WO2013118857A1 - Antisense oligonucleotide for acsl1 - Google Patents

Antisense oligonucleotide for acsl1 Download PDF

Info

Publication number
WO2013118857A1
WO2013118857A1 PCT/JP2013/052997 JP2013052997W WO2013118857A1 WO 2013118857 A1 WO2013118857 A1 WO 2013118857A1 JP 2013052997 W JP2013052997 W JP 2013052997W WO 2013118857 A1 WO2013118857 A1 WO 2013118857A1
Authority
WO
WIPO (PCT)
Prior art keywords
antisense oligonucleotide
acsl1
seq
sequence
aromatic heterocyclic
Prior art date
Application number
PCT/JP2013/052997
Other languages
French (fr)
Japanese (ja)
Inventor
聡 小比賀
真一郎 堀
孝博 藤原
武史 粕谷
Original Assignee
国立大学法人大阪大学
塩野義製薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人大阪大学, 塩野義製薬株式会社 filed Critical 国立大学法人大阪大学
Publication of WO2013118857A1 publication Critical patent/WO2013118857A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • C12N15/1137Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against enzymes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/04Anorexiants; Antiobesity agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/93Ligases (6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/11Antisense
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y602/00Ligases forming carbon-sulfur bonds (6.2)
    • C12Y602/01Acid-Thiol Ligases (6.2.1)
    • C12Y602/01003Long-chain-fatty-acid-CoA ligase (6.2.1.3)

Definitions

  • the present invention relates to an antisense oligonucleotide to ACSL1 (acyl-CoA synthetase long-chain family member 1). More specifically, the present invention relates to an antisense oligonucleotide against ACSL1 useful as a preventive or therapeutic agent (including a pharmaceutical composition for weight management) for obesity or diabetes (particularly type II diabetes).
  • Obesity is a systemic increase in adipose tissue and occurs when the amount of energy consumed over a long period is greater than the amount of energy consumed. Obesity can be classified into visceral fat obesity and the subcutaneous fat type obesity. Visceral fat-type obesity is obesity in which the accumulation of intra-abdominal fat existing around the omentum and mesentery increases, and diabetes (particularly type II diabetes with insulin resistance), arteriosclerosis, liver disease, heart It is one of the culprit that causes the disease, etc., has become a major problem in modern society.
  • Diabetes mellitus is a disease accompanied by a persistent hyperglycemic state, and is considered to result from the action of many environmental factors and genetic factors.
  • the main regulator of blood sugar in the body is insulin
  • hyperglycemia is caused by insulin deficiency or excessive factors that inhibit its action (eg, genetic predisposition, lack of exercise, obesity, stress, etc.) .
  • type I diabetes caused by a decrease in pancreatic insulin secretion function due to autoimmune diseases and the like and a decrease in pancreatic insulin secretion function due to pancreatic exhaustion associated with continuous high insulin secretion II Classified as type 2 diabetes. More than 95% of Japanese diabetic patients are said to have type II diabetes, and today, the increase in the number of patients accompanying lifestyle changes is a problem.
  • Enzymes belonging to the acyl-CoA synthase family are enzymes that convert long-chain fatty acids into acyl CoA. Since acyl-CoA is a substrate in intracellular lipid synthesis and fatty acid degradation or elongation reactions, ACS plays a central role in intracellular lipid metabolism as well as intracellular signaling by lipids. The ACS is also involved in the uptake of fat outside fatty acids (see Non-Patent Document 1).
  • ACSL1 GenBank: NM_001995
  • ACSL4 and ACSL5 are mainly expressed in the liver
  • ACSL3 and ACSL6 are mainly expressed in the brain.
  • Triacsin C is known as an inhibitor of ACS, and this compound has been reported to inhibit 1, 3 and 4 of 5 isozymes (see Non-Patent Document 3).
  • this compound in addition to this compound, in addition to inhibiting TG accumulation in HuH7 cells, which are human hepatoma cell lines (see Non-Patent Document 4), and diacylglycerol, cholesterol esters, phospholipids in CCD cells, which are human normal dermal fibroblasts. It has been reported to inhibit synthesis (see Non-Patent Document 5).
  • ACSL1 has been reported to be associated with various cancers (see, for example, Patent Documents 1 to 3), and as a biomarker for cirrhosis, liver fibrosis (see Patent Document 4), and bronchial asthma (see Patent Document 5). It has also been reported.
  • Patent Document 6 discloses that suppression of hepatic ACSL1 expression by siRNA suppresses increase in body weight and lowers blood glucose level, and ACSL1 expression inhibitor is used for obesity or type II diabetes. It has been suggested that it can be used for treatment or prevention.
  • Patent Document 7 discloses an antisense compound targeting ACSL1.
  • 3615 antisense oligonucleotides are described, but only predictive values regarding affinity with a target region are described, and data regarding suppression of ACSL1 expression is not described.
  • An object of the present invention is to provide a novel antisense oligonucleotide having excellent ACSL1 expression suppression activity.
  • Patent Document 7 describes an antisense oligonucleotide for ACSL1 of 3,615, but only describes a predicted value for affinity with a target region, and does not describe data regarding suppression of ACSL1 expression.
  • antisense with high affinity does not necessarily have a high inhibitory action on target gene expression (Antisense Drug Technology Principles, Strategies, and Applications, CRC Press; 2nd edition, 2007-122, p. , FIG. 5.3a). Therefore, from the description in Patent Document 7, it cannot be predicted which region of ACSL1 mRNA is useful as the target region of the antisense oligonucleotide.
  • the antisense oligonucleotide of the present invention binds to a specific target region found by the present inventors and exhibits excellent ACSL1 expression suppression activity.
  • the antisense oligonucleotide of the present invention does not have an expression suppressing action on other isozymes (ACSL3 and ACSL5) but has an ACSL1-specific expression suppressing action.
  • an antisense oligonucleotide with high specificity for a target sequence is useful as a medicine.
  • the antisense oligonucleotide of the present invention has good metabolic stability and water solubility, low toxicity, and is sufficiently safe for use as a medicine.
  • the present invention relates to the following. (1) 95 to 109, 176 to 192, 467 to 484, 940 to 954, 1017 to 1032, 1102 to 1116, 1176 of SEQ ID NO: 1 under stringent conditions # 1-1197, 1222-1236, 1727-1743, 1858-1873, 1946-1960, 2294-2308, 2360-2377, 2449-2469, 2605-
  • An antisense oligonucleotide comprising a sequence capable of hybridizing to the sequence consisting of positions 2624, 2689 to 2703, 2950 to 2964, 3424 to 3438, or 3591 to 3605.
  • the antisense oligonucleotide according to (1) which suppresses the expression of ACSL1.
  • the antisense oligonucleotide according to (1) or (2) which is 13 to 19 bases in length.
  • the antisense oligonucleotide according to (6) comprising a sequence in which one base is deleted, substituted, inserted or added.
  • a pharmaceutical composition comprising the antisense oligonucleotide according to any one of (1) to (7).
  • the pharmaceutical composition according to (8) which is used for prevention or treatment of a disease associated with ACSL1.
  • the pharmaceutical composition according to (9), wherein the disease is obesity or type II diabetes.
  • (12) The prevention or treatment method according to (11), wherein the disease is obesity or type II diabetes.
  • Use of the antisense oligonucleotide according to (13), wherein the disease is obesity or type II diabetes.
  • the antisense oligonucleotide of the present invention exhibits excellent ACSL1 expression-suppressing activity, and is associated with drugs, particularly diseases involving ACSL1, such as obesity, obesity-related diseases, diabetes (particularly type II diabetes), syndrome X, cardiovascular disorders Or it is very useful as a medicine (including a weight management medicine) for preventing or treating cancer (breast cancer, colon cancer, colon cancer, ovarian cancer, lung cancer, etc.).
  • Knockdown efficiency of antisense oligonucleotides (5 nM and 20 nM) introduced into cells using LipofectamineminLTX reagent in HepG2 cells of the antisense oligonucleotide of the present invention Knockdown effect on ACSL1 proteins in HepG2 cells of the antisense oligonucleotides of the present invention results of evaluation of cross-reactivity to ACSL3 and ACSL5 in HepG2 cells of the antisense oligonucleotide of the present invention
  • Knockdown effect on ACSL1 protein after single administration of the antisense oligonucleotide of the present invention (AON numbers 197 and 203) in vivo Knockdown effect on ACSL1 protein when the antisense oligonucleotide of the present invention (AON numbers 196 and 203) is administered once in vivo Knockdown effect on ACSL1 protein when the antisense oligonucleotide of the present invention (AON No. 203) is
  • an “antisense oligonucleotide” is an oligonucleotide complementary to a target gene mRNA, mRNA precursor or ncRNA, and is composed of single-stranded DNA, RNA and / or analogs thereof. The The function of mRNA, mRNA precursor or ncRNA is suppressed by forming a double strand with the mRNA, mRNA precursor or ncRNA targeted by the antisense oligonucleotide.
  • Antisense oligonucleotides include not only those that are completely complementary to the target mRNA, mRNA precursor or ncRNA, but also those that can hybridize to the mRNA, mRNA precursor or ncRNA under stringent conditions. Or it includes those with several mismatches.
  • An oligonucleotide means a nucleotide in which a plurality of identical or different nucleosides are bound.
  • Nucleoside means a compound in which a nucleobase and a sugar form an N-glycoside bond.
  • Nucleotide means a compound in which a phosphate group is bonded to a nucleoside sugar.
  • An analog of DNA or RNA means a molecule having a structure similar to DNA or RNA.
  • peptide nucleic acid (PNA) etc. are mentioned.
  • ncRNA non-coding RNA
  • PNA peptide nucleic acid
  • ncRNA non-coding RNA
  • One or several mismatches means 1 to 5, preferably 1 to 3, more preferably 1 or 2 mismatches.
  • ACSL1 is mentioned as a target gene of the antisense oligonucleotide of the present invention.
  • human ACSL1 although mouse ACSL1 like, without limitation.
  • ACSL1 is a known protein.
  • the DNA sequence of human ACSL1 (GenBank: NM — 001995) is described in SEQ ID NO: 1 in the sequence listing, and the amino acid sequence is described in SEQ ID NO: 2.
  • the DNA sequence of mouse ACSL1 (GenBank: NM — 007981) is described in SEQ ID NO: 3 in the sequence listing, and the amino acid sequence is described in SEQ ID NO: 4.
  • “ACSL1” in the present invention is not limited to these sequences, and as long as the function of the protein of SEQ ID NO: 2 or 4 is maintained, the number of amino acid and DNA mutations and mutation sites are not limited. .
  • the length of the antisense oligonucleotide of the present invention is 6 to 50 bases.
  • antisense oligonucleotide As the “antisense oligonucleotide” of the present invention, (A) 95 to 109, 176 to 192, 467 to 484, 940 to 954, 1017 to 1032, 1102 to 1116 in the sequence of SEQ ID NO: 1 under stringent conditions 1176th to 1197th, 1222 to 1236th, 1727th to 1743th, 1858th to 1873th, 1946th to 1960th, 2294th to 2308th, 2360th to 2377th, 2449th to 2469th, 2605 An antisense oligonucleotide comprising a sequence capable of hybridizing to the sequence from position 2624, 2689-2703, 2950-2964, 3424-3438 or 3591-3605, or (b) stringent Under the conditions, 183 to 197, 219 to 235, 442 of the sequence of SEQ ID NO: 3.
  • An antisense oligonucleotide comprising a sequence capable of hybridizing to the sequence of positions 2585 to 2700, 2738 to 2756, 2764 to 2788, 3331 to 3347, 3503 to 3517, or 3663 to 3684 Is mentioned.
  • Each of the target regions in (a) is a region associated with the knockdown activity of the antisense oligonucleotide, particularly in human ACSL1 mRNA.
  • Each of the target regions in (b) is a region associated with the knockdown activity of the antisense oligonucleotide, particularly in mouse ACSL1 mRNA. Any sequence capable of hybridizing to the target region under stringent conditions is included in the antisense oligonucleotide of the present invention regardless of the length or the presence or absence of nucleotide modification.
  • ACSL1 expression inhibitory activity can be measured by a known method. For example, it can be measured by the method described in Example 5 (1) or (3), Example 6 or Example 7 described later.
  • antisense oligonucleotide of the present invention more preferably, (C) Under stringent conditions, it can hybridize to the sequence of SEQ ID NO: 1 at positions 176 to 192, 467 to 484, 1176 to 1197, 2449 to 2469, or 2605 to 2624
  • An antisense oligonucleotide comprising the sequence: or (d) under the stringent conditions, the sequence of SEQ ID NO: 3 at positions 219 to 235, 513 to 530, 1222 to 1243, 2497 to 2525, Examples include antisense oligonucleotides that include sequences that can hybridize to the sequences of positions 2651 to 2670, 2685 to 2700, 2738 to 2756, 2764 to 2788, or 3663 to 3684.
  • antisense oligonucleotide of the present invention specifically, (A) 95 to 109, 176 to 192, 467 to 484, 940 to 954, 1017 to 1032, 1102 to 1116, 1176 to 1197 in the sequence of SEQ ID NO: 1.
  • homology is indicated in the score by using the search program BLAST that uses an algorithm developed by Altschul et al. (The Journal of Molecular Biology, 215, 403-410 (1990)), for example. . “Stringent conditions” means that only antisense oligonucleotides (A) 95 to 109, 176 to 192, 467 to 484, 940 to 954, 1017 to 1032, 1102 to 1116, 1176 to 1197 in the sequence of SEQ ID NO: 1.
  • the temperature during the hybridization reaction and washing is 42 ° C. in 6 ⁇ SSC (0.9 M NaCl, 0.09 M trisodium citrate) or 6 ⁇ SSPE (3 M NaCl, 0, 2 M NaH 2 PO 4 , 20 mM EDTA ⁇ 2Na, pH 7.4).
  • 6 ⁇ SSC 0.9 M NaCl, 0.09 M trisodium citrate
  • 6 ⁇ SSPE 3 M NaCl, 0, 2 M NaH 2 PO 4 , 20 mM EDTA ⁇ 2Na, pH 7.4
  • a well-known and commonly used method in this field for example, a Southern blot hybridization method or the like can be used. Specifically, Molecular Cloning: A Laboratory Manual, Second Edition (1989) (Cold Spring Harbor Laboratory Press), Current Protocol in Amplification in Coal (1994) (Ten-Proc. It can be carried out according to the method described in Second Edition (1995) (Oxford University Press).
  • antisense oligonucleotide of the present invention for example, SEQ ID NOs: 6-11, 13-18, 20-22, 24-30, 32, 35-37, 46, 48, 49, 52-54, 57-59, 64-68 or 70, or 1 or number in the sequences of SEQ ID NOs: 6-11, 13-18, 20-22, 24-30, 32, 35-37, 46, 48, 49, 52-54, 57-59, 64-68 or 70
  • An antisense oligonucleotide containing a sequence in which one base has been deleted, substituted or inserted is mentioned. Each of these has human ACSL1 expression inhibitory activity.
  • the sequence is included in the antisense oligonucleotide of the present invention regardless of the length or nucleotide modification.
  • the antisense oligonucleotide of the present invention for example, SEQ ID NOs: 6 to 13, 30, 72 to 75, 77 to 80, 82 to 93, 95, 100 to 104, 109, 110, 113, 114, 116 to 127, 129, 131 to 141, 143 to 147, 151, The sequence of 153 to 155 or 156, or SEQ ID NOs: 6 to 13, 30, 72 to 75, 77 to 80, 82 to 93, 95, 100 to 104, 109, 110, 113, 114, 116 to 127, 129, 131 Examples include antisense oligonucleotides containing a sequence in which one or several bases are deleted, substituted, or inserted in the sequence of ⁇ 141, 143 to 147, 151, 153 to 155, or
  • antisense oligonucleotide of the present invention specifically, SEQ ID NOs: 6-11, 13-18, 20-22, 24-30, 32, 35-37, 46, 48, 49, 52-54, 57-59, 64-68 or 70, or 1 or number in the sequences of SEQ ID NOs: 6-11, 13-18, 20-22, 24-30, 32, 35-37, 46, 48, 49, 52-54, 57-59, 64-68 or 70
  • antisense oligonucleotides consisting of sequences in which one base is deleted, substituted, inserted or added.
  • SEQ ID NOs: 6-11 or 24-28 or Examples thereof include antisense oligonucleotides consisting of a sequence in which one or several bases are deleted, substituted, inserted or added in the sequences of SEQ ID NOs: 6-11 or 24-28. Each of these has human ACSL1 expression inhibitory activity. As long as it consists of this sequence, it is included in the antisense oligonucleotide of the present invention regardless of the presence or absence of nucleotide modification.
  • antisense oligonucleotide of the present invention specifically, SEQ ID NOs: 6 to 13, 30, 72 to 75, 77 to 80, 82 to 93, 95, 100 to 104, 109, 110, 113, 114, 116 to 127, 129, 131 to 141, 143 to 147, 151, A sequence of 153-155 or 156, or 1 or number in the sequences of SEQ ID NOs: 6-11, 13-18, 20-22, 24-30, 32, 35-37, 46, 48, 49, 52-54, 57-59, 64-68 or 70
  • antisense oligonucleotides composed of sequences in which one base is deleted, substituted, inserted or added. Each of these has mouse ACSL1 expression suppression activity. As long as it consists of this sequence, it is included in the antisense oligonucleotide of the present invention regardless of the presence or absence of nucleotide modification.
  • one or several bases means 1 to 5, preferably 1 to 3, and more preferably 1 or 2 bases. Deletion, substitution, insertion or addition is also included in the antisense oligonucleotide of the present invention as long as it has an action of suppressing the expression of the target gene (for example, ACSL1).
  • the target gene for example, ACSL1.
  • the antisense oligonucleotide of the present invention has not only ACSL1 expression-suppressing activity but also usefulness as a medicine, and has any or all of the following excellent features.
  • a) The inhibitory effect on CYP enzymes eg, CYP1A2, CYP2C9, CYP2C19, CYP2D6, CYP3A4, etc.
  • b) Good pharmacokinetics such as high bioavailability and moderate clearance.
  • the nucleotide may be modified.
  • Antisense oligonucleotides with appropriate modifications have any or all of the following characteristics compared to unmodified antisense oligonucleotides. a) High affinity with the target gene. b) High resistance to nucleases. c) Improved pharmacokinetics. d) Increases organizational transferability. Therefore, the modified antisense oligonucleotide is less likely to be degraded in vivo than the unmodified antisense oligonucleotide, and can inhibit the expression of the target gene more stably.
  • nucleotide modification known in the art can be used for the antisense oligonucleotide of the present invention.
  • Known modifications of nucleotides include phosphate modification, nucleobase modification, and sugar modification.
  • phosphoric acid modifications include phosphodiester bonds, S-oligos (phosphorothioates), D-oligos (phosphodiesters), M-oligos (methyl phosphonates), boranophosphates, etc. possessed by natural nucleic acids.
  • nucleobase modification include 5-methylcytosine, 5-hydroxymethylcytosine, 5-propynylcytosine and the like.
  • sugar modification include 2′-O—CH 2 —CH 2 —O—CH 3 (2′MOE), LNA (Locked Nucleic Acid), amide BNA (Bridged Nucleic Acid, AmNA) and the like.
  • Nucleotide modification and modification methods known in the art are also disclosed in, for example, the following patent documents.
  • S-oligo phosphorothioate
  • S-oligo type phosphorothioate type
  • LNA Locked Nucleic Acid
  • a 2'-hydroxyl group is attached from the 4 'carbon atom of the sugar ring of the nucleotide via an appropriate bridge to form a bicyclic sugar moiety.
  • a preferred bond is a methylene (—CH 2 —) group that bridges the 2 ′ oxygen atom and the 4 ′ carbon atom.
  • Amide BNA Bridged nucleic acid, AmNA
  • An amide bond is formed between the 2 'amino group of the sugar ring of the nucleotide and the carbonyl group extended from 4', thereby forming a bicyclic sugar moiety.
  • Specific examples of amide BNA and the preparation method thereof are described in WO2011 / 052436.
  • (4) Modification of the 2′-position of the nucleotide sugar The OH at the 2′-position of the nucleotide sugar is changed to —O-alkyl (eg, —O-methyl, —O-ethyl, —O-methoxyethyl, etc.), or —F Replace with. The modification is incorporated into the oligonucleotide according to known methods.
  • the antisense oligonucleotide of the present invention is preferably a gapmer.
  • a gapmer includes a central region (“gap”), regions on both sides of the central region, wings (“5 ′ wing” on the 5 ′ side or “3 ′ wing” on the 3 ′ side), and at least each wing It means an oligonucleotide containing one modified nucleotide.
  • the modification of the modified nucleotide may be any of phosphate modification, base modification, and sugar modification.
  • the type, number, and position of the modification in one wing may be the same as or different from the type, number, and position of the modification in the other wing.
  • the antisense of the present invention contains “one or more sugar-modified nucleosides having a cross-linked structure between the 4′-position and the 2′-position”. Gapmer is preferable. “5 ′ wing” and / or “3 ′ wing” have one or more, preferably 1 to 5, more preferably 2 to 1, sugar-modified nucleosides having a crosslinking structure between the 4′-position and the 2′-position. 3 contained. Furthermore, phosphate modification, base modification, and other sugar modifications may be included.
  • the “sugar modified nucleoside having a cross-linked structure between the 4′-position and the 2′-position” is a known nucleoside containing a modification having a cross-linked structure between the 4′-position and the 2′-position of the sugar Either is acceptable. Furthermore, base modification and other sugar modifications may be included.
  • crosslinked structure examples include the following. — (CR 2 R 3 ) m —O—, — (CR 2 R 3 ) m —NR 1 —O—, — (CR 2 R 3 ) n —CO—NR 1 — or — (CR 2 R 3 ) n -CO-NR 1 -X-, here, X is an oxygen atom, a sulfur atom, amino or CR 2 R 3 , R 1 is a hydrogen atom, substituted or unsubstituted alkyl, substituted or unsubstituted alkenyl, substituted or unsubstituted alkynyl, substituted or unsubstituted aromatic carbocyclic group, substituted or unsubstituted non-aromatic carbocycle Group, substituted or unsubstituted aromatic heterocyclic group, substituted or unsubstituted non-aromatic heterocyclic group, substituted or unsubstituted aromatic carbocyclic alkyl, substituted or or
  • R 1 is preferably a hydrogen atom, alkyl, alkenyl, alkynyl, aromatic carbocyclic group, non-aromatic carbocyclic group, aromatic heterocyclic group, non-aromatic heterocyclic group, aromatic carbocycle It is alkyl, non-aromatic carbocyclic alkyl, aromatic heterocyclic alkyl or non-aromatic heterocyclic alkyl, and may have one or more arbitrary substituents selected from the ⁇ group.
  • the ⁇ group is a hydroxyl group, alkyl, alkyloxy, mercapto, alkylthio, amino, alkylamino or halogen.
  • R 2 and R 3 are preferably a hydrogen atom.
  • m is preferably 1 or 2.
  • n is preferably 0 or 1.
  • the cross-linked structure is preferably — (CR 2 R 3 ) m —O— or — (CR 2 R 3 ) n —CO—NR 1 —
  • R 1 is a hydrogen atom, substituted or unsubstituted alkyl, substituted or unsubstituted alkenyl or substituted or unsubstituted alkynyl
  • R 2 is independently a hydrogen atom, halogen, cyano, substituted or unsubstituted alkyl, substituted or unsubstituted alkenyl or substituted or unsubstituted alkynyl
  • Each R 3 is independently a hydrogen atom, halogen, cyano, substituted or unsubstituted alkyl, substituted or unsubstituted alkenyl or substituted or unsubstituted alkynyl
  • m is 1 to 3
  • n is 0-3.
  • the cross-linked structure is particularly preferably —CH 2 —O— or —CO—NR 1 — (R 1 is a hydrogen atom or alkyl).
  • halogen encompasses fluorine atom, a chlorine atom, a bromine atom, and iodine atom.
  • a fluorine atom and a chlorine atom are preferable.
  • Alkyl includes straight or branched hydrocarbon groups having 1 to 15 carbon atoms, preferably 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms, and still more preferably 1 to 4 carbon atoms. To do. For example, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, isopentyl, neopentyl, n-hexyl, isohexyl, n-heptyl, isoheptyl, n-octyl , Isooctyl, n-nonyl, n-decyl and the like.
  • alkyl examples include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl and n-pentyl. Further preferred examples include methyl, ethyl, n-propyl, isopropyl and tert-butyl.
  • Alkenyl has 2 to 15 carbon atoms, preferably 2 to 10 carbon atoms, more preferably 2 to 6 carbon atoms, and further preferably 2 to 4 carbon atoms, having one or more double bonds at any position. These linear or branched hydrocarbon groups are included.
  • Preferred embodiments of “alkenyl” include vinyl, aromatic heterocyclic group, propenyl, isopropenyl and butenyl.
  • Alkynyl has 2 to 10 carbon atoms, preferably 2 to 8 carbon atoms, more preferably 2 to 6 carbon atoms, and more preferably 2 to 4 carbon atoms, having one or more triple bonds at any position. Includes straight chain or branched hydrocarbon groups. Examples include ethynyl, propynyl, butynyl, pentynyl, hexynyl, heptynyl, octynyl, nonynyl, decynyl and the like. These may further have a double bond at an arbitrary position. Preferred embodiments of “alkynyl” include ethynyl, propynyl, butynyl and pentynyl.
  • aromatic carbocyclic group means a cyclic aromatic hydrocarbon group having one or more rings.
  • aromatic carbocyclic group includes phenyl.
  • non-aromatic carbocyclic group means a cyclic saturated hydrocarbon group or a cyclic non-aromatic unsaturated hydrocarbon group having one or more rings.
  • the non-aromatic carbocyclic group having 2 or more rings also includes those in which the ring in the above “aromatic carbocyclic group” is condensed with a monocyclic or 2 or more non-aromatic carbocyclic groups.
  • the “non-aromatic carbocyclic group” includes a group that forms a bridge or a spiro ring as described below.
  • the monocyclic non-aromatic carbocyclic group preferably has 3 to 16 carbon atoms, more preferably 3 to 12 carbon atoms, and still more preferably 4 to 8 carbon atoms.
  • Examples include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclononyl, cyclodecyl, cyclopropenyl, cyclobutenyl, cyclopentenyl, cyclohexenyl, cycloheptenyl, cyclohexadienyl, and the like.
  • Examples of the two or more non-aromatic carbocyclic groups include indanyl, indenyl, acenaphthyl, tetrahydronaphthyl, fluorenyl and the like.
  • “Aromatic heterocyclic group” means a monocyclic or bicyclic or more aromatic cyclic group having one or more heteroatoms arbitrarily selected from O, S and N in the ring To do.
  • the aromatic heterocyclic group having two or more rings includes those obtained by condensing a ring in the above “aromatic carbocyclic group” to a monocyclic or two or more aromatic heterocyclic group.
  • the monocyclic aromatic heterocyclic group is preferably 5 to 8 members, more preferably 5 or 6 members.
  • Examples include pyrrolyl, imidazolyl, pyrazolyl, pyridyl, pyridazinyl, pyrimidinyl, pyrazinyl, triazolyl, triazinyl, tetrazolyl, furyl, thienyl, isoxazolyl, oxazolyl, oxadiazolyl, isothiazolyl, thiazolyl, thiadiazolyl, and the like.
  • bicyclic aromatic heterocyclic group examples include indolyl, isoindolyl, indazolyl, indolizinyl, quinolinyl, isoquinolinyl, cinnolinyl, phthalazinyl, quinazolinyl, naphthyridinyl, quinoxalinyl, purinyl, pteridinyl, benzimidazolyl, benzisoxazolyl, benzisoxazolyl, Oxazolyl, benzoxiazolyl, benzisothiazolyl, benzothiazolyl, benzothiadiazolyl, benzofuryl, isobenzofuryl, benzothienyl, benzotriazolyl, imidazopyridyl, triazolopyridyl, imidazothiazolyl, pyrazinopyr Dazinyl, oxazolopyridyl, thiazolopyridyl and the like can be mentioned.
  • aromatic heterocyclic group having 3 or more rings examples include carbazolyl, acridinyl, xanthenyl, phenothiazinyl, phenoxathinyl, phenoxazinyl, dibenzofuryl and the like.
  • Non-aromatic heterocyclic group means a monocyclic or bicyclic or more cyclic non-aromatic cyclic group having at least one hetero atom selected from O, S and N in the ring. Means group.
  • the non-aromatic heterocyclic group having 2 or more rings is a monocyclic or 2 or more non-aromatic heterocyclic group, the above “aromatic carbocyclic group”, “non-aromatic carbocyclic group”, and Also included are those in which each ring in the “aromatic heterocyclic group” is condensed.
  • the “non-aromatic heterocyclic group” includes a group which forms a bridge or a spiro ring as described below.
  • the monocyclic non-aromatic heterocyclic group is preferably 3 to 8 members, more preferably 5 or 6 members.
  • Alkyloxy means a group in which the above “alkyl” is bonded to an oxygen atom. Examples thereof include methoxy, ethoxy, n-propyloxy, isopropyloxy, n-butyloxy, tert-butyloxy, isobutyloxy, sec-butyloxy, pentyloxy, isopentyloxy, hexyloxy and the like. Preferable embodiments of “alkyloxy” include methoxy, ethoxy, n-propyloxy, isopropyloxy, tert-butyloxy.
  • Alkylamino includes monoalkylamino and dialkylamino.
  • “Monoalkylamino” means a group in which the above “alkyl” is replaced with one hydrogen atom bonded to the nitrogen atom of the amino group.
  • methylamino, ethylamino, isopropylamino and the like can be mentioned.
  • methylamino and ethylamino are used.
  • “Dialkylamino” means a group in which the above “alkyl” is replaced with two hydrogen atoms bonded to the nitrogen atom of the amino group. Two alkyl groups may be the same or different.
  • Examples include dimethylamino, diethylamino, N, N-diisopropylamino, N-methyl-N-ethylamino, N-isopropyl-N-ethylamino and the like. Preferable examples include dimethylamino and diethylamino.
  • Alkylthio means a group in which the “alkyl” is bonded to a sulfur atom.
  • substituents include the following substituents.
  • the carbon atom at any position may be bonded to one or more groups selected from the following substituents.
  • Substituents halogen, hydroxy, carboxy, amino, imino, hydroxyamino, hydroxyimino, formyl, formyloxy, carbamoyl, sulfamoyl, sulfanyl, sulfino, sulfo, thioformyl, thiocarboxy, dithiocarboxy, thiocarbamoyl, cyano, nitro, nitroso , Azide, hydrazino, ureido, amidino, guanidino, trialkylsilyl, alkyloxy, alkenyloxy, alkynyloxy, haloalkyloxy, alkylcarbonyl, alkenylcarbonyl, alkynylcarbonyl, monoalkylamino, dialkylamino, alkylsulfonyl, alkenylsulfonyl, alkynyl Sulfonyl, monoalkyl
  • An atom at any position on the ring may be bonded to one or more groups selected from the following substituents.
  • substituents halogen, hydroxy, carboxy, amino, imino, hydroxyamino, hydroxyimino, formyl, formyloxy, carbamoyl, sulfamoyl, sulfanyl, sulfino, sulfo, thioformyl, thiocarboxy, dithiocarboxy, thiocarbamoyl, cyano, nitro, nitroso , Azide, hydrazino, ureido, amidino, guanidino, trialkylsilyl, alkyl, alkenyl, alkynyl, haloalkyl, alkyloxy, alkenyloxy, alkynyloxy, haloalkyloxy, alkyloxyalkyl, alkylcarbonyl, alkylcarbonyl, alkyl,
  • alkyl part of “aromatic carbocyclic alkyl”, “non-aromatic carbocyclic alkyl”, “aromatic heterocyclic alkyl”, and “non-aromatic heterocyclic alkyl” is the same as the above “alkyl”.
  • “Aromatic carbocyclic alkyl” means an alkyl substituted with one or more of the above “aromatic carbocyclic groups”. For example, benzyl, phenethyl, phenylpropynyl, benzhydryl, trityl, naphthylmethyl, groups shown below Etc.
  • aromatic carbocyclic alkyl Preferable embodiments of “aromatic carbocyclic alkyl” include benzyl, phenethyl and benzhydryl.
  • Non-aromatic carbocyclic alkyl means alkyl substituted with one or more of the above “non-aromatic carbocyclic groups”.
  • the “non-aromatic carbocyclic alkyl” also includes “non-aromatic carbocyclic alkyl” in which the alkyl moiety is substituted with the above “aromatic carbocyclic group”. For example, cyclopropylmethyl, cyclobutylmethyl, cyclopentylmethyl, cyclohexylmethyl, groups shown below Etc.
  • “Aromatic heterocyclic alkyl” means alkyl substituted with one or more of the above “aromatic heterocyclic groups”. “Aromatic heterocyclic alkyl” also includes “aromatic heterocyclic alkyl” in which the alkyl moiety is substituted with the above “aromatic carbocyclic group” and / or “non-aromatic carbocyclic group”. .
  • pyridylmethyl furanylmethyl, imidazolylmethyl, indolylmethyl, benzothiophenylmethyl, oxazolylmethyl, isoxazolylmethyl, thiazolylmethyl, isothiazolylmethyl, pyrazolylmethyl, isopyrazolylmethyl, pyrrolidinylmethyl, benz Oxazolylmethyl, group shown below Etc.
  • Non-aromatic heterocyclic alkyl means an alkyl substituted with one or more of the above “non-aromatic heterocyclic groups”.
  • the alkyl portion is substituted with the above “aromatic carbocyclic group”, “non-aromatic carbocyclic group” and / or “aromatic heterocyclic group”.
  • non-aromatic heterocyclic alkyl For example, tetrahydropyranylmethyl, morpholinylethyl, piperidinylmethyl, piperazinylmethyl, groups shown below Etc.
  • the antisense oligonucleotide of the present invention (or a modified product thereof) can be synthesized by a conventional method.
  • it can be easily synthesized with a commercially available automatic nucleic acid synthesizer (for example, manufactured by AppliedBiosystems, manufactured by Dainippon Seiki Co., Ltd.).
  • a commercially available automatic nucleic acid synthesizer for example, manufactured by AppliedBiosystems, manufactured by Dainippon Seiki Co., Ltd.
  • Examples of the synthesis method include a solid phase synthesis method using phosphoramidite and a solid phase synthesis method using hydrogen phosphonate. For example, it is disclosed in Tetrahedron Letters 22, 1859-1862 (1981), International Publication No. 2011/052436, and the like.
  • the antisense oligonucleotides of the present invention can be any pharmaceutical that can provide (directly or indirectly) a biologically active metabolite or residue thereof when administered to an animal, including a human. including acceptable salts, esters, or salts of such esters, or any other equivalents. That is, it includes prodrugs and pharmaceutically acceptable salts of the antisense oligonucleotides of the invention, pharmaceutically acceptable salts of the prodrugs, and other biological equivalents.
  • prodrug is an inactive or less active form that is converted into an active form (ie, drug) in vivo or in cells by the action and / or state of an endogenous enzyme or other chemical. Is a derivative.
  • the prodrug of the antisense oligonucleotide of the present invention can be prepared according to the methods described in WO 93/24510, WO 94/26764 and the like.
  • “Pharmaceutically acceptable salt” refers to a physiologically and pharmaceutically acceptable salt of an antisense oligonucleotide of the invention, ie, retains the desired biological activity of the antisense oligonucleotide; It refers to salts that do not give unwanted toxicological effects.
  • Examples of pharmaceutically acceptable salts include alkali metals (eg, lithium, sodium, potassium, etc.), alkaline earth metals (eg, calcium, barium, etc.), magnesium, transition metals (eg, zinc, iron, etc.), Ammonia, organic bases (eg trimethylamine, triethylamine, dicyclohexylamine, ethanolamine, diethanolamine, triethanolamine, meglumine, diethanolamine, ethylenediamine, pyridine, picoline, quinoline etc.) and salts with amino acids, or inorganic acids (eg hydrochloric acid, Sulfuric acid, nitric acid, carbonic acid, hydrobromic acid, phosphoric acid, hydroiodic acid, etc.) and organic acids (eg formic acid, acetic acid, propionic acid, trifluoroacetic acid, citric acid, lactic acid, tartaric acid, oxalic acid, maleic acid) Fumaric acid, mandelic acid, Rutaru acid, malic
  • the present invention also includes a pharmaceutical composition containing the antisense oligonucleotide of the present invention.
  • a pharmaceutical composition containing the antisense oligonucleotide of the present invention As the administration method and preparation of the pharmaceutical composition of the present invention, any administration method and preparation known in the art can be used.
  • Antisense oligonucleotide administration methods and preparations are also disclosed in, for example, the following documents. International Publication No. 2004/016749, International Publication No. 2005/083124, International Publication No. 2007/143315, International Publication No. 2009/071680, and the like.
  • the pharmaceutical composition of the present invention can be administered by various methods depending on whether local or systemic treatment is desired or on the region to be treated.
  • the administration method may be, for example, topical (including eye drops, intravaginal, rectal, intranasal, transdermal), oral, or parenteral.
  • Parenteral administration includes intravenous injection or infusion, subcutaneous, intraperitoneal or intramuscular injection, pulmonary administration by inhalation or inhalation, intradural administration, intraventricular administration, and the like.
  • compositions for oral administration include powders, granules, suspensions or solutions dissolved in water or non-aqueous media, capsules, powders, tablets and the like.
  • compositions for parenteral, subdural space, or intracerebroventricular administration include sterile aqueous solutions containing buffers, diluents and other suitable additives.
  • the pharmaceutical composition of the present invention comprises various pharmaceutical additives such as excipients, binders, wetting agents, disintegrants, lubricants, diluents and the like suitable for the dosage form in the effective amount of the antisense oligonucleotide of the present invention.
  • the agent can be obtained by mixing as necessary. It may be a formulation subjected to sterilization treatment with a suitable carrier in the case of injections.
  • Excipients include lactose, sucrose, glucose, starch, calcium carbonate or crystalline cellulose.
  • binder include methyl cellulose, carboxymethyl cellulose, hydroxypropyl cellulose, gelatin, and polyvinyl pyrrolidone.
  • disintegrant include carboxymethyl cellulose, sodium carboxymethyl cellulose, starch, sodium alginate, agar powder, or sodium lauryl sulfate.
  • solubilizers when preparing as liquid or emulsion or suspension injections, commonly used solubilizers, suspending agents, emulsifiers, stabilizers, preservatives, isotonic agents, etc. are added as appropriate. You may do it. In the case of oral administration, flavoring agents, fragrances and the like may be added.
  • the optimal dosing schedule can be calculated from measurements of drug accumulation in the body. Persons of ordinary skill in the art can determine optimum dosages, dosing methodologies and repetition rates. The optimal dose will vary depending on the relative potency of the individual antisense oligonucleotides, but can generally be calculated based on the IC50 or EC50 in in vitro and in vivo animal experiments.
  • an antisense oligonucleotide derived from the antisense oligonucleotide sequence and chemical structure
  • an effective dose eg, IC50
  • the pharmaceutical composition of the present invention has ACSL1 expression-suppressing activity, it can be used for prevention or treatment of diseases associated with ACSL1.
  • Diseases associated with ACSL1 include obesity (including weight management in obesity), obesity related diseases, diabetes (especially type II diabetes), syndrome X, cardiovascular disorders or cancer (breast cancer, colon cancer, colon cancer, Ovarian cancer, lung cancer, etc.).
  • An “obesity related disease” is a disease associated with, caused by, or caused by obesity.
  • Examples of obesity-related diseases include bulimia, hypertension, impaired glucose tolerance, diabetes, metabolic syndrome, lipid metabolism disorder, arteriosclerosis, hyperuricemia, gout, fatty liver, proteinuria, obese nephropathy, endometrium Cancer, breast cancer, prostate cancer, colon cancer, osteoarthritis, low back pain, lumbar spondylosis, obstructive sleep apnea syndrome, coronary artery disease (myocardial infarction, coronary heart disease such as angina pectoris), cerebral infarction, cerebral thrombus Disease, transient cerebral ischemic attack, menstrual abnormalities, Prader-Willi syndrome, Frehrich syndrome, Pickwick syndrome and the like.
  • the pharmaceutical composition of the present invention is also useful for reducing the risk of secondary outcomes of obesity, such as reducing the risk of left ventricular hypertrophy.
  • the pharmaceutical composition of the present invention can be used particularly for the prevention or treatment of obesity or type II diabetes.
  • the pharmaceutical composition of the present invention When the pharmaceutical composition of the present invention is used for the prevention or treatment of obesity, other one or more known anti-obesity drugs (pharmaceutical compositions containing a compound having an anti-obesity action, obesity and obesity) It can also be used in combination with a drug that can be used for weight management and the like. Moreover, the administration therapy of the pharmaceutical composition of the present invention can also be used in combination with known diet therapy, drug therapy, exercise and the like.
  • a method for the prevention or treatment of obesity or obesity-related diseases or weight management in obesity comprising administering a known anti-obesity drug in combination with the pharmaceutical composition of the present invention.
  • a method for the prevention or treatment of obesity or obesity-related diseases or weight management in obesity comprising administering a known anti-obesity drug to a patient undergoing prevention or treatment by administration of the pharmaceutical composition of the present invention.
  • Known anti-obesity drugs include compounds having an appetite suppressing action (selective serotonin reuptake inhibitors, etc.), compounds having an action to suppress digestion and absorption of nutrients ( ⁇ -glucosidase inhibitors; SGLT-2 inhibitors, etc.), fat Compounds having an inhibitory action (lipase inhibitor; bile acid adsorption resin, etc.), 5HT transporter inhibitor, NE transporter inhibitor, CB-1 antagonist / inverse agonist, ghrelin antagonist, H3 antagonist / inverse agonist, MCH R1 antagonist , MCH R2 agonist / antagonist, NPY Y1 receptor antagonist, NPY Y2 receptor agonist, NPY Y4 receptor agonist, NPY Y5 receptor antagonist, mGluR5 antagonist, leptin, leptin Gonist, leptin derivative, opioid antagonist, orexin antagonist, BRS3 agonist, CCK-A agonist, CNTF, CNTF agonist, CNTF
  • the pharmaceutical composition of the present invention when used for the prevention or treatment of type II diabetes, it can also be used in combination with one or more other known type II diabetes therapeutic agents.
  • insulin secretagogues for example, sulfonylurea (SU) drugs
  • fast-acting insulin secretagogues for example, phenylalanine derivative drugs
  • glucose absorption inhibitors for example, ⁇ -glucosidase inhibitors) ( ⁇ GI drug)
  • insulin sensitizers for example, biguanide drugs (BG drugs), thiazolidine derivatives (TZD drugs)
  • insulin preparations for example, peptidyl peptidase IV (DPP-IV) inhibitors, GLP-1 receptors
  • DPP-IV peptidyl peptidase IV
  • GLP-1 receptors examples include pharmaceutical compositions containing agonists, type 1 sodium-dependent glucose transporter (SGLT1) inhibitors, type 2 sodium-dependent glucose transporter (SGLT2) inhibitors, and the like.
  • the timing of administration is not limited, and it may be administered simultaneously to the administration subject or may be administered with a time difference.
  • the pharmaceutical composition of the present invention and the other drug may be administered as a plurality of preparations containing each active ingredient, or may be administered as a single preparation containing both active ingredients.
  • oligonucleotide containing LNA represented by the formula (a) was outsourced to Gene Design Co., Ltd.
  • Base is 5-methylcytosine (C), thymine (T), adenine (A) or guanine (G).
  • the oligonucleotide containing amide BNA (AmNA) represented by the formula (b) was synthesized with reference to the method described in International Publication No. 2011/052436.
  • Base is 5-methylcytosine (C), thymine (T), adenine (A) or guanine (G), and Me is methyl.
  • the 10mer to 19mer oligonucleotide containing the LNA represented by the formula (a) and the amide BNA (AmNA) represented by the formula (b) is an automatic nucleic acid synthesizer (nS-8 type, manufactured by Dainippon Seiki Co., Ltd.) Was synthesized on a 0.2 ⁇ mol scale. Chain length extension is performed using a standard phosphoramidite protocol (solid phase carrier: CPG resin, sulfurization using DDT (3H-1,2-Benzodithiole-3-one, 1,1-dioxide), etc.).
  • oligonucleotide in which the terminal hydroxyl group at the 5′-position was protected with a DMTr (dimethoxytrityl) group and the 3′-position was supported on a solid phase was obtained. Subsequently, the DMTr group was removed by acid treatment, followed by base treatment to cut out the target product from the solid phase carrier. After neutralization with dilute acid, the solvent was distilled off, and the resulting crude product was purified by gel filtration column chromatography and reverse phase HPLC to obtain the desired product.
  • a negative control (NC) of the present invention a sequence having a mismatch of 5 bases or more with ACSL1 was designed as shown in Table 1.
  • uppercase letters represent LNAs represented by formula (a). Lower case letters represent DNA.
  • Antisense oligonucleotide was designed to target human ACSL1 (GenBank: NM_001995, SEQ ID NO: 1).
  • the oligonucleotide sequences are shown in Tables 2-6. In the sequences of Tables 2 to 5, capital letters represent LNA represented by the formula (a). Lower case letters represent DNA.
  • Example 4 In vitro model Cell culture Cells are cultured in a suitable medium as described below, 37 ° C, 95-98% humidity and 5% Maintained with CO 2 .
  • HepG2 The human hepatoma-derived cell line HepG2 was cultured in DMEM High glucose (Sigma) + 10% fetal bovine serum (FBS) + Antibiotic Anticolytic Solution (10 mL / L).
  • HLE Human hepatoma-derived cell line HLE was cultured in DMEM Low Glucose (Sigma) + 10% fetal bovine serum (FBS) + Penicillin (100 units / mL) + Streptomycin (100 ug / mL).
  • Hepa1c1c7 The mouse liver cancer-derived cell line Hepa1c1c7 was cultured in ⁇ -MEM (Gibco) + 10% FBS + Antibiotic Anticolytic Solution (10 mL / L).
  • Example 5 Evaluation of antisense oligonucleotides against ACSL1 (1) Evaluation by changes in mRNA expression level In this example, the effectiveness of antisense oligonucleotides designed based on the base sequence of human or mouse ACSL1 was demonstrated. . Antisense oligonucleotides were designed and produced as described in Examples 2 and 3, and knockdown experiments were performed on human HepG2 cells and mouse Hepa1c1c7 cells. Using the prepared antisense oligonucleotide and Negative Control (NC, SEQ ID NO: 5), knockdown experiments were conducted in human HepG2 cells and mouse Hepa1c1c7 cells.
  • NC Negative Control
  • antisense oligonucleotides were introduced into cells using Lipofectamine LTX reagent (invitrogen) and added to the cell culture solution to a final concentration of antisense oligonucleotides of 5 nM or 20 nM.
  • mouse Hepa1c1c7 cells cells were introduced using Lipofectamine RNAiMAX reagent (invitrogen) and added to the cell culture so that the final concentration of the antisense oligonucleotide was 20 nM. 24 hours after the introduction, the cells were collected with Fastlane (QIAGEN) and subjected to quantitative PCR. GAPDH was used as an endogenous control.
  • the antisense oligonucleotide was introduced into the cell culture solution without using a reagent, and added to the cell culture solution so that the final concentration of antisense was 5 ⁇ M.
  • human HLE cells and mouse Hepa1c1c7 cells cells were collected 120 hours after introduction with Fastlane (QIAGEN) and subjected to quantitative PCR. GAPDH was used as an endogenous control.
  • the primer sequence used to measure the expression level of human ACSL1 is Fw primer: GCAGCGGGCATCATCAGAAAC (SEQ ID NO: 157); Rv primer: TGTCCATCATAGCCCGACTC (SEQ ID NO: 158) Use The primer sequence used to measure the expression level of human GAPDH is: Fw primer: GCACCGTCAAGGCTGGAAC (SEQ ID NO: 159); Rv primer: TGGTGAAGACGCCAGTGGA (SEQ ID NO: 160) was used.
  • the primer sequence used to measure the expression level of mouse Acsl1 is: Fw primer: AGGTGCTTCAGCCCACATC (SEQ ID NO: 161); Rv primer: AAAGTCCAACAGCCATCGCTTC (SEQ ID NO: 162) Use The primer sequence used to measure the expression level of mouse Gapdh is: Fw primer: TGTGTCCGTCGTGGATCTGA (SEQ ID NO: 163); Rv primer: TTGCTGTTTGAAGTCGCAGAG (SEQ ID NO: 164) was used.
  • Table 13 shows the amount of decrease in ACSL1 mRNA in mouse Hepa1c1c7 cells normalized with GAPDH for antisense oligonucleotides introduced into cells using Lipofectamine RNAiMAX reagent, as a percentage of untreated cells as knockdown efficiency.
  • NC in Table 13 is the value of Negative Control, N.I. D. Means that the amount of decrease in mRNA of ACSL1 is below the detection limit, or the amount of mRNA is increased, and ACSL1 is not suppressed.
  • Table 14 shows the amount of ACSL1 mRNA decrease in human HepG2 cells normalized with GAPDH as knockdown efficiency for antisense oligonucleotides introduced into cells using Lipofectamine LTX reagent.
  • NC in Table 14 means “Negative Control”.
  • Table 15 shows the amount of ACSL1 mRNA decrease in mouse Hepa1c1c7 cells normalized with GAPDH and the ratio of untreated cells as knockdown efficiency for antisense oligonucleotides introduced into cells without using reagents.
  • Table 16 shows the amount of decrease in ACSL1 mRNA in human HLE cells normalized with GAPDH and the ratio of untreated cells as knockdown efficiency for antisense oligonucleotides introduced into cells without using reagents.
  • FIG. 1 shows the knockdown efficiency of antisense oligonucleotides (5 nM and 20 nM) introduced into cells using Lipofectamine LTX reagent in human HepG2 cells.
  • the antisense oligonucleotide of the present invention showed excellent knockdown activity against HepG2 cells, HLE cells and / or Hepa1c1c7 cells, as compared with other antisense oligonucleotides.
  • Antisense oligonucleotide (AON) numbers 1, 4, 5, 6, 15, 17, 18, 42, 43, 50, 51, 55, 56, 57, 58 are defined as sequences having cross-reactivity between mouse different species. , 62, 63, 64, 65, 74, 75, 76, 77, 114, 115, 116, 117 were found to have interspecies crossing properties.
  • the primer sequence used to measure the expression level of human ACSL3 is: Fw primer: ATACGGGGCTCACTGAATCTGCTG (SEQ ID NO: 165); Rv primer: AGCAAACTAATGGTGCTCCCACTC (SEQ ID NO: 166)
  • Fw primer GGAACTCTGAAGATCATCGACCGTA (SEQ ID NO: 167); Rv primer: CGTTGTCAGGAACCACCACTCCTA (SEQ ID NO: 168) was used.
  • the primer sequence used to measure the expression level of mouse Acsl3 is: Fw primer: GCAACAACGCAGCGATTCA (SEQ ID NO: 169); Rv primer: AGCAAACTAATGGTGCCTCCACTC (SEQ ID NO: 170)
  • Use The primer sequence used to measure the expression level of mouse Acsl5 is: Fw primer: CATTCGGCGGGACAGTTTG (SEQ ID NO: 171); Rv primer: ATCCCATTGCCAGCCCCTGAAG (SEQ ID NO: 172) was used.
  • Table 17 shows the amount of decrease in ACSL3 or ACSL5 mRNA in mouse Hepa1c1c7 cells normalized with GAPDH as a percentage of untreated cells as knockdown efficiency.
  • Table 18 shows the amount of decrease in ACSL3 or ACSL5 mRNA in human HepG2 cells normalized with GAPDH as a percentage of untreated cells as knockdown efficiency.
  • N in Table 17 or 18.
  • D Means that the amount of mRNA decrease in ACSL3 or ACSL5 is below the detection limit, or the amount of mRNA is increased, and ACSL3 or ACSL5 is not suppressed. As a result, it was confirmed that the antisense oligonucleotide of the present invention suppresses ACSL1, but does not suppress ACSL3 and ACSL5.
  • the primary antibody of ACSL1 was rabbit anti-ACSL1 antibody (Cell Signaling), and the secondary antibody was ECL TM Peroxidase-labeled anti-rabbit antibody (GE).
  • the primary antibody for ACSL3 was rabbit anti-ACSL3 antibody (Proteintech), and the secondary antibody was ECL TM Peroxidase-labeled anti-rabbit antibody.
  • the primary antibody for ACSL5 was rabbit anti-ACSL5 antibody (Proteintech), and the secondary antibody was ECL TM Peroxidase-labeled anti-rabbit antibody.
  • the primary antibody of ⁇ -actin was mouse anti ⁇ -actin antibody (Sigma), and the secondary antibody was ECL TM Peroxidase-labeled anti-mouse antibody (GE).
  • FIGS. FIG. 2 shows the knockdown effect on ACSL1.
  • AON Nos. 1, 4, 5, 6, 43, 55, 56 and 57 were found to have a knockdown effect even at the protein level at a final concentration of 5 nM.
  • FIG. 3 shows the evaluation results of the reactivity against ACSL3, ACSL5. As a result, it was found that the antisense oligonucleotide of the present invention suppresses ACSL1 even at the protein level, but does not suppress ACSL3 and ACSL5.
  • Example 6 Evaluation of in vivo activity at the time of single administration of antisense oligonucleotide (1) Evaluation by change in mRNA expression level AON Nos. 194, 196, 197, 198 selected by evaluation in mRNA expression level change in vitro For 199, 201, and 203, knockdown activity was evaluated by changing the mRNA expression level of ACSL1 in the mouse liver.
  • C57BL / 6J male, 10 weeks old, Claire, Japan
  • antisense oligonucleotide solution dissolved in physiological saline Otsuka raw food injection, Otsuka Pharmaceutical Factory
  • the dose per mouse is 10 mg / kg , 20 mg / kg, and 40 mg / kg.
  • RNA extraction from the liver was performed according to the manufacturer's recommended protocol using RNeasy 96 Universal Tissue Kit (Qiagen). 1000 ng of the obtained RNA was reverse-transcribed according to a standard protocol using SuperScript III First-Strand Synthesis SuperMix for qRT-PCR (manufactured by Life Science) to obtain cDNA. Quantitative PCR was performed using SYBR Premix Ex Taq II (manufactured by Takara Bio Inc.). GAPDH was used as an endogenous control, and the same primers as those used in the in vitro experiment were used. The results are shown in Tables 19-21.
  • N / A in the table means that ACSL1 mRNA is not measured.
  • the ratio of ACSL1 mRNA normalized by GAPDH to untreated cells is shown.
  • the antisense oligonucleotide of the present invention exhibited a concentration-dependent knockdown activity even in vivo.
  • Example 7 Evaluation of in vivo activity upon repeated administration of antisense oligonucleotide
  • ACSL1 in mouse liver was repeatedly administered with AON No. 203 selected by evaluation based on changes in mRNA expression level in vitro.
  • the knockdown activity was evaluated by changing the mRNA expression level.
  • Diet-induced obese (DIO) mice were prepared by feeding C57BL / 6J (male 7-week-old, Claire, Japan) for 4 weeks and a high-fat fat diet (60% kcal fat: manufactured by TestDiet) for 4 weeks.
  • 203 dissolved in physiological saline (Otsuka raw food injection, Otsuka Pharmaceutical Factory) was subcutaneously administered once weekly to DIO mice.
  • the dose was 5 mg / kg / week, 10 mg / kg / week, and 40 mg / kg of the initial administration and 10 mg / kg / week of the maintenance administration per mouse, and the administration was continued for 8 weeks.
  • Liver tissues were collected from some individuals on the 14th, 28th, and 56th days after the first administration, and the changes in the expression of mRNA and protein were examined as in the single administration experiment. The results of mRNA expression changes are shown in the table. As a result, it was confirmed that AON No. 203 exhibited a concentration-dependent knockdown activity even after repeated administration in vivo.
  • Example 8 Weight gain inhibitory effect upon repeated administration of antisense oligonucleotide The effect on weight gain of mice upon repeated administration of AON No. 203 was evaluated. Diet-induced obese (DIO) mice were prepared by feeding C57BL / 6J (male 7-week-old, Claire, Japan) for 4 weeks and a high-fat fat diet (60% kcal fat: manufactured by TestDiet) for 4 weeks. Divide the group into 7 to 8 animals so that the average value of the body weight is the same. About 0.2 mL of antisense oligonucleotide solution of AON No. 203 dissolved in physiological saline (Otsuka raw food injection, Otsuka Pharmaceutical Factory) The ileum was administered subcutaneously.
  • physiological saline Otsuka raw food injection, Otsuka Pharmaceutical Factory
  • the dose per mouse is 5 mg / kg / week, 10 mg / kg / week, and 40 mg / kg for the initial dose and 10 mg / kg / week for the maintenance dose.
  • the amount of food was measured.
  • the weight transition is shown in FIG. Compared with the physiological saline administration group, no significant change in food intake was observed in any of the AON No. 203 administration groups, but weight gain suppression was confirmed in any of the groups administered with AON No. 203. From this result, the anti-obesity effect was confirmed by suppressing ACSL1 expression in the liver with the antisense oligonucleotide of the present invention.
  • Example 9 Liver toxicity evaluation after single administration of antisense oligonucleotide AON toxicity was evaluated in mouse liver for AON Nos. 194, 198, 199, 201, 203. Specifically, glutamate oxaloacetate transaminase (GOT) and glutamate pyruvate transaminase (GPT) contained in plasma were measured as markers of liver toxicity.
  • GAT glutamate oxaloacetate transaminase
  • GPT glutamate pyruvate transaminase
  • GOT and GPT in the obtained plasma were measured using a transaminase C2 kit Wako (manufactured by Wako Pure Chemical Industries, Ltd.) according to the attached manual. Significant increases in GOT and GPT were not observed in the blood of mice administered with AON Nos. 194, 198, 199, 201, 203 as compared to the saline administration group. As a result, it was confirmed that the antisense oligonucleotide of the present invention does not exhibit liver toxicity.
  • the antisense oligonucleotide of the present invention exhibits ACSL1 expression inhibitory activity. Therefore, the compound of the present invention can prevent or prevent obesity, obesity-related diseases, diabetes (particularly type II diabetes), syndrome X, cardiovascular disorder or cancer (breast cancer, colon cancer, colon cancer, ovarian cancer, lung cancer, etc.) or the like. It is very useful as a medicine for treatment (including a medicine for weight management).

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Diabetes (AREA)
  • Wood Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • Public Health (AREA)
  • Molecular Biology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Veterinary Medicine (AREA)
  • General Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Obesity (AREA)
  • Hematology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Emergency Medicine (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Virology (AREA)
  • Endocrinology (AREA)
  • Child & Adolescent Psychology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

It is found that an antisense oligonucleotide comprising a sequence complementary to a sequence lying between position-95 and position-109, position-176 and position-192, position-467 and position-484, position-940 and position-954, position-1017 and position-1032, position-1102 and position-1116, position-1176 and position-1197, position-1222 and position-1236, position-1727 and position-1743, position-1858 and position-1873, position-1946 and position-1960, position-2294 and position-2308, position-2360 and position-2377, position-2449 and position-2469, position-2605 and position-2624, position-2689 and position-2703, position-2950 and position-2964, position-3424 and position-3438 or position-3591 and position-3605 in the sequence represented by SEQ ID NO: 2 has an excellent inhibitory activity on the expression of ACSL1. A pharmaceutical composition containing the antisense oligonucleotide for ACSL1 according to the present invention as an active ingredient is useful for the prevention or treatment of obesity or type-II diabetes.

Description

ACSL1に対するアンチセンスオリゴヌクレオチドAntisense oligonucleotide to ACSL1
 本発明は、ACSL1(acyl-CoA synthetase long-chain family member 1)に対するアンチセンスオリゴヌクレオチドに関する。より詳細には、肥満症または糖尿病(特に、II型糖尿病)の予防または治療薬(体重管理用医薬組成物も含む)として有用なACSL1に対するアンチセンスオリゴヌクレオチドに関する。 The present invention relates to an antisense oligonucleotide to ACSL1 (acyl-CoA synthetase long-chain family member 1). More specifically, the present invention relates to an antisense oligonucleotide against ACSL1 useful as a preventive or therapeutic agent (including a pharmaceutical composition for weight management) for obesity or diabetes (particularly type II diabetes).
 肥満は脂肪組織が全身的に増加した状態をいい、長期間にわたり摂取するエネルギー量が消費するエネルギー量よりも多いときに起きる。肥満は、内臓脂肪型肥満と皮下脂肪型肥満とに分類できる。内臓脂肪型肥満は、大網、腸間膜周囲に存在する腹腔内脂肪の蓄積量が増加する肥満で、糖尿病(特に、インスリン抵抗性を伴うII型糖尿病)、動脈硬化症、肝臓病、心臓病等を引き起こす元凶の一つとされ、現代社会において大きな問題となっている。 Obesity is a systemic increase in adipose tissue and occurs when the amount of energy consumed over a long period is greater than the amount of energy consumed. Obesity can be classified into visceral fat obesity and the subcutaneous fat type obesity. Visceral fat-type obesity is obesity in which the accumulation of intra-abdominal fat existing around the omentum and mesentery increases, and diabetes (particularly type II diabetes with insulin resistance), arteriosclerosis, liver disease, heart It is one of the culprit that causes the disease, etc., has become a major problem in modern society.
 糖尿病は、持続的高血糖状態を伴う疾患であり、多くの環境因子と遺伝的因子とが作用した結果に生じるとされている。体内における血糖の主要な調整因子はインスリンであり、高血糖は、インスリン欠乏、または、その作用を阻害する諸因子(例えば、遺伝的素因、運動不足、肥満、ストレス等)が過剰となって生じる。糖尿病には主として2つの種類があり、自己免疫疾患等による膵インスリン分泌機能の低下によって生じるI型糖尿病と、持続的な高インスリン分泌に伴う膵疲弊による膵インスリン分泌機能の低下が原因であるII型糖尿病とに分類される。日本人の糖尿病患者の95%以上はII型糖尿病と言われており、今日、生活様式の変化に伴う患者数の増加が問題となっている。 Diabetes mellitus is a disease accompanied by a persistent hyperglycemic state, and is considered to result from the action of many environmental factors and genetic factors. The main regulator of blood sugar in the body is insulin, and hyperglycemia is caused by insulin deficiency or excessive factors that inhibit its action (eg, genetic predisposition, lack of exercise, obesity, stress, etc.) . There are mainly two types of diabetes, which are caused by type I diabetes caused by a decrease in pancreatic insulin secretion function due to autoimmune diseases and the like and a decrease in pancreatic insulin secretion function due to pancreatic exhaustion associated with continuous high insulin secretion II Classified as type 2 diabetes. More than 95% of Japanese diabetic patients are said to have type II diabetes, and today, the increase in the number of patients accompanying lifestyle changes is a problem.
 アシル-CoA合成酵素ファミリーに属する酵素(以下、ACSと略記する)は、長鎖脂肪酸からアシルCoAへ変換する酵素である。アシルCoAは、細胞内脂質合成および脂肪酸分解または伸長反応における基質となることから、ACSは、細胞内の脂質代謝さらには脂質による細胞内シグナル伝達において中心的な役割を担う。またACSは、脂肪外脂肪酸の取込みにも関与する(非特許文献1参照)。 Enzymes belonging to the acyl-CoA synthase family (hereinafter abbreviated as ACS) are enzymes that convert long-chain fatty acids into acyl CoA. Since acyl-CoA is a substrate in intracellular lipid synthesis and fatty acid degradation or elongation reactions, ACS plays a central role in intracellular lipid metabolism as well as intracellular signaling by lipids. The ACS is also involved in the uptake of fat outside fatty acids (see Non-Patent Document 1).
 ACSは、現在までに基質選択性や細胞内局在の異なる5つのアイソザイム(ACS1、3、4、5、6)が同定されている(非特許文献2参照)。このファミリーに属する酵素の一つであるACSL1(GenBank:NM_001995)は、主に肝臓や脂肪組織で発現しており、トリグリセリド(TG)の合成を触媒する。なお、ACSL4およびACSL5は主に肝臓で発現し、ACSL3やACSL6は主に脳で発現していることが知られている。 As for ACS, five isozymes (ACS1, 3, 4, 5, 6) having different substrate selectivity and subcellular localization have been identified so far (see Non-Patent Document 2). ACSL1 (GenBank: NM_001995), one of the enzymes belonging to this family, is mainly expressed in the liver and adipose tissue and catalyzes the synthesis of triglyceride (TG). It is known that ACSL4 and ACSL5 are mainly expressed in the liver, and ACSL3 and ACSL6 are mainly expressed in the brain.
 ACSの阻害剤としてTriacsinCが知られており、この化合物は5つのアイソザイムのうち1、3、4を阻害することが報告されている(非特許文献3参照)。この化合物については、この他にヒト肝癌細胞株であるHuH7細胞においてTG蓄積を阻害すること(非特許文献4参照)やヒト正常皮膚繊維芽細胞であるCCD細胞でジアシルグリセロール、コレステロールエステル、リン脂質合成を阻害することが報告されている(非特許文献5参照)。 Triacsin C is known as an inhibitor of ACS, and this compound has been reported to inhibit 1, 3 and 4 of 5 isozymes (see Non-Patent Document 3). In addition to this compound, in addition to inhibiting TG accumulation in HuH7 cells, which are human hepatoma cell lines (see Non-Patent Document 4), and diacylglycerol, cholesterol esters, phospholipids in CCD cells, which are human normal dermal fibroblasts. It has been reported to inhibit synthesis (see Non-Patent Document 5).
 ACSL1は、各種癌との関係が報告されており(例えば、特許文献1~3参照)他に肝硬変や肝繊維性障害(特許文献4参照)、気管支喘息(特許文献5参照)のバイオマーカーになることも報告されている。 ACSL1 has been reported to be associated with various cancers (see, for example, Patent Documents 1 to 3), and as a biomarker for cirrhosis, liver fibrosis (see Patent Document 4), and bronchial asthma (see Patent Document 5). It has also been reported.
 また、特許文献6には、肝臓のACSL1の発現をsiRNAにより抑制することによって体重の増加の抑制および血糖値を降下させることが開示されており、ACSL1発現抑制剤は肥満症またはII型糖尿病の治療または予防に利用することができることが示唆されている。 Patent Document 6 discloses that suppression of hepatic ACSL1 expression by siRNA suppresses increase in body weight and lowers blood glucose level, and ACSL1 expression inhibitor is used for obesity or type II diabetes. It has been suggested that it can be used for treatment or prevention.
 特許文献7には、ACSL1をターゲットとしたアンチセンス化合物について開示されている。明細書中には、3615のアンチセンスオリゴヌクレオチドが記載されているが、標的領域との親和性に関する予測値が記載されているだけであり、ACSL1発現抑制に関するデータは記載されていない。 Patent Document 7 discloses an antisense compound targeting ACSL1. In the specification, 3615 antisense oligonucleotides are described, but only predictive values regarding affinity with a target region are described, and data regarding suppression of ACSL1 expression is not described.
国際公開第07/010628号International Publication No. 07/010628 国際公開第07/117038号International Publication No. 07/117038 国際公開第03/3004989号International Publication No. 03/3004989 特開2007-252366号JP 2007-252366 A 特開2004-121218号JP 2004-121218 A 国際公開第2010/079819号International Publication No. 2010/0779819 国際公開第04/016749号International Publication No. 04/016749
 本発明の目的は、優れたACSL1発現抑制活性を有する新規アンチセンスオリゴヌクレオチドを提供することにある。 An object of the present invention is to provide a novel antisense oligonucleotide having excellent ACSL1 expression suppression activity.
 本発明者らは、鋭意研究の結果、優れたACSL1発現抑制活性(ノックダウン活性)を有する新規アンチセンスオリゴヌクレオチドの合成に成功した。さらに、本発明者らは、ACSL1のmRNAの中で特に、アンチセンスオリゴヌクレオチドのノックダウン活性に関連する標的領域を見出した。特許文献7には、3615のACSL1に対するアンチセンスオリゴヌクレオチドが記載されているが、標的領域との親和性に関する予測値が記載されているだけであり、ACSL1発現抑制に関するデータは記載されていない。高親和性を持つアンチセンスが、必ずしも高い標的遺伝子発現抑制作用を持つわけではないことは技術常識である(Antisense Drug Technology Principles, Strategies, and Applications, CRC Press; 2nd edition, 2007, page 120-122, Figure 5.3a)。よって、特許文献7の記載からは、ACSL1のmRNAのどの領域がアンチセンスオリゴヌクレオチドの標的領域として有用であるかは予測できない。本発明のアンチセンスオリゴヌクレオチドは、本発明者らが見出した特定の標的領域と結合し、優れたACSL1発現抑制活性を示す。
 また、本発明者らは、本発明のアンチセンスオリゴヌクレオチドが、他のアイソザイム(ACSL3およびACSL5)に対して発現抑制作用を持たず、ACSL1特異的発現抑制作用を持つことを見出した。このように標的配列に対して特異性の高いアンチセンスオリゴヌクレオチドは、医薬として有用である。
 また、本発明のアンチセンスオリゴヌクレオチドは代謝安定性および水溶性がよく、毒性が低く、医薬として使用するために十分安全である。
As a result of intensive studies, the present inventors have succeeded in synthesizing a novel antisense oligonucleotide having excellent ACSL1 expression suppression activity (knockdown activity). Furthermore, the present inventors have found a target region related to the knockdown activity of an antisense oligonucleotide, particularly in the mRNA of ACSL1. Patent Document 7 describes an antisense oligonucleotide for ACSL1 of 3,615, but only describes a predicted value for affinity with a target region, and does not describe data regarding suppression of ACSL1 expression. It is common knowledge that antisense with high affinity does not necessarily have a high inhibitory action on target gene expression (Antisense Drug Technology Principles, Strategies, and Applications, CRC Press; 2nd edition, 2007-122, p. , FIG. 5.3a). Therefore, from the description in Patent Document 7, it cannot be predicted which region of ACSL1 mRNA is useful as the target region of the antisense oligonucleotide. The antisense oligonucleotide of the present invention binds to a specific target region found by the present inventors and exhibits excellent ACSL1 expression suppression activity.
Further, the present inventors have found that the antisense oligonucleotide of the present invention does not have an expression suppressing action on other isozymes (ACSL3 and ACSL5) but has an ACSL1-specific expression suppressing action. Thus, an antisense oligonucleotide with high specificity for a target sequence is useful as a medicine.
Moreover, the antisense oligonucleotide of the present invention has good metabolic stability and water solubility, low toxicity, and is sufficiently safe for use as a medicine.
 すなわち、本発明は、以下に関する。
(1)ストリンジェントな条件で、配列番号1の95位~109位、176位~192位、467位~484位、940位~954位、1017位~1032位、1102位~1116位、1176位~1197位、1222位~1236位、1727位~1743位、1858位~1873位、1946位~1960位、2294位~2308位、2360位~2377位、2449位~2469位、2605位~2624位、2689位~2703位、2950位~2964位、3424位~3438位または3591位~3605位からなる配列にハイブリダイズ可能な配列を含む、アンチセンスオリゴヌクレオチド。
(2)ACSL1の発現を抑制する、(1)記載のアンチセンスオリゴヌクレオチド。
(3)長さが13~19塩基である、(1)または(2)記載のアンチセンスオリゴヌクレオチド。
(4)4´位と2´位との間に架橋構造を有する糖修飾ヌクレオシドを1以上含有する、(1)~(3)いずれかに記載のアンチセンスオリゴヌクレオチド。
(5)該架橋構造が、-CH-O-または-CO-NR-(Rは、水素原子またはアルキルである)である、(4)記載のアンチセンスオリゴヌクレオチド。
(6)配列番号6~11、13~18、20~22、24~30、32、35~37、46、48、49、52~54、57~59、64~68もしくは70の配列、または、
配列番号6~11、13~18、20~22、24~30、32、35~37、46、48、49、52~54、57~59、64~68もしくは70の配列において、1もしくは数個の塩基が欠失、挿入もしくは置換された配列
を含む、(1)~(5)いずれかに記載のアンチセンスオリゴヌクレオチド。
(7)配列番号6~11、13~18、20~22、24~30、32、35~37、46、48、49、52~54、57~59、64~68もしくは70の配列、または、
配列番号6~11、13~18、20~22、24~30、32、35~37、46、48、49、52~54、57~59、64~68もしくは70の配列において、1もしくは数個の塩基が欠失、置換、挿入もしくは付加された配列
からなる、(6)記載のアンチセンスオリゴヌクレオチド。
(8)(1)~(7)いずれかに記載のアンチセンスオリゴヌクレオチドを含有する医薬組成物。
(9)ACSL1が関連する疾患の予防または治療のために用いる、(8)記載の医薬組成物。
(10)該疾患が、肥満症またはII型糖尿病である、(9)記載の医薬組成物。
(11)(1)~(7)いずれかに記載のアンチセンスオリゴヌクレオチドを投与するACSL1が関連する疾患の予防または治療方法。
(12)該疾患が、肥満症またはII型糖尿病である、(11)記載の予防または治療方法。
(13)ACSL1が関連する疾患の予防または治療剤を製造するための、(1)~(7)いずれかに記載のアンチセンスオリゴヌクレオチドの使用。
(14)該疾患が、肥満症またはII型糖尿病である、(13)記載のアンチセンスオリゴヌクレオチドの使用。
(15)ACSL1が関連する疾患の予防または治療するための、(1)~(7)いずれかに記載のアンチセンスオリゴヌクレオチド。
(16)該疾患が、肥満症またはII型糖尿病である、(15)記載のアンチセンスオリゴヌクレオチド。
That is, the present invention relates to the following.
(1) 95 to 109, 176 to 192, 467 to 484, 940 to 954, 1017 to 1032, 1102 to 1116, 1176 of SEQ ID NO: 1 under stringent conditions # 1-1197, 1222-1236, 1727-1743, 1858-1873, 1946-1960, 2294-2308, 2360-2377, 2449-2469, 2605- An antisense oligonucleotide comprising a sequence capable of hybridizing to the sequence consisting of positions 2624, 2689 to 2703, 2950 to 2964, 3424 to 3438, or 3591 to 3605.
(2) The antisense oligonucleotide according to (1), which suppresses the expression of ACSL1.
(3) The antisense oligonucleotide according to (1) or (2), which is 13 to 19 bases in length.
(4) The antisense oligonucleotide according to any one of (1) to (3), which contains at least one sugar-modified nucleoside having a cross-linked structure between the 4′-position and the 2′-position.
(5) The antisense oligonucleotide according to (4), wherein the crosslinked structure is —CH 2 —O— or —CO—NR 1 — (R 1 is a hydrogen atom or alkyl).
(6) Sequence number 6-11, 13-18, 20-22, 24-30, 32, 35-37, 46, 48, 49, 52-54, 57-59, 64-68 or 70, or ,
1 or number in the sequences of SEQ ID NOs: 6-11, 13-18, 20-22, 24-30, 32, 35-37, 46, 48, 49, 52-54, 57-59, 64-68 or 70 The antisense oligonucleotide according to any one of (1) to (5), comprising a sequence in which one base is deleted, inserted or substituted.
(7) SEQ ID NO: 6-11, 13-18, 20-22, 24-30, 32, 35-37, 46, 48, 49, 52-54, 57-59, 64-68 or 70, or ,
1 or number in the sequences of SEQ ID NOs: 6-11, 13-18, 20-22, 24-30, 32, 35-37, 46, 48, 49, 52-54, 57-59, 64-68 or 70 The antisense oligonucleotide according to (6), comprising a sequence in which one base is deleted, substituted, inserted or added.
(8) A pharmaceutical composition comprising the antisense oligonucleotide according to any one of (1) to (7).
(9) The pharmaceutical composition according to (8), which is used for prevention or treatment of a disease associated with ACSL1.
(10) The pharmaceutical composition according to (9), wherein the disease is obesity or type II diabetes.
(11) A method for preventing or treating a disease associated with ACSL1, which comprises administering the antisense oligonucleotide according to any one of (1) to (7).
(12) The prevention or treatment method according to (11), wherein the disease is obesity or type II diabetes.
(13) Use of the antisense oligonucleotide according to any one of (1) to (7) for producing a preventive or therapeutic agent for a disease associated with ACSL1.
(14) Use of the antisense oligonucleotide according to (13), wherein the disease is obesity or type II diabetes.
(15) The antisense oligonucleotide according to any one of (1) to (7), for preventing or treating a disease associated with ACSL1.
(16) The antisense oligonucleotide according to (15), wherein the disease is obesity or type II diabetes.
 本発明のアンチセンスオリゴヌクレオチドは優れたACSL1発現抑制活性を示し、医薬品、特にACSL1の関与する疾患、例えば、肥満症、肥満関連疾患、糖尿病(特に、II型糖尿病)、シンドロームX、心臓血管障害または癌(乳癌、結腸癌、大腸癌、卵巣癌、肺癌等)の予防または治療のための医薬(体重管理用医薬も含む)として非常に有用である。 The antisense oligonucleotide of the present invention exhibits excellent ACSL1 expression-suppressing activity, and is associated with drugs, particularly diseases involving ACSL1, such as obesity, obesity-related diseases, diabetes (particularly type II diabetes), syndrome X, cardiovascular disorders Or it is very useful as a medicine (including a weight management medicine) for preventing or treating cancer (breast cancer, colon cancer, colon cancer, ovarian cancer, lung cancer, etc.).
本発明のアンチセンスオリゴヌクレオチドのHepG2細胞におけるLipofectamine LTX試薬を用いて細胞導入したアンチセンスオリゴヌクレオチド(5nMおよび20nM)のノックダウン効率Knockdown efficiency of antisense oligonucleotides (5 nM and 20 nM) introduced into cells using LipofectamineminLTX reagent in HepG2 cells of the antisense oligonucleotide of the present invention 本発明のアンチセンスオリゴヌクレオチドのHepG2細胞におけるACSL1タンパク質に対するノックダウン効果Knockdown effect on ACSL1 proteins in HepG2 cells of the antisense oligonucleotides of the present invention 本発明のアンチセンスオリゴヌクレオチドのHepG2細胞におけるACSL3およびACSL5に対する交差性の評価結果Results of evaluation of cross-reactivity to ACSL3 and ACSL5 in HepG2 cells of the antisense oligonucleotide of the present invention 本発明のアンチセンスオリゴヌクレオチド(AON番号197および203)をin vivoで単回投与した際のACSL1タンパク質に対するノックダウン効果Knockdown effect on ACSL1 protein after single administration of the antisense oligonucleotide of the present invention (AON numbers 197 and 203) in vivo 本発明のアンチセンスオリゴヌクレオチド(AON番号196および203)をin vivoで単回投与した際のACSL1タンパク質に対するノックダウン効果Knockdown effect on ACSL1 protein when the antisense oligonucleotide of the present invention (AON numbers 196 and 203) is administered once in vivo 本発明のアンチセンスオリゴヌクレオチド(AON番号203)をin vivoで反復投与した際のACSL1タンパク質に対するノックダウン効果Knockdown effect on ACSL1 protein when the antisense oligonucleotide of the present invention (AON No. 203) is repeatedly administered in vivo 本発明のアンチセンスオリゴヌクレオチド(AON番号203)をin vivoで反復投与した際の体重推移Changes in body weight when the antisense oligonucleotide of the present invention (AON No. 203) is repeatedly administered in vivo
 本明細書において使用される用語は、特に言及する場合を除いて、当該分野で通常用いられる意味で用いられる。
 本発明においては、当該分野で公知の遺伝子操作方法の使用が可能である。例えば、Molecular Cloning, A Laboratory Manual, Third Edition, Cold Spring Harbor Laboratory Press (2001)、Current Protocols in Molecular Biology, John Wiley & Sons (2003)に記載された方法等が挙げられる。
 以下に本発明について詳細に説明する。
The terms used in the present specification are used in the meaning normally used in the art unless otherwise specified.
In the present invention, a genetic manipulation method known in the art can be used. For example, Molecular Cloning, A Laboratory Manual, Third Edition, Cold Spring Harbor Laboratory Press (2001), Current Protocols in Molecular Biology, Jon.
The present invention is described in detail below.
 「アンチセンスオリゴヌクレオチド」(AON)とは、標的遺伝子のmRNA、mRNA前駆体またはncRNAに対して相補的なオリゴヌクレオチドであり、1本鎖のDNA、RNAおよび/またはそれらの類似体から構成される。当該アンチセンスオリゴヌクレオチドが標的とするmRNA、mRNA前駆体またはncRNAと二本鎖を形成することによりmRNA、mRNA前駆体またはncRNAの働きを抑制する。「アンチセンスオリゴヌクレオチド」には、標的となるmRNA、mRNA前駆体またはncRNAと完全に相補的であるもののみならず、mRNA、mRNA前駆体またはncRNAとストリンジェントな条件でハイブリダイズできる限り、1もしくは数個のミスマッチが存在するものも含まれる。
 オリゴヌクレオチドとは、同一または異なるヌクレオシドが複数個結合したヌクレオチドを意味する。「ヌクレオシド」とは、核酸塩基と糖とがN-グリコシド結合をした化合物を意味する。「ヌクレオチド」とは、ヌクレオシドの糖にリン酸基が結合した化合物を意味する。
 DNAまたはRNAの類似体とは、DNAまたはRNAに似た構造を持つ分子を意味する。例えば、ペプチド核酸(PNA)等が挙げられる。
 ncRNA(ノンコーディングRNA)とは、タンパク質へ翻訳されずに機能するRNAの総称である。例えば、リボソームRNA、転移RNA、miRNA等が挙げられる。
 1もしくは数個のミスマッチとは、1~5個、好ましくは1~3個、さらに好ましくは1または2個のミスマッチを意味している。
An “antisense oligonucleotide” (AON) is an oligonucleotide complementary to a target gene mRNA, mRNA precursor or ncRNA, and is composed of single-stranded DNA, RNA and / or analogs thereof. The The function of mRNA, mRNA precursor or ncRNA is suppressed by forming a double strand with the mRNA, mRNA precursor or ncRNA targeted by the antisense oligonucleotide. “Antisense oligonucleotides” include not only those that are completely complementary to the target mRNA, mRNA precursor or ncRNA, but also those that can hybridize to the mRNA, mRNA precursor or ncRNA under stringent conditions. Or it includes those with several mismatches.
An oligonucleotide means a nucleotide in which a plurality of identical or different nucleosides are bound. “Nucleoside” means a compound in which a nucleobase and a sugar form an N-glycoside bond. “Nucleotide” means a compound in which a phosphate group is bonded to a nucleoside sugar.
An analog of DNA or RNA means a molecule having a structure similar to DNA or RNA. For example, peptide nucleic acid (PNA) etc. are mentioned.
ncRNA (non-coding RNA) is a general term for RNA that functions without being translated into protein. For example, ribosomal RNA, transfer RNA, miRNA and the like can be mentioned.
One or several mismatches means 1 to 5, preferably 1 to 3, more preferably 1 or 2 mismatches.
 本発明のアンチセンスオリゴヌクレオチドの標的遺伝子としては、ACSL1が挙げられる。例えば、ヒトACSL1、マウスACSL1等が挙げられるが、これらに限定されない。 ACSL1 is mentioned as a target gene of the antisense oligonucleotide of the present invention. For example, human ACSL1, although mouse ACSL1 like, without limitation.
 「ACSL1」は公知のタンパク質である。ヒトACSL1(GenBank:NM_001995)のDNA配列を配列表の配列番号1に、アミノ酸配列を配列番号2に記載する。マウスACSL1(GenBank:NM_007981)のDNA配列を配列表の配列番号3に、アミノ酸配列を配列番号4に記載する。本発明における「ACSL1」は、これらの配列に限定されるものではなく、配列番号2または4のタンパク質の機能が保持される限り、アミノ酸やDNAの変異数や変異部位に制限はないものとする。 “ACSL1” is a known protein. The DNA sequence of human ACSL1 (GenBank: NM — 001995) is described in SEQ ID NO: 1 in the sequence listing, and the amino acid sequence is described in SEQ ID NO: 2. The DNA sequence of mouse ACSL1 (GenBank: NM — 007981) is described in SEQ ID NO: 3 in the sequence listing, and the amino acid sequence is described in SEQ ID NO: 4. “ACSL1” in the present invention is not limited to these sequences, and as long as the function of the protein of SEQ ID NO: 2 or 4 is maintained, the number of amino acid and DNA mutations and mutation sites are not limited. .
 本発明のアンチセンスオリゴヌクレオチドの長さは、6~50塩基である。例えば、6~30塩基、6~19塩基、8~19塩基、10~19塩基、13~19塩基、13塩基、14塩基、15塩基、16塩基、17塩基、18塩基、19塩基である。 The length of the antisense oligonucleotide of the present invention is 6 to 50 bases. For example, 6 to 30 bases, 6 to 19 bases, 8 to 19 bases, 10 to 19 bases, 13 to 19 bases, 13 bases, 14 bases, 15 bases, 16 bases, 17 bases, 18 bases and 19 bases.
 本発明の「アンチセンスオリゴヌクレオチド」としては、
(a)ストリンジェントな条件で、配列番号1の配列の95位~109位、176位~192位、467位~484位、940位~954位、1017位~1032位、1102位~1116位、1176位~1197位、1222位~1236位、1727位~1743位、1858位~1873位、1946位~1960位、2294位~2308位、2360位~2377位、2449位~2469位、2605位~2624位、2689位~2703位、2950位~2964位、3424位~3438位もしくは3591位~3605位の配列にハイブリダイズ可能な配列を含む、アンチセンスオリゴヌクレオチド、または
(b)ストリンジェントな条件で、配列番号3の配列の183位~197位、219位~235位、442位~456位、513位~530位、593位~607位、641位~655位、919位~933位、941位~955位、959位~973位、978位~993位、998位~1013位、1222位~1243位、1268位~1282位、1625位~1639位、1993位~2007位、2066位~2081位、2409位~2423位、2497位~2525位、2651位~2670位、2685位~2700位、2738位~2756位、2764位~2788位、3331位~3347位、3503位~3517位もしくは3663位~3684位の配列にハイブリダイズ可能な配列を含む、アンチセンスオリゴヌクレオチド
が挙げられる。(a)の標的領域は、それぞれ、ヒトACSL1のmRNAの中で特に、アンチセンスオリゴヌクレオチドのノックダウン活性に関連する領域である。(b)の標的領域は、それぞれ、マウスACSL1のmRNAの中で特に、アンチセンスオリゴヌクレオチドのノックダウン活性に関連する領域である。ストリンジェントな条件で、該標的領域にハイブリダイズ可能な配列であれば、長さやヌクレオチドの修飾の有無に関わらず、本発明のアンチセンスオリゴヌクレオチドに含まれる。
As the “antisense oligonucleotide” of the present invention,
(A) 95 to 109, 176 to 192, 467 to 484, 940 to 954, 1017 to 1032, 1102 to 1116 in the sequence of SEQ ID NO: 1 under stringent conditions 1176th to 1197th, 1222 to 1236th, 1727th to 1743th, 1858th to 1873th, 1946th to 1960th, 2294th to 2308th, 2360th to 2377th, 2449th to 2469th, 2605 An antisense oligonucleotide comprising a sequence capable of hybridizing to the sequence from position 2624, 2689-2703, 2950-2964, 3424-3438 or 3591-3605, or (b) stringent Under the conditions, 183 to 197, 219 to 235, 442 of the sequence of SEQ ID NO: 3. ~ 456, 513 ~ 530, 593 ~ 607, 641 ~ 655, 919 ~ 933, 941 ~ 955, 959 ~ 973, 978 ~ 993, 998 ~ 1013 , 1222 to 1243, 1268 to 1282, 1625 to 1639, 1993 to 2007, 2066 to 2081, 2409 to 2423, 2497 to 2525, 2651 to 2670, An antisense oligonucleotide comprising a sequence capable of hybridizing to the sequence of positions 2585 to 2700, 2738 to 2756, 2764 to 2788, 3331 to 3347, 3503 to 3517, or 3663 to 3684 Is mentioned. Each of the target regions in (a) is a region associated with the knockdown activity of the antisense oligonucleotide, particularly in human ACSL1 mRNA. Each of the target regions in (b) is a region associated with the knockdown activity of the antisense oligonucleotide, particularly in mouse ACSL1 mRNA. Any sequence capable of hybridizing to the target region under stringent conditions is included in the antisense oligonucleotide of the present invention regardless of the length or the presence or absence of nucleotide modification.
 ACSL1発現抑制活性(ノックダウン活性)は、公知の方法により測定することが可能である。例えば、後述する実施例5(1)または(3)、実施例6または実施例7記載の方法により測定することができる。 ACSL1 expression inhibitory activity (knockdown activity) can be measured by a known method. For example, it can be measured by the method described in Example 5 (1) or (3), Example 6 or Example 7 described later.
 本発明のアンチセンスオリゴヌクレオチドとして、より好ましくは、
(c)ストリンジェントな条件で、配列番号1の配列の176位~192位、467位~484位、1176位~1197位、2449位~2469位もしくは2605位~2624位の配列にハイブリダイズ可能な配列を含む、アンチセンスオリゴヌクレオチド、または
(d)ストリンジェントな条件で、配列番号3の配列の219位~235位、513位~530位、1222位~1243位、2497位~2525位、2651位~2670位、2685位~2700位、2738位~2756位、2764位~2788位もしくは3663位~3684位の配列にハイブリダイズ可能な配列を含む、アンチセンスオリゴヌクレオチド
が挙げられる。
 本発明のアンチセンスオリゴヌクレオチドとして、具体的には、
(a)配列番号1の配列の95位~109位、176位~192位、467位~484位、940位~954位、1017位~1032位、1102位~1116位、1176位~1197位、1222位~1236位、1727位~1743位、1858位~1873位、1946位~1960位、2294位~2308位、2360位~2377位、2449位~2469位、2605位~2624位、2689位~2703位、2950位~2964位、3424位~3438位もしくは3591位~3605位の配列、または
(b)配列番号3の配列の183位~197位、219位~235位、442位~456位、513位~530位、593位~607位、641位~655位、919位~933位、941位~955位、959位~973位、978位~993位、998位~1013位、1222位~1243位、1268位~1282位、1625位~1639位、1993位~2007位、2066位~2081位、2409位~2423位、2497位~2525位、2651位~2670位、2685位~2700位、2738位~2756位、2764位~2788位、3331位~3347位、3503位~3517位もしくは3663位~3684位の配列
の相補配列と少なくとも70%以上、好ましくは80%以上、より好ましくは90%以上、もっとも好ましくは95%以上の相同性を有するアンチセンスオリゴヌクレオチドが挙げられる。ここで、相同性は、例えば、Altschulら(The Journal of Molecular Biology,215,403-410(1990).)の開発したアルゴリズムを使用した検索プログラムBLASTを用いることにより、スコアで類似度が示される。
 「ストリンジェントな条件」とは、アンチセンスオリゴヌクレオチドのみが、
(a)配列番号1の配列の95位~109位、176位~192位、467位~484位、940位~954位、1017位~1032位、1102位~1116位、1176位~1197位、1222位~1236位、1727位~1743位、1858位~1873位、1946位~1960位、2294位~2308位、2360位~2377位、2449位~2469位、2605位~2624位、2689位~2703位、2950位~2964位、3424位~3438位もしくは3591位~3605位の配列、または
(b)配列番号3の配列の183位~197位、219位~235位、442位~456位、513位~530位、593位~607位、641位~655位、919位~933位、941位~955位、959位~973位、978位~993位、998位~1013位、1222位~1243位、1268位~1282位、1625位~1639位、1993位~2007位、2066位~2081位、2409位~2423位、2497位~2525位、2651位~2670位、2685位~2700位、2738位~2756位、2764位~2788位、3331位~3347位、3503位~3517位もしくは3663位~3684位の配列
とハイブリット(いわゆる特異的ハイブリット)を形成し、同等の機能を有しない塩基配列は該特定配列とハイブリット(いわゆる非特異的ハイブリット)を形成しない条件を意味する。当業者は、ハイブリダイゼーション反応および洗浄時の温度や、ハイブリダイゼーション反応液および洗浄液の塩濃度等を変化させることによって、このような条件を容易に選択することができる。具体的には、6×SSC(0.9M NaCl,0.09M クエン酸三ナトリウム)または6×SSPE(3M NaCl,0,2M NaHPO,20mM EDTA・2Na,pH7.4)中42℃でハイブリダイズさせ、さらに42℃で0.5×SSCにより洗浄する条件が、本発明のストリンジェントな条件の1例として挙げられるが、これに限定されるものではない。ハイブリダイゼーション方法としては、当該分野において周知慣用な手法、例えば、サザンブロットハイブリダイゼーション法等を用いることができる。具体的には、Molecular Cloning:A Laboratory Manual,Second Edition(1989)(Cold Spring Harbor Laboratory Press)、Current Protocols in Molecular Biology(1994)(Wiley-Interscience)、DNA Cloning 1:Core Techniques、A Practical Approach,Second Edition(1995)(Oxford University Press)等に記載されている方法に準じて行うことができる。
As the antisense oligonucleotide of the present invention, more preferably,
(C) Under stringent conditions, it can hybridize to the sequence of SEQ ID NO: 1 at positions 176 to 192, 467 to 484, 1176 to 1197, 2449 to 2469, or 2605 to 2624 An antisense oligonucleotide comprising the sequence: or (d) under the stringent conditions, the sequence of SEQ ID NO: 3 at positions 219 to 235, 513 to 530, 1222 to 1243, 2497 to 2525, Examples include antisense oligonucleotides that include sequences that can hybridize to the sequences of positions 2651 to 2670, 2685 to 2700, 2738 to 2756, 2764 to 2788, or 3663 to 3684.
As the antisense oligonucleotide of the present invention, specifically,
(A) 95 to 109, 176 to 192, 467 to 484, 940 to 954, 1017 to 1032, 1102 to 1116, 1176 to 1197 in the sequence of SEQ ID NO: 1. , 1222 to 1236, 1727 to 1743, 1858 to 1873, 1946 to 1960, 2294 to 2308, 2360 to 2377, 2449 to 2469, 2605 to 2624, 2687 Position-2703, 2950-2964, 3424-3438, or 3591-3605, or (b) the sequence of SEQ ID NO: 3, positions 183-197, 219-235, 442- 456th, 513th to 530th, 593th to 607th, 641st to 655th, 919th to 933th, 941st to 955th, 9th 9th to 973rd, 978th to 993th, 998th to 1013th, 1222 to 1243, 1268th to 1282, 1625th to 1639th, 1993th to 2007th, 2066th to 2081th, 2409th ~ 2423, 2497 ~ 2525, 2651 ~ 2670, 2685 ~ 2700, 2738 ~ 2756, 2764 ~ 2788, 3331 ~ 3347, 3503 ~ 3517, or 3663 ~ 3684 An antisense oligonucleotide having a homology of at least 70% or more, preferably 80% or more, more preferably 90% or more, and most preferably 95% or more with a complementary sequence of the position sequence. Here, the homology is indicated in the score by using the search program BLAST that uses an algorithm developed by Altschul et al. (The Journal of Molecular Biology, 215, 403-410 (1990)), for example. .
“Stringent conditions” means that only antisense oligonucleotides
(A) 95 to 109, 176 to 192, 467 to 484, 940 to 954, 1017 to 1032, 1102 to 1116, 1176 to 1197 in the sequence of SEQ ID NO: 1. , 1222 to 1236, 1727 to 1743, 1858 to 1873, 1946 to 1960, 2294 to 2308, 2360 to 2377, 2449 to 2469, 2605 to 2624, 2687 Position-2703, 2950-2964, 3424-3438, or 3591-3605, or (b) the sequence of SEQ ID NO: 3, positions 183-197, 219-235, 442- 456th, 513th to 530th, 593th to 607th, 641st to 655th, 919th to 933th, 941st to 955th, 9th 9th to 973rd, 978th to 993th, 998th to 1013th, 1222 to 1243, 1268th to 1282, 1625th to 1639th, 1993th to 2007th, 2066th to 2081th, 2409th ~ 2423, 2497 ~ 2525, 2651 ~ 2670, 2685 ~ 2700, 2738 ~ 2756, 2764 ~ 2788, 3331 ~ 3347, 3503 ~ 3517, or 3663 ~ 3684 A base sequence that forms a hybrid (so-called specific hybrid) with a sequence at a position and does not have an equivalent function means a condition that does not form a hybrid (so-called non-specific hybrid) with the specific sequence. Those skilled in the art can easily select such conditions by changing the temperature during the hybridization reaction and washing, the salt concentration of the hybridization reaction solution and the washing solution, and the like. Specifically, it is 42 ° C. in 6 × SSC (0.9 M NaCl, 0.09 M trisodium citrate) or 6 × SSPE (3 M NaCl, 0, 2 M NaH 2 PO 4 , 20 mM EDTA · 2Na, pH 7.4). Examples of the stringent conditions of the present invention include, but are not limited to, the conditions of hybridization with the above and further washing with 0.5 × SSC at 42 ° C. As a hybridization method, a well-known and commonly used method in this field, for example, a Southern blot hybridization method or the like can be used. Specifically, Molecular Cloning: A Laboratory Manual, Second Edition (1989) (Cold Spring Harbor Laboratory Press), Current Protocol in Amplification in Coal (1994) (Ten-Proc. It can be carried out according to the method described in Second Edition (1995) (Oxford University Press).
 本発明のアンチセンスオリゴヌクレオチドとしては、例えば、
配列番号6~11、13~18、20~22、24~30、32、35~37、46、48、49、52~54、57~59、64~68もしくは70の配列、または、
配列番号6~11、13~18、20~22、24~30、32、35~37、46、48、49、52~54、57~59、64~68もしくは70の配列において、1もしくは数個の塩基が欠失、置換もしくは挿入された配列
を含むアンチセンスオリゴヌクレオチドが挙げられる。これらはそれぞれ、ヒトACSL1発現抑制活性を有する。該配列を含む限り、長さやヌクレオチドの修飾の有無に関わらず、本発明のアンチセンスオリゴヌクレオチドに含まれる。
 さらに、本発明のアンチセンスオリゴヌクレオチドとしては、例えば、
配列番号6~13、30、72~75、77~80、82~93、95、100~104、109、110、113、114、116~127、129、131~141、143~147、151、153~155もしくは156の配列、または
配列番号6~13、30、72~75、77~80、82~93、95、100~104、109、110、113、114、116~127、129、131~141、143~147、151、153~155もしくは156の配列において、1もしくは数個の塩基が欠失、置換もしくは挿入された配列
を含むアンチセンスオリゴヌクレオチドが挙げられる。これらはそれぞれ、マウスACSL1発現抑制活性を有する。該配列を含む限り、長さやヌクレオチドの修飾の有無に関わらず、本発明のアンチセンスオリゴヌクレオチドに含まれる。
As the antisense oligonucleotide of the present invention, for example,
SEQ ID NOs: 6-11, 13-18, 20-22, 24-30, 32, 35-37, 46, 48, 49, 52-54, 57-59, 64-68 or 70, or
1 or number in the sequences of SEQ ID NOs: 6-11, 13-18, 20-22, 24-30, 32, 35-37, 46, 48, 49, 52-54, 57-59, 64-68 or 70 An antisense oligonucleotide containing a sequence in which one base has been deleted, substituted or inserted is mentioned. Each of these has human ACSL1 expression inhibitory activity. As long as the sequence is included, it is included in the antisense oligonucleotide of the present invention regardless of the length or nucleotide modification.
Furthermore, as the antisense oligonucleotide of the present invention, for example,
SEQ ID NOs: 6 to 13, 30, 72 to 75, 77 to 80, 82 to 93, 95, 100 to 104, 109, 110, 113, 114, 116 to 127, 129, 131 to 141, 143 to 147, 151, The sequence of 153 to 155 or 156, or SEQ ID NOs: 6 to 13, 30, 72 to 75, 77 to 80, 82 to 93, 95, 100 to 104, 109, 110, 113, 114, 116 to 127, 129, 131 Examples include antisense oligonucleotides containing a sequence in which one or several bases are deleted, substituted, or inserted in the sequence of ˜141, 143 to 147, 151, 153 to 155, or 156. Each of these has mouse ACSL1 expression suppression activity. As long as the sequence is included, it is included in the antisense oligonucleotide of the present invention regardless of the length or nucleotide modification.
 本発明のアンチセンスオリゴヌクレオチドとしては、具体的には、
配列番号6~11、13~18、20~22、24~30、32、35~37、46、48、49、52~54、57~59、64~68もしくは70の配列、または、
配列番号6~11、13~18、20~22、24~30、32、35~37、46、48、49、52~54、57~59、64~68もしくは70の配列において、1もしくは数個の塩基が欠失、置換、挿入もしくは付加された配列
からなるアンチセンスオリゴヌクレオチドが挙げられる。さらに好ましくは、
配列番号6~11もしくは24~28、または、
配列番号6~11もしくは24~28の配列において、1もしくは数個の塩基が欠失、置換、挿入もしくは付加された配列
からなるアンチセンスオリゴヌクレオチドが挙げられる。これらはそれぞれ、ヒトACSL1発現抑制活性を有する。該配列からなる限り、ヌクレオチドの修飾の有無に関わらず、本発明のアンチセンスオリゴヌクレオチドに含まれる。
 さらに、本発明のアンチセンスオリゴヌクレオチドとしては、具体的には、
配列番号6~13、30、72~75、77~80、82~93、95、100~104、109、110、113、114、116~127、129、131~141、143~147、151、153~155もしくは156の配列、または、
配列番号6~11、13~18、20~22、24~30、32、35~37、46、48、49、52~54、57~59、64~68もしくは70の配列において、1もしくは数個の塩基が欠失、置換、挿入もしくは付加された配列
からなるアンチセンスオリゴヌクレオチドが挙げられる。これらはそれぞれ、マウスACSL1発現抑制活性を有する。該配列からなる限り、ヌクレオチドの修飾の有無に関わらず、本発明のアンチセンスオリゴヌクレオチドに含まれる。
As the antisense oligonucleotide of the present invention, specifically,
SEQ ID NOs: 6-11, 13-18, 20-22, 24-30, 32, 35-37, 46, 48, 49, 52-54, 57-59, 64-68 or 70, or
1 or number in the sequences of SEQ ID NOs: 6-11, 13-18, 20-22, 24-30, 32, 35-37, 46, 48, 49, 52-54, 57-59, 64-68 or 70 Examples include antisense oligonucleotides consisting of sequences in which one base is deleted, substituted, inserted or added. More preferably,
SEQ ID NOs: 6-11 or 24-28, or
Examples thereof include antisense oligonucleotides consisting of a sequence in which one or several bases are deleted, substituted, inserted or added in the sequences of SEQ ID NOs: 6-11 or 24-28. Each of these has human ACSL1 expression inhibitory activity. As long as it consists of this sequence, it is included in the antisense oligonucleotide of the present invention regardless of the presence or absence of nucleotide modification.
Furthermore, as the antisense oligonucleotide of the present invention, specifically,
SEQ ID NOs: 6 to 13, 30, 72 to 75, 77 to 80, 82 to 93, 95, 100 to 104, 109, 110, 113, 114, 116 to 127, 129, 131 to 141, 143 to 147, 151, A sequence of 153-155 or 156, or
1 or number in the sequences of SEQ ID NOs: 6-11, 13-18, 20-22, 24-30, 32, 35-37, 46, 48, 49, 52-54, 57-59, 64-68 or 70 Examples include antisense oligonucleotides composed of sequences in which one base is deleted, substituted, inserted or added. Each of these has mouse ACSL1 expression suppression activity. As long as it consists of this sequence, it is included in the antisense oligonucleotide of the present invention regardless of the presence or absence of nucleotide modification.
 なお、「1もしくは数個の塩基」とは、1~5個、好ましくは1~3個、さらに好ましくは1または2個の塩基を意味している。欠失、置換、挿入または付加によっても、標的遺伝子(例えば、ACSL1)の発現抑制作用を有する限り、本発明のアンチセンスオリゴヌクレオチドに包含される。 Note that “one or several bases” means 1 to 5, preferably 1 to 3, and more preferably 1 or 2 bases. Deletion, substitution, insertion or addition is also included in the antisense oligonucleotide of the present invention as long as it has an action of suppressing the expression of the target gene (for example, ACSL1).
 本発明のアンチセンスオリゴヌクレオチドは、ACSL1発現抑制活性のみならず、医薬としての有用性を備えており、下記いずれか、あるいは全ての優れた特徴を有している。
a)CYP酵素(例えば、CYP1A2、CYP2C9、CYP2C19、CYP2D6、CYP3A4等)に対する阻害作用が弱い。
b)高いバイオアベイラビリティー、適度なクリアランス等良好な薬物動態を示す。
c)代謝安定性が高い。
d)変異原性を有さない。
e)心血管系のリスクが低い。
f)高い溶解性を示す。
g)ACSL1特異性を示す。
h)肝臓毒性を示さない。
The antisense oligonucleotide of the present invention has not only ACSL1 expression-suppressing activity but also usefulness as a medicine, and has any or all of the following excellent features.
a) The inhibitory effect on CYP enzymes (eg, CYP1A2, CYP2C9, CYP2C19, CYP2D6, CYP3A4, etc.) is weak.
b) Good pharmacokinetics such as high bioavailability and moderate clearance.
c) High metabolic stability.
d) Not mutagenic.
e) Low cardiovascular risk.
f) High solubility.
g) Shows ACSL1 specificity.
h) Does not show liver toxicity.
 本発明のアンチセンスオリゴヌクレオチドにおいて、ヌクレオチドは修飾されていてもよい。適切な修飾を施したアンチセンスオリゴヌクレオチドは、無修飾のアンチセンスオリゴヌクレオチドと比較し、下記いずれか、あるいは全ての特徴を有している。
a) 標的遺伝子との親和性が高い。
b) ヌクレアーゼに対する抵抗性が高い。
c) 薬物動態が改善する。
d) 組織移行性が高くなる。
 よって、修飾されたアンチセンスオリゴヌクレオチドは、無修飾のアンチセンスオリゴヌクレオチドと比較して、生体内で分解されにくくなり、より安定して標的遺伝子の発現を阻害できる。
In the antisense oligonucleotide of the present invention, the nucleotide may be modified. Antisense oligonucleotides with appropriate modifications have any or all of the following characteristics compared to unmodified antisense oligonucleotides.
a) High affinity with the target gene.
b) High resistance to nucleases.
c) Improved pharmacokinetics.
d) Increases organizational transferability.
Therefore, the modified antisense oligonucleotide is less likely to be degraded in vivo than the unmodified antisense oligonucleotide, and can inhibit the expression of the target gene more stably.
 当該分野で公知のヌクレオチドの修飾であれば、いずれも本発明のアンチセンスオリゴヌクレオチドに利用可能である。ヌクレオチドの修飾としては、リン酸修飾、核酸塩基修飾、糖修飾が知られている。
 リン酸修飾としては、例えば、天然の核酸が有するリン酸ジエステル結合、S-オリゴ(ホスホロチオエート)、D-オリゴ(ホスホジエステル)、M-オリゴ(メチルフォスフォネイト)、ボラノホスフェート等が挙げられる。
 核酸塩基修飾としては、例えば、5-メチルシトシン、5-ヒドロキシメチルシトシン、5-プロピニルシトシン等が挙げられる。
 糖修飾としては、例えば、2´-O-CH-CH-O-CH(2´MOE)、LNA(Locked nucleic acid)、アミドBNA(Bridged nucleic acid、AmNA)等が挙げられる。
Any nucleotide modification known in the art can be used for the antisense oligonucleotide of the present invention. Known modifications of nucleotides include phosphate modification, nucleobase modification, and sugar modification.
Examples of phosphoric acid modifications include phosphodiester bonds, S-oligos (phosphorothioates), D-oligos (phosphodiesters), M-oligos (methyl phosphonates), boranophosphates, etc. possessed by natural nucleic acids. .
Examples of the nucleobase modification include 5-methylcytosine, 5-hydroxymethylcytosine, 5-propynylcytosine and the like.
Examples of the sugar modification include 2′-O—CH 2 —CH 2 —O—CH 3 (2′MOE), LNA (Locked Nucleic Acid), amide BNA (Bridged Nucleic Acid, AmNA) and the like.
 当該分野で公知のヌクレオチドの修飾および修飾方法については、例えば、以下の特許文献にも開示されている。
国際公開第98/39352号、国際公開第99/014226号、国際公開2000/056748、国際公開第2005/021570号、国際公開第2003/068795号、国際公開第2011/052436号、国際公開第2004/016749号、国際公開第2005/083124号、国際公開2007/143315号、国際公開第2009/071680号、特願2013-004735等。
Nucleotide modification and modification methods known in the art are also disclosed in, for example, the following patent documents.
International Publication No. 98/39352, International Publication No. 99/014226, International Publication No. 2000/056748, International Publication No. 2005/021570, International Publication No. 2003/066875, International Publication No. 2011/052436, International Publication No. 2004. / 016749, International Publication No. 2005/083124, International Publication No. 2007/143315, International Publication No. 2009/071680, Japanese Patent Application No. 2013-004735, and the like.
 以下に、本発明のアンチセンスオリゴヌクレオチドに利用可能な修飾を具体的に例示するが、該修飾はこれらにより限定されるものではない。
(1)S-オリゴ(ホスホロチオエート)
 ヌクレオシド間のホスホジエステル結合のリン酸基部の酸素原子を硫黄原子で置換する。該修飾は公知の方法に従って、オリゴヌクレオチドに取り込まれる。該修飾をオリゴヌクレオチド中に1もしくは複数もつアンチセンスオリゴヌクレオチドをS-オリゴ型(ホスホロチオエート型)という。
(2)LNA(Locked nucleic acid)
 ヌクレオチドの糖環の4´炭素原子から適切な架橋を介して2´-ヒドロキシル基が結合して二環式糖部分が形成される。好ましい結合は、2´酸素原子と4´炭素原子とを架橋するメチレン(-CH-)基である。LNAの具体例およびその調製方法は、国際公開第98/39352号、国際公開第2003/068795号、国際公開第2005/021570号等に記載されている。
(3)アミドBNA(Bridged nucleic acid、AmNA)
 ヌクレオチドの糖環の2´のアミノ基と4´から伸長したカルボニル基との間にアミド結合が形成されることにより、二環式糖部分が形成される。アミドBNAの具体例およびその調製方法は、国際公開第2011/052436号に記載されている。
(4)ヌクレオチドの糖の2´位置の修飾
 ヌクレオチドの糖の2´位置のOHを-O-アルキル(例えば、-O-メチル、-O-エチル、-O-メトキシエチル等)、または-Fで置換する。該修飾は公知の方法に従って、オリゴヌクレオチドに取り込まれる。
Hereinafter, modifications that can be used for the antisense oligonucleotide of the present invention are specifically exemplified, but the modifications are not limited thereto.
(1) S-oligo (phosphorothioate)
The oxygen atom of the phosphate group of the phosphodiester bond between nucleosides is replaced with a sulfur atom. The modification is incorporated into the oligonucleotide according to known methods. An antisense oligonucleotide having one or more such modifications in the oligonucleotide is referred to as S-oligo type (phosphorothioate type).
(2) LNA (Locked Nucleic Acid)
A 2'-hydroxyl group is attached from the 4 'carbon atom of the sugar ring of the nucleotide via an appropriate bridge to form a bicyclic sugar moiety. A preferred bond is a methylene (—CH 2 —) group that bridges the 2 ′ oxygen atom and the 4 ′ carbon atom. Specific examples of LNA and preparation methods thereof are described in International Publication No. 98/39352, International Publication No. 2003/068795, International Publication No. 2005/021570, and the like.
(3) Amide BNA (Bridged nucleic acid, AmNA)
An amide bond is formed between the 2 'amino group of the sugar ring of the nucleotide and the carbonyl group extended from 4', thereby forming a bicyclic sugar moiety. Specific examples of amide BNA and the preparation method thereof are described in WO2011 / 052436.
(4) Modification of the 2′-position of the nucleotide sugar The OH at the 2′-position of the nucleotide sugar is changed to —O-alkyl (eg, —O-methyl, —O-ethyl, —O-methoxyethyl, etc.), or —F Replace with. The modification is incorporated into the oligonucleotide according to known methods.
 本発明のアンチセンスオリゴヌクレオチドは、ギャップマーであることが好ましい。ギャップマーとは、中心領域(“ギャップ”)と該中心領域の両側の領域、ウイング(5´側の“5´ウイング”または3´側の“3´ウイング”)を含み、各ウイングに少なくとも1つの修飾ヌクレオチドを含むオリゴヌクレオチドを意味する。修飾ヌクレオチドの修飾は、リン酸修飾、塩基修飾、糖修飾のいずれであってもよい。一方のウイング内の修飾の種類、数、位置は他方のウイングにおける修飾の種類、数、位置と同じであっても異なっていてもよい。 The antisense oligonucleotide of the present invention is preferably a gapmer. A gapmer includes a central region (“gap”), regions on both sides of the central region, wings (“5 ′ wing” on the 5 ′ side or “3 ′ wing” on the 3 ′ side), and at least each wing It means an oligonucleotide containing one modified nucleotide. The modification of the modified nucleotide may be any of phosphate modification, base modification, and sugar modification. The type, number, and position of the modification in one wing may be the same as or different from the type, number, and position of the modification in the other wing.
 好ましくは、本発明のアンチセンスは、「4´位と2´位との間に架橋構造を有する糖修飾ヌクレオシドを1以上含有」する。好ましくは、ギャップマーである。“5´ウイング”および /または“3´ウイング”に、4´位と2´位との間に架橋構造を有する糖修飾ヌクレオシドを1以上、好ましくは、1~5、さらに好ましくは、2~3含有する。また、さらに、リン酸修飾、塩基修飾、他の糖修飾を含んでいてもよい。 Preferably, the antisense of the present invention contains “one or more sugar-modified nucleosides having a cross-linked structure between the 4′-position and the 2′-position”. Gapmer is preferable. “5 ′ wing” and / or “3 ′ wing” have one or more, preferably 1 to 5, more preferably 2 to 1, sugar-modified nucleosides having a crosslinking structure between the 4′-position and the 2′-position. 3 contained. Furthermore, phosphate modification, base modification, and other sugar modifications may be included.
 「4´位と2´位との間に架橋構造を有する糖修飾ヌクレオシド」とは、糖の4´位と2´位との間に架橋構造を有する修飾を含む公知のヌクレオシドであれば、いずれでもよい。また、さらに、塩基修飾、他の糖修飾を含んでいてもよい。 The “sugar modified nucleoside having a cross-linked structure between the 4′-position and the 2′-position” is a known nucleoside containing a modification having a cross-linked structure between the 4′-position and the 2′-position of the sugar Either is acceptable. Furthermore, base modification and other sugar modifications may be included.
 該架橋構造として、具体的には、以下が挙げられる。
 -(CR-O-、-(CR-NR-O-、-(CR-CO-NR-または-(CR-CO-NR-X-であり、
ここで、
Xは、酸素原子、硫黄原子、アミノまたはCRであり、
は、水素原子、置換もしくは非置換のアルキル、置換もしくは非置換のアルケニル、置換もしくは非置換のアルキニル、置換もしくは非置換の芳香族炭素環式基、置換もしくは非置換の非芳香族炭素環式基、置換もしくは非置換の芳香族複素環式基、置換もしくは非置換の非芳香族複素環式基、置換もしくは非置換の芳香族炭素環アルキル、置換もしくは非置換の非芳香族炭素環アルキル、置換もしくは非置換の芳香族複素環アルキルまたは置換もしくは非置換の非芳香族複素環アルキルであり、
は、それぞれ独立して、水素原子、ハロゲン、シアノ、置換もしくは非置換のアルキ
ル、置換もしくは非置換のアルケニルまたは置換もしくは非置換のアルキニルであり、
は、それぞれ独立して、水素原子、ハロゲン、シアノ、置換もしくは非置換のアルキル、置換もしくは非置換のアルケニルまたは置換もしくは非置換のアルキニルであり、
mは、1~3であり、
nは、0~3である。
Specific examples of the crosslinked structure include the following.
— (CR 2 R 3 ) m —O—, — (CR 2 R 3 ) m —NR 1 —O—, — (CR 2 R 3 ) n —CO—NR 1 — or — (CR 2 R 3 ) n -CO-NR 1 -X-,
here,
X is an oxygen atom, a sulfur atom, amino or CR 2 R 3 ,
R 1 is a hydrogen atom, substituted or unsubstituted alkyl, substituted or unsubstituted alkenyl, substituted or unsubstituted alkynyl, substituted or unsubstituted aromatic carbocyclic group, substituted or unsubstituted non-aromatic carbocycle Group, substituted or unsubstituted aromatic heterocyclic group, substituted or unsubstituted non-aromatic heterocyclic group, substituted or unsubstituted aromatic carbocyclic alkyl, substituted or unsubstituted non-aromatic carbocyclic alkyl Substituted or unsubstituted aromatic heterocyclic alkyl or substituted or unsubstituted non-aromatic heterocyclic alkyl,
Each R 2 is independently a hydrogen atom, halogen, cyano, substituted or unsubstituted alkyl, substituted or unsubstituted alkenyl or substituted or unsubstituted alkynyl;
Each R 3 is independently a hydrogen atom, halogen, cyano, substituted or unsubstituted alkyl, substituted or unsubstituted alkenyl or substituted or unsubstituted alkynyl;
m is 1 to 3,
n is 0-3.
 Rは、好ましくは、水素原子、アルキル、アルケニル、アルキニル、芳香族炭素環式基、非芳香族炭素環式基、芳香族複素環式基、非芳香族複素環式基、芳香族炭素環アルキル、非芳香族炭素環アルキル、芳香族複素環アルキルまたは非芳香族複素環アルキルであり、α群から選択される任意の置換基を1以上有していてもよい。
 α群は、水酸基、アルキル、アルキルオキシ、メルカプト、アルキルチオ、アミノ、アルキルアミノまたはハロゲンである。
R 1 is preferably a hydrogen atom, alkyl, alkenyl, alkynyl, aromatic carbocyclic group, non-aromatic carbocyclic group, aromatic heterocyclic group, non-aromatic heterocyclic group, aromatic carbocycle It is alkyl, non-aromatic carbocyclic alkyl, aromatic heterocyclic alkyl or non-aromatic heterocyclic alkyl, and may have one or more arbitrary substituents selected from the α group.
The α group is a hydroxyl group, alkyl, alkyloxy, mercapto, alkylthio, amino, alkylamino or halogen.
 RおよびRは、好ましくは、水素原子である。
 mは、好ましくは1または2である。
 nは、好ましくは0または1である。
R 2 and R 3 are preferably a hydrogen atom.
m is preferably 1 or 2.
n is preferably 0 or 1.
 該架橋構造として、好ましくは、-(CR-O-、または、-(CR-CO-NR-であり、
ここで、
は、水素原子、置換もしくは非置換のアルキル、置換もしくは非置換のアルケニルまたは置換もしくは非置換のアルキニルであり、
は、それぞれ独立して、水素原子、ハロゲン、シアノ、置換もしくは非置換のアルキル、置換もしくは非置換のアルケニルまたは置換もしくは非置換のアルキニルであり、
は、それぞれ独立して、水素原子、ハロゲン、シアノ、置換もしくは非置換のアルキル、置換もしくは非置換のアルケニルまたは置換もしくは非置換のアルキニルであり、
mは、1~3であり、
nは、0~3である。
The cross-linked structure is preferably — (CR 2 R 3 ) m —O— or — (CR 2 R 3 ) n —CO—NR 1
here,
R 1 is a hydrogen atom, substituted or unsubstituted alkyl, substituted or unsubstituted alkenyl or substituted or unsubstituted alkynyl,
Each R 2 is independently a hydrogen atom, halogen, cyano, substituted or unsubstituted alkyl, substituted or unsubstituted alkenyl or substituted or unsubstituted alkynyl;
Each R 3 is independently a hydrogen atom, halogen, cyano, substituted or unsubstituted alkyl, substituted or unsubstituted alkenyl or substituted or unsubstituted alkynyl;
m is 1 to 3,
n is 0-3.
 該架橋構造として、特に好ましくは、-CH-O-または-CO-NR-(Rは、水素原子またはアルキルである)である。 The cross-linked structure is particularly preferably —CH 2 —O— or —CO—NR 1 — (R 1 is a hydrogen atom or alkyl).
 「ハロゲン」とは、フッ素原子、塩素原子、臭素原子、およびヨウ素原子を包含する。特にフッ素原子、および塩素原子が好ましい。 The term "halogen" encompasses fluorine atom, a chlorine atom, a bromine atom, and iodine atom. In particular, a fluorine atom and a chlorine atom are preferable.
 「アルキル」とは、炭素数1~15、好ましくは炭素数1~10、より好ましくは炭素数1~6、さらに好ましくは炭素数1~4の直鎖または分枝状の炭化水素基を包含する。例えば、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、sec-ブチル、tert-ブチル、n-ペンチル、イソペンチル、ネオペンチル、n-ヘキシル、イソヘキシル、n-へプチル、イソヘプチル、n-オクチル、イソオクチル、n-ノニル、n-デシル等が挙げられる。
 「アルキル」の好ましい態様として、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、sec-ブチル、tert-ブチル、n-ペンチルが挙げられる。さらに好ましい態様として、メチル、エチル、n-プロピル、イソプロピル、tert-ブチルが挙げられる。
“Alkyl” includes straight or branched hydrocarbon groups having 1 to 15 carbon atoms, preferably 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms, and still more preferably 1 to 4 carbon atoms. To do. For example, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, isopentyl, neopentyl, n-hexyl, isohexyl, n-heptyl, isoheptyl, n-octyl , Isooctyl, n-nonyl, n-decyl and the like.
Preferred embodiments of “alkyl” include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl and n-pentyl. Further preferred examples include methyl, ethyl, n-propyl, isopropyl and tert-butyl.
 「アルケニル」とは、任意の位置に1以上の二重結合を有する、炭素数2~15、好ましくは炭素数2~10、より好ましくは炭素数2~6、さらに好ましくは炭素数2~4の直鎖または分枝状の炭化水素基を包含する。例えば、ビニル、芳香族複素環式基、プロペニル、イソプロペニル、ブテニル、イソブテニル、プレニル、ブタジエニル、ペンテニル、イソペンテニル、ペンタジエニル、ヘキセニル、イソヘキセニル、ヘキサジエニル、ヘプテニル、オクテニル、ノネニル、デセニル、ウンデセニル、ドデセニル、トリデセニル、テトラデセニル、ペンタデセニル等が挙げられる。
 「アルケニル」の好ましい態様として、ビニル、芳香族複素環式基、プロペニル、イソプロペニル、ブテニルが挙げられる。
“Alkenyl” has 2 to 15 carbon atoms, preferably 2 to 10 carbon atoms, more preferably 2 to 6 carbon atoms, and further preferably 2 to 4 carbon atoms, having one or more double bonds at any position. These linear or branched hydrocarbon groups are included. For example, vinyl, aromatic heterocyclic group, propenyl, isopropenyl, butenyl, isobutenyl, prenyl, butadienyl, pentenyl, isopentenyl, pentadienyl, hexenyl, isohexenyl, hexadienyl, heptenyl, octenyl, nonenyl, decenyl, undecenyl, dodecenyl, Examples include tridecenyl, tetradecenyl, pentadecenyl and the like.
Preferred embodiments of “alkenyl” include vinyl, aromatic heterocyclic group, propenyl, isopropenyl and butenyl.
 「アルキニル」とは、任意の位置に1以上の三重結合を有する、炭素数2~10、好ましくは炭素数2~8、さらに好ましくは炭素数2~6、さらに好ましくは炭素数2~4の直鎖または分枝状の炭化水素基を包含する。例えば、エチニル、プロピニル、ブチニル、ペンチニル、ヘキシニル、ヘプチニル、オクチニル、ノニニル、デシニル等を包含する。これらはさらに任意の位置に二重結合を有していてもよい。
 「アルキニル」の好ましい態様として、エチニル、プロピニル、ブチニル、ペンチニルが挙げられる。
“Alkynyl” has 2 to 10 carbon atoms, preferably 2 to 8 carbon atoms, more preferably 2 to 6 carbon atoms, and more preferably 2 to 4 carbon atoms, having one or more triple bonds at any position. Includes straight chain or branched hydrocarbon groups. Examples include ethynyl, propynyl, butynyl, pentynyl, hexynyl, heptynyl, octynyl, nonynyl, decynyl and the like. These may further have a double bond at an arbitrary position.
Preferred embodiments of “alkynyl” include ethynyl, propynyl, butynyl and pentynyl.
 「芳香族炭素環式基」とは、単環または2環以上の、環状芳香族炭化水素基を意味する。例えば、フェニル、ナフチル、アントリル、フェナントリル等が挙げられる。
 「芳香族炭素環式基」の好ましい態様として、フェニルが挙げられる。
The “aromatic carbocyclic group” means a cyclic aromatic hydrocarbon group having one or more rings. For example, phenyl, naphthyl, anthryl, phenanthryl and the like can be mentioned.
A preferred embodiment of the “aromatic carbocyclic group” includes phenyl.
 「非芳香族炭素環式基」とは、単環または2環以上の、環状飽和炭化水素基または環状非芳香族不飽和炭化水素基を意味する。2環以上の非芳香族炭素環式基は、単環または2環以上の非芳香族炭素環式基に、上記「芳香族炭素環式基」における環が縮合したものも包含する。
 さらに、「非芳香族炭素環式基」は、以下のように架橋している基、またはスピロ環を形成する基も包含する。
Figure JPOXMLDOC01-appb-C000001

 単環の非芳香族炭素環式基としては、炭素数3~16が好ましく、より好ましくは炭素数3~12、さらに好ましくは炭素数4~8である。例えば、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、シクロヘプチル、シクロオクチル、シクロノニル、シクロデシル、シクロプロペニル、シクロブテニル、シクロペンテニル、シクロヘキセニル、シクロヘプテニル、シクロヘキサジエニル等が挙げられる。
 2環以上の非芳香族炭素環式基としては、例えば、インダニル、インデニル、アセナフチル、テトラヒドロナフチル、フルオレニル等が挙げられる。
The “non-aromatic carbocyclic group” means a cyclic saturated hydrocarbon group or a cyclic non-aromatic unsaturated hydrocarbon group having one or more rings. The non-aromatic carbocyclic group having 2 or more rings also includes those in which the ring in the above “aromatic carbocyclic group” is condensed with a monocyclic or 2 or more non-aromatic carbocyclic groups.
Furthermore, the “non-aromatic carbocyclic group” includes a group that forms a bridge or a spiro ring as described below.
Figure JPOXMLDOC01-appb-C000001

The monocyclic non-aromatic carbocyclic group preferably has 3 to 16 carbon atoms, more preferably 3 to 12 carbon atoms, and still more preferably 4 to 8 carbon atoms. Examples include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclononyl, cyclodecyl, cyclopropenyl, cyclobutenyl, cyclopentenyl, cyclohexenyl, cycloheptenyl, cyclohexadienyl, and the like.
Examples of the two or more non-aromatic carbocyclic groups include indanyl, indenyl, acenaphthyl, tetrahydronaphthyl, fluorenyl and the like.
 「芳香族複素環式基」とは、O、SおよびNから任意に選択される同一または異なるヘテロ原子を環内に1以上有する、単環または2環以上の、芳香族環式基を意味する。
 2環以上の芳香族複素環式基は、単環または2環以上の芳香族複素環式基に、上記「芳香族炭素環式基」における環が縮合したものも包含する。
 単環の芳香族複素環式基としては、5~8員が好ましく、より好ましくは5員または6員である。例えば、ピロリル、イミダゾリル、ピラゾリル、ピリジル、ピリダジニル、ピリミジニル、ピラジニル、トリアゾリル、トリアジニル、テトラゾリル、フリル、チエニル、イソオキサゾリル、オキサゾリル、オキサジアゾリル、イソチアゾリル、チアゾリル、チアジアゾリル等が挙げられる。
 2環の芳香族複素環式基としては、例えば、インドリル、イソインドリル、インダゾリル、インドリジニル、キノリニル、イソキノリニル、シンノリニル、フタラジニル、キナゾリニル、ナフチリジニル、キノキサリニル、プリニル、プテリジニル、ベンズイミダゾリル、ベンズイソオキサゾリル、ベンズオキサゾリル、ベンズオキサジアゾリル、ベンズイソチアゾリル、ベンゾチアゾリル、ベンゾチアジアゾリル、ベンゾフリル、イソベンゾフリル、ベンゾチエニル、ベンゾトリアゾリル、イミダゾピリジル、トリアゾロピリジル、イミダゾチアゾリル、ピラジノピリダジニル、オキサゾロピリジル、チアゾロピリジル等が挙げられる。
 3環以上の芳香族複素環式基としては、例えば、カルバゾリル、アクリジニル、キサンテニル、フェノチアジニル、フェノキサチイニル、フェノキサジニル、ジベンゾフリル等が挙げられる。
“Aromatic heterocyclic group” means a monocyclic or bicyclic or more aromatic cyclic group having one or more heteroatoms arbitrarily selected from O, S and N in the ring To do.
The aromatic heterocyclic group having two or more rings includes those obtained by condensing a ring in the above “aromatic carbocyclic group” to a monocyclic or two or more aromatic heterocyclic group.
The monocyclic aromatic heterocyclic group is preferably 5 to 8 members, more preferably 5 or 6 members. Examples include pyrrolyl, imidazolyl, pyrazolyl, pyridyl, pyridazinyl, pyrimidinyl, pyrazinyl, triazolyl, triazinyl, tetrazolyl, furyl, thienyl, isoxazolyl, oxazolyl, oxadiazolyl, isothiazolyl, thiazolyl, thiadiazolyl, and the like.
Examples of the bicyclic aromatic heterocyclic group include indolyl, isoindolyl, indazolyl, indolizinyl, quinolinyl, isoquinolinyl, cinnolinyl, phthalazinyl, quinazolinyl, naphthyridinyl, quinoxalinyl, purinyl, pteridinyl, benzimidazolyl, benzisoxazolyl, benzisoxazolyl, Oxazolyl, benzoxiazolyl, benzisothiazolyl, benzothiazolyl, benzothiadiazolyl, benzofuryl, isobenzofuryl, benzothienyl, benzotriazolyl, imidazopyridyl, triazolopyridyl, imidazothiazolyl, pyrazinopyr Dazinyl, oxazolopyridyl, thiazolopyridyl and the like can be mentioned.
Examples of the aromatic heterocyclic group having 3 or more rings include carbazolyl, acridinyl, xanthenyl, phenothiazinyl, phenoxathinyl, phenoxazinyl, dibenzofuryl and the like.
 「非芳香族複素環式基」とは、O、SおよびNから任意に選択される同一または異なるヘテロ原子を環内に1以上有する、単環または2環以上の、環状非芳香族環式基を意味する。
 2環以上の非芳香族複素環式基は、単環または2環以上の非芳香族複素環式基に、上記「芳香族炭素環式基」、「非芳香族炭素環式基」、および/または「芳香族複素環式基」におけるそれぞれの環が縮合したものも包含する。
 さらに、「非芳香族複素環式基」は、以下のように架橋している基、またはスピロ環を形成する基も包含する。
Figure JPOXMLDOC01-appb-C000002

 単環の非芳香族複素環式基としては、3~8員が好ましく、より好ましくは5員または6員である。例えば、ジオキサニル、チイラニル、オキシラニル、オキセタニル、オキサチオラニル、アゼチジニル、チアニル、チアゾリジニル、ピロリジニル、ピロリニル、イミダゾリジニル、イミダゾリニル、ピラゾリジニル、ピラゾリニル、ピペリジル、ピペラジニル、モルホリニル、モルホリノ、チオモルホリニル、チオモルホリノ、ジヒドロピリジル、テトラヒドロピリジル、テトラヒドロフリル、テトラヒドロピラニル、ジヒドロチアゾリル、テトラヒドロチアゾリル、テトラヒドロイソチアゾリル、ジヒドロオキサジニル、ヘキサヒドロアゼピニル、テトラヒドロジアゼピニル、テトラヒドロピリダジニル、ヘキサヒドロピリミジニル、ジオキソラニル、ジオキサジニル、アジリジニル、ジオキソリニル、オキセパニル、チオラニル、チイニル、チアジニル等が挙げられる。
 2環以上の非芳香族複素環式基としては、例えば、インドリニル、イソインドリニル、クロマニル、イソクロマニル等が挙げられる。
“Non-aromatic heterocyclic group” means a monocyclic or bicyclic or more cyclic non-aromatic cyclic group having at least one hetero atom selected from O, S and N in the ring. Means group.
The non-aromatic heterocyclic group having 2 or more rings is a monocyclic or 2 or more non-aromatic heterocyclic group, the above “aromatic carbocyclic group”, “non-aromatic carbocyclic group”, and Also included are those in which each ring in the “aromatic heterocyclic group” is condensed.
Furthermore, the “non-aromatic heterocyclic group” includes a group which forms a bridge or a spiro ring as described below.
Figure JPOXMLDOC01-appb-C000002

The monocyclic non-aromatic heterocyclic group is preferably 3 to 8 members, more preferably 5 or 6 members. For example, dioxanyl, thiranyl, oxiranyl, oxetanyl, oxathiolanyl, azetidinyl, thianyl, thiazolidinyl, pyrrolidinyl, pyrrolinyl, imidazolidinyl, imidazolinyl, pyrazolidinyl, pyrazolinyl, piperidyl, piperazinyl, morpholinyl, morpholino, thiomorpholinyl, morpholino, thiomorpholinyl, morpholino, thiomorpholinyl Furyl, tetrahydropyranyl, dihydrothiazolyl, tetrahydrothiazolyl, tetrahydroisothiazolyl, dihydrooxazinyl, hexahydroazepinyl, tetrahydrodiazepinyl, tetrahydropyridazinyl, hexahydropyrimidinyl, dioxolanyl, dioxazinyl Aziridinyl, dioxolinyl, oxepanyl, thiolanyl, thii Le, triazinyl, and the like.
Examples of the non-aromatic heterocyclic group having two or more rings include indolinyl, isoindolinyl, chromanyl, isochromanyl and the like.
 「アルキルオキシ」とは、上記「アルキル」が酸素原子に結合した基を意味する。例えば、メトキシ、エトキシ、n-プロピルオキシ、イソプロピルオキシ、n-ブチルオキシ、tert-ブチルオキシ、イソブチルオキシ、sec-ブチルオキシ、ペンチルオキシ、イソペンチルオキシ、へキシルオキシ等が挙げられる。
 「アルキルオキシ」の好ましい態様として、メトキシ、エトキシ、n-プロピルオキシ、イソプロピルオキシ、tert-ブチルオキシが挙げられる。
“Alkyloxy” means a group in which the above “alkyl” is bonded to an oxygen atom. Examples thereof include methoxy, ethoxy, n-propyloxy, isopropyloxy, n-butyloxy, tert-butyloxy, isobutyloxy, sec-butyloxy, pentyloxy, isopentyloxy, hexyloxy and the like.
Preferable embodiments of “alkyloxy” include methoxy, ethoxy, n-propyloxy, isopropyloxy, tert-butyloxy.
 「アルキルアミノ」には、モノアルキルアミノとジアルキルアミノが含まれる。
 「モノアルキルアミノ」とは、上記「アルキル」がアミノ基の窒素原子と結合している水素原子1個と置き換わった基を意味する。例えば、メチルアミノ、エチルアミノ、イソプロピルアミノ等が挙げられる。好ましくは、メチルアミノ、エチルアミノが挙げられる。
 「ジアルキルアミノ」とは、上記「アルキル」がアミノ基の窒素原子と結合している水素原子2個と置き換わった基を意味する。2個のアルキル基は、同一でも異なっていてもよい。例えば、ジメチルアミノ、ジエチルアミノ、N,N-ジイソプロピルアミノ、N-メチル-N-エチルアミノ、N-イソプロピル-N-エチルアミノ等が挙げられる。好ましくは、ジメチルアミノ、ジエチルアミノが挙げられる。
“Alkylamino” includes monoalkylamino and dialkylamino.
“Monoalkylamino” means a group in which the above “alkyl” is replaced with one hydrogen atom bonded to the nitrogen atom of the amino group. For example, methylamino, ethylamino, isopropylamino and the like can be mentioned. Preferably, methylamino and ethylamino are used.
“Dialkylamino” means a group in which the above “alkyl” is replaced with two hydrogen atoms bonded to the nitrogen atom of the amino group. Two alkyl groups may be the same or different. Examples include dimethylamino, diethylamino, N, N-diisopropylamino, N-methyl-N-ethylamino, N-isopropyl-N-ethylamino and the like. Preferable examples include dimethylamino and diethylamino.
 「アルキルチオ」とは、上記「アルキル」が硫黄原子に結合した基を意味する。 "Alkylthio" means a group in which the "alkyl" is bonded to a sulfur atom.
 「置換もしくは非置換のアルキル」、「置換もしくは非置換のアルケニル」、「置換もしくは非置換のアルキニル」の置換基としては、次の置換基が挙げられる。任意の位置の炭素原子が次の置換基から選択される1以上の基と結合していてもよい。
 置換基:ハロゲン、ヒドロキシ、カルボキシ、アミノ、イミノ、ヒドロキシアミノ、ヒドロキシイミノ、ホルミル、ホルミルオキシ、カルバモイル、スルファモイル、スルファニル、スルフィノ、スルホ、チオホルミル、チオカルボキシ、ジチオカルボキシ、チオカルバモイル、シアノ、ニトロ、ニトロソ、アジド、ヒドラジノ、ウレイド、アミジノ、グアニジノ、トリアルキルシリル、アルキルオキシ、アルケニルオキシ、アルキニルオキシ、ハロアルキルオキシ、アルキルカルボニル、アルケニルカルボニル、アルキニルカルボニル、モノアルキルアミノ、ジアルキルアミノ、アルキルスルホニル、アルケニルスルホニル、アルキニルスルホニル、モノアルキルカルボニルアミノ、ジアルキルカルボニルアミノ、モノアルキルスルホニルアミノ、ジアルキルスルホニルアミノ、アルキルイミノ、アルケニルイミノ、アルキニルイミノ、アルキルカルボニルイミノ、アルケニルカルボニルイミノ、アルキニルカルボニルイミノ、アルキルオキシイミノ、アルケニルオキシイミノ、アルキニルオキシイミノ、アルキルカルボニルオキシ、アルケニルカルボニルオキシ、アルキニルカルボニルオキシ、アルキルオキシカルボニル、アルケニルオキシカルボニル、アルキニルオキシカルボニル、アルキルスルファニル、アルケニルスルファニル、アルキニルスルファニル、アルキルスルフィニル、アルケニルスルフィニル、アルキニルスルフィニル、モノアルキルカルバモイル、ジアルキルカルバモイル、モノアルキルスルファモイル、ジアルキルスルファモイル、芳香族炭素環式基、非芳香族炭素環式基、芳香族複素環式基、非芳香族複素環式基、芳香族炭素環オキシ、非芳香族炭素環オキシ、芳香族複素環オキシ、非芳香族複素環オキシ、芳香族炭素環カルボニル、非芳香族炭素環カルボニル、芳香族複素環カルボニル、非芳香族複素環カルボニル、芳香族炭素環オキシカルボニル、非芳香族炭素環オキシカルボニル、芳香族複素環オキシカルボニル、非芳香族複素環オキシカルボニル、芳香族炭素環アルキルオキシ、非芳香族炭素環アルキルオキシ、芳香族複素環アルキルオキシ、非芳香族複素環アルキルオキシ、芳香族炭素環アルキルオキシカルボニル、非芳香族炭素環アルキルオキシカルボニル、芳香族複素環アルキルオキシカルボニル、非芳香族複素環アルキルオキシカルボニル、芳香族炭素環アルキルアミノ、非芳香族炭素環アルキルアミノ、芳香族複素環アルキルアミノ、非芳香族複素環アルキルアミノ、芳香族炭素環スルファニル、非芳香族炭素環スルファニル、芳香族複素環スルファニル、非芳香族複素環スルファニル、非芳香族炭素環スルホニル、芳香族炭素環スルホニル、芳香族複素環スルホニル、および非芳香族複素環スルホニル。
Examples of the substituent of “substituted or unsubstituted alkyl”, “substituted or unsubstituted alkenyl”, and “substituted or unsubstituted alkynyl” include the following substituents. The carbon atom at any position may be bonded to one or more groups selected from the following substituents.
Substituents: halogen, hydroxy, carboxy, amino, imino, hydroxyamino, hydroxyimino, formyl, formyloxy, carbamoyl, sulfamoyl, sulfanyl, sulfino, sulfo, thioformyl, thiocarboxy, dithiocarboxy, thiocarbamoyl, cyano, nitro, nitroso , Azide, hydrazino, ureido, amidino, guanidino, trialkylsilyl, alkyloxy, alkenyloxy, alkynyloxy, haloalkyloxy, alkylcarbonyl, alkenylcarbonyl, alkynylcarbonyl, monoalkylamino, dialkylamino, alkylsulfonyl, alkenylsulfonyl, alkynyl Sulfonyl, monoalkylcarbonylamino, dialkylcarbonylamino, monoalkylsulfonyl Mino, dialkylsulfonylamino, alkylimino, alkenylimino, alkynylimino, alkylcarbonylimino, alkenylcarbonylimino, alkynylcarbonylimino, alkyloxyimino, alkenyloxyimino, alkynyloxyimino, alkylcarbonyloxy, alkenylcarbonyloxy, alkynylcarbonyloxy , Alkyloxycarbonyl, alkenyloxycarbonyl, alkynyloxycarbonyl, alkylsulfanyl, alkenylsulfanyl, alkynylsulfanyl, alkylsulfinyl, alkenylsulfinyl, alkynylsulfinyl, monoalkylcarbamoyl, dialkylcarbamoyl, monoalkylsulfamoyl, dialkylsulfamoyl, aromatic Group carbocyclic group, Aromatic carbocyclic group, aromatic heterocyclic group, non-aromatic heterocyclic group, aromatic carbocyclic oxy, non-aromatic carbocyclic oxy, aromatic heterocyclic oxy, non-aromatic heterocyclic oxy, aromatic Carbocyclic carbonyl, non-aromatic carbocyclic carbonyl, aromatic heterocyclic carbonyl, non-aromatic heterocyclic carbonyl, aromatic carbocyclic oxycarbonyl, non-aromatic carbocyclic oxycarbonyl, aromatic heterocyclic oxycarbonyl, non-aromatic hetero Ring oxycarbonyl, aromatic carbocyclic alkyloxy, non-aromatic carbocyclic alkyloxy, aromatic heterocyclic alkyloxy, non-aromatic heterocyclic alkyloxy, aromatic carbocyclic alkyloxycarbonyl, non-aromatic carbocyclic alkyloxycarbonyl , Aromatic heterocyclic alkyloxycarbonyl, non-aromatic heterocyclic alkyloxycarbonyl, aromatic carbocyclic alkylamino, non-aromatic Aromatic carbocyclic alkylamino, aromatic heterocyclic alkylamino, non-aromatic heterocyclic alkylamino, aromatic carbocyclic sulfanyl, non-aromatic carbocyclic sulfanyl, aromatic heterocyclic sulfanyl, non-aromatic heterocyclic sulfanyl, non-aromatic Aromatic carbocyclic sulfonyl, aromatic carbocyclic sulfonyl, aromatic heterocyclic sulfonyl, and non-aromatic heterocyclic sulfonyl.
 「置換若しくは非置換の芳香族炭素環式基」、「置換若しくは非置換の非芳香族炭素環式基」、「置換若しくは非置換の芳香族複素環式基」、「置換若しくは非置換の非芳香族複素環式基」、「置換もしくは非置換の芳香族炭素環アルキル」、「置換もしくは非置換の非芳香族炭素環アルキル」、「置換もしくは非置換の芳香族複素環アルキル」および「置換もしくは非置換の非芳香族複素環アルキル」の「芳香族炭素環」、「非芳香族炭素環」、「芳香族複素環」および「非芳香族複素環」の環上の置換基としては、次の置換基が挙げられる。環上の任意の位置の原子が次の置換基から選択される1以上の基と結合していてもよい。
 置換基:ハロゲン、ヒドロキシ、カルボキシ、アミノ、イミノ、ヒドロキシアミノ、ヒドロキシイミノ、ホルミル、ホルミルオキシ、カルバモイル、スルファモイル、スルファニル、スルフィノ、スルホ、チオホルミル、チオカルボキシ、ジチオカルボキシ、チオカルバモイル、シアノ、ニトロ、ニトロソ、アジド、ヒドラジノ、ウレイド、アミジノ、グアニジノ、トリアルキルシリル、アルキル、アルケニル、アルキニル、ハロアルキル、アルキルオキシ、アルケニルオキシ、アルキニルオキシ、ハロアルキルオキシ、アルキルオキシアルキル、アルキルオキシアルキルオキシ、アルキルカルボニル、アルケニルカルボニル、アルキニルカルボニル、モノアルキルアミノ、ジアルキルアミノ、アルキルスルホニル、アルケニルスルホニル、アルキニルスルホニル、モノアルキルカルボニルアミノ、ジアルキルカルボニルアミノ、モノアルキルスルホニルアミノ、ジアルキルスルホニルアミノ、アルキルイミノ、アルケニルイミノ、アルキニルイミノ、アルキルカルボニルイミノ、アルケニルカルボニルイミノ、アルキニルカルボニルイミノ、アルキルオキシイミノ、アルケニルオキシイミノ、アルキニルオキシイミノ、アルキルカルボニルオキシ、アルケニルカルボニルオキシ、アルキニルカルボニルオキシ、アルキルオキシカルボニル、アルケニルオキシカルボニル、アルキニルオキシカルボニル、アルキルスルファニル、アルケニルスルファニル、アルキニルスルファニル、アルキルスルフィニル、アルケニルスルフィニル、アルキニルスルフィニル、モノアルキルカルバモイル、ジアルキルカルバモイル、モノアルキルスルファモイル、ジアルキルスルファモイル、芳香族炭素環式基、非芳香族炭素環式基、芳香族複素環式基、非芳香族複素環式基、芳香族炭素環オキシ、非芳香族炭素環オキシ、芳香族複素環オキシ、非芳香族複素環オキシ、芳香族炭素環カルボニル、非芳香族炭素環カルボニル、芳香族複素環カルボニル、非芳香族複素環カルボニル、芳香族炭素環オキシカルボニル、非芳香族炭素環オキシカルボニル、芳香族複素環オキシカルボニル、非芳香族複素環オキシカルボニル、芳香族炭素環アルキル、非芳香族炭素環アルキル、芳香族複素環アルキル、非芳香族複素環アルキル、芳香族炭素環アルキルオキシ、非芳香族炭素環アルキルオキシ、芳香族複素環アルキルオキシ、非芳香族複素環アルキルオキシ、芳香族炭素環アルキルオキシカルボニル、非芳香族炭素環アルキルオキシカルボニル、芳香族複素環アルキルオキシカルボニル、非芳香族複素環アルキルオキシカルボニル、芳香族炭素環アルキルオキシアルキル、非芳香族炭素環アルキルオキシアルキル、芳香族複素環アルキルオキシアルキル、非芳香族複素環アルキルオキシアルキル、芳香族炭素環アルキルアミノ、非芳香族炭素環アルキルアミノ、芳香族複素環アルキルアミノ、非芳香族複素環アルキルアミノ、芳香族炭素環スルファニル、非芳香族炭素環スルファニル、芳香族複素環スルファニル、非芳香族複素環スルファニル、非芳香族炭素環スルホニル、芳香族炭素環スルホニル、芳香族複素環スルホニル、および非芳香族複素環スルホニル。
“Substituted or unsubstituted aromatic carbocyclic group”, “substituted or unsubstituted non-aromatic carbocyclic group”, “substituted or unsubstituted aromatic heterocyclic group”, “substituted or unsubstituted non-substituted aromatic carbocyclic group” "Aromatic heterocyclic group", "Substituted or unsubstituted aromatic carbocyclic alkyl", "Substituted or unsubstituted non-aromatic carbocyclic alkyl", "Substituted or unsubstituted aromatic heterocyclic alkyl" and "Substituted Alternatively, the substituents on the ring of “aromatic carbocycle”, “non-aromatic carbocycle”, “aromatic heterocycle” and “non-aromatic heterocycle” of “unsubstituted non-aromatic heterocycle alkyl” are as follows: The following substituents are mentioned. An atom at any position on the ring may be bonded to one or more groups selected from the following substituents.
Substituents: halogen, hydroxy, carboxy, amino, imino, hydroxyamino, hydroxyimino, formyl, formyloxy, carbamoyl, sulfamoyl, sulfanyl, sulfino, sulfo, thioformyl, thiocarboxy, dithiocarboxy, thiocarbamoyl, cyano, nitro, nitroso , Azide, hydrazino, ureido, amidino, guanidino, trialkylsilyl, alkyl, alkenyl, alkynyl, haloalkyl, alkyloxy, alkenyloxy, alkynyloxy, haloalkyloxy, alkyloxyalkyl, alkyloxyalkyloxy, alkylcarbonyl, alkenylcarbonyl, Alkynylcarbonyl, monoalkylamino, dialkylamino, alkylsulfonyl, alkenylsulfonyl, Lucinylsulfonyl, monoalkylcarbonylamino, dialkylcarbonylamino, monoalkylsulfonylamino, dialkylsulfonylamino, alkylimino, alkenylimino, alkynylimino, alkylcarbonylimino, alkenylcarbonylimino, alkynylcarbonylimino, alkyloxyimino, alkenyloxyimino Alkynyloxyimino, alkylcarbonyloxy, alkenylcarbonyloxy, alkynylcarbonyloxy, alkyloxycarbonyl, alkenyloxycarbonyl, alkynyloxycarbonyl, alkylsulfanyl, alkenylsulfanyl, alkynylsulfanyl, alkylsulfinyl, alkenylsulfinyl, alkynylsulfinyl, monoalkylcarba Mo , Dialkylcarbamoyl, monoalkylsulfamoyl, dialkylsulfamoyl, aromatic carbocyclic group, non-aromatic carbocyclic group, aromatic heterocyclic group, non-aromatic heterocyclic group, aromatic carbocycle Oxy, non-aromatic carbocyclic oxy, aromatic heterocyclic oxy, non-aromatic heterocyclic oxy, aromatic carbocyclic carbonyl, non-aromatic carbocyclic carbonyl, aromatic heterocyclic carbonyl, non-aromatic heterocyclic carbonyl, aromatic Carbocyclic oxycarbonyl, non-aromatic carbocyclic oxycarbonyl, aromatic heterocyclic oxycarbonyl, non-aromatic heterocyclic oxycarbonyl, aromatic carbocyclic alkyl, non-aromatic carbocyclic alkyl, aromatic heterocyclic alkyl, non-aromatic Heterocyclic alkyl, aromatic carbocyclic alkyloxy, non-aromatic carbocyclic alkyloxy, aromatic heterocyclic alkyloxy, non-aromatic heterocyclic alkyl Oxy, aromatic carbocyclic alkyloxycarbonyl, non-aromatic carbocyclic alkyloxycarbonyl, aromatic heterocyclic alkyloxycarbonyl, non-aromatic heterocyclic alkyloxycarbonyl, aromatic carbocyclic alkyloxyalkyl, non-aromatic carbocyclic alkyl Oxyalkyl, aromatic heterocyclic alkyloxyalkyl, non-aromatic heterocyclic alkyloxyalkyl, aromatic carbocyclic alkylamino, non-aromatic carbocyclic alkylamino, aromatic heterocyclic alkylamino, non-aromatic heterocyclic alkylamino, Aromatic carbocyclic sulfanyl, non-aromatic carbocyclic sulfanyl, aromatic heterocyclic sulfanyl, non-aromatic heterocyclic sulfanyl, non-aromatic carbocyclic sulfonyl, aromatic carbocyclic sulfonyl, aromatic heterocyclic sulfonyl, and non-aromatic hetero Ring sulfonyl.
 「芳香族炭素環アルキル」、「非芳香族炭素環アルキル」、「芳香族複素環アルキル」、および「非芳香族複素環アルキル」のアルキル部分も、上記「アルキル」と同様である。 The alkyl part of “aromatic carbocyclic alkyl”, “non-aromatic carbocyclic alkyl”, “aromatic heterocyclic alkyl”, and “non-aromatic heterocyclic alkyl” is the same as the above “alkyl”.
 「芳香族炭素環アルキル」とは、1以上の上記「芳香族炭素環式基」で置換されているアルキルを意味する。例えば、ベンジル、フェネチル、フェニルプロピニル、ベンズヒドリル、トリチル、ナフチルメチル、以下に示される基
Figure JPOXMLDOC01-appb-C000003

等が挙げられる。
 「芳香族炭素環アルキル」の好ましい態様としては、ベンジル、フェネチル、ベンズヒドリルが挙げられる。
“Aromatic carbocyclic alkyl” means an alkyl substituted with one or more of the above “aromatic carbocyclic groups”. For example, benzyl, phenethyl, phenylpropynyl, benzhydryl, trityl, naphthylmethyl, groups shown below
Figure JPOXMLDOC01-appb-C000003

Etc.
Preferable embodiments of “aromatic carbocyclic alkyl” include benzyl, phenethyl and benzhydryl.
 「非芳香族炭素環アルキル」とは、1以上の上記「非芳香族炭素環式基」で置換されているアルキルを意味する。また、「非芳香族炭素環アルキル」は、アルキル部分が上記「芳香族炭素環式基」で置換されている「非芳香族炭素環アルキル」も包含する。例えば、シクロプロピルメチル、シクロブチルメチル、シクロペンチルメチル、シクロへキシルメチル、以下に示される基
Figure JPOXMLDOC01-appb-C000004

等が挙げられる。
“Non-aromatic carbocyclic alkyl” means alkyl substituted with one or more of the above “non-aromatic carbocyclic groups”. The “non-aromatic carbocyclic alkyl” also includes “non-aromatic carbocyclic alkyl” in which the alkyl moiety is substituted with the above “aromatic carbocyclic group”. For example, cyclopropylmethyl, cyclobutylmethyl, cyclopentylmethyl, cyclohexylmethyl, groups shown below
Figure JPOXMLDOC01-appb-C000004

Etc.
 「芳香族複素環アルキル」とは、1以上の上記「芳香族複素環式基」で置換されているアルキルを意味する。また、「芳香族複素環アルキル」は、アルキル部分が上記「芳香族炭素環式基」および/または「非芳香族炭素環式基」で置換されている「芳香族複素環アルキル」も包含する。例えば、ピリジルメチル、フラニルメチル、イミダゾリルメチル、インドリルメチル、ベンゾチオフェニルメチル、オキサゾリルメチル、イソキサゾリルメチル、チアゾリルメチル、イソチアゾリルメチル、ピラゾリルメチル、イソピラゾリルメチル、ピロリジニルメチル、ベンズオキサゾリルメチル、以下に示される基
Figure JPOXMLDOC01-appb-C000005

等が挙げられる。
“Aromatic heterocyclic alkyl” means alkyl substituted with one or more of the above “aromatic heterocyclic groups”. “Aromatic heterocyclic alkyl” also includes “aromatic heterocyclic alkyl” in which the alkyl moiety is substituted with the above “aromatic carbocyclic group” and / or “non-aromatic carbocyclic group”. . For example, pyridylmethyl, furanylmethyl, imidazolylmethyl, indolylmethyl, benzothiophenylmethyl, oxazolylmethyl, isoxazolylmethyl, thiazolylmethyl, isothiazolylmethyl, pyrazolylmethyl, isopyrazolylmethyl, pyrrolidinylmethyl, benz Oxazolylmethyl, group shown below
Figure JPOXMLDOC01-appb-C000005

Etc.
 「非芳香族複素環アルキル」とは、1以上の上記「非芳香族複素環式基」で置換されているアルキルを意味する。また、「非芳香族複素環アルキル」は、アルキル部分が上記「芳香族炭素環式基」、「非芳香族炭素環式基」および/または「芳香族複素環式基」で置換されている「非芳香族複素環アルキル」も包含する。例えば、テトラヒドロピラニルメチル、モルホリニルエチル、ピペリジニルメチル、ピペラジニルメチル、以下に示される基
Figure JPOXMLDOC01-appb-C000006

等が挙げられる。
“Non-aromatic heterocyclic alkyl” means an alkyl substituted with one or more of the above “non-aromatic heterocyclic groups”. In the “non-aromatic heterocyclic alkyl”, the alkyl portion is substituted with the above “aromatic carbocyclic group”, “non-aromatic carbocyclic group” and / or “aromatic heterocyclic group”. Also included are “non-aromatic heterocyclic alkyl”. For example, tetrahydropyranylmethyl, morpholinylethyl, piperidinylmethyl, piperazinylmethyl, groups shown below
Figure JPOXMLDOC01-appb-C000006

Etc.
 本発明のアンチセンスオリゴヌクレオチド(またはその修飾体)は常法によって合成することができ、例えば、市販の核酸自動合成装置(例えば、AppliedBiosystems社製、(株)大日本精機製等)によって容易に合成することができる。合成法はホスホロアミダイトを用いた固相合成法、ハイドロジェンホスホネートを用いた固相合成法等がある。例えば、Tetrahedron Letters 22, 1859-1862 (1981)、国際公開第2011/052436号等に開示されている。 The antisense oligonucleotide of the present invention (or a modified product thereof) can be synthesized by a conventional method. For example, it can be easily synthesized with a commercially available automatic nucleic acid synthesizer (for example, manufactured by AppliedBiosystems, manufactured by Dainippon Seiki Co., Ltd.). Can be synthesized. Examples of the synthesis method include a solid phase synthesis method using phosphoramidite and a solid phase synthesis method using hydrogen phosphonate. For example, it is disclosed in Tetrahedron Letters 22, 1859-1862 (1981), International Publication No. 2011/052436, and the like.
 本発明のアンチセンスオリゴヌクレオチドは、ヒトを含む動物に投与する際、生物学的に活性な代謝産物またはその残渣物を(直接的に、あるいは、間接的に)提供し得る、任意の製薬上許容される塩、エステル、もしくはかかるエステルの塩、または任意の他の同等物を包含する。つまり、本発明のアンチセンスオリゴヌクレオチドのプロドラッグおよび製薬上許容される塩、該プロドラッグの製薬上許容される塩、ならびに他の生物学的同等物を包含する。 The antisense oligonucleotides of the present invention can be any pharmaceutical that can provide (directly or indirectly) a biologically active metabolite or residue thereof when administered to an animal, including a human. including acceptable salts, esters, or salts of such esters, or any other equivalents. That is, it includes prodrugs and pharmaceutically acceptable salts of the antisense oligonucleotides of the invention, pharmaceutically acceptable salts of the prodrugs, and other biological equivalents.
 「プロドラッグ」とは、内在性酵素または他の化学物質の作用および/または状態によってその生体内または細胞内で活性形態(即ち、薬物)に変換される、不活性形態またはより低い活性形態の誘導体である。本発明のアンチセンスオリゴヌクレオチドのプロドラッグは、国際公開第93/24510号、国際公開第94/26764号等に記載される方法に従って調製することができる。 A “prodrug” is an inactive or less active form that is converted into an active form (ie, drug) in vivo or in cells by the action and / or state of an endogenous enzyme or other chemical. Is a derivative. The prodrug of the antisense oligonucleotide of the present invention can be prepared according to the methods described in WO 93/24510, WO 94/26764 and the like.
 「製薬上許容される塩」とは、本発明のアンチセンスオリゴヌクレオチドの生理学的におよび製薬上許容される塩、即ち、該アンチセンスオリゴヌクレオチドの所望される生物学的な活性を保持し、そこで望まれない毒物学的効果を与えない塩のことをいう。 “Pharmaceutically acceptable salt” refers to a physiologically and pharmaceutically acceptable salt of an antisense oligonucleotide of the invention, ie, retains the desired biological activity of the antisense oligonucleotide; It refers to salts that do not give unwanted toxicological effects.
 製薬上許容される塩としては、例えば、アルカリ金属(例えば、リチウム、ナトリウム、カリウム等)、アルカリ土類金属(例えば、カルシウム、バリウム等)、マグネシウム、遷移金属(例えば、亜鉛、鉄等)、アンモニア、有機塩基(例えば、トリメチルアミン、トリエチルアミン、ジシクロヘキシルアミン、エタノールアミン、ジエタノールアミン、トリエタノールアミン、メグルミン、ジエタノールアミン、エチレンジアミン、ピリジン、ピコリン、キノリン等)およびアミノ酸との塩、または無機酸(例えば、塩酸、硫酸、硝酸、炭酸、臭化水素酸、リン酸、ヨウ化水素酸等)、および有機酸(例えば、ギ酸、酢酸、プロピオン酸、トリフルオロ酢酸、クエン酸、乳酸、酒石酸、シュウ酸、マレイン酸、フマル酸、マンデル酸、グルタル酸、リンゴ酸、安息香酸、フタル酸、アスコルビン酸、ベンゼンスルホン酸、p-トルエンスルホン酸、メタンスルホン酸、エタンスルホン酸等)との塩が挙げられる。特に塩酸、硫酸、リン酸、酒石酸、メタンスルホン酸との塩等が挙げられる。これらの塩は、通常行われる方法によって形成させることができる。 Examples of pharmaceutically acceptable salts include alkali metals (eg, lithium, sodium, potassium, etc.), alkaline earth metals (eg, calcium, barium, etc.), magnesium, transition metals (eg, zinc, iron, etc.), Ammonia, organic bases (eg trimethylamine, triethylamine, dicyclohexylamine, ethanolamine, diethanolamine, triethanolamine, meglumine, diethanolamine, ethylenediamine, pyridine, picoline, quinoline etc.) and salts with amino acids, or inorganic acids (eg hydrochloric acid, Sulfuric acid, nitric acid, carbonic acid, hydrobromic acid, phosphoric acid, hydroiodic acid, etc.) and organic acids (eg formic acid, acetic acid, propionic acid, trifluoroacetic acid, citric acid, lactic acid, tartaric acid, oxalic acid, maleic acid) Fumaric acid, mandelic acid, Rutaru acid, malic acid, benzoic acid, phthalic acid, ascorbic acid, benzenesulfonic acid, p- toluenesulfonic acid, methanesulfonic acid, and salts with ethanesulfonic acid, etc.). In particular hydrochloric, sulfuric, phosphoric, tartaric, salts with methanesulfonic acid. These salts can be formed by a commonly performed method.
 本発明は、本発明のアンチセンスオリゴヌクレオチドを含有する医薬組成物も包含する。本発明の医薬組成物の投与方法および製剤は、当該分野で公知の投与方法および製剤であれば、いずれも利用可能である。アンチセンスオリゴヌクレオチドの投与方法および製剤は、例えば、以下の文献にも開示されている。
国際公開第2004/016749号、国際公開第2005/083124号、国際公開2007/143315号、国際公開第2009/071680号等。
The present invention also includes a pharmaceutical composition containing the antisense oligonucleotide of the present invention. As the administration method and preparation of the pharmaceutical composition of the present invention, any administration method and preparation known in the art can be used. Antisense oligonucleotide administration methods and preparations are also disclosed in, for example, the following documents.
International Publication No. 2004/016749, International Publication No. 2005/083124, International Publication No. 2007/143315, International Publication No. 2009/071680, and the like.
 本発明の医薬組成物は、局所的あるいは全身的な治療のいずれが望まれるのか、または治療すべき領域に応じて、様々な方法により投与することができる。投与方法としては、例えば、局所的(点眼、膣内、直腸内、鼻腔内、経皮を含む)、経口的、または、非経口的であってもよい。非経口的投与としては、静脈内注射もしくは点滴、皮下、腹腔内もしくは筋肉内注入、吸引もしくは吸入による肺投与、硬膜下腔内投与、脳室内投与等が挙げられる。 The pharmaceutical composition of the present invention can be administered by various methods depending on whether local or systemic treatment is desired or on the region to be treated. The administration method may be, for example, topical (including eye drops, intravaginal, rectal, intranasal, transdermal), oral, or parenteral. Parenteral administration includes intravenous injection or infusion, subcutaneous, intraperitoneal or intramuscular injection, pulmonary administration by inhalation or inhalation, intradural administration, intraventricular administration, and the like.
 本発明の医薬組成物を局所投与する場合、経皮パッチ、軟膏、ローション、クリーム、ゲル、滴下剤、坐剤、噴霧剤、液剤、散剤等の製剤を用いることができる。
 経口投与用組成物としては、散剤、顆粒剤、水もしくは非水性媒体に溶解させた懸濁液または溶液、カプセル、粉末剤、錠剤等が挙げられる。
 非経口、硬膜下腔、または、脳室内投与用組成物としては、バッファー、希釈剤およびその他の適当な添加剤を含む無菌水溶液等が挙げられる。
When the pharmaceutical composition of the present invention is administered locally, preparations such as transdermal patches, ointments, lotions, creams, gels, drops, suppositories, sprays, liquids, powders and the like can be used.
Examples of compositions for oral administration include powders, granules, suspensions or solutions dissolved in water or non-aqueous media, capsules, powders, tablets and the like.
Examples of compositions for parenteral, subdural space, or intracerebroventricular administration include sterile aqueous solutions containing buffers, diluents and other suitable additives.
 本発明の医薬組成物は、本発明のアンチセンスオリゴヌクレオチドの有効量にその剤型に適した賦形剤、結合剤、湿潤剤、崩壊剤、滑沢剤、希釈剤等の各種医薬用添加剤を必要に応じて混合して得ることができる。注射剤の場合には適当な担体と共に滅菌処理を行なって製剤とすればよい。 The pharmaceutical composition of the present invention comprises various pharmaceutical additives such as excipients, binders, wetting agents, disintegrants, lubricants, diluents and the like suitable for the dosage form in the effective amount of the antisense oligonucleotide of the present invention. The agent can be obtained by mixing as necessary. It may be a formulation subjected to sterilization treatment with a suitable carrier in the case of injections.
 賦形剤としては乳糖、白糖、ブドウ糖、デンプン、炭酸カルシウムまたは結晶セルロース等が挙げられる。結合剤としてはメチルセルロース、カルボキシメチルセルロース、ヒドロキシプロピルセルロース、ゼラチンまたはポリビニルピロリドン等が挙げられる。崩壊剤としてはカルボキシメチルセルロース、カルボキシメチルセルロースナトリウム、デンプン、アルギン酸ナトリウム、カンテン末またはラウリル硫酸ナトリウム等が挙げられる。滑沢剤としてはタルク、ステアリン酸マグネシウムまたはマクロゴール等が挙げられる。坐剤の基剤としてはカカオ脂、マクロゴールまたはメチルセルロース等を用いることができる。また、液剤または乳濁性、懸濁性の注射剤として調製する場合には通常使用されている溶解補助剤、懸濁化剤、乳化剤、安定化剤、保存剤、等張剤等を適宜添加しても良い。経口投与の場合には嬌味剤、芳香剤等を加えても良い。 Excipients include lactose, sucrose, glucose, starch, calcium carbonate or crystalline cellulose. Examples of the binder include methyl cellulose, carboxymethyl cellulose, hydroxypropyl cellulose, gelatin, and polyvinyl pyrrolidone. Examples of the disintegrant include carboxymethyl cellulose, sodium carboxymethyl cellulose, starch, sodium alginate, agar powder, or sodium lauryl sulfate. Lubricants Talc, magnesium or macrogol stearate. As a suppository base, cocoa butter, macrogol, methylcellulose or the like can be used. In addition, when preparing as liquid or emulsion or suspension injections, commonly used solubilizers, suspending agents, emulsifiers, stabilizers, preservatives, isotonic agents, etc. are added as appropriate. You may do it. In the case of oral administration, flavoring agents, fragrances and the like may be added.
 投与は、治療される病態の重度と反応度に依存し、治療コースは、数日から数ヶ月、あるいは、治癒が実現されるまで、または、病状の減退が達成されるまで持続する。最適投与スケジュールは、生体における薬剤蓄積の測定から計算が可能である。当該分野の当業者であれば、最適用量、投与法、および、繰り返し頻度を定めることができる。最適用量は、個々のアンチセンスオリゴヌクレオチドの相対的効力に応じて変動するが、一般に、インビトロおよびインビボの動物実験におけるIC50またはEC50に基づいて計算することが可能である。例えば、アンチセンスオリゴヌクレオチドの分子量(アンチセンスオリゴヌクレオチド配列および化学構造から導かれる)と、例えば、IC50のような効果的用量(実験的に導かれる)が与えられたならば、mg/kgで表される用量が通例に従って計算される。 Administration depends on the severity and responsiveness of the condition being treated, and the course of treatment lasts from a few days to several months or until healing is achieved or a reduction in the condition is achieved. The optimal dosing schedule can be calculated from measurements of drug accumulation in the body. Persons of ordinary skill in the art can determine optimum dosages, dosing methodologies and repetition rates. The optimal dose will vary depending on the relative potency of the individual antisense oligonucleotides, but can generally be calculated based on the IC50 or EC50 in in vitro and in vivo animal experiments. For example, given the molecular weight of an antisense oligonucleotide (derived from the antisense oligonucleotide sequence and chemical structure) and an effective dose (derived experimentally), eg, IC50, in mg / kg The expressed dose is customarily calculated.
 本発明の医薬組成物は、ACSL1発現抑制活性を有するため、ACSL1が関連する疾患の予防または治療のために用いることができる。
 ACSL1が関連する疾患としては、肥満症(肥満症における体重管理も含む)、肥満関連疾患、糖尿病(特に、II型糖尿病)、シンドロームX、心臓血管障害または癌(乳癌、結腸癌、大腸癌、卵巣癌、肺癌等)が挙げられる。
 「肥満関連疾患」とは、肥満に伴うか、肥満により引き起こされるか、肥満の結果起きる疾患である。肥満関連疾患の例としては、過食症、高血圧、耐糖能異常、糖尿病、代謝症候群、脂質代謝異常、動脈硬化症、高尿酸血症、痛風、脂肪肝、蛋白尿、肥満腎症、子宮内膜癌、乳癌、前立腺癌、大腸癌、変形性関節症、腰痛症、腰椎症、閉塞性睡眠時無呼吸症候群、冠動脈疾患(心筋梗塞、狭心症等の冠動脈性心疾患)、脳梗塞、脳血栓症、一過的脳虚血発作、月経異常、プラダーウィリー症候群、フレーリッヒ症候群、ピックウィック症候群等が挙げられる。本発明の医薬組成物は左心室肥大のリスクの低減等、肥満の2次的な結果のリスクの低減にも有用である。
 本発明の医薬組成物は、特に、肥満症またはII型糖尿病の予防または治療のために用いることができる。
Since the pharmaceutical composition of the present invention has ACSL1 expression-suppressing activity, it can be used for prevention or treatment of diseases associated with ACSL1.
Diseases associated with ACSL1 include obesity (including weight management in obesity), obesity related diseases, diabetes (especially type II diabetes), syndrome X, cardiovascular disorders or cancer (breast cancer, colon cancer, colon cancer, Ovarian cancer, lung cancer, etc.).
An “obesity related disease” is a disease associated with, caused by, or caused by obesity. Examples of obesity-related diseases include bulimia, hypertension, impaired glucose tolerance, diabetes, metabolic syndrome, lipid metabolism disorder, arteriosclerosis, hyperuricemia, gout, fatty liver, proteinuria, obese nephropathy, endometrium Cancer, breast cancer, prostate cancer, colon cancer, osteoarthritis, low back pain, lumbar spondylosis, obstructive sleep apnea syndrome, coronary artery disease (myocardial infarction, coronary heart disease such as angina pectoris), cerebral infarction, cerebral thrombus Disease, transient cerebral ischemic attack, menstrual abnormalities, Prader-Willi syndrome, Frehrich syndrome, Pickwick syndrome and the like. The pharmaceutical composition of the present invention is also useful for reducing the risk of secondary outcomes of obesity, such as reducing the risk of left ventricular hypertrophy.
The pharmaceutical composition of the present invention can be used particularly for the prevention or treatment of obesity or type II diabetes.
 本発明の医薬組成物を肥満症の予防または治療のために用いる場合、他の1もしくは複数の公知の抗肥満薬(抗肥満作用を有する化合物を含有する医薬組成物、肥満症や肥満症における体重管理等に用いることのできる薬剤)と組み合わせて用いることもできる。また、本発明の医薬組成物の投与療法は、既知の食事療法、薬物療法、運動等と組み合わせて用いることもできる。 When the pharmaceutical composition of the present invention is used for the prevention or treatment of obesity, other one or more known anti-obesity drugs (pharmaceutical compositions containing a compound having an anti-obesity action, obesity and obesity) It can also be used in combination with a drug that can be used for weight management and the like. Moreover, the administration therapy of the pharmaceutical composition of the present invention can also be used in combination with known diet therapy, drug therapy, exercise and the like.
 例えば、以下の方法も本発明の範囲内である。
 本発明の医薬組成物と併用して、公知の抗肥満薬を投与することを特徴とする、肥満もしくは肥満関連疾患の予防もしくは治療または肥満における体重管理の方法。
 本発明の医薬組成物の投与による予防または治療を受けている患者に、公知の抗肥満薬を投与することを特徴とする、肥満もしくは肥満関連疾患の予防もしくは治療または肥満における体重管理の方法。
For example, the following methods are also within the scope of the present invention.
A method for the prevention or treatment of obesity or obesity-related diseases or weight management in obesity, comprising administering a known anti-obesity drug in combination with the pharmaceutical composition of the present invention.
A method for the prevention or treatment of obesity or obesity-related diseases or weight management in obesity, comprising administering a known anti-obesity drug to a patient undergoing prevention or treatment by administration of the pharmaceutical composition of the present invention.
 公知の抗肥満薬としては、食欲抑制作用を有する化合物(選択的セロトニン再取り込み阻害剤等)、栄養素の消化吸収抑制作用を有する化合物(α‐グルコシダーゼ阻害剤;SGLT-2阻害剤等)、脂肪吸収抑制作用を有する化合物(リパーゼ阻害剤;胆汁酸吸着レジン等)、5HTトランスポーター阻害剤、NEトランスポーター阻害剤、CB-1アンタゴニスト/インバースアゴニスト、グレリンアンタゴニスト、H3アンタゴニスト/インバースアゴニスト、MCH R1アンタゴニスト、MCH R2アゴニスト/アンタゴニスト、NPY Y1受容体 アンタゴニスト、NPY Y2受容体アゴニスト、NPY Y4受容体アゴニスト、NPY Y5受容体アンタゴニスト、mGluR5アンタゴニスト、レプチン、レプチンアゴニスト、レプチン誘導体、オピオイドアンタゴニスト、オレキシンアンタゴニスト、BRS3アゴニスト、CCK-Aアゴニスト、CNTF、CNTFアゴニスト、CNTF誘導体、GHSアゴニスト、5HT2Cアゴニスト、Mc4rアゴニスト、モノアミン再取り込み阻害剤、GLP-1アゴニスト、UCP-1、2および3活性剤、β3アゴニスト、甲状腺ホルモンβアゴニスト、PDE阻害剤、FAS阻害剤、DGAT1阻害剤、DGAT2阻害剤、ACC2阻害剤、グルココルチコイドアンタゴニスト、アシル-エストロゲン、脂肪酸トランスポーター阻害剤、ジカルボン酸トランスポーター阻害剤等を含有する医薬組成物が挙げられる。 Known anti-obesity drugs include compounds having an appetite suppressing action (selective serotonin reuptake inhibitors, etc.), compounds having an action to suppress digestion and absorption of nutrients (α-glucosidase inhibitors; SGLT-2 inhibitors, etc.), fat Compounds having an inhibitory action (lipase inhibitor; bile acid adsorption resin, etc.), 5HT transporter inhibitor, NE transporter inhibitor, CB-1 antagonist / inverse agonist, ghrelin antagonist, H3 antagonist / inverse agonist, MCH R1 antagonist , MCH R2 agonist / antagonist, NPY Y1 receptor antagonist, NPY Y2 receptor agonist, NPY Y4 receptor agonist, NPY Y5 receptor antagonist, mGluR5 antagonist, leptin, leptin Gonist, leptin derivative, opioid antagonist, orexin antagonist, BRS3 agonist, CCK-A agonist, CNTF, CNTF agonist, CNTF derivative, GHS agonist, 5HT2C agonist, Mc4r agonist, monoamine reuptake inhibitor, GLP-1 agonist, UCP-1 2 and 3 activators, β3 agonists, thyroid hormone β agonists, PDE inhibitors, FAS inhibitors, DGAT1 inhibitors, DGAT2 inhibitors, ACC2 inhibitors, glucocorticoid antagonists, acyl-estrogens, fatty acid transporter inhibitors, dicarboxylic Examples include pharmaceutical compositions containing an acid transporter inhibitor and the like.
 本発明の医薬組成物をII型糖尿病の予防または治療のために用いる場合、他の1もしくは複数の公知のII型糖尿病治療薬と組み合わせて用いることもできる。 When the pharmaceutical composition of the present invention is used for the prevention or treatment of type II diabetes, it can also be used in combination with one or more other known type II diabetes therapeutic agents.
 公知のII型糖尿病治療薬としては、インスリン分泌促進薬(例えば、スルホニル尿素(SU)薬)、速効型インスリン分泌促進薬(例えば、フェニルアラニン誘導体薬)、ブドウ糖吸収阻害薬(例えば、αグルコシダーゼ阻害薬(αGI薬))、インスリン抵抗性改善薬(例えば、ビグアナイド系薬剤(BG薬)、チアゾリジン系誘導体(TZD薬))、インスリン製剤、ペプチジルペプチダーゼIV(DPP-IV)阻害薬、GLP-1受容体アゴニスト、1型ナトリウム依存性グルコース輸送体(SGLT1)阻害薬、2型ナトリウム依存性グルコース輸送体(SGLT2)阻害薬等を含有する医薬組成物が挙げられる。 Known therapeutic agents for type II diabetes include insulin secretagogues (for example, sulfonylurea (SU) drugs), fast-acting insulin secretagogues (for example, phenylalanine derivative drugs), glucose absorption inhibitors (for example, α-glucosidase inhibitors) (ΑGI drug)), insulin sensitizers (for example, biguanide drugs (BG drugs), thiazolidine derivatives (TZD drugs)), insulin preparations, peptidyl peptidase IV (DPP-IV) inhibitors, GLP-1 receptors Examples include pharmaceutical compositions containing agonists, type 1 sodium-dependent glucose transporter (SGLT1) inhibitors, type 2 sodium-dependent glucose transporter (SGLT2) inhibitors, and the like.
 本発明の医薬組成物と他の薬剤とを組み合わせて用いる場合、投与時期は限定されず、投与対象に対し、同時に投与してもよいし、時間差をおいて投与してもよい。さらに、本発明の医薬組成物と該他の薬剤とは、それぞれの活性成分を含む複数の製剤として投与されてもよいし、両方の活性成分を含む単一の製剤として投与されてもよい。 When the pharmaceutical composition of the present invention is used in combination with another drug, the timing of administration is not limited, and it may be administered simultaneously to the administration subject or may be administered with a time difference. Furthermore, the pharmaceutical composition of the present invention and the other drug may be administered as a plurality of preparations containing each active ingredient, or may be administered as a single preparation containing both active ingredients.
 以下に本発明の実施例を挙げて本発明をさらに詳しく説明するが、本発明はこれらにより限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples of the present invention, but the present invention is not limited thereto.
実施例1:オリゴヌクレオチド合成
 本発明に関連するオリゴヌクレオチドは、Tetrahedron Letters 22,1859-1862 (1981)、国際公開第2011/052436号等に記載される方法によって合成した。
Example 1 Oligonucleotide Synthesis Oligonucleotides related to the present invention were synthesized by a method described in Tetrahedron Letters 22, 1859-1862 (1981), International Publication No. 2011/052436, and the like.
 具体的には、式(a)で示されるLNAを含むオリゴヌクレオチドに関しては、株式会社ジーンデザインに合成委託した。
Figure JPOXMLDOC01-appb-C000007

(式中、Baseは5-メチルシトシン(C)、チミン(T)、アデニン(A)またはグアニン(G)である。)
Specifically, synthesis of the oligonucleotide containing LNA represented by the formula (a) was outsourced to Gene Design Co., Ltd.
Figure JPOXMLDOC01-appb-C000007

(In the formula, Base is 5-methylcytosine (C), thymine (T), adenine (A) or guanine (G).)
 式(b)で示されるアミドBNA(AmNA)を含むオリゴヌクレオチドに関しては、国際公開第2011/052436号に記載の方法を参照して合成した。
Figure JPOXMLDOC01-appb-C000008

(式中、Baseは、5-メチルシトシン(C)、チミン(T)、アデニン(A)またはグアニン(G)であり、Meはメチルである。)
The oligonucleotide containing amide BNA (AmNA) represented by the formula (b) was synthesized with reference to the method described in International Publication No. 2011/052436.
Figure JPOXMLDOC01-appb-C000008

(In the formula, Base is 5-methylcytosine (C), thymine (T), adenine (A) or guanine (G), and Me is methyl.)
 式(a)で示されるLNA、式(b)で示されるアミドBNA(AmNA)を含有する10mer~19merのオリゴヌクレオチドは、核酸自動合成機(nS-8型、(株)大日本精機製)を用いて、0.2μmolスケールで合成した。鎖長の伸長は標準的なホスホロアミダイトプロトコール(固相担体:CPGレジン、硫化はDDT(3H-1,2-Benzodithiole-3-one, 1,1-dioxide)等を使用)にて実施し、末端の5´位の水酸基がDMTr(ジメトキシトリチル)基で保護され、かつ3´位が固相に担持されたオリゴヌクレオチドを得た。続いて、酸処理により、DMTr基を除去した後、塩基処理することにより、目的物を固相担体から切り出した。希酸にて中和後、溶媒を留去し、得られた粗生成物をゲルろ過カラムクロマト、逆相HPLCにて精製することにより目的物を得た。
 また、本発明のNegative Control(NC)として、ACSL1と5塩基以上のミスマッチを持つ配列として、表1のように設計した。表1の配列中、大文字は式(a)で示されるLNAを表す。小文字はDNAを表す。ヌクレオシド間の結合は、オリゴヌクレオチド全体を通してホスホロチオエート(P=S)である。
The 10mer to 19mer oligonucleotide containing the LNA represented by the formula (a) and the amide BNA (AmNA) represented by the formula (b) is an automatic nucleic acid synthesizer (nS-8 type, manufactured by Dainippon Seiki Co., Ltd.) Was synthesized on a 0.2 μmol scale. Chain length extension is performed using a standard phosphoramidite protocol (solid phase carrier: CPG resin, sulfurization using DDT (3H-1,2-Benzodithiole-3-one, 1,1-dioxide), etc.). Thus, an oligonucleotide in which the terminal hydroxyl group at the 5′-position was protected with a DMTr (dimethoxytrityl) group and the 3′-position was supported on a solid phase was obtained. Subsequently, the DMTr group was removed by acid treatment, followed by base treatment to cut out the target product from the solid phase carrier. After neutralization with dilute acid, the solvent was distilled off, and the resulting crude product was purified by gel filtration column chromatography and reverse phase HPLC to obtain the desired product.
In addition, as a negative control (NC) of the present invention, a sequence having a mismatch of 5 bases or more with ACSL1 was designed as shown in Table 1. In the sequences of Table 1, uppercase letters represent LNAs represented by formula (a). Lower case letters represent DNA. The linkage between nucleosides is phosphorothioate (P = S) throughout the oligonucleotide.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
実施例2:ヒトアンチセンスオリゴヌクレオチド配列
 アンチセンスオリゴヌクレオチド(AON)を、ヒトACSL1(GenBank:NM_001995、配列番号1)を標的とするよう設計した。オリゴヌクレオチド配列を表2~6に示す。
 表2~5の配列中、大文字は式(a)で示されるLNAを表す。小文字はDNAを表す。ヌクレオシド間の結合は、オリゴヌクレオチド全体を通してホスホロチオエート(P=S)である。
Example 2 Human Antisense Oligonucleotide Sequence Antisense oligonucleotide (AON) was designed to target human ACSL1 (GenBank: NM_001995, SEQ ID NO: 1). The oligonucleotide sequences are shown in Tables 2-6.
In the sequences of Tables 2 to 5, capital letters represent LNA represented by the formula (a). Lower case letters represent DNA. The linkage between nucleosides is phosphorothioate (P = S) throughout the oligonucleotide.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 表6の配列中、大文字は式(b)で示されるアミドBNA(AmNA)を表す。小文字はDNAを表す。ヌクレオシド間の結合は、オリゴヌクレオチド全体を通してホスホロチオエート(P=S)である。 In the sequences in Table 6, uppercase letters represent amide BNA (AmNA) represented by formula (b). Lower case letters represent DNA. The linkage between nucleosides is phosphorothioate (P = S) throughout the oligonucleotide.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014

実施例3:マウスアンチセンスオリゴヌクレオチド配列
 アンチセンスオリゴヌクレオチド(AON)を、マウスAcsl1(GenBank:NM_007981、配列番号:3)を標的とするよう設計した。オリゴヌクレオチド配列を表7~12に示す。
 表7~11の配列中、大文字は式(a)で示されるLNAを表す。小文字はDNAを表す。ヌクレオシド間の結合は、オリゴヌクレオチド全体を通してホスホロチオエート(P=S)である。
Example 3 Mouse Antisense Oligonucleotide Sequence Antisense oligonucleotide (AON) was designed to target mouse Acsl1 (GenBank: NM_007981, SEQ ID NO: 3). Oligonucleotide sequences are shown in Tables 7-12.
In the sequences of Tables 7 to 11, capital letters represent LNA represented by the formula (a). Lower case letters represent DNA. The linkage between nucleosides is phosphorothioate (P = S) throughout the oligonucleotide.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
 表12の配列中、大文字は式(b)で示されるアミドBNA(AmNA)を表す。小文字はDNAを表す。ヌクレオシド間の結合は、オリゴヌクレオチド全体を通してホスホロチオエート(P=S)である。 Sequence table 12 and the upper case letters represent the amide BNA (AmNA) represented by the formula (b). Lower case letters represent DNA. Internucleoside linkages are phosphorothioate (P = S) throughout the oligonucleotide.
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
実施例4:インビトロモデル 細胞培養
 細胞を、以下に記載される適当な培地で培養し、37℃、95~98%湿度および5%
COで維持した。
 HepG2:ヒト肝ガン由来細胞株HepG2は、DMEM High glucose(Sigma)+10%ウシ胎児血清(FBS)+Antibiotic Antimycotic Solution(10mL/L)で培養した。
 HLE:ヒト肝ガン由来細胞株HLEは、DMEM Low Glucose(Sigma)+10%ウシ胎児血清(FBS)+Penicillin(100units/mL)+Streptomycin(100ug/mL)で培養した。
 Hepa1c1c7:マウス肝ガン由来細胞株Hepa1c1c7は、α-MEM(Gibco)+10% FBS+Antibiotic Antimycotic Solution(10mL/L)で培養した。
Example 4: In vitro model Cell culture Cells are cultured in a suitable medium as described below, 37 ° C, 95-98% humidity and 5%
Maintained with CO 2 .
HepG2: The human hepatoma-derived cell line HepG2 was cultured in DMEM High glucose (Sigma) + 10% fetal bovine serum (FBS) + Antibiotic Anticolytic Solution (10 mL / L).
HLE: Human hepatoma-derived cell line HLE was cultured in DMEM Low Glucose (Sigma) + 10% fetal bovine serum (FBS) + Penicillin (100 units / mL) + Streptomycin (100 ug / mL).
Hepa1c1c7: The mouse liver cancer-derived cell line Hepa1c1c7 was cultured in α-MEM (Gibco) + 10% FBS + Antibiotic Anticolytic Solution (10 mL / L).
実施例5:ACSL1に対するアンチセンスオリゴヌクレオチドの評価
(1)mRNA発現量変化による評価
 本実施例では、ヒトまたはマウスのACSL1の塩基配列をもとに設計したアンチセンスオリゴヌクレオチドの有効性を実証した。
 実施例2および3記載の通り、アンチセンスオリゴヌクレオチドを設計し、製造し、ヒトHepG2細胞およびマウスHepa1c1c7細胞でノックダウン実験を行った。
 作製したアンチセンスオリゴヌクレオチドおよびNegative Control(NC、配列番号5)を用いて、ヒトHepG2細胞およびマウスHepa1c1c7細胞でのノックダウン実験を行った。ヒトHepG2細胞において、アンチセンスオリゴヌクレオチドはLipofectamine LTX試薬(invitrogen)を用いて細胞導入し、細胞培養液にアンチセンスオリゴヌクレオチドの最終濃度5nMまたは20nMとなるように添加した。マウスHepa1c1c7細胞においては、Lipofectamine RNAiMAX試薬(invitrogen)を用いて細胞導入し、細胞培養液にアンチセンスオリゴヌクレオチドの最終濃度が20nMとなるように添加した。導入24時間後にFastlane(QIAGEN)にて細胞を回収し定量的PCRを行った。内在性コントロールとしてGAPDHを使用した。
 自然取り込みによる導入実験では、実施例4に記載した細胞において、アンチセンスオリゴヌクレオチドは試薬を用いずに細胞導入し、細胞培養液にアンチセンスの最終濃度5μMとなるように添加した。ヒトHLE細胞およびマウスHepa1c1c7細胞において、導入120時間後にFastlane(QIAGEN)にて細胞を回収し定量的PCRを行った。内在性コントロールとしてGAPDHを使用した。
Example 5: Evaluation of antisense oligonucleotides against ACSL1 (1) Evaluation by changes in mRNA expression level In this example, the effectiveness of antisense oligonucleotides designed based on the base sequence of human or mouse ACSL1 was demonstrated. .
Antisense oligonucleotides were designed and produced as described in Examples 2 and 3, and knockdown experiments were performed on human HepG2 cells and mouse Hepa1c1c7 cells.
Using the prepared antisense oligonucleotide and Negative Control (NC, SEQ ID NO: 5), knockdown experiments were conducted in human HepG2 cells and mouse Hepa1c1c7 cells. In human HepG2 cells, antisense oligonucleotides were introduced into cells using Lipofectamine LTX reagent (invitrogen) and added to the cell culture solution to a final concentration of antisense oligonucleotides of 5 nM or 20 nM. In mouse Hepa1c1c7 cells, cells were introduced using Lipofectamine RNAiMAX reagent (invitrogen) and added to the cell culture so that the final concentration of the antisense oligonucleotide was 20 nM. 24 hours after the introduction, the cells were collected with Fastlane (QIAGEN) and subjected to quantitative PCR. GAPDH was used as an endogenous control.
In the introduction experiment by natural uptake, in the cells described in Example 4, the antisense oligonucleotide was introduced into the cell culture solution without using a reagent, and added to the cell culture solution so that the final concentration of antisense was 5 μM. In human HLE cells and mouse Hepa1c1c7 cells, cells were collected 120 hours after introduction with Fastlane (QIAGEN) and subjected to quantitative PCR. GAPDH was used as an endogenous control.
 ヒトACSL1の発現量を測定するために使用したプライマー配列は、
Fwプライマー:GCAGCGGCATCATCAGAAAC(配列番号157);
Rvプライマー:TGTCACCATCAGCCGGACTC(配列番号158)
を用い、
ヒトGAPDHの発現量を測定するために使用したプライマー配列は、
Fwプライマー:GCACCGTCAAGGCTGAGAAC(配列番号159);
Rvプライマー:TGGTGAAGACGCCAGTGGA(配列番号160)
を用いた。
 マウスAcsl1の発現量を測定するために使用したプライマー配列は、
Fwプライマー:AGGTGCTTCAGCCCACCATC(配列番号161);
Rvプライマー:AAAGTCCAACAGCCATCGCTTC(配列番号162)
を用い、
マウスGapdhの発現量を測定するために使用したプライマー配列は、
Fwプライマー:TGTGTCCGTCGTGGATCTGA(配列番号163);
Rvプライマー:TTGCTGTTGAAGTCGCAGGAG(配列番号164)
を用いた。
The primer sequence used to measure the expression level of human ACSL1 is
Fw primer: GCAGCGGGCATCATCAGAAAC (SEQ ID NO: 157);
Rv primer: TGTCCATCATAGCCCGACTC (SEQ ID NO: 158)
Use
The primer sequence used to measure the expression level of human GAPDH is:
Fw primer: GCACCGTCAAGGCTGGAAC (SEQ ID NO: 159);
Rv primer: TGGTGAAGACGCCAGTGGA (SEQ ID NO: 160)
Was used.
The primer sequence used to measure the expression level of mouse Acsl1 is:
Fw primer: AGGTGCTTCAGCCCACATC (SEQ ID NO: 161);
Rv primer: AAAGTCCAACAGCCATCGCTTC (SEQ ID NO: 162)
Use
The primer sequence used to measure the expression level of mouse Gapdh is:
Fw primer: TGTGTCCGTCGTGGATCTGA (SEQ ID NO: 163);
Rv primer: TTGCTGTTTGAAGTCGCAGAG (SEQ ID NO: 164)
Was used.
 結果を表13、14、15、16および図1に示す。表13には、Lipofectamine RNAiMAX試薬を用いて細胞導入したアンチセンスオリゴヌクレオチドに関し、GAPDHで正規化したマウスHepa1c1c7細胞におけるACSL1のmRNA減少量を、未処理細胞に対する割合をノックダウン効率として示した。表13中のNCはNegative Control、N.D.は、ACSL1のmRNA減少量が検出限界以下である、あるいはmRNA量を増加させており、ACSL1を抑制していないことを意味する。表14には、Lipofectamine LTX試薬を用いて細胞導入したアンチセンスオリゴヌクレオチドに関し、GAPDHで正規化したヒトHepG2細胞におけるACSL1のmRNA減少量を、未処理細胞に対する割合をノックダウン効率として示した。表14中のNCはNegative Controlを意味する。表15には、試薬を用いずに細胞導入したアンチセンスオリゴヌクレオチドに関し、GAPDHで正規化したマウスHepa1c1c7細胞におけるACSL1のmRNA減少量を、未処理細胞に対する割合をノックダウン効率として示した。表16には、試薬を用いずに細胞導入したアンチセンスオリゴヌクレオチドに関し、GAPDHで正規化したヒトHLE細胞におけるACSL1のmRNA減少量を、未処理細胞に対する割合をノックダウン効率として示した。図1には、ヒトHepG2細胞におけるLipofectamine LTX試薬を用いて細胞導入したアンチセンスオリゴヌクレオチド(5nMおよび20nM)のノックダウン効率を示した。
 この結果、本発明アンチセンスオリゴヌクレオチドは、他のアンチセンスオリゴヌクレオチドと比較して、HepG2細胞、HLE細胞および/またはHepa1c1c7細胞に対して、優れたノックダウン活性を示した。
The results are shown in Tables 13, 14, 15, 16 and FIG. Table 13 shows the amount of decrease in ACSL1 mRNA in mouse Hepa1c1c7 cells normalized with GAPDH for antisense oligonucleotides introduced into cells using Lipofectamine RNAiMAX reagent, as a percentage of untreated cells as knockdown efficiency. NC in Table 13 is the value of Negative Control, N.I. D. Means that the amount of decrease in mRNA of ACSL1 is below the detection limit, or the amount of mRNA is increased, and ACSL1 is not suppressed. Table 14 shows the amount of ACSL1 mRNA decrease in human HepG2 cells normalized with GAPDH as knockdown efficiency for antisense oligonucleotides introduced into cells using Lipofectamine LTX reagent. “NC” in Table 14 means “Negative Control”. Table 15 shows the amount of ACSL1 mRNA decrease in mouse Hepa1c1c7 cells normalized with GAPDH and the ratio of untreated cells as knockdown efficiency for antisense oligonucleotides introduced into cells without using reagents. Table 16 shows the amount of decrease in ACSL1 mRNA in human HLE cells normalized with GAPDH and the ratio of untreated cells as knockdown efficiency for antisense oligonucleotides introduced into cells without using reagents. FIG. 1 shows the knockdown efficiency of antisense oligonucleotides (5 nM and 20 nM) introduced into cells using Lipofectamine LTX reagent in human HepG2 cells.
As a result, the antisense oligonucleotide of the present invention showed excellent knockdown activity against HepG2 cells, HLE cells and / or Hepa1c1c7 cells, as compared with other antisense oligonucleotides.
 Lipofectamine LTX試薬あるいはLipofectamine RNAiMAX試薬を用いて細胞導入したアンチセンスオリゴヌクレオチドに関し、HepG2細胞とHepa1c1c7細胞の両細胞において、共に未処理細胞に対して75%以上のノックダウン効率を示した配列をヒトとマウスの異種間で交差性を有する配列とすると、アンチセンスオリゴヌクレオチド(AON)番号1、4、5、6、15、17、18、42、43、50、51、55、56、57、58、62、63、64、65、74、75、76、77、114、115、116、117は種間交差性を有することを見出した。なおアンチセンスオリゴヌクレオチド(AON)番号42と50、43と51、55と62、56と63、57と64、58と65、74と114、75と115、76と116、77と117はそれぞれヒトとマウスのACSL1遺伝子の同部分に対する配列として設計している。ヒトとマウスにおいて同一の配列であっても、共にノックダウン活性を示すとは限らないことから、共にノックダウン活性を示した上記配列は、創薬上非常に有用である。 Regarding antisense oligonucleotides introduced into cells using Lipofectamine LTX reagent or Lipofectamine RNAiMAX reagent, both hepG2 cells and Hepa1c1c7 cells showed a sequence that showed a knockdown efficiency of 75% or more with respect to untreated cells. Antisense oligonucleotide (AON) numbers 1, 4, 5, 6, 15, 17, 18, 42, 43, 50, 51, 55, 56, 57, 58 are defined as sequences having cross-reactivity between mouse different species. , 62, 63, 64, 65, 74, 75, 76, 77, 114, 115, 116, 117 were found to have interspecies crossing properties. Antisense oligonucleotide (AON) numbers 42 and 50, 43 and 51, 55 and 62, 56 and 63, 57 and 64, 58 and 65, 74 and 114, 75 and 115, 76 and 116, 77 and 117, respectively It is designed as a sequence for the same part of human and mouse ACSL1 gene. Even if the sequences are the same in human and mouse, both do not necessarily show knockdown activity, and thus the above sequences showing both knockdown activities are very useful for drug discovery.
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021





Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
















Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000024
(2)他のACSLファミリーとの交差性評価
 本実施例では、本発明のアンチセンスオリゴヌクレオチドのノックダウン効果において、ACSL1以外のACSLファミリーであるACSL3およびACSL5との交差性を評価した。
 (1)記載の方法により回収したサンプルに対して定量的PCRを行った。内在性コントロールとしてGAPDHを使用した。
 ヒトACSL3の発現量を測定するために使用したプライマー配列は、
Fwプライマー:ATACGGGCTCACTGAATCTGCTG(配列番号165);
Rvプライマー:AGCAAACTAATGGTGCTCCCACTC(配列番号166)
を用い、
ヒトACSL5の発現量を測定するために使用したプライマー配列は、
Fwプライマー:GGAACTCTGAAGATCATCGACCGTA(配列番号167);
Rvプライマー:CTGTGTCAGGAACCACCACTCCTA(配列番号168)
を用いた。
 マウスAcsl3の発現量を測定するために使用したプライマー配列は、
Fwプライマー:GCAACAACGCAGCGATTCA(配列番号169);
Rvプライマー:AGCAAACTAATGGTGCTCCCACTC(配列番号170)
を用い、
マウスAcsl5の発現量を測定するために使用したプライマー配列は、
Fwプライマー:CATTCGGCGGGACAGTTTG(配列番号171);
Rvプライマー:ATCCCATTGCAGCCCTGAAG(配列番号172)
を用いた。
(2) Crossability evaluation with other ACSL families In this example, the crosslinkability with ACSL3 and ACSL5 which are ACSL families other than ACSL1 was evaluated in the knockdown effect of the antisense oligonucleotide of the present invention.
(1) Quantitative PCR was performed on the sample collected by the method described. GAPDH was used as an endogenous control.
The primer sequence used to measure the expression level of human ACSL3 is:
Fw primer: ATACGGGGCTCACTGAATCTGCTG (SEQ ID NO: 165);
Rv primer: AGCAAACTAATGGTGCTCCCACTC (SEQ ID NO: 166)
Use
The primer sequence used to measure the expression level of human ACSL5 is
Fw primer: GGAACTCTGAAGATCATCGACCGTA (SEQ ID NO: 167);
Rv primer: CGTTGTCAGGAACCACCACTCCTA (SEQ ID NO: 168)
Was used.
The primer sequence used to measure the expression level of mouse Acsl3 is:
Fw primer: GCAACAACGCAGCGATTCA (SEQ ID NO: 169);
Rv primer: AGCAAACTAATGGTGCCTCCACTC (SEQ ID NO: 170)
Use
The primer sequence used to measure the expression level of mouse Acsl5 is:
Fw primer: CATTCGGCGGGACAGTTTG (SEQ ID NO: 171);
Rv primer: ATCCCATTGCCAGCCCCTGAAG (SEQ ID NO: 172)
Was used.
 結果を表17および18に示す。表17には、GAPDHで正規化したマウスHepa1c1c7細胞におけるACSL3またはACSL5のmRNA減少量を、未処理細胞に対する割合をノックダウン効率として示した。表18には、GAPDHで正規化したヒトHepG2細胞におけるACSL3またはACSL5のmRNA減少量を、未処理細胞に対する割合をノックダウン効率として示した。表17または18中のN.D.は、ACSL3またはACSL5のmRNA減少量が検出限界以下である、あるいはmRNA量を増加させており、ACSL3またはACSL5を抑制していないことを意味する。
 この結果、本発明のアンチセンスオリゴヌクレオチドは、ACSL1を抑制するが、ACSL3およびACSL5を抑制しないことが確認された。
The results are shown in Tables 17 and 18. Table 17 shows the amount of decrease in ACSL3 or ACSL5 mRNA in mouse Hepa1c1c7 cells normalized with GAPDH as a percentage of untreated cells as knockdown efficiency. Table 18 shows the amount of decrease in ACSL3 or ACSL5 mRNA in human HepG2 cells normalized with GAPDH as a percentage of untreated cells as knockdown efficiency. N. in Table 17 or 18. D. Means that the amount of mRNA decrease in ACSL3 or ACSL5 is below the detection limit, or the amount of mRNA is increased, and ACSL3 or ACSL5 is not suppressed.
As a result, it was confirmed that the antisense oligonucleotide of the present invention suppresses ACSL1, but does not suppress ACSL3 and ACSL5.
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000026
(3)タンパク質発現量変化による評価
 本実施例では、本発明のアンチセンスオリゴヌクレオチドおよびnegative control(配列番号5)に対して、HepG2細胞におけるACSL1タンパク質の発現量変化によるノックダウン活性評価を行った。また、本発明のアンチセンスオリゴヌクレオチドおよびNegative Control(配列番号5)に対して、HepG2細胞におけるACSLファミリー特異性の評価を行った。
 (1)記載の方法により細胞にアンチセンスオリゴヌクレオチドをトランスフェクションし、48時間後にRIPA buffer(Sigma)にて細胞を回収し、ウェスタンブロッティング法にてタンパク質の検出を行った。コントロールとしてβ-actinの検出を行った。
 ACSL1の1次抗体はrabbit anti ACSL1 antibody(Cell Signaling)、2次抗体はECLTM Peroxidase-labeled anti-rabbit antibody (GE)を用いた。
 ACSL3の1次抗体はrabbit anti ACSL3 antibody (Proteintech)、2次抗体はECLTM Peroxidase-labeled anti-rabbit antibodyを用いた。
 ACSL5の1次抗体はrabbit anti ACSL5 antibody (Proteintech)、2次抗体はECLTM Peroxidase-labeled anti-rabbit antibodyを用いた。
 β-actinの1次抗体はmouse anti β-actin antibody(Sigma)、2次抗体はECLTM Peroxidase-labeled anti-mouse antibody (GE)を用いた。
(3) Evaluation by change in protein expression level In this example, knockdown activity evaluation by change in expression level of ACSL1 protein in HepG2 cells was performed on the antisense oligonucleotide and negative control (SEQ ID NO: 5) of the present invention. . Moreover, the ACSL family specificity in HepG2 cells was evaluated with respect to the antisense oligonucleotide of the present invention and the negative control (SEQ ID NO: 5).
(1) Cells were transfected with antisense oligonucleotides according to the method described, and after 48 hours, the cells were recovered with RIPA buffer (Sigma), and proteins were detected by Western blotting. Β-actin was detected as a control.
The primary antibody of ACSL1 was rabbit anti-ACSL1 antibody (Cell Signaling), and the secondary antibody was ECL Peroxidase-labeled anti-rabbit antibody (GE).
The primary antibody for ACSL3 was rabbit anti-ACSL3 antibody (Proteintech), and the secondary antibody was ECL Peroxidase-labeled anti-rabbit antibody.
The primary antibody for ACSL5 was rabbit anti-ACSL5 antibody (Proteintech), and the secondary antibody was ECL Peroxidase-labeled anti-rabbit antibody.
The primary antibody of β-actin was mouse anti β-actin antibody (Sigma), and the secondary antibody was ECL Peroxidase-labeled anti-mouse antibody (GE).
 結果を図2、図3に示す。図2には、ACSL1に対するノックダウン効果を示した。この結果、AON番号1、4、5、6、43、55、56、57は最終濃度5nMで、タンパク質レベルでもノックダウン効果を示すことを見出した。図3には、ACSL3、ACSL5に対する交差性の評価結果を示した。この結果、本発明のアンチセンスオリゴヌクレオチドは、タンパク質レベルでも、ACSL1を抑制するが、ACSL3およびACSL5は抑制しないことを見出した。 The results are shown in FIGS. FIG. 2 shows the knockdown effect on ACSL1. As a result, AON Nos. 1, 4, 5, 6, 43, 55, 56 and 57 were found to have a knockdown effect even at the protein level at a final concentration of 5 nM. FIG. 3 shows the evaluation results of the reactivity against ACSL3, ACSL5. As a result, it was found that the antisense oligonucleotide of the present invention suppresses ACSL1 even at the protein level, but does not suppress ACSL3 and ACSL5.
実施例6:アンチセンスオリゴヌクレオチド単回投与時のin vivo活性評価
(1)mRNA発現量変化による評価
 in vitroにおけるmRNA発現量変化による評価にて選出されたAON番号194、196、197、198、199、201、203に対して、マウス肝臓におけるACSL1のmRNA発現量変化によるノックダウン活性評価を行った。C57BL/6J(オス10週齢, 日本クレア)に、生理食塩水(大塚生食注、大塚製薬工場)に溶解したアンチセンスオリゴヌクレオチド溶液、約0.2mLを、マウス個体あたり投与量が10mg/kg、20mg/kg、および40mg/kgとなるように皮下投与した。投与後3日、7日、および14日後にソムノペンチル麻酔下で全血約0.5mLおよび肝臓組織を採取した。肝臓からのRNA抽出はRNeasy 96 Universal Tissue Kit(Qiagen社製)を用いてメーカー推奨プロトコル通りに行った。得られたRNAのうち1000ngを、SuperScript III First-Strand Synthesis SuperMix for qRT-PCR (Life Science社製)を用いて、標準プロトコルに準じて逆転写を行うことでcDNAを得た。SYBR Premix Ex Taq II(タカラバイオ社製)を用いて定量的PCRを行った。内在性コントロールとしてGAPDHを使用し、プライマーはin vitro実験と同一のものを用いた。結果を表19~21に示す。表中のN/Aは、ACSL1のmRNAを測定していないことを意味する。GAPDHで正規化したACSL1のmRNA量について、未処理細胞に対する割合を示した。
 この結果、本発明のアンチセンスオリゴヌクレオチドは、in vivoにおいても濃度依存的なノックダウン活性を示すことが確認できた。
Example 6: Evaluation of in vivo activity at the time of single administration of antisense oligonucleotide (1) Evaluation by change in mRNA expression level AON Nos. 194, 196, 197, 198 selected by evaluation in mRNA expression level change in vitro For 199, 201, and 203, knockdown activity was evaluated by changing the mRNA expression level of ACSL1 in the mouse liver. C57BL / 6J (male, 10 weeks old, Claire, Japan), antisense oligonucleotide solution dissolved in physiological saline (Otsuka raw food injection, Otsuka Pharmaceutical Factory), about 0.2 mL, the dose per mouse is 10 mg / kg , 20 mg / kg, and 40 mg / kg. Approximately 0.5 mL of whole blood and liver tissue were collected under somnopentyl anesthesia 3 days, 7 days, and 14 days after administration. RNA extraction from the liver was performed according to the manufacturer's recommended protocol using RNeasy 96 Universal Tissue Kit (Qiagen). 1000 ng of the obtained RNA was reverse-transcribed according to a standard protocol using SuperScript III First-Strand Synthesis SuperMix for qRT-PCR (manufactured by Life Science) to obtain cDNA. Quantitative PCR was performed using SYBR Premix Ex Taq II (manufactured by Takara Bio Inc.). GAPDH was used as an endogenous control, and the same primers as those used in the in vitro experiment were used. The results are shown in Tables 19-21. N / A in the table means that ACSL1 mRNA is not measured. The ratio of ACSL1 mRNA normalized by GAPDH to untreated cells is shown.
As a result, it was confirmed that the antisense oligonucleotide of the present invention exhibited a concentration-dependent knockdown activity even in vivo.
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000029
(2)タンパク質発現量変化による評価
 アンチセンスオリゴヌクレオチド(AON番号196、197または203)を投与したマウス肝臓組織を、5倍量のRIPA Buffer(SIGMA社製)中で破砕し、20,000g、20分遠心分離して上清を得た。上清に含有されるタンパク質量をBCA Asssay Kit(Pierce社製)を用いて定量し、タンパク質0.01mgを電気泳動してWestern Blottingに供した。なおWestern Blottingはin vitro実験と同様に行った。結果を図4、5に示す。
 この結果、本発明のアンチセンスオリゴヌクレオチドはタンパク質レベルでもACSL1をノックダウン可能であることを見出した。
(2) Evaluation by change in protein expression level Mouse liver tissue administered with antisense oligonucleotide (AON No. 196, 197 or 203) was crushed in a 5-fold amount of RIPA Buffer (manufactured by SIGMA), and 20,000 g, The supernatant was obtained by centrifugation for 20 minutes. The amount of protein contained in the supernatant was quantified using a BCA Assay Kit (Pierce), 0.01 mg of the protein was electrophoresed and subjected to Western blotting. In addition, Western Blotting was performed in the same manner as the in vitro experiment. The results are shown in FIGS.
As a result, it was found that the antisense oligonucleotide of the present invention can knock down ACSL1 even at the protein level.
実施例7:アンチセンスオリゴヌクレオチド反復投与時のin vivo活性評価
 本実施例では、in vitroにおけるmRNA発現量変化による評価にて選出されたAON番号203を反復投与した際の、マウス肝臓におけるACSL1のmRNA発現量変化によるノックダウン活性評価を行った。C57BL/6J(オス7週齢, 日本クレア)に4週間、高脂脂肪食(60%kcal脂肪:TestDiet社製)を4週間与えることで食餌誘導性肥満(DIO)マウスを作製した。DIOマウスへ、生理食塩水(大塚生食注、大塚製薬工場)に溶解したAON番号203のアンチセンスオリゴヌクレオチド溶液、約0.2mLを毎週1回皮下投与した。用量は、マウス個体あたり投与量が5mg/kg/週、10mg/kg/週、および初回投与40mg/kg、維持投与10mg/kg/週となるようにし、8週間投与を継続した。初回投与後14日、28日、および56日で一部の個体より肝臓組織を採取し、単回投与実験時と同様に、mRNAとタンパク質量の発現変化について調べた。mRNAの発現変化についての結果を表に示す。この結果、AON番号203は、in vivoで反復投与した際にも濃度依存的なノックダウン活性を示すことが確認できた。タンパク質量の発現変化についての結果を図6に示す。
 この結果、本発明のアンチセンスオリゴヌクレオチドは、in vivoで反復投与した際にも、タンパク質レベルでACSL1をノックダウン可能であることが確認できた。またmRNAとタンパク質のノックダウン効率が概ね一致することを見出した。
Example 7: Evaluation of in vivo activity upon repeated administration of antisense oligonucleotide In this example, ACSL1 in mouse liver was repeatedly administered with AON No. 203 selected by evaluation based on changes in mRNA expression level in vitro. The knockdown activity was evaluated by changing the mRNA expression level. Diet-induced obese (DIO) mice were prepared by feeding C57BL / 6J (male 7-week-old, Claire, Japan) for 4 weeks and a high-fat fat diet (60% kcal fat: manufactured by TestDiet) for 4 weeks. About 0.2 mL of an antisense oligonucleotide solution of AON No. 203 dissolved in physiological saline (Otsuka raw food injection, Otsuka Pharmaceutical Factory) was subcutaneously administered once weekly to DIO mice. The dose was 5 mg / kg / week, 10 mg / kg / week, and 40 mg / kg of the initial administration and 10 mg / kg / week of the maintenance administration per mouse, and the administration was continued for 8 weeks. Liver tissues were collected from some individuals on the 14th, 28th, and 56th days after the first administration, and the changes in the expression of mRNA and protein were examined as in the single administration experiment. The results of mRNA expression changes are shown in the table. As a result, it was confirmed that AON No. 203 exhibited a concentration-dependent knockdown activity even after repeated administration in vivo. The result about the expression change of protein amount is shown in FIG.
As a result, it was confirmed that the antisense oligonucleotide of the present invention can knock down ACSL1 at the protein level even when it is repeatedly administered in vivo. Moreover, it discovered that knockdown efficiency of mRNA and protein was in general agreement.
実施例8:アンチセンスオリゴヌクレオチド反復投与時の体重増加抑制効果
 AON番号203を反復投与した際のマウス体重増加に及ぼす効果を評価した。C57BL/6J(オス7週齢, 日本クレア)に4週間、高脂脂肪食(60%kcal脂肪:TestDiet社製)を4週間与えることで食餌誘導性肥満(DIO)マウスを作製した。体重の平均値が同じになるように一群7~8匹に分け、生理食塩水(大塚生食注、大塚製薬工場)に溶解したAON番号203のアンチセンスオリゴヌクレオチド溶液、約0.2mLを毎週1回皮下投与した。用量は、マウス個体あたり投与量が5mg/kg/週、10mg/kg/週、および初回投与40mg/kg、維持投与10mg/kg/週となるようにし、8週間投与を継続し、体重と摂餌量を測定した。体重推移を図7に示す。生理食塩水投与群と比較して、AON番号203投与群はいずれも摂餌量に顕著な変化は見られなかったが、AON番号203を投与した群ではいずれも体重増加抑制が確認された。
 この結果から、肝臓中のACSL1発現を本発明のアンチセンスオリゴヌクレオチドで抑制することで、抗肥満効果が確認された。
Example 8: Weight gain inhibitory effect upon repeated administration of antisense oligonucleotide The effect on weight gain of mice upon repeated administration of AON No. 203 was evaluated. Diet-induced obese (DIO) mice were prepared by feeding C57BL / 6J (male 7-week-old, Claire, Japan) for 4 weeks and a high-fat fat diet (60% kcal fat: manufactured by TestDiet) for 4 weeks. Divide the group into 7 to 8 animals so that the average value of the body weight is the same. About 0.2 mL of antisense oligonucleotide solution of AON No. 203 dissolved in physiological saline (Otsuka raw food injection, Otsuka Pharmaceutical Factory) The ileum was administered subcutaneously. The dose per mouse is 5 mg / kg / week, 10 mg / kg / week, and 40 mg / kg for the initial dose and 10 mg / kg / week for the maintenance dose. The amount of food was measured. The weight transition is shown in FIG. Compared with the physiological saline administration group, no significant change in food intake was observed in any of the AON No. 203 administration groups, but weight gain suppression was confirmed in any of the groups administered with AON No. 203.
From this result, the anti-obesity effect was confirmed by suppressing ACSL1 expression in the liver with the antisense oligonucleotide of the present invention.
実施例9:アンチセンスオリゴヌクレオチド単回投与時の肝臓毒性評価
 AON番号194、198、199、201、203に対して、マウス肝臓における毒性評価を行った。具体的には、血漿中に含まれるグルタミン酸オキサロ酢酸トランスアミナーゼ(GOT)およびグルタミン酸ピルビン酸トランスアミナーゼ(GPT)を肝臓毒性のマーカーとして測定した。C57BL/6J(オス10週齢, 日本クレア)に、生理食塩水(大塚生食注、大塚製薬工場)に溶解したアンチセンスオリゴヌクレオチド溶液、約0.2mLを、マウス個体あたり投与量が10mg/kg、20mg/kgとなるように皮下投与し、投与後3日、7日、および14日後にソムノペンチル麻酔下で全血約0.5mLを採取し、直ちにヘパリン(味の素製薬社製)を最終濃度0.01U/μlとなるように添加した。得られた血漿中のGOTおよびGPTを、トランスアミナーゼC2キットワコー(和光純薬工業社製)を用い、添付のマニュアルに従って測定した。AON番号194、198、199、201、203を投与したマウス血中において、生理食塩水投与群と比べて有意なGOTおよびGPTの上昇は観察されなかった。
 この結果、本発明のアンチセンスオリゴヌクレオチドは肝臓毒性を示さないことが確認された。
Example 9: Liver toxicity evaluation after single administration of antisense oligonucleotide AON toxicity was evaluated in mouse liver for AON Nos. 194, 198, 199, 201, 203. Specifically, glutamate oxaloacetate transaminase (GOT) and glutamate pyruvate transaminase (GPT) contained in plasma were measured as markers of liver toxicity. C57BL / 6J (male, 10 weeks old, Claire, Japan), antisense oligonucleotide solution dissolved in physiological saline (Otsuka raw food injection, Otsuka Pharmaceutical Factory), about 0.2 mL, the dose per mouse is 10 mg / kg , 20 mg / kg subcutaneously, 3 days, 7 days, and 14 days after administration, about 0.5 mL of whole blood was collected under somnopentyl anesthesia, and heparin (manufactured by Ajinomoto Pharmaceutical Co., Inc.) was immediately added to a final concentration of 0. It added so that it might become 0.01 U / microliter. GOT and GPT in the obtained plasma were measured using a transaminase C2 kit Wako (manufactured by Wako Pure Chemical Industries, Ltd.) according to the attached manual. Significant increases in GOT and GPT were not observed in the blood of mice administered with AON Nos. 194, 198, 199, 201, 203 as compared to the saline administration group.
As a result, it was confirmed that the antisense oligonucleotide of the present invention does not exhibit liver toxicity.
 以上の実施例から明らかなように、本発明アンチセンスオリゴヌクレオチドはACSL1発現抑制活性を示す。従って、本発明化合物は肥満症、肥満関連疾患、糖尿病(特に、II型糖尿病)、シンドロームX、心臓血管障害または癌(乳癌、結腸癌、大腸癌、卵巣癌、肺癌等)の等の予防または治療のための医薬(体重管理用医薬も含む)として非常に有用である。 As is clear from the above examples, the antisense oligonucleotide of the present invention exhibits ACSL1 expression inhibitory activity. Therefore, the compound of the present invention can prevent or prevent obesity, obesity-related diseases, diabetes (particularly type II diabetes), syndrome X, cardiovascular disorder or cancer (breast cancer, colon cancer, colon cancer, ovarian cancer, lung cancer, etc.) or the like. It is very useful as a medicine for treatment (including a medicine for weight management).

Claims (11)

  1. ストリンジェントな条件で、配列番号1の95位~109位、176位~192位、467位~484位、940位~954位、1017位~1032位、1102位~1116位、1176位~1197位、1222位~1236位、1727位~1743位、1858位~1873位、1946位~1960位、2294位~2308位、2360位~2377位、2449位~2469位、2605位~2624位、2689位~2703位、2950位~2964位、3424位~3438位または3591位~3605位からなる配列にハイブリダイズ可能な配列を含む、アンチセンスオリゴヌクレオチド。 Under stringent conditions, positions 95 to 109, 176 to 192, 467 to 484, 940 to 954, 940 to 954, 1017 to 1032, 1102 to 1116, 1176 to 1197 of SEQ ID NO: 1. , 1222 to 1236, 1727 to 1743, 1858 to 1873, 1946 to 1960, 2294 to 2308, 2360 to 2377, 2449 to 2469, 2605 to 2624, An antisense oligonucleotide comprising a sequence hybridizable to a sequence consisting of positions 2689 to 2703, 2950 to 2964, 3424 to 3438, or 3591 to 3605.
  2. ACSL1の発現を抑制する、請求項1記載のアンチセンスオリゴヌクレオチド。 The antisense oligonucleotide according to claim 1, which suppresses the expression of ACSL1.
  3. 長さが13~19塩基である、請求項1または2記載のアンチセンスオリゴヌクレオチド。 The antisense oligonucleotide according to claim 1 or 2, which has a length of 13 to 19 bases.
  4. 4´位と2´位との間に架橋構造を有する糖修飾ヌクレオシドを1以上含有する、請求項1~3いずれかに記載のアンチセンスオリゴヌクレオチド。 The antisense oligonucleotide according to any one of claims 1 to 3, comprising at least one sugar-modified nucleoside having a cross-linked structure between the 4'-position and the 2'-position.
  5. 該架橋構造が、-CH-O-または-CO-NR-(Rは、水素原子またはアルキルである)である、請求項4記載のアンチセンスオリゴヌクレオチド。 The antisense oligonucleotide according to claim 4, wherein the bridge structure is -CH 2 -O- or -CO-NR 1- (R 1 is a hydrogen atom or alkyl).
  6. ヌクレオシド間の1もしくは複数の結合がホスホロチオエート結合である、請求項1~5いずれかに記載のアンチセンスオリゴヌクレオチド。 The antisense oligonucleotide according to any one of claims 1 to 5, wherein the one or more bonds between nucleosides are phosphorothioate bonds.
  7. 配列番号6~11、13~18、20~22、24~30、32、35~37、46、48、49、52~54、57~59、64~68もしくは70の配列、または、
    配列番号6~11、13~18、20~22、24~30、32、35~37、46、48、49、52~54、57~59、64~68もしくは70の配列において、1もしくは数個の塩基が欠失、置換もしくは挿入された配列
    を含む、請求項1~6いずれかに記載のアンチセンスオリゴヌクレオチド。
    SEQ ID NOs: 6-11, 13-18, 20-22, 24-30, 32, 35-37, 46, 48, 49, 52-54, 57-59, 64-68 or 70, or
    1 or number in the sequences of SEQ ID NOs: 6-11, 13-18, 20-22, 24-30, 32, 35-37, 46, 48, 49, 52-54, 57-59, 64-68 or 70 The antisense oligonucleotide according to any one of claims 1 to 6, comprising a sequence in which one base is deleted, substituted or inserted.
  8. 配列番号6~11、13~18、20~22、24~30、32、35~37、46、48、49、52~54、57~59、64~68もしくは70の配列、または、
    配列番号6~11、13~18、20~22、24~30、32、35~37、46、48、49、52~54、57~59、64~68もしくは70の配列において、1もしくは数個の塩基が欠失、置換、挿入もしくは付加された配列
    からなる、請求項7記載のアンチセンスオリゴヌクレオチド。
    SEQ ID NOs: 6-11, 13-18, 20-22, 24-30, 32, 35-37, 46, 48, 49, 52-54, 57-59, 64-68 or 70, or
    1 or number in the sequences of SEQ ID NOs: 6-11, 13-18, 20-22, 24-30, 32, 35-37, 46, 48, 49, 52-54, 57-59, 64-68 or 70 The antisense oligonucleotide according to claim 7, comprising a sequence in which one base is deleted, substituted, inserted or added.
  9. 請求項1~8いずれかに記載のアンチセンスオリゴヌクレオチドを含有する医薬組成物。 A pharmaceutical composition comprising the antisense oligonucleotide according to any one of claims 1 to 8.
  10. ACSL1が関連する疾患の予防または治療のために用いる、請求項9記載の医薬組成物。 ACSL1 is used for the prevention or treatment of diseases associated with, claim 9 pharmaceutical composition.
  11. 該疾患が、肥満症またはII型糖尿病である、請求項10記載の医薬組成物。 The disease is obesity or type II diabetes, claim 10 pharmaceutical composition.
PCT/JP2013/052997 2012-02-10 2013-02-08 Antisense oligonucleotide for acsl1 WO2013118857A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012026989A JP2015082971A (en) 2012-02-10 2012-02-10 Antisense oligonucleotide for acsl1
JP2012-026989 2012-02-10

Publications (1)

Publication Number Publication Date
WO2013118857A1 true WO2013118857A1 (en) 2013-08-15

Family

ID=48947612

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/052997 WO2013118857A1 (en) 2012-02-10 2013-02-08 Antisense oligonucleotide for acsl1

Country Status (3)

Country Link
JP (1) JP2015082971A (en)
TW (1) TW201336860A (en)
WO (1) WO2013118857A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021039879A1 (en) * 2019-08-27 2021-03-04 国立大学法人東海国立大学機構 Nucleic acid medicine for targeting gastric cancer molecule

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006506976A (en) * 2002-08-14 2006-03-02 ファルマシア・コーポレーション Antisense regulation of acyl-CoA synthetase 1 expression
WO2007117038A1 (en) * 2006-04-07 2007-10-18 Japanese Foundation For Cancer Research Prophylactic/therapeutic agent for cancer
WO2010079819A1 (en) * 2009-01-08 2010-07-15 塩野義製薬株式会社 Pharmaceutical composition for treating obesity or diabetes

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006506976A (en) * 2002-08-14 2006-03-02 ファルマシア・コーポレーション Antisense regulation of acyl-CoA synthetase 1 expression
WO2007117038A1 (en) * 2006-04-07 2007-10-18 Japanese Foundation For Cancer Research Prophylactic/therapeutic agent for cancer
WO2010079819A1 (en) * 2009-01-08 2010-07-15 塩野義製薬株式会社 Pharmaceutical composition for treating obesity or diabetes

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
IMANISHI, T. ET AL.: "Down-regulation of a gene-expression by an antisense BNA oligonucleotide", FOLIA PHARMACOL. JPN., vol. 120, 2002, pages 85 - 90 *
LI, L. 0. ET AL.: "Liver-specific loss of long chain acyl-CoA synthetase-1 decreases triacylglycerol synthesis and beta-oxidation and alters phospholipid fatty acid composition", J. BIOL. CHEM., vol. 284, no. 41, October 2009 (2009-10-01), pages 27816 - 27826 *
OBIKA, S.: "Tobu Kakyogata Kakusan no Iyaku eno Oyo", MEDICINE AND DRUG JOURNAL, vol. 48, no. 1, January 2012 (2012-01-01), pages 65 - 69 *
REINARTZ, A. ET AL.: "Lipid-induced up- regulation of human acyl-CoA synthetase 5 promotes hepatocellular apoptosis", BIOCHIM. BIOPHYS. ACTA, vol. 1801, 2010, pages 1025 - 1035 *
SOUPENE, E. ET AL.: "Mammalian long- chain acyl-CoA synthetases", EXP. BIOL. MED., vol. 233, 2008, pages 507 - 521 *
YAO, H. ET AL.: "Long chain acyl-CoA synthetase 3-mediated phosphatidylcholine synthesis is required for assembly of very low density lipoproteins in human hepatoma Huh7 cells", J. BIOL. CHEM., vol. 283, no. 2, January 2008 (2008-01-01), pages 849 - 854, XP008159705, DOI: doi:10.1074/jbc.M706160200 *

Also Published As

Publication number Publication date
TW201336860A (en) 2013-09-16
JP2015082971A (en) 2015-04-30

Similar Documents

Publication Publication Date Title
JP7416852B2 (en) Antisense oligonucleotides for regulating HTRA1 expression
JP7095893B2 (en) Antisense oligonucleic acid
US11279929B2 (en) Oligonucleotides for modulating Tau expression
KR20200104347A (en) Gapmer oligonucleotides containing phosphorodithioate internucleoside linkages
US11485975B2 (en) Oligonucleotides for modulating TMEM106B expression
US20210095277A1 (en) Antisense oligonucleotides targeting srebp1
CN110691849A (en) Antisense oligonucleotides for modulating expression of HTRA1
WO2013118857A1 (en) Antisense oligonucleotide for acsl1
WO2022211095A1 (en) Antisense oligonucleotide of fgfr3
WO2015020194A1 (en) Antisense oligonucleotide against acsl1
WO2021177418A1 (en) Antisense oligonucleotide of calm2
CN109477090B (en) Micro RNA-143 derivatives
EP3724333A2 (en) Oligonucleotides for modulating fndc3b expression
US20220177883A1 (en) Antisense Oligonucleotides Targeting ATXN3
TW202340466A (en) Dsrna, preparation method and application thereof
WO2019145386A1 (en) Oligonucleotides for modulating csnk1d expression
TW202339773A (en) Dsrna, the application and preparation method thereof
EP3737760A1 (en) Oligonucleotides for modulating gsk3b expression

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13747218

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13747218

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP