is a crystalline film and is crystallized on the first tunnel film 16A.
  • the second spin filter film 13B includes a second tunnel film 16C and a second nonmagnetic spinel film 16D.
  • the second tunnel film 16 ⁇ / b> C is not grown on the silicon channel layer 12 or grown in a sufficiently small region on the silicon channel layer 12.
  • the second nonmagnetic spinel film 16D is a crystalline film and is crystallized on the second tunnel film 16C.
  • first tunnel film 16A the first nonmagnetic spinel film 16B, and the first ferromagnetic film 14A constituting the first spin filter film 13A will be described.
  • the first tunnel film 16A is suitably made of aluminum oxide, zinc oxide, silicon oxide, titanium oxide, or magnesium oxide. In these materials, when the thickness is 0.6 nm or more and 2.0 nm or less, the silicon channel layer 12 is often amorphous. Even when crystallized, it is in a polycrystalline state having many domain structures. Therefore, long-distance crystal lattice-matched epitaxial growth does not occur at the interface between the silicon channel layer 12 and the first tunnel film 16A, so that no defect due to the difference in lattice constant between the silicon and the first tunnel film 16A occurs.
  • MgAl 2 O 4 or ZnAl 2 O 4 is suitable for the first nonmagnetic spinel film 16B.
  • the first nonmagnetic spinel film 16B on the amorphous first tunnel film 16A is easily crystallized.
  • the film thickness of the first nonmagnetic spinel film 16B is preferably 0.6 nm or more and 2.4 nm or less.
  • the film thickness of the first nonmagnetic spinel film 16B is easily crystallized, and when it is 2.4 nm or less, the film thickness is thin and the resistance value of the laminated film is small. And sufficient spin polarizability can be obtained.
  • the crystal structure of the first ferromagnetic layer 14A is preferably a body-centered cubic lattice structure (BCC).
  • the material of the first ferromagnetic layer 14A is a metal selected from the group consisting of Co and Fe, an alloy containing one or more elements of the group, or a compound containing one or more elements selected from the group and B. In this case, the first ferromagnetic layer 14A is easily epitaxially grown on the first nonmagnetic spinel film 16B.
  • the lattice constants of MgAl 2 O 4 and Fe are substantially the same, and MgAl 2 O 4 and It is possible to suppress spin scattering at the Fe interface.
  • the crystal structure and lattice constant can be determined by forming and evaluating a film having a thickness that can be analyzed by a cross-sectional TEM or XRD of the laminated film.
  • the first ferromagnetic layer 14A is more preferably a Heusler alloy.
  • Heusler alloy (or full Heusler alloy) is a general term for intermetallic compounds having a chemical composition of X2YZ, where X is a transition metal element of Co, Fe, Ni, or Cu group on the periodic table. Or it is a noble metal element.
  • Y is a transition metal of Mn, V, Cr or Ti group and can take the same element species as X.
  • Z is a typical element from Group III to Group V.
  • Heusler alloy X2YZ is divided into three types of crystal structures based on the regularity of X, Y, and Z.
  • the first tunnel film 16A is aluminum oxide or magnesium oxide and the first nonmagnetic spinel film 16B is MgAl 2 O 4
  • the first tunnel film 16A is a configuration of the first nonmagnetic spinel film 16B. Since the element is contained, even if the element of the first tunnel film 16A and the element of the first nonmagnetic spinel film 16B are mutually diffused by heat or the like, it is possible to suppress a decrease in the function as a spin filter. . That is, the constituent element of the first tunnel film 16A is more preferably an oxide containing some cations of the first nonmagnetic spinel film 16B.
  • the second spin filter film 13B is the same as the first spin filter film 13A.
  • the spin transport element 1 detects an external magnetic field B1 in the Y-axis direction, for example.
  • the magnetization direction G1 (Y-axis direction) of the first ferromagnetic layer 14A is fixed in the same direction as the magnetization direction G2 (Y-axis direction) of the second ferromagnetic layer 14B.
  • a detection current is passed through the first ferromagnetic layer 14A.
  • the NL-Hanle measurement method uses the Hanle effect.
  • the Hanle effect means that when an external magnetic field is applied from a direction perpendicular to the direction of the spin when the spin injected from the ferromagnetic electrode into the channel by the current diffuses and conducts toward the other ferromagnetic electrode, It is a phenomenon that causes Larmor precession.
  • the spin transport element 1 detects an external magnetic field B2 in the Z-axis direction, for example.
  • the magnetization direction G1 (Y-axis direction) of the first ferromagnetic layer 14A is fixed in the same direction as the magnetization direction G2 (Y-axis direction) of the second ferromagnetic layer 14B. Then, by connecting the first ferromagnetic layer 14A and the first reference electrode 15A to the alternating current source 70, a spin detection current can be passed through the first ferromagnetic layer 14A. A current flows from the first ferromagnetic layer 14A, which is a ferromagnetic material, to the non-magnetic silicon channel layer 12 through the first spin filter film 13A, thereby corresponding to the magnetization direction G1 of the first ferromagnetic layer 14A.
  • Electrons having a spin direction are injected into the first convex portion 12A of the silicon channel layer 12.
  • the spin injected into the first convex portion 12A diffuses toward the second ferromagnetic layer 14B through the main portion 12E. In this way, the current and spin current flowing through the silicon channel layer 12 flow mainly in the X-axis direction.
  • the output (for example, resistance output or voltage output) is an extreme value.
  • the maximum value or the minimum value can be taken depending on the direction of current or magnetization.
  • the output can be evaluated by an output measuring device 80 such as a voltage measuring device connected to the second ferromagnetic layer 14B and the second reference electrode 15B.
  • an external magnetic field B2 is applied to the silicon channel layer 12 .
  • the external magnetic field B2 is perpendicular to the magnetization direction G1 (Y-axis direction in the example of FIG. 3) of the first ferromagnetic layer 14A and the magnetization direction G2 (Y-axis direction in the example of FIG. 3) of the second ferromagnetic layer 14B.
  • Application is performed from any direction (Z-axis direction in the example of FIG. 3).
  • the external magnetic field B2 When the external magnetic field B2 is applied, the direction of spin that diffuses and conducts in the silicon channel layer 12 rotates around the axial direction of the external magnetic field B2 (Z-axis direction in the example of FIG. 3) (so-called Hanle effect).
  • the direction of rotation of this spin when diffusing up to the region on the second ferromagnetic layer 14B side in the silicon channel layer 12, and the direction G2 of magnetization of the second ferromagnetic layer 14B set in advance, that is, the direction of spin, Output relative to the interface between the silicon channel layer 12 and the second ferromagnetic layer 14B (for example, resistance output or voltage output).
  • the output takes a maximum value when the external magnetic field is zero, and the output is less than the maximum value when the external magnetic field B2 is applied. Further, the output takes a minimum value when the external magnetic field is zero, and the output becomes a minimum value or more when the external magnetic field B2 is applied.
  • the spin transport element 1 in the NL-Hane measurement method, an output peak appears when the external magnetic field is zero, and the output decreases as the external magnetic field B2 is increased or decreased. That is, since the output changes depending on the presence or absence of the external magnetic field B2, the spin transport element 1 according to this embodiment can be used as a magnetic sensor, for example.
  • Ions for imparting conductivity are implanted into the silicon channel layer 12. Due to this ion implantation, damage remains on the surface of the silicon channel layer 12. Therefore, it is preferable to perform milling from the surface of the silicon channel layer 12 toward the bottom, and the silicon channel layer has a recess between the first portion and the second portion, and the depth of the recess is 10 nm or more. preferable. In this case, the silicon channel layer 12 with suppressed surface damage can be obtained.
  • the magnetization direction of the second ferromagnetic layer 14B may be fixed by an antiferromagnetic layer provided on the second ferromagnetic layer 14B.
  • the second ferromagnetic layer 14B having a higher coercive force in one direction can be obtained than when no antiferromagnetic layer is provided.
  • the magnetic field that fixes the magnetization direction of the second ferromagnetic layer 14B is preferably larger than the external magnetic fields B1 and B2 to be evaluated. Thereby, the external magnetic fields B1 and B2 can be detected stably.
  • the first ferromagnetic layer 14A and the second ferromagnetic layer 14B preferably have the same degree of coercive force in the same direction due to the antiferromagnetic layer.
  • a magnetic detection device including a plurality of the spin transport elements 1 described above can be provided.
  • a plurality of the above-described spin transport elements 1 can be arranged in parallel or stacked to form a magnetic detection device.
  • the outputs of the spin transport elements 1 can be added up.
  • Such a magnetic detection device can be applied to, for example, a biological sensor that detects cancer cells and the like.
  • the above-described spin injection electrode structure IE and the spin transport element 1 can be used for various spin transport devices such as a magnetic head, a magnetoresistive memory (MRAM), a logic circuit, a nuclear spin memory, and a quantum computer.
  • MRAM magnetoresistive memory
  • the configuration of the spin detection unit (the second ferromagnetic layer 14B, the second spin filter film 13B, and the second convex portion 12B of the silicon channel layer 12) is not limited to the above-described embodiment. It may be one that detects spin.
  • an SOI substrate including a substrate, an insulating film, and a silicon film was prepared.
  • a silicon substrate was used as the substrate, a 200 nm silicon oxide layer was used as the insulating film, and the silicon film was 100 nm.
  • Phosphorus ions for imparting conductivity to the silicon film were implanted. Thereafter, impurities were diffused by annealing at 900 ° C. to adjust the electron concentration of the silicon film. At this time, the average electron concentration of the entire silicon film was set to 5.0 ⁇ 10 19 cm ⁇ 3 .
  • the SOI substrate was carried into a molecular beam epitaxy (MBE) apparatus.
  • the degree of base vacuum was set to 2.0 ⁇ 10 ⁇ 9 Torr or less. Flushing treatment was performed by heating the SOI substrate. As a result, hydrogen on the surface of the silicon film was released to form a clean surface.
  • an aluminum oxide as a first tunnel film and an MgAl 2 O 4 , an iron film, and a titanium film as a first nonmagnetic spinel film are formed in this order on the silicon film to obtain a laminate. It was. The degree of vacuum during film formation was 5 ⁇ 10 ⁇ 8 Torr or less.
  • the titanium film is a cap layer for suppressing characteristic deterioration due to oxidation of the iron film.
  • the first and second tunnel films, the nonmagnetic spinel film, the iron film, and the titanium film are formed in the same process, and thus are not distinguished.
  • annealing was performed at 300 ° C. for 3 hours.
  • the silicon film was patterned by anisotropic wet etching using a mask. As a result, a silicon channel layer 12 having an inclined portion on the side surface was obtained. At this time, the size of the silicon channel layer 12 was 23 ⁇ m ⁇ 300 ⁇ m. Further, the side surface of the obtained silicon channel layer 12 was oxidized to form a silicon oxide film (oxide film 7a).
  • the first ferromagnetic layer 14A and the second ferromagnetic layer 14B were formed by patterning the iron film using a photolithography method.
  • the oxide film and the magnesium film located except between the silicon channel layer 12 and the first ferromagnetic layer 14A and the second ferromagnetic layer 14B were removed.
  • the first spin filter film 13A and the second spin filter film 13B were obtained.
  • An Al film was formed on one end side and the other end side of the exposed silicon channel layer 12 to obtain a first reference electrode 15A and a second reference electrode 15B, respectively.
  • the silicon channel layer 12 has a structure including the first convex portion 12A, the second convex portion 12B, the third convex portion 12C, the fourth convex portion 12D, and the main portion 12E.
  • the first convex portion 12A, the second convex portion 12B, the third convex portion 12C, and the fourth convex portion 12D are arranged in this order at predetermined intervals in the X-axis direction and extend so as to protrude from the main portion 12E. It is a part that exists.
  • the film thickness H1 of the first convex portion 12A, the second convex portion 12B, the third convex portion 12C, and the fourth convex portion 12D was 10 nm. With such a structure, the surface damage formed when ions for imparting conductivity were implanted into the silicon film to be the silicon channel layer 12 was removed.
  • the oxide film 7a Furthermore, on the side surfaces of the oxide film 7a, the first spin filter film 13A, the second spin filter film 13B, the first ferromagnetic layer 14A, the second ferromagnetic layer 14B, the first reference electrode 15A, and the second reference electrode 15B, Of the upper surface of the silicon channel layer 12, a silicon oxide film (on the main portion 12E where the first ferromagnetic layer 14A, the second ferromagnetic layer 14B, the first reference electrode 15A and the second reference electrode 15B are not formed) An oxide film 7b) was formed.
  • wirings 18A to 18D were formed on the first ferromagnetic layer 14A, the second ferromagnetic layer 14B, the first reference electrode 15A, and the second reference electrode 15B, respectively.
  • a stacked structure of Ta (thickness 10 nm), Cu (thickness 50 nm), and Ta (thickness 10 nm) was used.
  • electrode pads E1 to E4 were formed at the ends of the wirings 18A to 18D, respectively.
  • As the electrode pads E1 to E4 a laminated structure of Cr (thickness 50 nm) and Au (thickness 150 nm) was used.
  • the spin transport device of Example 1 having the same configuration as the spin transport device 1 shown in FIGS. 1 to 4 was produced.
  • the magnetization direction G1 of the first ferromagnetic layer 14A and the magnetization direction G2 of the second ferromagnetic layer 14B are the same as the magnetization direction of the external magnetic field B1 (FIG. 3).
  • An external magnetic field B1 was applied to the spin transport element from a direction (Y-axis direction) parallel to the magnetization directions of the first ferromagnetic layer 14A and the second ferromagnetic layer 14B.
  • spin was injected from the first ferromagnetic layer 14A to the silicon channel layer 12.
  • the output based on the magnetization change by the external magnetic field B1 was measured by the output measuring device 80. At this time, all measurements were performed at room temperature.
  • FIG. 5 is a graph showing the relationship between the applied magnetic field and the voltage output in the NL measurement method.
  • F1 in FIG. 5 shows the case where the external magnetic field B1 is changed from the minus side to the plus side
  • F2 in FIG. 5 shows the case where the external magnetic field B1 is changed from the plus side to the minus side.
  • the spin transport device had a voltage output of about 12 ⁇ V.
  • FIG. 6 is a graph showing the relationship between the applied magnetic field and the voltage output in the NL-Hanle measurement method.
  • FIG. 6 shows the measurement results when the magnetization direction of the first ferromagnetic layer 14A is fixed parallel to the magnetization direction of the second ferromagnetic layer 14B.
  • the measurement result of FIG. 6 is a signal generated by spin conduction.
  • Example 2 An element was prepared in the same manner as in Example 1. However, magnesium oxide was formed as the first tunnel film. The results are shown in Table 1.
  • Example 3 An element was prepared in the same manner as in Example 1. However, silicon oxide was formed as the first tunnel film.
  • the first ferromagnetic film was a Heusler alloy. This Heusler alloy is represented by a composition formula of Co 2 FeAl 0.5 Si 0.5 , and annealing was performed at 600 ° C. after film formation.
  • the film thickness of the first tunnel film was set to 1.2 nm, and the film thickness of the first nonmagnetic spinel film was set to 2.0 nm. The results are shown in Table 1.
  • Example 1 An element was prepared in the same manner as in Example 1. However, aluminum oxide was formed as the first tunnel film, and the first nonmagnetic spinel film was not installed. However, the film thickness of aluminum oxide was the same as the sum of the film thicknesses of the first tunnel film and the first nonmagnetic spinel film in Example 1. The results are shown in Table 1.
  • Example 2 An element was prepared in the same manner as in Example 1. However, magnesium oxide was formed as the first tunnel film, and the first nonmagnetic spinel film was not installed. However, the film thickness of magnesium oxide was the same as the sum of the film thicknesses of the first tunnel film and the first nonmagnetic spinel film of Example 1. The results are shown in Table 1.
  • Example 4 An element was prepared in the same manner as in Example 1. However, tantalum oxide was formed as the first tunnel film. The results are shown in Table 1.
  • Table 1 summarizes the examples and comparative examples.
  • Example 1 and Example 2 almost the same results were obtained at room temperature.
  • Comparative Example 1 Comparative Example 1 and Comparative Example 4, no signal was observed at room temperature. However, output is observed in non-local measurement at low temperatures, and it can be determined that the output at room temperature was not obtained as a result of temperature dependence.
  • Comparative Example 2 a spin output at room temperature was observed, but the output was smaller than in Example 1 and Example 2. Therefore, it can be seen that the method of this embodiment has a spin filter structure that can realize high output at room temperature.
  • Example 3 using Heusler alloy has higher characteristics, and in addition to the characteristics of the spin filter film, the spin of the ferromagnetic layer is obtained.
  • the cause is considered to be high polarizability.
  • IE ... Spin injection electrode structure, 1 ... Spin transport element, 10 ... Substrate, 11 ... Silicon oxide film, 12 ... Silicon channel layer, 13A ... First spin filter film, 13B ... Second spin filter film, 14A ... First strong Magnetic layer, 14B ... second first ferromagnetic layer, 15A ... first reference electrode, 15B ... second reference electrode, 16A ... first tunnel film, 16B ... first nonmagnetic spinel film, 16C ... second tunnel film, 16D ... second tunnel film, 70 ... AC current source, 80 ... output measuring device, P ... lattice matching portion, N ... non-lattice matching portion.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Hall/Mr Elements (AREA)

Abstract

[Problem] To provide a spin implantation electrode structure and spin transport element that suppress spin scattering at interfaces, which arises because of offsetting of lattice constants between semiconductor channel layers and tunnel films and between tunnel films and ferromagnetic layers. [Solution] The spin implantation electrode structure is characterized by being provided with a semiconductor channel layer, a tunnel film provided on the semiconductor channel layer, a nonmagnetic spinel film provided on the tunnel film, and a ferromagnetic layer provided on the nonmagnetic spinel film.

Description

スピン注入電極構造、及びスピン伝導素子Spin injection electrode structure and spin transport device
 本発明は、スピン注入電極構造、及びスピン伝導素子に関する。 The present invention relates to a spin injection electrode structure and a spin transport element.
 近年、半導体からなるチャンネルにスピンを蓄積する技術が知られている。半導体からなるチャンネルにおけるスピン拡散長は、金属からなるチャンネルにおけるスピン拡散長よりも格段に長い。例えば下記非特許文献1~4には、シリコンにスピンを注入する技術が記載されている。 In recent years, a technique for accumulating spin in a channel made of a semiconductor is known. The spin diffusion length in the channel made of semiconductor is much longer than the spin diffusion length in the channel made of metal. For example, the following Non-Patent Documents 1 to 4 describe techniques for injecting spin into silicon.
特開2010-239011号公報JP 2010-239011 A
 ところで、シリコンにおけるスピンの注入・伝導・検出の応用のためには、室温での十分な出力特性を得ることが望まれている。上記非特許文献1~3では、シリコンにおけるスピンの注入・伝導・検出が報告されているものの、いずれも150K以下の低温での事象である。上記非特許文献4では、300Kでのシリコンにおけるスピンの蓄積を観測するものの、室温でのシリコンにおけるスピンの伝導現象は観測されておらず、幅広い応用が期待できないのが現状である。最近上記非特許文献5において、室温でのシリコンにおけるスピンの伝導現象が観測されている。しかしながら、その出力は、幅広い応用を実現するためには十分ではない。室温での高出力化が困難な理由の一つとしてはシリコンとトンネル膜との間の格子定数のずれによって界面でのスピン散乱が誘発されてしまうことが考えられる。このように、シリコンに限らず、室温での半導体におけるスピンの伝導を実現する効果的な注入を実現することが望まれている。 By the way, for application of spin injection, conduction, and detection in silicon, it is desired to obtain sufficient output characteristics at room temperature. Non-Patent Documents 1 to 3 report spin injection, conduction, and detection in silicon, but all are events at a low temperature of 150K or lower. In Non-Patent Document 4, although spin accumulation in silicon at 300 K is observed, the spin conduction phenomenon in silicon at room temperature has not been observed, and a wide range of applications cannot be expected at present. Recently, in Non-Patent Document 5, a spin conduction phenomenon in silicon at room temperature has been observed. However, its output is not sufficient to realize a wide range of applications. One of the reasons why it is difficult to increase the output at room temperature is that spin scattering at the interface is induced by a shift in lattice constant between the silicon and the tunnel film. Thus, it is desired to realize effective injection that realizes spin conduction in a semiconductor at room temperature, not limited to silicon.
 シリコンとトンネル膜との間の格子定数のずれによって界面でのスピン散乱を抑制する方法としては特許文献1に記載されている。特許文献1によると、シリコン上に第一非晶質酸化マグネシウムが形成されることによって、シリコンと酸化マグネシウムの間の格子不整合によるスピン散乱を抑制し、第一非晶質酸化マグネシウム上に第一結晶質酸化マグネシウムが形成されることによって、一部コヒーレント効果を残すことで高出力化している。しかし、トンネル膜である酸化マグネシウムと第一強磁性層との界面においてもスピン散乱を抑制する必要がある。 Patent Document 1 discloses a method for suppressing spin scattering at the interface due to a shift in lattice constant between silicon and a tunnel film. According to Patent Document 1, by forming the first amorphous magnesium oxide on silicon, spin scattering due to lattice mismatch between silicon and magnesium oxide is suppressed, and the first amorphous magnesium oxide is formed on the first amorphous magnesium oxide. Due to the formation of monocrystalline magnesium oxide, high output is achieved by leaving a partial coherent effect. However, it is necessary to suppress spin scattering at the interface between the tunnel oxide magnesium oxide and the first ferromagnetic layer.
 本発明は、上記課題の解決のためになされたものであり、従来よりも室温での半導体チャンネル層におけるスピンの効果的な注入を可能とするスピン注入電極構造、及びスピン伝導素子を提供することを目的とする。 The present invention has been made to solve the above-described problems, and provides a spin injection electrode structure and a spin transport device that enable effective injection of spins in a semiconductor channel layer at room temperature than in the past. With the goal.
 上述の課題を解決するため、本発明のスピン注入電極構造は、半導体チャンネル層と、半導体チャンネル層上に設けられたトンネル膜と、トンネル膜上に設けられた非磁性スピネル膜と、非磁性スピネル膜上に設けられた強磁性層とを備えることを特徴とする。 In order to solve the above-described problems, a spin injection electrode structure according to the present invention includes a semiconductor channel layer, a tunnel film provided on the semiconductor channel layer, a nonmagnetic spinel film provided on the tunnel film, and a nonmagnetic spinel. And a ferromagnetic layer provided on the film.
前記トンネル膜は、半導体チャンネル層上でエピタキシャル成長をしていない。ここで、エピタキシャル成長をしていないとは、半導体チャンネル層上にドメイン構造を持って部分的に結晶成長しているか、あるいは、非晶質構造であることを表し、十分大きな領域に渡って異なる層の界面が結晶化し、連続性を保持している状態を指す。これによって、半導体チャンネル層とトンネル膜との界面において格子不整合に伴うスピン散乱が抑制される。 The tunnel film is not epitaxially grown on the semiconductor channel layer. Here, “not epitaxially growing” means that the semiconductor channel layer has a domain structure and is partially crystal-grown or has an amorphous structure, and different layers over a sufficiently large region. This indicates a state in which the interface is crystallized and maintains continuity. Thereby, spin scattering accompanying lattice mismatch is suppressed at the interface between the semiconductor channel layer and the tunnel film.
 また、前記トンネル膜は、Al、Mg、Si、Zn、Tiのいずれかの元素を含む酸化物から構成され、膜厚は、0.6nm以上2.0nm以下であることが好適である。前記トンネル膜の膜厚が2.0nm以下である場合、非磁性スピネル膜と合わせた場合の膜厚が薄く積層膜の抵抗値が小さくなるため、得られるスピン出力に対して界面抵抗率を低くしてノイズを抑えることができるので、スピンの注入が好適にできる。前記トンネル膜の膜厚が2.0nmを超えると、スピン出力の増大が抑制され、界面抵抗率の上昇によるノイズ増加が生じるために高い信号比を得ることができない。また、前記トンネル膜の膜厚が0.6nm以上である場合、半導体チャンネル層上に均一なトンネル膜が成膜できる。なお、前記トンネル膜の膜厚が0.6nm未満の場合、膜として形成されず、島状に層が形成されるためトンネル膜としての機能を果たさない。 Further, it is preferable that the tunnel film is made of an oxide containing any element of Al, Mg, Si, Zn, and Ti, and the film thickness is 0.6 nm or more and 2.0 nm or less. When the film thickness of the tunnel film is 2.0 nm or less, the film thickness when combined with the non-magnetic spinel film is thin, and the resistance value of the laminated film is small. Since noise can be suppressed, spin injection can be suitably performed. When the thickness of the tunnel film exceeds 2.0 nm, an increase in spin output is suppressed, and noise increases due to an increase in interface resistivity, so that a high signal ratio cannot be obtained. When the tunnel film has a thickness of 0.6 nm or more, a uniform tunnel film can be formed on the semiconductor channel layer. Note that when the thickness of the tunnel film is less than 0.6 nm, it is not formed as a film and does not function as a tunnel film because an island-like layer is formed.
前記非磁性スピネル膜は、前記トンネル膜上で結晶化している。また、Al、Mg、Znのいずれかの元素を含む酸化物であり、スピネル構造からなることが好ましい。 The nonmagnetic spinel film is crystallized on the tunnel film. Further, it is an oxide containing any element of Al, Mg, and Zn, and preferably has a spinel structure.
 また、前記非磁性スピネル膜の膜厚は、0.6nm以上2.4nm以下であることが好適である。非磁性スピネル膜の膜厚が2.4nm以下である場合、トンネル膜と合わせた場合の膜厚が薄く積層膜の抵抗値が小さくなり、かつ、十分なスピン分極率が得られる。なお、前記非磁性スピネル膜の膜厚が、2.4nmを超えると、スピン出力の増大が抑制され、界面抵抗率の上昇によるノイズ増加が生じるために高い信号比を得ることができない。また、非磁性スピネル膜の膜厚が0.6nm以上である場合、トンネル膜上に均一な非磁性スピネル膜が成膜できる。なお、前記非磁性スピネル膜の膜厚が0.6nm未満の場合、膜として形成されず、島状に層が形成されるためトンネル膜としての機能を果たさない。 The film thickness of the nonmagnetic spinel film is preferably 0.6 nm or more and 2.4 nm or less. When the film thickness of the nonmagnetic spinel film is 2.4 nm or less, the film thickness when combined with the tunnel film is thin, the resistance value of the laminated film is small, and a sufficient spin polarizability is obtained. If the film thickness of the nonmagnetic spinel film exceeds 2.4 nm, an increase in spin output is suppressed, and noise increases due to an increase in interface resistivity, so that a high signal ratio cannot be obtained. In addition, when the film thickness of the nonmagnetic spinel film is 0.6 nm or more, a uniform nonmagnetic spinel film can be formed on the tunnel film. Note that when the film thickness of the nonmagnetic spinel film is less than 0.6 nm, it is not formed as a film and does not function as a tunnel film because the layer is formed in an island shape.
 さらに、前記非磁性スピネル膜が、結晶質の膜であり、トンネル膜上で結晶化していることによって、前記非磁性スピネル膜上に強磁性層がエピタキシャル成長していることが好ましい。これによって非磁性スピネル膜のコヒーレントトンネル効果によって半導体チャンネル層に効率的なスピンの注入・抽出が可能である。また、強磁性層は、非磁性スピネル膜と格子定数が近いため、非磁性スピネル膜上ではエピタキシャル成長しやすく、非磁性スピネル膜と強磁性層の界面におけるスピン散乱が起こりにくくなっている。 Furthermore, it is preferable that the nonmagnetic spinel film is a crystalline film, and a ferromagnetic layer is epitaxially grown on the nonmagnetic spinel film by being crystallized on the tunnel film. This enables efficient spin injection / extraction to the semiconductor channel layer by the coherent tunnel effect of the nonmagnetic spinel film. Further, since the ferromagnetic layer has a lattice constant close to that of the nonmagnetic spinel film, it is easy to grow epitaxially on the nonmagnetic spinel film, and spin scattering hardly occurs at the interface between the nonmagnetic spinel film and the ferromagnetic layer.
 また、強磁性層の結晶構造は、体心立方格子構造(BCC)であることが好適である。この場合、非磁性スピネル膜上に強磁性層を部分的にエピタキシャル成長させることができる。 The crystal structure of the ferromagnetic layer is preferably a body-centered cubic lattice structure (BCC). In this case, the ferromagnetic layer can be partially epitaxially grown on the nonmagnetic spinel film.
 また、強磁性層は、Co、Fe及びNiからなる群から選択される金属、前記群の元素を1以上含む合金、又は前記群から選択される1以上の元素とBとを含む化合物であることが好適である。これらの材料はスピン分極率の大きい強磁性材料であるため、スピンの注入電極としての機能を好適に実現することが可能である。 The ferromagnetic layer is a metal selected from the group consisting of Co, Fe, and Ni, an alloy containing one or more elements of the group, or a compound containing one or more elements selected from the group and B. Is preferred. Since these materials are ferromagnetic materials having a high spin polarizability, the function as a spin injection electrode can be suitably realized.
 さらに、強磁性層は、ホイスラー合金であることがより好ましい。強磁性層は、X2YZの化学組成をもつ金属間化合物を含み、Xは、周期表上でCo、Fe、Ni、あるいはCu族の遷移金属元素または貴金属元素であり、Yは、Mn、V、CrあるいはTi族の遷移金属でありXの元素種をとることもでき、Zは、III族からV族の典型元素である。例えば、CoFeSiやCoMnSiなどが挙げられる。 Furthermore, the ferromagnetic layer is more preferably a Heusler alloy. The ferromagnetic layer includes an intermetallic compound having a chemical composition of X2YZ, X is a transition metal element or noble metal element of Co, Fe, Ni, or Cu group on the periodic table, and Y is Mn, V, It is a transition metal of Cr or Ti group and can take the element species of X, and Z is a typical element from Group III to Group V. For example, Co 2 FeSi or Co 2 MnSi can be used.
 また、強磁性層上に形成された反強磁性層を更に備え、反強磁性層は、強磁性層の磁化の向きを固定することが好適である。反強磁性層が強磁性層と交換結合することにより、強磁性層の磁化方向に一方向異方性を付与することが可能となる。この場合、反強磁性層を設けない場合よりも、高い保磁力を一方向に有する強磁性層を得られる。 Further, it is preferable to further include an antiferromagnetic layer formed on the ferromagnetic layer, and the antiferromagnetic layer preferably fixes the magnetization direction of the ferromagnetic layer. When the antiferromagnetic layer is exchange coupled with the ferromagnetic layer, unidirectional anisotropy can be imparted to the magnetization direction of the ferromagnetic layer. In this case, a ferromagnetic layer having a higher coercive force in one direction can be obtained than when no antiferromagnetic layer is provided.
 また、本発明に係るスピン伝導素子は、上述のいずれかのスピン注入電極構造を第一部分に設け、更に、半導体チャンネル層の第二部分上に設けられた第二トンネル膜と、第二トンネル膜上に設けられた第二非磁性スピネル膜と、第二非磁性スピネル膜上に設けられた第二強磁性層と、を備える。第二トンネル膜は非結晶質の膜であり、第二非磁性スピネル膜は第二トンネル膜上で結晶化している。よって、第二強磁性層は、第二非磁性スピネル膜上にエピタキシャル成長している膜であることが好ましい。 The spin transport device according to the present invention includes any one of the above-described spin injection electrode structures provided in the first part, and further includes a second tunnel film provided on the second part of the semiconductor channel layer, and a second tunnel film A second non-magnetic spinel film provided on the second non-magnetic spinel film; and a second ferromagnetic layer provided on the second non-magnetic spinel film. The second tunnel film is an amorphous film, and the second nonmagnetic spinel film is crystallized on the second tunnel film. Therefore, the second ferromagnetic layer is preferably a film that is epitaxially grown on the second nonmagnetic spinel film.
 また、第一部分と第二部分の強磁性層とは、形状異方性によって保磁力差が付けられていることが好適である。この場合、保磁力差をつけるための反強磁性層を省略することができる。 Also, it is preferable that the first and second ferromagnetic layers have a coercive force difference due to shape anisotropy. In this case, an antiferromagnetic layer for providing a coercive force difference can be omitted.
 一般に、半導体チャンネル層には、導電性を付与するためのイオンが打ち込まれる。半導体チャンネル層の表面は、このイオンの打ち込みに起因するダメージが形成されるおそれがある。そこで、半導体チャンネル層は、第一部分と第二部分との間に窪みを有し、窪みの深さは10nm以上20nm以下であることが好適である。この場合、表面ダメージの抑制されたシリコンチャンネル層を用いることができる。 Generally, ions for imparting conductivity are implanted into the semiconductor channel layer. The surface of the semiconductor channel layer may be damaged due to the ion implantation. Therefore, the semiconductor channel layer preferably has a recess between the first portion and the second portion, and the depth of the recess is preferably 10 nm or more and 20 nm or less. In this case, a silicon channel layer in which surface damage is suppressed can be used.
 また、スピン伝導デバイスは、上述のスピン注入電極構造を有することが好適であり、室温での半導体チャンネル層におけるスピンの効果的な注入を可能とするスピン伝導デバイスを提供できる。 Also, the spin transport device preferably has the above-described spin injection electrode structure, and can provide a spin transport device that enables effective injection of spin in the semiconductor channel layer at room temperature.
 本発明によれば、従来のトンネル膜よりも半導体チャンネルとトンネル膜の界面におけるスピン散乱を抑制しつつ、トンネル膜と強磁性層の界面におけるスピン散乱も同時に抑制できる電極構造である。これによって、室温での半導体チャンネル層におけるスピンの効果的な注入を可能とするスピン注入電極構造、スピン伝導素子およびスピン伝導デバイスを提供できる。 According to the present invention, the electrode structure can suppress the spin scattering at the interface between the tunnel film and the ferromagnetic layer at the same time while suppressing the spin scattering at the interface between the semiconductor channel and the tunnel film as compared with the conventional tunnel film. Thus, it is possible to provide a spin injection electrode structure, a spin transport element, and a spin transport device that enable effective injection of spin in the semiconductor channel layer at room temperature.
図1は、本実施形態に係るスピン伝導素子の斜視図である。FIG. 1 is a perspective view of the spin transport device according to the present embodiment. 図2(a)は、本実施形態に係るスピン伝導素子の上面図である。図2(b)は、図2(a)に示す領域Bの拡大図である。FIG. 2A is a top view of the spin transport device according to the present embodiment. FIG. 2B is an enlarged view of the region B shown in FIG. 図3は、図1のIII-III線に沿った断面図である。FIG. 3 is a sectional view taken along line III-III in FIG. 図4は、第一スピンフィルタ膜13A及び第二スピンフィルタ膜13Bをそれぞれ構成する第一トンネル膜16A、第一非磁性スピネル膜16B、第三トンネル膜16C、第四トンネル膜16Dの構成図である。FIG. 4 is a configuration diagram of the first tunnel film 16A, the first nonmagnetic spinel film 16B, the third tunnel film 16C, and the fourth tunnel film 16D that constitute the first spin filter film 13A and the second spin filter film 13B, respectively. is there. 図5は、NL測定法における印加磁場と電圧出力の関係を示すグラフである。FIG. 5 is a graph showing the relationship between the applied magnetic field and the voltage output in the NL measurement method. 図6は、NL-Hanle測定法における印加磁場と電圧出力の関係を示すグラフである。FIG. 6 is a graph showing the relationship between the applied magnetic field and the voltage output in the NL-Hanle measurement method.
 以下、図面を参照しながら、本発明に係るスピン伝導素子の好適な実施形態について詳細に説明する。図中には、必要に応じてXYZ直交座標軸系が示されている。図1は、本実施形態に係るスピン伝導素子の斜視図である。図2(a)は、本実施形態に係るスピン伝導素子の上面図である。図2(b)は、図2(a)に示す領域Bの拡大図である。図3は、図1のIII-III線に沿った断面図である。 Hereinafter, preferred embodiments of the spin transport device according to the present invention will be described in detail with reference to the drawings. In the figure, an XYZ orthogonal coordinate axis system is shown as necessary. FIG. 1 is a perspective view of the spin transport device according to the present embodiment. FIG. 2A is a top view of the spin transport device according to the present embodiment. FIG. 2B is an enlarged view of the region B shown in FIG. FIG. 3 is a sectional view taken along line III-III in FIG.
 図3に示すように、スピン伝導素子1は、半導体としてシリコンを用いた場合にいて、シリコン基板10と、酸化珪素膜11と、シリコンチャンネル層12と、第一スピンフィルタ膜13Aと、第二スピンフィルタ膜13Bと、第一強磁性層14Aと、第二強磁性層14Bと、第一参照電極15Aと、第二参照電極15Bと、酸化膜7aと、酸化膜7bと、を備える。シリコンチャンネル層12と、第一スピンフィルタ膜13Aと、第一強磁性層14Aとが、スピン注入電極構造IEを構成している。 As shown in FIG. 3, the spin transport device 1 includes silicon substrate 10, silicon oxide film 11, silicon channel layer 12, first spin filter film 13 </ b> A, and second substrate when silicon is used as a semiconductor. The spin filter film 13B, the first ferromagnetic layer 14A, the second ferromagnetic layer 14B, the first reference electrode 15A, the second reference electrode 15B, the oxide film 7a, and the oxide film 7b are provided. The silicon channel layer 12, the first spin filter film 13A, and the first ferromagnetic layer 14A constitute a spin injection electrode structure IE.
 図4に示すように、第一スピンフィルタ膜13Aは第一トンネル膜16Aと第一非磁性スピネル膜16Bからなる構造である。同様に、第二スピンフィルタ膜13Bは第二トンネル膜16Cと第二非磁性スピネル膜16Dからなる構造である。 As shown in FIG. 4, the first spin filter film 13A has a structure composed of a first tunnel film 16A and a first nonmagnetic spinel film 16B. Similarly, the second spin filter film 13B has a structure composed of a second tunnel film 16C and a second nonmagnetic spinel film 16D.
 基板10、酸化珪素膜11、およびシリコンチャンネル層12として、例えばSOI(Silicon On Insulator)基板を用いることができる。基板10はシリコン基板であり、酸化珪素膜11は基板10上に設けられている。酸化珪素膜11の膜厚は例えば200nmである。 As the substrate 10, the silicon oxide film 11, and the silicon channel layer 12, for example, an SOI (Silicon On Insulator) substrate can be used. The substrate 10 is a silicon substrate, and the silicon oxide film 11 is provided on the substrate 10. The film thickness of the silicon oxide film 11 is 200 nm, for example.
 シリコンチャンネル層12は、スピンが伝導する層として機能する。シリコンチャンネル層12の上面は例えば(100)面である。シリコンチャンネル層12は、例えばZ軸方向(厚み方向)から見てX軸を長軸方向とする矩形状を有している。シリコンチャンネル層12はシリコンからなり、シリコンチャンネル層12には必要に応じて一導電性を付与するための不純物イオンが添加されている。イオン濃度は、例えば5.0×1019cm-3である。シリコンチャンネル層12の膜厚は例えば100nmである。あるいは、第一スピンフィルタ膜13Aまたは第二スピンフィルタ膜13Bと、シリコンチャンネル層12との界面におけるショットキー障壁を調整できるように、当該界面からシリコンチャンネル層12における10nmの深さにイオン濃度のピークがあるような構造を有するシリコンチャンネル層12でもよい。また、シリコンチャンネル層12のイオン濃度が低い場合、酸化珪素膜11に電圧を印加し、シリコンチャンネル層12にキャリアを誘起させるなどの手法も考えられる。 The silicon channel layer 12 functions as a layer that conducts spin. The upper surface of the silicon channel layer 12 is, for example, a (100) plane. The silicon channel layer 12 has, for example, a rectangular shape with the X axis as the major axis direction when viewed from the Z axis direction (thickness direction). The silicon channel layer 12 is made of silicon, and impurity ions for imparting one conductivity are added to the silicon channel layer 12 as necessary. The ion concentration is, for example, 5.0 × 10 19 cm −3 . The film thickness of the silicon channel layer 12 is, for example, 100 nm. Alternatively, the ion concentration is adjusted to a depth of 10 nm in the silicon channel layer 12 from the interface so that the Schottky barrier at the interface between the first spin filter film 13A or the second spin filter film 13B and the silicon channel layer 12 can be adjusted. The silicon channel layer 12 may have a structure with a peak. Further, when the ion concentration of the silicon channel layer 12 is low, a method of applying a voltage to the silicon oxide film 11 and inducing carriers in the silicon channel layer 12 is also conceivable.
 図3に示すように、シリコンチャンネル層12は側面に傾斜部を有しており、その傾斜角θは50度から60度である。この傾斜角θとは、シリコンチャンネル層12の底部と側面のなす角度である。なお、シリコンチャンネル層12はウェットエッチングにより形成することができる。 As shown in FIG. 3, the silicon channel layer 12 has an inclined portion on the side surface, and the inclination angle θ is 50 to 60 degrees. The inclination angle θ is an angle formed by the bottom and side surfaces of the silicon channel layer 12. The silicon channel layer 12 can be formed by wet etching.
 図3に示すように、シリコンチャンネル層12は、第一凸部(第一部分)12A、第二凸部(第二部分)12B、第三凸部(第三部分)12C、第四凸部(第四部分)12D、および主部12Eを含む。第一凸部12A、第二凸部12B、第三凸部12C、および第四凸部12Dは、主部12Eから突出するように延在する部分であり、この順に所定軸(図3に示す例ではX軸)方向に所定の間隔を置いて配列している。 As shown in FIG. 3, the silicon channel layer 12 includes a first convex portion (first portion) 12A, a second convex portion (second portion) 12B, a third convex portion (third portion) 12C, and a fourth convex portion ( 4th part) 12D and the main part 12E are included. The first convex portion 12A, the second convex portion 12B, the third convex portion 12C, and the fourth convex portion 12D are portions that extend so as to protrude from the main portion 12E, and in this order a predetermined axis (shown in FIG. 3). In the example, they are arranged at a predetermined interval in the (X-axis) direction.
 第一凸部12A、第二凸部12B、第三凸部12C、および第四凸部12Dの膜厚(図3に示す例ではZ軸方向の長さ)H1は、例えば20nmである。主部12Eの膜厚(図3に示す例ではZ軸方向の長さ)H2は、例えば80nmである。第一凸部12Aと第三凸部12Cとの間の距離L1は、例えば100μm以下である。第一凸部12AのX軸方向の長さの中央部と、第二凸部12BのX軸方向の長さの中央部との間の距離dは、スピン拡散長以下であることが好ましい。室温(300K)でのシリコンチャンネル層12におけるスピン拡散長は例えば0.8μmである。第一強磁性層14Aから第一凸部12Aに注入されたスピン、あるいは第二強磁性層14Bから第二凸部12Bに注入されたスピンは、主部12Eにおける第一凸部12Aと第二凸部12Bとの間の領域を拡散・伝導する。 The film thickness (length in the Z-axis direction in the example shown in FIG. 3) H1 of the first convex portion 12A, the second convex portion 12B, the third convex portion 12C, and the fourth convex portion 12D is, for example, 20 nm. The film thickness (length in the Z-axis direction in the example shown in FIG. 3) H2 of the main portion 12E is, for example, 80 nm. A distance L1 between the first convex portion 12A and the third convex portion 12C is, for example, 100 μm or less. The distance d between the central portion of the first convex portion 12A in the X-axis direction and the central portion of the second convex portion 12B in the X-axis direction is preferably equal to or less than the spin diffusion length. The spin diffusion length in the silicon channel layer 12 at room temperature (300 K) is, for example, 0.8 μm. The spins injected from the first ferromagnetic layer 14A into the first convex part 12A or the spins injected from the second ferromagnetic layer 14B into the second convex part 12B are the same as the first convex part 12A and the second convex part in the main part 12E. The region between the convex portion 12B is diffused and conducted.
 第一スピンフィルタ膜13Aおよび第二スピンフィルタ膜13Bは、強磁性体(第一強磁性層14Aおよび第二強磁性層14B)のスピン分極と、シリコンチャンネル層12のスピン分極とを効率的に接続するためのトンネル絶縁膜として機能する。第一スピンフィルタ膜13Aは、シリコンチャンネル層12の第一部分である第一凸部12A上に設けられている。第二スピンフィルタ膜13Bは、シリコンチャンネル層12の第二部分である第二凸部12B上に設けられている。第一スピンフィルタ膜13Aおよび第二スピンフィルタ膜13Bは、シリコンチャンネル層12の例えば(100)面上に結晶成長されたものである。これらの第一スピンフィルタ膜13Aまたは第二スピンフィルタ膜13Bが設けられていることにより、第一強磁性層14Aまたは第二強磁性層14Bからシリコンチャンネル層12へスピン偏極した電子を多く注入することが可能となり、スピン伝導素子1の電位出力を高めることが可能となる。 The first spin filter film 13A and the second spin filter film 13B efficiently perform the spin polarization of the ferromagnetic material (the first ferromagnetic layer 14A and the second ferromagnetic layer 14B) and the spin polarization of the silicon channel layer 12. It functions as a tunnel insulating film for connection. The first spin filter film 13 </ b> A is provided on the first convex portion 12 </ b> A that is the first portion of the silicon channel layer 12. The second spin filter film 13 </ b> B is provided on the second convex portion 12 </ b> B that is the second portion of the silicon channel layer 12. The first spin filter film 13 </ b> A and the second spin filter film 13 </ b> B are crystals grown on, for example, the (100) plane of the silicon channel layer 12. By providing the first spin filter film 13A or the second spin filter film 13B, many spin-polarized electrons are injected from the first ferromagnetic layer 14A or the second ferromagnetic layer 14B to the silicon channel layer 12. Thus, the potential output of the spin transport device 1 can be increased.
 第一スピンフィルタ膜13Aおよび第二スピンフィルタ膜13Bの膜厚の和は3.0nm以下であることが好ましい。この場合、得られるスピン出力に対して界面抵抗率を1MΩμm以下に低くしてノイズを抑えることができるので、スピンの注入や出力を好適に行える。また、第一スピンフィルタ膜13Aおよび第二スピンフィルタ膜13Bの膜厚は、0.6nm以上であることが好適であり、この場合、シリコンチャンネル層12上に均一に成膜された第一スピンフィルタ膜13Aおよび第二スピンフィルタ膜13Bを用いることができる。 The sum of the film thicknesses of the first spin filter film 13A and the second spin filter film 13B is preferably 3.0 nm or less. In this case, since the interface resistivity can be lowered to 1 MΩμm 2 or less with respect to the obtained spin output, noise can be suppressed, so that spin injection and output can be suitably performed. Further, the film thicknesses of the first spin filter film 13A and the second spin filter film 13B are preferably 0.6 nm or more. In this case, the first spin filter film uniformly formed on the silicon channel layer 12 is used. The filter film 13A and the second spin filter film 13B can be used.
 第一強磁性層14Aおよび第二強磁性層14Bの一方は、シリコンチャンネル層12にスピンを注入するための電極として機能し、他方は、シリコンチャンネル層12内のスピンを検出するための電極として機能する。第一強磁性層14Aは、第一スピンフィルタ膜13A上に設けられている。第二強磁性層14Bは、第二スピンフィルタ膜13B上に設けられている。 One of the first ferromagnetic layer 14A and the second ferromagnetic layer 14B functions as an electrode for injecting spin into the silicon channel layer 12, and the other as an electrode for detecting spin in the silicon channel layer 12. Function. The first ferromagnetic layer 14A is provided on the first spin filter film 13A. The second ferromagnetic layer 14B is provided on the second spin filter film 13B.
 第一強磁性層14Aおよび第二強磁性層14Bは強磁性材料からなる。第一強磁性層14Aおよび第二強磁性層14Bの材料の一例として、CoおよびFeからなる群から選択される金属、前記群の元素を1以上含む合金、又は、前記群から選択される1以上の元素とBとからなる化合物が挙げられる。第一強磁性層14Aおよび第二強磁性層14Bの結晶構造は、体心立方格子構造であることが好適である。これにより、第一スピンフィルタ膜上に第一強磁性層を部分的にエピタキシャル成長させることができるとともに、第二スピンフィルタ膜上に第二強磁性層を部分的にエピタキシャル成長させることができる。 The first ferromagnetic layer 14A and the second ferromagnetic layer 14B are made of a ferromagnetic material. As an example of the material of the first ferromagnetic layer 14A and the second ferromagnetic layer 14B, a metal selected from the group consisting of Co and Fe, an alloy containing one or more elements of the group, or 1 selected from the group The compound which consists of the above element and B is mentioned. The crystal structure of the first ferromagnetic layer 14A and the second ferromagnetic layer 14B is preferably a body-centered cubic lattice structure. Thereby, the first ferromagnetic layer can be partially epitaxially grown on the first spin filter film, and the second ferromagnetic layer can be partially epitaxially grown on the second spin filter film.
 図1に示す例では、第一強磁性層14Aおよび第二強磁性層14Bは、Y軸方向を長軸とした直方体形状を有している。第一強磁性層14Aおよび第二強磁性層14Bの形状異方性によって、第一強磁性層14Aおよび第二強磁性層14Bとは保磁力差が付けられていることが好適である。第一強磁性層14Aの幅(X軸方向の長さ)は、例えば350nm程度となっている。第二強磁性層14Bの幅(X軸方向の長さ)は、例えば2μm程度となっている。図1に示す例では、第一強磁性層14Aの保磁力は、第二強磁性層14Bの保磁力よりも大きくなっている。 In the example shown in FIG. 1, the first ferromagnetic layer 14A and the second ferromagnetic layer 14B have a rectangular parallelepiped shape with the major axis in the Y-axis direction. It is preferable that the first ferromagnetic layer 14A and the second ferromagnetic layer 14B have a coercive force difference due to the shape anisotropy of the first ferromagnetic layer 14A and the second ferromagnetic layer 14B. The width (length in the X-axis direction) of the first ferromagnetic layer 14A is, for example, about 350 nm. The width (length in the X-axis direction) of the second ferromagnetic layer 14B is, for example, about 2 μm. In the example shown in FIG. 1, the coercive force of the first ferromagnetic layer 14A is larger than the coercive force of the second ferromagnetic layer 14B.
 第一参照電極15Aおよび第二参照電極15Bは、シリコンチャンネル層12に検出用電流を流すための電極としての機能と、スピンによる出力を読み取るための電極としての機能を有する。第一参照電極15Aは、シリコンチャンネル層12の第三凸部12C上に設けられている。第二参照電極15Bは、シリコンチャンネル層12の第四凸部12D上に設けられている。第一参照電極15A及び第二参照電極15Bは、導電性材料からなり、例えばAlなどのSiに対して低抵抗な非磁性金属からなる。 The first reference electrode 15A and the second reference electrode 15B have a function as an electrode for flowing a detection current through the silicon channel layer 12 and a function as an electrode for reading an output by spin. The first reference electrode 15 </ b> A is provided on the third protrusion 12 </ b> C of the silicon channel layer 12. The second reference electrode 15 </ b> B is provided on the fourth protrusion 12 </ b> D of the silicon channel layer 12. The first reference electrode 15A and the second reference electrode 15B are made of a conductive material, for example, a non-magnetic metal having a low resistance to Si such as Al.
 酸化膜7aは、シリコンチャンネル層12の側面に形成されている。また、酸化膜7bは、シリコンチャンネル層12、酸化膜7a、第一スピンフィルタ膜13A、第二スピンフィルタ膜13B、第一強磁性層14A、第二強磁性層14B、第一参照電極15A、及び第二参照電極15Bの側面上に形成されている。また、シリコンチャンネル層12の上面のうち、第一強磁性層14A、第二強磁性層14B、第一参照電極15A、および第二参照電極15Bの設けられていない主部12E上には、酸化膜7bが形成されている。酸化膜7bは、第一スピンフィルタ膜13Aと第二スピンフィルタ膜13Bとの間において、シリコンチャンネル層12の主部12E上に設けられている。酸化膜7bは、シリコンチャンネル層12、第一スピンフィルタ膜13A、第二スピンフィルタ膜13B、第一強磁性層14A、第二強磁性層14B、第一参照電極15A、および第二参照電極15Bの保護膜として機能し、これらの層の劣化を抑制する。酸化膜7bは、例えば酸化珪素膜である。 The oxide film 7 a is formed on the side surface of the silicon channel layer 12. The oxide film 7b includes the silicon channel layer 12, the oxide film 7a, the first spin filter film 13A, the second spin filter film 13B, the first ferromagnetic layer 14A, the second ferromagnetic layer 14B, the first reference electrode 15A, And on the side surface of the second reference electrode 15B. In addition, on the upper surface of the silicon channel layer 12, the main ferromagnetic portion 12E where the first ferromagnetic layer 14A, the second ferromagnetic layer 14B, the first reference electrode 15A, and the second reference electrode 15B are not provided is oxidized. A film 7b is formed. The oxide film 7b is provided on the main portion 12E of the silicon channel layer 12 between the first spin filter film 13A and the second spin filter film 13B. The oxide film 7b includes the silicon channel layer 12, the first spin filter film 13A, the second spin filter film 13B, the first ferromagnetic layer 14A, the second ferromagnetic layer 14B, the first reference electrode 15A, and the second reference electrode 15B. It functions as a protective film and suppresses deterioration of these layers. The oxide film 7b is, for example, a silicon oxide film.
 図1に示すように、第一参照電極15A上及び酸化膜7b(シリコンチャンネル層12の傾斜した側面)上に、配線18Aが設けられている。同様に、第一強磁性層14A上及び酸化膜7b上に、配線18Bが設けられている。第二強磁性層14B上及び酸化膜7b上に、配線18Cが設けられている。第二参照電極15B上及び酸化膜7b上に、配線18Dが設けられている。配線18A~18Dは、Cuなどの導電性材料からなる。酸化膜7b上に配線を設けることにより、この配線によってシリコンチャンネル層12内を伝導するスピンが吸収されることを抑制できる。また、酸化膜7b上に配線を設けることにより、配線からシリコンチャンネル層12へ電流が流れることを抑制でき、スピン注入効率を向上できる。また、配線18A~18Dのそれぞれの端部には、測定用の電極パッドE1~E4が設けられている。配線18A~18Dの端部及び測定用の電極パッドE1~E4は、酸化珪素膜11上に形成されている。電極パッドE1~E4は、Auなどの導電性材料からなる。 As shown in FIG. 1, a wiring 18A is provided on the first reference electrode 15A and on the oxide film 7b (an inclined side surface of the silicon channel layer 12). Similarly, the wiring 18B is provided on the first ferromagnetic layer 14A and the oxide film 7b. A wiring 18C is provided on the second ferromagnetic layer 14B and the oxide film 7b. A wiring 18D is provided on the second reference electrode 15B and the oxide film 7b. The wirings 18A to 18D are made of a conductive material such as Cu. By providing the wiring on the oxide film 7b, it is possible to suppress the absorption of spin conducted through the silicon channel layer 12 by this wiring. Further, by providing the wiring on the oxide film 7b, it is possible to suppress a current from flowing from the wiring to the silicon channel layer 12, and to improve the spin injection efficiency. In addition, electrode pads E1 to E4 for measurement are provided at the respective ends of the wirings 18A to 18D. End portions of the wirings 18A to 18D and measurement electrode pads E1 to E4 are formed on the silicon oxide film 11. The electrode pads E1 to E4 are made of a conductive material such as Au.
 図4は、第一スピンフィルタ膜13A及び第二スピンフィルタ膜13Bの断面図である。第一スピンフィルタ膜13Aは第一トンネル膜16Aと第一非磁性スピネル膜16Bから成る。第一トンネル膜16Aは、シリコンチャンネル層12上に結晶成長がしていないか、あるいは、シリコンチャンネル層12上に十分小さい領域で結晶成長している。第一非磁性スピネル膜16Bは結晶質の膜であり、第一トンネル膜16A上で結晶化している。同様に、第二スピンフィルタ膜13Bは第二トンネル膜16Cと第二非磁性スピネル膜16Dから成る。第二トンネル膜16Cは、シリコンチャンネル層12上に結晶成長がしていないか、あるいは、シリコンチャンネル層12上に十分小さい領域で結晶成長している。第二非磁性スピネル膜16Dは結晶質の膜であり、第二トンネル膜16C上で結晶化している。 FIG. 4 is a cross-sectional view of the first spin filter film 13A and the second spin filter film 13B. The first spin filter film 13A includes a first tunnel film 16A and a first nonmagnetic spinel film 16B. The first tunnel film 16 </ b> A is not grown on the silicon channel layer 12 or grown in a sufficiently small region on the silicon channel layer 12. The first nonmagnetic spinel film 16B is a crystalline film and is crystallized on the first tunnel film 16A. Similarly, the second spin filter film 13B includes a second tunnel film 16C and a second nonmagnetic spinel film 16D. The second tunnel film 16 </ b> C is not grown on the silicon channel layer 12 or grown in a sufficiently small region on the silicon channel layer 12. The second nonmagnetic spinel film 16D is a crystalline film and is crystallized on the second tunnel film 16C.
 以下、第一スピンフィルタ膜13Aを構成する第一トンネル膜16Aと第一非磁性スピネル膜16Bと、第一強磁性膜14Aについて記述する。 Hereinafter, the first tunnel film 16A, the first nonmagnetic spinel film 16B, and the first ferromagnetic film 14A constituting the first spin filter film 13A will be described.
 第一トンネル膜16Aは酸化アルミニウム、酸化亜鉛、酸化シリコン、酸化チタンあるいは、酸化マグネシウムが適している。これらの材料において、0.6nm以上2.0nm以下の場合にはシリコンチャンネル層12上で非結晶質である場合が多い。また、結晶化しても多くのドメイン構造をもった多結晶状態である。よって、シリコンチャンネル層12と第一トンネル膜16Aの界面において長距離の結晶格子の整合したエピタキシャル成長を生じないため、シリコンと第一トンネル膜16Aの格子定数に差に起因するデフェクトが生じない。 The first tunnel film 16A is suitably made of aluminum oxide, zinc oxide, silicon oxide, titanium oxide, or magnesium oxide. In these materials, when the thickness is 0.6 nm or more and 2.0 nm or less, the silicon channel layer 12 is often amorphous. Even when crystallized, it is in a polycrystalline state having many domain structures. Therefore, long-distance crystal lattice-matched epitaxial growth does not occur at the interface between the silicon channel layer 12 and the first tunnel film 16A, so that no defect due to the difference in lattice constant between the silicon and the first tunnel film 16A occurs.
 第一非磁性スピネル膜16BはMgAl、あるいは、ZnAlが適している。前述のように非結晶質の第一トンネル膜16A上の第一非磁性スピネル膜16Bは結晶化しやすい。特に、第一非磁性スピネル膜16Bの膜厚は、0.6nm以上2.4nm以下であることが好適である。第一非磁性スピネル膜16Bの膜厚が0.6nm以上の場合に第一非磁性スピネル膜16Bが結晶化しやすく、2.4nm以下の場合には膜厚が薄く積層膜の抵抗値が小さくなり、かつ、十分なスピン分極率が得られることができる。 MgAl 2 O 4 or ZnAl 2 O 4 is suitable for the first nonmagnetic spinel film 16B. As described above, the first nonmagnetic spinel film 16B on the amorphous first tunnel film 16A is easily crystallized. In particular, the film thickness of the first nonmagnetic spinel film 16B is preferably 0.6 nm or more and 2.4 nm or less. When the film thickness of the first nonmagnetic spinel film 16B is 0.6 nm or more, the first nonmagnetic spinel film 16B is easily crystallized, and when it is 2.4 nm or less, the film thickness is thin and the resistance value of the laminated film is small. And sufficient spin polarizability can be obtained.
 第一強磁性層14Aの結晶構造は、体心立方格子構造(BCC)であることが好適である。第一強磁性層14Aの材料がCoおよびFeからなる群から選択される金属、前記群の元素を1以上含む合金、又は前記群から選択される1以上の元素とBとを含む化合物である場合、第一強磁性層14Aは第一非磁性スピネル膜16B上にエピタキシャル成長しやすくなる。例えば、第一非磁性スピネル膜16BはMgAlで、第一強磁性層14AがFeの場合には、MgAlとFeの格子定数はほぼ一致しており、MgAlとFeの界面においてスピン散乱を抑制することが可能である。結晶構造や格子定数は積層膜の断面TEMやXRDで解析できる程度の厚さの膜を形成して評価することによって決定することができる。 The crystal structure of the first ferromagnetic layer 14A is preferably a body-centered cubic lattice structure (BCC). The material of the first ferromagnetic layer 14A is a metal selected from the group consisting of Co and Fe, an alloy containing one or more elements of the group, or a compound containing one or more elements selected from the group and B. In this case, the first ferromagnetic layer 14A is easily epitaxially grown on the first nonmagnetic spinel film 16B. For example, when the first nonmagnetic spinel film 16B is MgAl 2 O 4 and the first ferromagnetic layer 14A is Fe, the lattice constants of MgAl 2 O 4 and Fe are substantially the same, and MgAl 2 O 4 and It is possible to suppress spin scattering at the Fe interface. The crystal structure and lattice constant can be determined by forming and evaluating a film having a thickness that can be analyzed by a cross-sectional TEM or XRD of the laminated film.
 さらに、第一強磁性層14Aはホイスラー合金であることがより好ましい。ホイスラー合金(またはフルホイスラー合金とも言う)とは、X2YZの化学組成をもつ金属間化合物の総称であり、ここで、Xは周期表上で、Co、Fe、Ni、あるいはCu族の遷移金属元素または貴金属元素である。YはMn、V、CrあるいはTi族の遷移金属でありXと同じ元素種をとることもできる。ZはIII族からV族の典型元素である。ホイスラー合金X2YZはX・Y・Zの規則性から3種類の結晶構造に分けられる。結晶の周期性を利用したX線回折等の分析により、3元素の区別ができるX≠Y≠Zとなる最も規則性の高い構造がL21構造、次に規則性の高いX≠Y=Zとなる構造がB2構造、そして3元素の区別ができないX=Y=Zとなる構造がA2構造である Furthermore, the first ferromagnetic layer 14A is more preferably a Heusler alloy. Heusler alloy (or full Heusler alloy) is a general term for intermetallic compounds having a chemical composition of X2YZ, where X is a transition metal element of Co, Fe, Ni, or Cu group on the periodic table. Or it is a noble metal element. Y is a transition metal of Mn, V, Cr or Ti group and can take the same element species as X. Z is a typical element from Group III to Group V. Heusler alloy X2YZ is divided into three types of crystal structures based on the regularity of X, Y, and Z. According to the analysis such as X-ray diffraction using the periodicity of the crystal, the most regular structure in which X ≠ Y ≠ Z that can distinguish the three elements is the L21 structure, and the next highest regularity X ≠ Y = Z. Is a B2 structure, and a structure where X = Y = Z is indistinguishable from three elements is an A2 structure.
 また、第一トンネル膜16Aは酸化アルミニウムか、あるいは、酸化マグネシウムであり、第一非磁性スピネル膜16BがMgAlである場合、第一トンネル膜16Aは第一非磁性スピネル膜16Bの構成元素を含んでいるため、熱などにより第一トンネル膜16Aの元素と第一非磁性スピネル膜16Bの元素が相互拡散しても互いのスピンフィルタとしての機能の低下を抑制することが可能である。すなわち、第一トンネル膜16Aの構成元素は、第一非磁性スピネル膜16Bの一部の陽イオンを含んだ酸化物であることがより好ましい。 In addition, when the first tunnel film 16A is aluminum oxide or magnesium oxide and the first nonmagnetic spinel film 16B is MgAl 2 O 4 , the first tunnel film 16A is a configuration of the first nonmagnetic spinel film 16B. Since the element is contained, even if the element of the first tunnel film 16A and the element of the first nonmagnetic spinel film 16B are mutually diffused by heat or the like, it is possible to suppress a decrease in the function as a spin filter. . That is, the constituent element of the first tunnel film 16A is more preferably an oxide containing some cations of the first nonmagnetic spinel film 16B.
 第二スピンフィルタ膜13Bも、上記第一スピンフィルタ膜13Aと同様である。 The second spin filter film 13B is the same as the first spin filter film 13A.
 以下、本実施形態に係るスピン伝導素子1のNL(非局所)測定法を用いる動作の一例について説明する。NL測定法では、図3に示すように、スピン伝導素子1は例えばY軸方向の外部磁場B1を検出する。第一強磁性層14Aの磁化方向G1(Y軸方向)を第二強磁性層14Bの磁化方向G2(Y軸方向)と同一方向に固定する。また、図1に示すように、電極パッドE1及びE3を交流電流源70に接続することにより、第一強磁性層14Aに検出用電流を流す。強磁性体である第一強磁性層14Aから、第一スピンフィルタ膜13Aを介して、非磁性体のシリコンチャンネル層12へ検出用電流が流れることにより、第一強磁性層14Aの磁化の向きG1に対応するスピンを有する電子がシリコンチャンネル層12へ注入される。注入されたスピンは第二強磁性層14B側へ拡散していく。このように、シリコンチャンネル層12に流れる電流及びスピン流が、主に所定の軸(X軸)方向に流れる構造とすることができる。そして、外部磁場B1によって変化される第一強磁性層14Aの磁化の向き、すなわち電子のスピンと、シリコンチャンネル層12の第二強磁性層14Bと接する部分の電子のスピンとの相互作用により、シリコンチャンネル層12と第二強磁性層14Bの間において出力が発生する。この出力は、電極パッドE2及びE4に接続した出力測定器80により検出する。 Hereinafter, an example of an operation using the NL (non-local) measurement method of the spin transport device 1 according to the present embodiment will be described. In the NL measurement method, as shown in FIG. 3, the spin transport element 1 detects an external magnetic field B1 in the Y-axis direction, for example. The magnetization direction G1 (Y-axis direction) of the first ferromagnetic layer 14A is fixed in the same direction as the magnetization direction G2 (Y-axis direction) of the second ferromagnetic layer 14B. Further, as shown in FIG. 1, by connecting the electrode pads E1 and E3 to an alternating current source 70, a detection current is passed through the first ferromagnetic layer 14A. When a detection current flows from the first ferromagnetic layer 14A, which is a ferromagnetic material, to the non-magnetic silicon channel layer 12 through the first spin filter film 13A, the direction of magnetization of the first ferromagnetic layer 14A Electrons having a spin corresponding to G 1 are injected into the silicon channel layer 12. The injected spin diffuses toward the second ferromagnetic layer 14B. As described above, a structure in which the current and spin current flowing in the silicon channel layer 12 flow mainly in a predetermined axis (X-axis) direction can be obtained. Then, due to the interaction between the magnetization direction of the first ferromagnetic layer 14A, which is changed by the external magnetic field B1, that is, the spin of electrons and the spin of electrons in the portion of the silicon channel layer 12 in contact with the second ferromagnetic layer 14B, An output is generated between the silicon channel layer 12 and the second ferromagnetic layer 14B. This output is detected by an output measuring device 80 connected to the electrode pads E2 and E4.
 次に、本実施形態に係るスピン伝導素子1のNL-Hanle測定法を用いる動作の一例を説明する。NL-Hanle測定法ではHanle効果を利用する。Hanle効果とは、電流によって強磁性電極からチャンネルに注入されたスピンが他の強磁性電極に向かって拡散・伝導する際に、スピンの向きと垂直な方向から外部磁場が印加されたときに、ラーモア歳差を起こす現象である。NL-Hanle測定法では、図3に示すように、スピン伝導素子1は例えばZ軸方向の外部磁場B2を検出する。第一強磁性層14Aの磁化方向G1(Y軸方向)は、第二強磁性層14Bの磁化方向G2(Y軸方向)と同一方向に固定する。そして、第一強磁性層14Aおよび第一参照電極15Aを交流電流源70に接続することにより、第一強磁性層14Aにスピンの検出用電流を流すことができる。強磁性体である第一強磁性層14Aから第一スピンフィルタ膜13Aを介して、非磁性体のシリコンチャンネル層12へ電流が流れることにより、第一強磁性層14Aの磁化の向きG1に対応する向きのスピンを有する電子がシリコンチャンネル層12の第一凸部12Aへ注入される。第一凸部12Aに注入されたスピンは、主部12Eを通って第二強磁性層14B側へ拡散していく。このように、シリコンチャンネル層12に流れる電流およびスピン流が主にX軸方向に流れる構造となる。 Next, an example of an operation using the NL-Hane measurement method of the spin transport device 1 according to the present embodiment will be described. The NL-Hanle measurement method uses the Hanle effect. The Hanle effect means that when an external magnetic field is applied from a direction perpendicular to the direction of the spin when the spin injected from the ferromagnetic electrode into the channel by the current diffuses and conducts toward the other ferromagnetic electrode, It is a phenomenon that causes Larmor precession. In the NL-Hanle measurement method, as shown in FIG. 3, the spin transport element 1 detects an external magnetic field B2 in the Z-axis direction, for example. The magnetization direction G1 (Y-axis direction) of the first ferromagnetic layer 14A is fixed in the same direction as the magnetization direction G2 (Y-axis direction) of the second ferromagnetic layer 14B. Then, by connecting the first ferromagnetic layer 14A and the first reference electrode 15A to the alternating current source 70, a spin detection current can be passed through the first ferromagnetic layer 14A. A current flows from the first ferromagnetic layer 14A, which is a ferromagnetic material, to the non-magnetic silicon channel layer 12 through the first spin filter film 13A, thereby corresponding to the magnetization direction G1 of the first ferromagnetic layer 14A. Electrons having a spin direction are injected into the first convex portion 12A of the silicon channel layer 12. The spin injected into the first convex portion 12A diffuses toward the second ferromagnetic layer 14B through the main portion 12E. In this way, the current and spin current flowing through the silicon channel layer 12 flow mainly in the X-axis direction.
 ここで、シリコンチャンネル層12に外部磁場B2を印加しないとき、すなわち外部磁場がゼロのとき、シリコンチャンネル層12のうち第一強磁性層14Aと第二強磁性層14Bとの間の領域を拡散するスピンの向きは回転しない。よって、予め設定された第二強磁性層14Bの磁化の向きG2と同一方向のスピンが、シリコンチャンネル層12における第二強磁性層14B側の領域に拡散してくることとなる。従って、外部磁場がゼロのとき、出力(例えば抵抗出力や電圧出力)は極値となる。なお、電流や磁化の向きで極大値または極小値をとりうる。出力は、第二強磁性層14Bおよび第二参照電極15Bに接続した電圧測定器などの出力測定器80により評価できる。 Here, when the external magnetic field B2 is not applied to the silicon channel layer 12, that is, when the external magnetic field is zero, a region of the silicon channel layer 12 between the first ferromagnetic layer 14A and the second ferromagnetic layer 14B is diffused. The direction of the spinning spin does not rotate. Therefore, the spin in the same direction as the magnetization direction G2 of the second ferromagnetic layer 14B set in advance diffuses to the region on the second ferromagnetic layer 14B side in the silicon channel layer 12. Therefore, when the external magnetic field is zero, the output (for example, resistance output or voltage output) is an extreme value. The maximum value or the minimum value can be taken depending on the direction of current or magnetization. The output can be evaluated by an output measuring device 80 such as a voltage measuring device connected to the second ferromagnetic layer 14B and the second reference electrode 15B.
 対して、シリコンチャンネル層12に外部磁場B2を印加する場合を考える。外部磁場B2は、第一強磁性層14Aの磁化方向G1(図3の例ではY軸方向)および第二強磁性層14Bの磁化方向G2(図3の例ではY軸方向)に対して垂直な方向(図3の例ではZ軸方向)から印加する。外部磁場B2を印加すると、シリコンチャンネル層12内を拡散・伝導するスピンの向きは、外部磁場B2の軸方向(図3の例ではZ軸方向)を中心として回転する(いわゆるHanle効果)。シリコンチャンネル層12における第二強磁性層14B側の領域まで拡散してきたときのこのスピンの回転の向きと、予め設定された第二強磁性層14Bの磁化の向きG2、すなわちスピンの向きと、の相対角により、シリコンチャンネル層12と第二強磁性層14Bの界面の出力(例えば抵抗出力や電圧出力)が決定される。外部磁場B2を印加する場合、シリコンチャンネル層12内を拡散するスピンの向きは回転するので、第二強磁性層14Bの磁化の向きと向きが揃わない。よって、出力は、外部磁場がゼロのときに極大値をとる場合、外部磁場B2を印加するときには極大値以下となる。また、出力は、外部磁場がゼロのときに極小値をとる場合、外部磁場B2を印加するときには極小値以上となる。 On the other hand, a case where an external magnetic field B2 is applied to the silicon channel layer 12 is considered. The external magnetic field B2 is perpendicular to the magnetization direction G1 (Y-axis direction in the example of FIG. 3) of the first ferromagnetic layer 14A and the magnetization direction G2 (Y-axis direction in the example of FIG. 3) of the second ferromagnetic layer 14B. Application is performed from any direction (Z-axis direction in the example of FIG. 3). When the external magnetic field B2 is applied, the direction of spin that diffuses and conducts in the silicon channel layer 12 rotates around the axial direction of the external magnetic field B2 (Z-axis direction in the example of FIG. 3) (so-called Hanle effect). The direction of rotation of this spin when diffusing up to the region on the second ferromagnetic layer 14B side in the silicon channel layer 12, and the direction G2 of magnetization of the second ferromagnetic layer 14B set in advance, that is, the direction of spin, Output relative to the interface between the silicon channel layer 12 and the second ferromagnetic layer 14B (for example, resistance output or voltage output). When the external magnetic field B2 is applied, the direction of the spin diffusing in the silicon channel layer 12 rotates, so that the magnetization direction and direction of the second ferromagnetic layer 14B are not aligned. Therefore, the output takes a maximum value when the external magnetic field is zero, and the output is less than the maximum value when the external magnetic field B2 is applied. Further, the output takes a minimum value when the external magnetic field is zero, and the output becomes a minimum value or more when the external magnetic field B2 is applied.
 従って、NL-Hanle測定法では、外部磁場がゼロのときに出力のピークが現われ、外部磁場B2を増加または減少させると出力が減少していく。つまり、外部磁場B2の有無によって出力が変化するので、本実施形態に係るスピン伝導素子1は、例えば磁気センサーとして使用できる。 Therefore, in the NL-Hane measurement method, an output peak appears when the external magnetic field is zero, and the output decreases as the external magnetic field B2 is increased or decreased. That is, since the output changes depending on the presence or absence of the external magnetic field B2, the spin transport element 1 according to this embodiment can be used as a magnetic sensor, for example.
 以上、本発明の好適な実施形態について詳細に説明したが、本発明は上記実施形態に限定されない。シリコンチャンネル層12には、導電性を付与するためのイオンが打ち込まれる。このイオン打ち込みに起因して、シリコンチャンネル層12の表面にはダメージが残る。そこで、シリコンチャンネル層12の表面から底部に向かってミリングすることが好ましく、シリコンチャンネル層は、第一部分と第二部分との間に窪みを有し、窪みの深さは10nm以上であることが好ましい。この場合、表面ダメージの抑制されたシリコンチャンネル層12を得ることができる。 As mentioned above, although the suitable embodiment of the present invention was described in detail, the present invention is not limited to the above-mentioned embodiment. Ions for imparting conductivity are implanted into the silicon channel layer 12. Due to this ion implantation, damage remains on the surface of the silicon channel layer 12. Therefore, it is preferable to perform milling from the surface of the silicon channel layer 12 toward the bottom, and the silicon channel layer has a recess between the first portion and the second portion, and the depth of the recess is 10 nm or more. preferable. In this case, the silicon channel layer 12 with suppressed surface damage can be obtained.
 また、第二強磁性層14Bの磁化方向は、第二強磁性層14B上に設けられた反強磁性層によって、固定されていてもよい。この場合、反強磁性層を設けない場合よりも、高い保磁力を一方向に有する第二強磁性層14Bが得られる。また、第二強磁性層14Bの磁化方向を固定する磁場は、評価対象である外部磁場B1,B2よりも大きいことが好ましい。これにより、安定して外部磁場B1,B2を検出することができる。また、NL-Hanle測定法では、第一強磁性層14Aおよび第二強磁性層14Bは、反強磁性層によって同一の方向に同程度の保磁力をもっていることが好ましい。 Further, the magnetization direction of the second ferromagnetic layer 14B may be fixed by an antiferromagnetic layer provided on the second ferromagnetic layer 14B. In this case, the second ferromagnetic layer 14B having a higher coercive force in one direction can be obtained than when no antiferromagnetic layer is provided. The magnetic field that fixes the magnetization direction of the second ferromagnetic layer 14B is preferably larger than the external magnetic fields B1 and B2 to be evaluated. Thereby, the external magnetic fields B1 and B2 can be detected stably. In the NL-Hanle measurement method, the first ferromagnetic layer 14A and the second ferromagnetic layer 14B preferably have the same degree of coercive force in the same direction due to the antiferromagnetic layer.
 また、上述のスピン伝導素子1を複数備えた磁気検出装置とすることができる。例えば、上述のスピン伝導素子1を複数並列あるいは複数積層して、磁気検出装置とすることができる。この場合、各スピン伝導素子1の出力を合算することができる。このような磁気検出装置は、例えば癌細胞などを検知する生体センサーなどに適用できる。 Also, a magnetic detection device including a plurality of the spin transport elements 1 described above can be provided. For example, a plurality of the above-described spin transport elements 1 can be arranged in parallel or stacked to form a magnetic detection device. In this case, the outputs of the spin transport elements 1 can be added up. Such a magnetic detection device can be applied to, for example, a biological sensor that detects cancer cells and the like.
 また、上述のスピン注入電極構造IEやスピン伝導素子1は、例えば磁気ヘッド、磁気抵抗メモリ(MRAM)、論理回路、核スピンメモリ、量子コンピュータなどの種々のスピン伝導デバイスに用いることができる。 Further, the above-described spin injection electrode structure IE and the spin transport element 1 can be used for various spin transport devices such as a magnetic head, a magnetoresistive memory (MRAM), a logic circuit, a nuclear spin memory, and a quantum computer.
 また、スピン検出部(第二強磁性層14B、第二スピンフィルタ膜13B、およびシリコンチャンネル層12の第二凸部12B)の構成は、上記実施形態に限定されず、例えば電流を流すことによってスピンを検出するものでもよい。 The configuration of the spin detection unit (the second ferromagnetic layer 14B, the second spin filter film 13B, and the second convex portion 12B of the silicon channel layer 12) is not limited to the above-described embodiment. It may be one that detects spin.
 以下、実施例を説明するが、本発明は以下の実施例に限定されない。また、上記はシリコンチャンネル層を例に出したが、シリコンをゲルマニウムに置き換えた例でもほぼ同様な結果が得られ、材料もシリコンに限定されるものではない。 Hereinafter, examples will be described, but the present invention is not limited to the following examples. In addition, although the silicon channel layer has been described above as an example, substantially the same result can be obtained even in the case where silicon is replaced with germanium, and the material is not limited to silicon.
(実施例1)
 まず、基板、絶縁膜、及びシリコン膜からなるSOI基板を準備した。基板にはシリコン基板、絶縁膜には200nmの酸化珪素層を用い、シリコン膜は100nmであった。シリコン膜に導電性を付与するリンイオンの打ち込みを行った。その後、900℃のアニールにより不純物を拡散させて、シリコン膜の電子濃度の調整を行った。この際、シリコン膜全体の平均電子濃度が5.0×1019cm-3となるようにした。
(Example 1)
First, an SOI substrate including a substrate, an insulating film, and a silicon film was prepared. A silicon substrate was used as the substrate, a 200 nm silicon oxide layer was used as the insulating film, and the silicon film was 100 nm. Phosphorus ions for imparting conductivity to the silicon film were implanted. Thereafter, impurities were diffused by annealing at 900 ° C. to adjust the electron concentration of the silicon film. At this time, the average electron concentration of the entire silicon film was set to 5.0 × 10 19 cm −3 .
 次いで、RCA洗浄を用いて、SOI基板の表面の付着物、有機物、及び自然酸化膜を除去した。その後、HF洗浄液を用いてSOI基板の表面を水素で終端させた。続いて、SOI基板を分子線エピタキシー(MBE)装置に搬入した。ベース真空度(積層処理を実際に施す前の装置内の真空度)を2.0×10-9Torr以下とした。SOI基板の加熱によるフラッシング処理を行った。これにより、シリコン膜表面の水素を離脱させ、清浄表面を形成した。 Next, deposits, organic substances, and natural oxide films on the surface of the SOI substrate were removed using RCA cleaning. Thereafter, the surface of the SOI substrate was terminated with hydrogen using an HF cleaning solution. Subsequently, the SOI substrate was carried into a molecular beam epitaxy (MBE) apparatus. The degree of base vacuum (the degree of vacuum in the apparatus before the actual lamination process) was set to 2.0 × 10 −9 Torr or less. Flushing treatment was performed by heating the SOI substrate. As a result, hydrogen on the surface of the silicon film was released to form a clean surface.
 続いて、MBE法を用いて、シリコン膜上に第一トンネル膜として酸化アルミニウム、第一非磁性スピネル膜としてMgAl、鉄膜、及びチタン膜をこの順に成膜し、積層体を得た。成膜時における真空度は5×10-8Torr以下であった。チタン膜は、鉄膜の酸化による特性劣化を抑制するためのキャップ層である。 Subsequently, using the MBE method, an aluminum oxide as a first tunnel film and an MgAl 2 O 4 , an iron film, and a titanium film as a first nonmagnetic spinel film are formed in this order on the silicon film to obtain a laminate. It was. The degree of vacuum during film formation was 5 × 10 −8 Torr or less. The titanium film is a cap layer for suppressing characteristic deterioration due to oxidation of the iron film.
なお、本実施例において、第一と第二のそれぞれのトンネル膜、非磁性スピネル膜、鉄膜、及びチタン膜は同じ工程で作成しているため、区別はない。 In the present embodiment, the first and second tunnel films, the nonmagnetic spinel film, the iron film, and the titanium film are formed in the same process, and thus are not distinguished.
 続いて、第一非磁性スピネル膜の結晶化を促すため、300℃で3時間のアニールを行った。 Subsequently, in order to promote crystallization of the first nonmagnetic spinel film, annealing was performed at 300 ° C. for 3 hours.
 次いで、積層体の表面の洗浄を行った後、フォトリソグラフィ法およびリフトオフにより、Taのアライメントマークを基板に形成した。続いて、マスクを用いて、シリコン膜を異方性ウェットエッチングによりパターニングした。これにより、側面に傾斜部を有するシリコンチャンネル層12を得た。この際、シリコンチャンネル層12のサイズは、23μm×300μmとなった。また、得られたシリコンチャンネル層12の側面を酸化させて、酸化珪素膜(酸化膜7a)を形成した。 Next, after cleaning the surface of the laminate, Ta alignment marks were formed on the substrate by photolithography and lift-off. Subsequently, the silicon film was patterned by anisotropic wet etching using a mask. As a result, a silicon channel layer 12 having an inclined portion on the side surface was obtained. At this time, the size of the silicon channel layer 12 was 23 μm × 300 μm. Further, the side surface of the obtained silicon channel layer 12 was oxidized to form a silicon oxide film (oxide film 7a).
 次いで、フォトリソグラフィ法を用いて、鉄膜をパターニングすることにより、第一強磁性層14Aおよび第二強磁性層14Bを形成した。シリコンチャンネル層12と、第一強磁性層14Aおよび第二強磁性層14Bとの間以外に位置する酸化膜とマグネシウム膜を除去した。これにより、第一スピンフィルタ膜13Aおよび第二スピンフィルタ膜13Bを得た。露出したシリコンチャンネル層12の一端側と他端側に、Al膜を形成し、第一参照電極15Aおよび第二参照電極15Bをそれぞれ得た。 Next, the first ferromagnetic layer 14A and the second ferromagnetic layer 14B were formed by patterning the iron film using a photolithography method. The oxide film and the magnesium film located except between the silicon channel layer 12 and the first ferromagnetic layer 14A and the second ferromagnetic layer 14B were removed. Thereby, the first spin filter film 13A and the second spin filter film 13B were obtained. An Al film was formed on one end side and the other end side of the exposed silicon channel layer 12 to obtain a first reference electrode 15A and a second reference electrode 15B, respectively.
 更に、イオンミリングおよびエッチングを用いて、シリコンチャンネル層12の表面のうち、第一強磁性層14A、第二強磁性層14B、第一参照電極15Aおよび第二参照電極15Bの形成されていない部分において、シリコンチャンネル層12の表面から20nmの深さまでシリコンチャンネル層12を掘り込んだ。これにより、シリコンチャンネル層12は、第一凸部12A、第二凸部12B、第三凸部12C、第四凸部12D、および主部12Eを含む構造となった。第一凸部12A、第二凸部12B、第三凸部12C、および第四凸部12Dは、この順にX軸方向に所定の間隔を置いて配列され、主部12Eから突出するように延在する部分である。第一凸部12A、第二凸部12B、第三凸部12C、および第四凸部12Dの膜厚H1は、10nmであった。このような構造により、シリコンチャンネル層12となるシリコン膜に、導電性を付与するイオンの打ち込みの際に形成された表面ダメージが除去された。 Further, a portion of the surface of the silicon channel layer 12 where the first ferromagnetic layer 14A, the second ferromagnetic layer 14B, the first reference electrode 15A, and the second reference electrode 15B are not formed by using ion milling and etching. Then, the silicon channel layer 12 was dug to a depth of 20 nm from the surface of the silicon channel layer 12. As a result, the silicon channel layer 12 has a structure including the first convex portion 12A, the second convex portion 12B, the third convex portion 12C, the fourth convex portion 12D, and the main portion 12E. The first convex portion 12A, the second convex portion 12B, the third convex portion 12C, and the fourth convex portion 12D are arranged in this order at predetermined intervals in the X-axis direction and extend so as to protrude from the main portion 12E. It is a part that exists. The film thickness H1 of the first convex portion 12A, the second convex portion 12B, the third convex portion 12C, and the fourth convex portion 12D was 10 nm. With such a structure, the surface damage formed when ions for imparting conductivity were implanted into the silicon film to be the silicon channel layer 12 was removed.
 さらに、酸化膜7a、第一スピンフィルタ膜13A、第二スピンフィルタ膜13B、第一強磁性層14A、第二強磁性層14B、第一参照電極15Aおよび第二参照電極15Bの側面上と、シリコンチャンネル層12の上面のうち、第一強磁性層14A、第二強磁性層14B、第一参照電極15Aおよび第二参照電極15Bの形成されていない主部12E上とに、酸化珪素膜(酸化膜7b)を形成した。 Furthermore, on the side surfaces of the oxide film 7a, the first spin filter film 13A, the second spin filter film 13B, the first ferromagnetic layer 14A, the second ferromagnetic layer 14B, the first reference electrode 15A, and the second reference electrode 15B, Of the upper surface of the silicon channel layer 12, a silicon oxide film (on the main portion 12E where the first ferromagnetic layer 14A, the second ferromagnetic layer 14B, the first reference electrode 15A and the second reference electrode 15B are not formed) An oxide film 7b) was formed.
 次に、第一強磁性層14A、第二強磁性層14B、第一参照電極15Aおよび第二参照電極15B上に配線18A~18Dをそれぞれ形成した。配線18A~18Dとして、Ta(厚さ10nm)、Cu(厚さ50nm)、及びTa(厚さ10nm)の積層構造を用いた。さらに、各配線18A~18Dの端部にそれぞれ電極パッドE1~E4を形成した。電極パッドE1~E4として、Cr(厚さ50nm)とAu(厚さ150nm)の積層構造を用いた。こうして、図1~4に示すスピン伝導素子1と同様の構成を有する実施例1のスピン伝導素子を作成した。 Next, wirings 18A to 18D were formed on the first ferromagnetic layer 14A, the second ferromagnetic layer 14B, the first reference electrode 15A, and the second reference electrode 15B, respectively. As the wirings 18A to 18D, a stacked structure of Ta (thickness 10 nm), Cu (thickness 50 nm), and Ta (thickness 10 nm) was used. Further, electrode pads E1 to E4 were formed at the ends of the wirings 18A to 18D, respectively. As the electrode pads E1 to E4, a laminated structure of Cr (thickness 50 nm) and Au (thickness 150 nm) was used. Thus, the spin transport device of Example 1 having the same configuration as the spin transport device 1 shown in FIGS. 1 to 4 was produced.
 (NL測定の結果)
 NL測定法では、実施例1で作製したスピン伝導素子において、第一強磁性層14Aの磁化方向G1および第二強磁性層14Bの磁化方向G2を外部磁場B1の磁化方向と同一方向(図3に示すY軸方向)に固定した。このスピン伝導素子に対して、第一強磁性層14Aおよび第二強磁性層14Bの磁化方向と平行な方向(Y軸方向)から外部磁場B1を印加した。交流電流源70からの検出用電流を第一強磁性層14Aへ流すことにより、第一強磁性層14Aからシリコンチャンネル層12へスピンを注入した。そして、外部磁場B1による磁化変化に基づく出力を出力測定器80により測定した。この際、測定はいずれも室温にて行った。
(Result of NL measurement)
In the NL measurement method, in the spin transport device fabricated in Example 1, the magnetization direction G1 of the first ferromagnetic layer 14A and the magnetization direction G2 of the second ferromagnetic layer 14B are the same as the magnetization direction of the external magnetic field B1 (FIG. 3). In the Y-axis direction). An external magnetic field B1 was applied to the spin transport element from a direction (Y-axis direction) parallel to the magnetization directions of the first ferromagnetic layer 14A and the second ferromagnetic layer 14B. By flowing a detection current from the alternating current source 70 to the first ferromagnetic layer 14A, spin was injected from the first ferromagnetic layer 14A to the silicon channel layer 12. And the output based on the magnetization change by the external magnetic field B1 was measured by the output measuring device 80. At this time, all measurements were performed at room temperature.
 図5は、NL測定法における印加磁場と電圧出力の関係を示すグラフである。図5のF1は、外部磁場B1をマイナス側からプラス側に変化させた場合を示し、図5のF2は、外部磁場B1をプラス側からマイナス側に変化させた場合を示す。図5のF1及びF2に示されるように、スピン伝導素子では、約12μVの電圧出力であった。 FIG. 5 is a graph showing the relationship between the applied magnetic field and the voltage output in the NL measurement method. F1 in FIG. 5 shows the case where the external magnetic field B1 is changed from the minus side to the plus side, and F2 in FIG. 5 shows the case where the external magnetic field B1 is changed from the plus side to the minus side. As shown in F1 and F2 of FIG. 5, the spin transport device had a voltage output of about 12 μV.
 (NL-Hanle測定の結果)
 NL-Hanle測定法では、実施例1で作製したスピン伝導素子において、印加する外部磁場B2の方向(図3に示すZ軸方向)を第一強磁性層14Aの磁化方向(図3に示すY軸方向)G1および第二強磁性層14Bの磁化方向(図3に示すY軸方向)G2と垂直方向とした。図6は、NL-Hanle測定法における印加磁場と電圧出力の関係を示すグラフである。図6は、第一強磁性層14Aの磁化方向を第二強磁性層14Bの磁化方向と平行に固定した場合の測定結果である。 
(Result of NL-Hanle measurement)
In the NL-Hane measurement method, in the spin transport device manufactured in Example 1, the direction of the applied external magnetic field B2 (Z-axis direction shown in FIG. 3) is the magnetization direction of the first ferromagnetic layer 14A (Y shown in FIG. 3). The axial direction was perpendicular to G1 and the magnetization direction (Y-axis direction shown in FIG. 3) G2 of the second ferromagnetic layer 14B. FIG. 6 is a graph showing the relationship between the applied magnetic field and the voltage output in the NL-Hanle measurement method. FIG. 6 shows the measurement results when the magnetization direction of the first ferromagnetic layer 14A is fixed parallel to the magnetization direction of the second ferromagnetic layer 14B.
 図6の測定結果からわかるように、外部磁場B2の印加によって、シリコンチャンネル層を伝導しているスピンが回転・減衰を起こしていることがわかる。したがって、図6の測定結果はスピン伝導によって生じた信号であることが証明できる。 As can be seen from the measurement results in FIG. 6, it can be seen that the spin conducted through the silicon channel layer is rotated and attenuated by the application of the external magnetic field B2. Therefore, it can be proved that the measurement result of FIG. 6 is a signal generated by spin conduction.
(実施例2)
 実施例1と同様に素子作成を行った。但し、第一トンネル膜として酸化マグネシウムを形成した。結果は表1に記す。
(Example 2)
An element was prepared in the same manner as in Example 1. However, magnesium oxide was formed as the first tunnel film. The results are shown in Table 1.
(実施例3)
 実施例1と同様に素子作成を行った。但し、第一トンネル膜として酸化シリコンを形成した。また、第一強磁性膜はホイスラー合金を用いた。このホイスラー合金はCoFeAl0.5Si0.5の組成式で表され、成膜後は600℃のアニールを行った。なお、強磁性金属元素のシリコンチャンネル層への拡散を抑制するために、第一トンネル膜の膜厚を1.2nmとし、第一非磁性スピネル膜の膜厚を2.0nmとした。結果は表1に記す。
(Example 3)
An element was prepared in the same manner as in Example 1. However, silicon oxide was formed as the first tunnel film. The first ferromagnetic film was a Heusler alloy. This Heusler alloy is represented by a composition formula of Co 2 FeAl 0.5 Si 0.5 , and annealing was performed at 600 ° C. after film formation. In order to suppress diffusion of the ferromagnetic metal element into the silicon channel layer, the film thickness of the first tunnel film was set to 1.2 nm, and the film thickness of the first nonmagnetic spinel film was set to 2.0 nm. The results are shown in Table 1.
(比較例1)
 実施例1と同様に素子作成を行った。但し、第一トンネル膜として酸化アルミニウムを形成し、第一非磁性スピネル膜は設置しなかった。但し、酸化アルミニウムの膜厚は実施例1の第一トンネル膜と第一非磁性スピネル膜の膜厚の和と同様とした。結果は表1に記す。
(Comparative Example 1)
An element was prepared in the same manner as in Example 1. However, aluminum oxide was formed as the first tunnel film, and the first nonmagnetic spinel film was not installed. However, the film thickness of aluminum oxide was the same as the sum of the film thicknesses of the first tunnel film and the first nonmagnetic spinel film in Example 1. The results are shown in Table 1.
(比較例2)
 実施例1と同様に素子作成を行った。但し、第一トンネル膜として酸化マグネシウムを形成し、第一非磁性スピネル膜は設置しなかった。但し、酸化マグネシウムの膜厚は実施例1の第一トンネル膜と第一非磁性スピネル膜の膜厚の和と同様とした。結果は表1に記す。
(Comparative Example 2)
An element was prepared in the same manner as in Example 1. However, magnesium oxide was formed as the first tunnel film, and the first nonmagnetic spinel film was not installed. However, the film thickness of magnesium oxide was the same as the sum of the film thicknesses of the first tunnel film and the first nonmagnetic spinel film of Example 1. The results are shown in Table 1.
(比較例3)
 実施例1と同様に素子作成を行った。但し、第一トンネル膜として酸化ハフニウムを形成した。結果は表1に記す。
(Comparative Example 3)
An element was prepared in the same manner as in Example 1. However, hafnium oxide was formed as the first tunnel film. The results are shown in Table 1.
(比較例4)
 実施例1と同様に素子作成を行った。但し、第一トンネル膜として酸化タンタルを形成した。結果は表1に記す。
(Comparative Example 4)
An element was prepared in the same manner as in Example 1. However, tantalum oxide was formed as the first tunnel film. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(結果の比較)
 表1に実施例及び比較例をまとめた。実施例1と実施例2では室温にてほぼ同様の結果が得られた。比較例1、比較例3および比較例4では信号が室温で観測されなかった。但し、低温では非局所測定において出力が観測されており、温度依存性の結果として室温での出力が得られなかったものと判断できる。比較例2では室温でのスピン出力が観測されたものの、実施例1及び実施例2と比較して小さい出力であった。よって、本実施例の方法が室温での高出力化が実現できるスピンフィルタ構造であることがわかる。また、第一強磁性層に鉄膜を使った実施例2に比べて、ホイスラー合金を使用した実施例3の方が得られる特性が高く、スピンフィルタ膜の特性に加えて強磁性層のスピン分極率が高いことが原因と考えられる。
(Comparison of results)
Table 1 summarizes the examples and comparative examples. In Example 1 and Example 2, almost the same results were obtained at room temperature. In Comparative Example 1, Comparative Example 3 and Comparative Example 4, no signal was observed at room temperature. However, output is observed in non-local measurement at low temperatures, and it can be determined that the output at room temperature was not obtained as a result of temperature dependence. In Comparative Example 2, a spin output at room temperature was observed, but the output was smaller than in Example 1 and Example 2. Therefore, it can be seen that the method of this embodiment has a spin filter structure that can realize high output at room temperature. Further, compared to Example 2 in which an iron film is used for the first ferromagnetic layer, Example 3 using Heusler alloy has higher characteristics, and in addition to the characteristics of the spin filter film, the spin of the ferromagnetic layer is obtained. The cause is considered to be high polarizability.
 IE…スピン注入電極構造、1…スピン伝導素子、10…基板、11…酸化珪素膜、12…シリコンチャンネル層、13A…第一スピンフィルタ膜、13B…第二スピンフィルタ膜、14A…第一強磁性層、14B…第二一強磁性層、15A…第一参照電極、15B…第二参照電極、16A…第一トンネル膜、16B…第一非磁性スピネル膜、16C…第二トンネル膜、16D…第二トンネル膜、70…交流電流源、80…出力測定器、P…格子整合部分、N…非格子整合部分。 IE ... Spin injection electrode structure, 1 ... Spin transport element, 10 ... Substrate, 11 ... Silicon oxide film, 12 ... Silicon channel layer, 13A ... First spin filter film, 13B ... Second spin filter film, 14A ... First strong Magnetic layer, 14B ... second first ferromagnetic layer, 15A ... first reference electrode, 15B ... second reference electrode, 16A ... first tunnel film, 16B ... first nonmagnetic spinel film, 16C ... second tunnel film, 16D ... second tunnel film, 70 ... AC current source, 80 ... output measuring device, P ... lattice matching portion, N ... non-lattice matching portion.

Claims (9)

  1.  半導体チャンネル層と、
     前記半導体チャンネル層上に設けられたトンネル膜と、
     前記トンネル膜上に設けられた非磁性スピネル膜と、
    前記非磁性スピネル膜に設けられた強磁性層と、を備えたスピン注入電極構造。
    A semiconductor channel layer;
    A tunnel film provided on the semiconductor channel layer;
    A nonmagnetic spinel film provided on the tunnel film;
    A spin injection electrode structure comprising: a ferromagnetic layer provided on the nonmagnetic spinel film.
  2.  前記トンネル膜は、前記半導体チャンネル層上でエピタキシャル成長していない、請求項1に記載のスピン注入電極構造。 The spin injection electrode structure according to claim 1, wherein the tunnel film is not epitaxially grown on the semiconductor channel layer.
  3.  前記トンネル膜は、非結晶質である、請求項1または2に記載のスピン注入電極構造。 The spin injection electrode structure according to claim 1 or 2, wherein the tunnel film is amorphous.
  4.  前記トンネル膜は、Al、Mg、Si、Zn、Tiのいずれかの元素を含む酸化物から構成される請求項1~3のいずれか一項に記載のスピン注入電極構造。 The spin injection electrode structure according to any one of claims 1 to 3, wherein the tunnel film is made of an oxide containing any one element of Al, Mg, Si, Zn, and Ti.
  5. 前記非磁性スピネル膜は、前記トンネル膜上で結晶化している、請求項1~4のいずれか一項に記載のスピン注入電極構造。 The spin injection electrode structure according to any one of claims 1 to 4, wherein the nonmagnetic spinel film is crystallized on the tunnel film.
  6.  前記非磁性スピネル膜は、Al、酸化マグネシウム、Znのいずれかの元素を含むスピネル構造からなる、請求項1~5のいずれか一項に記載のスピン注入電極構造。 The spin injection electrode structure according to any one of claims 1 to 5, wherein the nonmagnetic spinel film has a spinel structure containing any element of Al, magnesium oxide, and Zn.
  7.  前記トンネル膜の膜厚は、0.6nm以上2.0nm以下である、請求項1~6のいずれか一項に記載のスピン注入電極構造。 The spin injection electrode structure according to any one of claims 1 to 6, wherein a thickness of the tunnel film is 0.6 nm or more and 2.0 nm or less.
  8.  前記非磁性スピネル膜の膜厚は、0.6nm以上2.4nm以下である、請求項1~7のいずれか一項に記載のスピン注入電極構造。 The spin injection electrode structure according to any one of claims 1 to 7, wherein a film thickness of the nonmagnetic spinel film is 0.6 nm or more and 2.4 nm or less.
  9.  請求項1~8のいずれか一項に記載のスピン注入電極構造を第一部分に設け、更に、前記半導体チャンネル層の第二部分上に設けられた第二トンネル膜と、
     前記第二トンネル膜上に設けられた第二非磁性スピネル膜と、
    前記第二非磁性スピネル膜上に設けられた第二強磁性層と、を備えたスピン伝導素子。
    A spin injection electrode structure according to any one of claims 1 to 8 is provided in a first portion, and further a second tunnel film provided on a second portion of the semiconductor channel layer;
    A second non-magnetic spinel film provided on the second tunnel film;
    And a second ferromagnetic layer provided on the second nonmagnetic spinel film.
PCT/JP2013/053179 2012-02-14 2013-02-12 Spin implantation electrode structure and spin transport element WO2013122023A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-029252 2012-02-14
JP2012029252 2012-02-14

Publications (1)

Publication Number Publication Date
WO2013122023A1 true WO2013122023A1 (en) 2013-08-22

Family

ID=48984134

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/053179 WO2013122023A1 (en) 2012-02-14 2013-02-12 Spin implantation electrode structure and spin transport element

Country Status (1)

Country Link
WO (1) WO2013122023A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009054880A (en) * 2007-08-28 2009-03-12 Toshiba Corp Spin fet and magnetoresistive effect element
JP2010239011A (en) * 2009-03-31 2010-10-21 Tdk Corp Spin injection structure and spin conductive device using the same
WO2010119928A1 (en) * 2009-04-16 2010-10-21 独立行政法人物質・材料研究機構 Ferromagnetic tunnel junction structure, and magnetoresistive effect element and spintronics device each comprising same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009054880A (en) * 2007-08-28 2009-03-12 Toshiba Corp Spin fet and magnetoresistive effect element
JP2010239011A (en) * 2009-03-31 2010-10-21 Tdk Corp Spin injection structure and spin conductive device using the same
WO2010119928A1 (en) * 2009-04-16 2010-10-21 独立行政法人物質・材料研究機構 Ferromagnetic tunnel junction structure, and magnetoresistive effect element and spintronics device each comprising same

Similar Documents

Publication Publication Date Title
CN108011039B (en) Spin orbit torque type magnetization reversal element and magnetic memory
JP5765440B2 (en) Spin injection electrode structure, spin transport device, and spin transport device
WO2013122024A1 (en) Spin implantation electrode structure and spin transport element using same
Zhang et al. Ferromagnet/two-dimensional semiconducting transition-metal dichalcogenide interface with perpendicular magnetic anisotropy
WO2018042732A1 (en) Magnetic tunnel junction element and method for manufacturing same
JP5651826B2 (en) Spin injection electrode structure, spin transport device, and spin transport device
JP5655646B2 (en) Spin device, magnetic sensor and spin FET using the same
Ng et al. High-temperature anomalous Hall effect in a transition metal dichalcogenide ferromagnetic insulator heterostructure
JP2010239011A (en) Spin injection structure and spin conductive device using the same
JP5688526B2 (en) Method for manufacturing ferromagnetic multilayer structure
KR20230118765A (en) Magnetic tunneling junctions based on spin-orbit torque and method manufacturing thereof
JP6299897B2 (en) Tunnel layer
Belmoubarik et al. Epitaxial wurtzite-MgZnO barrier based magnetic tunnel junctions deposited on a metallic ferromagnetic electrode
JP6093561B2 (en) Spin injection electrode structure and spin transport device
JP6093560B2 (en) Spin injection electrode structure and spin transport device
JP6236791B2 (en) Spin injection electrode structure and spin transport device using the same
WO2013122023A1 (en) Spin implantation electrode structure and spin transport element
JP6294984B2 (en) Tunnel layer
JP6958691B2 (en) Tunnel layer
JP6757446B2 (en) Tunnel layer
JP6534462B2 (en) Tunnel layer
Singh et al. Giant magnetoresistance in an all-oxide spacerless junction
Zhao et al. Enhanced interlayer Dzyaloshinskii–Moriya interaction and field-free switching in magnetic trilayers with orthogonal magnetization
KR102560822B1 (en) Magnetic tunneling junctions based on spin-orbit torque and method manufacturing thereof
JP6394759B2 (en) Laminate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13749478

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13749478

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP