WO2013118840A1 - Impact tool - Google Patents

Impact tool Download PDF

Info

Publication number
WO2013118840A1
WO2013118840A1 PCT/JP2013/052940 JP2013052940W WO2013118840A1 WO 2013118840 A1 WO2013118840 A1 WO 2013118840A1 JP 2013052940 W JP2013052940 W JP 2013052940W WO 2013118840 A1 WO2013118840 A1 WO 2013118840A1
Authority
WO
WIPO (PCT)
Prior art keywords
crankshaft
motor
shaft
tool
output shaft
Prior art date
Application number
PCT/JP2013/052940
Other languages
French (fr)
Japanese (ja)
Inventor
陽之介 青木
正夫 三輪
Original Assignee
株式会社マキタ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社マキタ filed Critical 株式会社マキタ
Publication of WO2013118840A1 publication Critical patent/WO2013118840A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D11/00Portable percussive tools with electromotor or other motor drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D11/00Portable percussive tools with electromotor or other motor drive
    • B25D11/06Means for driving the impulse member
    • B25D11/12Means for driving the impulse member comprising a crank mechanism
    • B25D11/125Means for driving the impulse member comprising a crank mechanism with a fluid cushion between the crank drive and the striking body
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D2250/00General details of portable percussive tools; Components used in portable percussive tools
    • B25D2250/051Couplings, e.g. special connections between components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D2250/00General details of portable percussive tools; Components used in portable percussive tools
    • B25D2250/091Electrically-powered tool components
    • B25D2250/095Electric motors

Definitions

  • the present invention relates to an impact tool that performs a predetermined machining operation on a workpiece by driving a tool bit linearly using a crank mechanism.
  • Japanese Patent Application Laid-Open No. 2008-279987 discloses a crank-type electric hammer that drives a tool bit linearly using a crank mechanism.
  • the crank mechanism of the electric hammer is configured to be driven by an electric motor.
  • an inner rotor type motor in which a rotor is arranged inside the stator is adopted as an electric motor.
  • the speed of the motor is reduced by a reduction mechanism using gears and transmitted to the crank mechanism, thereby generating a predetermined striking force.
  • the above-described electric hammer is provided with a speed reduction mechanism between the output shaft of the electric motor and the crankshaft, so that the weight increases, and there is still room for improvement in this respect.
  • the present invention has been made in view of the above, and an object thereof is to provide a striking tool effective in reducing the weight.
  • a striking tool for performing a predetermined processing operation on a workpiece by a striking operation in the major axis direction of a tool bit.
  • the impact tool includes a rotor, a stator, and a motor having an output shaft that rotates integrally with the rotor, a crank mechanism that converts the rotational motion of the motor into a linear motion, and a crank mechanism that is driven to linearize the tool bit.
  • the crank mechanism includes a crankshaft formed separately from the output shaft of the motor, and a motion conversion member that converts the rotational motion of the crankshaft into a linear motion and drives the tool drive mechanism.
  • the motor is configured as an outer rotor type motor in which a rotor is disposed outside a stator, and an output shaft and a crankshaft are disposed coaxially and connected to each other.
  • the outer rotor type motor by using the outer rotor type motor, it becomes possible to generate a large rotor inertia moment with a large outer diameter of the rotating portion, and generate a large torque compared to an inner rotor type motor having the same external dimensions. be able to. For this reason, by arranging the motor output shaft and the crankshaft coaxially and connecting them, it is possible to omit the speed reduction mechanism required for the inner rotor type motor. As a result, the impact tool is reduced in weight and operability is improved. Further, by using the outer rotor type motor, the number of revolutions for obtaining a predetermined motor output can be lowered, so that the vibration of the impact tool caused by the motor vibration can be reduced. Further, according to the present invention, the motor output shaft and the crankshaft are formed separately, so that the motor side and the crank mechanism can be separated. Thereby, the repair at the time of failure of an impact tool becomes easy.
  • the output shaft and the crankshaft are each supported by the bearing in the axial direction several places. According to this aspect, the output shaft and the crankshaft can be stably rotated by supporting the output shaft and the crankshaft at a plurality of locations.
  • the several bearing which supports an output shaft is supported by the single bearing support member.
  • the several bearing which supports an output shaft is supported by the single bearing support member.
  • the output shaft and the crankshaft are connected via the interposition member.
  • the torque is transmitted from the output shaft in the order of the interposed member and the crankshaft.
  • the interposed member can function as a torque transmission member.
  • shaft of an output shaft and a crankshaft is inserted inside the other axis
  • the interposition member is arrange
  • the interposition member has a function of dealing with a shaft position deviation that allows a deviation of the shaft position between the output shaft and the crankshaft.
  • the impact tool which concerns on this invention, it has a biasing member which biases an interposition member to an axial direction.
  • a first recess along the axial direction is formed on the outer surface of one shaft, and a second recess along the axial direction is formed on the inner surface of the other shaft.
  • the interposition member is comprised so that transmission of torque is possible by engaging with a 1st recessed part and a 2nd recessed part.
  • the “biasing member” in this embodiment typically corresponds to a compression coil spring. According to this aspect, with respect to the assembly of the output shaft and the crankshaft, when one shaft is inserted inside the other shaft, the interposition member engages with any one of the first recess and the second recess.
  • a striking tool effective in reducing the weight is provided.
  • FIG. 2 is a sectional view taken along line AA in FIG. 1. It is sectional drawing which shows the whole structure of the hammer drill which concerns on 2nd Embodiment. It is sectional drawing which expands and shows the structure of the drive mechanism part of a hammer drill.
  • FIG. 5 is a sectional view taken along line BB in FIG. 4.
  • the electric hammer 100 is mainly configured by a main body portion 101 as a tool main body that forms an outline of the electric hammer 100.
  • a hammer bit 119 is detachably attached to the distal end region of the main body 101 via a cylindrical tool holder 159.
  • the hammer bit 119 is attached to the tool holder 159 so as to be relatively movable in the major axis direction, and is attached so as to rotate integrally with the tool holder 159 in the circumferential direction.
  • a hand grip 107 gripped by the operator is connected to the end of the main body 101 opposite to the tip region.
  • the hand grip 107 extends in the vertical direction in FIG. 1 intersecting the major axis direction of the hammer bit 119, and each end in the extending direction is connected to the main body 101.
  • the hand grip 107 is provided as a substantially D-type main handle in a side view.
  • the hammer bit 119 is an implementation configuration example corresponding to the “tool bit” in the present invention.
  • the hammer bit 119 side of the electric hammer 100 in the longitudinal direction of the hammer bit 119 is defined as “front side” or “front side”
  • the hand grip 107 side of the electric hammer 100 is defined as It is defined as “rear side” or “rear side”.
  • 1 is defined as “upper side” or “upper side”
  • the lower side is defined as “lower side” or “lower side”.
  • the main body 101 is composed mainly of an outer housing 103 that houses the electric motor 110, the motion conversion mechanism 120, and the striking element 140.
  • the electric motor 110 is an implementation configuration example corresponding to the “motor” in the present invention.
  • the rotation output of the electric motor 110 is appropriately converted into a linear motion by the motion conversion mechanism 120 and then transmitted to the striking element 140, and the major axis direction of the hammer bit 119 (the left-right direction in FIG. 1) via the striking element 140.
  • An impact force is generated.
  • the electric motor 110 is driven by a pulling operation of a trigger 107 a disposed on the hand grip 107.
  • the electric motor 110 is configured as an outer rotor type motor in which a stator 111 is disposed on the inner side and a rotor 112 that rotates integrally with the motor shaft 113 is disposed on the outer side.
  • the electric motor 110 is arranged so that the major axis direction of the motor shaft 113 is orthogonal to the major axis direction of the hammer bit 119.
  • the stator 111 is mainly composed of a coil holding member 111b for holding the drive coil 111a and a cylindrical mounting member 111c for supporting the coil holding member 111b.
  • the cylindrical mounting member 111 c is fixedly supported by an inner housing 104 fixed to the outer housing 103.
  • the inner housing 104 includes an upper housing portion 104a and a lower housing portion 104b.
  • the lower housing portion 104b is formed in a substantially cylindrical shape extending in the vertical direction.
  • a cylindrical mounting member 111c of the stator 111 is fitted and fixed to the outside of the cylindrical portion of the lower housing portion 104b.
  • the rotor 112 is formed as a substantially cup-shaped member that is supported on the motor shaft 113 so as to be integrally rotatable.
  • a magnet 115 facing the outer periphery of the stator 111 is attached to the inner peripheral surface (side wall inner surface) of the rotor 112. Further, one end portion (lower end portion) of the motor shaft 113 in the axial direction is press-fitted into the central portion of the rotor 112, and the rotor 112 and the motor shaft 113 are coupled.
  • the motor shaft 113 is an implementation configuration example corresponding to the “output shaft” in the present invention.
  • the motor shaft 113 extends upward through the inner space of the lower housing portion 104b in a loose fit.
  • the motor shaft 113 has an upper side supported by a ball bearing 116 inside a lower housing portion 104b and a lower side supported by a needle bearing 117 so as to be rotatable. That is, the motor shaft 113 is supported by the bearings 116 and 117 at a plurality of locations in the axial direction.
  • the bearings 116 and 117 are implementation configuration examples corresponding to the “bearings” in the present invention.
  • the lower housing part 104b which supports the bearings 116 and 117 is the implementation structural example corresponding to the "bearing support member" in this invention.
  • the motion conversion mechanism 120 connects the crankshaft 125, the eccentric shaft 127 provided at a position shifted from the rotation center of the crankshaft 125, the piston 131, and the piston 131 and the eccentric shaft 127.
  • the crank mechanism is composed of a connecting rod 129 and the like.
  • the crankshaft 125 is formed separately from the motor shaft 113 of the electric motor 110.
  • the crankshaft 125 is disposed coaxially with the motor shaft 113 and is coupled to rotate integrally with the motor shaft 113.
  • the crankshaft 125 is disposed above the motor shaft 113, and is supported rotatably by ball bearings 126 at two upper and lower positions in the axial direction.
  • the ball bearing 126 is supported by the upper housing 104 a of the inner housing 104.
  • the rotational motion of the crankshaft 125 is converted into a linear motion via the eccentric shaft 127 and the connecting rod 129 and transmitted to the piston 131.
  • the piston 131 is configured to slide linearly in the long axis direction of the hammer bit 119 in the cylinder 141 and drive the striking element 140.
  • the eccentric shaft 127 and the connecting rod 129 are an implementation configuration example corresponding to the “motion converting member” in the present invention.
  • the crankshaft 125 has a through hole 125a having a circular cross section passing through the center.
  • the upper end portion of the motor shaft 113 is inserted into the through hole 125a from below so as to be loosely fitted.
  • Two concave grooves 125b are formed on the inner surface of the through hole 125a so as to extend in the axial direction with a predetermined length downward from the upper end surface of the crankshaft 125.
  • the groove 125 b is a groove having a substantially semicircular cross section provided symmetrically with respect to the central axis of the crankshaft 125.
  • a substantially cylindrical engaging member 133 is disposed so that approximately half of the radial direction protrudes toward the through hole 125a.
  • the engaging member 133 is allowed to move in the axial direction of the crankshaft 125 in the concave groove 125b.
  • the cross section of the concave groove 125b is formed to have an arc larger than a semicircle.
  • This concave groove 125b is an implementation configuration example corresponding to the “first concave portion” in the present invention.
  • the engaging member 133 is always urged downward by the compression coil spring 135 disposed on the upper side of the through hole 125a. Therefore, in the state before the assembly in which the motor shaft 113 is inserted into the crankshaft 125, the engaging member 133 is in contact with the lower end portion of the concave groove 125b.
  • the upper end of the compression coil spring 135 is supported by the crankshaft 125 via a retaining ring 137.
  • the compression coil spring 135 is an implementation configuration example corresponding to the “biasing member” in the present invention.
  • the engaging recess 113 a is arranged symmetrically with respect to the central axis of the motor shaft 113.
  • the engaging recess 113a has a substantially semicircular cross section.
  • the engaging member 133 is disposed inside the recessed groove 125 b and the engaging recessed portion 113 a, whereby the motor shaft 113 and the crankshaft 125 are connected via the engaging member 133.
  • This engaging member 133 is an implementation structural example corresponding to the "interposition member” in this invention.
  • the engaging recess 113a is an implementation configuration example corresponding to the “second recess” in the present invention.
  • the upper housing portion 104 a of the inner housing 104 extends in the front-rear direction for accommodating the cylinder 141 and the tool holder 159 and in the vertical direction for accommodating the crankshaft 125.
  • the lower housing portion 104b is disposed below the rear portion of the upper housing portion 104a, and the upper housing portion 104a and the lower housing portion 104b are joined by a joining means (not shown) such as a screw. Be joined.
  • the electric motor 110 is preferably prepared as a motor assembly in which constituent members such as a stator 111, a rotor 112, and a motor shaft 113 are previously assembled to the lower housing portion 104b. The motor assembly is assembled by joining the lower housing portion 104b to the upper housing portion 104a so that the upper end portion of the motor shaft 113 is inserted into the through hole 125a of the crankshaft 125.
  • the engaging member 133 is attached to the motor shaft 113. It is pushed by the upper end surface and moves upward in the concave groove 125b to be held.
  • the motor shaft 113 is rotated in the circumferential direction relative to the crankshaft 125 in this state, the circumferential positions of the concave groove 125b and the engaging concave portion 113a coincide with each other, and the engaging member 133 is attached to the compression coil spring 135. The force is inserted into the engagement recess 113a and engaged with the engagement recess 113a. For this reason, the motor shaft 113 can be easily assembled to the crankshaft 125.
  • the striking element 140 is mainly composed of a striker 143, an impact bolt 145, and the like.
  • the striker 143 is configured as a striker that is slidably disposed with respect to the bore inner wall of the cylinder 141.
  • the impact bolt 145 is slidably disposed in the tool holder 159 and is configured as an intermediate element that transmits the kinetic energy (striking force) of the striker 143 to the hammer bit 119.
  • the striker 143 is driven by an air spring in the air chamber 141a of the cylinder 141 accompanying the sliding movement of the piston 131, hits an impact bolt 145 disposed in the tool holder 159, and the hammer bit 119 is passed through the impact bolt 145.
  • This striking element 140 is an implementation configuration example corresponding to the “tool driving mechanism” in the present invention.
  • the hammer bit 119 is driven by the movement through the striking element 140 from the motion conversion mechanism 120 configured by a crank mechanism. A striking force in the direction of the major axis is generated. As a result, the hammer bit 119 performs a hammering operation in the major axis direction, and performs a drilling operation on a workpiece such as concrete.
  • the outer rotor type motor as the electric motor 110, the outer diameter of the rotor 112 can be increased, and a large rotor inertia moment can be generated. For this reason, compared with an inner rotor type motor, a big torque can be generated.
  • an inner rotor type motor it is necessary to obtain a necessary torque by providing a speed reduction mechanism between the motor shaft and the intermediate shaft in order to generate a predetermined striking force. This may increase the weight or increase the size of the aircraft.
  • the use of the outer rotor type motor eliminates the need for a speed reduction mechanism. Thereby, the electric hammer 100 can be reduced in weight and size.
  • the operability of the electric hammer 100 when performing a machining operation can be improved.
  • the rotation speed of the electric motor 110 for obtaining a predetermined output can be reduced, the vibration of the electric hammer 100 due to the vibration of the electric motor 110 can be reduced.
  • the countermeasure for resonance due to vibration is not required, and the durability of the bearings 116 and 117 is improved.
  • the motor shaft 113 when the motor shaft 113 is assembled to the crankshaft 125, the motor shaft 113 is inserted into the through hole 125a, and the motor shaft 113 and the crankshaft 125 are relatively rotated after the insertion.
  • the engagement member 133 can be automatically engaged with the engagement recess 113a by the urging force of the compression coil spring 135.
  • the motor shaft 113 and the crankshaft 125 can be easily assembled.
  • the electric motor 110 side and the crank mechanism side can be separated. Therefore, repair at the time of failure of the electric hammer 100 is facilitated.
  • the engaging shaft 133 fixed in the circumferential direction of the crankshaft 125 is engaged with the engaging recess 113a of the motor shaft 113, whereby the motor shaft 113 and the crankshaft 125 are connected.
  • a predetermined gap can be set in the radial direction between the engaging member 133 and the engaging recess 113a. That is, even if there is a deviation between the center positions of the motor shaft 113 and the crankshaft 125, the deviation can be allowed by the gap.
  • the engagement member 133 has a function as a torque transmission member and a position shift corresponding member function that allows a shift in the center position between the motor shaft 113 and the crankshaft 125.
  • the motor shaft 113 and the crankshaft 125 are supported by the bearings 116, 117, and 126 at a plurality of locations in the axial direction, the motor shaft 113 and the crankshaft 125 are stable. It is rotated.
  • the bearings 116 and 117 for supporting the motor shaft 113 are supported by the lower housing portion 104b that is a single member. For this reason, compared with the case where the bearings 116 and 117 are supported by separate bearing support members, the number of members can be reduced. As a result, the structure can be simplified and assembly can be easily performed.
  • FIG. 4 shows the overall configuration of the hammer drill 200.
  • the hammer drill 200 is configured to rotate around the long axis direction in addition to the hammer bit 119 striking operation in the long axis direction. That is, in addition to the motion conversion mechanism 120 and the striking element 140, a power transmission mechanism 150 for transmitting the rotational output of the electric motor 110 to the hammer bit 119 is further provided.
  • the components other than the power transmission mechanism 150 are configured similarly to the electric hammer 100 of the first embodiment. Therefore, components other than the power transmission mechanism 150 are denoted by the same reference numerals as those used in the first embodiment, and description thereof is omitted.
  • the power transmission mechanism 150 includes a first intermediate shaft 151 and a second intermediate shaft 152 that are arranged in parallel to the motor shaft 113.
  • a first intermediate gear 154 and a second intermediate gear 155 having a smaller diameter than the first intermediate gear 154 are fixedly attached to the first intermediate shaft 151.
  • a third intermediate gear 156 that is always meshed with and engaged with the second intermediate gear 155 is fixedly attached to the second intermediate shaft 152.
  • the first intermediate gear 154 always meshes and engages with a drive gear 153 driven by the electric motor 110. Accordingly, the torque of the electric motor 110 is transmitted from the drive gear 153 through the first to third intermediate gears 154, 155 and 156 at a predetermined reduction ratio and transmitted to the second intermediate shaft 152.
  • the torque transmitted to the second intermediate shaft 152 is transmitted from the small bevel gear 157 formed integrally with the second intermediate shaft 152 to the large bevel gear 158 engaged with and engaged with the small bevel gear 157.
  • the large bevel gear 158 is coupled to the tool holder 159 and configured to transmit torque to the hammer bit 119.
  • the lower housing portion 104 b of the inner housing 104 supports the motor support region that supports the electric motor 110, the first intermediate shaft 151, and the second intermediate shaft 152.
  • An intermediate shaft support region is provided which is supported via 151a and 152a.
  • the motor shaft 113 is disposed coaxially with the crankshaft 125 of the motion conversion mechanism 120, and the motor shaft 113 and the crankshaft 125 are interposed via the engaging member 133. Are connected.
  • the connection structure between the motor shaft 113 and the crankshaft 125 is the same as in the first embodiment.
  • a drive gear 153 is provided on the motor shaft 113, and the torque of the motor shaft 113 is transmitted to the hammer bit 119.
  • the hammer drill 200 can be reduced in weight and size.
  • the same operational effects as those of the electric hammer 100 of the first embodiment can be obtained, for example, the operability of the electric hammer 100 when performing a machining operation can be improved.
  • the drive gear 153 is attached to the motor shaft 113, but the drive gear 153 may be attached to the crankshaft 125.
  • the engaging member 133 is a columnar member, but can be changed to a steel ball.
  • the engaging member 133 is disposed as an interposed member between the outer side of the motor shaft 113 and the inner side of the crankshaft 125, but is not limited thereto.
  • the motor shaft 113 and the crankshaft 125 may be connected using a coupling as an interposed member.
  • a key may be used as the interposition member.
  • connection structure between the motor shaft 113 and the crankshaft 125 a spline hole is set on one shaft and a spline shaft is set on the other shaft without using an intervening member. You may connect. Moreover, it is also possible to change to a connection structure by press-fitting or a connection structure using a two-sided width.
  • the impact tool according to the present invention can be configured in the following manner.
  • the impact tool according to claim 4 The bearing support member is provided as a cylindrical member, The output shaft is supported by the bearing inside the bearing support member, The impact tool according to claim 1, wherein the stator is supported outside the bearing support member.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Percussive Tools And Related Accessories (AREA)

Abstract

[Problem] To provide an impact tool which is effectively reduced in weight. [Solution] An impact tool has: a motor (110) which is provided with a rotor (112), a stator (111), and an output shaft (113) which rotates together with the rotor (112); a crank mechanism (120) which converts the rotational motion of the motor (110) into rectilinear motion; and a tool drive mechanism (140) which is driven by the crank mechanism (120) and which drives a tool bit (119) in a rectilinear manner. The crank mechanism (120) has: a crankshaft (125) which is formed as a separate body from the output shaft (113) of the motor (110); and motion conversion members (127, 129) which convert the rotational motion of the crankshaft (125) into rectilinear motion and drives the tool drive mechanism (140). The motor (110) is configured as an outer rotor motor. The output shaft (113) and the crankshaft (125) are arranged coaxially with each other and are connected to each other.

Description

打撃工具Impact tool
 本発明は、クランク機構を用いて工具ビットを直線状に駆動させることにより被加工材に所定の加工作業を行う打撃工具に関する。 The present invention relates to an impact tool that performs a predetermined machining operation on a workpiece by driving a tool bit linearly using a crank mechanism.
 特開2008-279587号公報は、クランク機構を用いて工具ビットを直線状に駆動するクランク式の電動ハンマを開示している。当該電動ハンマのクランク機構は、電動モータで駆動されるように構成されている。 Japanese Patent Application Laid-Open No. 2008-279987 discloses a crank-type electric hammer that drives a tool bit linearly using a crank mechanism. The crank mechanism of the electric hammer is configured to be driven by an electric motor.
 上記電動ハンマにおいては、電動モータとして固定子の内側に回転子が配置されたインナロータ型モータが採用されている。そして、ギアを用いた減速機構によってモータ回転数を減速してクランク機構に伝達し、これにより所定の打撃力を生成している。 In the electric hammer, an inner rotor type motor in which a rotor is arranged inside the stator is adopted as an electric motor. The speed of the motor is reduced by a reduction mechanism using gears and transmitted to the crank mechanism, thereby generating a predetermined striking force.
 しかしながら、上記の電動ハンマは、電動モータの出力軸とクランク軸との間に減速機構を備えることから、重量が増大することとなり、かかる点でなお改良の余地がある。 However, the above-described electric hammer is provided with a speed reduction mechanism between the output shaft of the electric motor and the crankshaft, so that the weight increases, and there is still room for improvement in this respect.
 本発明は、上記に鑑みてなされたものであり、軽量化を図る上で有効な打撃工具を提供することを目的とする。 The present invention has been made in view of the above, and an object thereof is to provide a striking tool effective in reducing the weight.
 上記課題を解決するため、本発明の好ましい形態によれば、工具ビットの長軸方向の打撃動作により被加工材に所定の加工作業を行う打撃工具が構成される。打撃工具は、回転子、固定子及び回転子と一体回転する出力軸を備えたモータと、モータの回転運動を直線運動に変換するクランク機構と、クランク機構によって駆動され、工具ビットを直線状に駆動する工具駆動機構と、を有する。クランク機構は、モータの出力軸とは別体に形成されたクランク軸と、クランク軸の回転運動を直線運動に変換して工具駆動機構を駆動する運動変換部材とを有する。モータは、回転子が固定子の外側に配置されたアウタロータ型モータとして構成され、そして出力軸とクランク軸が同軸に配置されて互いに連結されている。 In order to solve the above problems, according to a preferred embodiment of the present invention, a striking tool for performing a predetermined processing operation on a workpiece by a striking operation in the major axis direction of a tool bit is configured. The impact tool includes a rotor, a stator, and a motor having an output shaft that rotates integrally with the rotor, a crank mechanism that converts the rotational motion of the motor into a linear motion, and a crank mechanism that is driven to linearize the tool bit. And a tool driving mechanism for driving. The crank mechanism includes a crankshaft formed separately from the output shaft of the motor, and a motion conversion member that converts the rotational motion of the crankshaft into a linear motion and drives the tool drive mechanism. The motor is configured as an outer rotor type motor in which a rotor is disposed outside a stator, and an output shaft and a crankshaft are disposed coaxially and connected to each other.
 本発明によれば、アウタロータ型モータを用いることにより、回転部分の外径が大きく、大きなロータ慣性モーメントを発生させることが可能となり、外形寸法が同じインナロータ型モータに比べて、大きなトルクを発生することができる。このため、モータの出力軸とクランク軸とを同軸上に配置して連結することで、インナロータ型モータの場合に必要な減速機構を省略することが可能となる。その結果、打撃工具が軽量化され、操作性が向上す。また、アウタロータ型モータを用いることにより、所定のモータ出力を得るための回転数を低くできるため、モータ振動によって生じる打撃工具の振動を低減することができる。また、本発明によれば、モータの出力軸とクランク軸とを別体に形成したことにより、モータ側とクランク機構とに分離することができる。これにより、打撃工具の故障時の修理が容易になる。 According to the present invention, by using the outer rotor type motor, it becomes possible to generate a large rotor inertia moment with a large outer diameter of the rotating portion, and generate a large torque compared to an inner rotor type motor having the same external dimensions. be able to. For this reason, by arranging the motor output shaft and the crankshaft coaxially and connecting them, it is possible to omit the speed reduction mechanism required for the inner rotor type motor. As a result, the impact tool is reduced in weight and operability is improved. Further, by using the outer rotor type motor, the number of revolutions for obtaining a predetermined motor output can be lowered, so that the vibration of the impact tool caused by the motor vibration can be reduced. Further, according to the present invention, the motor output shaft and the crankshaft are formed separately, so that the motor side and the crank mechanism can be separated. Thereby, the repair at the time of failure of an impact tool becomes easy.
 本発明に係る打撃工具の更なる形態によれば、出力軸とクランク軸は、それぞれが軸方向の複数箇所を軸受により支持されている。
 この形態によれば、出力軸及びクランク軸が複数箇所で支持されることにより、出力軸及びクランク軸を安定して回転させることができる。
According to the further form of the impact tool which concerns on this invention, the output shaft and the crankshaft are each supported by the bearing in the axial direction several places.
According to this aspect, the output shaft and the crankshaft can be stably rotated by supporting the output shaft and the crankshaft at a plurality of locations.
 本発明に係る打撃工具の更なる形態によれば、出力軸を支持する複数の軸受は、単一の軸受支持部材によって支持されている。
 この形態によれば、複数の軸受を単一の軸受支持部材で支持することにより、複数の軸受支持部材で支持する構成の場合に比べ、出力軸の位置精度を向上できる。さらに、部材点数を削減することで構造の簡素化することができ、組付けを容易にすることができる。
 さらに、モータの固定子は、当該軸受支持部材で支持されていることが好ましい。
According to the further form of the impact tool which concerns on this invention, the several bearing which supports an output shaft is supported by the single bearing support member.
According to this aspect, by supporting a plurality of bearings with a single bearing support member, it is possible to improve the positional accuracy of the output shaft as compared to a configuration in which the plurality of bearing support members are supported. Furthermore, by reducing the number of members, the structure can be simplified and assembly can be facilitated.
Further, the stator of the motor is preferably supported by the bearing support member.
 本発明に係る打撃工具の更なる形態によれば、出力軸とクランク軸が介在部材を介して連結されている。そして出力軸から介在部材、クランク軸の順序でトルクが伝達されるように構成されている。
 この形態によれば、介在部材をトルク伝達部材として機能させることができる。
According to the further form of the impact tool which concerns on this invention, the output shaft and the crankshaft are connected via the interposition member. The torque is transmitted from the output shaft in the order of the interposed member and the crankshaft.
According to this embodiment, the interposed member can function as a torque transmission member.
 本発明に係る打撃工具の更なる形態によれば、出力軸とクランク軸のうちの一方の軸が他方の軸の内側に挿入されている。そして、介在部材は、一方の軸の外側と他方の軸の内側との間に配置されている。
 この形態によれば、介在部材を出力軸とクランク軸の軸位置のずれを許容する軸位置ずれ対応機能を有する。
According to the further form of the impact tool which concerns on this invention, one axis | shaft of an output shaft and a crankshaft is inserted inside the other axis | shaft. And the interposition member is arrange | positioned between the outer side of one axis | shaft, and the inner side of the other axis | shaft.
According to this aspect, the interposition member has a function of dealing with a shaft position deviation that allows a deviation of the shaft position between the output shaft and the crankshaft.
 本発明に係る打撃工具の更なる形態によれば、介在部材を軸方向に付勢する付勢部材を有する。そして一方の軸の外表面には、軸方向に沿う第1凹部が形成され、他方の軸の内表面には、軸方向に沿う第2凹部が形成されている。そして、介在部材は、第1凹部と第2凹部に係合することでトルクの伝達可能に構成されている。なお、この形態における「付勢部材」は、典型的には圧縮コイルばねがこれに該当する。
 この形態によれば、出力軸とクランク軸の組付けに関して、一方の軸を他方の軸の内側に挿入したときに、介在部材が第1凹部ないし第2凹部のいずれか一方の凹部と係合しなかった場合でも、一方の軸を他方の軸の内側に挿入したままで出力軸とクランク軸とを相対回転することで、付勢部材の付勢力によって介在部材がいずれか一方の凹部に係合する。このため、出力軸とクランク軸の組付けを容易に行うことができる。
According to the further form of the impact tool which concerns on this invention, it has a biasing member which biases an interposition member to an axial direction. A first recess along the axial direction is formed on the outer surface of one shaft, and a second recess along the axial direction is formed on the inner surface of the other shaft. And the interposition member is comprised so that transmission of torque is possible by engaging with a 1st recessed part and a 2nd recessed part. Note that the “biasing member” in this embodiment typically corresponds to a compression coil spring.
According to this aspect, with respect to the assembly of the output shaft and the crankshaft, when one shaft is inserted inside the other shaft, the interposition member engages with any one of the first recess and the second recess. Even if not, by rotating the output shaft and the crankshaft relative to each other while one shaft is inserted inside the other shaft, the interposition member is engaged with one of the recesses by the biasing force of the biasing member. Match. For this reason, the output shaft and the crankshaft can be easily assembled.
 本発明によれば、軽量化を図る上で有効な打撃工具が提供される。 According to the present invention, a striking tool effective in reducing the weight is provided.
第1の実施形態に係る電動ハンマの全体構成を示す断面図である。It is a sectional view showing the whole electric hammer composition concerning a 1st embodiment. モータ軸とクランク軸の連結構造を拡大して示す断面図である。It is sectional drawing which expands and shows the connection structure of a motor shaft and a crankshaft. 図1のA-A線断面図である。FIG. 2 is a sectional view taken along line AA in FIG. 1. 第2の実施形態に係るハンマドリルの全体構成を示す断面図である。It is sectional drawing which shows the whole structure of the hammer drill which concerns on 2nd Embodiment. ハンマドリルの駆動機構部の構成を拡大して示す断面図である。It is sectional drawing which expands and shows the structure of the drive mechanism part of a hammer drill. 図4のB-B線断面図である。FIG. 5 is a sectional view taken along line BB in FIG. 4.
(第1の実施形態)
 以下、第1の実施形態につき、図1~図3を参照しつつ詳細に説明する。第1の実施形態では、打撃工具の一例として電動ハンマを用いて説明する。図1に示すように、電動ハンマ100は、概括的に見て、電動ハンマ100の外郭を形成する工具本体としての本体部101を主体として構成される。本体部101の先端領域には、ハンマビット119が筒状のツールホルダ159を介して着脱自在に取付けられる。ハンマビット119は、ツールホルダ159に対し長軸方向には相対移動可能に装着され、ツールホルダ159と周方向に一体回転するように装着される。本体部101の先端領域とは反対側の端部には、作業者が握るハンドグリップ107が連接されている。ハンドグリップ107は、ハンマビット119の長軸方向と交差する図1の上下方向に延在するとともに、本体部101に対して延在方向の各端部が連接されている。このハンドグリップ107は、側面視で略D型のメインハンドルとして備えられている。
(First embodiment)
Hereinafter, the first embodiment will be described in detail with reference to FIGS. In the first embodiment, description will be made using an electric hammer as an example of a striking tool. As shown in FIG. 1, the electric hammer 100 is mainly configured by a main body portion 101 as a tool main body that forms an outline of the electric hammer 100. A hammer bit 119 is detachably attached to the distal end region of the main body 101 via a cylindrical tool holder 159. The hammer bit 119 is attached to the tool holder 159 so as to be relatively movable in the major axis direction, and is attached so as to rotate integrally with the tool holder 159 in the circumferential direction. A hand grip 107 gripped by the operator is connected to the end of the main body 101 opposite to the tip region. The hand grip 107 extends in the vertical direction in FIG. 1 intersecting the major axis direction of the hammer bit 119, and each end in the extending direction is connected to the main body 101. The hand grip 107 is provided as a substantially D-type main handle in a side view.
 ハンマビット119は、本発明における「工具ビット」に対応する実施構成例である。なお、本実施の形態では、便宜上、ハンマビット119の長軸方向における電動ハンマ100のハンマビット119側を、「前側」ないし「前方側」として規定し、電動ハンマ100のハンドグリップ107側を、「後側」ないし「後方側」として規定する。また、図1における上方を、「上側」ないし「上方側」と規定し、下方を、「下側」ないし「下方側」と規定する。 The hammer bit 119 is an implementation configuration example corresponding to the “tool bit” in the present invention. In the present embodiment, for convenience, the hammer bit 119 side of the electric hammer 100 in the longitudinal direction of the hammer bit 119 is defined as “front side” or “front side”, and the hand grip 107 side of the electric hammer 100 is defined as It is defined as “rear side” or “rear side”. 1 is defined as “upper side” or “upper side”, and the lower side is defined as “lower side” or “lower side”.
 本体部101は、電動モータ110、運動変換機構120及び打撃要素140を収容したアウタハウジング103を主体として構成される。電動モータ110は、本発明における「モータ」に対応する実施構成例である。電動モータ110の回転出力は、運動変換機構120によって直線運動に適宜変換された上で打撃要素140に伝達され、当該打撃要素140を介してハンマビット119の長軸方向(図1における左右方向)への衝撃力が発生される。電動モータ110は、ハンドグリップ107に配置されたトリガ107aの引き操作によって駆動される。 The main body 101 is composed mainly of an outer housing 103 that houses the electric motor 110, the motion conversion mechanism 120, and the striking element 140. The electric motor 110 is an implementation configuration example corresponding to the “motor” in the present invention. The rotation output of the electric motor 110 is appropriately converted into a linear motion by the motion conversion mechanism 120 and then transmitted to the striking element 140, and the major axis direction of the hammer bit 119 (the left-right direction in FIG. 1) via the striking element 140. An impact force is generated. The electric motor 110 is driven by a pulling operation of a trigger 107 a disposed on the hand grip 107.
 図2に示すように、電動モータ110は、内側に固定子111が配置され、外側にモータ軸113と一体回転する回転子112が配置されたアウタロータ型モータとして構成されている。この電動モータ110は、モータ軸113の長軸方向がハンマビット119の長軸方向と直交するように配置されている。固定子111は、駆動コイル111aを保持するためのコイル保持部材111bと、当該コイル保持部材111bを支持するための筒状取付部材111cとを主体として構成されている。筒状取付部材111cは、アウタハウジング103に固定されたインナハウジング104によって固定状に支持されている。インナハウジング104は、上ハウジング部104aと下ハウジング部104bで構成されている。下ハウジング部104bは、上下方向に延在する略円筒状に形成されている。下ハウジング部104bの筒状部外側に固定子111の筒状取付部材111cが嵌合されて固定されている。 As shown in FIG. 2, the electric motor 110 is configured as an outer rotor type motor in which a stator 111 is disposed on the inner side and a rotor 112 that rotates integrally with the motor shaft 113 is disposed on the outer side. The electric motor 110 is arranged so that the major axis direction of the motor shaft 113 is orthogonal to the major axis direction of the hammer bit 119. The stator 111 is mainly composed of a coil holding member 111b for holding the drive coil 111a and a cylindrical mounting member 111c for supporting the coil holding member 111b. The cylindrical mounting member 111 c is fixedly supported by an inner housing 104 fixed to the outer housing 103. The inner housing 104 includes an upper housing portion 104a and a lower housing portion 104b. The lower housing portion 104b is formed in a substantially cylindrical shape extending in the vertical direction. A cylindrical mounting member 111c of the stator 111 is fitted and fixed to the outside of the cylindrical portion of the lower housing portion 104b.
 回転子112は、モータ軸113に一体回転可能に支持された略カップ状部材として形成されている。回転子112の内周面(側壁内面)には固定子111の外周と対向する磁石115が取付けられている。また、回転子112の中央部にはモータ軸113の軸方向の一端部(下端部)が圧入されて、回転子112とモータ軸113が結合されている。モータ軸113は、本発明における「出力軸」に対応する実施構成例である。モータ軸113は、下ハウジング部104bの内部空間を遊嵌状に貫通して上方へと延在されている。このモータ軸113は、下ハウジング部104b内側で上側がボールベアリング116によって支持され、下側がニードルベアリング117によって支持されて回転自在とされている。すなわち、モータ軸113は、軸方向の複数箇所を軸受116,117によって支持されている。軸受116,117が、それぞれ本発明における「軸受」に対応する実施構成例である。また、軸受116,117を支持する下ハウジング部104bが本発明における「軸受支持部材」に対応する実施構成例である。 The rotor 112 is formed as a substantially cup-shaped member that is supported on the motor shaft 113 so as to be integrally rotatable. A magnet 115 facing the outer periphery of the stator 111 is attached to the inner peripheral surface (side wall inner surface) of the rotor 112. Further, one end portion (lower end portion) of the motor shaft 113 in the axial direction is press-fitted into the central portion of the rotor 112, and the rotor 112 and the motor shaft 113 are coupled. The motor shaft 113 is an implementation configuration example corresponding to the “output shaft” in the present invention. The motor shaft 113 extends upward through the inner space of the lower housing portion 104b in a loose fit. The motor shaft 113 has an upper side supported by a ball bearing 116 inside a lower housing portion 104b and a lower side supported by a needle bearing 117 so as to be rotatable. That is, the motor shaft 113 is supported by the bearings 116 and 117 at a plurality of locations in the axial direction. The bearings 116 and 117 are implementation configuration examples corresponding to the “bearings” in the present invention. Moreover, the lower housing part 104b which supports the bearings 116 and 117 is the implementation structural example corresponding to the "bearing support member" in this invention.
 図2に示すように、運動変換機構120は、クランク軸125、当該クランク軸125の回転中心からずれた位置に設けられた偏心軸127、ピストン131、当該ピストン131と偏心軸127とを連接する連接ロッド129等からなるクランク機構によって構成される。クランク軸125は、電動モータ110のモータ軸113とは別体に形成されている。このクランク軸125は、モータ軸113と同軸上に配置されてモータ軸113と一体に回転するように連結されている。クランク軸125は、モータ軸113の上方に配置され、軸方向の上下2箇所をそれぞれボールベアリング126によって回転自在に支持されている。このボールベアリング126は、インナハウジング104の上ハウジング104aによって支持されている。クランク軸125の回転運動は、偏心軸127と連接ロッド129を介して直線運動に変換され、ピストン131に伝達される。ピストン131は、シリンダ141内をハンマビット119の長軸方向に直線状に摺動され、打撃要素140を駆動するように構成されている。偏心軸127及び連接ロッド129が本発明における「運動変換部材」に対応する実施構成例である。 As shown in FIG. 2, the motion conversion mechanism 120 connects the crankshaft 125, the eccentric shaft 127 provided at a position shifted from the rotation center of the crankshaft 125, the piston 131, and the piston 131 and the eccentric shaft 127. The crank mechanism is composed of a connecting rod 129 and the like. The crankshaft 125 is formed separately from the motor shaft 113 of the electric motor 110. The crankshaft 125 is disposed coaxially with the motor shaft 113 and is coupled to rotate integrally with the motor shaft 113. The crankshaft 125 is disposed above the motor shaft 113, and is supported rotatably by ball bearings 126 at two upper and lower positions in the axial direction. The ball bearing 126 is supported by the upper housing 104 a of the inner housing 104. The rotational motion of the crankshaft 125 is converted into a linear motion via the eccentric shaft 127 and the connecting rod 129 and transmitted to the piston 131. The piston 131 is configured to slide linearly in the long axis direction of the hammer bit 119 in the cylinder 141 and drive the striking element 140. The eccentric shaft 127 and the connecting rod 129 are an implementation configuration example corresponding to the “motion converting member” in the present invention.
 図2に示すように、クランク軸125は、中心を貫通する円形断面の貫通孔125aを有する。この貫通孔125aに対して下方からモータ軸113の上端部が遊嵌状に挿入されている。貫通孔125aの内面には、2個の凹溝125bがクランク軸125の上端面から下方に向かって所定長さで軸方向に延在するように形成されている。図3に示すように、凹溝125bは、クランク軸125の中心軸に対して対称に設けられた断面が略半円弧状の溝である。それぞれの凹溝125bには略円柱状の係合部材133が径方向の概ね半分が貫通孔125a側に突出するように配置されている。係合部材133は、凹溝125b内においてクランク軸125の軸方向への移動が許容されている。なお、係合部材133が凹溝125bから貫通孔125a側に脱落することを防止するために、凹溝125bの断面は、半円よりも大きい弧を有するよう形成されている。この凹溝125bが、本発明における「第1凹部」に対応する実施構成例である。 As shown in FIG. 2, the crankshaft 125 has a through hole 125a having a circular cross section passing through the center. The upper end portion of the motor shaft 113 is inserted into the through hole 125a from below so as to be loosely fitted. Two concave grooves 125b are formed on the inner surface of the through hole 125a so as to extend in the axial direction with a predetermined length downward from the upper end surface of the crankshaft 125. As shown in FIG. 3, the groove 125 b is a groove having a substantially semicircular cross section provided symmetrically with respect to the central axis of the crankshaft 125. In each of the concave grooves 125b, a substantially cylindrical engaging member 133 is disposed so that approximately half of the radial direction protrudes toward the through hole 125a. The engaging member 133 is allowed to move in the axial direction of the crankshaft 125 in the concave groove 125b. In order to prevent the engaging member 133 from falling off the concave groove 125b toward the through hole 125a, the cross section of the concave groove 125b is formed to have an arc larger than a semicircle. This concave groove 125b is an implementation configuration example corresponding to the “first concave portion” in the present invention.
 また、図2に示すように、係合部材133は、貫通孔125aの上方側に配置された圧縮コイルばね135によって常時に下向きに付勢されている。従って、クランク軸125にモータ軸113が挿入される組付け前の状態では、係合部材133は凹溝125bの下端部に当接されている。なお、圧縮コイルばね135の上端は、止め輪137を介してクランク軸125に支持されている。圧縮コイルばね135は、本発明における「付勢部材」に対応する実施構成例である。 Further, as shown in FIG. 2, the engaging member 133 is always urged downward by the compression coil spring 135 disposed on the upper side of the through hole 125a. Therefore, in the state before the assembly in which the motor shaft 113 is inserted into the crankshaft 125, the engaging member 133 is in contact with the lower end portion of the concave groove 125b. The upper end of the compression coil spring 135 is supported by the crankshaft 125 via a retaining ring 137. The compression coil spring 135 is an implementation configuration example corresponding to the “biasing member” in the present invention.
 一方、モータ軸113の上側の外面には、図2及び図3に示すように、クランク軸125の凹溝125bに対応した2つの係合凹部113aが形成されている。この係合凹部113aは、モータ軸113の中心軸に対して対称配置されている。係合凹部113aは、断面が略半円弧状に形成されている。係合部材133は、凹溝125bと係合凹部113aの内側に配置され、これにより、モータ軸113とクランク軸125が係合部材133を介して連結される。その結果、モータ軸113、係合部材133、クランク軸125の順にトルクが伝達される。この係合部材133は、本発明における「介在部材」に対応する実施構成例である。また、係合凹部113aは、本発明における「第2凹部」に対応する実施構成例である。 On the other hand, on the upper outer surface of the motor shaft 113, as shown in FIGS. 2 and 3, two engaging recesses 113a corresponding to the recess grooves 125b of the crankshaft 125 are formed. The engaging recess 113 a is arranged symmetrically with respect to the central axis of the motor shaft 113. The engaging recess 113a has a substantially semicircular cross section. The engaging member 133 is disposed inside the recessed groove 125 b and the engaging recessed portion 113 a, whereby the motor shaft 113 and the crankshaft 125 are connected via the engaging member 133. As a result, torque is transmitted in the order of the motor shaft 113, the engaging member 133, and the crankshaft 125. This engaging member 133 is an implementation structural example corresponding to the "interposition member" in this invention. The engaging recess 113a is an implementation configuration example corresponding to the “second recess” in the present invention.
 なお、インナハウジング104の上ハウジング部104aは、図1に示すように、シリンダ141及びツールホルダ159を収容する前後方向に延在する前方部分と、クランク軸125を収容する上下方向に延在する略円筒状の後方部分とを有する。そして、図2に示すように、上ハウジング部104aの後方部分の下方側に下ハウジング部104bが配置され、上ハウジング部104aと下ハウジング部104bがねじ等の接合手段(図示を省略する)によって接合される。電動モータ110は、固定子111、回転子112、モータ軸113等の構成部材が予め下ハウジング部104bに対して組付けられたモータアセンブリとして準備されることが好ましい。モータアセンブリは、モータ軸113の上端部がクランク軸125の貫通孔125a内に挿入するように下ハウジング部104bを上ハウジング部104aに対して接合することで組付けられる。 As shown in FIG. 1, the upper housing portion 104 a of the inner housing 104 extends in the front-rear direction for accommodating the cylinder 141 and the tool holder 159 and in the vertical direction for accommodating the crankshaft 125. A substantially cylindrical rear portion. As shown in FIG. 2, the lower housing portion 104b is disposed below the rear portion of the upper housing portion 104a, and the upper housing portion 104a and the lower housing portion 104b are joined by a joining means (not shown) such as a screw. Be joined. The electric motor 110 is preferably prepared as a motor assembly in which constituent members such as a stator 111, a rotor 112, and a motor shaft 113 are previously assembled to the lower housing portion 104b. The motor assembly is assembled by joining the lower housing portion 104b to the upper housing portion 104a so that the upper end portion of the motor shaft 113 is inserted into the through hole 125a of the crankshaft 125.
 モータアセンブリの組付けにおいて、モータ軸113をクランク軸125内に挿入したとき、凹溝125bと係合凹部113aの位置が周方向についてずれていた場合には、係合部材133がモータ軸113の上端面に押されて凹溝125b内を上方へ移動し、保持される。かかる状態でクランク軸125に対してモータ軸113を周方向に相対回転させると、凹溝125bと係合凹部113aの周方向位置が一致すると同時に、係合部材133は、圧縮コイルばね135の付勢力によって係合凹部113aに挿入され係合凹部113aと係合される。このため、クランク軸125に対するモータ軸113に組付けを容易に行うことができる。 When the motor shaft 113 is inserted into the crankshaft 125 in the assembly of the motor assembly, if the positions of the concave groove 125b and the engaging concave portion 113a are shifted in the circumferential direction, the engaging member 133 is attached to the motor shaft 113. It is pushed by the upper end surface and moves upward in the concave groove 125b to be held. When the motor shaft 113 is rotated in the circumferential direction relative to the crankshaft 125 in this state, the circumferential positions of the concave groove 125b and the engaging concave portion 113a coincide with each other, and the engaging member 133 is attached to the compression coil spring 135. The force is inserted into the engagement recess 113a and engaged with the engagement recess 113a. For this reason, the motor shaft 113 can be easily assembled to the crankshaft 125.
 図1に示すように、打撃要素140は、ストライカ143とインパクトボルト145等を主体として構成されている。ストライカ143は、シリンダ141のボア内壁に対して摺動自在に配置された打撃子として構成されている。インパクトボルト145は、ツールホルダ159内に摺動自在に配置され、ストライカ143の運動エネルギ(打撃力)をハンマビット119に伝達する中間子として構成されている。ストライカ143は、ピストン131の摺動動作に伴うシリンダ141の空気室141aの空気バネによって駆動され、ツールホルダ159内に配置されたインパクトボルト145を打撃し、当該インパクトボルト145を介してハンマビット119に打撃力を発生させる。この打撃要素140が、本発明における「工具駆動機構」に対応する実施構成例である。 As shown in FIG. 1, the striking element 140 is mainly composed of a striker 143, an impact bolt 145, and the like. The striker 143 is configured as a striker that is slidably disposed with respect to the bore inner wall of the cylinder 141. The impact bolt 145 is slidably disposed in the tool holder 159 and is configured as an intermediate element that transmits the kinetic energy (striking force) of the striker 143 to the hammer bit 119. The striker 143 is driven by an air spring in the air chamber 141a of the cylinder 141 accompanying the sliding movement of the piston 131, hits an impact bolt 145 disposed in the tool holder 159, and the hammer bit 119 is passed through the impact bolt 145. Generate a striking force. This striking element 140 is an implementation configuration example corresponding to the “tool driving mechanism” in the present invention.
 上記のように構成された電動ハンマ100は、トリガ107aの引き操作により電動モータ110が駆動されると、クランク機構によって構成される運動変換機構120から打撃要素140を介した駆動によって、ハンマビット119の長軸方向への打撃力が生じる。これにより、ハンマビット119が長軸方向のハンマ動作を行い、コンクリート等の被加工材に穴開け作業を遂行する。 In the electric hammer 100 configured as described above, when the electric motor 110 is driven by the pulling operation of the trigger 107a, the hammer bit 119 is driven by the movement through the striking element 140 from the motion conversion mechanism 120 configured by a crank mechanism. A striking force in the direction of the major axis is generated. As a result, the hammer bit 119 performs a hammering operation in the major axis direction, and performs a drilling operation on a workpiece such as concrete.
 第1の実施形態によれば、電動モータ110としてアウタロータ型モータを採用したことにより、回転子112の外径が大きくでき、大きなロータ慣性モーメントを発生させることができる。このため、インナロータ型モータに比べて、大きなトルクを発生することができる。インナロータ型モータの場合には、所定の打撃力を発生させるに、モータ軸と中間軸との間に減速機構を設けることで必要なトルクを得る必要がある。これにより、重量の増大、あるいは機体が大型化する可能性がある。しかしながら、第1の実施形態によれば、アウタロータ型モータを採用したことにより、減速機構が不要となる。これにより、電動ハンマ100の軽量化、および小型化が可能となる。その結果、加工作業を行うときの電動ハンマ100の操作性を向上できる。また、所定の出力を得るための電動モータ110の回転数を低くすることができるため、電動モータ110の振動による電動ハンマ100の振動を低減できる。また、振動による共振対策が不要となり、軸受116,117の耐久性が向上する。 According to the first embodiment, by adopting the outer rotor type motor as the electric motor 110, the outer diameter of the rotor 112 can be increased, and a large rotor inertia moment can be generated. For this reason, compared with an inner rotor type motor, a big torque can be generated. In the case of an inner rotor type motor, it is necessary to obtain a necessary torque by providing a speed reduction mechanism between the motor shaft and the intermediate shaft in order to generate a predetermined striking force. This may increase the weight or increase the size of the aircraft. However, according to the first embodiment, the use of the outer rotor type motor eliminates the need for a speed reduction mechanism. Thereby, the electric hammer 100 can be reduced in weight and size. As a result, the operability of the electric hammer 100 when performing a machining operation can be improved. Moreover, since the rotation speed of the electric motor 110 for obtaining a predetermined output can be reduced, the vibration of the electric hammer 100 due to the vibration of the electric motor 110 can be reduced. Further, the countermeasure for resonance due to vibration is not required, and the durability of the bearings 116 and 117 is improved.
 また、第1の実施形態によれば、モータ軸113をクランク軸125に組付ける際に、モータ軸113を貫通孔125a内に挿入し、挿入後にモータ軸113とクランク軸125を相対回転させることで、圧縮コイルばね135の付勢力によって係合部材133を自動的に係合凹部113aに係合させることができる。このため、モータ軸113とクランク軸125との組付けを容易に行うことができる。また、モータ軸113とクランク軸125とを別体に形成しているため、電動モータ110側とクランク機構側とに分離可能である。したがって、電動ハンマ100の故障時の修理が容易になる。 Further, according to the first embodiment, when the motor shaft 113 is assembled to the crankshaft 125, the motor shaft 113 is inserted into the through hole 125a, and the motor shaft 113 and the crankshaft 125 are relatively rotated after the insertion. Thus, the engagement member 133 can be automatically engaged with the engagement recess 113a by the urging force of the compression coil spring 135. For this reason, the motor shaft 113 and the crankshaft 125 can be easily assembled. Moreover, since the motor shaft 113 and the crankshaft 125 are formed separately, the electric motor 110 side and the crank mechanism side can be separated. Therefore, repair at the time of failure of the electric hammer 100 is facilitated.
 また、第1の実施形態によれば、クランク軸125の周方向に関して固定された係合部材133を、モータ軸113の係合凹部113aに係合させることでモータ軸113とクランク軸125とを連結させるため、係合部材133と係合凹部113aとの間に径方向に所定の隙間を設定することができる。すなわち、モータ軸113とクランク軸125の中心位置にずれが存在しても、隙間によって当該ずれを許容することができる。換言すると、係合部材133は、トルク伝達部材としての機能と、モータ軸113とクランク軸125の中心位置のずれを許容する位置ずれ対応部材機能を有する。 Further, according to the first embodiment, the engaging shaft 133 fixed in the circumferential direction of the crankshaft 125 is engaged with the engaging recess 113a of the motor shaft 113, whereby the motor shaft 113 and the crankshaft 125 are connected. In order to make the connection, a predetermined gap can be set in the radial direction between the engaging member 133 and the engaging recess 113a. That is, even if there is a deviation between the center positions of the motor shaft 113 and the crankshaft 125, the deviation can be allowed by the gap. In other words, the engagement member 133 has a function as a torque transmission member and a position shift corresponding member function that allows a shift in the center position between the motor shaft 113 and the crankshaft 125.
 また、第1の実施形態によれば、モータ軸113およびクランク軸125は、軸方向の複数箇所を軸受116,117,126により支持されているため、モータ軸113及びクランク軸125が安定して回転される。また、モータ軸113を支持するための軸受116,117は、単一の部材である下ハウジング部104bによって支持されている。このため、軸受116,117を別々の軸受支持部材で支持する場合に比べ、部材点数を削減することができる。その結果、構造の簡素化でき、組付けを容易に行うことができる。 According to the first embodiment, since the motor shaft 113 and the crankshaft 125 are supported by the bearings 116, 117, and 126 at a plurality of locations in the axial direction, the motor shaft 113 and the crankshaft 125 are stable. It is rotated. The bearings 116 and 117 for supporting the motor shaft 113 are supported by the lower housing portion 104b that is a single member. For this reason, compared with the case where the bearings 116 and 117 are supported by separate bearing support members, the number of members can be reduced. As a result, the structure can be simplified and assembly can be easily performed.
(第2の実施形態)
 次に第2の実施形態につき、図4~図6を参照しつつ説明する。第2の実施形態は、打撃工具として電動ハンマからハンマドリルに変更した例である。図4にハンマドリル200の全体構成が示される。ハンマドリル200は、ハンマビット119に長軸方向の打撃動作に加え、長軸方向周りに回転動作されるように構成されている。すなわち、運動変換機構120及び打撃要素140とは別に、電動モータ110の回転出力をハンマビット119に伝達するための動力伝達機構150を更に備えている。動力伝達機構150以外については、第1の実施形態の電動ハンマ100と同様に構成される。従って、動力伝達機構150以外の構成については、第1の実施形態で用いた符号と同一符号を付してその説明を省略する。
(Second Embodiment)
Next, a second embodiment will be described with reference to FIGS. The second embodiment is an example in which the hammer is changed from an electric hammer as a hammering tool. FIG. 4 shows the overall configuration of the hammer drill 200. The hammer drill 200 is configured to rotate around the long axis direction in addition to the hammer bit 119 striking operation in the long axis direction. That is, in addition to the motion conversion mechanism 120 and the striking element 140, a power transmission mechanism 150 for transmitting the rotational output of the electric motor 110 to the hammer bit 119 is further provided. The components other than the power transmission mechanism 150 are configured similarly to the electric hammer 100 of the first embodiment. Therefore, components other than the power transmission mechanism 150 are denoted by the same reference numerals as those used in the first embodiment, and description thereof is omitted.
 第2の実施形態に係る動力伝達機構150は、図5に示すように、モータ軸113に平行に配置された、第1中間軸151及び第2中間軸152を有する。第1中間軸151には、第1中間ギア154及び第1中間ギア154より小径の第2中間ギア155が固定状に取付けられている。第2中間軸152には、第2中間ギア155と常時に噛み合い係合する第3中間ギア156が固定状に取付けられている。第1中間ギア154は、電動モータ110によって駆動される駆動ギア153と常時に噛み合い係合する。従って、電動モータ110のトルクは、駆動ギア153から第1から第3中間ギア154,155,156を経て所定の減速比で減速されて第2中間軸152に伝達される。 As shown in FIG. 5, the power transmission mechanism 150 according to the second embodiment includes a first intermediate shaft 151 and a second intermediate shaft 152 that are arranged in parallel to the motor shaft 113. A first intermediate gear 154 and a second intermediate gear 155 having a smaller diameter than the first intermediate gear 154 are fixedly attached to the first intermediate shaft 151. A third intermediate gear 156 that is always meshed with and engaged with the second intermediate gear 155 is fixedly attached to the second intermediate shaft 152. The first intermediate gear 154 always meshes and engages with a drive gear 153 driven by the electric motor 110. Accordingly, the torque of the electric motor 110 is transmitted from the drive gear 153 through the first to third intermediate gears 154, 155 and 156 at a predetermined reduction ratio and transmitted to the second intermediate shaft 152.
 第2中間軸152へと伝達されたトルクは、当該第2中間軸152に一体に形成された小べベルギア157から当該小べベルギア157に噛み合い係合する大べベルギア158に伝達される。当該大べベルギア158は、ツールホルダ159に結合されており、ハンマビット119へトルクが伝達されるように構成されている。 The torque transmitted to the second intermediate shaft 152 is transmitted from the small bevel gear 157 formed integrally with the second intermediate shaft 152 to the large bevel gear 158 engaged with and engaged with the small bevel gear 157. The large bevel gear 158 is coupled to the tool holder 159 and configured to transmit torque to the hammer bit 119.
 なお、第2の実施形態では、図5に示すように、インナハウジング104の下ハウジング部104bは、電動モータ110を支持するモータ支持領域と、第1中間軸151及び第2中間軸152を軸受151a,152aを介して支持する中間軸支持領域を備えている。 In the second embodiment, as shown in FIG. 5, the lower housing portion 104 b of the inner housing 104 supports the motor support region that supports the electric motor 110, the first intermediate shaft 151, and the second intermediate shaft 152. An intermediate shaft support region is provided which is supported via 151a and 152a.
 図5、図6に示すように、ハンマドリル200においては、モータ軸113が運動変換機構120のクランク軸125と同軸上に配置されており、モータ軸113とクランク軸125は係合部材133を介して連結されている。モータ軸113とクランク軸125の連結構造は第1の実施形態と同様である。さらに、第2の実施形態では、モータ軸113に駆動ギア153を設け、モータ軸113のトルクをハンマビット119へと伝達するように構成されている。 As shown in FIGS. 5 and 6, in the hammer drill 200, the motor shaft 113 is disposed coaxially with the crankshaft 125 of the motion conversion mechanism 120, and the motor shaft 113 and the crankshaft 125 are interposed via the engaging member 133. Are connected. The connection structure between the motor shaft 113 and the crankshaft 125 is the same as in the first embodiment. Further, in the second embodiment, a drive gear 153 is provided on the motor shaft 113, and the torque of the motor shaft 113 is transmitted to the hammer bit 119.
 第2の実施形態によれば、ハンマドリル200の軽量化、および小型化が可能となる。これにより加工作業を行うときの電動ハンマ100の操作性を向上できる等、第1の実施形態の電動ハンマ100と同様の作用効果を奏することができる。 According to the second embodiment, the hammer drill 200 can be reduced in weight and size. Thus, the same operational effects as those of the electric hammer 100 of the first embodiment can be obtained, for example, the operability of the electric hammer 100 when performing a machining operation can be improved.
 なお、第2の実施形態では、駆動ギア153はモータ軸113に取付けられていたが、駆動ギア153はクランク軸125に取り付けられていてもよい。 In the second embodiment, the drive gear 153 is attached to the motor shaft 113, but the drive gear 153 may be attached to the crankshaft 125.
 また、第1及び第2の実施形態では、係合部材133は、円柱状部材であったが、スチールボールに変更可能である。また、第1及び第2の実施形態では、モータ軸113の外側とクランク軸125の内側との間に介在部材として係合部材133を配置しているが、これには限られない。例えば、モータ軸113とクランク軸125を介在部材としてのカップリングを用いて連結してもよい。また、介在部材としてキーを用いてもよい。 In the first and second embodiments, the engaging member 133 is a columnar member, but can be changed to a steel ball. In the first and second embodiments, the engaging member 133 is disposed as an interposed member between the outer side of the motor shaft 113 and the inner side of the crankshaft 125, but is not limited thereto. For example, the motor shaft 113 and the crankshaft 125 may be connected using a coupling as an interposed member. A key may be used as the interposition member.
 また、モータ軸113とクランク軸125との連結構造につき、介在部材を用いずに、一方の軸にスプライン穴を設定し、他方の軸にスプライン軸を設定することで、スプライン孔とスプライン軸により連結してもよい。また、圧入による連結構造ないし二面幅を利用した連結構造に変更することも可能である。 In addition, with regard to the connection structure between the motor shaft 113 and the crankshaft 125, a spline hole is set on one shaft and a spline shaft is set on the other shaft without using an intervening member. You may connect. Moreover, it is also possible to change to a connection structure by press-fitting or a connection structure using a two-sided width.
 以上の発明の趣旨に鑑み、本発明に係る打撃工具は、下記の態様が構成可能である。
(態様)
 請求項4に記載の打撃工具であって、
 前記軸受支持部材は、円筒状部材として設けられており、
 前記出力軸は、前記軸受支持部材の内側で前記軸受により支持されており、
 前記固定子は、前記軸受支持部材の外側において支持されていることを特徴とする打撃工具。
In view of the gist of the above invention, the impact tool according to the present invention can be configured in the following manner.
(Aspect)
The impact tool according to claim 4,
The bearing support member is provided as a cylindrical member,
The output shaft is supported by the bearing inside the bearing support member,
The impact tool according to claim 1, wherein the stator is supported outside the bearing support member.
100 電動ハンマ(打撃工具)
101 本体部
103 アウタハウジング
104 インナハウジング
104a 上ハウジング部
104b 下ハウジング部(軸受支持部材)
107 ハンドグリップ
107a トリガ
110 電動モータ(モータ)
111 固定子
111a 駆動コイル
111b コイル保持部材
111c 筒状取付部材
112 回転子
113 モータ軸(出力軸)
113a 係合凹部(第2凹部)
115 磁石
116 ボールベアリング
117 ニードルベアリング
119 ハンマビット(工具ビット)
120 運動変換機構(クランク機構)
125 クランク軸
125a 貫通孔(孔)
125b 凹溝(第1凹部)
126 ボールベアリング
127 偏心軸(運動変換部材)
129 連接ロッド(運動変換部材)
131 ピストン
133 係合部材(介在部材)
135 圧縮コイルばね(付勢部材)
137 止め輪
140 打撃要素(工具駆動機構)
141 シリンダ
141a 空気室
143 ストライカ
145 インパクトボルト
150 動力伝達機構
151 第1中間軸
151a 軸受
152 第2中間軸
152a 軸受
153 駆動ギア
154 第1中間ギア
155 第2中間ギア
156 第3中間ギア
157 小べベルギア
158 大べベルギア
159 ツールホルダ
100 Electric hammer (blow tool)
101 Body 103 Outer housing 104 Inner housing 104a Upper housing part 104b Lower housing part (bearing support member)
107 hand grip 107a trigger 110 electric motor (motor)
111 Stator 111a Drive coil 111b Coil holding member 111c Cylindrical mounting member 112 Rotor 113 Motor shaft (output shaft)
113a Engaging recess (second recess)
115 Magnet 116 Ball Bearing 117 Needle Bearing 119 Hammer Bit (Tool Bit)
120 Motion conversion mechanism (crank mechanism)
125 Crankshaft 125a Through hole (hole)
125b Groove (first recess)
126 Ball bearing 127 Eccentric shaft (motion conversion member)
129 Connecting rod (motion conversion member)
131 piston 133 engaging member (intervening member)
135 Compression coil spring (biasing member)
137 Retaining Ring 140 Impact Element (Tool Drive Mechanism)
141 cylinder 141a air chamber 143 striker 145 impact bolt 150 power transmission mechanism 151 first intermediate shaft 151a bearing 152 second intermediate shaft 152a bearing 153 drive gear 154 first intermediate gear 155 second intermediate gear 156 third intermediate gear 157 small bevel gear 158 Large bevel gear 159 Tool holder

Claims (7)

  1.  工具ビットの長軸方向の打撃動作により被加工材に所定の加工作業を行う打撃工具であって、
     回転子、固定子、及び回転子と一体回転する出力軸を備えたモータと、
     前記モータの回転運動を直線運動に変換するクランク機構と、
     前記クランク機構によって駆動され、前記工具ビットを直線状に駆動する工具駆動機構と、を有し、
     前記クランク機構は、前記モータの出力軸とは別体に形成されたクランク軸と、前記クランク軸の回転運動を直線運動に変換して前記工具駆動機構を駆動する運動変換部材とを有し、
     前記モータは、前記回転子が前記固定子の外側に配置されたアウタロータ型モータとして構成され、
     前記出力軸と前記クランク軸が同軸に配置されて互いに連結されていることを特徴とする打撃工具。
    A striking tool that performs a predetermined processing operation on a workpiece by a striking motion in the long axis direction of a tool bit,
    A rotor, a stator, and a motor having an output shaft that rotates integrally with the rotor;
    A crank mechanism for converting the rotational motion of the motor into linear motion;
    A tool drive mechanism that is driven by the crank mechanism and drives the tool bit linearly;
    The crank mechanism has a crankshaft formed separately from the output shaft of the motor, and a motion conversion member that converts the rotational motion of the crankshaft into a linear motion to drive the tool drive mechanism,
    The motor is configured as an outer rotor type motor in which the rotor is disposed outside the stator,
    The impact tool, wherein the output shaft and the crankshaft are coaxially arranged and connected to each other.
  2.  請求項1に記載の打撃工具であって、
     前記出力軸と前記クランク軸は、それぞれが軸方向の複数箇所を軸受により支持されていることを特徴とする打撃工具。
    The impact tool according to claim 1,
    Each of the output shaft and the crankshaft is supported by a bearing at a plurality of locations in the axial direction.
  3.  請求項2に記載の打撃工具であって、
     前記出力軸を支持する複数の軸受は、単一の軸受支持部材によって支持されていることを特徴とする打撃工具。
    The impact tool according to claim 2,
    A plurality of bearings that support the output shaft are supported by a single bearing support member.
  4.  請求項3に記載の打撃工具であって、
     前記固定子は、前記軸受支持部材によって支持されていることを特徴とする打撃工具。
    The impact tool according to claim 3,
    The hitting tool, wherein the stator is supported by the bearing support member.
  5.  請求項1~4のいずれか1項に記載の打撃工具であって、
     前記出力軸と前記クランク軸が介在部材を介して連結され、
     前記出力軸から前記介在部材、前記クランク軸の順序でトルクが伝達されるように構成されていることを特徴とする打撃工具。
    The striking tool according to any one of claims 1 to 4,
    The output shaft and the crankshaft are connected via an interposed member,
    A striking tool configured to transmit torque in the order of the intermediate member and the crankshaft from the output shaft.
  6.  請求項5に記載の打撃工具であって、
     前記出力軸と前記クランク軸のうちの一方の軸が他方の軸の内側に挿入されており、
     前記介在部材は、前記一方の軸の外側と前記他方の軸の内側との間に配置されていることを特徴とする打撃工具。
    The impact tool according to claim 5,
    One of the output shaft and the crankshaft is inserted inside the other shaft,
    The impact tool, wherein the interposition member is arranged between the outer side of the one shaft and the inner side of the other shaft.
  7.  請求項6に記載の打撃工具であって、
     前記介在部材を軸方向に付勢する付勢部材を有し、
     前記一方の軸の外表面には、軸方向に沿う第1凹部が形成され、
     前記他方の軸の内表面には、軸方向に沿う第2凹部が形成されており、
     前記介在部材は、前記第1凹部と前記第2凹部に係合することで前記トルクの伝達が可能とされることを特徴とする打撃工具。
    The impact tool according to claim 6,
    A biasing member for biasing the interposition member in the axial direction;
    A first recess along the axial direction is formed on the outer surface of the one shaft,
    A second recess along the axial direction is formed on the inner surface of the other shaft,
    The impact tool is characterized in that the torque can be transmitted by engaging the interposition member with the first recess and the second recess.
PCT/JP2013/052940 2012-02-09 2013-02-07 Impact tool WO2013118840A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-026559 2012-02-09
JP2012026559A JP2013163234A (en) 2012-02-09 2012-02-09 Impact tool

Publications (1)

Publication Number Publication Date
WO2013118840A1 true WO2013118840A1 (en) 2013-08-15

Family

ID=48947595

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/052940 WO2013118840A1 (en) 2012-02-09 2013-02-07 Impact tool

Country Status (2)

Country Link
JP (1) JP2013163234A (en)
WO (1) WO2013118840A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60109789U (en) * 1983-12-22 1985-07-25 松下電工株式会社 vibrating drill
WO2007029729A1 (en) * 2005-09-07 2007-03-15 Yokota Industrial Co., Ltd. Electric impact tightening tool

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60109789U (en) * 1983-12-22 1985-07-25 松下電工株式会社 vibrating drill
WO2007029729A1 (en) * 2005-09-07 2007-03-15 Yokota Industrial Co., Ltd. Electric impact tightening tool

Also Published As

Publication number Publication date
JP2013163234A (en) 2013-08-22

Similar Documents

Publication Publication Date Title
JP6441588B2 (en) Impact tool
US8016047B2 (en) Electrical power tool with anti-vibration mechanisms of different types
WO2013111460A1 (en) Striking tool
JP4863942B2 (en) Impact tool
JP5336781B2 (en) Work tools
WO2018221105A1 (en) Reciprocating tool
JP5214343B2 (en) Work tools
JP4793755B2 (en) Electric tool
JP5767511B2 (en) Reciprocating work tool
JP2018153876A (en) Electric tool
WO2016076377A1 (en) Striking device
EP2415563B1 (en) Impact tool
JP2011011296A (en) Working tool
WO2013118840A1 (en) Impact tool
JP4805288B2 (en) Electric hammer
JP5009060B2 (en) Impact tool
WO2017199823A1 (en) Impact tool
JP2007175837A (en) Hammering tool
JP5327726B2 (en) Impact tool
JP6612496B2 (en) Impact tool
JP2012232371A (en) Hammering tool
JP6385003B2 (en) Impact tool
JP2004330377A (en) Working tool
JP2017042888A (en) Impact tool
JP2008279565A (en) Impact tool

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13746145

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13746145

Country of ref document: EP

Kind code of ref document: A1