WO2013121660A1 - Manganese oxide thin film laminate and oxide laminate - Google Patents

Manganese oxide thin film laminate and oxide laminate Download PDF

Info

Publication number
WO2013121660A1
WO2013121660A1 PCT/JP2012/081761 JP2012081761W WO2013121660A1 WO 2013121660 A1 WO2013121660 A1 WO 2013121660A1 JP 2012081761 W JP2012081761 W JP 2012081761W WO 2013121660 A1 WO2013121660 A1 WO 2013121660A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
oxide thin
manganese oxide
substrate
laminate
Prior art date
Application number
PCT/JP2012/081761
Other languages
French (fr)
Japanese (ja)
Inventor
荻本 泰史
Original Assignee
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社 filed Critical 富士電機株式会社
Publication of WO2013121660A1 publication Critical patent/WO2013121660A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • C01G45/125Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type[MnO3]n-, e.g. Li2MnO3, Li2[MxMn1-xO3], (La,Sr)MnO3
    • C01G45/1264Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type[MnO3]n-, e.g. Li2MnO3, Li2[MxMn1-xO3], (La,Sr)MnO3 containing rare earth, e.g. La1-xCaxMnO3, LaMnO3
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • C30B29/68Crystals with laminate structure, e.g. "superlattices"
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N99/00Subject matter not provided for in other groups of this subclass
    • H10N99/03Devices using Mott metal-insulator transition, e.g. field-effect transistor-like devices

Definitions

  • the present invention relates to a manganese oxide thin film laminate and an oxide laminate. More specifically, the present invention relates to a manganese oxide thin film laminate and an oxide laminate that undergo Mott transition by controlling temperature, electric field, magnetic field, or light irradiation, and switch electrical, magnetic, or optical properties. .
  • strongly correlated electron materials that cannot apply the band theory that supports the basics of semiconductor device design has also progressed. Among them, a substance showing a huge and high-speed property change due to a phase transition of an electronic system has been found.
  • strongly correlated electron materials not only spin but also the degree of freedom of electron orbital is involved in the phase state of the electron system, and various electronic phases consisting of various orders formed by spin, charge, and orbital appear.
  • a representative example of strongly correlated electron materials is perovskite-type manganese oxide, in which the charge-ordered phase in which 3d electrons of manganese (Mn) are aligned by the first-order phase transition, It is known that an orbital-ordered phase that aligns is expressed.
  • the electronic phase In the charge alignment phase and orbital alignment phase, carriers are localized, so that the electrical resistance is high, and the electronic phase is an insulator phase. Further, the magnetic property of this electronic phase is an antiferromagnetic phase due to superexchange interaction and double exchange interaction. In many cases, the electronic state of the charge alignment phase or the orbital alignment phase should be regarded as a semiconductor. This is because, in the charge alignment phase or the orbital alignment phase, although the carriers are localized, the electric resistance is lower than that of a so-called band insulator. However, by convention, the electronic phase of the charge alignment phase or the orbital alignment phase is expressed as an insulator phase.
  • the spin is aligned and the electronic phase is a ferromagnetic phase.
  • the metal phase there are various definitions of the metal phase, but here, “the sign of the temperature differential coefficient of resistivity is positive” is expressed as the metal phase.
  • the insulator phase is redefined as “the sign of the temperature differential coefficient of resistivity is negative”.
  • any one of electronic phases such as a phase in which both charge alignment and orbital alignment are established (charge and orbital alignment phase: charge and orbital ordered phase)
  • charge and orbital alignment phase charge and orbital ordered phase
  • Patent Documents 1 to 3 a phenomenon in which various switching functions are manifested in a single crystal bulk material of the substance can be observed as a possible substance. These phenomena are typically observed as a large change in electrical resistance or a transition between antiferromagnetic and ferromagnetic phases. For example, resistance changes of several orders of magnitude due to application of a magnetic field are well known as the giant magnetoresistance effect.
  • the phenomenon that brings about the switching function is a temperature range above room temperature (for example, 300 K). Needs to be realized. However, all of the switching functions disclosed in Patent Documents 1 to 3 have been confirmed at a low temperature such as a liquid nitrogen temperature (77 K) or lower.
  • ABO 3 the perovskite-type manganese oxide in these disclosures is expressed as ABO 3
  • the atomic stacking surface is a stacked body in which an AO layer, a BO 2 layer, an AO layer,.
  • the crystal structure of such a laminate is referred to as AO—BO 2 —AO.
  • the A site occupies the apex
  • the B site occupies the body center
  • O (oxygen) occupies the face center.
  • Manganese is arranged at the B site.
  • the perovskite-type manganese oxides disclosed in each of the above documents 1 to 3 it is considered to be related to a decrease in the temperature at which the switching phenomenon is observed, that is, the temperature at which the charge orbital order develops (hereinafter referred to as “expression temperature”).
  • expression temperature the temperature at which the charge orbital order develops.
  • the A site of the perovskite crystal structure is randomly occupied by trivalent rare earth cations (hereinafter referred to as “R”) and divalent alkaline earth (“Ae”).
  • R trivalent rare earth cations
  • Ae divalent alkaline earth
  • a site ordering the regular arrangement of ions occupying the A site, as exemplified here, is referred to as “A site ordering”, and the perovskite type manganese oxide in which such A site ordering is realized. Is called A-site ordered perovskite manganese oxide.
  • a group of substances exhibiting such a high transition temperature is characterized by containing Ba (barium) as the alkaline earth Ae.
  • Ba is contained as the alkaline earth Ae, and Y (yttrium), Ho (holmium), Dy (dysprosium), Tb (terbium), Gd (gadolinium), Eu (europium) having a small ion radius as the rare earth element R, It has been reported that when Sm (samarium) is used, the transition temperature exceeds room temperature.
  • Patent Document 4 discloses that a perovskite oxide thin film is formed using a (110) plane orientation substrate. According to this disclosure, when the in-plane four-fold symmetry is broken in the (110) plane orientation substrate, shear deformation of the crystal lattice is allowed when the formed thin film is switched. When this shear deformation occurs, the crystal lattice is oriented parallel to the substrate surface, and the charge alignment surface and the orbital alignment surface are not parallel to the substrate surface. Further, Patent Document 5 discloses an example in which the A-site ordered perovskite-type manganese oxide is thinned.
  • This disclosure reports a coating light irradiation method in which an amorphous thin film is once deposited and then crystallized and A-site ordering is performed by laser annealing. In fact, it has been confirmed by electron beam diffraction that the A site is ordered in the SmBaMn 2 O 6 thin film formed on the (100) plane orientation SrTiO 3 (lattice constant 0.3905 nm) substrate.
  • JP-A-8-133894 Japanese Patent Laid-Open No. 10-255481 JP-A-10-261291 Japanese Patent Laid-Open No. 2005-213078 JP 2008-156188 A
  • the A-site ordered perovskite-type manganese oxide has a problem that the degree of order in the A-site ions greatly affects the temperature at which the switching phenomenon is realized, that is, the temperature at which the charge orbital order is developed.
  • the degree of order of A-site ions is reduced even if defects are introduced into the formed thin film or a slight shift occurs in the composition of the thin film.
  • the thin film on the (110) plane orientation substrate reported in Patent Document 4 has a problem that it does not contribute to the solution of any of the problems of lowering the degree of order and lowering the expression temperature.
  • the present invention has been made in view of the above problems.
  • the present invention provides a novel device by providing a manganese oxide thin film stack or an oxide stack that realizes a switching function by controlling phase transition by some external stimulus (external field) at room temperature. It contributes to the creation of
  • each of the above problems is caused by the fact that two types of cations, that is, both cations of trivalent rare earth element (R) and divalent alkaline earth (Ae, for example, Sr or Ba) are perovskite type Mn.
  • the inventor of the present application thought that it was caused by occupying the A site of the oxide.
  • the approach using the perovskite type Mn oxide in which two types of cations occupy the A site has led to the idea that the above problem cannot be solved, and a method different from that is searched to find a specific means for solving the above problem. It was.
  • a manganese oxide thin film laminate formed on the surface of a substrate, the first and second manganese oxide thin films formed in contact with each other is provided.
  • the first manganese oxide thin film has a composition formula RMnO 3 (wherein R is at least one trivalent selected from lanthanoids), wherein the cubic root of the unit cell volume in bulk is larger than the lattice constant of the substrate.
  • R is at least one trivalent selected from lanthanoids
  • the atomic layer containing the element R and not containing Mn, and the atomic layer containing Mn and not containing the element R are alternately stacked in the direction perpendicular to the substrate surface.
  • the manganese oxide thin film has a composition formula LMnO 3 in which the cube root of the unit cell volume in the bulk is smaller than the lattice constant of the substrate (where L is selected as R, at least one selected from lanthanoids) And an atomic layer containing element L and not containing Mn and an atomic layer containing Mn and not containing element L are alternately stacked in the direction perpendicular to the substrate surface.
  • a manganese oxide thin film stack in which each of the first manganese oxide thin film and the second manganese oxide thin film has two crystal axes that are not equivalent to each other in the in-plane direction of the substrate surface.
  • the unit cell volume in the bulk means a unit cell volume in a pseudo cubic crystal.
  • the manganese oxide thin film laminate in this embodiment is a thin film laminate made of perovskite manganese oxide.
  • Each manganese oxide thin film contained in this manganese oxide laminate has a crystal lattice having a composition expressed as ABO 3 .
  • crystallization of the 1st and 2nd manganese oxide thin film in this aspect is equipped with the oxygen octahedron which has Mn (manganese) in B site, and surrounds the Mn like a normal perovskite type crystal. .
  • the A sites are occupied only by the trivalent rare earth element cations, elements R and L, respectively.
  • the rare earth elements R and L of this embodiment are typically lanthanoid trivalent rare earth elements, that is, La (lanthanum), Ce (cerium), Pr (praseodymium), Nd (neodymium), Pm (promethium). , Sm, Eu, Gd, Tb, Dy, Ho, Er (erbium), Tm (thulium), Yb (ytterbium), and at least one element selected from the group consisting of Lu (lutetium).
  • the substance disclosed by the said patent document 4 and the patent document 5 is a substance containing Sr (patent document 4) and Ba (patent document 5) which are bivalent alkaline-earth (Ae) in A site.
  • an atomic layer containing element R and not containing Mn, and an atomic layer containing Mn and not containing element R are substrate surfaces. Are stacked alternately in the vertical direction. Also in the second manganese oxide thin film, an atomic layer containing element L and not containing Mn and an atomic layer containing Mn and not containing element R are stacked so as to be alternately arranged in a direction perpendicular to the substrate surface. .
  • an atomic layer containing element R (element L) and not containing Mn is typically an RO layer (LO layer), that is, a layer composed of elements R (element L) and O (oxygen).
  • the atomic layer that contains Mn and does not contain the element R (element L) is typically a MnO 2 layer, that is, a layer composed of Mn and O.
  • each of the first and second manganese oxide thin films of the above aspect has two crystal axes that are not equivalent to each other in the in-plane direction of the substrate surface. For this reason, the symmetry of the manganese oxide crystal in the plane of the substrate surface is lower than the 4-fold symmetry, and shear deformation is allowed, and a primary phase transition is possible.
  • the crystal lattice of the SmBaMn 2 O 6 thin film formed on the substrate is four-fold symmetric that does not allow shear deformation. It will have sex.
  • the first and second manganese oxide thin films of the above aspect have two crystal axes that are not equivalent to each other in the in-plane direction of the substrate surface. Does not include 4-fold symmetrical manganese oxide thin film.
  • having two crystal axes that are not equivalent to each other in the in-plane direction of the substrate surface means that there are no two crystal axes that are equivalent to each other in the in-plane direction of the substrate surface.
  • the two in-plane axes are [010] and [001], but these are indistinguishable when in-plane four-fold symmetry operation, that is, by rotating 90 degrees. In such a case, it is assumed that the two crystal axes are equivalent.
  • the two in-plane axes are [ ⁇ 120] and [001]. These do not coincide by the above four-fold symmetry operation, and in such a case, the two crystal axes will be referred to as non-equivalent.
  • the electronic phase in the composition of the first and second manganese oxide thin films of the above aspect of the present invention exhibits the property of phase transition between the insulator and the metal due to Mott transition.
  • a manganese oxide is also a kind of material group generally called a Mott insulator.
  • the first and second manganese oxide thin films in the present application are thin films exhibiting the property of causing a metal-insulator transition, and are not always an insulator phase.
  • Such a material is hereinafter referred to as “manganese oxide”.
  • Mott transition generally involves not only temperature but also external stimuli (hereinafter referred to as “external field”).
  • the insulator phase appears on the low temperature side, and the metal phase or low resistance phase appears on the high temperature side.
  • the insulator phase appears on the side where the external field is weak, and the metal phase appears on the side where the external field is strong.
  • room temperature for example, 300 K
  • the transition temperature of the Mott transition that usually appears at a temperature higher than room temperature is lower than the conventional one, and the threshold of the external field for the Mott transition is smaller than the conventional one.
  • the external field here typically includes a magnetic field, an electric field, a current, light, and pressure, and any combination thereof.
  • the cube root of the unit cell volume in a bulk is larger than the lattice constant of a board
  • a new disturbance that is, a difference in the direction of the orbital alignment plane, is introduced at the boundary or interface of the first and second manganese oxide thin films or in the vicinity thereof.
  • electrons of the boundary or interface or e g band of Mn 3d near either of these may be arranged aligned in any orbital alignment surface of the first or second manganese oxide thin film It becomes a state. That this turbulence results in a conflict (frustration) as mutual contested trajectory alignment order of both manganese oxide thin film is going Shitagaeyo electrons of the e g band to their order.
  • This competition has the effect of reducing the “strength” of the electronic phase in the direction of canceling the orbital alignment, and lowers the threshold necessary for the external field to transfer the insulating phase to the metal phase.
  • each of the element R and the element L is at least one element, at least one or both of them may include a combination of a plurality of elements. Therefore, when the element L is selected from those other than those selected as the element R, or conversely, when the element R is selected from other than those selected as the element L, the elements R and L are common. May contain elements. That is, when the element group that constitutes the element R and the element group that constitutes the element L do not completely coincide with each other including the ratio, the element R is other than the element L, and the element L is other than the element R. It is assumed that each item is selected.
  • each of the trivalent rare earth elements R and L in the composition formulas RMnO 3 and LMnO 3 of the first and second manganese oxide thin films of the present invention is a combination of plural kinds of elements
  • the composition expressed as RMnO 3 which is the first manganese oxide of this embodiment is A composition represented by (R 1 MnO 3 ) x (R 2 MnO 3 ) 1-x , where 0 ⁇ x ⁇ 1, where R 1 and R 2 are different rare earth elements that can become trivalent cations. It becomes.
  • composition expressed in this way typically has an arbitrary ratio x of manganese oxide R 1 MnO 3 containing rare earth element R 1 and manganese oxide R 2 MnO 3 containing rare earth element R 2 : 1-x solid solution.
  • the composition of the first manganese oxide thin film has a composition formula RMnO 3 (where R is La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy).
  • R is La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy.
  • a manganese oxide thin film laminate according to the above aspect which is represented by at least one trivalent rare earth element other than those selected as L) selected from the group.
  • composition of the second manganese oxide thin film has a composition formula LMnO 3 (where L is selected from the group consisting of La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy)
  • L is selected from the group consisting of La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy
  • the above group of trivalent rare earth elements is an element group obtained by arranging lanthanoids in order of atomic number and excluding Ho.
  • a trivalent rare earth element is selected from the above group, there is an advantage that the degree of rotation of the oxygen octahedron can be controlled and the ease of occurrence of orbital alignment can be adjusted.
  • a manganese oxide thin film laminate according to the above aspect, wherein the plane orientation of the substrate is a (210) plane orientation.
  • an oxide laminate to which an additional layer is added is also provided. That is, an aspect of the present invention includes the manganese oxide thin film laminate according to any one of the above aspects and a strongly correlated oxide thin film in contact with any surface of the manganese oxide thin film laminate.
  • the thickness t of the entire oxide stack, the thickness tm of the manganese oxide thin film stack, and the thickness t1 of the strongly correlated oxide thin film are critical for the strongly correlated oxide thin film to become a metal phase.
  • the strongly correlated oxide thin film is disposed in contact with the manganese oxide thin film laminate.
  • the crystal structure of the material forming the strongly correlated oxide thin film has a perovskite structure expressed as ABO 3 in the same manner as the first or second manganese oxide thin film.
  • the A site is always occupied only by the cation of the trivalent rare earth element (R). Is not limited.
  • the detection of the switching function of the manganese oxide thin film laminated body by an insulator metal transition becomes easy compared with the above-mentioned single thing of the manganese oxide thin film laminated body.
  • This mechanism for facilitating detection is called dimensional crossover, and details thereof will be described in detail in the section “1-6 Improvement of detectability by stacking (dimensional crossover)”.
  • the manganese oxide thin film laminate according to any one of the above embodiments, the first strongly correlated oxide thin film in contact with one surface of the manganese oxide thin film laminate, A second strongly correlated oxide thin film in contact with the other surface of the manganese oxide thin film stack, the thickness t of the entire oxide stack, the thickness tm of the manganese oxide thin film stack,
  • An oxide stack that satisfies the relationship of (t1, t2) ⁇ tc, where max () is a function that returns the maximum value of variables is also provided.
  • the strongly correlated oxide thin film is disposed on both sides of the manganese oxide thin film laminate.
  • the effect of bringing the strongly correlated oxide thin film into contact is more remarkably obtained than in the case of only one side.
  • the element at the A site is a rare earth element R or L having a valence of +3, and the element R or L is included and Mn is contained.
  • R or L having a valence of +3
  • Mn is contained.
  • an atomic layer that does not contain and an atomic layer that contains Mn and does not contain elements R and L are alternately arranged in the direction perpendicular to the substrate surface, so that it is in principle not affected by variation in the degree of order.
  • the Mott transition controlled by the external field is realized at room temperature.
  • FIG. 1A is an overall view showing the structure of a manganese oxide thin film stack formed on a substrate
  • FIGS. 1B and 1C are atomic stack planes of the manganese oxide thin film stack
  • 2 is an enlarged view of the vicinity of the interface between the first and second manganese oxide thin films. It is explanatory drawing explaining the additional electric field which arises in the manganese oxide thin film laminated body in an embodiment with this invention.
  • 2A and 2B are cross-sectional views similar to FIGS. 1A and 1B, respectively.
  • a first manganese oxide whose orbital alignment plane is a (001) plane and a second manganese oxide whose orbital alignment plane is a (100) plane is explanatory drawing which shows the relationship of the track
  • FIG. 4A shows an example in which a strongly correlated oxide thin film is formed on the substrate side of the manganese oxide thin film laminate, and FIG.
  • FIG. 4B shows a strongly correlated oxide thin film on the surface of the manganese oxide thin film laminate. This is an example of formation.
  • FIG. 3 is an explanatory diagram showing an angle of Mn—O—Mn in a manganese oxide thin film laminate according to an embodiment of the present invention.
  • FIG. 6 (a) shows a state where the oxygen octahedron is deformed in the direction of rotation in the crystal lattice and the angle of Mn—O—Mn is reduced from 180 degrees
  • FIG. 6 (b) shows the extension from the substrate. In the crystal lattice, the oxygen octahedron is deformed in the direction of rotation and the angle of Mn—O—Mn is expanded due to strain.
  • the elements of PrMnO 3 Pr site are La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu.
  • sequence of a lanthanoid shows the tendency of what is called a lanthanoid contraction (Lanthanide contraction) from the thing with a large ionic radius to what is small.
  • the elements at the A site are sequentially replaced from La, the orbital alignment temperature of the manganese oxide thin film increases while the antiferromagnetic transition temperature decreases.
  • FIG. 6 is an explanatory diagram showing the angle of Mn—O—Mn in the manganese oxide thin film of this embodiment.
  • FIG. 6A shows a state where the crystal lattice is deformed in the direction in which the oxygen octahedron rotates and the angle of Mn—O—Mn is reduced from 180 degrees
  • FIG. 6B shows the extension from the substrate.
  • This shows a state where the oxygen octahedron is deformed in the direction of rotation due to strain and the angle ⁇ of Mn—O—Mn is expanded.
  • the decrease of the angle ⁇ from 180 degrees also affects the bandwidth, which is an index of carrier conductivity, so as to deteriorate the conductivity. This is to the angle ⁇ is greatly affected by the overlap between the e g orbitals and O 2- of 2p orbital was crystal field splitting from the 3d orbital of Mn 3+.
  • the inventor of the present application realizes orbital alignment under the control of the same physical mechanism within the range of La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, and Dy excluding Ho and later from the lanthanoid. I think. In this range, the ease of occurrence of orbital alignment shows a systematic dependence on the ionic radius as well as the antiferromagnetic transition temperature.
  • the order of the electronic phase is “robust” in order to transfer the electronic phase of the manganese oxide to the metallic phase by applying an external field of a size that can be normally used.
  • the reason is too much. That is, the threshold value of the external field required for reducing the order of the electronic phase in the manganese oxide to form a metal phase is too large.
  • the present inventor's question is what is the mechanism that governs the robustness of the electronic system in Mott insulators such as manganese oxides?
  • the present inventor has come to the hypothesis that the robustness in orbital alignment is due to the cooperative phenomenon and depends on the number of electron orbitals. If this hypothesis is correct, even if the manganese oxide has a “strong” electron system that is difficult to deal with in the form of bulk crystals, it only has to be formed in a thin film and the number of orbits reduced sufficiently. There is a high possibility that it will be possible to deal with the above trade-off. That is, it is thought that the above-mentioned “strength” can be reduced to a degree that can be controlled by an external field by making the manganese oxide into a thin film form. This is the concept that gave the idea to the present invention.
  • the orbital alignment state is realized. If the system is more stable when they are not aligned, the orbital alignment state is collapsed. Actually, the energy difference between these two states, that is, the state where the orbital alignment state is realized and the state where it is collapsed, makes the system of two unit cells stable in either state. It may be too small. Therefore, in an electronic state in a system in which two unit cells are connected, it cannot be said that the orbital alignment is definite.
  • N is an integer sufficiently larger than 2.
  • N is an integer sufficiently larger than 2.
  • all orbits contained in the N unit cells are aligned as compared with the state in which the trajectory of only one unit cell out of the N unit cells is different from the orbits of the other N ⁇ 1 unit cells. It can be said that it is more stable. That is, an interaction works from the surrounding N ⁇ 1 unit cells to the orbit of the one unit cell so as to align different orbits.
  • the orbits contained in the N unit cells It is more stable if everything is aligned. In this way, in a system in which a sufficiently larger number of N unit cells than two exists, an interaction acts between the orbits of the unit cells so that the entire orbits are aligned, and the entire system is stabilized.
  • FIG. 1 is a schematic cross-sectional view of an example of a manganese oxide thin film laminate 2 in the present embodiment, and is a cross-sectional view of a manganese oxide thin film formed on the surface of a substrate 1 that is a (210) plane orientation substrate. Show. More specifically, as the crystal structure of the first manganese oxide thin film 20 constituting the manganese oxide thin film stack of this embodiment, atoms in which RO layers and MnO 2 layers are alternately stacked in the direction perpendicular to the substrate surface. A crystal structure of the stacked surface, that is, a crystal structure aligned with RO—MnO 2 —RO.
  • FIG. 1A is an overall view showing a configuration of a manganese oxide thin film laminate 2 formed on a substrate 1
  • FIG. 1B is a cross-sectional view taken along a plane perpendicular to the [001] axis.
  • FIG. 1C shows a cross-sectional view taken along a plane perpendicular to the [1-20] axis.
  • 1 (b) and 1 (c) are both in the vicinity of the interface between the first and second manganese oxide thin films 20 and 21 in the manganese oxide thin film laminate cut at a plane perpendicular to the substrate surface. Is.
  • FIGS. 1B and 1C show that the crystal structure of the perovskite structure represented by the composition formulas of RMnO 3 and LMnO 3 of the first and second manganese oxide thin films 20 and 21 of this embodiment is cubic. The case where it takes is illustrated.
  • the two crystal axes in the substrate plane are not equivalent.
  • the first and second manganese oxide thin films 20 and 21 of the present embodiment can be deformed and can undergo a primary transition.
  • insulator metal transition due to Mott transition can be realized.
  • the material of the first and second manganese oxide thin films 20 and 21 of the present embodiment is a crystal lattice other than a cubic crystal, In other words, crystals with lower order symmetry such as tetragonal, orthorhombic, monoclinic, triclinic, trigonal, hexagonal.
  • crystals with lower order symmetry such as tetragonal, orthorhombic, monoclinic, triclinic, trigonal, hexagonal.
  • the perovskite structure of the present embodiment includes a substance having a crystal structure in which, for example, a basic unit cell of a crystal lattice can be obtained only by connecting a plurality of the unit cells described above.
  • the fact that the crystal structures of FIGS. 1B and 1C are realized can be confirmed by identifying crystal point groups by known X-ray diffraction. In particular, it can be confirmed by direct observation of atoms by a STEM (scanning transmission electron microscope) that RO (LO) atomic layers and MnO 2 atomic layers are alternately stacked.
  • the white arrow in the figure of Fig.1 (a) has shown the voltage (electric field) which acts intrinsically from this polar surface.
  • the composition of the substrate 1 is expressed as ABO 3
  • the surface of the substrate 1 on which the manganese oxide thin film laminate 2 is formed is terminated with a BO 2 atomic layer, that is, the surface of the substrate 1 is a BO 2 surface.
  • the first or second manganese oxide thin film 20 or 21 is grown on the substrate 1.
  • the first atomic layer where the first or second manganese oxide thin film 20 or 21 starts to grow is the RO layer or the LO layer.
  • the direction of the voltage (electric field) is shown in FIG.
  • the direction of the white arrow Conversely, when the surface of the substrate 1 is terminated with an AO plane, the direction of the arrow is reversed. Note that it is not particularly difficult to make a different one to terminate the surface of the substrate 1.
  • an atomic plane containing R and L and an atomic plane containing Mn such as RO—MnO 2 —RO—MnO 2 —... And LO—MnO 2 —LO—MnO 2 —.
  • FIG. 2 is an explanatory diagram for explaining an additional electric field in the present embodiment
  • FIGS. 2A and 2B are cross-sectional views similar to FIGS. 1A and 1B, respectively.
  • the arrows attached to the elements R, L, and Mn on the atomic layer plane in FIG. 2B indicate the relative displacement directions of the positions of R, L, and Mn in the actual crystal lattice.
  • the direction of macroscopic polarization generated in the entire manganese oxide thin film stack 2 by the polarization generated inside the manganese oxide is indicated by an arrow.
  • this macroscopic polarization can be generated. This is, for example, an effect that cannot be obtained with a thin film on a (100) plane orientation substrate in which the in-plane symmetry is four times.
  • an intrinsic voltage electric field
  • the external field required for the insulator-metal transition It is expected that the threshold will be further reduced.
  • the manganese oxide thin film laminate 2 in the present embodiment is transferred to the metal phase by utilizing the strain that the first and second manganese oxide thin films 20 and 21 receive from the substrate 1. It can be made easier.
  • the inventor of the present application determines which of the (100) plane, the (010) plane, and the (001) plane is the orbital alignment plane in the manganese oxide thin film based on the plane spacing of each plane. Has gained knowledge. When the orbital alignment plane becomes the (100) plane, all the (100) planes parallel to it become the orbital alignment plane. The same applies to other aspects.
  • the track alignment surface has such a property that it is formed in such an orientation that the distance between the track alignment surfaces becomes as small as possible. Due to this property, the plane with the smallest plane spacing among the (100) plane, (010) plane, and (001) plane is the orbital alignment plane.
  • the inventor of the present application considers that the manganese oxide thin film stack 2 is already in the orbital alignment phase at room temperature, and further contrivances for reducing the switching threshold and enabling switching at room temperature have been proposed. I got the idea that it would be possible by using the orientation of. Specifically, in the first and second manganese oxide thin films 20 and 21, the orbital alignment planes are made different from each other and both the manganese oxide thin films are brought into contact with each other, and the interface is used. If competition between the orbital alignment planes can be generated at the interface between the first and second manganese oxide thin films 20 and 21, the orbital alignment phase can be destabilized more than when a single film is used. is there.
  • each manganese oxide thin film has inherent strength.
  • the reduction effect on “strength” in the bulk was based only on the formation of a thin film.
  • the strength in addition to the decrease in strength due to the formation of the thin film described above, the strength also decreases due to instability due to the discontinuity of the orbital alignment surface at the interface where both the manganese oxide thin films are in contact. is there.
  • the order of the electronic phase on the orbital alignment plane in both manganese oxide thin films starts to decay due to the instability of the interface and the external field that does not satisfy the respective threshold values reflecting the inherent strength. That is, the interface formed by the two manganese oxide thin films in the present embodiment functions as a seed of a metal phase that is intentionally provided to promote Mott transition.
  • the substrate 1 In order to control whether the orbital alignment planes of the first and second manganese oxide thin films 20 and 21 are the (100) plane, the (010) plane, and the (001) plane, the substrate 1 The present inventor has realized that the interplanar spacing in the crystal structure of both manganese oxide thin films may be controlled by the strain received from the above.
  • the crystal lattice of each of the first and second manganese oxide thin films 20 and 21 in the present embodiment is the original lattice constant when in the bulk state, it is formed on the surface of the substrate 1. Try to match the crystal lattice of the substrate 1.
  • the compressive stress acts on the first manganese oxide thin film 20 in which the cube root of the unit cell volume in the bulk of the material is larger than the lattice constant of the substrate 1, and compressive strain is generated.
  • tensile stress acts on the second manganese oxide thin film 21 having a material in which the third root of the unit cell volume in the bulk is smaller than the lattice constant of the substrate 1, and tensile strain is generated.
  • STO (210) plane orientation substrate of SrTiO 3
  • the crystal axis arrangement at this time is as shown in FIGS. 1 (b), 1 (c) and FIG. It will be a thing. Under this condition, the (100) plane is oriented closer to the (210) plane orientation substrate surface than the (010) plane.
  • FIG. 3 shows the first manganese oxide 20 in which the orbital alignment plane is the (001) plane and the first manganese oxide 20 in which the orbital alignment plane is the (100) plane in the manganese oxide thin film stack 2 of the present embodiment. It is explanatory drawing which shows the relationship of the orbital alignment surface with 2 manganese oxide 21.
  • FIG. That is, in the first manganese oxide thin film 20, the orbital alignment plane is a (001) plane parallel to the paper surface of FIG. This is because, in the first manganese oxide thin film 20, the plane spacing of the (001) plane is greatly reduced due to compressive strain from the substrate 1, whereas the plane spacing of the (100) plane and the (010) plane is not significantly affected. Because.
  • the orbital alignment plane is a (100) plane that is perpendicular to the paper surface of FIG. 3 and is inclined about 26.6 degrees from the substrate surface. This is because, in the second manganese oxide thin film 21, the plane spacing of the (001) plane is greatly expanded due to the extension strain from the substrate 1, whereas the plane spacing of the (100) plane and the (010) plane is not significantly affected. Because. In the second manganese oxide thin film 21, which of the (100) plane and the (010) plane becomes the orbital alignment plane is determined by the plane spacing.
  • the plane spacing of the (010) plane is wider than that of the (100) plane, so the (100) plane with the smallest plane spacing is the track alignment plane.
  • the (001) plane orbit alignment surface of the first manganese oxide thin film 20 and the (100) plane orbit alignment surface of the second manganese oxide thin film 21 are formed. It becomes possible to compete at the interface between the first manganese oxide thin film 20 and the second manganese oxide thin film 21 and intentionally cause the instability.
  • the inventor of the present application confirmed that the orbital alignment plane is not the (010) plane but the (100) plane in the same crystal as the second manganese oxide thin film 21 by electrical measurement and optical measurement. ing.
  • the first and second manganese oxide thin films 20 and 21 are made of a combination of two types of manganese oxides with the ionic radii of the A sites appropriately changed, thereby realizing orbital alignment surface competition at the interface. Can do.
  • the unit cell is a unit cell as a pseudo-cubic crystal, and it is added again that the lattice constant of the substrate is also a pseudo-cubic crystal.
  • the order of the first manganese oxide thin film 20 and the second manganese oxide thin film 21 in the present embodiment is not limited to the arrangement in which the first manganese oxide thin film 20 is placed on the substrate 1 side as described above. It also includes disposing the 2 manganese oxide thin film 21 on the substrate 1 side.
  • any of the manganese oxide thin film stacks provided in the present embodiment has actually undergone Mott transition can be detected by various measuring means. For example, if transmittance or reflectance is measured by optical measurement, it is possible to measure the presence or absence of transition as a change in the electronic structure with respect to the energy of the probe light for measurement. In addition, it is possible to detect the realization of Mott transition as an arbitrary physical quantity such as magnetic characteristics, deformation, and electrical resistance. And such a change as a physical quantity provides not only whether or not the Mott transition can be detected, but also provides material characteristics that are utilized as a switching function when the manganese oxide thin film stack of this embodiment is applied to a device. .
  • the strongly correlated oxide thin film 3 is a layer that is a material different from the manganese oxide that undergoes Mott transition and is added in order to use dimensional crossover.
  • the thin film in order to stabilize the metal phase or to realize the metal-insulator transition, it is desirable that the thin film is formed to be thicker to some extent. This is because if the thickness of the strongly correlated oxide thin film 3 is too thin, it is difficult to realize a stable metal phase or metal-insulator transition.
  • critical thickness when the strongly correlated oxide thin film 3 is formed thicker than a certain critical thickness (hereinafter referred to as “critical thickness”), a metal phase is realized in the strongly correlated oxide. Or metal-insulator transition.
  • critical film thickness can be said to be a lower limit value of the film thickness of a strongly correlated oxide that is preferable because the above-described metal phase is stably present or metal-insulator transition occurs.
  • FIG. 4 is a schematic cross-sectional view showing the configuration of an example of an oxide laminate including the manganese oxide thin film laminate 2 produced by contacting the strongly correlated oxide thin film 3 in the present embodiment.
  • 4A shows an example in which a strongly correlated oxide thin film 3 is formed on the substrate side of the manganese oxide thin film laminate 2
  • FIG. 4B shows a strongly correlated oxidation on the surface of the manganese oxide thin film laminate 2.
  • the physical thin film 3 is formed.
  • the strongly correlated metal thin film 3 is first formed on the surface of the substrate 1 and then the manganese oxide thin film laminate 2 is formed (FIG.
  • FIG. 4 is a schematic cross-sectional view of an example of an oxide laminate formed by bringing the strongly correlated oxide thin films 31 and 32 into contact with both surfaces of the manganese oxide thin film laminate in the present embodiment.
  • max () is a function that returns the maximum value of variables.
  • Example 1 of this embodiment is an oxide stack produced in the configuration shown in FIG. 5 in which the first and second strongly correlated oxide thin films 31 and 32 are in contact with both surfaces of the manganese oxide thin film stack 2.
  • Example of body Manganous oxide film 20 as a PrMnO 3 forming the manganese oxide thin film stack 2, second manganese oxide film 21 as a SmMnO 3, La 0.5 as the first and second correlated oxide films 31 and 32 Sr 0.5 MnO 3 (hereinafter referred to as LSMO) and STO (210) plane orientation substrate were adopted as the substrate 1, respectively.
  • the substrate 1, which is this STO (210) substrate, has a surface terminated by Ti at the B site.
  • the cube roots of the unit cell volume in the bulk materials of PrMnO 3 and SmMnO 3 that are the materials of the first and second manganese oxide thin films 20 and 21 are 0.3919 nm and 0.3889 nm, respectively. Therefore, the cubic root of the unit cell volume in the bulk material is larger in the first manganese oxide thin film 20 than in the lattice constant of 0.3905 nm of STO, which is the material of the substrate 1, and the second The manganese oxide thin film 21 is small. For this reason, compressive strain acts on the first manganese oxide thin film 20 from the substrate 1, and tensile strain acts on the second manganese oxide thin film 21. These are the (001) plane and the (100) plane, respectively.
  • the first and second strongly correlated oxide thin films 31 and 32 are not composed of La 0.7 Sr 0.3 MnO 3 having a composition similar to that of LSMO and the Curie temperature T c being maximum (370 K).
  • An over-doped LSMO with a composition ratio La 0.5 Sr 0.5 MnO 3 increased. This is due to the intention to increase the Curie temperature Tc of the first and second strongly correlated oxide thin films 31 and 32 in consideration of the carriers (electrons) supplied when the manganese oxide thin film 2 undergoes the insulator-metal transition. Is.
  • the first and second manganese oxide thin films 20, 21 and the first and second strongly correlated oxide thin films 31, 32 were both formed by a laser ablation method.
  • a polycrystalline material made by a solid phase reaction method and formed into a cylindrical shape of ⁇ 20 mm ⁇ 5 mm was used.
  • a treatment of etching the surface SrO layer with buffered hydrofluoric acid was performed.
  • the substrate was evacuated to 3 ⁇ 10 ⁇ 9 Torr (4 ⁇ 10 ⁇ 7 Pa) or less.
  • the substrate Thereafter, as a pretreatment of the substrate, first, high-purity oxygen gas was introduced at 1 mTorr (0.133 Pa), and the STO (210) substrate was heated to 600 ° C. to deposit LSAT for 4 atomic layers.
  • the atomic layer is one in which one atomic layer has a (210) spacing d (210).
  • the control of the film thickness that is, the number of atomic layers, is determined based on the relationship between the number of shots of the laser pulse and the number of atomic layers studied in advance. In this preliminary film formation process, an electron beam diffraction pattern was obtained as a halo pattern indicating amorphous.
  • the substrate was continuously heated to 850 ° C.
  • the substrate 1 is heated so as to reach an ultimate temperature of 900 ° C., and a target is irradiated with a KrF excimer laser having a wavelength of 248 nm through the laser beam introduction port of the chamber to form the STO substrate that is the STO substrate on which the LSAT layer is formed.
  • a target is irradiated with a KrF excimer laser having a wavelength of 248 nm through the laser beam introduction port of the chamber to form the STO substrate that is the STO substrate on which the LSAT layer is formed.
  • the PrMnO 3 target was irradiated with the laser through the port in the same atmosphere, thereby forming only three atomic layers of PrMnO 3 thin film as the first manganese oxide thin film 20.
  • the SmMnO 3 target was irradiated with the laser to form a SmMnO 3 thin film, which is the second manganese oxide thin film 21, by only three atomic layers. Furthermore, only 15 atomic layers of LSMO were formed as the second strongly correlated oxide thin film 32 using the LSMO target again.
  • the thickness t1 of the first strongly correlated oxide thin film 31 is 5 unit cells (about 2.6 nm), and the manganese oxide thin film stack 2 (the total of the first and second manganese oxide thin films 20 and 21).
  • the second strongly correlated oxide thin film 32 has a thickness t2 of 5 unit cells (about 2.6 nm).
  • the total thickness t of the oxide stack is 6.3 nm.
  • a four-terminal electrode was formed on the oxide laminate including the produced manganese oxide thin film 2, and the magnetoresistance measurement was performed at room temperature (300K).
  • the reason for adopting a magnetic field as the external field is that measurement is easy.
  • the resistance value of the sample in this measurement started to decrease by applying a magnetic field having a magnetic flux density of 3.0 T or more, and decreased to 10 k ⁇ under a 3.5 T magnetic field. Thus, it was confirmed that a huge negative magnetoresistance effect was obtained.
  • the magnetic field was reduced again, the resistance again became 10 M ⁇ or more, and it became clear that the insulator-metal transition, which is a Mott transition, appears at room temperature in the manganese oxide 2 contained in the oxide stack.
  • the manganese oxide thin film 2 that realizes switching at room temperature can be produced.
  • Example 2 In Example 1, the example of the oxide laminated body which made the strongly correlated oxide thin film contact both surfaces of the manganese oxide thin film laminated body 2 was demonstrated. However, dimensional crossover can be used even when an oxide laminate in which a strongly correlated oxide thin film is brought into contact with only one surface side of the manganese oxide thin film laminate 2 is employed. As an example for confirming this point, Example 2 of the present embodiment in which an oxide laminate having a two-layer structure similar to that shown in FIG. In Example 2, an STO (210) substrate pretreated in the same manner as in Example 1 is used as the substrate 1, and only 21 atomic layers of LSMO are formed as the strongly correlated oxide thin film 3.
  • manganese oxide thin film stack 2 PrMnO 3 as manganous oxide film 20 constituting the, SmMnO 3 were employed respectively as a second manganese oxide film 21 on.
  • Each of the first manganese oxide thin film 20 and the second manganese oxide thin film 21 was formed by three atomic layers.
  • the pretreatment method for determining the atomic layer that terminates the surface of the substrate 1 in Example 2, and the formation method of each of the oxide laminate, that is, the manganese oxide thin film laminate 2 and the strongly correlated oxide thin film 3, All were the same as in Example 1.
  • the sample of Example 2 showed a behavior of 1 k ⁇ in a magnetic field with a magnetic flux density of 4 T and 100 k ⁇ in the absence of a magnetic field. That is, the magnetoresistive effect at room temperature of Example 2 is lower than that of the sample of Example 1 while the resistance under a magnetic field is low, but does not increase so much even when no magnetic field is applied, and the resistance change is two orders of magnitude. Stayed within. Although this resistance change is sufficiently detectable, it is ideally desirable to be larger. The inventor of the present application speculates that the reason why the resistance change becomes small is due to a leakage current caused by LSMO, which is the strongly correlated oxide thin film 3 formed thick.
  • FIG.4 (b) formed on the surface of a board
  • the PrMnO 3 and SmMnO 3 is a second manganese oxide thin film 21 is, even in the samples to form a LSMO is strongly correlated oxide thin film 3 subsequently produced from the substrate 1 in this order, show similar temperature dependence The magnetoresistive effect was measured.
  • the substrate 1, and Preparation and SmMnO 3 is a second manganese oxide film 21 and a PrMnO 3 is manganous oxide film 20 in this order and these manganese oxide thin film laminate 2, strong thereafter
  • the magnetoresistive effect showing the same temperature dependence was also measured in the sample in which LSMO, which is the correlation oxide thin film 3, was formed.
  • This embodiment can also be carried out with a structure of a manganese oxide thin film or an oxide laminate other than those explicitly described including Examples 1 and 2.
  • Example 1 an example of a laminated structure of PrMnO 3 / SmMnO 3 on an STO (210) substrate was shown.
  • La, Pr, Nd, Gd, Eu, Tb, Dy, and the like generally, the first and second manganese oxides of the composition formula RMnO 3 and the composition formula LMnO 3 that select the rare earth element of the lanthanoid as R (or L) It is also possible to adopt a thin film. This is partly because an epitaxial thin film can be produced on a (210) plane oriented substrate.
  • a combination that satisfies the magnitude relationship between the cube root of the unit cell volume and the lattice constant of the substrate can be used.
  • the lattice constant of the material of the substrate is 0.3870 nm.
  • SmMnO 3 can now be selected as the material of the first manganese oxide thin film 20 as a manganese oxide larger than the lattice constant of the substrate.
  • TbMnO 3 having a small cube root of unit cell deposition of 0.3853 nm can be selected.
  • the manganese oxide used as the 1st and 2nd manganese oxide thin films 20 and 21 can each be made into the material containing multiple types of lanthanoid element R (L). Even in this case, the present invention is not limited to only two types of solid solutions, such as Pr 1-x Nd x MnO 3 (0 ⁇ x ⁇ 1).
  • the lattice constant as an average can be adjusted by selecting three or more elements at the A site. As long as the lattice constant in the substrate and bulk satisfies the above conditions, the material of the substrate and the first and first manganese oxide thin films can be appropriately selected.
  • the first manganese oxide thin film is formed with one type of lanthanoid RMnO 3 and two types of lanthanoid (R 1 MnO 3 ) x (R 2 MnO 3 ) 1-x is considered to be a different external field threshold. This is because the rotation angle of the oxygen octahedron surrounding Mn varies locally when the A site is formed of a plurality of elements having different ionic radii.
  • the composition ratio of the manganese oxide thin film is obtained by preparing the target in a desired ratio in laser ablation similar to each example described above as an example. Can be adjusted.
  • the order of the first manganese oxide thin film 20 having a larger bulk lattice constant than the substrate 1 and the second second manganese oxide thin film 21 is not particularly limited. This is because the position of the substrate 1 is not directly related to the introduction of competition for the interface between the first manganese oxide thin film and the second manganese oxide thin film. Even when the strongly correlated oxide thin film 3 and the first strongly correlated oxide thin films 31 and 32 are formed, the positional relationship between these films or the substrate and the first and second manganese oxide thin films 20 and 21 is maintained. There are no restrictions.
  • the number of films formed as the first and second manganese oxide thin films 20 and 21 is not particularly limited.
  • the number of films formed as the first and second manganese oxide thin films 20 and 21 is not particularly limited.
  • by using a superlattice structure in which a plurality of pairs of the first manganese oxide thin film 20 and the second manganese oxide thin film 21 are stacked it is possible to introduce more competition of orbital alignment planes.
  • For the effect of making the manganese oxide thin film laminate described in “1-1 Facilitating Mott transition in the manganese oxide thin film laminate” and “1-4 Introduction of competition due to substrate strain” The effects described above can be made compatible and at the same time have a complementary relationship. That is, it can be said that the competition of the orbital alignment planes introduced by forming the first and second manganese oxide thin films in contact eases the conditions for forming the manganese oxide thin film stack as a thin film.
  • the thickness of the strongly correlated oxide thin film 3 and the combination of the thickness of the first strongly correlated oxide thin film 31 and the second strongly correlated oxide thin film 32 there is no particular restriction on the thickness of the strongly correlated oxide thin film 3 and the combination of the thickness of the first strongly correlated oxide thin film 31 and the second strongly correlated oxide thin film 32.
  • these film thicknesses in order to facilitate detection by dimensional crossover as described above, it is preferable to satisfy the above-described relationship specified by the inequality.
  • the film thickness of the film can be adjusted.
  • a strongly correlated oxide thin film is added to facilitate the operation of detecting the Mott transition from the outside by dimensional crossover.
  • the switching function itself of controlling the Mott transition by an external field at room temperature is realized. This is because the dimensional crossover is only a means for facilitating electrical detection, and the Mott transition realized in the manganese oxide thin film stack 2 occurs even without a strongly correlated oxide thin film.
  • the substrate 1 may have a configuration other than that exemplified in this embodiment.
  • it is not excluded to adopt a substrate in which an appropriate buffer layer is formed on a crystal body that does not have a perovskite structure, for example, a silicon single crystal substrate.
  • an appropriate buffer layer is formed on a crystal body that does not have a perovskite structure, for example, a silicon single crystal substrate.
  • the first and second manganese oxide thin films forming the perovskite structure manganese oxide thin film stack are formed on the surface of such a substrate, and the same effect as that of the above-described embodiment can be obtained. This is because it can also be achieved.
  • the present invention is used as a device that utilizes a switching phenomenon caused by application of an external field such as a magnetic field, light, electricity, or pressure by providing a manganese oxide thin film stack or an oxide stack that realizes a switching function.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Hall/Mr Elements (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

Provided are a thin film or a laminate which undergoes phase transitions through a Mott transition at room temperature to achieve a switching function. Provided is a manganese oxide thin film laminate formed on the surface of a substrate (1) and provided with a first manganese oxide thin film (20) and a second manganese oxide thin film (21) which are in contact with each other. In the material of the first manganese oxide thin film, the cubic root of the unit cell volume in the bulk is greater than the lattice constants of the substrate, but is smaller in the material of the second manganese oxide thin film. The materials of the first and second manganese oxide thin films have the compositional formulae RMnO3 and LMnO3 (wherein R and L are each at least one mutually different trivalent rare earth element selected from lanthanoids). In both manganese oxide thin films, an atomic layer containing R (L) and not containing Mn, and an atomic layer containing Mn and not containing R are laminated alternately in the vertical direction of the substrate surface, and there are two non-equivalent crystal axes in the in-plane direction of the substrate surface.

Description

マンガン酸化物薄膜積層体および酸化物積層体Manganese oxide thin film laminate and oxide laminate
 本発明はマンガン酸化物薄膜積層体および酸化物積層体に関する。さらに詳細には本発明は、温度、電場、磁場、または光照射などの制御によりモット転移し、電気的、磁気的、または光学的性質がスイッチングするマンガン酸化物薄膜積層体および酸化物積層体に関する。 The present invention relates to a manganese oxide thin film laminate and an oxide laminate. More specifically, the present invention relates to a manganese oxide thin film laminate and an oxide laminate that undergo Mott transition by controlling temperature, electric field, magnetic field, or light irradiation, and switch electrical, magnetic, or optical properties. .
 近年、半導体デバイスの性能向上指針であったスケーリング則もいよいよ限界に直面することが懸念されている。それに伴い、これまで長きにわたり使用されてきたシリコン以外の、新規な動作原理を可能とする材料が注目されている。例えば、スピンの自由度を取り入れたスピントロニクスの分野において、DRAM(ダイナミックランダムアクセスメモリー)並みの高速動作が可能な高密度不揮発性メモリーを目指した開発が進められている。 In recent years, there are concerns that the scaling law, which has been a guideline for improving the performance of semiconductor devices, will soon face limitations. Accordingly, materials that enable a new principle of operation other than silicon that has been used for a long time have attracted attention. For example, in the field of spintronics that incorporates the degree of freedom of spin, development aimed at high-density nonvolatile memory capable of high-speed operation similar to DRAM (Dynamic Random Access Memory) is underway.
 一方、半導体デバイス設計の基礎を支えるバンド理論を適用することができない強相関電子系材料の研究も進展してきた。その中で、電子系の相転移に起因する巨大かつ高速な物性変化を示す物質が見出されている。強相関電子系材料においては、スピンのみならず電子軌道の自由度までもが電子系の相状態に関与することにより、スピン、電荷、軌道が形成する様々な秩序からなる多彩な電子相が発現する。強相関電子系材料の代表例がペロフスカイト型マンガン酸化物であり、その電子系においては、一次相転移によりマンガン(Mn)の3d電子が整列する電荷整列相(charge-ordered phase)や、電子軌道が整列する軌道整列相(orbital-ordered phase)が発現することが知られている。 On the other hand, research on strongly correlated electron materials that cannot apply the band theory that supports the basics of semiconductor device design has also progressed. Among them, a substance showing a huge and high-speed property change due to a phase transition of an electronic system has been found. In strongly correlated electron materials, not only spin but also the degree of freedom of electron orbital is involved in the phase state of the electron system, and various electronic phases consisting of various orders formed by spin, charge, and orbital appear. To do. A representative example of strongly correlated electron materials is perovskite-type manganese oxide, in which the charge-ordered phase in which 3d electrons of manganese (Mn) are aligned by the first-order phase transition, It is known that an orbital-ordered phase that aligns is expressed.
 電荷整列相や軌道整列相ではキャリアが局在するため電気抵抗は高くなり、電子相は絶縁体相となる。また、この電子相の磁気的性質は、超交換相互作用および二重交換相互作用による反強磁性相である。なお、電荷整列相や軌道整列相の電子状態は半導体的とみるべき場合も多い。電荷整列相や軌道整列相では、キャリアが局在しているものの、電気抵抗はいわゆるバンド絶縁体よりも低くなるためである。しかしここでは慣例により、電荷整列相や軌道整列相の電子相を絶縁体相と表現する。これとは逆に、電気抵抗が低く金属的振舞いを示す場合にはスピンが揃うため電子相は強磁性相を示す。金属相の定義も様々あるが、ここでは、「抵抗率の温度微係数の符号が正のもの」を金属相と表現する。この表現に対応させれば、上記の絶縁体相は、「抵抗率の温度微係数の符号が負のもの」と再定義される。 In the charge alignment phase and orbital alignment phase, carriers are localized, so that the electrical resistance is high, and the electronic phase is an insulator phase. Further, the magnetic property of this electronic phase is an antiferromagnetic phase due to superexchange interaction and double exchange interaction. In many cases, the electronic state of the charge alignment phase or the orbital alignment phase should be regarded as a semiconductor. This is because, in the charge alignment phase or the orbital alignment phase, although the carriers are localized, the electric resistance is lower than that of a so-called band insulator. However, by convention, the electronic phase of the charge alignment phase or the orbital alignment phase is expressed as an insulator phase. On the contrary, when the electric resistance is low and the metal behavior is exhibited, the spin is aligned and the electronic phase is a ferromagnetic phase. There are various definitions of the metal phase, but here, “the sign of the temperature differential coefficient of resistivity is positive” is expressed as the metal phase. Corresponding to this expression, the insulator phase is redefined as “the sign of the temperature differential coefficient of resistivity is negative”.
 上述した電荷整列相、軌道整列相に加え、電荷整列と軌道整列との両方がともに成立している相(電荷・軌道整列相; charge and orbital ordered phase)といった電子相のうちいずれかのものをとりうる物質では、その物質の単結晶バルク材料において種々のスイッチング機能を発現させる現象が観察されることが開示されている(特許文献1~3)。これらの現象は、典型的には、電気抵抗の巨大な変化や、反強磁性相―強磁性相の間の転移として観察される。例えば、磁場印加による何桁もの抵抗変化は、超巨大磁気抵抗効果としてよく知られている。 In addition to the charge alignment phase and orbital alignment phase described above, any one of electronic phases such as a phase in which both charge alignment and orbital alignment are established (charge and orbital alignment phase: charge and orbital ordered phase) It has been disclosed that a phenomenon in which various switching functions are manifested in a single crystal bulk material of the substance can be observed as a possible substance (Patent Documents 1 to 3). These phenomena are typically observed as a large change in electrical resistance or a transition between antiferromagnetic and ferromagnetic phases. For example, resistance changes of several orders of magnitude due to application of a magnetic field are well known as the giant magnetoresistance effect.
 これらの現象をスイッチング機能として利用する実用的な電子デバイスや磁気デバイス、さらには光デバイスといった何らかの装置(デバイス)を作製するためには、スイッチング機能をもたらす現象を室温(例えば300K)以上の温度域にて実現する必要がある。ところが、上記特許文献1~3に開示されているスイッチング機能は、いずれも例えば液体窒素温度(77K)以下といった低温にて確認されているものばかりである。これらの開示におけるペロフスカイト型マンガン酸化物は、その化学組成をABOと表記すると、原子積層面はAO層、BO層、AO層、・・・と繰り返し積層される積層体となる。以下、このような積層体の結晶構造をAO-BO-AOと記すこととする。なお、ペロフスカイト構造の単位胞において、Aサイトは頂点、Bサイトは体心、O(酸素)は面心の各位置を占める。また、マンガンはBサイトに配置される。 In order to manufacture any device (device) such as a practical electronic device, magnetic device, or optical device that uses these phenomena as a switching function, the phenomenon that brings about the switching function is a temperature range above room temperature (for example, 300 K). Needs to be realized. However, all of the switching functions disclosed in Patent Documents 1 to 3 have been confirmed at a low temperature such as a liquid nitrogen temperature (77 K) or lower. When the perovskite-type manganese oxide in these disclosures is expressed as ABO 3 , the atomic stacking surface is a stacked body in which an AO layer, a BO 2 layer, an AO layer,. Hereinafter, the crystal structure of such a laminate is referred to as AO—BO 2 —AO. In the unit cell of the perovskite structure, the A site occupies the apex, the B site occupies the body center, and O (oxygen) occupies the face center. Manganese is arranged at the B site.
 上記文献1~3それぞれに開示されるペロフスカイト型マンガン酸化物においてスイッチング現象が観察される温度つまり電荷軌道秩序が発現する温度(以下、「発現温度」という)の低下に関係していると考えられているのが、ペロフスカイトの結晶構造のAサイトを占める元素またはイオンの種類である。端的には、ペロフスカイトの結晶構造のAサイトが3価の希土類カチオン(以下「R」と記す)と2価のアルカリ土類(「Ae」)とによってランダムに占められており、そのランダムさが原因となって発現温度が低下している。逆に、仮にAサイトの元素またはイオンを、AeO-BO-RO-BO-AeO-BO-RO-BO-・・・と秩序化させることができれば、電荷整列相への転移温度は約500K前後にまで上昇させうることも知られている。以下、ここに例示されたもののように、Aサイトを占めるイオンを規則的に配置することを「Aサイト秩序化」といい、そのようなAサイト秩序化が実現されているペロフスカイト型マンガン酸化物をAサイト秩序化ペロフスカイト型マンガン酸化物という。そのような高い転移温度を示す一群の物質は、アルカリ土類AeとしてBa(バリウム)を含むことを特徴としている。例えば、アルカリ土類AeとしてBaを含み、さらに希土類元素Rとしてイオン半径の小さいY(イットリウム)、Ho(ホルミウム)、Dy(ジスプロシウム)、Tb(テルビウム)、Gd(ガドリニウム)、Eu(ユーロピウム)、Sm(サマリウム)を用いた場合には、転移温度が室温を超えることが報告されている。 In the perovskite-type manganese oxides disclosed in each of the above documents 1 to 3, it is considered to be related to a decrease in the temperature at which the switching phenomenon is observed, that is, the temperature at which the charge orbital order develops (hereinafter referred to as “expression temperature”). What is the type of element or ion occupying the A site of the perovskite crystal structure. In short, the A site of the perovskite crystal structure is randomly occupied by trivalent rare earth cations (hereinafter referred to as “R”) and divalent alkaline earth (“Ae”). The onset temperature has decreased. Conversely, if the element or ion at the A site can be ordered as AeO—BO 2 —RO—BO 2 —AeO—BO 2 —RO—BO 2 —..., The transition temperature to the charge aligned phase It is also known that can be raised to around 500K. Hereinafter, the regular arrangement of ions occupying the A site, as exemplified here, is referred to as “A site ordering”, and the perovskite type manganese oxide in which such A site ordering is realized. Is called A-site ordered perovskite manganese oxide. A group of substances exhibiting such a high transition temperature is characterized by containing Ba (barium) as the alkaline earth Ae. For example, Ba is contained as the alkaline earth Ae, and Y (yttrium), Ho (holmium), Dy (dysprosium), Tb (terbium), Gd (gadolinium), Eu (europium) having a small ion radius as the rare earth element R, It has been reported that when Sm (samarium) is used, the transition temperature exceeds room temperature.
 これらの現象を利用するデバイス、例えば磁気デバイスや光デバイスといった何らかの装置(電子デバイス)を実現するためには、ペロフスカイト型マンガン酸化物を薄膜形態に形成した上で上記のスイッチング現象を実現することが必要となる。ところが、(100)面方位基板上にその薄膜を形成してもスイッチング機能が実現しにくいという課題があった。この原因は、面内の4回対称性に起因して、電荷整列相あるいは軌道整列相への相転移に必要なヤーン・テラー(Jahn-Teller)モードと呼ばれる格子変形が抑制されるためである。 In order to realize any device (electronic device) such as a magnetic device or an optical device using these phenomena, the above switching phenomenon must be realized after forming a perovskite-type manganese oxide in a thin film form. Necessary. However, there is a problem that even if the thin film is formed on the (100) plane orientation substrate, it is difficult to realize the switching function. This is because the lattice deformation called Jahn-Teller mode necessary for the phase transition to the charge alignment phase or the orbital alignment phase is suppressed due to the in-plane four-fold symmetry. .
 それに対し特許文献4には、(110)面方位基板を利用してペロフスカイト酸化物の薄膜を形成することが開示されている。この開示によれば、(110)面方位基板において面内の4回対称性が破れる場合には、形成された薄膜がスイッチングする際の結晶格子のずり変形が許容される。このずり変形が生じると、結晶格子が基板面と平行に配向し、電荷整列面や軌道整列面が基板面に対して非平行となる。また、上記のAサイト秩序化ペロフスカイト型マンガン酸化物に関しても薄膜化した例が特許文献5に開示されている。この開示には、アモルファス状の薄膜を一旦堆積した後、レーザーアニールにより結晶化とAサイト秩序化を行う塗布光照射法が報告されている。実際、(100)面方位SrTiO(格子定数0.3905nm)基板上に形成したSmBaMn薄膜においてAサイトが秩序化していることが電子線回折により確認されている。 On the other hand, Patent Document 4 discloses that a perovskite oxide thin film is formed using a (110) plane orientation substrate. According to this disclosure, when the in-plane four-fold symmetry is broken in the (110) plane orientation substrate, shear deformation of the crystal lattice is allowed when the formed thin film is switched. When this shear deformation occurs, the crystal lattice is oriented parallel to the substrate surface, and the charge alignment surface and the orbital alignment surface are not parallel to the substrate surface. Further, Patent Document 5 discloses an example in which the A-site ordered perovskite-type manganese oxide is thinned. This disclosure reports a coating light irradiation method in which an amorphous thin film is once deposited and then crystallized and A-site ordering is performed by laser annealing. In fact, it has been confirmed by electron beam diffraction that the A site is ordered in the SmBaMn 2 O 6 thin film formed on the (100) plane orientation SrTiO 3 (lattice constant 0.3905 nm) substrate.
特開平8-133894号公報JP-A-8-133894 特開平10-255481号公報Japanese Patent Laid-Open No. 10-255481 特開平10-261291号公報JP-A-10-261291 特開2005-213078号公報Japanese Patent Laid-Open No. 2005-213078 特開2008-156188号公報JP 2008-156188 A
 しかしながら、上記Aサイト秩序化ペロフスカイト型マンガン酸化物には、Aサイトのイオンにおける秩序度が、スイッチング現象が実現する温度すなわち電荷軌道秩序の発現温度に大きな影響を与えるという問題がある。特にAサイト秩序化ペロフスカイト型マンガン酸化物からなる薄膜においては、形成される薄膜の中に欠陥が導入されたり薄膜の組成に僅かなずれが生じたりするだけでも、Aサイトイオンの秩序度が低下する懸念がある。また、特許文献4に報告される(110)面方位基板上の薄膜には、上記の秩序度低下と発現温度低下とのいずれの問題の解決にも寄与しないという課題がある。このように、従来のペロフスカイト型酸化物薄膜においては、電荷軌道秩序の発現温度が低温にとどまるという問題や、Aサイトの秩序度に依存した室温以上の電荷軌道秩序の発現温度とそれゆえの不安定性という問題が未解決である。 However, the A-site ordered perovskite-type manganese oxide has a problem that the degree of order in the A-site ions greatly affects the temperature at which the switching phenomenon is realized, that is, the temperature at which the charge orbital order is developed. In particular, in a thin film made of A-site ordered perovskite-type manganese oxide, the degree of order of A-site ions is reduced even if defects are introduced into the formed thin film or a slight shift occurs in the composition of the thin film. There are concerns. In addition, the thin film on the (110) plane orientation substrate reported in Patent Document 4 has a problem that it does not contribute to the solution of any of the problems of lowering the degree of order and lowering the expression temperature. As described above, in the conventional perovskite type oxide thin film, there is a problem that the temperature at which the charge orbital order appears is low, and the temperature at which the charge orbital order rises above room temperature depending on the degree of order at the A site and the anxiety. The qualitative problem is still unresolved.
 本発明は上記問題点に鑑みてなされたものである。本発明は、何らかの外的刺激(外場)による相転移の制御を室温で実現してスイッチング機能を実現するようなマンガン酸化物薄膜積層体または酸化物積層体を提供することにより、新規なデバイスの創出に貢献するものである。 The present invention has been made in view of the above problems. The present invention provides a novel device by providing a manganese oxide thin film stack or an oxide stack that realizes a switching function by controlling phase transition by some external stimulus (external field) at room temperature. It contributes to the creation of
 上記課題を吟味した結果、上記各問題は、そもそも2種類のカチオン、すなわち3価の希土類元素(R)と2価のアルカリ土類(Ae、例えばSrやBa)との両カチオンがペロフスカイト型Mn酸化物のAサイトを占めることに起因していると本願発明者は考えた。そして、2種類のカチオンがAサイトを占めるペロフスカイト型Mn酸化物を用いるアプローチでは上記課題を解決し得ないと考えるに至り、それとは異なる手法を探索し、上記課題を解決する具体的手段を見出した。 As a result of examining the above problems, each of the above problems is caused by the fact that two types of cations, that is, both cations of trivalent rare earth element (R) and divalent alkaline earth (Ae, for example, Sr or Ba) are perovskite type Mn. The inventor of the present application thought that it was caused by occupying the A site of the oxide. The approach using the perovskite type Mn oxide in which two types of cations occupy the A site has led to the idea that the above problem cannot be solved, and a method different from that is searched to find a specific means for solving the above problem. It was.
 本発明は、全く新たな原理に基づいて上記課題の少なくともいずれかを解決する。その具体的解決手段として、本発明のある態様においては、基板の面の上に形成されたマンガン酸化物薄膜積層体であって、互いに接して形成された第1および第2マンガン酸化物薄膜を備え、該第1マンガン酸化物薄膜は、バルクでの単位胞体積の3乗根が前記基板の格子定数よりも大きい組成式RMnO(ただし、Rはランタノイドから選択される少なくとも1種の3価の希土類元素)の組成を有し、元素Rを含みMnを含まない原子層およびMnを含み元素Rを含まない原子層が基板面の垂直方向に向かって交互に積層されており、前記第2マンガン酸化物薄膜は、バルクでの単位胞体積の3乗根が前記基板の格子定数よりも小さい組成式LMnO(ただし、Lは、ランタノイドから選択される少なくとも1種の、Rとして選択されたもの以外の3価の希土類元素)の組成を有し、元素Lを含みMnを含まない原子層およびMnを含み元素Lを含まない原子層が基板面の垂直方向に向かって交互に積層されており、前記第1マンガン酸化物薄膜および前記第2マンガン酸化物薄膜それぞれが、基板面の面内方向に、互いに非等価な2つの結晶軸を有しているマンガン酸化物薄膜積層体が提供される。なお、上記のバルクでの単位胞体積とは擬立方晶での単位胞体積を意味する。この理由は、上記RMnOやLMnOの単位胞が、通常、GdFeO型斜方晶として規定されるため、立方晶での単位胞の4倍(=(2)1/2×(2)1/2×2)となるからである。したがって、以下の記述においては単位胞体積とは擬立方晶での値を指し、上記斜方晶での単位胞体積の1/4に対応することを付記しておく。また、互いに非等価な2つの結晶軸とは、面内の4回対称操作に対して非対称となるような2つの結晶軸を意味する。 The present invention solves at least one of the above problems based on a completely new principle. As a specific solution thereof, in one aspect of the present invention, a manganese oxide thin film laminate formed on the surface of a substrate, the first and second manganese oxide thin films formed in contact with each other is provided. The first manganese oxide thin film has a composition formula RMnO 3 (wherein R is at least one trivalent selected from lanthanoids), wherein the cubic root of the unit cell volume in bulk is larger than the lattice constant of the substrate. Of the rare earth element), the atomic layer containing the element R and not containing Mn, and the atomic layer containing Mn and not containing the element R are alternately stacked in the direction perpendicular to the substrate surface. The manganese oxide thin film has a composition formula LMnO 3 in which the cube root of the unit cell volume in the bulk is smaller than the lattice constant of the substrate (where L is selected as R, at least one selected from lanthanoids) And an atomic layer containing element L and not containing Mn and an atomic layer containing Mn and not containing element L are alternately stacked in the direction perpendicular to the substrate surface. A manganese oxide thin film stack in which each of the first manganese oxide thin film and the second manganese oxide thin film has two crystal axes that are not equivalent to each other in the in-plane direction of the substrate surface. Provided. The unit cell volume in the bulk means a unit cell volume in a pseudo cubic crystal. This is because the unit cell of RMnO 3 or LMnO 3 is usually defined as a GdFeO 3 type orthorhombic crystal, so that it is four times as many as the unit cell in a cubic crystal (= (2) 1/2 × (2) This is because 1/2 × 2). Therefore, in the following description, it is noted that the unit cell volume means a value in a pseudo cubic crystal and corresponds to 1/4 of the unit cell volume in the orthorhombic crystal. Also, two crystal axes that are not equivalent to each other mean two crystal axes that are asymmetric with respect to the in-plane four-fold symmetry operation.
 本態様におけるマンガン酸化物薄膜積層体は、ペロフスカイト型マンガン酸化物を材質とする薄膜の積層体である。このマンガン酸化物積層体に含まれる各マンガン酸化物薄膜はABOと表現される組成の結晶格子を有している。そして本態様における第1および第2マンガン酸化物薄膜の結晶は、通常のペロフスカイト型結晶と同様に、BサイトにMn(マンガン)を有するとともに、そのMnを囲むような酸素八面体を備えている。特に、本態様における第1および第2マンガン酸化物薄膜の結晶においては、Aサイトが、それぞれ、元素RおよびLという3価の希土類元素のカチオンのみにより占められている。つまり、上記従来のものとは異なり、Aサイトには2価のアルカリ土類(Ae)は配置されない。本態様の希土類元素RおよびLとしては、典型的には、ランタノイドである3価の希土類元素、すなわちLa(ランタン)、Ce(セリウム)、Pr(プラセオジム)、Nd(ネオジム)、Pm(プロメチウム)、Sm、Eu、Gd、Tb、Dy、Ho、Er(エルビウム)、Tm(ツリウム)、Yb(イッテルビウム)、Lu(ルテチウム)からなる群から選択される少なくとも1種の元素である。 The manganese oxide thin film laminate in this embodiment is a thin film laminate made of perovskite manganese oxide. Each manganese oxide thin film contained in this manganese oxide laminate has a crystal lattice having a composition expressed as ABO 3 . And the crystal | crystallization of the 1st and 2nd manganese oxide thin film in this aspect is equipped with the oxygen octahedron which has Mn (manganese) in B site, and surrounds the Mn like a normal perovskite type crystal. . In particular, in the crystals of the first and second manganese oxide thin films in this embodiment, the A sites are occupied only by the trivalent rare earth element cations, elements R and L, respectively. That is, unlike the conventional one, no divalent alkaline earth (Ae) is disposed at the A site. The rare earth elements R and L of this embodiment are typically lanthanoid trivalent rare earth elements, that is, La (lanthanum), Ce (cerium), Pr (praseodymium), Nd (neodymium), Pm (promethium). , Sm, Eu, Gd, Tb, Dy, Ho, Er (erbium), Tm (thulium), Yb (ytterbium), and at least one element selected from the group consisting of Lu (lutetium).
 なお、上記特許文献4や特許文献5に開示される物質は、Aサイトに2価のアルカリ土類(Ae)であるSr(特許文献4)やBa(特許文献5)を含む物質である。 In addition, the substance disclosed by the said patent document 4 and the patent document 5 is a substance containing Sr (patent document 4) and Ba (patent document 5) which are bivalent alkaline-earth (Ae) in A site.
 さらに、本発明の上記態様のマンガン酸化物薄膜積層体における第1マンガン酸化物薄膜においては、元素Rを含みMnを含まない原子層と、Mnを含み元素Rを含まない原子層とが基板面に垂直方向に向かって交互に並ぶように積層されている。第2マンガン酸化物薄膜においても、元素Lを含みMnを含まない原子層と、Mnを含み元素Rを含まない原子層とが基板面に垂直方向に向かって交互に並ぶように積層されている。これらのマンガン酸化物において、元素R(元素L)を含みMnを含まない原子層は、典型的にはRO層(LO層)つまり元素R(元素L)とO(酸素)からなる層である。これに対し、Mnを含み元素R(元素L)を含まない原子層は、典型的にはMnO層つまりMnとOからなる層である。これらの典型的な層構成を取る場合、基板面直方向に交互に積層されたRO層(LO層)およびMnO層は、それぞれ+1および-1に帯電していると考えられる。そして、上記態様のマンガン酸化物薄膜の結晶において、帯電した極性表面(polar surface)による電圧または電場が常に印加される。これは、各元素の形式価数が、R(L)は+3価、Oは-2価、そして、RMnOやLMnOの電荷中性条件からMnは+3価であるためである。このような電場が生じると、絶縁体-金属転移を発現するために必要となる外場閾値の低減が期待できる。 Furthermore, in the first manganese oxide thin film in the manganese oxide thin film laminate of the above aspect of the present invention, an atomic layer containing element R and not containing Mn, and an atomic layer containing Mn and not containing element R are substrate surfaces. Are stacked alternately in the vertical direction. Also in the second manganese oxide thin film, an atomic layer containing element L and not containing Mn and an atomic layer containing Mn and not containing element R are stacked so as to be alternately arranged in a direction perpendicular to the substrate surface. . In these manganese oxides, an atomic layer containing element R (element L) and not containing Mn is typically an RO layer (LO layer), that is, a layer composed of elements R (element L) and O (oxygen). . On the other hand, the atomic layer that contains Mn and does not contain the element R (element L) is typically a MnO 2 layer, that is, a layer composed of Mn and O. When taking these typical layer configurations, it is considered that the RO layers (LO layers) and MnO 2 layers alternately stacked in the direction perpendicular to the substrate surface are charged to +1 and −1, respectively. In addition, in the crystal of the manganese oxide thin film of the above aspect, a voltage or electric field due to a charged polar surface is always applied. This is because the formal valence of each element is R (L) is +3 valence, O is -2 valence, and Mn is +3 valence due to charge neutral conditions of RMnO 3 and LMnO 3 . When such an electric field is generated, it is possible to expect a reduction in the external field threshold necessary for developing the insulator-metal transition.
 しかも、上記態様の第1および第2マンガン酸化物薄膜それぞれは、互いに非等価な2つの結晶軸を基板面の面内方向に有している。このため、基板面の面内におけるマンガン酸化物の結晶の対称性が4回対称より低くなってずり変形が許容され、一次相転移が可能となる。なお、上記特許文献5の開示においては、(100)面方位SrTiO基板が採用されているため、その基板上に形成したSmBaMn薄膜の結晶格子は、ずり変形を許容しない4回対称性を有することとなる。また、仮に(100)配向したマンガン酸化物として基板面直方向に交互に積層したRO層、MnO層を含む薄膜が形成されると、2つの等価な結晶軸が基板面の面内方向に形成される。このため、(100)配向したマンガン酸化物では、RO層、MnO層が形成されても結晶が4回対称性となる。この構成とは異なり、上記態様の第1および第2マンガン酸化物薄膜は、基板面の面内方向に互いに非等価な2つの結晶軸を有している以上、例えば(100)配向したような4回対称性のマンガン酸化物薄膜を含まない。なお、基板面の面内方向に互いに非等価な2つの結晶軸を有しているとは、基板面の面内方向における互いに等価な結晶軸が2つは存在しないことである。例えば立方晶(100)基板においては面内の2軸は[010]と[001]であるがこれらは面内の4回対称操作、すなわち90度回転すると区別がつかない。このような場合2つの結晶軸は等価であるとする。これに対し、立方晶(210)基板においては面内の2軸は[-120]と[001]となる。これらは上記の4回対称操作によって一致せず、このような場合に2つの結晶軸を非等価と称することにする。 In addition, each of the first and second manganese oxide thin films of the above aspect has two crystal axes that are not equivalent to each other in the in-plane direction of the substrate surface. For this reason, the symmetry of the manganese oxide crystal in the plane of the substrate surface is lower than the 4-fold symmetry, and shear deformation is allowed, and a primary phase transition is possible. In the disclosure of Patent Document 5, since a (100) plane orientation SrTiO 3 substrate is employed, the crystal lattice of the SmBaMn 2 O 6 thin film formed on the substrate is four-fold symmetric that does not allow shear deformation. It will have sex. In addition, if a thin film including RO layers and MnO 2 layers alternately stacked in the direction perpendicular to the substrate surface is formed as (100) -oriented manganese oxide, two equivalent crystal axes are in the in-plane direction of the substrate surface. It is formed. For this reason, in the (100) -oriented manganese oxide, the crystal has fourfold symmetry even when the RO layer and the MnO 2 layer are formed. Unlike this configuration, the first and second manganese oxide thin films of the above aspect have two crystal axes that are not equivalent to each other in the in-plane direction of the substrate surface. Does not include 4-fold symmetrical manganese oxide thin film. Note that having two crystal axes that are not equivalent to each other in the in-plane direction of the substrate surface means that there are no two crystal axes that are equivalent to each other in the in-plane direction of the substrate surface. For example, in a cubic (100) substrate, the two in-plane axes are [010] and [001], but these are indistinguishable when in-plane four-fold symmetry operation, that is, by rotating 90 degrees. In such a case, it is assumed that the two crystal axes are equivalent. On the other hand, in the cubic (210) substrate, the two in-plane axes are [−120] and [001]. These do not coincide by the above four-fold symmetry operation, and in such a case, the two crystal axes will be referred to as non-equivalent.
 本発明の上記態様の第1および第2マンガン酸化物薄膜の組成中の電子相は、モット転移により絶縁体と金属との間で相転移する性質を示す。ここで、このようなマンガン酸化物は、一般にはモット絶縁体と呼ばれる物質群の一種でもある。しかし本出願における第1および第2マンガン酸化物薄膜は、金属絶縁体転移を生じる性質を示す薄膜であり必ずしも常に絶縁体相とはならない。このような材質を、以下「マンガン酸化物」と表現する。また、モット転移には、一般に、温度のみならず、外的な刺激(以下「外場」という)も関与することがある。外場を印加しない場合の温度のみにより生じるモット転移では、絶縁体相は低温側、金属相あるいは低抵抗となる相は高温側に出現する。これに対し、ある温度において外場を変化させて生じさせたモット転移では、絶縁体相は外場が弱い側、金属相は外場が強い側に現われる。本発明の上述した態様の積層体の第1および第2マンガン酸化物薄膜においては、室温(例えば300K)において外場によりモット転移を生じさせることが可能となる。これは、上記態様においては、室温よりも高温において通常現われるモット転移の転移温度を従来よりも低温化させていること、および、モット転移のための外場の閾値を従来よりも小さくすること、の両方またはいずれかを意味している。なお、ここでの外場には、典型的には、磁場、電場、電流、光、および圧力、そしてこれらの任意の組合せを含んでいる。 The electronic phase in the composition of the first and second manganese oxide thin films of the above aspect of the present invention exhibits the property of phase transition between the insulator and the metal due to Mott transition. Here, such a manganese oxide is also a kind of material group generally called a Mott insulator. However, the first and second manganese oxide thin films in the present application are thin films exhibiting the property of causing a metal-insulator transition, and are not always an insulator phase. Such a material is hereinafter referred to as “manganese oxide”. Mott transition generally involves not only temperature but also external stimuli (hereinafter referred to as “external field”). In the Mott transition caused only by the temperature when no external field is applied, the insulator phase appears on the low temperature side, and the metal phase or low resistance phase appears on the high temperature side. On the other hand, in the Mott transition caused by changing the external field at a certain temperature, the insulator phase appears on the side where the external field is weak, and the metal phase appears on the side where the external field is strong. In the first and second manganese oxide thin films of the laminate of the above-described aspect of the present invention, it is possible to cause a Mott transition by an external field at room temperature (for example, 300 K). This is because, in the above embodiment, the transition temperature of the Mott transition that usually appears at a temperature higher than room temperature is lower than the conventional one, and the threshold of the external field for the Mott transition is smaller than the conventional one. Means both or either. The external field here typically includes a magnetic field, an electric field, a current, light, and pressure, and any combination thereof.
 そして、上記態様の第1および第2マンガン酸化物薄膜は、バルクでの単位胞体積の3乗根が、基板の格子定数よりも大きいもの(第1マンガン酸化物薄膜)と、小さいもの(第2マンガン酸化物薄膜)、という組合せとなっており、第1および第2マンガン酸化物薄膜を備えるマンガン酸化物薄膜積層体は、当該基板の面の上に形成されている。これらの関係から、第1および第2マンガン酸化物薄膜には、圧縮ひずみおよび伸張ひずみが作用した状態になっている。このひずみの効果により、第1および第2マンガン酸化物薄膜それぞれの軌道整列面は互いに向きが異なる。しかも、互いが接して形成されていることから、第1および第2マンガン酸化物薄膜の境界または界面もしくはいずれかの近傍に、軌道整列面の向きの相異という新たな乱れが導入される。この乱れのために、その境界もしくは界面またはこれらいずれかの近傍のMnの3dのeバンドの電子は、第1または第2マンガン酸化物薄膜における軌道整列面のいずれにも揃って配列しうる状態となる。すなわちこの乱れは、両マンガン酸化物薄膜の軌道整列秩序がそのeバンドの電子を自らの秩序に従えようとするせめぎ合いとしての競合(frustration)をもたらす。そしてこの競合は、軌道整列を解消させる方向で電子相の「強固さ」を低下させる作用を持ち、絶縁相を金属相に転移させるための外場に必要な閾値を低下させる。 And the 1st and 2nd manganese oxide thin film of the said aspect WHEREIN: The cube root of the unit cell volume in a bulk is larger than the lattice constant of a board | substrate (1st manganese oxide thin film), and a small thing (1st 2 manganese oxide thin film), and the manganese oxide thin film laminate including the first and second manganese oxide thin films is formed on the surface of the substrate. From these relationships, the first and second manganese oxide thin films are in a state where compressive strain and extension strain are applied. Due to the effect of this strain, the orbital alignment surfaces of the first and second manganese oxide thin films have different directions. In addition, since they are formed in contact with each other, a new disturbance, that is, a difference in the direction of the orbital alignment plane, is introduced at the boundary or interface of the first and second manganese oxide thin films or in the vicinity thereof. For this disturbance, electrons of the boundary or interface or e g band of Mn 3d near either of these may be arranged aligned in any orbital alignment surface of the first or second manganese oxide thin film It becomes a state. That this turbulence results in a conflict (frustration) as mutual contested trajectory alignment order of both manganese oxide thin film is going Shitagaeyo electrons of the e g band to their order. This competition has the effect of reducing the “strength” of the electronic phase in the direction of canceling the orbital alignment, and lowers the threshold necessary for the external field to transfer the insulating phase to the metal phase.
 なお、本態様において、第1および第2マンガン酸化物薄膜のいずれが基板に接しているか、または、基板に近い側に形成されるかは限定されない。また、本出願において、元素Rや元素Lは、それぞれが少なくとも1種の元素であるため、それらの少なくとも一方または両方が複数の元素の組合せを含みうることに留意されたい。このため、元素Lが元素Rとして選択されたもの以外から選択される場合や、逆に、元素Rが元素Lとして選択されたもの以外から選択される場合において、元素Rと元素Lに共通した元素を含む場合がある。すなわち、元素Rを構成する元素群と元素Lを構成する元素群とが互いに比率まで含めて完全に一致しない場合は、元素Rは元素L以外のものから、また、元素Lは元素R以外のものから、それぞれ選択されていることとする。 In this embodiment, it is not limited which of the first and second manganese oxide thin films is in contact with the substrate or formed on the side close to the substrate. Further, in the present application, it should be noted that since each of the element R and the element L is at least one element, at least one or both of them may include a combination of a plurality of elements. Therefore, when the element L is selected from those other than those selected as the element R, or conversely, when the element R is selected from other than those selected as the element L, the elements R and L are common. May contain elements. That is, when the element group that constitutes the element R and the element group that constitutes the element L do not completely coincide with each other including the ratio, the element R is other than the element L, and the element L is other than the element R. It is assumed that each item is selected.
 ちなみに、本発明の第1および第2マンガン酸化物薄膜の組成式RMnOやLMnOにおける3価の希土類元素RおよびLそれぞれが複数種の元素の組合せとなる場合について補足する。例えば元素Rとして2種の3価の希土類元素が用いられるときの化学組成を別の形式により表現してみると、本態様の第1マンガン酸化物であるRMnOと表現される組成物には、3価のカチオンとなりうる別々の希土類元素それぞれをR、Rとして、(RMnO(RMnO1-x、ただし0<x<1、と表現される組成物となる。このように表現される組成物は、典型的には、希土類元素Rを含むマンガン酸化物RMnOと、希土類元素Rを含むマンガン酸化物RMnOとの任意の比率x:1-xの固溶体である。第2マンガン酸化物薄膜における元素Lついても同様である。 Incidentally, the case where each of the trivalent rare earth elements R and L in the composition formulas RMnO 3 and LMnO 3 of the first and second manganese oxide thin films of the present invention is a combination of plural kinds of elements will be supplemented. For example, when the chemical composition when two kinds of trivalent rare earth elements are used as the element R is expressed in another form, the composition expressed as RMnO 3 which is the first manganese oxide of this embodiment is A composition represented by (R 1 MnO 3 ) x (R 2 MnO 3 ) 1-x , where 0 <x <1, where R 1 and R 2 are different rare earth elements that can become trivalent cations. It becomes. The composition expressed in this way typically has an arbitrary ratio x of manganese oxide R 1 MnO 3 containing rare earth element R 1 and manganese oxide R 2 MnO 3 containing rare earth element R 2 : 1-x solid solution. The same applies to the element L in the second manganese oxide thin film.
 本発明のある態様においては、前記第1マンガン酸化物薄膜の組成が、組成式RMnO(ただし、Rは、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dyからなる群から選択される少なくとも1種の、Lとして選択されたもの以外の3価の希土類元素)により表されるものである上記態様のマンガン酸化物薄膜積層体が提供される。さらに、前記第2マンガン酸化物薄膜の組成が、組成式LMnO(ただし、Lは、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dyからなる群から選択される少なくとも1種の、Rとして選択されたもの以外の3価の希土類元素)により表されるものである上記態様のマンガン酸化物薄膜積層体も提供される。 In one embodiment of the present invention, the composition of the first manganese oxide thin film has a composition formula RMnO 3 (where R is La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy). There is provided a manganese oxide thin film laminate according to the above aspect, which is represented by at least one trivalent rare earth element other than those selected as L) selected from the group. Furthermore, the composition of the second manganese oxide thin film has a composition formula LMnO 3 (where L is selected from the group consisting of La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy) There is also provided a manganese oxide thin film laminate according to the above aspect, which is represented by one kind of trivalent rare earth elements other than those selected as R).
 3価の希土類元素の上記群は、ランタノイドを原子番号順にならべてHo以降を除いた元素群である。上記群のうちから3価の希土類元素を選択すると、酸素八面体の回転の程度を制御することが可能となって、軌道整列の発現しやすさを調整することが可能となる利点がある。 The above group of trivalent rare earth elements is an element group obtained by arranging lanthanoids in order of atomic number and excluding Ho. When a trivalent rare earth element is selected from the above group, there is an advantage that the degree of rotation of the oxygen octahedron can be controlled and the ease of occurrence of orbital alignment can be adjusted.
 加えて、本発明のある態様においては、前記基板の面方位が(210)面方位である上記態様のマンガン酸化物薄膜積層体が提供される。 In addition, in one aspect of the present invention, there is provided a manganese oxide thin film laminate according to the above aspect, wherein the plane orientation of the substrate is a (210) plane orientation.
 本態様により、基板の原子積層面を利用したエピタキシャル成長が可能となり、ミスフィット等の欠陥のない単結晶薄膜を用いることが可能となる。さらに、(210)面方位基板上のRMnO薄膜やLMnO薄膜では、対称性の破れのために、面直方向にやや傾いた面内[1-20]軸方向の分極が生じる。その結果、本態様においては、面直方向に加えて面内方向においても電圧(電場)が内在的に作用した構成となることにより、面内方向にも分極による反電場が印加され、絶縁体-金属転移のための外場閾値が低減される。 According to this aspect, epitaxial growth using the atomic layer surface of the substrate is possible, and a single crystal thin film having no defects such as misfit can be used. Further, in the RMnO 3 thin film and the LMnO 3 thin film on the (210) plane orientation substrate, polarization in the in-plane [1-20] axis direction slightly inclined in the perpendicular direction occurs due to the symmetry breaking. As a result, in this embodiment, a voltage (electric field) is inherently applied in the in-plane direction in addition to the perpendicular direction, so that an anti-electric field due to polarization is also applied in the in-plane direction. -The external field threshold for metal transition is reduced.
 また、本発明のある態様においては、さらなる層が付加された酸化物積層体も提供される。すなわち、本発明のある態様においては、上記いずれかの態様のマンガン酸化物薄膜積層体と、該マンガン酸化物薄膜積層体のいずれかの面に接している強相関酸化物薄膜とを備えており、酸化物積層体全体の厚さt、前記マンガン酸化物薄膜積層体の厚さtm、および前記強相関酸化物薄膜の厚さt1が、該強相関酸化物薄膜が金属相となるための臨界膜厚tcに対して、t=tm+t1>tc、かつt1<tc、の関係を満たしている酸化物積層体が提供される。 Also, in an embodiment of the present invention, an oxide laminate to which an additional layer is added is also provided. That is, an aspect of the present invention includes the manganese oxide thin film laminate according to any one of the above aspects and a strongly correlated oxide thin film in contact with any surface of the manganese oxide thin film laminate. The thickness t of the entire oxide stack, the thickness tm of the manganese oxide thin film stack, and the thickness t1 of the strongly correlated oxide thin film are critical for the strongly correlated oxide thin film to become a metal phase. An oxide stack that satisfies the relationship of t = tm + t1> tc and t1 <tc with respect to the film thickness tc is provided.
 本態様の酸化物積層体においては、マンガン酸化物薄膜積層体に接しさせて強相関酸化物薄膜を配置する。この強相関酸化物薄膜をなす材質の結晶構造は、上記第1または第2マンガン酸化物薄膜と同様に、ABOと表現されるペロフスカイト構造を有する。ただし、上記第1または第2マンガン酸化物薄膜積層体とは異なり、強相関酸化物薄膜の結晶格子においては、Aサイトが必ずしも3価の希土類元素(R)のカチオンのみにより占められているとは限らない。本態様の酸化物積層体においては、絶縁体金属転移(モット転移)によるマンガン酸化物薄膜積層体のスイッチング機能の検出が、上述したマンガン酸化物薄膜積層体単体のものに比べ容易になる。これは、絶縁体金属転移(モット転移)によるマンガン酸化物薄膜積層体のスイッチング機能つまり電子状態の変化を、酸化物積層体試料の例えば抵抗変化として外部から容易に検出することができるためである。この検出容易化の仕組みは、次元クロスオーバーと呼ぶものであり、その詳細は「1-6 積層化による検知性の向上(次元クロスオーバー)」の欄にて詳述する。さらに、検出が容易になる結果、副次的に、転移を生じるために必要となる外場の閾値を低減させることも可能となる。これは、モット転移するマンガン酸化物薄膜積層体全体の厚みを、マンガン酸化物薄膜単体の場合に比べ薄くすることも可能となるためである。 In the oxide laminate of this embodiment, the strongly correlated oxide thin film is disposed in contact with the manganese oxide thin film laminate. The crystal structure of the material forming the strongly correlated oxide thin film has a perovskite structure expressed as ABO 3 in the same manner as the first or second manganese oxide thin film. However, unlike the first or second manganese oxide thin film laminate, in the crystal lattice of the strongly correlated oxide thin film, the A site is always occupied only by the cation of the trivalent rare earth element (R). Is not limited. In the oxide laminated body of this aspect, the detection of the switching function of the manganese oxide thin film laminated body by an insulator metal transition (Mott transition) becomes easy compared with the above-mentioned single thing of the manganese oxide thin film laminated body. This is because the switching function of the manganese oxide thin film stack due to the insulator-metal transition (Mott transition), that is, the change of the electronic state can be easily detected from the outside as, for example, the resistance change of the oxide stack sample. . This mechanism for facilitating detection is called dimensional crossover, and details thereof will be described in detail in the section “1-6 Improvement of detectability by stacking (dimensional crossover)”. Furthermore, as a result of easy detection, it becomes possible to reduce the threshold value of the external field necessary for causing a secondary transfer. This is because it is possible to make the thickness of the Mott-transferred manganese oxide thin film stack as a whole thinner than that of a single manganese oxide thin film.
 そして、本発明のある態様においては、上記いずれかの態様のマンガン酸化物薄膜積層体と、該マンガン酸化物薄膜積層体の一方の面に接している第1の強相関酸化物薄膜と、該マンガン酸化物薄膜積層体の他方の面に接している第2の強相関酸化物薄膜とを備えており、酸化物積層体全体の厚さt、前記マンガン酸化物薄膜積層体の厚さtm、前記第1および第2の強相関酸化物薄膜それぞれの厚さt1およびt2が、各強相関酸化物薄膜が金属相となるための臨界膜厚tcに対して、t=tm+t1+t2>tc、かつmax(t1、t2)<tc、ただし、max()は、変数のうちの最大値を返す関数、の関係を満たしている酸化物積層体も提供される。 In one embodiment of the present invention, the manganese oxide thin film laminate according to any one of the above embodiments, the first strongly correlated oxide thin film in contact with one surface of the manganese oxide thin film laminate, A second strongly correlated oxide thin film in contact with the other surface of the manganese oxide thin film stack, the thickness t of the entire oxide stack, the thickness tm of the manganese oxide thin film stack, The thicknesses t1 and t2 of each of the first and second strongly correlated oxide thin films are t = tm + t1 + t2> tc and max with respect to the critical film thickness tc for each strongly correlated oxide thin film to be a metal phase. An oxide stack that satisfies the relationship of (t1, t2) <tc, where max () is a function that returns the maximum value of variables is also provided.
 本態様の酸化物積層体においては、マンガン酸化物薄膜積層体の両面に強相関酸化物薄膜が接して配置される。強相関酸化物薄膜を接触させる効果が、片側のみの場合に比べて一層顕著に得られることとなる。 In the oxide laminate of this embodiment, the strongly correlated oxide thin film is disposed on both sides of the manganese oxide thin film laminate. The effect of bringing the strongly correlated oxide thin film into contact is more remarkably obtained than in the case of only one side.
 本発明のいずれかの態様のマンガン酸化物積層体または酸化物積層体では、Aサイトの元素を、価数が+3に揃った希土類元素RまたはLにするとともに、元素RまたはLを含みMnを含まない原子層と、Mnを含み元素RもLも含まない原子層とが基板面に垂直方向に向かって交互に並ぶことにより、秩序度のばらつきの影響をうけることが原理的になくなる。また、第1および第2マンガン酸化物薄膜における軌道整列面に競合による不安定性を導入することにより、外場により制御されるモット転移を室温で実現するものである。 In the manganese oxide laminate or oxide laminate of any aspect of the present invention, the element at the A site is a rare earth element R or L having a valence of +3, and the element R or L is included and Mn is contained. In principle, an atomic layer that does not contain and an atomic layer that contains Mn and does not contain elements R and L are alternately arranged in the direction perpendicular to the substrate surface, so that it is in principle not affected by variation in the degree of order. In addition, by introducing instability due to competition to the orbital alignment surfaces in the first and second manganese oxide thin films, the Mott transition controlled by the external field is realized at room temperature.
本発明のある実施形態におけるマンガン酸化物薄膜積層体の概略断面図である。図1(a)は、基板に形成されているマンガン酸化物薄膜積層体の構成を示す全体図であり、図1(b)および(c)は、マンガン酸化物薄膜積層体の原子積層面(断面図)のうち、第1および第2マンガン酸化物薄膜の間の界面付近の拡大図である。It is a schematic sectional drawing of the manganese oxide thin film laminated body in one embodiment of this invention. FIG. 1A is an overall view showing the structure of a manganese oxide thin film stack formed on a substrate, and FIGS. 1B and 1C are atomic stack planes of the manganese oxide thin film stack ( 2 is an enlarged view of the vicinity of the interface between the first and second manganese oxide thin films. 本発明のある実施形態におけるマンガン酸化物薄膜積層体に生じる追加の電場を説明する説明図である。図2(a)および(b)は、それぞれ、図1(a)および(b)と同様の断面図である。It is explanatory drawing explaining the additional electric field which arises in the manganese oxide thin film laminated body in an embodiment with this invention. 2A and 2B are cross-sectional views similar to FIGS. 1A and 1B, respectively. 本発明のある実施形態のマンガン酸化物薄膜積層体において、軌道整列面が(001)面となっている第1マンガン酸化物と、軌道整列面が(100)面となっている第2マンガン酸化物との軌道整列面の関係を示す説明図である。In a manganese oxide thin film stack according to an embodiment of the present invention, a first manganese oxide whose orbital alignment plane is a (001) plane and a second manganese oxide whose orbital alignment plane is a (100) plane. It is explanatory drawing which shows the relationship of the track | orbit alignment surface with a thing. 本発明のある実施形態における強相関酸化物薄膜を接して作製したマンガン酸化物薄膜積層体を含む酸化物積層体の一例の構成を示す概略断面図である。図4(a)はマンガン酸化物薄膜積層体の基板側に強相関酸化物薄膜を形成した例であり、図4(b)は、マンガン酸化物薄膜積層体の表面に強相関酸化物薄膜を形成した例である。It is a schematic sectional drawing which shows the structure of an example of the oxide laminated body containing the manganese oxide thin film laminated body produced in contact with the strongly correlated oxide thin film in one embodiment of this invention. FIG. 4A shows an example in which a strongly correlated oxide thin film is formed on the substrate side of the manganese oxide thin film laminate, and FIG. 4B shows a strongly correlated oxide thin film on the surface of the manganese oxide thin film laminate. This is an example of formation. 本発明のある実施形態において、強相関酸化物薄膜をマンガン酸化物薄膜積層体の両面に接触させて形成した酸化物積層体の一例の概略断面図である。In embodiment with this invention, it is a schematic sectional drawing of an example of the oxide laminated body formed by making a strongly correlated oxide thin film contact both surfaces of a manganese oxide thin film laminated body. 本発明のある実施形態のマンガン酸化物薄膜積層体において、Mn-O-Mnの角度を示す説明図である。図6(a)は、結晶格子において回転する向きに酸素八面体が変形しMn-O-Mnの角度が180度より減少している状態を示し、図6(b)は、基板からの伸張ひずみにより、結晶格子において、回転する向きに酸素八面体が変形しMn-O-Mnの角度が拡げられた状態を示す。FIG. 3 is an explanatory diagram showing an angle of Mn—O—Mn in a manganese oxide thin film laminate according to an embodiment of the present invention. FIG. 6 (a) shows a state where the oxygen octahedron is deformed in the direction of rotation in the crystal lattice and the angle of Mn—O—Mn is reduced from 180 degrees, and FIG. 6 (b) shows the extension from the substrate. In the crystal lattice, the oxygen octahedron is deformed in the direction of rotation and the angle of Mn—O—Mn is expanded due to strain.
 以下、本発明に係るマンガン酸化物薄膜積層体および酸化物積層体の実施形態を図面に基づいて説明する。当該説明に際し特に言及がない限り、全図にわたり共通する部分または要素には共通する参照符号が付されている。また、図中、各実施形態の要素のそれぞれは、必ずしも互いの縮尺比を保って示されてはいない。 Hereinafter, embodiments of a manganese oxide thin film laminate and an oxide laminate according to the present invention will be described with reference to the drawings. In the description, unless otherwise specified, common parts or elements are denoted by common reference numerals throughout the drawings. In the drawings, each element of each embodiment is not necessarily shown in a scale ratio.
<第1実施形態>
[1 基本原理]
[1-1 マンガン酸化物薄膜積層体におけるモット転移の容易化]
 以下、本発明に係るマンガン酸化物薄膜積層体および酸化物積層体の実施形態を図1~図6を参照して説明する。まず、スイッチング機能を室温にて実現するための基本原理、すなわち、室温のマンガン酸化物薄膜積層体に含まれているマンガン酸化物薄膜を外場によりモット転移させるための基本原理を説明する。一般に、マンガン酸化物薄膜の軌道整列温度はAサイト秩序型Mn酸化物などと比較しても遥かに高い。例えばPrMnOの軌道整列温度は1000K以上にもなる。つまり、例えば300K程度の室温におけるマンガン酸化物薄膜は、軌道整列状態となっている。これが重要な認識の一つ目である。
<First Embodiment>
[1 Basic principle]
[1-1 Facilitating Mott transition in manganese oxide thin film laminates]
Hereinafter, embodiments of a manganese oxide thin film laminate and an oxide laminate according to the present invention will be described with reference to FIGS. First, the basic principle for realizing the switching function at room temperature, that is, the basic principle for Mott transition of the manganese oxide thin film contained in the manganese oxide thin film laminate at room temperature by an external field will be described. In general, the orbital alignment temperature of a manganese oxide thin film is much higher than that of an A-site ordered Mn oxide. For example, the orbital alignment temperature of PrMnO 3 is 1000K or higher. That is, for example, a manganese oxide thin film at room temperature of about 300 K is in an orbital alignment state. This is the first important recognition.
 この例において、PrMnOのPrのサイト(Aサイト)の元素を、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luというランタノイドの元素の並びにおいて順に置き換えていく場合を考える。なお、ランタノイドの上記並びは、いわゆるランタノイド収縮(Lanthanide contraction)とも呼ばれる、イオン半径の大きいものから小さいもの、という傾向を示す。すると、Aサイトの元素をLaから順次置き換えるのに応じて、マンガン酸化物薄膜の軌道整列温度が上昇する一方、反強磁性転移温度は低下してゆく。この傾向はDyまで続き、次のHoになると、Dyに比べて軌道整列温度は下降し、反強磁性転移温度が再び上昇しはじめる。ここで、酸素八面体は、GdFeOタイプの歪み構造をとるように、つまり、結晶格子において、Mnを取り囲む酸素八面体が回転するように変形している。そして、その変位または回転の変形の程度は、ランタノイドのLaからHoまでの全範囲の上記置き換えにおいてこの順に増大する。なお、ErからLuまでの範囲の置き換えにおいてはさらにイオン半径がさらに小さくなることからバルクでは結晶構造が斜方晶よりも六方晶をとりやすい傾向にあるが、薄膜においては立方晶ぺロフスカイト型基板にエピタキシャル成長させることにより斜方晶の構造を実現できる。したがってランタノイドの全ての元素をAサイトの置き換えの対象として採用することができるのである。その結果、その置き換えにおいて、ある単位胞からその隣の単位胞へのMn-O-Mnの角度θ(図6)がその順に減少する。図6は本実施形態のマンガン酸化物薄膜において、Mn-O-Mnの角度を示す説明図である。図6(a)は、酸素八面体が回転する向きに結晶格子が変形しMn-O-Mnの角度が180度より減少している状態を示し、図6(b)は、基板からの伸張ひずみにより酸素八面体が回転する向きに変形しMn-O-Mnの角度θが拡げられた状態を示す。この角度θの180度からの減少は、キャリアの伝導性の指標となるバンド幅に対しても、伝導性を悪化させるような影響を及ぼす。これは、Mn3+の3d軌道から結晶場分裂したe軌道とO2-の2p軌道との間の重なりに上記角度θが大きく影響するためである。 In this example, the elements of PrMnO 3 Pr site (A site) are La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu. Consider the case where elements are replaced in order. In addition, the said arrangement | sequence of a lanthanoid shows the tendency of what is called a lanthanoid contraction (Lanthanide contraction) from the thing with a large ionic radius to what is small. Then, as the elements at the A site are sequentially replaced from La, the orbital alignment temperature of the manganese oxide thin film increases while the antiferromagnetic transition temperature decreases. This tendency continues to Dy, and when it becomes the next Ho, the orbital alignment temperature decreases compared to Dy, and the antiferromagnetic transition temperature starts increasing again. Here, the oxygen octahedron is deformed so as to have a GdFeO 3 type strained structure, that is, in the crystal lattice, the oxygen octahedron surrounding Mn rotates. The degree of displacement or rotational deformation increases in this order in the above replacement of the entire range of lanthanoids from La to Ho. In the replacement of the range from Er to Lu, the ionic radius is further reduced, so that in the bulk, the crystal structure tends to be hexagonal rather than orthorhombic, but in the thin film, a cubic perovskite substrate An orthorhombic structure can be realized by epitaxial growth. Therefore, all the elements of the lanthanoid can be adopted as the A site replacement targets. As a result, in the replacement, the angle θ (FIG. 6) of Mn—O—Mn from one unit cell to the adjacent unit cell decreases in that order. FIG. 6 is an explanatory diagram showing the angle of Mn—O—Mn in the manganese oxide thin film of this embodiment. FIG. 6A shows a state where the crystal lattice is deformed in the direction in which the oxygen octahedron rotates and the angle of Mn—O—Mn is reduced from 180 degrees, and FIG. 6B shows the extension from the substrate. This shows a state where the oxygen octahedron is deformed in the direction of rotation due to strain and the angle θ of Mn—O—Mn is expanded. The decrease of the angle θ from 180 degrees also affects the bandwidth, which is an index of carrier conductivity, so as to deteriorate the conductivity. This is to the angle θ is greatly affected by the overlap between the e g orbitals and O 2- of 2p orbital was crystal field splitting from the 3d orbital of Mn 3+.
 したがって本願発明者は、ランタノイドからHo以降を除いたLa、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dyの範囲において、同一の物理機構に支配されて軌道整列が実現している、と考えている。この範囲において軌道整列の発現のしやすさは、反強磁性転移温度と同様にイオン半径に対し系統的な依存性を示す。 Therefore, the inventor of the present application realizes orbital alignment under the control of the same physical mechanism within the range of La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, and Dy excluding Ho and later from the lanthanoid. I think. In this range, the ease of occurrence of orbital alignment shows a systematic dependence on the ionic radius as well as the antiferromagnetic transition temperature.
 次に、背景技術において課題として述べた現象の一つである、外場による絶縁体金属転移が低温にとどまっている現象の原因を説明する。この現象は、端的には、通常使用可能な大きさの外場を印加することにより、上記マンガン酸化物の電子相を金属相に転移させるには、電子相の秩序が「強固(robust)」すぎる、というのがその理由である。つまり上記マンガン酸化物における電子相の秩序を低下させて金属相とするために必要となる外場の閾値は、あまりに大きい。この観点で従来のアプローチを捉え直してみると、従来依拠していた原理の理解が容易となる。つまり、バンド理論上では金属になるはずの物質が電子相関(electron correlation)により絶縁体となっているモット絶縁体としてのマンガン酸化物において、従来は、ホールをドープして電子相関を意図的に弱めることにより上記「強固さ」を減少させる、という原理が採用されている。実際、モット転移を外場により制御しようとする従来の態様はいずれもこの動作原理に依拠している。しかし、この原理に基づく限り、軌道整列温度や電荷軌道整列温度が室温以下になるというトレードオフから逃れ得ない。従来はそのトレードオフを克服しえなかったというのが実情である。 Next, the cause of the phenomenon in which the insulator-metal transition due to the external field remains at a low temperature, which is one of the phenomena described in the background art, will be described. In short, the order of the electronic phase is “robust” in order to transfer the electronic phase of the manganese oxide to the metallic phase by applying an external field of a size that can be normally used. The reason is too much. That is, the threshold value of the external field required for reducing the order of the electronic phase in the manganese oxide to form a metal phase is too large. Reexamining the conventional approach from this perspective makes it easier to understand the principles that have been relied on. In other words, in the manganese oxide as a Mott insulator in which the substance that should be a metal in band theory is an insulator by electron-correlation, conventionally, electron correlation is intentionally performed by doping holes. The principle of decreasing the “strength” by weakening is adopted. In fact, any conventional manner in which the Mott transition is controlled by an external field relies on this operating principle. However, as long as it is based on this principle, it cannot escape from the trade-off that the orbital alignment temperature and the charge orbital alignment temperature are below room temperature. The reality is that the trade-off has not been overcome in the past.
 この状況を踏まえて本願発明者が抱いた疑問は、マンガン酸化物などのモット絶縁体において電子系の秩序の強固さを支配している機構は一体何であろうか、というものである。この疑問に取り組むことにより、本願発明者は、軌道整列における強固さが協同現象(cooperative phenomena)によるものであり、電子軌道の数に依存しているという仮説に思い至った。この仮説が正しいとすると、バルク結晶の形態では対処が困難であるほどに「強固」な電子系をもつマンガン酸化物であっても、薄膜に形成し軌道の数を十分に削減しさえすれば、上記トレードオフに対処することが可能となる可能性が高い。つまり、マンガン酸化物を薄膜の形態にすることにより、外場により制御可能な程度にまで上記「強固さ」を低下させうるのではないか、という考えに至る。これが本発明への着想を与えたコンセプトである。 Based on this situation, the present inventor's question is what is the mechanism that governs the robustness of the electronic system in Mott insulators such as manganese oxides? By addressing this question, the present inventor has come to the hypothesis that the robustness in orbital alignment is due to the cooperative phenomenon and depends on the number of electron orbitals. If this hypothesis is correct, even if the manganese oxide has a “strong” electron system that is difficult to deal with in the form of bulk crystals, it only has to be formed in a thin film and the number of orbits reduced sufficiently. There is a high possibility that it will be possible to deal with the above trade-off. That is, it is thought that the above-mentioned “strength” can be reduced to a degree that can be controlled by an external field by making the manganese oxide into a thin film form. This is the concept that gave the idea to the present invention.
 なお、上記仮説の確からしさに関して、実験的説明は後述する実施例に委ねることとし、ここでは、上記仮説を支持する理論的説明を補足する。電荷整列や軌道整列といった強相関電子系において観察される現象は、協同現象であるとともに、電子相関の効果が大きい物質における多体効果(many-body effect)の一側面でもある。つまり、3d軌道を有するMn3+イオンを1つのみ含む単位胞を1つだけ対象とする限り、電荷や電子軌道が整列するという定義自体があてはまらない。そこで、単位胞が2個つながった系における電子状態を考えてみる。この場合、一方の単位胞の電子軌道の状態(軌道状態)ともう一方の単位胞の軌道状態とが互いに競合状態(competitive)となる。このため、両電子軌道が互いに整列したほうが系が安定であるなら軌道整列状態が実現し、整列していないほうが系が安定であるなら軌道整列状態は崩壊する。実際には、この2つの状態、つまり軌道整列状態が実現している状態と崩壊している状態とのエネルギー差は、2個の単位胞の系を安定的にどちらかの状態とするには小さ過ぎる可能性もある。したがって、単位胞が2個つながった系における電子状態においては、確定的に軌道整列するとまでは言い切れない。 In addition, regarding the certainty of the above hypothesis, experimental explanation will be left to the examples described later, and here, the theoretical explanation supporting the above hypothesis will be supplemented. Phenomena observed in strongly correlated electron systems, such as charge alignment and orbital alignment, are not only cooperative but also one aspect of the many-body effect in substances with a large electron correlation effect. In other words, as long as only one unit cell containing only one Mn 3+ ion having a 3d orbital is targeted, the definition itself that charges and electron orbits are aligned does not apply. Therefore, consider the electronic state in a system in which two unit cells are connected. In this case, the electron orbital state (orbital state) of one unit cell and the orbital state of the other unit cell are mutually competitive. For this reason, if the system is more stable when both electron orbits are aligned with each other, the orbital alignment state is realized. If the system is more stable when they are not aligned, the orbital alignment state is collapsed. Actually, the energy difference between these two states, that is, the state where the orbital alignment state is realized and the state where it is collapsed, makes the system of two unit cells stable in either state. It may be too small. Therefore, in an electronic state in a system in which two unit cells are connected, it cannot be said that the orbital alignment is definite.
 ところが系のサイズを大きくして、単位胞がN個(Nは2より十分大きい整数)存在するような系を考えてみる。その場合、N個の単位胞のうち1つの単位胞のみの軌道が他のN-1個の単位胞の軌道から異なっている状態に比べると、N個の単位胞に含まれる軌道すべてが整列しているほうが安定といえる。つまり、異なる軌道を整列させるように周囲のN-1個の単位胞から当該1つの単位胞の軌道に対して相互作用が働く。さらに、N個の単位胞のうちの数個の単位胞(a couple of unit cells)の軌道が他の単位胞の軌道と異なっている状態から比べても、N個の単位胞に含まれる軌道すべてが整列しているほうが安定である。このように、2個より十分に多数のN個の単位胞が存在する系においては、全体の軌道を整列させるように単位胞の軌道間に相互作用が働き、系全体が安定化される。 However, consider a system in which the size of the system is increased and there are N unit cells (N is an integer sufficiently larger than 2). In that case, all orbits contained in the N unit cells are aligned as compared with the state in which the trajectory of only one unit cell out of the N unit cells is different from the orbits of the other N−1 unit cells. It can be said that it is more stable. That is, an interaction works from the surrounding N−1 unit cells to the orbit of the one unit cell so as to align different orbits. Furthermore, even if the orbits of several of the N unit cells (a couple of unit cells) are different from the orbits of other unit cells, the orbits contained in the N unit cells It is more stable if everything is aligned. In this way, in a system in which a sufficiently larger number of N unit cells than two exists, an interaction acts between the orbits of the unit cells so that the entire orbits are aligned, and the entire system is stabilized.
 2単位胞およびN単位胞のそれぞれの上記性質からわかることは、電子系の安定性が電子系それ自体のサイズつまり単位胞の数に依存する、ということである。ここで、繰り返しになるが、電荷整列も軌道整列も電子相関が強い物質における協同現象によりもたらされるため、これらの整列は、いわば電子の自己組織化(self assembly)の所産といえる。したがって、電荷整列および軌道整列に対しては、単位胞の数が多いこと自体が最も本質的役割を果たすのである。このように、協同現象である軌道整列における強固さが電子軌道の数に依存しているという上記仮説は、理論的にも十分な合理性を備えている。 It can be seen from the above properties of the 2 unit cell and the N unit cell that the stability of the electron system depends on the size of the electron system itself, that is, the number of unit cells. Here, again, since both charge alignment and orbital alignment are brought about by a cooperative phenomenon in a substance having a strong electron correlation, these alignments can be said to be the product of self-assembly of electrons. Therefore, the large number of unit cells themselves plays the most essential role for charge alignment and orbital alignment. Thus, the above hypothesis that the robustness in orbital alignment, which is a cooperative phenomenon, depends on the number of electron orbitals has sufficient rationality theoretically.
[1-2 結晶構造の選択]
 マンガン酸化物薄膜積層体においてスイッチング機能を実現させるためには、スイッチング機能を実現させる外場の閾値を低減することに加え、モット転移が一次の相転移(一次転移)であることも考慮される。このため、本実施形態のマンガン酸化物積層体には、ずり変形を許容する結晶の対称性が採用されて、ヤーン・テラーモードの転移の障害とならないようにされる。図1は、本実施形態におけるマンガン酸化物薄膜積層体2の一例の概略断面図であり、(210)面方位基板である基板1の面の上に形成されたマンガン酸化物薄膜の断面図を示す。より具体的には、本実施形態のマンガン酸化物薄膜積層体をなす第1マンガン酸化物薄膜20の結晶構造として、RO層とMnO層とが交互に基板面直方向に積層されている原子積層面の結晶構造、すなわち、RO-MnO-RO…と並ぶ結晶構造を採用することとする。同様に、第2マンガン酸化物薄膜21として、LO層とMnO層とが交互に基板面直方向に積層されている原子積層面の結晶構造、すなわち、LO-MnO-LO…と並ぶ結晶構造を採用することとする。図1(a)は、基板1に形成されているマンガン酸化物薄膜積層体2の構成を示す全体図であり、図1(b)には[001]軸に垂直な面による断面図、図1(c)には[1-20]軸に垂直な面による断面図を示している。図1(b)および(c)の結晶構造は、ともに基板面に垂直な面にて切断したマンガン酸化物薄膜積層体のうち、第1および第2マンガン酸化物薄膜20、21の界面付近のものである。
[1-2 Selection of crystal structure]
In order to realize the switching function in the manganese oxide thin film laminate, in addition to reducing the threshold value of the external field for realizing the switching function, it is also considered that the Mott transition is a first order phase transition (first order transition). . For this reason, the symmetry of the crystal | crystallization which accept | permits a shear deformation is employ | adopted for the manganese oxide laminated body of this embodiment, and it is made not to become an obstacle of the transition of a yarn teller mode. FIG. 1 is a schematic cross-sectional view of an example of a manganese oxide thin film laminate 2 in the present embodiment, and is a cross-sectional view of a manganese oxide thin film formed on the surface of a substrate 1 that is a (210) plane orientation substrate. Show. More specifically, as the crystal structure of the first manganese oxide thin film 20 constituting the manganese oxide thin film stack of this embodiment, atoms in which RO layers and MnO 2 layers are alternately stacked in the direction perpendicular to the substrate surface. A crystal structure of the stacked surface, that is, a crystal structure aligned with RO—MnO 2 —RO. Similarly, as the second manganese oxide thin film 21, the crystal structure of the atomic layer plane in which LO layers and MnO 2 layers are alternately stacked in the direction perpendicular to the substrate surface, that is, crystals aligned with LO-MnO 2 -LO. The structure will be adopted. FIG. 1A is an overall view showing a configuration of a manganese oxide thin film laminate 2 formed on a substrate 1, and FIG. 1B is a cross-sectional view taken along a plane perpendicular to the [001] axis. FIG. 1C shows a cross-sectional view taken along a plane perpendicular to the [1-20] axis. 1 (b) and 1 (c) are both in the vicinity of the interface between the first and second manganese oxide thin films 20 and 21 in the manganese oxide thin film laminate cut at a plane perpendicular to the substrate surface. Is.
 原子積層面がRO層(またはLO層)とMnO層とが交互に積層されている上述した結晶構造においては、図1(b)および(c)に示すように、紙面上の左右方向に延びる基板面(図1(b)および(c)には図示しない)に対して平行な原子層をなすように、RO(LO)の原子層とMnO原子層が交互に積層して配置される。特に、図1(b)および(c)は、本実施形態の第1および第2マンガン酸化物薄膜20、21のRMnOおよびLMnOの組成式により示されるペロフスカイト構造の結晶構造が立方晶を取る場合を例示したものである。本実施形態の第1および第2マンガン酸化物薄膜20、21の結晶構造からまずわかることは、基板面内の2つの結晶軸が非等価なことである。つまり、本実施形態の第1および第2マンガン酸化物薄膜20、21ではずり変形が可能となり、一次転移が可能であるという点である。実際、(210)面内の対称性は1回対称であるため、モット転移による絶縁体金属転移が発現可能となる。 In the above-mentioned crystal structure in which the RO layer (or LO layer) and the MnO 2 layer are alternately stacked on the atomic layer plane, as shown in FIGS. RO (LO) atomic layers and MnO 2 atomic layers are alternately stacked to form an atomic layer parallel to the extending substrate surface (not shown in FIGS. 1B and 1C). The In particular, FIGS. 1B and 1C show that the crystal structure of the perovskite structure represented by the composition formulas of RMnO 3 and LMnO 3 of the first and second manganese oxide thin films 20 and 21 of this embodiment is cubic. The case where it takes is illustrated. First, it can be seen from the crystal structures of the first and second manganese oxide thin films 20 and 21 in this embodiment that the two crystal axes in the substrate plane are not equivalent. In other words, the first and second manganese oxide thin films 20 and 21 of the present embodiment can be deformed and can undergo a primary transition. In fact, since the symmetry in the (210) plane is one-time symmetric, insulator metal transition due to Mott transition can be realized.
 ただし、本実施形態の第1および第2マンガン酸化物薄膜20、21の材質すなわちペロフスカイト構造であり組成式RMnOおよび組成式LMnOにより表現されるマンガン酸化物は、立方晶以外の結晶格子、つまり正方晶(tetragonal)、斜方晶(orthorhombic)、単斜晶(monoclinic)、三斜晶(triclinic)、三方晶(trigonal)、六方晶(hexagonal)といったより低次の対称性のみを持つ結晶構造におけるペロフスカイト構造である場合もある。というのは、いずれの結晶格子の場合であっても、本実施形態の第1および第2マンガン酸化物薄膜20、21のようにRO(LO)原子層とMnO原子層が交互に積層して配置され、基板面内の2つの結晶軸が非等価であれば、上記ずり変形が許容されるためである。なお、本実施形態ペロフスカイト構造には、例えば、上述のユニットセルを複数つなげてはじめて結晶格子の基本単位格子が得られるような結晶構造の物質も含まれている。図1(b)および(c)の結晶構造が実現されていることは、公知のX線回折による結晶点群を同定すれば確認可能である。特にRO(LO)原子層とMnO原子層が交互に積層して配置されていることは、STEM(走査透過型電子顕微鏡)による原子の直接観察により確認することができる。 However, the material of the first and second manganese oxide thin films 20 and 21 of the present embodiment, that is, the perovskite structure and the manganese oxide represented by the composition formula RMnO 3 and the composition formula LMnO 3 is a crystal lattice other than a cubic crystal, In other words, crystals with lower order symmetry such as tetragonal, orthorhombic, monoclinic, triclinic, trigonal, hexagonal. There may be a perovskite structure in the structure. This is because, regardless of the crystal lattice, RO (LO) atomic layers and MnO 2 atomic layers are alternately stacked as in the first and second manganese oxide thin films 20 and 21 of this embodiment. This is because the above-described shear deformation is allowed if the two crystal axes in the substrate plane are not equivalent. Note that the perovskite structure of the present embodiment includes a substance having a crystal structure in which, for example, a basic unit cell of a crystal lattice can be obtained only by connecting a plurality of the unit cells described above. The fact that the crystal structures of FIGS. 1B and 1C are realized can be confirmed by identifying crystal point groups by known X-ray diffraction. In particular, it can be confirmed by direct observation of atoms by a STEM (scanning transmission electron microscope) that RO (LO) atomic layers and MnO 2 atomic layers are alternately stacked.
 次に図1(b)および(c)に示した第1マンガン酸化物薄膜20および第2マンガン酸化物薄膜21の結晶構造における各原子層の電気的性質を説明する。上述したように、基板面直方向には、RO-MnO-RO-MnO-…という積層構造が実現され、元素Rを含みMnを含まない原子層(RO原子層)と、Mnを含み元素Rを含まない原子層(MnO原子層)とが交互に積層されている。第2マンガン酸化物薄膜21においてもLO原子層とMnO原子層との間において同様である。一般に希土類RまたはLの価数は+3が安定であり、イオン結合を仮定してOの価数を-2とすると、RMnOやLMnOの電荷中性条件からMnの価数は+3となる。このような仮定の下で上記結晶構造の積層体をなす各原子層の電荷の分布を再度見直すと、ROおよびLOは+1、MnOは-1、と原子層毎に+、-に交互に帯電していることに気づく。図1(b)および(c)にはこの符号を明示している。その結果、本実施形態のマンガン酸化物薄膜積層体2は極性表面を有することとなる。 Next, the electrical properties of each atomic layer in the crystal structure of the first manganese oxide thin film 20 and the second manganese oxide thin film 21 shown in FIGS. 1B and 1C will be described. As described above, a layered structure of RO—MnO 2 —RO—MnO 2 —... Is realized in the direction perpendicular to the substrate surface, and includes an atomic layer that includes element R and does not include Mn (RO atomic layer), and Mn. The atomic layers not containing the element R (MnO 2 atomic layers) are alternately stacked. The same applies to the second manganese oxide thin film 21 between the LO atomic layer and the MnO 2 atomic layer. In general, the valence of rare earth R or L is stable at +3. If the valence of O is assumed to be −2 assuming an ionic bond, the valence of Mn becomes +3 due to charge neutrality conditions of RMnO 3 and LMnO 3. . Under these assumptions, the charge distribution of each atomic layer forming the laminate having the above crystal structure is reviewed again. RO and LO are +1, MnO 2 is -1, and each atomic layer is alternately + and −. Notice that it is charged. In FIG. 1 (b) and (c), this symbol is clearly shown. As a result, the manganese oxide thin film laminate 2 of the present embodiment has a polar surface.
[1-3 基板の選択]
 図1(a)の図中の白抜き矢印はこの極性表面から内在的に作用する電圧(電場)を示している。基板1の組成をABOと表現した場合、マンガン酸化物薄膜積層体2が形成される基板1の表面がBO原子層で終端されているとき、つまり、基板1の表面がBO面であるときに、その基板1に第1または第2マンガン酸化物薄膜20または21を成長させるとする。すると、第1または第2マンガン酸化物薄膜20または21が成長し始める最初の原子層はRO層またはLO層となるため、この場合には電圧(電場)の方向は図1(a)に示す白抜き矢印の向きとなる。逆に、基板1の表面がAO面で終端されている場合には、この矢印の向きは反転した向きとなる。なお、基板1の表面をどちらで終端するかを造り分けることには特に困難性はない。
[1-3 Substrate selection]
The white arrow in the figure of Fig.1 (a) has shown the voltage (electric field) which acts intrinsically from this polar surface. When the composition of the substrate 1 is expressed as ABO 3 , when the surface of the substrate 1 on which the manganese oxide thin film laminate 2 is formed is terminated with a BO 2 atomic layer, that is, the surface of the substrate 1 is a BO 2 surface. At some point, the first or second manganese oxide thin film 20 or 21 is grown on the substrate 1. Then, the first atomic layer where the first or second manganese oxide thin film 20 or 21 starts to grow is the RO layer or the LO layer. In this case, the direction of the voltage (electric field) is shown in FIG. The direction of the white arrow. Conversely, when the surface of the substrate 1 is terminated with an AO plane, the direction of the arrow is reversed. Note that it is not particularly difficult to make a different one to terminate the surface of the substrate 1.
 このように、基板面直方向にRO-MnO-RO-MnO-…やLO-MnO-LO-MnO-…のようにRやLを含む原子面とMnを含む原子面とを交互に積層する目的で上記のように極性表面を利用することは、マンガン酸化物薄膜に対して適用することができる一つの典型的な手法である。そしてその極性表面の最も典型的なもののひとつが、上述したように、基板1として(210)面方位の基板を採用することである。その場合に、組成式RMnOの第1マンガン酸化物薄膜20や組成式LMnOの第2マンガン酸化物薄膜21の結晶構造を基板1の結晶に対してコヒーレントに形成することにより、図1(b)および(c)に示した結晶構造を形成することができる。 In this way, an atomic plane containing R and L and an atomic plane containing Mn, such as RO—MnO 2 —RO—MnO 2 —... And LO—MnO 2 —LO—MnO 2 —. Utilizing a polar surface as described above for the purpose of alternating lamination is one typical technique that can be applied to manganese oxide thin films. One of the most typical polar surfaces is to employ a (210) orientation substrate as the substrate 1 as described above. In this case, by forming the coherent crystal structure of the second manganese oxide thin film 21 of manganous oxide film 20 and the composition formula Lmno 3 of formula RMnO 3 with respect to the crystal of the substrate 1, FIG. 1 ( The crystal structures shown in b) and (c) can be formed.
 本願発明者は、対称性の低い(210)面方位の基板を基板1に採用すると、基板面に垂直な電場のみならず、別の電場が生成されるという効果も見出している。図2は、本実施形態における追加の電場を説明する説明図であり、図2(a)および(b)は、それぞれ、図1(a)および(b)と同様の断面図である。図2(b)の原子積層面において元素R、元素L、Mnのそれぞれに付した矢印は、実際の結晶格子におけるR、L、Mnの位置の相対的な変位の向きを示すものである。つまり、本願の発明者の検討によれば、基板1として対称性の低い(210)面方位の基板1にマンガン酸化物薄膜積層体2を形成した実際の結晶格子では、第1および第2マンガン酸化物薄膜20、21をなすマンガン酸化物の結晶格子に、図2(b)に示すようなR、L、Mnの位置の変位が生じているようである。この変位は、正に帯電しカチオンとなるR、L、Mnが、O(-2価)に対し変位する相対的なものであり分極を伴う。そしてその分極は、積層方向にやや傾いた[-120]軸方向、すなわち[-110]軸方向に誘起される。図2(a)には、矢印により、マンガン酸化物内部に生じる上記分極によりマンガン酸化物薄膜積層体2全体に生じる巨視的な分極の方向を示している。このように、基板1として(210)面方位基板を採用することにより、この巨視的な分極を生じさせることができる。これは例えば面内が4回対称である(100)面方位基板上の薄膜では得られない効果である。そして、本構成のマンガン酸化物薄膜積層体2では膜厚方向及び面内方向、ともに内在的な電圧(電場)が作用していることから、絶縁体-金属転移に必要とされる外場の閾値がさらに低減することが期待されるのである。なお、上記変位が生じる結果、RO原子層(LO原子層)およびMnO原子層において、R(L)やMnとOとの間にわずかに変位が生じる。このため、RO原子層(LO原子層)およびMnO原子層において各カチオンのなす面と酸素のなす面とにずれも生じる。 The inventor of the present application has also found an effect that when a substrate having a low symmetry (210) plane orientation is adopted as the substrate 1, not only an electric field perpendicular to the substrate surface but also another electric field is generated. FIG. 2 is an explanatory diagram for explaining an additional electric field in the present embodiment, and FIGS. 2A and 2B are cross-sectional views similar to FIGS. 1A and 1B, respectively. The arrows attached to the elements R, L, and Mn on the atomic layer plane in FIG. 2B indicate the relative displacement directions of the positions of R, L, and Mn in the actual crystal lattice. That is, according to the examination of the inventors of the present application, in the actual crystal lattice in which the manganese oxide thin film stack 2 is formed on the substrate 1 having a low symmetry (210) plane orientation as the substrate 1, the first and second manganese It seems that displacements of positions of R, L, and Mn as shown in FIG. 2B are generated in the crystal lattice of the manganese oxide that forms the oxide thin films 20 and 21. This displacement is relative to the displacement of R, L, and Mn, which are positively charged and become cations, with respect to O (−2), and is accompanied by polarization. The polarization is induced in the [−120] axis direction slightly inclined in the stacking direction, that is, the [−110] axis direction. In FIG. 2A, the direction of macroscopic polarization generated in the entire manganese oxide thin film stack 2 by the polarization generated inside the manganese oxide is indicated by an arrow. Thus, by adopting the (210) plane orientation substrate as the substrate 1, this macroscopic polarization can be generated. This is, for example, an effect that cannot be obtained with a thin film on a (100) plane orientation substrate in which the in-plane symmetry is four times. In the manganese oxide thin film laminate 2 of this configuration, since an intrinsic voltage (electric field) acts both in the film thickness direction and in the in-plane direction, the external field required for the insulator-metal transition It is expected that the threshold will be further reduced. As a result of the above displacement, slight displacement occurs between R (L) or Mn and O in the RO atomic layer (LO atomic layer) and the MnO 2 atomic layer. For this reason, in the RO atomic layer (LO atomic layer) and the MnO 2 atomic layer, a deviation occurs between the surface formed by each cation and the surface formed by oxygen.
[1-4 基板ひずみによる競合の導入]
 上述した電場の効果に加え、本実施形態におけるマンガン酸化物薄膜積層体2は、第1および第2マンガン酸化物薄膜20、21が基板1から受けるひずみを活用することにより、金属相に転移させやすくすることが可能である。本願発明者は、マンガン酸化物薄膜では、(100)面、(010)面、および(001)面のうちのどの面が軌道整列面となるかが、各面の面間隔により決定されるとの知見を得ている。なお、軌道整列面は、(100)面となった場合には、それに平行なすべての(100)面が軌道整列面となる。他の面についても同様である。そして軌道整列面は、軌道整列面の面間距離ができるだけ小さくなるような向きに形成される性質がある。この性質から、(100)面、(010)面、および(001)面のうち、面間隔が最も小さい面が軌道整列面となる。
[1-4 Introduction of competition due to substrate strain]
In addition to the effect of the electric field described above, the manganese oxide thin film laminate 2 in the present embodiment is transferred to the metal phase by utilizing the strain that the first and second manganese oxide thin films 20 and 21 receive from the substrate 1. It can be made easier. The inventor of the present application determines which of the (100) plane, the (010) plane, and the (001) plane is the orbital alignment plane in the manganese oxide thin film based on the plane spacing of each plane. Has gained knowledge. When the orbital alignment plane becomes the (100) plane, all the (100) planes parallel to it become the orbital alignment plane. The same applies to other aspects. The track alignment surface has such a property that it is formed in such an orientation that the distance between the track alignment surfaces becomes as small as possible. Due to this property, the plane with the smallest plane spacing among the (100) plane, (010) plane, and (001) plane is the orbital alignment plane.
 本願の発明者は、マンガン酸化物薄膜積層体2が室温で既に軌道整列相にあることを考慮し、スイッチングの閾値を低減させたり室温におけるスイッチングを可能にしたりするためのさらなる工夫が軌道整列面の向きを利用すれば可能となるとの着想を得た。具体的には、第1および第2マンガン酸化物薄膜20、21において、軌道整列面を互いに異ならせ、かつ両マンガン酸化物薄膜を互いに接触させて形成し、その界面を利用する。第1および第2マンガン酸化物薄膜20、21の界面にて軌道整列面の競合を生じさることができれば、単膜を用いた場合より軌道整列相を不安定化させることが可能となるからである。 The inventor of the present application considers that the manganese oxide thin film stack 2 is already in the orbital alignment phase at room temperature, and further contrivances for reducing the switching threshold and enabling switching at room temperature have been proposed. I got the idea that it would be possible by using the orientation of. Specifically, in the first and second manganese oxide thin films 20 and 21, the orbital alignment planes are made different from each other and both the manganese oxide thin films are brought into contact with each other, and the interface is used. If competition between the orbital alignment planes can be generated at the interface between the first and second manganese oxide thin films 20 and 21, the orbital alignment phase can be destabilized more than when a single film is used. is there.
 この点は、上述した「強固さ」の低下に注目して説明することもできる。説明のための事例として、第1および第2マンガン酸化物薄膜20、21において、各マンガン酸化物薄膜がそれぞれの固有の強固さを有しているとする。この場合には、バルクでの「強固さ」に対する低減効果は薄膜形態に形成することのみに基づくものであった。本実施形態においては、上述した薄膜に形成することによる強固さの低下に加えて、両マンガン酸化物薄膜を接触させた界面における軌道整列面の不連続による不安定性によっても強固さが低下するのである。つまり、両マンガン酸化物薄膜における軌道整列面における電子相の秩序は、界面の不安定性をきっかけにして、固有の強固さを反映したそれぞれの閾値に満たない外場によって崩壊し始める。つまり、本実施形態における両マンガン酸化物薄膜のなす界面は、モット転移を促進するために意図的に設けた金属相のシード(seed)として機能する。 This point can also be explained by paying attention to the above-mentioned decrease in “strength”. As an example for explanation, in each of the first and second manganese oxide thin films 20 and 21, it is assumed that each manganese oxide thin film has inherent strength. In this case, the reduction effect on “strength” in the bulk was based only on the formation of a thin film. In this embodiment, in addition to the decrease in strength due to the formation of the thin film described above, the strength also decreases due to instability due to the discontinuity of the orbital alignment surface at the interface where both the manganese oxide thin films are in contact. is there. In other words, the order of the electronic phase on the orbital alignment plane in both manganese oxide thin films starts to decay due to the instability of the interface and the external field that does not satisfy the respective threshold values reflecting the inherent strength. That is, the interface formed by the two manganese oxide thin films in the present embodiment functions as a seed of a metal phase that is intentionally provided to promote Mott transition.
 そして、第1および第2マンガン酸化物薄膜20、21の互いの軌道整列面を(100)面、(010)面、および(001)面のいずれとするかを制御するためには、基板1から受けるひずみにより両マンガン酸化物薄膜の結晶構造における面間隔を制御すればよいことに本願発明者は気づいた。本実施形態における第1および第2マンガン酸化物薄膜20、21それぞれの結晶格子は、バルク状態にあるときにはそれぞれの本来の格子定数となっているものの、基板1の面の上に形成されると、基板1の結晶格子とマッチしようとする。具体的には、その材質のバルクでの単位胞体積の3乗根が基板1の格子定数よりも大きい第1マンガン酸化物薄膜20には圧縮応力が作用して圧縮ひずみが生じる。逆に、バルクでの単位胞体積の3乗根が基板1の格子定数よりも小さい材質の第2マンガン酸化物薄膜21には引張応力が作用して伸張ひずみが生じる。この際の結晶軸配置は、例えば基板1としてSrTiO(以下STOと表記する)の(210)面方位基板を採用したときには、図1(b)、(c)および図3に示したようなものとなる。この条件では、(010)面に比べて(100)面は、(210)面方位の基板面に近い向きに向いていることとなる。 In order to control whether the orbital alignment planes of the first and second manganese oxide thin films 20 and 21 are the (100) plane, the (010) plane, and the (001) plane, the substrate 1 The present inventor has realized that the interplanar spacing in the crystal structure of both manganese oxide thin films may be controlled by the strain received from the above. When the crystal lattice of each of the first and second manganese oxide thin films 20 and 21 in the present embodiment is the original lattice constant when in the bulk state, it is formed on the surface of the substrate 1. Try to match the crystal lattice of the substrate 1. Specifically, the compressive stress acts on the first manganese oxide thin film 20 in which the cube root of the unit cell volume in the bulk of the material is larger than the lattice constant of the substrate 1, and compressive strain is generated. On the contrary, tensile stress acts on the second manganese oxide thin film 21 having a material in which the third root of the unit cell volume in the bulk is smaller than the lattice constant of the substrate 1, and tensile strain is generated. For example, when a (210) plane orientation substrate of SrTiO 3 (hereinafter referred to as STO) is adopted as the substrate 1, the crystal axis arrangement at this time is as shown in FIGS. 1 (b), 1 (c) and FIG. It will be a thing. Under this condition, the (100) plane is oriented closer to the (210) plane orientation substrate surface than the (010) plane.
 図3は、本実施形態のマンガン酸化物薄膜積層体2において、軌道整列面が(001)面となっている第1マンガン酸化物20と、軌道整列面が(100)面となっている第2マンガン酸化物21との軌道整列面の関係を示す説明図である。すなわち、第1マンガン酸化物薄膜20においては、軌道整列面が図3の紙面に平行な(001)面となる。これは、第1マンガン酸化物薄膜20では基板1からの圧縮ひずみのために、(001)面の面間隔が大きく縮むのに対し(100)面および(010)面の面間隔はさほど影響されないためである。一方、第2マンガン酸化物薄膜21においては、軌道整列面が図3の紙面に垂直で基板面から約26.6度傾いた(100)面となる。これは、第2マンガン酸化物薄膜21では基板1からの伸張ひずみのために、(001)面の面間隔が大きく広がるのに対し(100)面および(010)面の面間隔はさほど影響されないためである。そして、第2マンガン酸化物薄膜21において(100)面および(010)面のどちらが軌道整列面となるかも、面間隔により決定される。(100)面および(010)面とを比較した場合、(010)面の面間隔が(100)面のものよりも広がることから、最も面間隔が小さくなる(100)面が軌道整列面となる。このような構成のマンガン酸化物薄膜積層体2においては、第1マンガン酸化物薄膜20の(001)面の軌道整列面と第2マンガン酸化物薄膜21の(100)面の軌道整列面とが第1マンガン酸化物薄膜20と第2マンガン酸化物薄膜21との界面において競合し、上記不安定性を意図的に生じさせることが可能となる。なお、本願の発明者は、第2マンガン酸化物薄膜21と同様の結晶において、軌道整列面が(010)面ではなく(100)面となることを、電気的測定および光学的測定により確認している。 FIG. 3 shows the first manganese oxide 20 in which the orbital alignment plane is the (001) plane and the first manganese oxide 20 in which the orbital alignment plane is the (100) plane in the manganese oxide thin film stack 2 of the present embodiment. It is explanatory drawing which shows the relationship of the orbital alignment surface with 2 manganese oxide 21. FIG. That is, in the first manganese oxide thin film 20, the orbital alignment plane is a (001) plane parallel to the paper surface of FIG. This is because, in the first manganese oxide thin film 20, the plane spacing of the (001) plane is greatly reduced due to compressive strain from the substrate 1, whereas the plane spacing of the (100) plane and the (010) plane is not significantly affected. Because. On the other hand, in the second manganese oxide thin film 21, the orbital alignment plane is a (100) plane that is perpendicular to the paper surface of FIG. 3 and is inclined about 26.6 degrees from the substrate surface. This is because, in the second manganese oxide thin film 21, the plane spacing of the (001) plane is greatly expanded due to the extension strain from the substrate 1, whereas the plane spacing of the (100) plane and the (010) plane is not significantly affected. Because. In the second manganese oxide thin film 21, which of the (100) plane and the (010) plane becomes the orbital alignment plane is determined by the plane spacing. When comparing the (100) plane and the (010) plane, the plane spacing of the (010) plane is wider than that of the (100) plane, so the (100) plane with the smallest plane spacing is the track alignment plane. Become. In the manganese oxide thin film laminate 2 having such a configuration, the (001) plane orbit alignment surface of the first manganese oxide thin film 20 and the (100) plane orbit alignment surface of the second manganese oxide thin film 21 are formed. It becomes possible to compete at the interface between the first manganese oxide thin film 20 and the second manganese oxide thin film 21 and intentionally cause the instability. The inventor of the present application confirmed that the orbital alignment plane is not the (010) plane but the (100) plane in the same crystal as the second manganese oxide thin film 21 by electrical measurement and optical measurement. ing.
 すなわち第1および第2マンガン酸化物薄膜20、21を、互いにAサイトのイオン半径を適宜変えた2種類のマンガン酸化物の組合せとすることにより、界面での軌道整列面の競合を実現することができる。既に述べたように、単位胞とは擬立方晶(pseudo-cubic)としての単位胞であり、基板の格子定数も同様に擬立方晶でのものであることを再度付記しておく。また、本実施形態における第1マンガン酸化物薄膜20と第2マンガン酸化物薄膜21の順序は、上述したように基板1の側に第1マンガン酸化物薄膜20を置く配置には限られず、第2マンガン酸化物薄膜21を基板1の側に配置することも含む。 That is, the first and second manganese oxide thin films 20 and 21 are made of a combination of two types of manganese oxides with the ionic radii of the A sites appropriately changed, thereby realizing orbital alignment surface competition at the interface. Can do. As already mentioned, the unit cell is a unit cell as a pseudo-cubic crystal, and it is added again that the lattice constant of the substrate is also a pseudo-cubic crystal. The order of the first manganese oxide thin film 20 and the second manganese oxide thin film 21 in the present embodiment is not limited to the arrangement in which the first manganese oxide thin film 20 is placed on the substrate 1 side as described above. It also includes disposing the 2 manganese oxide thin film 21 on the substrate 1 side.
[1-5 外部からの検知性とデバイス機能の実現]
 本実施形態において提供されるいずれかのマンガン酸化物薄膜積層体が実際にモット転移しているかどうかは、種々の測定手段によって検出することが可能である。例えば、光学的測定によって、透過率または反射率を測定すれば、測定のためのプローブ光のエネルギーに対する電子構造の変化として、転移の有無を測定することが可能である。その他、磁気特性、変形、電気抵抗といった任意の物理量としてモット転移の実現を検知することが可能である。そして、そのような物理量としての変化は、単にモット転移を検知できるかどうかではなく、本実施形態のマンガン酸化物薄膜積層体をデバイスに適用する際にスイッチング機能として活用される材料特性も提供する。
[1-5 Realization of external detectability and device function]
Whether any of the manganese oxide thin film stacks provided in the present embodiment has actually undergone Mott transition can be detected by various measuring means. For example, if transmittance or reflectance is measured by optical measurement, it is possible to measure the presence or absence of transition as a change in the electronic structure with respect to the energy of the probe light for measurement. In addition, it is possible to detect the realization of Mott transition as an arbitrary physical quantity such as magnetic characteristics, deformation, and electrical resistance. And such a change as a physical quantity provides not only whether or not the Mott transition can be detected, but also provides material characteristics that are utilized as a switching function when the manganese oxide thin film stack of this embodiment is applied to a device. .
[1-6 積層化による検知性の向上(次元クロスオーバー)]
 ただし、マンガン酸化物などのモット絶縁体を上記のように薄膜やその積層体に形成すると、その特性の変化を外部から検知しにくい場合がある。この問題は必ずしも常に生じるとはいえない。もしその問題が、電気的な性質を反映する電子の伝導度に表われるドルーデ(Drude)成分、つまり直流抵抗の成分に関連して生じることがあるならば、それは系の低次元性(薄膜の場合は二次元性)に起因しキャリア(電子)が局在化するような場合であるといえる。例えば、マンガン酸化物薄膜積層体2が薄膜であることから、二次元の領域の一部において電子が局在化し伝導性を低下させることが起こりうる。この問題への対策として、本実施形態においては、次元クロスオーバー(dimension crossover)という仕掛けを利用することが好ましい。
[1-6 Improved detectability by stacking (dimensional crossover)]
However, when a Mott insulator such as manganese oxide is formed on a thin film or a laminate thereof as described above, it may be difficult to detect the change in characteristics from the outside. This problem does not always occur. If the problem can arise in relation to the Drude component, which is the DC resistance component, which appears in the conductivity of the electrons reflecting the electrical properties, it is the low-dimensional nature of the system (thin film In this case, it can be said that carriers (electrons) are localized due to two-dimensionality. For example, since the manganese oxide thin film laminate 2 is a thin film, it is possible that electrons are localized in a part of a two-dimensional region and conductivity is lowered. As a countermeasure against this problem, in the present embodiment, it is preferable to use a mechanism called dimension crossover.
 ここで、上記マンガン酸化物薄膜積層体2に接して形成する薄膜、つまり、上記マンガン酸化物薄膜積層体2に連続するように形成する強相関酸化物薄膜3(図4)について説明する。この強相関酸化物薄膜3は、モット転移する上記マンガン酸化物とは別の材質であり次元クロスオーバーを利用するために追加される層である。一般に、強相関酸化物薄膜3において、金属相を安定させたり、金属絶縁体転移が実現したりするためには、その薄膜はある程度より厚く形成されていることが望ましい。強相関酸化物薄膜3の膜厚があまりに薄いと安定した金属相や金属絶縁体転移が実現しにくくなるためである。すなわち、強相関酸化物薄膜3を、ある臨界値となる厚み(以下「臨界膜厚(critical thickness)」という)に比べてより厚く形成する場合に、強相関酸化物には金属相が実現したり金属絶縁体転移が実現したりする。その意味において、臨界膜厚とは、上記の金属相が安定に存在するため、または、金属絶縁体転移が発現するために好ましい強相関酸化物の膜厚の下限値ともいえる。この強相関酸化物薄膜3と上記マンガン酸化物薄膜積層体2とが互いに接してつまり連続して基板上に形成された酸化物積層体の構成を考えてみよう。図4は、本実施形態における強相関酸化物薄膜3を接して作製したマンガン酸化物薄膜積層体2を含む酸化物積層体の一例の構成を示す概略断面図である。図4(a)はマンガン酸化物薄膜積層体2の基板側に強相関酸化物薄膜3を形成した例であり、図4(b)は、マンガン酸化物薄膜積層体2の表面に強相関酸化物薄膜3を形成した例である。この酸化物積層体は、基板1の面の上にまず強相関金属薄膜3を形成しその後にマンガン酸化物薄膜積層体2を形成しても(図4(a))、逆に、基板1の面の上に先にマンガン酸化物薄膜積層体2を形成しその後に強相関金属薄膜3を形成しても(図4(b))、どちらの構成も採用することが可能である。さらにここでは、酸化物積層体全体の厚さt、マンガン酸化物の厚さtm、強相関酸化物薄膜3の厚さt1が、強相関酸化物薄膜3の金属相の臨界膜厚tcに対して、
 t=tm+t1>tc、かつt1<tc
を満たすものとする。例えば、強相関酸化物薄膜3の臨界膜厚tc(室温で金属相となるものとする)としては強磁性金属であるLa0.7Sr0.3MnO薄膜を用いた場合、(210)面方位基板上では、8単位胞(約4nm)となる。
Here, the thin film formed in contact with the manganese oxide thin film laminate 2, that is, the strongly correlated oxide thin film 3 (FIG. 4) formed so as to be continuous with the manganese oxide thin film laminate 2 will be described. The strongly correlated oxide thin film 3 is a layer that is a material different from the manganese oxide that undergoes Mott transition and is added in order to use dimensional crossover. In general, in the strongly correlated oxide thin film 3, in order to stabilize the metal phase or to realize the metal-insulator transition, it is desirable that the thin film is formed to be thicker to some extent. This is because if the thickness of the strongly correlated oxide thin film 3 is too thin, it is difficult to realize a stable metal phase or metal-insulator transition. That is, when the strongly correlated oxide thin film 3 is formed thicker than a certain critical thickness (hereinafter referred to as “critical thickness”), a metal phase is realized in the strongly correlated oxide. Or metal-insulator transition. In that sense, the critical film thickness can be said to be a lower limit value of the film thickness of a strongly correlated oxide that is preferable because the above-described metal phase is stably present or metal-insulator transition occurs. Consider the structure of an oxide laminate in which the strongly correlated oxide thin film 3 and the manganese oxide thin film laminate 2 are in contact with each other, that is, continuously formed on the substrate. FIG. 4 is a schematic cross-sectional view showing the configuration of an example of an oxide laminate including the manganese oxide thin film laminate 2 produced by contacting the strongly correlated oxide thin film 3 in the present embodiment. 4A shows an example in which a strongly correlated oxide thin film 3 is formed on the substrate side of the manganese oxide thin film laminate 2, and FIG. 4B shows a strongly correlated oxidation on the surface of the manganese oxide thin film laminate 2. In this example, the physical thin film 3 is formed. In this oxide laminate, even if the strongly correlated metal thin film 3 is first formed on the surface of the substrate 1 and then the manganese oxide thin film laminate 2 is formed (FIG. 4A), conversely, the substrate 1 Even if the manganese oxide thin film laminate 2 is first formed on the surface, and then the strongly correlated metal thin film 3 is formed (FIG. 4B), either configuration can be employed. Further, here, the total thickness t of the oxide stack, the thickness tm of the manganese oxide, and the thickness t1 of the strongly correlated oxide thin film 3 are relative to the critical film thickness tc of the metal phase of the strongly correlated oxide thin film 3. And
t = tm + t1> tc and t1 <tc
Shall be satisfied. For example, when the La 0.7 Sr 0.3 MnO 3 thin film that is a ferromagnetic metal is used as the critical film thickness tc of the strongly correlated oxide thin film 3 (assuming that it becomes a metal phase at room temperature), (210) On the plane orientation substrate, there are 8 unit cells (about 4 nm).
 このような厚みの関係を満たすように各層が形成されていると、マンガン酸化物薄膜積層体2が絶縁体金属転移であるモット転移を外場印加により起こす際、強相関酸化物薄膜3に局在していたキャリアは、それまで感じていたt1という膜厚ではなく、t=tm+t1を感じることとなる。ここで、t1はtcに満たないのに対し、tはtcを越える。すなわち、マンガン酸化物薄膜積層体2がモット転移により絶縁体から金属に転移すると、その効果が強相関酸化物薄膜3の転移にも反映されて、検知性が高まるのである。これが次元クロスオーバーの原理である。この次元クロスオーバーを利用すると、モット転移による電気抵抗変化を電流として取り出すことが容易となる。つまり、より弱い外場によるスイッチングを実現するために、マンガン酸化物薄膜積層体2の膜厚を、電流による検知可能性を確保するのに要求される下限を下回る厚みに作製したとしても、強相関酸化物薄膜3の助けを借りて電流による検知が可能となるのである。なお、強相関酸化物薄膜3を利用する次元クロスオーバーの作用は、マンガン酸化物薄膜積層体2の第1マンガン酸化物薄膜20と第2マンガン酸化物薄膜21のいずれに接して配置されていても、その作用に違いはない。 When each layer is formed so as to satisfy such a thickness relationship, when the manganese oxide thin film laminate 2 causes a Mott transition, which is an insulator-metal transition, due to an external field application, the strong correlation oxide thin film 3 is localized. The existing carrier feels t = tm + t1 instead of the film thickness t1 that has been felt so far. Here, t1 is less than tc, whereas t exceeds tc. That is, when the manganese oxide thin film laminate 2 is transferred from the insulator to the metal by the Mott transition, the effect is reflected in the transition of the strongly correlated oxide thin film 3 and the detectability is increased. This is the principle of dimensional crossover. When this dimensional crossover is used, it becomes easy to take out a change in electrical resistance due to Mott transition as a current. In other words, in order to realize switching by a weaker external field, even if the thickness of the manganese oxide thin film laminate 2 is made to be less than the lower limit required to ensure the detectability by current, it is strong. With the help of the correlation oxide thin film 3, detection by current becomes possible. Note that the dimensional crossover action using the strongly correlated oxide thin film 3 is arranged in contact with either the first manganese oxide thin film 20 or the second manganese oxide thin film 21 of the manganese oxide thin film laminate 2. But there is no difference in its action.
 さらに好ましくは、この次元クロスオーバーを一層効果的に作用させるため、強相関酸化物薄膜を、片側ではなくマンガン酸化物薄膜積層体2の両面に接触させて形成する。図4は、本実施形態において強相関酸化物薄膜31、32をマンガン酸化物薄膜積層体の両面に接触させて形成した酸化物積層体の一例の概略断面図である。すなわち、酸化物積層体全体の厚さt、マンガン酸化物薄膜積層体2の厚さtm、第1の強相関酸化物薄膜31の厚さt1、第2の強相関酸化物薄膜32の厚さt2が、強相関酸化物薄膜31、32の金属相の臨界膜厚tcに対して、
 t=tm+t1+t2>tc、かつ、max(t1、t2)<tc
の関係を満たすものとする。ただし、max()は、変数のうちの最大値を返す関数である。このようにマンガン酸化物薄膜積層体の両面に強相関酸化物薄膜を接触させて形成すると、上記次元クロスオーバーの効果がより効果的に発揮される。つまりマンガン酸化物薄膜積層体2の厚みtmが、片側のみに強相関酸化物薄膜を配置する場合よりも一層薄くてもよいこととなる。こうしてより弱い外場によるスイッチングが実現される。
More preferably, in order to make this dimensional crossover work more effectively, the strongly correlated oxide thin film is formed in contact with both sides of the manganese oxide thin film laminate 2 instead of one side. FIG. 4 is a schematic cross-sectional view of an example of an oxide laminate formed by bringing the strongly correlated oxide thin films 31 and 32 into contact with both surfaces of the manganese oxide thin film laminate in the present embodiment. That is, the thickness t of the entire oxide stack, the thickness tm of the manganese oxide thin film stack 2, the thickness t1 of the first strongly correlated oxide thin film 31, and the thickness of the second strongly correlated oxide thin film 32 t2 is the critical film thickness tc of the metal phase of the strongly correlated oxide thin films 31 and 32,
t = tm + t1 + t2> tc and max (t1, t2) <tc
Satisfy the relationship. Here, max () is a function that returns the maximum value of variables. Thus, when the strongly correlated oxide thin film is formed in contact with both surfaces of the manganese oxide thin film laminate, the effect of the dimensional crossover is more effectively exhibited. That is, the thickness tm of the manganese oxide thin film laminate 2 may be thinner than when the strongly correlated oxide thin film is disposed only on one side. In this way, switching by a weaker external field is realized.
[2 実施例]
 次に、本実施形態をより具体的な実施例に基づいて説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順、要素または部材の向きや具体的配置、そして測定のために採用する外場等は本発明の趣旨を逸脱しない限り適宜変更することかできる。したがって、本発明の範囲は以下の具体例に限定されるものではない。また、引き続き図4および図5を参照して説明する。
[2 Examples]
Next, the present embodiment will be described based on more specific examples. The materials, amounts used, ratios, processing contents, processing procedures, orientations and specific arrangements of elements or members, and external fields adopted for measurement shown in the following examples are appropriately changed without departing from the spirit of the present invention. I can do it. Therefore, the scope of the present invention is not limited to the following specific examples. Further, description will be continued with reference to FIGS.
[2-1 実施例1]
 本実施形態の実施例1は、マンガン酸化物薄膜積層体2の両面それぞれに第1および第2の強相関酸化物薄膜31、32を接触させた図5に示す構成に作製された酸化物積層体の実施例である。マンガン酸化物薄膜積層体2をなす第1マンガン酸化物薄膜20としてPrMnO、第2マンガン酸化物薄膜21としてSmMnO、第1および第2の強相関酸化物薄膜31、32としてLa0.5Sr0.5MnO(以下、LSMOと表記する)、基板1としてSTO(210)面方位基板をそれぞれ採用した。このSTO(210)基板である基板1は、表面がBサイトのTiにより終端されるものとした。なお、第1および第2マンガン酸化物薄膜20、21の材質であるPrMnOおよびSmMnOのバルク物質での単位胞体積の3乗根は、それぞれ、0.3919nmおよび0.3889nmである。このため、基板1の材質であるSTOの格子定数0.3905nmに比較して、バルクでの物質での単位胞体積の3乗根が、第1マンガン酸化物薄膜20では大きく、また、第2マンガン酸化物薄膜21では小さい。このため、基板1から、第1マンガン酸化物薄膜20に対しては圧縮ひずみが、また、第2マンガン酸化物薄膜21に対しては伸張ひずみが作用し、実施例1における軌道整列面は、それぞれ、(001)面および(100)面となる。その結果、第1マンガン酸化物薄膜20と第2マンガン酸化物薄膜21の界面での軌道整列面には競合が生じることも期待される。また、第1および第2の強相関酸化物薄膜31、32は、LSMOと類似の組成でキュリー温度Tが最大(370K)となるLa0.7Sr0.3MnOではなく、Srを増大させてオーバードープされた組成比La0.5Sr0.5MnOのLSMOとした。これは、マンガン酸化物薄膜2が絶縁体金属転移した際に供給されるキャリア(電子)を考慮に入れ第1および第2の強相関酸化物薄膜31、32のキュリー温度Tを高める意図によるものである。
[2-1 Example 1]
Example 1 of this embodiment is an oxide stack produced in the configuration shown in FIG. 5 in which the first and second strongly correlated oxide thin films 31 and 32 are in contact with both surfaces of the manganese oxide thin film stack 2. Example of body. Manganous oxide film 20 as a PrMnO 3 forming the manganese oxide thin film stack 2, second manganese oxide film 21 as a SmMnO 3, La 0.5 as the first and second correlated oxide films 31 and 32 Sr 0.5 MnO 3 (hereinafter referred to as LSMO) and STO (210) plane orientation substrate were adopted as the substrate 1, respectively. The substrate 1, which is this STO (210) substrate, has a surface terminated by Ti at the B site. The cube roots of the unit cell volume in the bulk materials of PrMnO 3 and SmMnO 3 that are the materials of the first and second manganese oxide thin films 20 and 21 are 0.3919 nm and 0.3889 nm, respectively. Therefore, the cubic root of the unit cell volume in the bulk material is larger in the first manganese oxide thin film 20 than in the lattice constant of 0.3905 nm of STO, which is the material of the substrate 1, and the second The manganese oxide thin film 21 is small. For this reason, compressive strain acts on the first manganese oxide thin film 20 from the substrate 1, and tensile strain acts on the second manganese oxide thin film 21. These are the (001) plane and the (100) plane, respectively. As a result, it is expected that competition occurs at the orbital alignment plane at the interface between the first manganese oxide thin film 20 and the second manganese oxide thin film 21. The first and second strongly correlated oxide thin films 31 and 32 are not composed of La 0.7 Sr 0.3 MnO 3 having a composition similar to that of LSMO and the Curie temperature T c being maximum (370 K). An over-doped LSMO with a composition ratio La 0.5 Sr 0.5 MnO 3 increased. This is due to the intention to increase the Curie temperature Tc of the first and second strongly correlated oxide thin films 31 and 32 in consideration of the carriers (electrons) supplied when the manganese oxide thin film 2 undergoes the insulator-metal transition. Is.
 次に、実施例1の酸化物積層体の作製方法について説明する。第1および第2マンガン酸化物薄膜20、21、ならびに第1および第2の強相関酸化物薄膜31、32を、いずれもレーザーアブレーション法により形成した。各薄膜のためのターゲット材には、固相反応法により作製したそれぞれの材質の多結晶材料をφ20mm×5mmの円筒形に成形したものを用いた。まず、STO(210)基板の表面をBサイトにより終端される表面とするために、バッファードフッ酸により表面のSrO層をエッチングする処理を行なった。次に、真空チャンバー内にSTO(210)基板を取り付けた後、3×10-9Torr(4×10-7Pa)以下に真空排気した。その後、基板の事前処理として、まず、高純度の酸素ガスを1mTorr(0.133Pa)導入し、STO(210)基板を600℃に加熱してLSATを4原子層分だけ堆積した。なお、ここでの原子層は、1原子層が(210)面間隔d(210)となるものである。また、膜厚つまり原子層数の制御は、事前に検討したレーザーパルスのショット数と原子層数との間の関係に基づいて決定したものである。この事前成膜処理において電子線回折パターンはアモルファスを示すハローパターンが得られた。事前処理として続けて基板を850℃に加熱したところ、原子層レベルで平坦な(210)面からの電子線回折パターンが得られるようになった。こうして、STO(210)基板に形成したアモルファスであったLSAT膜が単結晶化すること、および、基板面内の格子定数はSTO基板のそれと同一となることを確認し、その事前処理を経て基板1を準備した。なお、STO(210)基板にこのようなLSAT層の形成を行う理由は、STO(210)基板の場合のSTO基板表面では(100)面及び(010)面からなるファセットによる凹凸が発生しやすいため、表面の原子レベルでの平坦性が損なわれるのを防ぐためである。 Next, a method for manufacturing the oxide stack of Example 1 will be described. The first and second manganese oxide thin films 20, 21 and the first and second strongly correlated oxide thin films 31, 32 were both formed by a laser ablation method. As the target material for each thin film, a polycrystalline material made by a solid phase reaction method and formed into a cylindrical shape of φ20 mm × 5 mm was used. First, in order to make the surface of the STO (210) substrate a surface terminated by a B site, a treatment of etching the surface SrO layer with buffered hydrofluoric acid was performed. Next, after mounting the STO (210) substrate in the vacuum chamber, the substrate was evacuated to 3 × 10 −9 Torr (4 × 10 −7 Pa) or less. Thereafter, as a pretreatment of the substrate, first, high-purity oxygen gas was introduced at 1 mTorr (0.133 Pa), and the STO (210) substrate was heated to 600 ° C. to deposit LSAT for 4 atomic layers. Here, the atomic layer is one in which one atomic layer has a (210) spacing d (210). Further, the control of the film thickness, that is, the number of atomic layers, is determined based on the relationship between the number of shots of the laser pulse and the number of atomic layers studied in advance. In this preliminary film formation process, an electron beam diffraction pattern was obtained as a halo pattern indicating amorphous. When the substrate was continuously heated to 850 ° C. as a pretreatment, an electron diffraction pattern from a flat (210) plane at the atomic layer level was obtained. In this way, it was confirmed that the amorphous LSAT film formed on the STO (210) substrate was single-crystallized, and that the lattice constant in the substrate surface was the same as that of the STO substrate, and the substrate was subjected to pre-processing. 1 was prepared. The reason why such an LSAT layer is formed on the STO (210) substrate is that irregularities due to facets composed of the (100) plane and the (010) plane are likely to occur on the STO substrate surface in the case of the STO (210) substrate. Therefore, the flatness at the atomic level on the surface is prevented from being impaired.
 続いて、到達温度900℃になるように基板1を加熱し波長248nmのKrFエキシマレーザを、チャンバーのレーザー光導入ポートを介してターゲットに照射し、LSAT層を形成したSTO基板である基板1の上に、第1の強相関酸化物薄膜31としてLSMOを15原子層だけ形成した。引き続き同一雰囲気中で、上記ポートを介してPrMnOのターゲットに上記レーザーを照射することにより、第1マンガン酸化物薄膜20であるPrMnO薄膜を3原子層だけ形成した。次いで、SmMnOのターゲットに上記レーザーを照射することにより、第2マンガン酸化物薄膜21であるSmMnO薄膜を3原子層だけ形成した。さらに再びLSMOのターゲットを用いて第2の強相関酸化物薄膜32としてLSMOを15原子層だけ形成した。各層の厚みは、第1の強相関酸化物薄膜31の厚みt1が5単位胞(約2.6nm)、マンガン酸化物薄膜積層体2(第1および第2マンガン酸化物薄膜20、21の合計)の厚みtmが2単位胞(約1.1nm)、そして第2の強相関酸化物薄膜32の厚みt2が5単位胞(約2.6nm)である。酸化物積層体全体の厚みtは6.3nmである。ここで,第1の強相関酸化物薄膜31および第2の強相関酸化物薄膜32のLSMOが室温(300K)で金属相となるための臨界膜厚tcは、8単位胞(4.1nm)である。したがって、本実施例において形成された酸化物積層体の各層の膜厚においては、t=tm+t1+t2>tc、かつmax(t1、t2)<tcの関係が満たされている。 Subsequently, the substrate 1 is heated so as to reach an ultimate temperature of 900 ° C., and a target is irradiated with a KrF excimer laser having a wavelength of 248 nm through the laser beam introduction port of the chamber to form the STO substrate that is the STO substrate on which the LSAT layer is formed. On the top, as the first strongly correlated oxide thin film 31, only 15 atomic layers of LSMO were formed. Subsequently, the PrMnO 3 target was irradiated with the laser through the port in the same atmosphere, thereby forming only three atomic layers of PrMnO 3 thin film as the first manganese oxide thin film 20. Next, the SmMnO 3 target was irradiated with the laser to form a SmMnO 3 thin film, which is the second manganese oxide thin film 21, by only three atomic layers. Furthermore, only 15 atomic layers of LSMO were formed as the second strongly correlated oxide thin film 32 using the LSMO target again. As for the thickness of each layer, the thickness t1 of the first strongly correlated oxide thin film 31 is 5 unit cells (about 2.6 nm), and the manganese oxide thin film stack 2 (the total of the first and second manganese oxide thin films 20 and 21). ) Has a thickness tm of 2 unit cells (about 1.1 nm), and the second strongly correlated oxide thin film 32 has a thickness t2 of 5 unit cells (about 2.6 nm). The total thickness t of the oxide stack is 6.3 nm. Here, the critical film thickness tc for the LSMO of the first strongly correlated oxide thin film 31 and the second strongly correlated oxide thin film 32 to become a metal phase at room temperature (300 K) is 8 unit cells (4.1 nm). It is. Therefore, in the film thickness of each layer of the oxide stack formed in this example, the relationship of t = tm + t1 + t2> tc and max (t1, t2) <tc is satisfied.
 続いて、作製したマンガン酸化物薄膜2を含む酸化物積層体に4端子電極を形成し、室温(300K)にて磁気抵抗測定を行った。外場として磁場を採用したのは測定が容易なためである。この測定における試料の抵抗値は、磁束密度3.0T以上の磁場印加により減少し始め、3.5Tの磁場下では10kΩにまで低減した。このように、巨大な負の磁気抵抗効果が得られることを確認した。そして、磁場を再び減少させると抵抗は再び10MΩ以上となり、酸化物積層体に含まれているマンガン酸化物2においてモット転移である絶縁体金属転移が室温で発現することが明らかとなった。以上説明したように、室温でスイッチングを実現するマンガン酸化物薄膜2が作製可能なことを実験的に確認した。 Subsequently, a four-terminal electrode was formed on the oxide laminate including the produced manganese oxide thin film 2, and the magnetoresistance measurement was performed at room temperature (300K). The reason for adopting a magnetic field as the external field is that measurement is easy. The resistance value of the sample in this measurement started to decrease by applying a magnetic field having a magnetic flux density of 3.0 T or more, and decreased to 10 kΩ under a 3.5 T magnetic field. Thus, it was confirmed that a huge negative magnetoresistance effect was obtained. When the magnetic field was reduced again, the resistance again became 10 MΩ or more, and it became clear that the insulator-metal transition, which is a Mott transition, appears at room temperature in the manganese oxide 2 contained in the oxide stack. As described above, it was experimentally confirmed that the manganese oxide thin film 2 that realizes switching at room temperature can be produced.
[2-2 実施例2]
 実施例1ではマンガン酸化物薄膜積層体2の両面に強相関酸化物薄膜を接触させた酸化物積層体の例を説明した。しかし、マンガン酸化物薄膜積層体2の一方の面側のみに強相関酸化物薄膜を接触させた酸化物積層体を採用しても次元クロスオーバーを利用することができる。この点を確認するための実施例として、図4(a)に示したものと同様の2層構造の酸化物積層体を採用した本実施形態の実施例2を説明する。実施例2においては、基板1としてSTO(210)基板に実施例1と同様の事前処理を施したものを採用し、強相関酸化物薄膜3としてLSMOを21原子層だけ形成し、さらにその上にマンガン酸化物薄膜積層体2をなす第1マンガン酸化物薄膜20としてPrMnO、第2マンガン酸化物薄膜21としてSmMnOをそれぞれ採用した。第1マンガン酸化物薄膜20および第2マンガン酸化物薄膜21はそれぞれ3原子層だけ形成した。実施例2における基板1の表面を終端する原子層を決定するための事前処理方法、および、酸化物積層体つまりマンガン酸化物薄膜積層体2および強相関酸化物薄膜3の各々の形成方法は、いずれも実施例1と同様とした。
[2-2 Example 2]
In Example 1, the example of the oxide laminated body which made the strongly correlated oxide thin film contact both surfaces of the manganese oxide thin film laminated body 2 was demonstrated. However, dimensional crossover can be used even when an oxide laminate in which a strongly correlated oxide thin film is brought into contact with only one surface side of the manganese oxide thin film laminate 2 is employed. As an example for confirming this point, Example 2 of the present embodiment in which an oxide laminate having a two-layer structure similar to that shown in FIG. In Example 2, an STO (210) substrate pretreated in the same manner as in Example 1 is used as the substrate 1, and only 21 atomic layers of LSMO are formed as the strongly correlated oxide thin film 3. Further, manganese oxide thin film stack 2 PrMnO 3 as manganous oxide film 20 constituting the, SmMnO 3 were employed respectively as a second manganese oxide film 21 on. Each of the first manganese oxide thin film 20 and the second manganese oxide thin film 21 was formed by three atomic layers. The pretreatment method for determining the atomic layer that terminates the surface of the substrate 1 in Example 2, and the formation method of each of the oxide laminate, that is, the manganese oxide thin film laminate 2 and the strongly correlated oxide thin film 3, All were the same as in Example 1.
 実施例2として作製された試料に4端子電極を形成して、面内の抵抗を無磁場下にて測定したところ、温度を低温(液体窒素温度以下)から上昇させる過程において、まず約200K付近で絶縁体金属転移が観測された。これは強相関酸化物薄膜3であるLSMOが絶縁体金属転移したことによるものである。さらに温度を上昇させ続けると、室温(300K)付近を含む電子デバイスの動作として想定される温度範囲(253~353K)において試料全体は絶縁体となっていた。そこで、実施例1と同様に室温にて磁気抵抗を測定したところ、実施例2の試料は磁束密度4Tの磁場で1kΩ、無磁場下で100kΩとなる振る舞いを示した。つまり、実施例2の室温での磁気抵抗効果は、実施例1の試料と比較して、磁場下での抵抗は低くなる一方、磁場を無印加としてもそれほど増加せず、抵抗変化は2桁以内にとどまった。この抵抗変化は、十分に検知可能なものではあるものの、理想的にはより大きいことが望ましい。抵抗変化が小さくなる原因について、本願発明者は、厚く形成された強相関酸化物薄膜3であるLSMOによる漏れ電流のためであると推測している。 When a four-terminal electrode was formed on the sample produced as Example 2 and the in-plane resistance was measured in the absence of a magnetic field, in the process of raising the temperature from a low temperature (below the liquid nitrogen temperature), first, around 200K. Insulator-metal transition was observed. This is because LSMO, which is the strongly correlated oxide thin film 3, has undergone an insulator-metal transition. When the temperature was further raised, the entire sample became an insulator in the temperature range (253 to 353 K) assumed as the operation of the electronic device including around room temperature (300 K). Thus, when the magnetic resistance was measured at room temperature in the same manner as in Example 1, the sample of Example 2 showed a behavior of 1 kΩ in a magnetic field with a magnetic flux density of 4 T and 100 kΩ in the absence of a magnetic field. That is, the magnetoresistive effect at room temperature of Example 2 is lower than that of the sample of Example 1 while the resistance under a magnetic field is low, but does not increase so much even when no magnetic field is applied, and the resistance change is two orders of magnitude. Stayed within. Although this resistance change is sufficiently detectable, it is ideally desirable to be larger. The inventor of the present application speculates that the reason why the resistance change becomes small is due to a leakage current caused by LSMO, which is the strongly correlated oxide thin film 3 formed thick.
 なお、各薄膜の配置を逆にして基板の面の上に形成した図4(b)の構成、つまり、基板1側にマンガン酸化物薄膜積層体積層体2をなす第1マンガン酸化物薄膜20であるPrMnOと第2マンガン酸化物薄膜21であるSmMnOを、基板1からこの順に作製しその後に強相関酸化物薄膜3であるLSMOを形成した試料においても、同様の温度依存性を示す磁気抵抗効果が測定された。さらに、基板1から、第2マンガン酸化物薄膜21であるSmMnOと第1マンガン酸化物薄膜20であるPrMnOとをこの順に作製してこれらをマンガン酸化物薄膜積層体2とし、その後に強相関酸化物薄膜3であるLSMOを形成した試料においても、同様の温度依存性を示す磁気抵抗効果が測定された。 In addition, the structure of FIG.4 (b) formed on the surface of a board | substrate by making arrangement | positioning of each thin film reverse, ie, the 1st manganese oxide thin film 20 which makes the manganese oxide thin film laminated body 2 on the board | substrate 1 side. the PrMnO 3 and SmMnO 3 is a second manganese oxide thin film 21 is, even in the samples to form a LSMO is strongly correlated oxide thin film 3 subsequently produced from the substrate 1 in this order, show similar temperature dependence The magnetoresistive effect was measured. Furthermore, the substrate 1, and Preparation and SmMnO 3 is a second manganese oxide film 21 and a PrMnO 3 is manganous oxide film 20 in this order and these manganese oxide thin film laminate 2, strong thereafter The magnetoresistive effect showing the same temperature dependence was also measured in the sample in which LSMO, which is the correlation oxide thin film 3, was formed.
[本実施形態の変形例]
 本実施形態は、実施例1および2を含め明示したもの以外のマンガン酸化物薄膜や酸化物積層体の構成によっても実施することは可能である。上記実施例1ではSTO(210)基板上でのPrMnO/SmMnOという積層体構造の例を示した。しかし、La、Pr,Nd、Gd、Eu、Tb、Dy等、一般にはランタノイドの希土類元素をR(またはL)として選択する組成式RMnOや組成式LMnOの第1および第2マンガン酸化物薄膜を採用することも可能である。これは、一つには、(210)面方位基板上にエピタキシャル薄膜を作製可能なためである。しかも、これらのいずれか少なくとも1種の材質を選択しても、単位胞体積の3乗根と基板の格子定数の大小関係を満たす組み合わせを用いることができる。その一例を説明すると、基板1としてLSAT(210)基板を採用する場合には、基板の材質の格子定数が0.3870nmである。この場合には、SmMnOが今度は基板の格子定数よりも大きなマンガン酸化物として第1マンガン酸化物薄膜20の材質として選択することが可能となる。その際の第2マンガン酸化物薄膜21の例としては、バルク物質での単位胞堆積の3乗根が0.3853nmと小さいTbMnOを選択することができる。
[Modification of this embodiment]
This embodiment can also be carried out with a structure of a manganese oxide thin film or an oxide laminate other than those explicitly described including Examples 1 and 2. In Example 1 above, an example of a laminated structure of PrMnO 3 / SmMnO 3 on an STO (210) substrate was shown. However, La, Pr, Nd, Gd, Eu, Tb, Dy, and the like, generally, the first and second manganese oxides of the composition formula RMnO 3 and the composition formula LMnO 3 that select the rare earth element of the lanthanoid as R (or L) It is also possible to adopt a thin film. This is partly because an epitaxial thin film can be produced on a (210) plane oriented substrate. Moreover, even if at least one of these materials is selected, a combination that satisfies the magnitude relationship between the cube root of the unit cell volume and the lattice constant of the substrate can be used. As an example, when an LSAT (210) substrate is adopted as the substrate 1, the lattice constant of the material of the substrate is 0.3870 nm. In this case, SmMnO 3 can now be selected as the material of the first manganese oxide thin film 20 as a manganese oxide larger than the lattice constant of the substrate. As an example of the second manganese oxide thin film 21 at that time, TbMnO 3 having a small cube root of unit cell deposition of 0.3853 nm can be selected.
 なお、第1および第2マンガン酸化物薄膜20、21となるマンガン酸化物は、それぞれが複数種のランタノイド元素R(L)を含む材質とすることができる。この場合であっても、Pr1-xNdMnO(0<x<1)等のように全域固溶である2種類の固溶体のみに限られない。3種類以上の元素をAサイトに有するように選ぶことにより、平均としての格子定数を調整することが可能である。基板ならびにバルクにおける格子定数が上記条件を満たす限り、基板ならびに第1および第1マンガン酸化物薄膜の材質の選択は適宜に行なうことが可能である。第1および第2マンガン酸化物薄膜20、21のいずれかの材質に、複数種の元素を含むものを採用することは、スイッチングの閾値を低減する点からも上述したものとは別異の効果を有している。すなわち、たとえ同じ3価であり、かつ、平均としての格子定数が変わらないとしても、第1マンガン酸化物薄膜を、1種のランタノイドのRMnOにより形成する場合と、2種のランタノイドの(RMnO(RMnO1-xにより形成する場合とでは、異なる外場閾値となると考えている。これは、Aサイトが複数種の異なるイオン半径の元素により形成されると、Mnを囲む酸素八面体の回転角が局所的にばらつくためである。つまり、結晶構造に一様でないランダムネスが導入される複数種の元素の場合には、軌道整列の長距離秩序の崩壊が容易となる。その結果、それほど効果は大きくないものの絶縁体金属転移に必要な外場の閾値を低減する効果も期待される。この事情は第2マンガン酸化物薄膜のマンガン酸化物に複数種のランタノイドを採用した場合や、第1および第2マンガン酸化物薄膜の両者の材料に複数のランタノイドのマンガン酸化物を採用した場合についても同様である。 In addition, the manganese oxide used as the 1st and 2nd manganese oxide thin films 20 and 21 can each be made into the material containing multiple types of lanthanoid element R (L). Even in this case, the present invention is not limited to only two types of solid solutions, such as Pr 1-x Nd x MnO 3 (0 <x <1). The lattice constant as an average can be adjusted by selecting three or more elements at the A site. As long as the lattice constant in the substrate and bulk satisfies the above conditions, the material of the substrate and the first and first manganese oxide thin films can be appropriately selected. Employing a material containing a plurality of elements as the material of any of the first and second manganese oxide thin films 20 and 21 is different from the above-mentioned effect from the viewpoint of reducing the switching threshold. have. That is, even if they are the same trivalent and the average lattice constant does not change, the first manganese oxide thin film is formed with one type of lanthanoid RMnO 3 and two types of lanthanoid (R 1 MnO 3 ) x (R 2 MnO 3 ) 1-x is considered to be a different external field threshold. This is because the rotation angle of the oxygen octahedron surrounding Mn varies locally when the A site is formed of a plurality of elements having different ionic radii. That is, in the case of a plurality of types of elements in which non-uniform randomness is introduced into the crystal structure, the long-range order of the orbital alignment is easily broken. As a result, although not very effective, an effect of reducing the external field threshold necessary for the insulator-metal transition is also expected. This is the case when a plurality of lanthanoids are used for the manganese oxide of the second manganese oxide thin film, or when a plurality of lanthanoid manganese oxides are used for both the first and second manganese oxide thin films. Is the same.
 なお、複数のランタノイドのマンガン酸化物を採用するためには、実施例として上述した各実施例と同様のレーザーアブレーションにおいてターゲットを所望の比率に作製しておくことにより、マンガン酸化物薄膜の組成比を調整することが可能である。 In order to employ a plurality of lanthanoid manganese oxides, the composition ratio of the manganese oxide thin film is obtained by preparing the target in a desired ratio in laser ablation similar to each example described above as an example. Can be adjusted.
 本実施形態のマンガン酸化物薄膜積層体2においては、基板1よりバルクの格子定数が大きい第1マンガン酸化物薄膜20と小さい第2マンガン酸化物薄膜21の順序は特に限定されない。これは、第1マンガン酸化物薄膜と第2マンガン酸化物薄膜の両者の界面に対する競合の導入に対して、基板1の位置が直接関係ないためである。また、強相関酸化物薄膜3や第1の強相関酸化物薄膜31、32を形成する場合においても、これらの膜または基板と第1および第2マンガン酸化物薄膜20、21との位置関係には制約がない。 In the manganese oxide thin film laminate 2 of the present embodiment, the order of the first manganese oxide thin film 20 having a larger bulk lattice constant than the substrate 1 and the second second manganese oxide thin film 21 is not particularly limited. This is because the position of the substrate 1 is not directly related to the introduction of competition for the interface between the first manganese oxide thin film and the second manganese oxide thin film. Even when the strongly correlated oxide thin film 3 and the first strongly correlated oxide thin films 31 and 32 are formed, the positional relationship between these films or the substrate and the first and second manganese oxide thin films 20 and 21 is maintained. There are no restrictions.
 また、第1マンガン酸化物薄膜20および第2マンガン酸化物薄膜21の膜厚の組合せについても、特段の制約はない。上述した各例においてこれらの膜の膜厚は均等なものを説明したものの、両膜の膜厚の値や、膜厚の相対的な比率について特段の限定はなない。 Also, there is no particular restriction on the combination of the thicknesses of the first manganese oxide thin film 20 and the second manganese oxide thin film 21. Although the film thicknesses of these films have been described in the above examples, there are no particular limitations on the film thickness values of both films and the relative ratios of the film thicknesses.
 さらに、第1および第2マンガン酸化物薄膜20、21として形成される膜の数についても特段の限定はない。例えば、第1マンガン酸化物薄膜20と第2マンガン酸化物薄膜21の対を複数積層して形成した超格子構造とすることによって、軌道整列面の競合をより多く導入することも可能である。なお、「1-1 マンガン酸化物薄膜積層体におけるモット転移の容易化」にて説明したマンガン酸化物薄膜積層体を薄膜とすることによる効果と、「1-4 基板ひずみによる競合の導入」にて説明した効果は、両立させることが可能であると同時に、補い合う関係にもある。つまり、第1および第2マンガン酸化物薄膜を接して形成することによって導入される軌道整列面の競合は、マンガン酸化物薄膜積層体を薄膜とする条件を緩和させるものともいえる。 Furthermore, the number of films formed as the first and second manganese oxide thin films 20 and 21 is not particularly limited. For example, by using a superlattice structure in which a plurality of pairs of the first manganese oxide thin film 20 and the second manganese oxide thin film 21 are stacked, it is possible to introduce more competition of orbital alignment planes. For the effect of making the manganese oxide thin film laminate described in “1-1 Facilitating Mott transition in the manganese oxide thin film laminate” and “1-4 Introduction of competition due to substrate strain” The effects described above can be made compatible and at the same time have a complementary relationship. That is, it can be said that the competition of the orbital alignment planes introduced by forming the first and second manganese oxide thin films in contact eases the conditions for forming the manganese oxide thin film stack as a thin film.
 加えて、強相関酸化物薄膜3の膜厚や、第1の強相関酸化物薄膜31および第2の強相関酸化物薄膜32の膜厚の組合せについても、特段の制約はない。これらの膜厚については、上述したように次元クロスオーバーにより検出を容易化するには不等式によって明示した上述の関係を充足することが好適である。それ以外にも、例えば強相関酸化物薄膜3や第1の強相関酸化物薄膜31、第2の強相関酸化物薄膜32が生じさせる追加のひずみの作用を調整するためといった実用面から、これらの膜の膜厚を調整することができる。 In addition, there is no particular restriction on the thickness of the strongly correlated oxide thin film 3 and the combination of the thickness of the first strongly correlated oxide thin film 31 and the second strongly correlated oxide thin film 32. About these film thicknesses, in order to facilitate detection by dimensional crossover as described above, it is preferable to satisfy the above-described relationship specified by the inequality. In addition to these, from the practical aspect, for example, for adjusting the action of the additional strain generated by the strongly correlated oxide thin film 3, the first strongly correlated oxide thin film 31, and the second strongly correlated oxide thin film 32. The film thickness of the film can be adjusted.
 さらに加えて、上述したとおり、実施例1および2はいずれも、モット転移を外部から検出する動作を次元クロスオーバーによって容易にするために強相関酸化物薄膜を付加したものである。しかし、マンガン酸化物薄膜積層体2のみにて実施された場合であっても、室温においてモット転移を外場により制御するというスイッチング機能自体は実現されている。なぜなら、次元クロスオーバーは、電気的な検出を容易にする手段に過ぎず、マンガン酸化物薄膜積層体2において実現するモット転移は強相関酸化物薄膜がなくとも生じるためである。 In addition, as described above, in each of Examples 1 and 2, a strongly correlated oxide thin film is added to facilitate the operation of detecting the Mott transition from the outside by dimensional crossover. However, even when implemented only with the manganese oxide thin film laminate 2, the switching function itself of controlling the Mott transition by an external field at room temperature is realized. This is because the dimensional crossover is only a means for facilitating electrical detection, and the Mott transition realized in the manganese oxide thin film stack 2 occurs even without a strongly correlated oxide thin film.
 そして、基板1についても本実施形態にて例示したもの以外の構成とすることができる。例えば、それ自体はペロフスカイト構造を取らない結晶体、例えばシリコン単結晶基板に、適当なバッファー層を形成した基板を採用することも排除されない。これは、そのような基板の面の上に、ペロフスカイト構造のマンガン酸化物薄膜積層体をなす第1および第2マンガン酸化物薄膜を形成することによっても、上述した本実施形態と同様の効果を達成することもできるためである。 Further, the substrate 1 may have a configuration other than that exemplified in this embodiment. For example, it is not excluded to adopt a substrate in which an appropriate buffer layer is formed on a crystal body that does not have a perovskite structure, for example, a silicon single crystal substrate. This is because the first and second manganese oxide thin films forming the perovskite structure manganese oxide thin film stack are formed on the surface of such a substrate, and the same effect as that of the above-described embodiment can be obtained. This is because it can also be achieved.
 以上、本発明の実施形態を具体的に説明した。上述の各実施形態および実施例は、発明を説明するために記載されたものであり、例えば、本実施形態で例示した薄膜や基板の材料やその組成、膜厚、形成方法、外場の種類、印加方法等は、上記実施形態に限定されるものではない。むしろ、本出願の発明の範囲は、請求の範囲の記載に基づいて定められるべきものである。また、各実施形態の他の組合せを含む本発明の範囲内に存在する変形例もまた、請求の範囲に含まれるものである。 The embodiment of the present invention has been specifically described above. Each of the above-described embodiments and examples are described for explaining the invention. For example, the material and composition of the thin film and the substrate exemplified in the present embodiment, the film thickness, the forming method, and the type of external field The application method and the like are not limited to the above embodiment. Rather, the scope of the invention of the present application should be determined based on the description of the claims. In addition, modifications that exist within the scope of the present invention including other combinations of the embodiments are also included in the scope of the claims.
 本発明は、スイッチング機能を実現するマンガン酸化物薄膜積層体または酸化物積層体を提供することにより、磁場、光、電気、圧力等の外場印加によるスイッチング現象を利用する装置として利用される。 The present invention is used as a device that utilizes a switching phenomenon caused by application of an external field such as a magnetic field, light, electricity, or pressure by providing a manganese oxide thin film stack or an oxide stack that realizes a switching function.
 1 基板
 2 マンガン酸化物積層体
 20 第1マンガン酸化物薄膜
 21 第2マンガン酸化物薄膜
 3 強相関酸化物薄膜
 31 第1の強相関酸化物薄膜
 32 第2の強相関酸化物薄膜
DESCRIPTION OF SYMBOLS 1 Board | substrate 2 Manganese oxide laminated body 20 1st manganese oxide thin film 21 2nd manganese oxide thin film 3 Strong correlation oxide thin film 31 1st strong correlation oxide thin film 32 2nd strong correlation oxide thin film

Claims (6)

  1.  基板の面の上に形成されたマンガン酸化物薄膜積層体であって、
     互いに接して形成された第1マンガン酸化物薄膜および第2マンガン酸化物薄膜を備え、
     該第1マンガン酸化物薄膜は、バルクでの単位胞体積の3乗根が前記基板の格子定数よりも大きい組成式RMnO(ただし、Rはランタノイドから選択される少なくとも1種の3価の希土類元素)の組成を有し、元素Rを含みMnを含まない原子層およびMnを含み元素Rを含まない原子層が基板面の垂直方向に向かって交互に積層されており、
     前記第2マンガン酸化物薄膜は、バルクでの単位胞体積の3乗根が前記基板の格子定数よりも小さい組成式LMnO(ただし、Lは、ランタノイドから選択される少なくとも1種の、Rとして選択されたもの以外の3価の希土類元素)の組成を有し、元素Lを含みMnを含まない原子層およびMnを含み元素Lを含まない原子層が基板面の垂直方向に向かって交互に積層されており、
     前記第1マンガン酸化物薄膜および前記第2マンガン酸化物薄膜それぞれが、基板面の面内方向に、互いに非等価な2つの結晶軸を有している
     マンガン酸化物薄膜積層体。
    A manganese oxide thin film laminate formed on the surface of the substrate,
    A first manganese oxide thin film and a second manganese oxide thin film formed in contact with each other;
    The first manganese oxide thin film has a composition formula RMnO 3 in which the cubic root of the unit cell volume in bulk is larger than the lattice constant of the substrate (where R is at least one trivalent rare earth selected from lanthanoids). Element) and an atomic layer containing element R and not containing Mn and an atomic layer containing Mn and not containing element R are alternately stacked in the direction perpendicular to the substrate surface,
    The second manganese oxide thin film has a composition formula LMnO 3 in which the cube root of the unit cell volume in bulk is smaller than the lattice constant of the substrate (where L is at least one selected from lanthanoids, R An atomic layer containing element L and not containing Mn and an atomic layer containing Mn and not containing element L alternately in the direction perpendicular to the substrate surface. Are stacked,
    Each of the first manganese oxide thin film and the second manganese oxide thin film has two crystal axes that are not equivalent to each other in the in-plane direction of the substrate surface.
  2.  前記第1マンガン酸化物薄膜の組成が、組成式RMnO(ただし、Rは、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dyからなる群から選択される少なくとも1種の、Lとして選択されたもの以外の3価の希土類元素)により表されるものである
     請求項1に記載のマンガン酸化物薄膜積層体。
    The composition of the first manganese oxide thin film has a composition formula RMnO 3 (where R is at least one selected from the group consisting of La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy) The manganese oxide thin film laminate according to claim 1, which is represented by a trivalent rare earth element other than those selected as L).
  3.  前記第2マンガン酸化物薄膜の組成が、組成式LMnO(ただし、Lは、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dyからなる群から選択される少なくとも1種の、Rとして選択されたもの以外の3価の希土類元素)により表されるものである
     請求項1に記載のマンガン酸化物薄膜積層体。
    The composition of the second manganese oxide thin film has a composition formula LMnO 3 (where L is at least one selected from the group consisting of La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy) The manganese oxide thin film laminate according to claim 1, which is represented by a trivalent rare earth element other than those selected as R).
  4.  前記基板の面方位が(210)面方位である
     請求項1乃至請求項3のいずれか1項に記載のマンガン酸化物薄膜積層体。
    4. The manganese oxide thin film stack according to claim 1, wherein a plane orientation of the substrate is a (210) plane orientation. 5.
  5.  請求項1乃至請求項3のいずれか1項に記載のマンガン酸化物薄膜積層体と、
     該マンガン酸化物薄膜積層体のいずれかの面に接している強相関酸化物薄膜と
     を備えており、
     酸化物積層体全体の厚さt、前記マンガン酸化物薄膜積層体の厚さtm、および前記強相関酸化物薄膜の厚さt1が、該強相関酸化物薄膜が金属相となるための臨界膜厚tcに対して、
     t=tm+t1>tc、かつ
     t1<tc、
    の関係を満たしている
     酸化物積層体。
    The manganese oxide thin film laminate according to any one of claims 1 to 3,
    A strongly correlated oxide thin film in contact with any surface of the manganese oxide thin film laminate,
    The thickness t of the whole oxide stack, the thickness tm of the manganese oxide thin film stack, and the thickness t1 of the strongly correlated oxide thin film are critical films for the strongly correlated oxide thin film to become a metal phase. For thickness tc
    t = tm + t1> tc and t1 <tc,
    An oxide laminate that satisfies the relationship of
  6.  請求項1乃至請求項3のいずれか1項に記載のマンガン酸化物薄膜積層体と、
     該マンガン酸化物薄膜積層体の一方の面に接している第1の強相関酸化物薄膜と、
     該マンガン酸化物薄膜積層体の他方の面に接している第2の強相関酸化物薄膜と
     を備えており、
     酸化物積層体全体の厚さt、前記マンガン酸化物薄膜積層体の厚さtm、前記第1および第2の強相関酸化物薄膜それぞれの厚さt1およびt2が、各強相関酸化物薄膜が金属相となるための臨界膜厚tcに対して、
     t=tm+t1+t2>tc、かつ
     max(t1、t2)<tc、
     ただし、max()は、変数のうちの最大値を返す関数、
    の関係を満たしている
     酸化物積層体。
    The manganese oxide thin film laminate according to any one of claims 1 to 3,
    A first strongly correlated oxide thin film in contact with one surface of the manganese oxide thin film laminate;
    A second strongly correlated oxide thin film in contact with the other surface of the manganese oxide thin film laminate,
    The total thickness t of the oxide stack, the thickness tm of the manganese oxide thin film stack, the thicknesses t1 and t2 of the first and second strongly correlated oxide thin films, For the critical film thickness tc for becoming a metal phase,
    t = tm + t1 + t2> tc and max (t1, t2) <tc,
    Where max () is a function that returns the maximum value of the variables,
    An oxide laminate that satisfies the relationship of
PCT/JP2012/081761 2012-02-15 2012-12-07 Manganese oxide thin film laminate and oxide laminate WO2013121660A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-030345 2012-02-15
JP2012030345 2012-02-15

Publications (1)

Publication Number Publication Date
WO2013121660A1 true WO2013121660A1 (en) 2013-08-22

Family

ID=48983802

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/081761 WO2013121660A1 (en) 2012-02-15 2012-12-07 Manganese oxide thin film laminate and oxide laminate

Country Status (1)

Country Link
WO (1) WO2013121660A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08102528A (en) * 1994-09-30 1996-04-16 Sharp Corp Ferroelectric memory element
JPH0963991A (en) * 1995-08-25 1997-03-07 Tdk Corp Manufacture of ferromagnetic material thin film and electronic device
JP2005213078A (en) * 2004-01-28 2005-08-11 Sharp Corp Perovskite manganese oxide thin film, switching element having the same, and method for producing the thin film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08102528A (en) * 1994-09-30 1996-04-16 Sharp Corp Ferroelectric memory element
JPH0963991A (en) * 1995-08-25 1997-03-07 Tdk Corp Manufacture of ferromagnetic material thin film and electronic device
JP2005213078A (en) * 2004-01-28 2005-08-11 Sharp Corp Perovskite manganese oxide thin film, switching element having the same, and method for producing the thin film

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
YASUSHI OGIMOTO ET AL.: "Interface-mediated phase control in ultrathin double-layer structures of perovskite manganites", ABSTRACTS OF THE MEETING OF THE PHYSICAL SOCIETY OF JAPAN, vol. 65, no. L, 1 March 2010 (2010-03-01), pages 663, 23AGA - 3 *
YASUSHI OGIMOTO ET AL.: "Koshisumen Kibanjo eno Mn Sankabutsu Hakumaku no Epitaxial Seicho", EXTENDED ABSTRACTS, vol. 58, March 2011 (2011-03-01) *
YASUSHI OGIMOTO ET AL.: "Koshisumen Kibanjo ni Sakusei shita Mn Sankabutsu Hakumaku no Jiki Yuso Tokusei", EXTENDED ABSTRACTS, vol. 58, March 2011 (2011-03-01) *

Similar Documents

Publication Publication Date Title
Prellier et al. The single-phase multiferroic oxides: from bulk to thin film
Supriya Tailoring layered structure of bismuth-based aurivillius perovskites: recent advances and future aspects
JP5590218B2 (en) Oxide substrate and manufacturing method thereof
JP5692365B2 (en) Perovskite-type manganese oxide thin film
EP2650407B1 (en) Perovskite manganese oxide thin film
JP5725036B2 (en) Perovskite-type manganese oxide thin film and method for producing the same
JP5790791B2 (en) Manganese oxide thin film and oxide laminate
JP5835354B2 (en) Manganese oxide thin film and oxide laminate
US20200057122A1 (en) Magnetoresistance effect element, magnetic sensor and magnetic memory
WO2013121660A1 (en) Manganese oxide thin film laminate and oxide laminate
JP5842999B2 (en) Manganese oxide thin film and oxide laminate
WO2013121661A1 (en) Manganese oxide thin film laminate and oxide laminate
Pradhan et al. Orientation dependent magnetocapacitance tuning in epitaxial (La, Sr) MnO3/(K, Na) NbO3-based heterostructures
Cao Defects in ferroelectrics
Das et al. Termination control of magnetic coupling at a complex oxide interface
Steinhardt Ferroic Ferrite Films: An MBE Odyssey
Li et al. Ferroelectricity and ferromagnetism of La0. 5Lu0. 5Ni0. 5Mn0. 5O3 thin films on Nb: SrTiO3 substrates
Xiaohan Magnetic Properties of Lead Zirconate Titanate/Lanthanum Strontium Manganite Superlattice Thin Films
Awin Structural, magnetic and electrical studies on some mixed metal perovskite oxides
He Growth mechanism and interface effects on microstructure of perovskite-type barium titanate-based epitaxial films
Aguesse Structural, Electrical and Magnetic Properties of CoFe2O4 and BaTiO3 Layered Nanostructures on Conductive Metal Oxides
Cheng Phase transitions in new lead (Pb)-free morphotropic phase boundary epitaxial ferroelectric thin films

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12868919

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12868919

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP