WO2013121965A1 - In-bed heat transfer tube for fluidized bed boiler - Google Patents

In-bed heat transfer tube for fluidized bed boiler Download PDF

Info

Publication number
WO2013121965A1
WO2013121965A1 PCT/JP2013/052843 JP2013052843W WO2013121965A1 WO 2013121965 A1 WO2013121965 A1 WO 2013121965A1 JP 2013052843 W JP2013052843 W JP 2013052843W WO 2013121965 A1 WO2013121965 A1 WO 2013121965A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat transfer
bed
fluidized bed
protector
transfer tube
Prior art date
Application number
PCT/JP2013/052843
Other languages
French (fr)
Japanese (ja)
Inventor
吉田 裕
阪本 英之
恭久 本田
Original Assignee
荏原環境プラント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荏原環境プラント株式会社 filed Critical 荏原環境プラント株式会社
Priority to JP2013558659A priority Critical patent/JP6085570B2/en
Priority to CN201380009114.6A priority patent/CN104136842B/en
Priority to KR1020147024890A priority patent/KR101998448B1/en
Priority to EP13749873.9A priority patent/EP2821697B1/en
Publication of WO2013121965A1 publication Critical patent/WO2013121965A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B21/00Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically
    • F22B21/22Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically built-up from water tubes of form other than straight or substantially straight
    • F22B21/24Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically built-up from water tubes of form other than straight or substantially straight bent in serpentine or sinuous form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B31/00Modifications of boiler construction, or of tube systems, dependent on installation of combustion apparatus; Arrangements of dispositions of combustion apparatus
    • F22B31/0007Modifications of boiler construction, or of tube systems, dependent on installation of combustion apparatus; Arrangements of dispositions of combustion apparatus with combustion in a fluidized bed
    • F22B31/0015Modifications of boiler construction, or of tube systems, dependent on installation of combustion apparatus; Arrangements of dispositions of combustion apparatus with combustion in a fluidized bed for boilers of the water tube type
    • F22B31/0023Modifications of boiler construction, or of tube systems, dependent on installation of combustion apparatus; Arrangements of dispositions of combustion apparatus with combustion in a fluidized bed for boilers of the water tube type with tubes in the bed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • F22B37/10Water tubes; Accessories therefor
    • F22B37/107Protection of water tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C10/00Fluidised bed combustion apparatus
    • F23C10/18Details; Accessories
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/30Incineration of waste; Incinerator constructions; Details, accessories or control therefor having a fluidised bed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/10Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of field or garden waste or biomasses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/12Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of plastics, e.g. rubber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0477Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D13/00Heat-exchange apparatus using a fluidised bed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/003Multiple wall conduits, e.g. for leak detection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/124Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and being formed of pins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/30Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means being attachable to the element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/34Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending obliquely
    • F28F1/36Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending obliquely the means being helically wound fins or wire spirals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/02Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings
    • F28F19/06Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings of metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2206/00Fluidised bed combustion
    • F23C2206/10Circulating fluidised bed
    • F23C2206/103Cooling recirculating particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0024Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for combustion apparatus, e.g. for boilers

Definitions

  • the present invention relates to an in-bed heat transfer pipe installed in a fluidized bed of a fluidized bed boiler that burns fuel such as biomass and plastic, high calorific value RDF (waste solidified fuel) and waste, and recovers combustion heat. .
  • fuel such as biomass and plastic
  • RDF waste solidified fuel
  • Patent Document 1 discloses a wear resistant structure of a heat transfer tube in which the thickness reduction of the heat transfer tube is reduced by covering the heat transfer tube with a stud and a refractory. However, in the structure disclosed in Patent Document 1, covering the heat transfer tube with a refractory lowers the heat transfer coefficient and requires a large heat transfer area.
  • Patent Document 2 JP-A-7-217801
  • Patent Document 2 JP-A-7-217801
  • a method of attaching a protector and a method of overlaying or thermal spraying are proposed as a method of preventing thickness reduction due to wear of a heat transfer tube.
  • the heat transfer tube itself be made of high chromium steel or stainless steel excellent in wear resistance.
  • the method described in Patent Document 2 can prevent thickness reduction due to wear, there is a problem that the durability is inferior in an environment directly subjected to molten salt corrosion simultaneously with wear.
  • the present inventors obtained the following knowledge in the process of performing continuous operation over a long period of time using various in-bed heat transfer tubes in a fluidized bed boiler. That is, when chlorine is contained in the fuel like biomass-based RDF and wastes, when part of the chlorine is transferred to the fluid medium (fluid sand) after the fuel is burned, the chlorine in the fluid medium becomes the fluid bed. When operated at a temperature of 700.degree. C. to 850.degree. C., it produces eutectic salts with alkali metals (Na, K etc.) contained in the fuel. The condensation temperature at which this eutectic salt condenses in the molten state is, for example, 650 to 700.degree.
  • the surface temperature of the in-layer heat transfer pipe is higher than the condensation temperature, condensation of the eutectic salt on the surface of the in-layer heat transfer pipe can be suppressed, and the reduction in thickness due to molten salt corrosion can be reduced.
  • the in-layer heat transfer tube whose durability has been enhanced by providing a protector made of a stainless steel such as SUS310S on the outer peripheral side of the water tube, the present inventors have found that the surface temperature of the in-layer heat transfer tube It has been discovered that corrosion loss due to corrosion wear can be reduced at lower temperatures and above a predetermined temperature (e.g., 450 ⁇ 0> C).
  • the inventors of the present invention based on the above findings, in order to adjust the surface temperature of the protector to a temperature range where molten salt corrosion is suppressed and thickness reduction is difficult, (1) heat transfer between the fluidized bed and the protector It was conceived that it was effective to increase the rate and (2) to lower the heat transfer coefficient between the protector and the water pipe, and the invention was achieved.
  • the heat transfer pipe is reduced in the amount of thickness reduction by suppressing the molten salt corrosion of the heat transfer pipe while securing the economical heat transfer amount It is an object of the present invention to provide an in-bed heat transfer pipe of a fluidized bed boiler excellent in durability.
  • the in-bed heat transfer pipe of the fluidized bed boiler of the present invention is an in-bed heat transfer pipe disposed in the fluidized bed of the fluidized bed boiler, wherein the in-bed heat transfer pipe A water pipe, a protector provided on the outer peripheral side of the water pipe for protecting the water pipe, and a packed bed provided between the water pipe and the protector are characterized.
  • the heat of the flowing medium is transferred to the water pipe via the protector and the packed bed, and the fluid in the water pipe is heated.
  • the heat transfer coefficient between the protector and the water pipe can be lowered by setting the filler layer interposed between the water pipe and the protector to a low thermal conductivity. Therefore, the temperature difference between the protector surface and the water tube surface can be increased. Thereby, the molten salt corrosion of the heat transfer pipe can be suppressed, the amount of thickness reduction can be small, and the in-layer heat transfer pipe excellent in durability can be obtained.
  • the surface temperature of the protector is maintained at 450 to 650.degree.
  • the packed bed is formed by packing a solid particle filler.
  • the air gap of the packed bed is made of air having a low thermal conductivity, it is possible to lower the heat transfer coefficient between the protector and the water tube.
  • the material, shape, and thickness of the filler of the filling layer are set such that the surface temperature of the protector becomes 450 to 650 ° C., preferably 480 to 620 ° C., because the heat transfer coefficient becomes inefficient if lowered too much. Select as appropriate.
  • the packed bed is characterized in that the packing ratio of the solid particle filler is 0.5 or more and 0.9 or less.
  • the filling rate is a value obtained by dividing the volume [m 3 ] occupied by the filling by the volume [m 3 ] of the space between the outer surface of the water pipe and the inner surface of the protector.
  • the packed bed has a thermal conductivity of 0.4 to 1.4 W / mK.
  • the thermal conductivity of the packed bed is 0.4 to 1.4 W / mK, the heat transfer coefficient between the protector and the water pipe can be lowered. Therefore, the temperature difference between the surface of the protector and the surface of the water tube can be increased, and the surface temperature of the protector can be maintained at a high temperature of 450 to 650.degree.
  • the thickness of the filler layer is 2 to 4 mm.
  • the protector is made of stainless steel.
  • the stainless steel is SUS304 or SUS316 or SUS310S. According to the present invention, by forming the protector from stainless steel such as SUS304, SUS316, or SUS310S, it is possible to suppress thickness reduction due to molten salt corrosion.
  • the protector is provided with fins on the outer surface.
  • the fins with excellent heat exchange efficiency are provided on the outer surface of the protector, the heat transfer coefficient from the fluid medium to the protector can be enhanced. Therefore, economical heat transfer can be secured.
  • the fin is a spiral fin.
  • the fin is a pin-shaped fin.
  • the fluidized bed boiler according to the present invention is a fluidized bed boiler in which fuel is burned in a fluidized bed and combustion heat is recovered by an in-bed heat transfer pipe, wherein the in-bed heat transfer pipe is any one of claims 1 to 11.
  • the in-bed heat transfer tube according to the present invention is characterized in that the temperature of the fluidized bed is controlled to 700 to 900 ° C. According to the present invention, the temperature of the fluidized bed is controlled to 700 to 900 ° C. by adjusting the amount of air of the fluidizing air supplied to the fluidized bed according to the fuel calories and the like. Then, the heat of the fluidized bed maintained at 700 to 900 ° C. is transferred to the water pipe through the protector and the packed bed, and the saturated water in the water pipe is heated.
  • the heat transfer coefficient between the protector and the water pipe can be reduced by the packed bed interposed between the water pipe and the protector. Therefore, the temperature difference between the surface of the protector and the surface of the water tube can be increased, and the surface temperature of the protector can be maintained at a high temperature of 450 to 650.degree.
  • Fluidization can be activated to increase the heat transfer coefficient from the fluid medium to the protector.
  • the fluidized bed boiler includes a combustion chamber for burning a fuel, and a heat recovery chamber in which the heat transfer pipe in the bed is disposed to recover combustion heat, and the flow of the heat recovery chamber
  • the combustion chamber which burns the fuel and the heat recovery chamber which recovers heat are separated, troubles such as incombustibles in the fuel entwining in the in-layer heat transfer pipe do not occur.
  • the air amount of the fluidizing air in the heat recovery chamber it is possible to control the heat recovery amount of the in-layer heat transfer pipe.
  • the present invention has the following effects.
  • (1) The heat transfer coefficient between the protector and the water pipe can be lowered by forming the in-layer heat transfer pipe with the water pipe, the filler and the protector, and installing the filling layer interposed between the water pipe and the protector. Therefore, the temperature difference between the surface of the protector and the surface of the water tube can be increased, and the surface temperature of the protector can be maintained at a high temperature of 450 to 650.degree. As a result, it is possible to provide an in-layer heat transfer pipe with reduced durability and reduced amount of thickness reduction while suppressing molten salt corrosion of the heat transfer pipe.
  • FIG. 1 is a schematic cross-sectional view showing an embodiment of a fluidized bed boiler provided with an in-bed heat transfer tube according to the present invention.
  • FIG. 2 is a schematic sectional view showing another embodiment of the fluidized bed boiler provided with the in-bed heat transfer tube according to the present invention.
  • FIG. 3 is a schematic cross-sectional view of the in-layer heat transfer tube.
  • FIG. 4A is a diagram showing experimental results of a conventional in-layer heat transfer pipe in which a stainless steel is built on a water pipe.
  • FIG. 4B is a diagram showing experimental results of the in-layer heat transfer tube of the present invention.
  • FIG. 5 is a front view of the in-layer heat transfer tube.
  • FIG. 6 is a longitudinal sectional view of the in-layer heat transfer tube.
  • FIG. 7A is a view showing another form of the in-layer heat transfer tube, and FIG. 7A is a front view of the in-layer heat transfer tube.
  • FIG. 7B is a view showing another form of the in-layer heat transfer tube, and FIG. 7B is a longitudinal sectional view of the in-layer heat transfer tube.
  • FIG. 8A is a view showing still another form of the in-layer heat transfer tube, and FIG. 8A is a front view of the in-layer heat transfer tube.
  • FIG. 8B is a view showing still another form of the in-layer heat transfer tube, and FIG. 8B is a longitudinal sectional view of the in-layer heat transfer tube.
  • FIG. 1 is a schematic cross-sectional view showing an embodiment of a fluidized bed boiler provided with an in-bed heat transfer tube according to the present invention.
  • the fluidized bed boiler 1 comprises a furnace main body 2 having a substantially cylindrical shape or a substantially square cylinder shape, a fluidized bed 3 for burning waste or fuel such as RDF, and a hearth bottom plate supporting the fluidized bed 3
  • an in-bed heat transfer pipe 5 is installed in the fluidized bed 3.
  • the fluidized bed 3 is filled with a fluidized medium, which is a fluidized sand such as silica sand, so as to fill the intra-bed heat transfer pipe 5.
  • a fluidized medium which is a fluidized sand such as silica sand, so as to fill the intra-bed heat transfer pipe 5.
  • the hearth bottom plate 4 is formed with a large number of aeration nozzles for injecting fluidizing air as fluidizing gas into the furnace.
  • fuel is supplied to the fluidized bed 3 from an inlet (not shown).
  • fluidizing air having a uniform amount of air is ejected from the aeration nozzle of the hearth bottom plate 4 over the whole of the fluid bed 3, and in the fluid bed 3, the fluid medium is up and down. It becomes a so-called bubbling fluidized bed that flows actively.
  • the fuel supplied into the furnace is thermally decomposed and burned in the fluidized bed 3, and the heat of combustion heats the fluidized medium to a high temperature, and the temperature of the fluidized bed 3 is maintained at 700 to 900.degree.
  • the temperature of the fluidized bed 3 is controlled by adjusting the amount of fluidization air.
  • the fluid medium that has become high temperature comes into contact with the in-bed heat transfer tube 5, and the fluid (can water) in the in-bed heat transfer tube 5 exchanges heat with the fluid medium to recover heat from the fluid medium.
  • FIG. 2 is a schematic sectional view showing another embodiment of the fluidized bed boiler provided with the in-bed heat transfer tube according to the present invention.
  • the fluidized bed boiler 11 is provided with a furnace main body 12 having a substantially square cylindrical shape, and the inside of the furnace main body 12 has one combustion chamber 14 in the center by a pair of left and right partition walls 13 and 13. And two heat recovery chambers 15, 15 at both sides.
  • a fluidized bed 20 for thermally reacting waste and fuel such as RDF is formed, and the fluidized bed 20 is supported by the hearth bottom plate 30.
  • the hearth bottom plate 30 installed in the furnace body 12 has a mountain shape which is high at the center and gradually lowered toward the side edges.
  • the hearth bottom plate 30 is provided with a number of aeration nozzles for injecting fluidizing air as fluidizing gas into the furnace.
  • a fluidized bed 23 is formed in each heat recovery chamber 15, and the fluidized bed 23 is supported by the hearth bottom plate 31.
  • the hearth bottom plate 31 is provided with an aeration nozzle for injecting fluidizing air as fluidizing gas into the furnace.
  • air boxes 32, 32, 33, 33 are formed below the mountain-shaped heart floor bottom plate 30, and these air boxes 32, 32, 33, 33 are formed from the outside of the furnace. Fluidized air is provided. Aeration nozzles above the two central air boxes 32, 32 by adjusting the opening of a control valve (not shown) to adjust the air flow rate supplied to the air boxes 32, 32, 33, 33 From there, the fluidizing air is jetted so as to give a substantially small fluidization velocity, and from the aeration nozzles above the two air boxes 33, 33 on both sides, to give a substantially high fluidization velocity Erupt the fluidizing air.
  • a moving bed 21 is formed above the central portion of the hearth floor plate 30 to move the flowing medium downward at a relatively slow speed from above, and the flowing medium flows from above below both sides of the hearth floor plate 30.
  • a fluidized bed 22 moving upward is formed. Therefore, the moving medium moves from the moving bed 21 to the fluidized bed 22 in the lower part of the fluidized bed 20 and the moving medium from the fluidized bed 22 to the moving bed 21 in the upper part of the fluidized bed 20.
  • a circulating flow is formed on the left and right through which the fluid medium circulates.
  • the inclined portion of each partition wall 13 functions as a deflector which makes it easy for the rising fluid medium to be inverted to the inside of the furnace body 12.
  • the air amount of the fluidizing air supplied to the moving bed 21 is 2 to 3 u 0 / u mf
  • the air amount of the fluidizing air supplied to the fluid bed 22 is 4 to 6 u 0 / u mf .
  • u 0 is the sky velocity
  • u mf is the lowest fluidization sky velocity.
  • the fuel supplied to the moving bed 21 is swallowed by the fluid medium and moves downward with the fluid medium. At this time, thermal decomposition of the fuel is performed by the heat of the fluid medium, and combustible gas is generated from the combustibles in the fuel to become brittle thermal decomposition residue.
  • the pyrolysis residue typically contains incombustible matter and unburned matter (char) which has become brittle due to the pyrolysis.
  • the pyrolysis residue generated in the moving bed 21 travels to the fluidized bed 22 along the inclined bottom floor plate 30 when it reaches the bottom floor plate 30 together with the fluid medium.
  • the thermal decomposition residue that has reached the fluidized bed 22 comes in contact with the strongly flowing fluid medium, and the unburned matter is exfoliated from the incombustible matter, and the incombustible matter remaining after the unburned matter is exfoliated together with some fluid medium It is discharged from the discharge port 17.
  • the unburned material separated from the incombustible material moves upward with the flowing fluid medium as the fluidizing air is supplied.
  • the unburned matter is combusted by the supplied fluidizing air, generates combustion gas while heating the fluid medium, and becomes fine unburned matter and ash particles which are carried to the gas.
  • a part of the high temperature fluid medium reaching the upper part of the fluid bed 22 flows into the moving bed 21.
  • the fluidized medium is raised in the fluidized bed 22 to a temperature at which the fuel can be properly pyrolyzed when it flows to the moving bed 21.
  • the fluid medium having flowed into the moving bed 21 receives the supplied fuel again, and repeats the thermal reaction in the moving bed 21 and the fluid bed 22 described above.
  • the temperature of the moving bed 21 is maintained at 700 to 900 ° C.
  • the temperature of the fluidized bed 22 is maintained at 700 to 900 ° C.
  • a part of the high temperature fluid medium in the upper part of the fluidized bed 22 passes the upper part of the partition wall 13 and enters the heat recovery chamber 15.
  • the fluid medium that has entered the heat recovery chamber 15 forms a fluid bed 23 moving downward from above.
  • the hearth bottom plate 31 of the heat recovery chamber 15 is inclined downward from the inner wall side of the furnace body 12 toward the combustion chamber, and an opening 18 is provided in the lower portion of the heat recovery chamber 15.
  • the inflowing fluid medium settles to form the fluid bed 23, and circulates from the opening 18 to the combustion chamber 14.
  • the temperature of the fluidizing medium entering the heat recovery chamber 15 is 700 to 900 ° C., but the in-bed heat transfer pipe 5 is disposed in the fluidizing bed 23 of the heat recovery chamber 15.
  • the amount of heat recovery of the heat transfer tube 5 can be controlled by controlling the amount of air of fluidizing air ejected from the aeration nozzle of the heart floor bottom plate 31 of the fluidized bed 23 to 2 to 4 u 0 / u mf. .
  • the fluid medium circulated to the combustion chamber 14 joins the fluid bed 22 and ascends with the fluid medium of the fluid bed 22, and a part of the fluid medium enters the heat recovery chamber 15 again. Repeat heat exchange with the fluid.
  • FIG. 3 is a schematic cross-sectional view of the in-layer heat transfer tube 5.
  • the in-layer heat transfer pipe 5 includes a water pipe 6 through which a fluid (canned water) flows, a protector 8 provided on the outer peripheral side of the water pipe 6 to protect the water pipe 6, a water pipe 6 and a protector 8 And a filler layer 7 provided between the two.
  • the water pipe 6 is composed of a steel pipe for a boiler or heat exchanger having a thickness of 4 to 8 mm, for example, STB 410S, and a fluid (water can flow) flowing in the water pipe 6 is saturated water of 2 MPa to 12 MPa.
  • the filler layer 7 is filled with a filler of solid particles such as sand, stainless steel powder, magnesium oxide, iron, alumina and the like, and is formed in a cylindrical shape having a thickness of 2 to 4 mm.
  • the thermal conductivity of the packed bed is, for example, 0.4 to 1.4 W / mK as calculated by the calculation shown in “Reaction of powder, Nikkan Kogyo Shimbun, p. 54-57”.
  • the filler is preferably particulate.
  • the filling rate of the filler is preferably 0.5 or more and 0.9 or less, and more preferably 0.6 or more and 0.8 or less.
  • the filling factor at the time of filling the filler in the space between the water pipe 6 and the protector 8 is according to the following equation.
  • Packing ratio [-] volume occupied by filling [m 3 ] / volume of void in water tube outer surface and protector inner surface [m 3 ]
  • the protector 8 is made of stainless steel such as SUS304, SUS316, or SUS310S, which is excellent in wear resistance and corrosion resistance, and is formed in a cylindrical shape having a thickness of 3 to 6 mm.
  • the protector 8 may be formed by cylindrically forming a stainless steel plate, or a stainless steel pipe may be used.
  • the material of the protector 8 is stainless steel such as SUS304, SUS316, SUS310S, and (2) a thermal conductivity of 0.4 to 1.4 W / mK between the water pipe 6 and the protector 8
  • the formed packed bed 7 is formed to a predetermined thickness, that is, a thickness of 2 to 4 mm, and (3) the fluidized bed 3 (see FIG. 1) in which the in-layer heat transfer tube 5 is installed It is configured to maintain the temperature of 700.degree.-900.degree. C.).
  • the surface temperature of the protector 8 is maintained at a high temperature of 450 to 650 ° C., preferably 480 to 620 ° C., by adopting the configurations of (1) to (3).
  • FIGS. 4A and 4B are diagrams showing a comparison result of a conventional in-layer heat transfer pipe in which a stainless steel is accumulated on a water pipe, and the in-layer heat transfer pipe of the present invention having the configurations of (1) to (4) above. is there.
  • the conventional heat transfer pipe in the layer uses a 3 mm buildup made of stainless steel for surface modification of the water pipe. As shown in FIG. 4A, assuming that the temperature of the fluidized bed is 800 ° C.
  • the temperature difference between the surface temperature of the overlay and the surface temperature of the water pipe is 20 ° C.
  • the in-layer heat transfer tube of the present invention uses a 2 mm thick filler layer filled with magnesium oxide particles and a 3 mm thick protector made of SUS310S on the outer periphery of the water tube. There is. As shown in FIG. 4B, assuming that the temperature of the fluidized bed is 800 ° C.
  • the heat conductivity from the medium (sand) to the protector is 390 W / m 2 K
  • the thermal conductivity of the protector is 16.2 W / m K
  • the thermal conductivity of the packed bed filled with magnesium oxide (thickness 2 mm) is 1.3 W / mK
  • surface temperature of the protector 513 ° C. the surface temperature of the packed bed 491 ° C.
  • overall heat transfer coefficient (protector inner surface reference) is 246W / m 2 K
  • total heat transfer amount is 122957W / m 2.
  • the temperature difference between the surface temperature of the protector and the surface temperature of the packed bed is 22 ° C.
  • the temperature difference between the surface temperature of the packed bed and the surface temperature of the water pipe is 191 ° C.
  • the overall heat transfer coefficient is 263 W / m 2 K and the total heat passing amount is 131,586 W / m 2 on the basis of the outer surface of the water pipe.
  • (1) Increase the heat transfer coefficient between the fluid medium (sand) and the protector by activating the fluidization of the fluid bed (moving bed) and appropriately selecting the thickness and thermal conductivity of the packed bed, )
  • the heat transfer rate between the protector and the water tube can be reduced.
  • the protector surface temperature can be set to 450 ° C. or higher while maintaining the overall heat transfer coefficient and the total heat passing amount to the same level as the in-layer heat transfer pipe of the buildup.
  • the conventional in-bed heat transfer tube is designed to quickly transfer the heat of the fluid medium in the fluidized bed to the fluid (water can) in the heat transfer tube.
  • the in-layer heat transfer tube 5 of the present invention by providing the filling layer 7 between the water tube 6 and the protector 8, the surface temperature of the protector 8 is raised by gentle heat transfer. Thereby, it is possible to suppress the molten salt corrosion of the heat transfer tube, reduce the thickness reduction of the heat transfer tube, and extend the heat transfer tube life.
  • FIG. 5 is a front view of the in-layer heat transfer tube 5.
  • FIG. 5 shows a heat transfer tube group in which two in-layer heat transfer tubes 5 are arranged in parallel.
  • the in-layer heat transfer pipe 5 has a straight pipe portion and a bent pipe portion, and a large number of fins 9 are installed in the straight pipe portion.
  • FIG. 6 is a longitudinal sectional view of the in-layer heat transfer tube 5. Similar to the in-layer heat transfer tube 5 shown in FIG. 3, the in-layer heat transfer tube 5 shown in FIG.
  • the 6 includes fins 9 on the outer periphery of the protector 8 in addition to the water tube 6, the filling layer 7 and the protector 8.
  • the fins 9 are made of stainless steel plates such as SUS304, SUS316, and SUS310S, and are fixed to the upper and lower sides of the outer peripheral surface of the protector 8.
  • FIGS. 7A and 7B are views showing another form of the in-layer heat transfer tube 5, FIG. 7A is a front view of the in-layer heat transfer tube 5, and FIG. 7B is a longitudinal sectional view of the in-layer heat transfer tube 5.
  • spiral fins 34 are attached to the entire outer periphery of the protector 8 by welding. The spiral shape facilitates the attachment of the fins and significantly reduces the construction period.
  • FIGS. 8A and 8B show still another embodiment of the in-layer heat transfer tube 5, FIG. 8A is a front view of the in-layer heat transfer tube 5, and FIG. 8B is a longitudinal cross-sectional view of the in-layer heat transfer tube 5.
  • the in-layer heat transfer pipe 5 shown in FIGS. 8A and 8B is attached to the outer periphery of the protector 8 as a pin-shaped fin 35 instead of a plate (blade). A large number of pin-shaped fins 35 are welded to the outer peripheral surface of the protector 8.
  • the heat transfer coefficient per inner surface of the protector can be increased by the protector 8 including the fins 9, 34 or 35. . Therefore, the heat transfer coefficient between the fluid medium (sand) and the protector can be increased, and the surface temperature of the protector 8 can be increased to 450 ° C. or higher.
  • the water pipe 6, the packed bed 7 and the protector 8 in the in-layer heat transfer pipe 5 shown in FIGS. 5, 7A, 7B and 8A, 8B have the same configuration as the in-layer heat transfer pipe shown in FIG.
  • the present invention relates to an in-bed heat transfer pipe installed in a fluidized bed of a fluidized bed boiler that burns fuel such as biomass and plastic, high calorific value RDF (waste solidified fuel) and waste, and recovers combustion heat. It is available.
  • fuel such as biomass and plastic
  • RDF powder solidified fuel

Abstract

The present invention pertains to an in-bed heat transfer tube installed in the fluidized bed of a fluidized bed boiler that burns fuels such as refuse-derived fuel (RDF) and waste with a high calorific value, including biomass and plastic, and recovers combustion heat. This in-bed heat transfer tube (5) for a fluidized bed boiler is installed in the fluidized bed (3) of the fluidized bed boiler (1), and the in-bed heat transfer tube (5) consists of: a water tube (6) through which a fluid flows; a protector (8) for protecting the water tube (6), said protector (8) being disposed on the outer circumferential side of the water tube (6); and a filler layer (7) disposed between the water tube (6) and the protector (8).

Description

流動層ボイラの層内伝熱管Heat transfer tube in fluidized bed boiler
 本発明は、バイオマスやプラスチックを含む高発熱量のRDF(ごみ固形化燃料)や廃棄物等の燃料を燃焼させて燃焼熱を回収する流動層ボイラの流動層内に設置する層内伝熱管に関する。 The present invention relates to an in-bed heat transfer pipe installed in a fluidized bed of a fluidized bed boiler that burns fuel such as biomass and plastic, high calorific value RDF (waste solidified fuel) and waste, and recovers combustion heat. .
 近年、化石燃料の価格高騰や地球温暖化問題等への対応といった観点から、エネルギー資源の活用が求められている。このなかで、サーマルリサイクルの一翼を担うRDFや廃棄物を燃焼させる発電システムの重要性が増加している。この発電システムには、流動層ボイラを用いてRDFや廃棄物を燃焼した際に発生する熱エネルギーを層内伝熱管で回収する方式がある。この方式では、流動層ボイラでRDFや廃棄物等の燃料を燃焼させる際に、RDFや廃棄物に塩素が含まれるため、一部の塩素が流動媒体(流動砂)に移行して、層内伝熱管に付着して層内伝熱管の溶融塩腐食を生じる。層内伝熱管は、流動媒体(流動砂)の激しい流動により摩耗するために、摩耗に加えて前記溶融塩腐食を受けることになり、伝熱管の減肉量が多いという問題点がある。 BACKGROUND ART In recent years, utilization of energy resources is required from the viewpoint of rising prices of fossil fuels and responses to global warming problems and the like. Among these, RDF, which plays a role in thermal recycling, and the power generation system that burns waste are increasing in importance. In this power generation system, there is a system in which thermal energy generated when RDF and waste are burned using a fluidized bed boiler is recovered by a heat transfer pipe in a bed. In this method, when fuel such as RDF or waste is burned in the fluidized bed boiler, some chlorine is transferred to the fluid medium (fluid sand) because the RDF and waste contain chlorine. It adheres to the heat transfer tube and causes molten salt corrosion of the in-layer heat transfer tube. The in-bed heat transfer tube suffers from the molten salt corrosion in addition to the wear because it is worn by the intense flow of the flow medium (flowing sand), and there is a problem that the amount of thinning of the heat transfer tube is large.
 従来、流動層内に設置される伝熱管に、自溶性合金(Ni系)を溶射したり、ステンレス材の肉盛等を行うことにより、減肉対策を施していたが、十分な効果が得られなかった。
 また、伝熱管をスタッドと耐火物で覆うことにより伝熱管の減肉を低減するようにした伝熱管の耐摩耗構造が特開平5-187789号公報(特許文献1)に開示されている。しかしながら、特許文献1に開示された構造は、伝熱管を耐火物で覆うことにより、熱伝達率が下がり、伝熱面積が多く必要になる。また、伝熱管と耐火物により径が太くなり伝熱管を配置しづらいという欠点がある。
 一方、特開平7-217801号公報(特許文献2)では、伝熱管の摩耗による減肉を防止する方法として、プロテクタを取り付ける方法や肉盛りや溶射する方法が提案されているが、プロテクタを取り付けると伝熱が大幅に阻害されるという問題があり、また肉盛りや溶射はコストが高いという問題があった(段落〔0004〕参照)と記載して従来の減肉対策の問題点を指摘し、伝熱管自体を耐摩耗性に優れた高クロム鋼又はステンレス鋼とすることを提案している。しかしながら、特許文献2に記載された方法では、摩耗による減肉は防止できるが、摩耗と同時に溶融塩腐食を直接受ける環境においては、耐久性に劣るという問題点がある。
In the past, measures to reduce the thickness of the heat transfer tube installed in the fluidized bed were carried out by thermal spraying of a self-fluxing alloy (Ni-based) or overlaying a stainless steel material, but sufficient effects can be obtained. It was not done.
Japanese Patent Application Laid-Open No. 5-187789 (Patent Document 1) discloses a wear resistant structure of a heat transfer tube in which the thickness reduction of the heat transfer tube is reduced by covering the heat transfer tube with a stud and a refractory. However, in the structure disclosed in Patent Document 1, covering the heat transfer tube with a refractory lowers the heat transfer coefficient and requires a large heat transfer area. In addition, the diameter of the heat transfer tube and the refractory increases, which makes it difficult to arrange the heat transfer tube.
On the other hand, in JP-A-7-217801 (Patent Document 2), a method of attaching a protector and a method of overlaying or thermal spraying are proposed as a method of preventing thickness reduction due to wear of a heat transfer tube. And the problem that heat transfer is significantly impeded, and that there was a problem that build-up and thermal spraying were expensive (see paragraph [0004]), and pointed out the problems with conventional thinning measures. It has been proposed that the heat transfer tube itself be made of high chromium steel or stainless steel excellent in wear resistance. However, although the method described in Patent Document 2 can prevent thickness reduction due to wear, there is a problem that the durability is inferior in an environment directly subjected to molten salt corrosion simultaneously with wear.
特開平5-187789号公報Japanese Patent Application Laid-Open No. 5-187789 特開平7-217801号公報Japanese Patent Application Laid-Open No. 7-217801
 上述したように、従来の流動層ボイラにあっては、層内伝熱管の摩耗や溶融塩腐食による減肉に対して肉盛やプロテクタを設ける等の種々の対策がなされてきたが、層内伝熱管全体としては伝熱性を高めて流動媒体の熱を伝熱管内を流れる缶水に速やかに伝えることに重点が置かれていた。 As described above, in the conventional fluidized bed boiler, various measures have been taken, such as providing a buildup or protector against the thickness reduction due to the wear of the heat transfer tube in the bed or molten salt corrosion. The heat transfer tube as a whole is focused on enhancing heat transfer and rapidly transferring the heat of the fluidizing medium to the can water flowing in the heat transfer tube.
 本発明者らは、流動層ボイラにおいて種々の層内伝熱管を用いて長期間に亘って連続運転を行う過程で以下の知見を得たものである。すなわち、バイオマス系のRDFや廃棄物のように燃料中に塩素が含まれる場合、燃料が燃焼した後に一部の塩素が流動媒体(流動砂)へ移行すると、流動媒体中の塩素は、流動層が700℃から850℃の温度で運用されると、燃料中に含まれるアルカリ金属類(Na,K等)と共晶塩を生じる。この共晶塩が溶融状態で凝縮する凝縮温度は、例えば650~700℃である。したがって、層内伝熱管の表面温度が凝縮温度よりも高ければ、共晶塩が層内伝熱管の表面で凝縮することを抑制することができ、溶融塩腐食による減肉を減らすことができる。これに対し、本発明者らは水管の外周側にSUS310S等のステンレス材からなるプロテクタを設けることにより耐久性を高めた層内伝熱管の場合、層内伝熱管の表面温度が上述の凝縮温度より低い温度でかつ所定温度(例えば、450℃)を超える場合に腐食摩耗による減肉を減らすことができることを発見した。 The present inventors obtained the following knowledge in the process of performing continuous operation over a long period of time using various in-bed heat transfer tubes in a fluidized bed boiler. That is, when chlorine is contained in the fuel like biomass-based RDF and wastes, when part of the chlorine is transferred to the fluid medium (fluid sand) after the fuel is burned, the chlorine in the fluid medium becomes the fluid bed. When operated at a temperature of 700.degree. C. to 850.degree. C., it produces eutectic salts with alkali metals (Na, K etc.) contained in the fuel. The condensation temperature at which this eutectic salt condenses in the molten state is, for example, 650 to 700.degree. Therefore, if the surface temperature of the in-layer heat transfer pipe is higher than the condensation temperature, condensation of the eutectic salt on the surface of the in-layer heat transfer pipe can be suppressed, and the reduction in thickness due to molten salt corrosion can be reduced. On the other hand, in the case of the in-layer heat transfer tube whose durability has been enhanced by providing a protector made of a stainless steel such as SUS310S on the outer peripheral side of the water tube, the present inventors have found that the surface temperature of the in-layer heat transfer tube It has been discovered that corrosion loss due to corrosion wear can be reduced at lower temperatures and above a predetermined temperature (e.g., 450 <0> C).
 本発明者らは、上記知見に基づいて、プロテクタの表面温度を溶融塩腐食が抑制され、減肉をしにくい温度範囲に調整するためには、(1)流動層とプロテクタの間の熱伝達率を上げ、(2)プロテクタと水管の間の熱伝達率を下げることが有効であることを着想し、本発明の創案に至ったものである。 The inventors of the present invention based on the above findings, in order to adjust the surface temperature of the protector to a temperature range where molten salt corrosion is suppressed and thickness reduction is difficult, (1) heat transfer between the fluidized bed and the protector It was conceived that it was effective to increase the rate and (2) to lower the heat transfer coefficient between the protector and the water pipe, and the invention was achieved.
 すなわち、本発明は、プロテクタと水管の間の熱伝達率は下げるが、層内伝熱管全体では経済的な熱伝達量を確保しつつ、伝熱管の溶融塩腐食を抑えて減肉量が少なく耐久性に優れた流動層ボイラの層内伝熱管を提供することを目的とするものである。 That is, according to the present invention, although the heat transfer coefficient between the protector and the water pipe is lowered, the heat transfer pipe is reduced in the amount of thickness reduction by suppressing the molten salt corrosion of the heat transfer pipe while securing the economical heat transfer amount It is an object of the present invention to provide an in-bed heat transfer pipe of a fluidized bed boiler excellent in durability.
 上述の目的を達成するため、本発明の流動層ボイラの層内伝熱管は、流動層ボイラの流動層内に配置される層内伝熱管において、前記層内伝熱管は、内部を流体が流れる水管と、前記水管の外周側に設けられ前記水管を保護するためのプロテクタと、前記水管と前記プロテクタの間に設けられる充填層とから構成されることを特徴とする。
 本発明によれば、流動媒体の熱は、プロテクタおよび充填層を介して水管に伝達され、水管内の流体が加熱される。水管とプロテクタとの間に介在する充填層を低い熱伝導率とすることにより、プロテクタと水管の間の熱伝達率を下げることができる。したがって、プロテクタ表面と水管表面の間の温度差を大きくすることができる。これにより、伝熱管の溶融塩腐食を抑えて減肉量が少なく、耐久性に優れた層内伝熱管とすることができる。
In order to achieve the above object, the in-bed heat transfer pipe of the fluidized bed boiler of the present invention is an in-bed heat transfer pipe disposed in the fluidized bed of the fluidized bed boiler, wherein the in-bed heat transfer pipe A water pipe, a protector provided on the outer peripheral side of the water pipe for protecting the water pipe, and a packed bed provided between the water pipe and the protector are characterized.
According to the invention, the heat of the flowing medium is transferred to the water pipe via the protector and the packed bed, and the fluid in the water pipe is heated. The heat transfer coefficient between the protector and the water pipe can be lowered by setting the filler layer interposed between the water pipe and the protector to a low thermal conductivity. Therefore, the temperature difference between the protector surface and the water tube surface can be increased. Thereby, the molten salt corrosion of the heat transfer pipe can be suppressed, the amount of thickness reduction can be small, and the in-layer heat transfer pipe excellent in durability can be obtained.
 本発明の好ましい態様によれば、前記プロテクタの表面温度が450~650℃に保たれることを特徴とする。 According to a preferred embodiment of the present invention, the surface temperature of the protector is maintained at 450 to 650.degree.
 本発明の好ましい態様によれば、前記充填層は、固体粒子の充填材を充填して形成されることを特徴とする。
 本発明によれば、充填層の空隙は低い熱伝導率を有した空気からなるため、プロテクタと水管の間の熱伝達率を下げることができる。この場合、熱伝達率を下げすぎると非効率になるので、プロテクタの表面温度が450~650℃、好ましくは、480~620℃になるように、充填層の充填材の材質、形状および厚さを適宜選定する。
According to a preferred embodiment of the present invention, the packed bed is formed by packing a solid particle filler.
According to the present invention, since the air gap of the packed bed is made of air having a low thermal conductivity, it is possible to lower the heat transfer coefficient between the protector and the water tube. In this case, the material, shape, and thickness of the filler of the filling layer are set such that the surface temperature of the protector becomes 450 to 650 ° C., preferably 480 to 620 ° C., because the heat transfer coefficient becomes inefficient if lowered too much. Select as appropriate.
 本発明の好ましい態様によれば、前記充填層は、固体粒子の充填材の充填率が0.5以上0.9以下であることを特徴とする。ここで、充填率とは、充填物が占める体積[m]を水管外面とプロテクタ内面の空隙の体積[m]で除した値である。
 本発明によれば、上記範囲の充填率を採用することにより、プロテクタが熱膨張した際、充填材の重力沈降によって充填層の表面(上面)とプロテクタの内面との間に形成される隙間、すなわち空気層の厚みを小さくし、水管への熱伝達を確保することができる。
According to a preferred aspect of the present invention, the packed bed is characterized in that the packing ratio of the solid particle filler is 0.5 or more and 0.9 or less. Here, the filling rate is a value obtained by dividing the volume [m 3 ] occupied by the filling by the volume [m 3 ] of the space between the outer surface of the water pipe and the inner surface of the protector.
According to the present invention, when the protector is thermally expanded, a gap formed between the surface (upper surface) of the packed bed and the inner surface of the protector by gravity settling of the filler by adopting the filling rate in the above range. That is, the thickness of the air layer can be reduced to ensure heat transfer to the water pipe.
 本発明の好ましい態様によれば、前記充填層は、熱伝導率が0.4~1.4W/mKであることを特徴とする。
 本発明によれば、充填層の熱伝導率が0.4~1.4W/mKであるため、プロテクタと水管の間の熱伝達率を下げることができる。したがって、プロテクタ表面と水管表面の間の温度差を大きくすることができ、プロテクタの表面温度を450~650℃の高温に保つことができる。
 本発明の好ましい態様によれば、前記充填層の厚みは、2~4mmであることを特徴とする。
According to a preferred embodiment of the present invention, the packed bed has a thermal conductivity of 0.4 to 1.4 W / mK.
According to the present invention, since the thermal conductivity of the packed bed is 0.4 to 1.4 W / mK, the heat transfer coefficient between the protector and the water pipe can be lowered. Therefore, the temperature difference between the surface of the protector and the surface of the water tube can be increased, and the surface temperature of the protector can be maintained at a high temperature of 450 to 650.degree.
According to a preferred embodiment of the present invention, the thickness of the filler layer is 2 to 4 mm.
 本発明の好ましい態様によれば、前記プロテクタは、ステンレス鋼からなることを特徴とする。
 本発明の好ましい態様によれば、前記ステンレス鋼は、SUS304またはSUS316またはSUS310Sであることを特徴とする。
 本発明によれば、プロテクタをSUS304,SUS316,SUS310S等のステンレス鋼で構成することにより、溶融塩腐食による減肉を抑制することができる。
According to a preferred aspect of the present invention, the protector is made of stainless steel.
According to a preferred embodiment of the present invention, the stainless steel is SUS304 or SUS316 or SUS310S.
According to the present invention, by forming the protector from stainless steel such as SUS304, SUS316, or SUS310S, it is possible to suppress thickness reduction due to molten salt corrosion.
 本発明の好ましい態様によれば、前記プロテクタは、外面にフィンを備えることを特徴とする。
 本発明によれば、プロテクタの外面に熱交換効率が優れたフィンを設けたため、流動媒体からプロテクタへの熱伝達率を高めることができる。したがって、経済的な熱伝達量を確保することができる。
 本発明の好ましい態様によれば、前記フィンは螺旋状のフィンであることを特徴とする。
 本発明の好ましい態様によれば、前記フィンはピン形状のフィンであることを特徴とする。
According to a preferred aspect of the present invention, the protector is provided with fins on the outer surface.
According to the present invention, since the fins with excellent heat exchange efficiency are provided on the outer surface of the protector, the heat transfer coefficient from the fluid medium to the protector can be enhanced. Therefore, economical heat transfer can be secured.
According to a preferred aspect of the present invention, the fin is a spiral fin.
According to a preferred aspect of the present invention, the fin is a pin-shaped fin.
 本発明の流動層ボイラは、燃料を流動層内で燃焼させ、燃焼熱を層内伝熱管で回収する流動層ボイラにおいて、前記層内伝熱管は、請求項1乃至11のいずれか1項に記載の層内伝熱管であり、前記流動層の温度を700~900℃に制御することを特徴とする。
 本発明によれば、燃料のカロリー等に応じて、流動層に供給する流動化空気の空気量を調節することにより、流動層の温度を700~900℃に制御する。そして、700~900℃に維持された流動層の熱をプロテクタおよび充填層を介して水管に伝達し、水管内の飽和水を加熱する。水管とプロテクタとの間に介在する充填層により、プロテクタと水管の間の熱伝達率を下げることができる。したがって、プロテクタ表面と水管表面の間の温度差を大きくすることができ、プロテクタの表面温度を450~650℃の高温に保つことができる。
The fluidized bed boiler according to the present invention is a fluidized bed boiler in which fuel is burned in a fluidized bed and combustion heat is recovered by an in-bed heat transfer pipe, wherein the in-bed heat transfer pipe is any one of claims 1 to 11. The in-bed heat transfer tube according to the present invention is characterized in that the temperature of the fluidized bed is controlled to 700 to 900 ° C.
According to the present invention, the temperature of the fluidized bed is controlled to 700 to 900 ° C. by adjusting the amount of air of the fluidizing air supplied to the fluidized bed according to the fuel calories and the like. Then, the heat of the fluidized bed maintained at 700 to 900 ° C. is transferred to the water pipe through the protector and the packed bed, and the saturated water in the water pipe is heated. The heat transfer coefficient between the protector and the water pipe can be reduced by the packed bed interposed between the water pipe and the protector. Therefore, the temperature difference between the surface of the protector and the surface of the water tube can be increased, and the surface temperature of the protector can be maintained at a high temperature of 450 to 650.degree.
 本発明の好ましい態様によれば、前記流動層の層内伝熱管が設けられる部分の流動化空気の空気量をu/umf=2.0~4.0にしたことを特徴とする。
 本発明によれば、層内伝熱管が配置される流動層(移動層)の流動化条件をu/umf=2.0~4.0にすることにより、流動層(移動層)の流動化を活発にして流動媒体からプロテクタへの熱伝達率を高くすることができる。これにより、プロテクタと水管との間に充填層が介在した層内伝熱管であっても、総括熱伝達率および総熱通過量を肉盛の層内伝熱管と同程度に保つことができる。したがって、経済的な熱伝達量を確保することができる。
According to a preferred aspect of the present invention, the air amount of the fluidizing air of the portion provided with the in-bed heat transfer pipe of the fluidized bed is u 0 / u mf = 2.0 to 4.0.
According to the present invention, by setting the fluidization condition of the fluidized bed (moving bed) in which the in-bed heat transfer pipe is arranged to u 0 / u mf = 2.0 to 4.0, Fluidization can be activated to increase the heat transfer coefficient from the fluid medium to the protector. As a result, even in the case of an in-layer heat transfer tube in which the packed bed is interposed between the protector and the water tube, the overall heat transfer coefficient and the total heat passing amount can be maintained to be similar to the in-layer heat transfer tube. Therefore, economical heat transfer can be secured.
 本発明の好ましい態様によれば、前記流動層ボイラは、燃料を燃焼させるための燃焼室と、前記層内伝熱管が配置され燃焼熱を回収する熱回収室とを備え、熱回収室の流動化空気の空気量をu/umf=2.0~4.0にして流動媒体が前記燃焼室と前記熱回収室とを循環する内部循環流動層ボイラであることを特徴とする。
 本発明によれば、燃料を燃焼する燃焼室と、熱回収をする熱回収室とが分離されているため、燃料中の不燃物が層内伝熱管に絡まる等のトラブルが生ずることがない。また、熱回収室における流動化空気の空気量を制御することにより、層内伝熱管の熱回収量を制御することができる。
According to a preferred aspect of the present invention, the fluidized bed boiler includes a combustion chamber for burning a fuel, and a heat recovery chamber in which the heat transfer pipe in the bed is disposed to recover combustion heat, and the flow of the heat recovery chamber The internal circulation fluidized bed boiler is characterized in that the air amount of the liquefaction air is set to u 0 / u mf = 2.0 to 4.0 and the fluidizing medium circulates between the combustion chamber and the heat recovery chamber.
According to the present invention, since the combustion chamber which burns the fuel and the heat recovery chamber which recovers heat are separated, troubles such as incombustibles in the fuel entwining in the in-layer heat transfer pipe do not occur. In addition, by controlling the air amount of the fluidizing air in the heat recovery chamber, it is possible to control the heat recovery amount of the in-layer heat transfer pipe.
 本発明は、以下に列挙する効果を奏する。
(1)層内伝熱管を水管と充填材とプロテクタで構成し、水管とプロテクタとの間に介在する充填層を設置することにより、プロテクタと水管の間の熱伝達率を下げることができる。したがって、プロテクタ表面と水管表面の間の温度差を大きくすることができ、プロテクタの表面温度を450~650℃の高温に保つことができる。これにより、伝熱管の溶融塩腐食を抑えて減肉量が少なく、耐久性に優れた層内伝熱管を提供できる。
(2)プロテクタをSUS304,SUS316,SUS310S等のステンレス鋼で構成することにより、溶融塩腐食による減肉を抑制することができる。
(3)層内伝熱管が配置される流動層(移動層)の流動化条件をu/umf=2.0~4.0にすることにより、流動層(移動層)の流動化を活発にして流動媒体からプロテクタへの熱伝達率を高くしている。これにより、プロテクタと水管との間に充填層が介在した層内伝熱管であっても、総括熱伝達率および総熱通過量を肉盛の層内伝熱管と同程度に保つことができる。したがって、経済的な熱伝達量を確保することができる。
(4)プロテクタの外面に熱交換効率が優れたフィンを設けたため、流動媒体からプロテクタへの熱伝達率を高めることができる。したがって、経済的な熱伝達量を確保することができる。
The present invention has the following effects.
(1) The heat transfer coefficient between the protector and the water pipe can be lowered by forming the in-layer heat transfer pipe with the water pipe, the filler and the protector, and installing the filling layer interposed between the water pipe and the protector. Therefore, the temperature difference between the surface of the protector and the surface of the water tube can be increased, and the surface temperature of the protector can be maintained at a high temperature of 450 to 650.degree. As a result, it is possible to provide an in-layer heat transfer pipe with reduced durability and reduced amount of thickness reduction while suppressing molten salt corrosion of the heat transfer pipe.
(2) By forming the protector from stainless steel such as SUS304, SUS316, or SUS310S, it is possible to suppress thickness reduction due to molten salt corrosion.
(3) Fluidization of the fluidized bed (moving bed) is achieved by setting the fluidization conditions of the fluidized bed (moving bed) in which the heat transfer pipes in the bed are arranged to u 0 / u mf = 2.0 to 4.0. Actively increases the heat transfer coefficient from the fluid medium to the protector. As a result, even in the case of an in-layer heat transfer tube in which the packed bed is interposed between the protector and the water tube, the overall heat transfer coefficient and the total heat passing amount can be maintained to be similar to the in-layer heat transfer tube. Therefore, economical heat transfer can be secured.
(4) Since the fin which was excellent in heat exchange efficiency was provided in the outer surface of a protector, the heat transfer coefficient from a fluid medium to a protector can be raised. Therefore, economical heat transfer can be secured.
図1は、本発明に係る層内伝熱管を備えた流動層ボイラの一実施形態を示す模式的断面図である。FIG. 1 is a schematic cross-sectional view showing an embodiment of a fluidized bed boiler provided with an in-bed heat transfer tube according to the present invention. 図2は、本発明に係る層内伝熱管を備えた流動層ボイラの他の実施形態を示す模式的断面図である。FIG. 2 is a schematic sectional view showing another embodiment of the fluidized bed boiler provided with the in-bed heat transfer tube according to the present invention. 図3は、層内伝熱管の模式的断面図である。FIG. 3 is a schematic cross-sectional view of the in-layer heat transfer tube. 図4Aは、水管にステンレス材を肉盛した従来の層内伝熱管の実験結果を示す図である。FIG. 4A is a diagram showing experimental results of a conventional in-layer heat transfer pipe in which a stainless steel is built on a water pipe. 図4Bは、本発明の層内伝熱管の実験結果を示す図である。FIG. 4B is a diagram showing experimental results of the in-layer heat transfer tube of the present invention. 図5は、層内伝熱管の正面図である。FIG. 5 is a front view of the in-layer heat transfer tube. 図6は、層内伝熱管の縦断面図である。FIG. 6 is a longitudinal sectional view of the in-layer heat transfer tube. 図7Aは、層内伝熱管の他の形態を示す図であり、図7Aは層内伝熱管の正面図である。FIG. 7A is a view showing another form of the in-layer heat transfer tube, and FIG. 7A is a front view of the in-layer heat transfer tube. 図7Bは、層内伝熱管の他の形態を示す図であり、図7Bは層内伝熱管の縦断面図である。FIG. 7B is a view showing another form of the in-layer heat transfer tube, and FIG. 7B is a longitudinal sectional view of the in-layer heat transfer tube. 図8Aは、層内伝熱管の更に他の形態を示す図であり、図8Aは層内伝熱管の正面図である。FIG. 8A is a view showing still another form of the in-layer heat transfer tube, and FIG. 8A is a front view of the in-layer heat transfer tube. 図8Bは、層内伝熱管の更に他の形態を示す図であり、図8Bは層内伝熱管の縦断面図である。FIG. 8B is a view showing still another form of the in-layer heat transfer tube, and FIG. 8B is a longitudinal sectional view of the in-layer heat transfer tube.
 以下、本発明に係る流動層ボイラの層内伝熱管の実施形態を図1乃至図8を参照して説明する。図1乃至図8において、同一または相当する構成要素には、同一の符号を付して重複した説明を省略する。
 図1は、本発明に係る層内伝熱管を備えた流動層ボイラの一実施形態を示す模式的断面図である。図1に示すように、流動層ボイラ1は、略円筒形状又は略四角筒形状の炉本体2と、廃棄物やRDF等の燃料を燃焼させる流動層3と、流動層3を支える炉床底板4とを備え、流動層3内には層内伝熱管5が設置されている。流動層3内には、層内伝熱管5を埋めるように珪砂等の流動砂である流動媒体が充填されている。炉床底板4には、流動化ガスとしての流動化空気を炉内に噴出するための多数の散気ノズルが形成されている。
Hereinafter, an embodiment of the in-bed heat transfer tube of the fluidized bed boiler according to the present invention will be described with reference to FIGS. 1 to 8. In FIG. 1 to FIG. 8, the same or corresponding components are given the same reference numerals, and duplicate explanations are omitted.
FIG. 1 is a schematic cross-sectional view showing an embodiment of a fluidized bed boiler provided with an in-bed heat transfer tube according to the present invention. As shown in FIG. 1, the fluidized bed boiler 1 comprises a furnace main body 2 having a substantially cylindrical shape or a substantially square cylinder shape, a fluidized bed 3 for burning waste or fuel such as RDF, and a hearth bottom plate supporting the fluidized bed 3 In the fluidized bed 3, an in-bed heat transfer pipe 5 is installed. The fluidized bed 3 is filled with a fluidized medium, which is a fluidized sand such as silica sand, so as to fill the intra-bed heat transfer pipe 5. The hearth bottom plate 4 is formed with a large number of aeration nozzles for injecting fluidizing air as fluidizing gas into the furnace.
 図1に示すように構成された流動層ボイラ1において、燃料は投入口(図示せず)から流動層3に供給される。このとき、炉床底板4の散気ノズルからは、流動層3の全体に亘って均一な空気量の流動化空気が噴出されるようになっており、流動層3は、流動媒体が上下に活発に流動する、いわゆるバブリング流動層となる。炉内に供給された燃料は流動層3内で熱分解および燃焼し、燃焼熱により流動媒体は加熱され高温となり、流動層3の温度は700~900℃に維持される。流動層3の温度は、流動化空気の空気量を調整することにより制御される。高温になった流動媒体は層内伝熱管5と接触し、層内伝熱管5内の流体(缶水)は流動媒体と熱交換を行うことにより流動媒体から熱を回収する。 In the fluidized bed boiler 1 configured as shown in FIG. 1, fuel is supplied to the fluidized bed 3 from an inlet (not shown). At this time, fluidizing air having a uniform amount of air is ejected from the aeration nozzle of the hearth bottom plate 4 over the whole of the fluid bed 3, and in the fluid bed 3, the fluid medium is up and down. It becomes a so-called bubbling fluidized bed that flows actively. The fuel supplied into the furnace is thermally decomposed and burned in the fluidized bed 3, and the heat of combustion heats the fluidized medium to a high temperature, and the temperature of the fluidized bed 3 is maintained at 700 to 900.degree. The temperature of the fluidized bed 3 is controlled by adjusting the amount of fluidization air. The fluid medium that has become high temperature comes into contact with the in-bed heat transfer tube 5, and the fluid (can water) in the in-bed heat transfer tube 5 exchanges heat with the fluid medium to recover heat from the fluid medium.
 図2は、本発明に係る層内伝熱管を備えた流動層ボイラの他の実施形態を示す模式的断面図である。図2に示すように、流動層ボイラ11は、略四角筒形状の炉本体12を備えており、炉本体12内は左右一対の仕切壁13,13によって、中央部にある1つの燃焼室14と、両側部にある2つの熱回収室15,15とに分割されている。燃焼室14内には、廃棄物やRDF等の燃料を熱反応させる流動床20が形成され、流動床20は炉床底板30によって支えられている。炉本体12内に設置された炉床底板30は、中央が高く、両側縁に向かうにつれ徐々に低くなった山形状をなしている。炉床底板30には、流動化ガスとしての流動化空気を炉内に噴出するための多数の散気ノズルが配置されている。各熱回収室15内には流動床23が形成され、この流動床23は炉床底板31によって支えられている。炉床底板31には、流動化ガスとしての流動化空気を炉内に噴出するための散気ノズルが配置されている。 FIG. 2 is a schematic sectional view showing another embodiment of the fluidized bed boiler provided with the in-bed heat transfer tube according to the present invention. As shown in FIG. 2, the fluidized bed boiler 11 is provided with a furnace main body 12 having a substantially square cylindrical shape, and the inside of the furnace main body 12 has one combustion chamber 14 in the center by a pair of left and right partition walls 13 and 13. And two heat recovery chambers 15, 15 at both sides. In the combustion chamber 14, a fluidized bed 20 for thermally reacting waste and fuel such as RDF is formed, and the fluidized bed 20 is supported by the hearth bottom plate 30. The hearth bottom plate 30 installed in the furnace body 12 has a mountain shape which is high at the center and gradually lowered toward the side edges. The hearth bottom plate 30 is provided with a number of aeration nozzles for injecting fluidizing air as fluidizing gas into the furnace. A fluidized bed 23 is formed in each heat recovery chamber 15, and the fluidized bed 23 is supported by the hearth bottom plate 31. The hearth bottom plate 31 is provided with an aeration nozzle for injecting fluidizing air as fluidizing gas into the furnace.
 図2に示すように、山形状の炉床底板30の下方には4つの空気箱32,32,33,33が形成されており、これら空気箱32,32,33,33には炉外から流動化空気が供給されるようになっている。調節弁(図示せず)の開度を調節して空気箱32,32,33,33に供給する空気流量を調節することにより、中央部の2つの空気箱32,32の上方の散気ノズルからは、実質的に小さな流動化速度を与えるように流動化空気を噴出し、両側部の2つの空気箱33,33の上方の散気ノズルからは、実質的に大きな流動化速度を与えるように流動化空気を噴出する。その結果、炉床底板30の中央部の上方に流動媒体が比較的ゆっくりした速度で上方から下方に移動する移動層21が形成され、炉床底板30の両側部の上方に流動媒体が下方から上方に移動する流動層22が形成される。したがって、流動床20の下部では流動媒体が移動層21から流動層22へ、流動床20の上部では流動媒体が流動層22から移動層21へ移動することで、移動層21と流動層22との間を流動媒体が循環する循環流が左右に形成される。各仕切壁13の傾斜部は、上昇する流動媒体が炉本体12の内部側に反転しやすくなるデフレクタとして機能する。 As shown in FIG. 2, four air boxes 32, 32, 33, 33 are formed below the mountain-shaped heart floor bottom plate 30, and these air boxes 32, 32, 33, 33 are formed from the outside of the furnace. Fluidized air is provided. Aeration nozzles above the two central air boxes 32, 32 by adjusting the opening of a control valve (not shown) to adjust the air flow rate supplied to the air boxes 32, 32, 33, 33 From there, the fluidizing air is jetted so as to give a substantially small fluidization velocity, and from the aeration nozzles above the two air boxes 33, 33 on both sides, to give a substantially high fluidization velocity Erupt the fluidizing air. As a result, a moving bed 21 is formed above the central portion of the hearth floor plate 30 to move the flowing medium downward at a relatively slow speed from above, and the flowing medium flows from above below both sides of the hearth floor plate 30. A fluidized bed 22 moving upward is formed. Therefore, the moving medium moves from the moving bed 21 to the fluidized bed 22 in the lower part of the fluidized bed 20 and the moving medium from the fluidized bed 22 to the moving bed 21 in the upper part of the fluidized bed 20. A circulating flow is formed on the left and right through which the fluid medium circulates. The inclined portion of each partition wall 13 functions as a deflector which makes it easy for the rising fluid medium to be inverted to the inside of the furnace body 12.
 図2に示すように構成された内部循環流動層ボイラ11において、燃料は投入口(図示せず)から移動層21に供給される。このとき、調節弁の開度を調節して移動層21に供給する流動化空気の空気量が流動層22に供給する流動化空気の空気量よりも小さくなるように調節している。本実施の形態では移動層21に供給する流動化空気の空気量を2~3u/umf、流動層22に供給する流動化空気の空気量を4~6u/umfとしている。ここで、uは、空塔速度であり、umfは最低流動化空塔速度である。 In the internal circulating fluidized bed boiler 11 configured as shown in FIG. 2, fuel is supplied to the moving bed 21 from an inlet (not shown). At this time, the amount of air of the fluidizing air supplied to the moving bed 21 is adjusted by adjusting the opening degree of the control valve so as to be smaller than the amount of air of the fluidizing air supplied to the fluid bed 22. In the present embodiment, the air amount of the fluidizing air supplied to the moving bed 21 is 2 to 3 u 0 / u mf , and the air amount of the fluidizing air supplied to the fluid bed 22 is 4 to 6 u 0 / u mf . Here, u 0 is the sky velocity and u mf is the lowest fluidization sky velocity.
 移動層21に供給された燃料は流動媒体に飲み込まれて流動媒体と共に下方に移動する。このとき、流動媒体の熱によって燃料の熱分解が行われて、燃料中の可燃分から可燃ガスが発生して、脆い熱分解残渣となる。熱分解残渣は、典型的には、不燃物及び熱分解によって脆くなった未燃物(チャー)を含んでいる。移動層21で生成される熱分解残渣は、流動媒体と共に、炉床底板30に至ると、傾斜した炉床底板30に沿って流動層22に向かう。流動層22に至った熱分解残渣は、激しく流動する流動媒体と接触し未燃物が不燃物から剥離し、未燃物が剥離して残った不燃物は、一部の流動媒体と共に不燃物排出口17から排出される。 The fuel supplied to the moving bed 21 is swallowed by the fluid medium and moves downward with the fluid medium. At this time, thermal decomposition of the fuel is performed by the heat of the fluid medium, and combustible gas is generated from the combustibles in the fuel to become brittle thermal decomposition residue. The pyrolysis residue typically contains incombustible matter and unburned matter (char) which has become brittle due to the pyrolysis. The pyrolysis residue generated in the moving bed 21 travels to the fluidized bed 22 along the inclined bottom floor plate 30 when it reaches the bottom floor plate 30 together with the fluid medium. The thermal decomposition residue that has reached the fluidized bed 22 comes in contact with the strongly flowing fluid medium, and the unburned matter is exfoliated from the incombustible matter, and the incombustible matter remaining after the unburned matter is exfoliated together with some fluid medium It is discharged from the discharge port 17.
 一方、不燃物から剥離した未燃物は、流動化空気が供給されることに伴って流動する流動媒体と共に上方に移動する。このとき、未燃物は、供給された流動化空気によって燃焼が行われ、流動媒体を加熱しつつ燃焼ガスを発生し、気体に搬送される程度の微細な未燃物及び灰分の粒子となる。流動層22の上部に至った高温の流動媒体の一部は、移動層21に流入する。流動媒体は、流動層22において、移動層21に流動したときに燃料の熱分解を適切に行うことができる温度に上昇させられる。移動層21に流入した流動媒体は、再び供給された燃料を受け入れて、上述の移動層21及び流動層22における熱反応を繰り返す。移動層21の温度は700~900℃に維持され、流動層22の温度は700~900℃に維持される。 On the other hand, the unburned material separated from the incombustible material moves upward with the flowing fluid medium as the fluidizing air is supplied. At this time, the unburned matter is combusted by the supplied fluidizing air, generates combustion gas while heating the fluid medium, and becomes fine unburned matter and ash particles which are carried to the gas. . A part of the high temperature fluid medium reaching the upper part of the fluid bed 22 flows into the moving bed 21. The fluidized medium is raised in the fluidized bed 22 to a temperature at which the fuel can be properly pyrolyzed when it flows to the moving bed 21. The fluid medium having flowed into the moving bed 21 receives the supplied fuel again, and repeats the thermal reaction in the moving bed 21 and the fluid bed 22 described above. The temperature of the moving bed 21 is maintained at 700 to 900 ° C., and the temperature of the fluidized bed 22 is maintained at 700 to 900 ° C.
 また、流動層22の上部の高温の流動媒体の一部は、仕切壁13の上部を越えて熱回収室15に入り込む。熱回収室15に入り込んだ流動媒体は、上方から下方に移動する流動床23を形成する。熱回収室15の炉床底板31は炉本体12の内壁側から燃焼室側に向かって下方に傾斜しており、熱回収室15の下部には開口部18が設けられ、熱回収室15に入り込んだ流動媒体は、流動床23を形成しつつ沈降し、開口部18から燃焼室14へ循環する。熱回収室15に入り込む流動媒体の温度は、700~900℃であるが、熱回収室15の流動床23内には層内伝熱管5が配設されており、高温になった流動媒体は下方に移動しつつ層内伝熱管5と接触し、層内伝熱管5内の流体(缶水)は流動媒体と熱交換を行うことにより流動媒体から熱を回収する。流動床23の炉床底板31の散気ノズルから噴出させる流動化空気の空気量を2~4u/umfに制御することにより、層内伝熱管5の熱回収量を制御することができる。燃焼室14へ循環した流動媒体は、流動層22に合流し、流動層22の流動媒体とともに上昇し、一部の流動媒体は、再び熱回収室15に入り込み、上述の層内伝熱管5内の流体との熱交換を繰り返す。 Further, a part of the high temperature fluid medium in the upper part of the fluidized bed 22 passes the upper part of the partition wall 13 and enters the heat recovery chamber 15. The fluid medium that has entered the heat recovery chamber 15 forms a fluid bed 23 moving downward from above. The hearth bottom plate 31 of the heat recovery chamber 15 is inclined downward from the inner wall side of the furnace body 12 toward the combustion chamber, and an opening 18 is provided in the lower portion of the heat recovery chamber 15. The inflowing fluid medium settles to form the fluid bed 23, and circulates from the opening 18 to the combustion chamber 14. The temperature of the fluidizing medium entering the heat recovery chamber 15 is 700 to 900 ° C., but the in-bed heat transfer pipe 5 is disposed in the fluidizing bed 23 of the heat recovery chamber 15. While moving downward, the heat transfer pipe 5 comes into contact with the in-bed heat transfer pipe 5, and the fluid (can water) in the in-bed heat transfer pipe 5 exchanges heat with the flowing medium to recover heat from the flowing medium. The amount of heat recovery of the heat transfer tube 5 can be controlled by controlling the amount of air of fluidizing air ejected from the aeration nozzle of the heart floor bottom plate 31 of the fluidized bed 23 to 2 to 4 u 0 / u mf. . The fluid medium circulated to the combustion chamber 14 joins the fluid bed 22 and ascends with the fluid medium of the fluid bed 22, and a part of the fluid medium enters the heat recovery chamber 15 again. Repeat heat exchange with the fluid.
 次に、図1に示すバブリング流動層ボイラおよび図2に示す内部循環流動層ボイラにおいて用いられている層内伝熱管5について説明する。
 図3は、層内伝熱管5の模式的断面図である。図3に示すように、層内伝熱管5は、内部に流体(缶水)が流れる水管6と、水管6の外周側に設けられ水管6を保護するプロテクタ8と、水管6とプロテクタ8との間に設けられる充填層7とから構成されている。水管6は、厚さ4~8mmのボイラ・熱交換器用鋼管、例えばSTB410Sから構成されており、水管6内を流れる流体(缶水)は2MPa~12MPaの飽和水である。充填層7は、砂、ステンレス粉、酸化マグネシウム、鉄、アルミナ等の固体粒子の充填材を充填させたものであり、厚さ2~4mmの円筒状に形成されている。充填層の熱伝導率は、例えば「粉体の反応、日刊工業新聞社、p.54-57」に示される計算により算出され、0.4~1.4W/mKとなるようにしている。充填層の熱伝導率がこの範囲内で充填して使用できるものであれば、上記で列挙した以外の種類・材質の充填材を用いることができる。
 充填材は、粉粒状が好ましい。また、充填材の充填率は0.5以上0.9以下が好ましく、より好ましくは0.6以上0.8以下である。ここで、水管6とプロテクタ8の間の空隙に充填材を充填する際の充填率とは、次式による。
 充填率[-]=充填物が占める体積[m]/水管外面とプロテクタ内面の空隙の体積[m]
 上記範囲の充填材の充填率を採用することによって、プロテクタが熱膨張した際、充填材の重力沈降によって充填層の表面(上面)とプロテクタの内面との間に形成される隙間、すなわち空気層の厚みを小さくし、水管への熱伝達を確保することができる。
Next, the in-bed heat transfer pipe 5 used in the bubbling fluidized bed boiler shown in FIG. 1 and the internal circulating fluidized bed boiler shown in FIG. 2 will be described.
FIG. 3 is a schematic cross-sectional view of the in-layer heat transfer tube 5. As shown in FIG. 3, the in-layer heat transfer pipe 5 includes a water pipe 6 through which a fluid (canned water) flows, a protector 8 provided on the outer peripheral side of the water pipe 6 to protect the water pipe 6, a water pipe 6 and a protector 8 And a filler layer 7 provided between the two. The water pipe 6 is composed of a steel pipe for a boiler or heat exchanger having a thickness of 4 to 8 mm, for example, STB 410S, and a fluid (water can flow) flowing in the water pipe 6 is saturated water of 2 MPa to 12 MPa. The filler layer 7 is filled with a filler of solid particles such as sand, stainless steel powder, magnesium oxide, iron, alumina and the like, and is formed in a cylindrical shape having a thickness of 2 to 4 mm. The thermal conductivity of the packed bed is, for example, 0.4 to 1.4 W / mK as calculated by the calculation shown in “Reaction of powder, Nikkan Kogyo Shimbun, p. 54-57”. As long as the thermal conductivity of the packed bed can be used by being packed within this range, fillers of types and materials other than those listed above can be used.
The filler is preferably particulate. The filling rate of the filler is preferably 0.5 or more and 0.9 or less, and more preferably 0.6 or more and 0.8 or less. Here, the filling factor at the time of filling the filler in the space between the water pipe 6 and the protector 8 is according to the following equation.
Packing ratio [-] = volume occupied by filling [m 3 ] / volume of void in water tube outer surface and protector inner surface [m 3 ]
A gap formed between the surface (upper surface) of the packed bed and the inner surface of the protector by gravity settling of the filler when the protector is thermally expanded by employing the filling factor of the filler in the above range, that is, the air layer Can be reduced in thickness to ensure heat transfer to the water pipe.
 プロテクタ8は、耐摩耗性および耐食性に優れたSUS304,SUS316,SUS310S等のステンレス鋼からなり、厚さ3~6mmの円筒状に形成されている。プロテクタ8は、ステンレス鋼板を円筒状に成形したものを用いてもよいし、ステンレス鋼管を用いてもよい。 The protector 8 is made of stainless steel such as SUS304, SUS316, or SUS310S, which is excellent in wear resistance and corrosion resistance, and is formed in a cylindrical shape having a thickness of 3 to 6 mm. The protector 8 may be formed by cylindrically forming a stainless steel plate, or a stainless steel pipe may be used.
 本発明においては、(1)プロテクタ8の材質をSUS304,SUS316,SUS310S等のステンレス鋼とし、(2)水管6とプロテクタ8との間に0.4~1.4W/mKの熱伝導率を有する充填層7を所定の厚み、すなわち2~4mmの厚みで形成し、(3)層内伝熱管5を設置している流動層3(図1参照)および熱回収室15に入り込む流動媒体(図2参照)の温度を700~900℃に維持するように構成している。
 本発明は、(1)~(3)の構成を採用することにより、プロテクタ8の表面温度が450~650℃、好ましくは480~620℃の高温に保たれる。
In the present invention, (1) the material of the protector 8 is stainless steel such as SUS304, SUS316, SUS310S, and (2) a thermal conductivity of 0.4 to 1.4 W / mK between the water pipe 6 and the protector 8 The formed packed bed 7 is formed to a predetermined thickness, that is, a thickness of 2 to 4 mm, and (3) the fluidized bed 3 (see FIG. 1) in which the in-layer heat transfer tube 5 is installed It is configured to maintain the temperature of 700.degree.-900.degree. C.).
In the present invention, the surface temperature of the protector 8 is maintained at a high temperature of 450 to 650 ° C., preferably 480 to 620 ° C., by adopting the configurations of (1) to (3).
 図4A,4Bは、水管にステンレス材を肉盛した従来の層内伝熱管と、上記(1)~(4)の構成を具備した本発明の層内伝熱管との比較結果を示す図である。
 従来の層内伝熱管は、水管の表面改質にステンレス材による3mmの肉盛を採用したものを用いている。図4Aに示すように、流動層の温度を800℃および缶水の温度を300℃とし、流動層に供給する流動化空気の空気量をu/umf=1.5とした場合、流動媒体(砂)から肉盛への熱伝達率は210W/mK、肉盛の表面温度は320℃、肉盛内面基準(水管外表面基準)で総括熱伝達率は222W/mK、総熱通過量は111118W/mである。なお、肉盛の表面温度と水管の表面温度との温度差は20℃である。
FIGS. 4A and 4B are diagrams showing a comparison result of a conventional in-layer heat transfer pipe in which a stainless steel is accumulated on a water pipe, and the in-layer heat transfer pipe of the present invention having the configurations of (1) to (4) above. is there.
The conventional heat transfer pipe in the layer uses a 3 mm buildup made of stainless steel for surface modification of the water pipe. As shown in FIG. 4A, assuming that the temperature of the fluidized bed is 800 ° C. and the temperature of the can water is 300 ° C., and the amount of air in the fluidizing air supplied to the fluidized bed is u 0 / u mf = 1.5, the flow heat transfer rate from the medium (sand) into the cladding is 210W / m 2 K, the surface temperature of the deposition is 320 ° C., overall heat transfer coefficient in the cladding inner surface reference (water pipe outer surface reference) is 222W / m 2 K, The total heat passing rate is 111118 W / m 2 . The temperature difference between the surface temperature of the overlay and the surface temperature of the water pipe is 20 ° C.
 これに対して、本発明の層内伝熱管は、水管の外周に、酸化マグネシウム粒子を充填した2mmの厚さの充填層と、SUS310Sからなる3mmの厚さのプロテクタを設けたものを用いている。図4Bに示すように、流動層の温度を800℃および缶水の温度を300℃とし、流動層に供給する流動化空気の空気量をu/umf=2.5とした場合、流動媒体(砂)からプロテクタへの熱伝達率は390W/mK、プロテクタの熱伝導率は16.2W/mK、酸化マグネシウム(厚さ2mm)を充填した充填層の熱伝導率は1.3W/mK、プロテクタの表面温度は513℃、充填層の表面温度は491℃、総括熱伝達率(プロテクタ内面基準)は246W/mK、総熱通過量は122957W/mである。なお、プロテクタの表面温度と充填層の表面温度との温度差は22℃であり、充填層の表面温度と水管の表面温度との温度差は191℃である。
 ちなみに水管外表面基準では総括熱伝達率は263W/mK、総熱通過量は131586W/mである。
On the other hand, the in-layer heat transfer tube of the present invention uses a 2 mm thick filler layer filled with magnesium oxide particles and a 3 mm thick protector made of SUS310S on the outer periphery of the water tube. There is. As shown in FIG. 4B, assuming that the temperature of the fluidized bed is 800 ° C. and the temperature of the can water is 300 ° C., and the amount of air of fluidizing air supplied to the fluidized bed is u 0 / u mf = 2.5, the flow The heat conductivity from the medium (sand) to the protector is 390 W / m 2 K, the thermal conductivity of the protector is 16.2 W / m K, the thermal conductivity of the packed bed filled with magnesium oxide (thickness 2 mm) is 1.3 W / mK, surface temperature of the protector 513 ° C., the surface temperature of the packed bed 491 ° C., overall heat transfer coefficient (protector inner surface reference) is 246W / m 2 K, total heat transfer amount is 122957W / m 2. The temperature difference between the surface temperature of the protector and the surface temperature of the packed bed is 22 ° C., and the temperature difference between the surface temperature of the packed bed and the surface temperature of the water pipe is 191 ° C.
Incidentally, the overall heat transfer coefficient is 263 W / m 2 K and the total heat passing amount is 131,586 W / m 2 on the basis of the outer surface of the water pipe.
 図4A,4Bの比較結果に示すように、水管の外周に充填材とプロテクタとを設けた層内伝熱管を用い、流動化空気の空気量をu/umf=2.5以上として、流動層(移動層)の流動化を活発にし、充填層の厚みおよび熱伝導率を適切に選定することにより、(1)流動媒体(砂)とプロテクタの間の熱伝達率を上げ、(2)プロテクタと水管の間の熱伝達率を下げることができる。これにより、総括熱伝達率、総熱通過量を肉盛の層内伝熱管と同程度に保ちつつ、プロテクタ表面温度を450℃以上とすることが可能となる。 As shown in the comparison results of FIGS. 4A and 4B, an in-layer heat transfer pipe provided with a filler and a protector on the outer periphery of the water pipe is used, and the air amount of fluidizing air is u 0 / u mf = 2.5 or more. (1) Increase the heat transfer coefficient between the fluid medium (sand) and the protector by activating the fluidization of the fluid bed (moving bed) and appropriately selecting the thickness and thermal conductivity of the packed bed, ) The heat transfer rate between the protector and the water tube can be reduced. Thereby, the protector surface temperature can be set to 450 ° C. or higher while maintaining the overall heat transfer coefficient and the total heat passing amount to the same level as the in-layer heat transfer pipe of the buildup.
 図4A,4Bから明らかなように、従来の層内伝熱管は、流動層内の流動媒体の熱を速やかに伝熱管内の流体(缶水)に伝えるようにしている。これに対して、本発明の層内伝熱管5は、水管6とプロテクタ8との間に充填層7を設けることにより、ゆるやかな熱伝達によりプロテクタ8の表面温度を上げるようにしている。これにより、伝熱管の溶融塩腐食を抑えて、伝熱管の減肉を少なくして伝熱管寿命を延ばすことができる。 As is apparent from FIGS. 4A and 4B, the conventional in-bed heat transfer tube is designed to quickly transfer the heat of the fluid medium in the fluidized bed to the fluid (water can) in the heat transfer tube. On the other hand, in the in-layer heat transfer tube 5 of the present invention, by providing the filling layer 7 between the water tube 6 and the protector 8, the surface temperature of the protector 8 is raised by gentle heat transfer. Thereby, it is possible to suppress the molten salt corrosion of the heat transfer tube, reduce the thickness reduction of the heat transfer tube, and extend the heat transfer tube life.
 次に、図1および図2に示す流動層ボイラにおいて用いられる層内伝熱管の詳細構造の一例を図5および図6を参照して説明する。
 図5は、層内伝熱管5の正面図である。図5においては、2本の層内伝熱管5が並列して配置された伝熱管群が示されている。層内伝熱管5は直管部と曲がり管部とを有し、直管部には多数のフィン9が設置されている。
 図6は、層内伝熱管5の縦断面図である。図6に示す層内伝熱管5は、図3に示す層内伝熱管5と同様に、水管6、充填層7、プロテクタ8から構成されることに加えて、プロテクタ8の外周にフィン9を備えている。フィン9は、SUS304,SUS316,SUS310S等のステンレス鋼板からなり、プロテクタ8の外周面の上下に固定されている。
Next, an example of the detailed structure of the in-bed heat transfer pipe used in the fluidized bed boiler shown in FIGS. 1 and 2 will be described with reference to FIGS. 5 and 6.
FIG. 5 is a front view of the in-layer heat transfer tube 5. FIG. 5 shows a heat transfer tube group in which two in-layer heat transfer tubes 5 are arranged in parallel. The in-layer heat transfer pipe 5 has a straight pipe portion and a bent pipe portion, and a large number of fins 9 are installed in the straight pipe portion.
FIG. 6 is a longitudinal sectional view of the in-layer heat transfer tube 5. Similar to the in-layer heat transfer tube 5 shown in FIG. 3, the in-layer heat transfer tube 5 shown in FIG. 6 includes fins 9 on the outer periphery of the protector 8 in addition to the water tube 6, the filling layer 7 and the protector 8. Have. The fins 9 are made of stainless steel plates such as SUS304, SUS316, and SUS310S, and are fixed to the upper and lower sides of the outer peripheral surface of the protector 8.
 図7A,7Bは、層内伝熱管5の他の形態を示す図であり、図7Aは層内伝熱管5の正面図であり、図7Bは層内伝熱管5の縦断面図である。図7A,7Bに示す層内伝熱管5は、プロテクタ8の外周に螺旋状にしたフィン34を全周に溶接して取り付けている。螺旋状にすることでフィンの取り付けが容易になり、工期が大幅に短縮される。 7A and 7B are views showing another form of the in-layer heat transfer tube 5, FIG. 7A is a front view of the in-layer heat transfer tube 5, and FIG. 7B is a longitudinal sectional view of the in-layer heat transfer tube 5. In the in-layer heat transfer tube 5 shown in FIGS. 7A and 7B, spiral fins 34 are attached to the entire outer periphery of the protector 8 by welding. The spiral shape facilitates the attachment of the fins and significantly reduces the construction period.
 図8A,8Bは、層内伝熱管5の更に他の形態を示す図であり、図8Aは層内伝熱管5の正面図であり、図8Bは層内伝熱管5の縦断面図である。図8A,8Bに示す層内伝熱管5は、板(羽根)状ではなくピン型状のフィン35にしてプロテクタ8の外周に取り付けている。多数のピン状のフィン35はプロテクタ8の外周面に溶接されている。 8A and 8B show still another embodiment of the in-layer heat transfer tube 5, FIG. 8A is a front view of the in-layer heat transfer tube 5, and FIG. 8B is a longitudinal cross-sectional view of the in-layer heat transfer tube 5. . The in-layer heat transfer pipe 5 shown in FIGS. 8A and 8B is attached to the outer periphery of the protector 8 as a pin-shaped fin 35 instead of a plate (blade). A large number of pin-shaped fins 35 are welded to the outer peripheral surface of the protector 8.
 図5、図6、図7A,7B及び図8A,8Bに示すように、プロテクタ8がフィン9、フィン34、又はフィン35を備えることにより、プロテクタ内表面あたりの熱伝達率を上げることができる。したがって、流動媒体(砂)とプロテクタの間の熱伝達率を上げることができ、プロテクタ8の表面温度を450℃以上の高温にすることが可能となる。図5、図7A,7B及び図8A,8Bに示す層内伝熱管5における水管6、充填層7およびプロテクタ8は、図3に示す層内伝熱管と同様の構成である。 As shown in FIGS. 5, 6, 7A, 7B and 8A, 8B, the heat transfer coefficient per inner surface of the protector can be increased by the protector 8 including the fins 9, 34 or 35. . Therefore, the heat transfer coefficient between the fluid medium (sand) and the protector can be increased, and the surface temperature of the protector 8 can be increased to 450 ° C. or higher. The water pipe 6, the packed bed 7 and the protector 8 in the in-layer heat transfer pipe 5 shown in FIGS. 5, 7A, 7B and 8A, 8B have the same configuration as the in-layer heat transfer pipe shown in FIG.
 これまで本発明の実施形態について説明したが、本発明は上述の実施形態に限定されず、その技術思想の範囲内において、種々の異なる形態で実施されてよいことは勿論である。 Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and, of course, may be implemented in various different forms within the scope of the technical idea thereof.
 本発明は、バイオマスやプラスチックを含む高発熱量のRDF(ごみ固形化燃料)や廃棄物等の燃料を燃焼させて燃焼熱を回収する流動層ボイラの流動層内に設置する層内伝熱管に利用可能である。 The present invention relates to an in-bed heat transfer pipe installed in a fluidized bed of a fluidized bed boiler that burns fuel such as biomass and plastic, high calorific value RDF (waste solidified fuel) and waste, and recovers combustion heat. It is available.
 1  流動層ボイラ
 2  炉本体
 3  流動層
 4  炉床底板
 5  層内伝熱管
 6  水管
 7  充填層
 8  プロテクタ
 9,34,35  フィン
 11 流動層ボイラ
 12 炉本体
 13 仕切壁
 14 燃焼室
 15 熱回収室
 17 不燃物排出口
 18 開口部
 20 流動床
 21 移動層
 22 流動層
 23 流動床
 30 炉床底板
 31 炉床底板
 32,32,33,33 空気箱
Reference Signs List 1 fluidized bed boiler 2 furnace main body 3 fluidized bed 4 hearth bottom plate 5 in-layer heat transfer pipe 6 water pipe 7 packed bed 8 protector 9, 34, 35 fins 11 fluidized bed boiler 12 furnace main body 13 partition wall 14 combustion chamber 15 heat recovery chamber 17 Incombustible material discharge port 18 opening 20 fluid bed 21 moving bed 22 fluid bed 23 fluid bed 30 heart floor bottom plate 31 heart floor bottom plate 32, 32, 33, 33 air box

Claims (14)

  1.  流動層ボイラの流動層内に配置される層内伝熱管において、
     前記層内伝熱管は、内部を流体が流れる水管と、前記水管の外周側に設けられ前記水管を保護するためのプロテクタと、前記水管と前記プロテクタの間に設けられる充填層とから構成されることを特徴とする流動層ボイラの層内伝熱管。
    In the in-bed heat transfer pipe disposed in the fluidized bed of the fluidized bed boiler,
    The in-layer heat transfer pipe is composed of a water pipe through which the fluid flows, a protector provided on the outer peripheral side of the water pipe for protecting the water pipe, and a packed bed provided between the water pipe and the protector. An in-bed heat transfer tube of a fluidized bed boiler characterized in that
  2.  前記プロテクタの表面温度が450~650℃に保たれることを特徴とする請求項1記載の流動層ボイラの層内伝熱管。 The in-bed heat transfer tube according to claim 1, wherein the surface temperature of the protector is maintained at 450 to 650 属 C.
  3.  前記充填層は、固体粒子の充填材を充填して形成されることを特徴とする請求項1記載の流動層ボイラの層内伝熱管。 The in-bed heat transfer tube according to claim 1, wherein the packed bed is formed by packing a solid particle filler.
  4.  前記充填層は、固体粒子の充填材の充填率が0.5以上0.9以下であることを特徴とする請求項3記載の流動層ボイラの層内伝熱管。 The in-bed heat transfer pipe of a fluidized bed boiler according to claim 3, wherein the filling rate of the solid particle filling material is 0.5 or more and 0.9 or less.
  5.  前記充填層は、熱伝導率が0.4~1.4W/mKであることを特徴とする請求項1記載の流動層ボイラの層内伝熱管。 The in-layer heat transfer tube according to claim 1, wherein the packed bed has a thermal conductivity of 0.4 to 1.4 W / mK.
  6.  前記充填層の厚みは、2~4mmであることを特徴とする請求項5記載の流動層ボイラの層内伝熱管。 The in-bed heat transfer tube according to claim 5, wherein the thickness of the packed bed is 2 to 4 mm.
  7.  前記プロテクタは、ステンレス鋼からなることを特徴とする請求項1記載の流動層ボイラの層内伝熱管。 The in-bed heat transfer tube according to claim 1, wherein the protector is made of stainless steel.
  8.  前記ステンレス鋼は、SUS304またはSUS316またはSUS310Sであることを特徴とする請求項7記載の流動層ボイラの層内伝熱管。 The in-layer heat transfer tube according to claim 7, wherein the stainless steel is SUS304 or SUS316 or SUS310S.
  9.  前記プロテクタは、外面にフィンを備えることを特徴とする請求項1乃至8のいずれか1項に記載の流動層ボイラの層内伝熱管。 The in-bed heat transfer tube according to any one of claims 1 to 8, wherein the protector comprises fins on an outer surface.
  10.  前記フィンは螺旋状のフィンであることを特徴とする請求項9記載の流動層ボイラの層内伝熱管。 The in-bed heat transfer tube according to claim 9, wherein the fin is a spiral fin.
  11.  前記フィンはピン形状のフィンであることを特徴とする請求項9記載の流動層ボイラの層内伝熱管。 The in-bed heat transfer tube according to claim 9, wherein the fins are pin-shaped fins.
  12.  燃料を流動層内で燃焼させ、燃焼熱を層内伝熱管で回収する流動層ボイラにおいて、
     前記層内伝熱管は、請求項1乃至11のいずれか1項に記載の層内伝熱管であり、
     前記流動層の温度を700~900℃に制御することを特徴とする流動層ボイラ。
    In a fluidized bed boiler in which fuel is burned in a fluidized bed and heat of combustion is recovered by a heat transfer pipe in the bed,
    The in-layer heat transfer pipe is the in-layer heat transfer pipe according to any one of claims 1 to 11,
    A fluidized bed boiler characterized in that the temperature of the fluidized bed is controlled to 700 to 900 ° C.
  13.  前記流動層の層内伝熱管が設けられる部分の流動化空気の空気量をu/umf=2.0~4.0にしたことを特徴とする請求項12記載の流動層ボイラ。 The fluidized bed boiler according to claim 12, wherein an amount of air of fluidizing air in a portion provided with an in-bed heat transfer pipe of the fluidized bed is set to u 0 / u mf = 2.0 to 4.0.
  14.  前記流動層ボイラは、燃料を燃焼させるための燃焼室と、前記層内伝熱管が配置され燃焼熱を回収する熱回収室とを備え、熱回収室の流動化空気の空気量をu/umf=2.0~4.0にして流動媒体が前記燃焼室と前記熱回収室とを循環する内部循環流動層ボイラであることを特徴とする請求項12記載の流動層ボイラ。 The fluidized bed boiler includes a combustion chamber for burning fuel and a heat recovery chamber in which the heat transfer pipe in the layer is disposed to recover combustion heat, and the air amount of the fluidizing air of the heat recovery chamber is u 0 / The fluidized bed boiler according to claim 12, characterized in that it is an internal circulating fluidized bed boiler in which the flow medium circulates between the combustion chamber and the heat recovery chamber with u mf = 2.0 to 4.0.
PCT/JP2013/052843 2012-02-13 2013-02-07 In-bed heat transfer tube for fluidized bed boiler WO2013121965A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013558659A JP6085570B2 (en) 2012-02-13 2013-02-07 Heat transfer tube in a fluidized bed boiler
CN201380009114.6A CN104136842B (en) 2012-02-13 2013-02-07 Heat-transfer pipe in the layer of fluidized bed boiler
KR1020147024890A KR101998448B1 (en) 2012-02-13 2013-02-07 Immersed heat transfer tube for fluidized-bed boiler
EP13749873.9A EP2821697B1 (en) 2012-02-13 2013-02-07 In-bed heat transfer tube for fluidized bed boiler

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-028225 2012-02-13
JP2012028225 2012-02-13

Publications (1)

Publication Number Publication Date
WO2013121965A1 true WO2013121965A1 (en) 2013-08-22

Family

ID=48984077

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/052843 WO2013121965A1 (en) 2012-02-13 2013-02-07 In-bed heat transfer tube for fluidized bed boiler

Country Status (5)

Country Link
EP (1) EP2821697B1 (en)
JP (1) JP6085570B2 (en)
KR (1) KR101998448B1 (en)
CN (1) CN104136842B (en)
WO (1) WO2013121965A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180079724A (en) * 2017-01-02 2018-07-11 현대건설주식회사 Circulating fluidized bed boiler system
CN112166286A (en) * 2018-05-21 2021-01-01 维美德技术有限公司 Coaxial heat transfer tube suitable for fluidized bed boiler and manufacturing method thereof

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3124862B1 (en) * 2015-07-28 2019-01-02 Ebara Environmental Plant Co., Ltd. Heat transfer tube for fluidized-bed boiler
JP6691834B2 (en) * 2015-07-28 2020-05-13 荏原環境プラント株式会社 Heat transfer tube of fluidized bed boiler
CN110017473B (en) * 2019-03-20 2020-04-14 江苏能建机电实业集团有限公司 Anti-abrasion device for membrane water wall of circulating fluidized bed boiler
CN110017472B (en) * 2019-03-20 2020-04-14 江苏能建机电实业集团有限公司 Anti-wear device for boiler
CN110425919B (en) * 2019-07-12 2020-12-04 泰兴市梅兰化工有限公司 Liquid chlorine vaporizer
CN111964479A (en) * 2020-08-20 2020-11-20 广东博盈特焊技术股份有限公司 High-temperature corrosion-resistant and erosion-resistant coiled pipe, coiled pipe group and manufacturing method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6196106U (en) * 1984-11-27 1986-06-20
JPS61115804U (en) * 1985-01-07 1986-07-22
JPS61121306U (en) * 1985-01-11 1986-07-31
JPH05187789A (en) 1992-01-14 1993-07-27 Mitsubishi Heavy Ind Ltd Wear resistant structure for heat transfer tube
JPH07217801A (en) 1994-02-08 1995-08-18 Babcock Hitachi Kk Heat transfer tube for fluidized-bed boiler
JP2000266314A (en) * 1999-03-15 2000-09-29 Babcock Hitachi Kk Fluidized-bed boiler

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE61651T1 (en) * 1986-06-16 1991-03-15 Lorraine Carbone THERMAL COMPOUND WITH STRONG TRANSFER COEFFICIENT AND USES TO COOL DOWN AN ARRANGEMENT SUBJECT TO INTENSE THERMAL FLOW.
DE68925033T2 (en) * 1988-08-31 1996-05-15 Ebara Corp FLUID BED FABRIC WITH A COMPOSITE CIRCUIT.
CA2116745C (en) * 1993-03-03 2007-05-15 Shuichi Nagato Pressurized internal circulating fluidized-bed boiler
TW270970B (en) * 1995-04-26 1996-02-21 Ehara Seisakusho Kk Fluidized bed combustion device
FI122481B (en) * 2004-12-29 2012-02-15 Metso Power Oy Superheater design

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6196106U (en) * 1984-11-27 1986-06-20
JPS61115804U (en) * 1985-01-07 1986-07-22
JPS61121306U (en) * 1985-01-11 1986-07-31
JPH05187789A (en) 1992-01-14 1993-07-27 Mitsubishi Heavy Ind Ltd Wear resistant structure for heat transfer tube
JPH07217801A (en) 1994-02-08 1995-08-18 Babcock Hitachi Kk Heat transfer tube for fluidized-bed boiler
JP2000266314A (en) * 1999-03-15 2000-09-29 Babcock Hitachi Kk Fluidized-bed boiler

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180079724A (en) * 2017-01-02 2018-07-11 현대건설주식회사 Circulating fluidized bed boiler system
KR101895382B1 (en) 2017-01-02 2018-09-05 현대건설 주식회사 Circulating fluidized bed boiler system
CN112166286A (en) * 2018-05-21 2021-01-01 维美德技术有限公司 Coaxial heat transfer tube suitable for fluidized bed boiler and manufacturing method thereof
CN112166286B (en) * 2018-05-21 2022-10-11 维美德技术有限公司 Coaxial heat transfer tube suitable for fluidized bed boiler and manufacturing method thereof
US11859911B2 (en) 2018-05-21 2024-01-02 Valmet Technologies Oy Coaxial heat transfer tube suitable for a fluidized bed boiler and a method for manufacturing same

Also Published As

Publication number Publication date
EP2821697A4 (en) 2016-03-09
EP2821697B1 (en) 2018-12-19
KR101998448B1 (en) 2019-07-09
JP6085570B2 (en) 2017-02-22
CN104136842A (en) 2014-11-05
KR20140127861A (en) 2014-11-04
EP2821697A1 (en) 2015-01-07
JPWO2013121965A1 (en) 2015-05-11
CN104136842B (en) 2016-05-11

Similar Documents

Publication Publication Date Title
WO2013121965A1 (en) In-bed heat transfer tube for fluidized bed boiler
WO2014175216A1 (en) In-bed heat transfer tube for fluidized bed boiler, and fluidized bed boiler
JP4243919B2 (en) Fuel gasification system
ES2204760T3 (en) METHOD AND APPLIANCE FOR GASIFICATION IN FLUIDIZED MILK AND COMBUSTION IN A FUSION MILK.
CN100345940C (en) Biomass fluid bed gasification furnace using heat pipe supplying heat
WO2014079283A1 (en) External bed type double-fluidized bed system for preventing boiler contamination
JP5150500B2 (en) Steam generating boiler from flue gas under optimum conditions
JPH11148625A (en) Device and method of recovering combustion heat of waste
JP5053279B2 (en) Boiler generating steam from flue gas with high electrical efficiency and improved slag quality
KR101354938B1 (en) Fluidized bed combustor
JP2001280863A (en) Heat exchanger and electric power generator comprising it
WO2017014299A1 (en) Biomass power generation system using bamboo as main fuel, and method for combusting bamboo in said biomass power generation system
CN203880691U (en) Chimney-free multifunctional oil/gas-fired boiler
CN106765192A (en) A kind of domestic waste incineration water-cooled furnace wall device
JP6691834B2 (en) Heat transfer tube of fluidized bed boiler
CN206338813U (en) A kind of domestic waste incineration water-cooled furnace wall device
CN104482542A (en) Front furnace sealing device for biomass burning boiler furnace
CN204301084U (en) A kind of stokehold sealing device for living beings burning boiler
CN205606538U (en) Circulating fluidized bed boiler of pure fever furfural sediment
JP3765555B2 (en) Fluidized bed combustor
JP3145867B2 (en) Waste incineration equipment
JP2001280615A (en) Melting furnace
JP2005298675A (en) Gasification apparatus
CN104611064A (en) Gasifying device for gas in coal industry
JP3801775B2 (en) Waste carbonization pyrolysis melting combustion power generator

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380009114.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13749873

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013558659

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013749873

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147024890

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: IDP00201405401

Country of ref document: ID