WO2013118772A1 - Travel control device and travel control method - Google Patents

Travel control device and travel control method Download PDF

Info

Publication number
WO2013118772A1
WO2013118772A1 PCT/JP2013/052725 JP2013052725W WO2013118772A1 WO 2013118772 A1 WO2013118772 A1 WO 2013118772A1 JP 2013052725 W JP2013052725 W JP 2013052725W WO 2013118772 A1 WO2013118772 A1 WO 2013118772A1
Authority
WO
WIPO (PCT)
Prior art keywords
obstacle
warning
unit
distance
detected
Prior art date
Application number
PCT/JP2013/052725
Other languages
French (fr)
Japanese (ja)
Inventor
菅野 健
雅裕 小林
利通 後閑
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Publication of WO2013118772A1 publication Critical patent/WO2013118772A1/en

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/166Anti-collision systems for active traffic, e.g. moving vehicles, pedestrians, bikes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/93Sonar systems specially adapted for specific applications for anti-collision purposes
    • G01S15/931Sonar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/168Driving aids for parking, e.g. acoustic or visual feedback on parking space

Definitions

  • the present invention relates to a travel control device and a travel control method.
  • Patent Document 1 a technique for detecting an obstacle approaching the periphery of a vehicle using an obstacle sensor mounted on the vehicle is known (see, for example, Patent Document 1).
  • Patent Document 1 based on the shift position of the vehicle, the shape of the compartment that can be parked, and the relative position and inclination of the compartment with respect to the vehicle, whether or not the vehicle proceeds as it is and makes contact with surrounding obstacles. It is determined whether or not. And when it determines with not contacting, the determination result in the approach determination means of an obstruction is correct
  • Patent Document 1 discloses an invention related to a parking assist device when a vehicle is parked in a row, obstacles that are targets of alarm suppression are limited to stationary objects. Therefore, even if there is no risk of contact with the vehicle traveling around when retreating from the parking lot, an unnecessary alarm may be issued, which may cause the driver to feel uncomfortable.
  • the present invention has been made in view of the above problems, and its object is to suppress a warning to a vehicle that passes directly toward the vehicle while moving away from the vehicle when the vehicle is moving backward. It is providing the traveling control apparatus and traveling control method which reduce the discomfort which a person feels.
  • the travel control device includes a side obstacle detection unit, a relative speed estimation unit, a backward movement preparation detection unit, a warning unit, and a suppression unit.
  • the side obstacle detection unit divides a range including the side of the host vehicle and extends toward the rear of the host vehicle into a plurality of detection angle regions, and includes obstacles and obstacles entering the plurality of detection angle regions. The distance is detected for each detection angle region.
  • the relative speed estimation unit estimates the relative speed with the obstacle from the distance from the obstacle detected by the side obstacle detection unit.
  • the backward movement preparation detection unit detects preparation that the host vehicle moves backward.
  • the warning unit issues a warning for the obstacle detected by the side obstacle detection unit.
  • the suppression unit detects a preparation for the vehicle to move backward, and the backward movement detection detection unit detects the predetermined value determined by the side obstacle detection unit based on the relative speed estimated by the relative speed estimation unit in a predetermined detection angle region.
  • the warning by the warning unit is suppressed.
  • a travel control method uses a travel control device having the side obstacle detection unit, the relative speed estimation unit, the backward movement preparation detection unit, and the warning unit.
  • the control method is based on the relative speed estimated by the relative speed estimation unit in the predetermined detection angle region when the backward movement preparation detection unit detects the preparation of the vehicle moving backward.
  • the warning by the warning unit is suppressed.
  • FIG. 1 is a schematic diagram illustrating a vehicle layout example of a travel control device according to an embodiment.
  • FIG. 2 is a block diagram illustrating a configuration of the travel control apparatus according to the embodiment.
  • FIG. 3 is a block diagram showing a specific configuration example of the host vehicle information acquisition unit 21 of FIG.
  • FIG. 4 is a block diagram illustrating a specific configuration example of the peripheral information acquisition unit 22 of FIG.
  • FIG. 5 is a block diagram illustrating a specific configuration example of the control determination information calculation unit 24 of FIG.
  • FIG. 6 is a plan view showing the side detection areas KR1 to KR7 in which the side obstacle detection sensor 19c can detect an obstacle.
  • FIG. 7 is a flowchart showing the operation of the travel control device when executing the travel control process.
  • FIG. 7 is a flowchart showing the operation of the travel control device when executing the travel control process.
  • FIG. 8 is a plan view showing an example of a predetermined angle range RDR including the side SB of the own vehicle 1.
  • FIG. 9 is a graph showing an example of the relationship between the second distance threshold and the approach time.
  • FIG. 10A is a graph showing a distance to an obstacle that changes with the passage of time and a detection angle region in which the obstacle is detected.
  • FIG. 10B shows an approach time that changes with the passage of time.
  • FIG. 10C is a graph showing the timing at which the warning suppression is canceled in the specification pattern 1 and the specification pattern 2.
  • FIG. 11 is a graph for explaining the distance at which the obstacle has approached the host vehicle 1 since the obstacle has started to be detected.
  • FIG. 12 is a graph showing an example of the relationship between the approach threshold and the approach time.
  • FIG. 13 is a plan view showing a case where the parking direction PD of the host vehicle 1 and the traveling direction AD of the vehicle 61 are substantially perpendicular.
  • the vehicle 1 (hereinafter referred to as “own vehicle”) includes brake lamps 4a and 4b, an ignition switch 18 for instructing start and stop of a driving force generator including an engine and a motor, and an obstacle approaching the front PD of the own vehicle 1.
  • Front obstacle detection sensors 13a to 13d and 19e for detecting an object, rear obstacle detection sensors 13e to 13h for detecting an obstacle approaching the rear of the vehicle 1, and an obstacle approaching the side of the vehicle 1 are detected.
  • the front obstacle detection sensors 13a to 13d are provided, for example, in the front bumper of the own vehicle 1, and the rear obstacle detection sensors 13e to 13h are provided, for example, in the rear bumper of the own vehicle 1.
  • a sonar detection that detects the distance between the obstacle and the obstacle entering the relatively near area from the own vehicle 1 using ultrasonic waves.
  • a machine can be used.
  • One side obstacle detection sensor 19a to 19d is arranged on each of the left and right fenders near the front PD and the rear side of the host vehicle 1, and the front obstacle detection sensor 19e is, for example, in the front bumper of the host vehicle 1. Is provided.
  • the vehicle control device 2 is configured by an arithmetic processing device such as an ECU (Engine Control Unit), and controls the operation of the entire host vehicle 1 by executing a computer program stored in advance by a CPU in the arithmetic processing device.
  • ECU Engine Control Unit
  • the travel control device includes a host vehicle information acquisition unit 21 that acquires information of the host vehicle 1, a peripheral information acquisition unit 22 that acquires information about the periphery of the host vehicle, a system state selection unit 23, and control determination information.
  • a calculation unit 24 and a warning device that issues a warning to an obstacle detected by the surrounding information acquisition unit 22 are provided.
  • the warning device includes a braking force generation system (25 to 27) that generates a braking force as an obstacle approach warning, and an accelerator pedal operation reaction force that generates an accelerator pedal operation reaction force as an obstacle approach warning.
  • a system 28 to 30
  • a notification system 31 to 33
  • a driving force control system 34 to 36
  • the host vehicle information acquisition unit 21 detects wheel speed sensors 11 a to 11 d installed on the wheels 20 a to 20 d of the host vehicle 1 and accelerator opening detection installed on the accelerator pedal of the host vehicle 1.
  • a brake pedal position detector 6 that detects the position of the brake pedal of the vehicle 1
  • a shift position detector 9 (rear movement preparation detector) that detects the shift position of the vehicle 1
  • the SW operation recognition unit 3 that detects the state of the on / off switch, the steering sensor 10 that detects the steering angle of the steering of the host vehicle 1, and the acceleration / deceleration sensor 12 that detects the acceleration / deceleration of the host vehicle 1 are provided. .
  • the wheel speed sensors 11a to 11d detect the rotational speeds of the wheels 20a to 20d of the vehicle 1 respectively.
  • the own vehicle speed calculation unit 40 calculates the own vehicle speed (wheel speed) from the respective rotation speeds of the wheels 20a to 20d in consideration of the rotation radii of the wheels 20a to 20d. Further, the host vehicle speed calculation unit 40 calculates the travel distance by integrating the host vehicle speed.
  • the brake pedal position detector 6 detects whether or not the driver is depressing the brake pedal and the amount of depression of the brake pedal.
  • the shift position detector 9 detects the state of the shift position in order to detect the current state of the transmission. An example of detecting that the vehicle 1 is ready to move backward includes that the shift position detection unit 9 detects a reverse (R) position.
  • the SW operation recognition unit 3 detects the switch state of the travel control device and the switch state of the ignition switch 18.
  • the steering angle calculation unit 41 performs a filtering process on the steering angle of the steering detected by the steering sensor 10 as necessary.
  • the acceleration / deceleration calculation unit 42 performs filter processing on the acceleration / deceleration of the host vehicle 1 detected by the acceleration / deceleration sensor 12 as necessary.
  • the own vehicle information output unit 43 determines the vehicle speed of the own vehicle 1, the accelerator opening, the position of the brake pedal, the shift position, the state of the on / off switch of the travel control device, the steering angle and the acceleration / deceleration. The information is transferred to the system state selection unit 23 or the control determination information calculation unit 24.
  • the own vehicle speed calculation unit 40, the steer angle calculation unit 41, the acceleration / deceleration calculation unit 42, and the own vehicle information output unit 43 can be configured as a part of the vehicle control device 2 of FIG.
  • an arithmetic processing device different from the vehicle control device 2 is prepared, and the CPU in the arithmetic processing device executes a computer program stored in advance, so that the own vehicle speed calculation unit 40, the steering angle calculation unit 41, the acceleration / deceleration You may implement
  • the peripheral information acquisition unit 22 is a front obstacle detection sensor 13a to 13d, 19e installed at the front, rear, and side portions of the vehicle 1 shown in FIG. Detection sensors 13e to 13h and side obstacle detection sensors 19a to 19d are provided.
  • the relative distance calculation unit 39 performs a filtering process on the value of the distance from the obstacle detected by the surrounding obstacle detection sensor 37 as necessary.
  • the relative speed estimation unit 38 estimates the relative speed with the obstacle from the distance to the obstacle. The sign of the relative speed is positive when the obstacle approaches the host vehicle 1 and negative when the obstacle moves away.
  • the approach time estimation unit 46 approaches the vehicle 1 from the distance from the obstacles detected by the side obstacle detection sensors 19a to 19d and the relative speed from the obstacles estimated by the relative speed estimation unit 38. Estimate the approach time, which is the time it takes to complete.
  • the approach time may be, for example, TTC (collision time) obtained by dividing the distance from the obstacle by the relative speed.
  • the obstacle presence / absence determination unit 44 outputs a signal indicating whether or not the surrounding obstacle detection sensor 37 has detected an obstacle.
  • the surrounding information output unit 45 includes the presence / absence of obstacles present in the front PD, the rear, and the side of the vehicle 1, the distance and relative speed with the obstacle, the approach time, and the obstacle detection direction or detection angle described below.
  • the peripheral information is transferred to the system state selection unit 23 or the control determination information calculation unit 24.
  • the relative distance calculation unit 39, the relative speed estimation unit 38, the obstacle presence / absence determination unit 44, the approach time estimation unit 46, and the surrounding information output unit 45 can be configured as a part of the vehicle control device 2 in FIG.
  • an arithmetic processing device different from the vehicle control device 2 is prepared, and the CPU in the arithmetic processing device executes a computer program stored in advance, so that the relative distance calculation unit 39, the relative speed estimation unit 38, the obstacle You may implement
  • the system state selection unit 23 determines whether to turn the system state on or off based on the state of the on / off switch of the travel control device detected by the SW operation recognition unit 3.
  • the side detection area will be described with reference to FIGS. 6 and 8 by taking the side obstacle detection sensor 19c as an example.
  • the side obstacle detection sensor 19c installed on the rear fender on the left rear side of the host vehicle 1 includes the side of the host vehicle 1 and is rearward from the side of the host vehicle 1 with the side obstacle detection sensor 19c as a center. It is possible to detect an obstacle (for example, the vehicle 61) entering the fan-shaped area (side detection area) having a predetermined angle that spreads toward the front.
  • the side obstacle detection sensor 19c divides the side detection region into a plurality of detection angle regions KR1 to KR7, and determines the distance between the obstacle and the obstacle entering the plurality of detection angle regions KR1 to KR7 as the detection angle region.
  • the detection angle regions KR1 to KR7 where the obstacle is detected can be specified by scanning the electromagnetic wave in the horizontal direction within the side detection region.
  • the number of divisions is not limited to seven, and it may be divided into fewer or more numbers.
  • the other side obstacle detection sensors 19a, 19b, and 19d are the same as the side obstacle detection sensor 19c.
  • the side of the own vehicle 1 is a direction SB perpendicular to the parking direction (traveling direction) PD of the own vehicle 1, and the side in FIGS.
  • the left side SB is illustrated.
  • the rear of the host vehicle 1 is a direction rotated by 180 ° with respect to the parking direction PD of the host vehicle 1. As shown in FIG.
  • the rear boundary and the parking direction side boundary of the plurality of detection angle regions KR1 to KR7 are located on the side of the straight line MB extending from the side obstacle detection sensor 19c in the parking direction PD. 6 and 8, the own vehicle 1 is parked adjacent to the roadway divided by the lanes GL1, GL2, GL3, GL4, and the other parked vehicles 60a to 60c are oblique to the own vehicle 1. It is parked next to.
  • the control determination information calculation unit 24 includes a suppression determination unit 47 (suppression unit) that determines whether or not to suppress a warning by the warning unit, and a first risk calculation unit 48 that calculates a first risk that serves as a warning determination criterion. And a second risk calculation unit 49 for calculating a second risk that is a criterion for warning.
  • the determination result of the suppression determination unit 47 and the calculation results of the first risk calculation unit 48 and the second risk calculation unit 49 are the brake control determination unit 25, the accelerator pedal operation reaction force determination unit 28, the notification determination unit 31, and the driving force control. Each is transmitted to the determination unit 34.
  • the first risk calculation unit 48 first calculates a base value of the first risk.
  • the base value of the first risk is a reference value for determining whether or not to issue a warning based on the distance from the obstacle detected by the rear obstacle detection sensors 13e to 13h.
  • the base value of the first risk is a distance that changes according to the host vehicle speed. For example, the base value of the first risk increases as the host vehicle speed increases. When the host vehicle speed is 0, the vehicle speed may be offset to take a predetermined value. Further, the base value of the first risk may be changed according to the approach time estimated by the approach time estimation unit 46.
  • the first risk calculation unit 48 refers to the data indicating the relationship between the vehicle speed and the base value of the first risk and the data indicating the relationship between the approach time and the base value of the first risk.
  • the base value of the first risk may be calculated from the approach time.
  • the 1st risk calculating part 48 calculates the 1st risk corresponding to each warning control from the base value of the 1st risk using the coefficient corresponding to each warning control. For example, for braking control, the coefficient R1_K1 is multiplied by the base value, for accelerator pedal operation reaction force control, the coefficient R1_K2 is multiplied by the base value, for notification control, the coefficient R1_K3 is multiplied by the base value, and the driving force Regarding the control, by multiplying the base value by the coefficient R1_K4, the first risk can be calculated by changing the weight for each warning control. For example, each coefficient is set to a value between 0 and 1, and R1_K1 ⁇ R1_K2 ⁇ R1_K4 ⁇ R1_K3. This enables weighting that operates in the order of notification, driving force control, accelerator pedal operation reaction force control, and braking control.
  • the second risk calculator 49 first calculates the base value of the second risk.
  • the base value of the second risk includes the base value of the second risk (distance) and the base value of the second risk (approach time).
  • the base value of the second risk (distance) is a reference value for determining whether or not to issue a warning based on the distance from the obstacle detected by the side obstacle detection sensors 19a to 19d.
  • the base value of the second risk (approach time) is a reference value for determining whether or not to issue a warning based on the approach time estimated by the approach time estimation unit 46.
  • the base value of the second risk (distance) changes according to the host vehicle speed.
  • the second risk calculation unit 49 may calculate the base value of the second risk (distance) from the own vehicle speed with reference to data indicating the relationship between the own vehicle speed and the base value of the second risk (distance). .
  • the base value of the second risk (distance) may be a value different from the base value of the first risk. In this case, the base value of the second risk (distance) is preferably larger than the base value of the first risk.
  • the vehicle speed may be offset to take a predetermined value. Further, the base value of the second risk (distance) may be changed according to the approach time calculated by the relative speed estimation unit 38.
  • the second risk calculation unit 49 uses the coefficient corresponding to each warning control from the base value of the second risk (distance) and the base value of the second risk (approach time).
  • a risk (distance) and a second risk (approach time) are calculated.
  • the coefficient R2_K1 is multiplied by the base value.
  • the coefficient R2_K2 is multiplied by the base value.
  • the coefficient R2_K3 is multiplied by the base value.
  • the coefficient R2_K4 is multiplied by the base value to change the weight for each control to calculate the second risk (distance) and the second risk (approach time).
  • each coefficient is set to a value between 0 and 1, and R2_K1 ⁇ R2_K2 ⁇ R2_K4 ⁇ R2_K3. This enables weighting that operates in the order of notification, driving force control, accelerator pedal operation reaction force control, and braking control.
  • the suppression determination unit 47 passes a vehicle 61 that passes through the vehicle 1 as it is toward the vehicle 1 in a predetermined angle range RDR with respect to the vehicle 1 in a state where the distance is large when the vehicle retreats from the parking lot.
  • the side obstacle detection sensors 19a to 19c detect, the warning by the warning unit is suppressed.
  • the suppression determination unit 47 detects the reverse position by the shift position detection unit 9, and the side obstacle detection sensors 19a to 19c detect the relative speed estimation unit 38 in the predetermined detection angle regions KR3, KR4, KR5.
  • the “predetermined detection angle region” is a region located in a predetermined angle range RDR including the side SB of the host vehicle 1.
  • the “predetermined approach state” is a state in which an obstacle (vehicle 61) is approaching the host vehicle 1, in other words, a state in which the relative speed estimated by the relative speed estimation unit 38 is 0 or more. It is.
  • the suppression determination unit 47 suppresses warning by the warning unit when the conditions A-1 and A-2 are satisfied at the same time.
  • suppressing warnings by the warning unit includes not warning, delaying the timing of warning, and reducing the level or degree of warning.
  • the suppression determination unit 47 can stop the warning or delay the warning timing by setting the base value of the first risk or the base value of the second risk to 0 or decreasing.
  • the predetermined angle range RDR including the side SB of the host vehicle 1 is a rear angle from the half straight line SB extending from the side obstacle detection sensor 19c to the side of the host vehicle 1 toward the rear side.
  • the region extends by ⁇ (for example, 30 degrees) and the region expands by a forward angle ⁇ (for example, 40 degrees) from the half line SB toward the front (parking direction PD) side.
  • the detection angle regions KR3, KR4, and KR5 are located in the predetermined angle range RDR.
  • the distance from the obstacle detected by the side obstacle detection sensors 19a to 19c is the first distance.
  • the first distance threshold is preferably 10 m or more and 14 m or less, and more preferably 11 m or more and 13 m or less.
  • the first distance threshold value may be set in advance or may be controlled by the travel control device. When the travel control device controls, for example, the first distance threshold may be increased as the relative speed of the obstacle increases. Warnings are less likely to be suppressed for obstacles with a large relative speed, and appropriate warning control becomes possible.
  • the approach time estimated by the approach time estimation unit 46 is equal to or greater than the first time threshold value.
  • the first time threshold is preferably 1 second or more and 5 seconds or less, more preferably 2 seconds or more and 4 seconds or less.
  • the first time threshold value may be set in advance or may be controlled by the travel control device.
  • condition A-2 is satisfied is a case where at least one of the condition A-2a and the condition A-1b is satisfied, or a case where both the condition A-2a and the condition A-2b are satisfied.
  • the suppression determination unit 47 may cancel the suppression of the warning when a certain condition is satisfied thereafter. For example, when the distance from the obstacle detected by the side obstacle detection sensors 19a to 19d is shorter than the second distance threshold that is equal to or less than the first distance threshold (condition B- 1) Release the warning suppression. If the distance to the obstacle is shortened, it cannot be said that the obstacle travels far away from the vehicle 1. Therefore, in this case, the suppression of the warning can be canceled and an appropriate warning can be issued.
  • the second distance threshold can be changed according to the approach time.
  • the second distance threshold may be set to a larger value as the approach time is shorter as shown in FIG.
  • the suppression determination unit 47 warns when an obstacle moves from the detection angle regions KR3 to KR5 where the obstacle is detected when the warning starts to be suppressed to other detection angle regions KR1 to KR7 (condition B-2). This suppression may be released.
  • an obstacle starts to be detected in the detection angle region KR4 (t1), and is detected in the detection angle region KR4 when the warning is started to be suppressed (t4).
  • the suppression is released as shown in the specification pattern 1 in FIG. To do.
  • the specification pattern 2 in FIG. 10C when the distance to the obstacle is shorter than the second distance threshold based on the condition B-1 (t3) regardless of the condition B-2. The suppression is released.
  • the warning suppression may be released.
  • the second time threshold is preferably 1 second to 5 seconds, more preferably 2 seconds to 4 seconds.
  • the second time threshold may be set in advance or may be controlled by the travel control device. If the approach time is shortened, it is desirable to warn early even if it is far away. Therefore, in this case, the suppression of the warning can be canceled and an appropriate warning can be issued.
  • FIG. 10 (b) shows how the approach time becomes shorter as time passes, but although not shown in FIG. 10 (b), the approach time is below the second time threshold value. In such a case, the warning suppression may be canceled.
  • the suppression determination unit 47 may cancel the suppression of the warning when the distance that the obstacle has approached the vehicle 1 is equal to or greater than the approach threshold after starting to detect the obstacle (Condition B-4). For example, as shown in FIG. 11, the distance that the obstacle has approached the host vehicle 1 since the start of the obstacle detection is determined from the time t5 when the side obstacle detection sensors 19a to 19c start to detect the obstacle. Indicates the distance approached toward the vehicle 1. When an obstacle approaches the own vehicle 1, it cannot be said that the obstacle passes far away from the own vehicle 1. Therefore, in this case, the suppression of the warning can be canceled and an appropriate warning can be issued.
  • the approach threshold value may be set in advance or may be controlled by the travel control device.
  • the approach threshold can be changed according to the approach time. For example, as shown in FIG. 12, the approach threshold value can be made smaller as the approach time is shorter. If the approach time is short, suppression of the warning can be canceled at an early stage, so that an appropriate warning can be issued.
  • the suppression determination unit 47 releases the suppression of the warning when at least one of the condition B-1, the condition B-2, the condition B-3, and the condition B-4 is satisfied.
  • the warning suppression may be canceled when two or more conditions arbitrarily selected from the conditions B-1, B-2, B-3, and B-4 are simultaneously satisfied.
  • the braking force generation system determines whether or not to perform braking force control as an obstacle approach warning, a braking control determination unit 25, a braking control unit 26, and a braking control unit 26. And a braking force generator 27 that performs braking force control as an obstacle approach warning.
  • the accelerator pedal operation reaction force generation system includes an accelerator pedal operation reaction force determination unit 28 that determines whether or not to perform an accelerator pedal operation reaction force control as an obstacle approach warning, and an accelerator pedal operation reaction force control. And an accelerator pedal operation reaction force generator 30 that performs accelerator pedal operation reaction force control as an obstacle approach warning in accordance with the control by the accelerator pedal operation reaction force control unit 29.
  • the notification system (31 to 33) includes a notification determination unit 31, a notification control unit 32, and a notification control unit 32 that determine whether or not to issue a warning to the driver as an obstacle approach warning. And a notification device 33 that issues a warning to the driver as an approach warning.
  • the driving force generation system (34 to 36) is controlled by the driving force control determination unit 34, the driving force control unit 35, and the driving force control unit 35 that determine whether or not to perform driving force control as an obstacle approach warning. And a driving force generator 36 that controls the driving force as an obstacle approach warning.
  • Each of the calculated first risk, second risk (distance) and second risk (approach time) includes a braking control determination unit 25, an accelerator pedal operation reaction force determination unit 28, a notification determination unit 31, and a driving force control determination unit. 34 respectively.
  • the braking control determination unit 25 determines that a braking force is generated as an obstacle approach warning when any of the following conditions A01 to A03 is satisfied.
  • the distance from the obstacle detected by the rear obstacle detection sensors 13e to 13h is defined as “rear sensor detection distance”
  • the distance from the obstacle detected by the side obstacle detection sensors 19a to 19d is defined as “side”.
  • the approach time estimated by the approach time estimation unit 46 is referred to as “side sensor approach time”.
  • the first risk, the second risk (distance value) and the second risk (approach time) multiplied by the coefficient R1_K1 or R2_K1 for braking control are used as the first risk for braking, the second risk for braking (distance value), and for braking.
  • the braking control unit 26 increases the brake pressure at a predetermined rate of change when the braking control determination unit 25 determines to activate a warning by braking, and maintains the state when a predetermined target brake pressure is reached.
  • a predetermined time for example, 0.8 seconds
  • the brake pressure is reduced to 0 at a predetermined change rate. Note that both the predetermined rate of change and the predetermined target brake pressure may be changed according to the vehicle speed or the distance from the obstacle.
  • the braking force generator 27 controls the actual brake pressure for each of the wheels 20a to 20d so that the target brake pressure calculated by the brake controller 26 is obtained.
  • the accelerator pedal operation reaction force determination unit 28 determines that the accelerator pedal operation reaction force is generated as an obstacle approach warning when any of the following conditions A04 to A06 is satisfied.
  • the first risk, second risk (distance value) and second risk (approach time) multiplied by the coefficient R1_K2 or R2_K2 for accelerator pedal reaction force are the first risk for APD and the second risk (distance for APD). Value) and APD second risk (approach time).
  • the accelerator pedal operation reaction force control unit 29 determines that the accelerator pedal operation reaction force determination unit 28 generates an accelerator pedal operation reaction force
  • the accelerator pedal operation reaction force control unit 29 increases the reaction force command value at a predetermined rate of change, thereby increasing the predetermined reaction force command.
  • the value is reached, keep that state.
  • the holding time reaches a predetermined time (for example, 0.8 seconds)
  • the reaction force command value is decreased to 0 at a predetermined change rate. Note that both the predetermined change rate and the predetermined reaction force command value may be changed according to the vehicle speed or the distance from the obstacle.
  • the accelerator pedal operation reaction force generator 30 controls the operation reaction force of the accelerator pedal so that the reaction force command value calculated by the accelerator pedal operation reaction force control unit 29 is obtained.
  • the notification determination unit 31 determines that a warning by a voice or a buzzer is given as an obstacle approach warning when any of the following conditions A07 to A09 is satisfied.
  • the first risk, the second risk (distance value) and the second risk (approach time) multiplied by the alarm coefficient R1_K3 or R2_K3 are set as the first risk for warning, the second risk for warning (distance value), and the alarm. 2nd risk (approach time).
  • the notification control unit 32 repeats turning on and off of the buzzer drive signal for a predetermined time when the notification determination unit 31 determines that an alarm is issued.
  • the notification device 33 issues an alarm based on the buzzer drive signal calculated by the notification control unit 32. For example, a predetermined tone color “beep” is repeatedly generated. Alternatively, the alarm may continue to sound while the obstacle satisfies the above conditions. Further, simultaneously with the alarm, a light emitting object such as an indicator installed in the meter may be turned on or blinked.
  • the driving force control determination unit 34 determines that the driving force control is performed as an obstacle approach warning when any of the following conditions A10 to A12 is satisfied.
  • the first risk, the second risk (distance value) and the second risk (approach time) multiplied by the coefficient R1_K4 or R2_K4 for driving force are the first risk for driving force and the second risk for driving force (distance value).
  • the second risk for driving force (approach time) are the first risk for driving force and the second risk for driving force (distance value).
  • the driving force control unit 35 increases the reduction amount of the accelerator opening at a predetermined change rate.
  • the reduction amount of the accelerator opening reaches a predetermined value, the state is maintained. If the reduction amount is maintained for a predetermined time, the reduction amount of the accelerator opening is reduced to zero.
  • the final throttle opening of the engine is a value obtained by subtracting the reduction amount of the accelerator opening calculated by the driving force control unit 35 from the accelerator opening of the driver operation. Note that both the predetermined change rate and the predetermined amount of reduction in the accelerator opening may be changed according to the vehicle speed or the distance from the obstacle.
  • the driving force generator 36 controls the engine output based on the final engine throttle opening calculated by the driving force control unit 35.
  • the distance from the obstacle detected by the rear obstacle detection sensors 13e to 13h or the side obstacle detection sensors 19a to 19d is far.
  • a warning can be given to the obstacle.
  • the potential danger with respect to an obstacle can be recognized and a warning can be implemented at an appropriate timing.
  • the determination unit 31, the notification control unit 32, the driving force control determination unit 34, and the driving force control unit 35 can be configured as a part of the vehicle control device 2 in FIG.
  • an arithmetic processing device different from the vehicle control device 2 is prepared, and a CPU in the arithmetic processing device executes a computer program stored in advance.
  • the travel control device having the above-described configuration performs an appropriate warning for obstacles detected by the side obstacle detection sensors 19a to 19d by executing the following travel control process when the host vehicle 1 moves backward. Control can be performed.
  • the operation of the travel control device when executing the travel control process will be described. In the example of FIG. 7, the case where no warning is given will be described as an example of the case where warning by the warning unit is suppressed.
  • the system state selection unit 23 determines that the on / off switch of the travel control device is on, and the shift position detection unit 9 determines that the shift position of the vehicle 1 is R (reverse).
  • the travel control process is started at the timing when it is determined that the vehicle is in the position, and the process proceeds to step S1.
  • the traveling control process is repeatedly executed as long as the on / off switch of the traveling control device is in the on state and the shift position of the vehicle 1 is positioned at the R position.
  • the timing for starting the travel control process is not limited to the above conditions. For example, in addition to the above conditions, conditions such as the vehicle speed being a predetermined value or less and the steering angle being a predetermined value or less may be added.
  • the first risk calculation unit 48 and the second risk calculation unit 49 obtain the first risk or the second risk for each warning control. That is, the first risk for braking, the second risk for braking (distance value), the second risk for braking (approach time), the first risk for APD, the second risk for APD (distance value), the second risk for APD ( Approach time), alarm first risk, alarm second risk (distance value), alarm second risk (approach time), driving force first risk, driving force second risk (distance value), and driving The second risk for power (approach time) is calculated.
  • each of the braking control determination unit 25, the accelerator pedal operation reaction force determination unit 28, the notification determination unit 31, and the driving force control determination unit 34 performs an obstacle approach warning according to the above-described conditions A01 to A12. It is determined whether or not to perform. If it is determined that a warning is to be performed (YES in S2), the process proceeds to step S3. If it is not determined that a warning is to be performed (NO in S2), the flow of FIG. 7 ends.
  • step S3 the suppression determination unit 47 determines whether or not to suppress the warning by the warning unit based on the condition A-1 or the condition A-2. In this example, it is determined whether or not to stop the warning by the warning unit.
  • the shift position detection unit 9 detects the reverse position, and the side obstacle detection sensors 19a to 19d are estimated by the relative speed estimation unit 38 in predetermined detection angle regions KR3 to KR5.
  • the warning unit stops warning the obstacle (YES in S3).
  • step S3 the process proceeds to step S4, and the warning by the warning unit is performed. If YES in step S3, the process proceeds to step S5.
  • step S5 the suppression determination unit 47 determines whether to cancel the suppression of the warning based on the condition B-1, the condition B-2, the condition B-3, or the condition B-4. If the warning suppression is canceled (YES in S5), the process proceeds to step S4. If the warning suppression is not canceled (NO in S5), the flow of FIG. 7 ends.
  • FIG. 13 shows a case where the host vehicle 1 is parked from the front side by side in the vehicle width direction with respect to the other vehicles 60a and 60b.
  • warning suppression is canceled and appropriate warning control can be performed on the vehicle 61 traveling in the vertical direction AD with respect to the parking direction PD of the host vehicle 1. it can.
  • the shift position detection unit 9 detects the reverse position, and the side obstacle detection sensors 19a to 19d have predetermined approach states determined based on the relative speeds estimated by the relative speed estimation unit 38 in the predetermined detection angle regions KR3 to KR5. Is detected (condition A-1) and the distance from the obstacle detected by the side obstacle detection sensors 19a to 19d is far (condition A-2), the suppression determination unit 47 , Suppress warning by warning section. Reduces the driver's uncomfortable feeling by suppressing the warning to the vehicle 61 that passes through the vehicle 1 as it is toward the vehicle 1 in a predetermined angle range RDR with the distance away when the vehicle is retreating from the parking lot. can do.
  • condition A-2 the distance from the obstacle detected by the side obstacle detection sensors 19a to 19c is the first distance.
  • condition A-2a the distance is greater than or equal to the one-distance threshold. If the distance from the obstacle is long, it can be determined that the obstacle passes far away from the host vehicle 1, so that the warning can be appropriately suppressed and the uncomfortable feeling felt by the driver can be reduced.
  • the approach time estimated by the approach time estimation unit 46 is equal to or greater than the first time threshold value. (Condition A-2b). If the approach time is long, it can be determined that the vehicle is an obstacle passing far away from the host vehicle 1, so that the warning can be appropriately suppressed and the uncomfortable feeling felt by the driver can be reduced.
  • condition B-1 When the distance from the obstacle detected by the side obstacle detection sensors 19a to 19d is shorter than the second distance threshold value that is equal to or less than the first distance threshold value (condition B-1) Release the warning suppression. If the distance to the obstacle is shortened, it cannot be said that the obstacle travels far away from the vehicle 1. Therefore, in this case, the suppression of the warning can be canceled and an appropriate warning can be issued.
  • the suppression determination unit 47 warns when an obstacle moves from the detection angle regions KR3 to KR5 where the obstacle is detected when the warning starts to be suppressed to other detection angle regions KR1 to KR7 (condition B-2). This suppression may be released. If the obstacle moves to another detection angle region, it cannot be said that the obstacle passes far away from the host vehicle 1. Therefore, in this case, the suppression of the warning can be canceled and an appropriate warning can be issued.
  • the approach time estimated by the approach time estimating unit 46 is shorter than a second time threshold value (for example, 3 seconds) that is equal to or less than the first time threshold value (condition B-3).
  • the warning suppression may be released. If the approach time is shortened, it cannot be said that it is an obstacle passing far away from the vehicle 1. Therefore, in this case, the suppression of the warning can be canceled and an appropriate warning can be issued.
  • the suppression determination unit 47 may cancel the suppression of the warning when the distance that the obstacle has approached the vehicle 1 is equal to or greater than the approach threshold after starting to detect the obstacle (Condition B-4).
  • the suppression of the warning can be canceled and an appropriate warning can be issued.
  • the second distance threshold value may be set to a larger value as the approach time is shorter. For obstacles with a short approach time, it is difficult to release the suppression, and appropriate warning control becomes possible.
  • the approach threshold value may be set to a smaller value as the approach time is shorter. If the approach time is short, suppression of the warning can be canceled at an early stage, so that an appropriate warning can be issued.
  • the travel control device and the travel control method according to the present embodiment it is possible to suppress a warning for a vehicle that passes directly toward the own vehicle in a predetermined angle range with respect to the own vehicle in a state in which the distance is long when the vehicle is moving backward. Therefore, the uncomfortable feeling felt by the driver can be reduced. Therefore, the present invention has industrial applicability.
  • Shift position detector (rear movement preparation detector) 19a to 19d Side obstacle detection sensor (side obstacle detection unit) 27 ... Brake force generator (warning unit) 30 ... Accelerator pedal operation reaction force generator (warning part) 33 ... Notification device (warning unit) 36 ... Driving force generator (warning section) 38 ... Relative speed estimation part 46 ... Approach time estimation part 47 ... Inhibition judgment part (inhibition part) 61 ... Vehicle (obstacle) KR1 to KR7: detection angle region KR3 to KR5: predetermined detection angle region

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Traffic Control Systems (AREA)

Abstract

This travel control device has: a side obstacle detection sensor (19c) for dividing a range including a side (SB) of an automobile (1) and widening to the rear of the automobile (1) into a plurality of detection angle areas (KR1-KR7), and detecting an obstacle (61) entering the plurality of detection angle areas (KR1-KR7) as well as the distance to the obstacle (61) in each of the detection angle areas (KR1-KR7); a relative speed estimation part (38) for estimating the relative speed with the obstacle (61) from the distance to the obstacle (61) detected by the side obstacle detection sensor (19c); and a warning part for issuing a warning relating to the obstacle (61) detected by the side obstacle detection sensor (19c). Warnings from the warning part are suppressed in cases in which preparations for the automobile (1) moving in reverse are detected, the side obstacle detection sensor (19c) detects an obstacle in a predetermined angle range (RDR) and in a predetermined proximity state established based on the relative speed estimated by the relative speed estimation part (38), and there is a long distance to the obstacle (61) detected by the side obstacle detection sensor (19c).

Description

走行制御装置及び走行制御方法Travel control device and travel control method
 本発明は、走行制御装置及び走行制御方法に関する。 The present invention relates to a travel control device and a travel control method.
 車両に搭載された障害物センサを用いて車両の周囲に接近する障害物を検出する技術が従来から知られている(例えば、特許文献1参照)。 2. Description of the Related Art Conventionally, a technique for detecting an obstacle approaching the periphery of a vehicle using an obstacle sensor mounted on the vehicle is known (see, for example, Patent Document 1).
 特許文献1では、車両のシフトポジション、駐車することが可能な区画の形状、及びこの区画の車両に対する相対的な位置ならびに傾きに基づいて、車両がこのまま進行して周辺の障害物と接触するか否かを判定している。そして、接触しないと判定した場合は、障害物の接近判定手段での判定結果を補正して運転者にとって不要な警報発生を抑制している。 In Patent Document 1, based on the shift position of the vehicle, the shape of the compartment that can be parked, and the relative position and inclination of the compartment with respect to the vehicle, whether or not the vehicle proceeds as it is and makes contact with surrounding obstacles. It is determined whether or not. And when it determines with not contacting, the determination result in the approach determination means of an obstruction is correct | amended, and generation | occurrence | production of the alarm unnecessary for a driver | operator is suppressed.
特開2009-107529号公報JP 2009-107529 A
 しかし、特許文献1は車両を縦列に駐車する際の駐車支援装置に関わる発明を開示しているため、警報の抑制の対象となる障害物は静止物に限られる。よって、駐車場からの後退時に周囲で走行している車両に対して、接触の危険性が無くても不要な警報を発してしまい、ドライバに違和感を与えてしまう場合がある。 However, since Patent Document 1 discloses an invention related to a parking assist device when a vehicle is parked in a row, obstacles that are targets of alarm suppression are limited to stationary objects. Therefore, even if there is no risk of contact with the vehicle traveling around when retreating from the parking lot, an unnecessary alarm may be issued, which may cause the driver to feel uncomfortable.
 本発明は上記課題に鑑みて成されたものであり、その目的は、後退時に自車に対して距離が離れた状態で自車に向かいそのまま通過していく車両に対する警告を抑制することによりドライバが感じる違和感を低減する走行制御装置及び走行制御方法を提供することである。 The present invention has been made in view of the above problems, and its object is to suppress a warning to a vehicle that passes directly toward the vehicle while moving away from the vehicle when the vehicle is moving backward. It is providing the traveling control apparatus and traveling control method which reduce the discomfort which a person feels.
 本発明の第1態様に係わる走行制御装置は、側方障害物検出部と、相対速度推定部と、後方移動準備検出部と、警告部と、抑制部とを有する。側方障害物検出部は、自車の側方を含み且つ自車の後方に向けて広がる範囲を複数の検出角度領域に分割し、複数の検出角度領域に進入する障害物及び障害物との距離を、検出角度領域毎に検出する。相対速度推定部は、側方障害物検出部が検出した障害物との距離から障害物との相対速度を推定する。後方移動準備検出部は、自車が後方へ移動する準備を検出する。警告部は、側方障害物検出部が検出した障害物について警告を行う。抑制部は、自車が後方へ移動する準備を後方移動準備検出部が検出し、側方障害物検出部が所定の検出角度領域において、相対速度推定部が推定した相対速度に基づいて定まる所定の接近状態にある障害物を検出し、且つ、側方障害物検出部が検出した障害物との距離が遠方である場合、警告部による警告を抑制する。 The travel control device according to the first aspect of the present invention includes a side obstacle detection unit, a relative speed estimation unit, a backward movement preparation detection unit, a warning unit, and a suppression unit. The side obstacle detection unit divides a range including the side of the host vehicle and extends toward the rear of the host vehicle into a plurality of detection angle regions, and includes obstacles and obstacles entering the plurality of detection angle regions. The distance is detected for each detection angle region. The relative speed estimation unit estimates the relative speed with the obstacle from the distance from the obstacle detected by the side obstacle detection unit. The backward movement preparation detection unit detects preparation that the host vehicle moves backward. The warning unit issues a warning for the obstacle detected by the side obstacle detection unit. The suppression unit detects a preparation for the vehicle to move backward, and the backward movement detection detection unit detects the predetermined value determined by the side obstacle detection unit based on the relative speed estimated by the relative speed estimation unit in a predetermined detection angle region. When the obstacle in the approaching state is detected and the distance from the obstacle detected by the side obstacle detecting unit is far, the warning by the warning unit is suppressed.
 本発明の第2態様に係わる走行制御方法は、前記側方障害物検出部と、前記相対速度推定部と、前記後方移動準備検出部と、前記警告部とを有する走行制御装置を用いた走行制御方法であって、自車が後方へ移動する準備を後方移動準備検出部が検出し、側方障害物検出部が所定の検出角度領域において、相対速度推定部が推定した相対速度に基づいて定まる所定の接近状態にある障害物を検出し、且つ、側方障害物検出部が検出した障害物との距離が遠方である場合、警告部による警告を抑制する。 A travel control method according to a second aspect of the present invention uses a travel control device having the side obstacle detection unit, the relative speed estimation unit, the backward movement preparation detection unit, and the warning unit. The control method is based on the relative speed estimated by the relative speed estimation unit in the predetermined detection angle region when the backward movement preparation detection unit detects the preparation of the vehicle moving backward. When an obstacle in a predetermined predetermined approach state is detected and the distance from the obstacle detected by the side obstacle detection unit is far, the warning by the warning unit is suppressed.
図1は、実施の形態に係わる走行制御装置の車両レイアウト例を示す模式図である。FIG. 1 is a schematic diagram illustrating a vehicle layout example of a travel control device according to an embodiment. 図2は、実施の形態に係わる走行制御装置の構成を示すブロック図である。FIG. 2 is a block diagram illustrating a configuration of the travel control apparatus according to the embodiment. 図3は、図2の自車両情報取得部21の具体的な構成例を示すブロック図である。FIG. 3 is a block diagram showing a specific configuration example of the host vehicle information acquisition unit 21 of FIG. 図4は、図2の周辺情報取得部22の具体的な構成例を示すブロック図である。FIG. 4 is a block diagram illustrating a specific configuration example of the peripheral information acquisition unit 22 of FIG. 図5は、図2の制御判断情報演算部24の具体的な構成例を示すブロック図である。FIG. 5 is a block diagram illustrating a specific configuration example of the control determination information calculation unit 24 of FIG. 図6は、側方障害物検出センサ19cが障害物を検出可能な側方検出領域KR1~KR7を示す平面図である。FIG. 6 is a plan view showing the side detection areas KR1 to KR7 in which the side obstacle detection sensor 19c can detect an obstacle. 図7は、走行制御処理を実行する際の走行制御装置の動作を示すフローチャートである。FIG. 7 is a flowchart showing the operation of the travel control device when executing the travel control process. 図8は、自車1の側方SBを含む所定の角度範囲RDRの一例を示す平面図である。FIG. 8 is a plan view showing an example of a predetermined angle range RDR including the side SB of the own vehicle 1. 図9は、第2距離しきい値と接近時間との関係の一例を示すグラフである。FIG. 9 is a graph showing an example of the relationship between the second distance threshold and the approach time. 図10(a)は、時間の経過と共に変化する障害物との距離及び障害物が検出される検出角度領域を示すグラフであり、図10(b)は、時間の経過と共に変化する接近時間を示すグラフであり、図10(c)は、仕様パターン1及び仕様パターン2において警告の抑制を解除するタイミングを示すグラフである。FIG. 10A is a graph showing a distance to an obstacle that changes with the passage of time and a detection angle region in which the obstacle is detected. FIG. 10B shows an approach time that changes with the passage of time. FIG. 10C is a graph showing the timing at which the warning suppression is canceled in the specification pattern 1 and the specification pattern 2. 図11は、障害物を検出し始めてから障害物が自車1へ接近した距離を説明するためのグラフである。FIG. 11 is a graph for explaining the distance at which the obstacle has approached the host vehicle 1 since the obstacle has started to be detected. 図12は、接近しきい値と接近時間との関係の一例を示すグラフである。FIG. 12 is a graph showing an example of the relationship between the approach threshold and the approach time. 図13は、自車1の駐車方向PDと車両61の走行方向ADが略垂直な場合を示す平面図である。FIG. 13 is a plan view showing a case where the parking direction PD of the host vehicle 1 and the traveling direction AD of the vehicle 61 are substantially perpendicular.
 以下図面を参照して、本発明の実施形態を説明する。図面の記載において同一部分には同一符号を付している。 Embodiments of the present invention will be described below with reference to the drawings. In the description of the drawings, the same parts are denoted by the same reference numerals.
[走行制御装置]
 図1を参照して、実施の形態に係わる走行制御装置の車両レイアウト例について説明する。車両1(以後、「自車」という)には、ブレーキランプ4a、4b、エンジンやモータを含む駆動力発生装置の始動及び停止を指示するイグニッションスイッチ18、自車1の前方PDに接近する障害物を検出する前方障害物検出センサ13a~13d、19e、自車1の後方に接近する障害物を検出する後方障害物検出センサ13e~13h、自車1の側方に接近する障害物を検出する側方障害物検出センサ19a~19d、自車の駆動力を発生する駆動力発生装置36、制動力発生装置27、アクセルペダル操作反力発生装置30、ドライバに対して障害物の接近を報知する報知装置33と、自車1全体を制御する車両制御装置2とが搭載されている。
[Running control device]
With reference to FIG. 1, an example of a vehicle layout of the travel control apparatus according to the embodiment will be described. The vehicle 1 (hereinafter referred to as “own vehicle”) includes brake lamps 4a and 4b, an ignition switch 18 for instructing start and stop of a driving force generator including an engine and a motor, and an obstacle approaching the front PD of the own vehicle 1. Front obstacle detection sensors 13a to 13d and 19e for detecting an object, rear obstacle detection sensors 13e to 13h for detecting an obstacle approaching the rear of the vehicle 1, and an obstacle approaching the side of the vehicle 1 are detected. Side obstacle detection sensors 19a to 19d, a driving force generation device 36 that generates driving force of the vehicle, a braking force generation device 27, an accelerator pedal operation reaction force generation device 30, and the approach of the obstacle to the driver And a vehicle control device 2 that controls the entire host vehicle 1 are mounted.
 前方障害物検出センサ13a~13dは例えば自車1のフロントバンパ内に設けられ、後方障害物検出センサ13e~13hは例えば自車1のリアバンパ内に設けられている。前方障害物検出センサ13a~13d及び後方障害物検出センサ13e~13hとしては、超音波を用いて自車1から比較的近傍の領域に進入する障害物及び障害物との距離を検出するソナー探知機を用いることができる。側方障害物検出センサ19a~19dは、自車1の前方PD寄り及び後方寄りの左右のフェンダーにそれぞれ1つづつ配置され、前方障害物検出センサ19eは、例えば自車1のフロントバンパ内に設けられている。側方障害物検出センサ19a~19d及び前方障害物検出センサ19eとしては、電磁波を用いて自車1から比較的遠方までの領域に進入する障害物を検出するレーダ探知機を用いることができる。よって、側方障害物検出センサ19a~19d及び前方障害物検出センサ19eが障害物を検出可能な距離は、前方障害物検出センサ13a~13d及び後方障害物検出センサ13e~13hが障害物を検出可能な距離よりも長い。車両制御装置2は、ECU(Engine Control Unit)等の演算処理装置により構成され、演算処理装置内のCPUが予め格納されたコンピュータプログラムを実行することにより自車1全体の動作を制御する。 The front obstacle detection sensors 13a to 13d are provided, for example, in the front bumper of the own vehicle 1, and the rear obstacle detection sensors 13e to 13h are provided, for example, in the rear bumper of the own vehicle 1. As the front obstacle detection sensors 13a to 13d and the rear obstacle detection sensors 13e to 13h, a sonar detection that detects the distance between the obstacle and the obstacle entering the relatively near area from the own vehicle 1 using ultrasonic waves. A machine can be used. One side obstacle detection sensor 19a to 19d is arranged on each of the left and right fenders near the front PD and the rear side of the host vehicle 1, and the front obstacle detection sensor 19e is, for example, in the front bumper of the host vehicle 1. Is provided. As the side obstacle detection sensors 19a to 19d and the forward obstacle detection sensor 19e, radar detectors that detect obstacles that enter a region far from the vehicle 1 using electromagnetic waves can be used. Therefore, the distance that the side obstacle detection sensors 19a to 19d and the front obstacle detection sensor 19e can detect obstacles is the distance that the front obstacle detection sensors 13a to 13d and the rear obstacle detection sensors 13e to 13h detect obstacles. Longer than possible distance. The vehicle control device 2 is configured by an arithmetic processing device such as an ECU (Engine Control Unit), and controls the operation of the entire host vehicle 1 by executing a computer program stored in advance by a CPU in the arithmetic processing device.
 図2を参照して、実施形態に係わる走行制御装置の構成を説明する。実施形態に係わる走行制御装置は、自車1の情報を取得する自車両情報取得部21と、自車周辺の情報を取得する周辺情報取得部22と、システム状態選択部23と、制御判断情報演算部24と、周辺情報取得部22により検出された障害物に対して警告を発する警告装置とを備える。ここで、警告装置には、障害物接近の警告として制動力を発生する制動力発生系(25~27)と、障害物接近の警告としてアクセルペダル操作反力を発生するアクセルペダル操作反力発生系(28~30)と、障害物接近の警告としてドライバへの警報を行う報知系(31~33)と、障害物接近の警告として駆動力制御を行う駆動力制御系(34~36)とが含まれる。 Referring to FIG. 2, the configuration of the travel control device according to the embodiment will be described. The travel control device according to the embodiment includes a host vehicle information acquisition unit 21 that acquires information of the host vehicle 1, a peripheral information acquisition unit 22 that acquires information about the periphery of the host vehicle, a system state selection unit 23, and control determination information. A calculation unit 24 and a warning device that issues a warning to an obstacle detected by the surrounding information acquisition unit 22 are provided. Here, the warning device includes a braking force generation system (25 to 27) that generates a braking force as an obstacle approach warning, and an accelerator pedal operation reaction force that generates an accelerator pedal operation reaction force as an obstacle approach warning. A system (28 to 30), a notification system (31 to 33) that gives an alarm to the driver as an obstacle approach warning, and a driving force control system (34 to 36) that performs driving force control as an obstacle approach warning Is included.
 図3に示すように、自車両情報取得部21は、自車1の車輪20a~20dにそれぞれ設置された車輪速センサ11a~11dと、自車1のアクセルペダルに設置されたアクセル開度検出部5と、自車1のブレーキペダルの位置を検出するブレーキペダル位置検出部6と、自車1のシフトポジションを検出するシフトポジション検出部9(後方移動準備検出部)と、走行制御装置のオン/オフ用のスイッチの状態を検出するSW操作認識部3と、自車1のステアリングの操舵角を検出するステアリングセンサ10と、自車1の加減速度を検出する加減速度センサ12とを備える。 As shown in FIG. 3, the host vehicle information acquisition unit 21 detects wheel speed sensors 11 a to 11 d installed on the wheels 20 a to 20 d of the host vehicle 1 and accelerator opening detection installed on the accelerator pedal of the host vehicle 1. Part 5, a brake pedal position detector 6 that detects the position of the brake pedal of the vehicle 1, a shift position detector 9 (rear movement preparation detector) that detects the shift position of the vehicle 1, and a travel control device The SW operation recognition unit 3 that detects the state of the on / off switch, the steering sensor 10 that detects the steering angle of the steering of the host vehicle 1, and the acceleration / deceleration sensor 12 that detects the acceleration / deceleration of the host vehicle 1 are provided. .
 車輪速センサ11a~11dは、自車1の車輪20a~20dそれぞれの回転速度を検出する。自車速演算部40は、車輪20a~20dの回転半径を考慮し、車輪20a~20dそれぞれの回転速度から、自車速(車輪速)を演算する。更に、自車速演算部40は、自車速を積分することにより移動距離を演算する。ブレーキペダル位置検出部6は、ドライバがブレーキペダルを踏み込んでいるか否か、及び、ブレーキペダルの踏み込み量を検出する。シフトポジション検出部9は、現在のトランスミッションの状態を検出するために、シフト位置の状態を検出する。自車1が後方へ移動する準備を検出する一例には、シフトポジション検出部9が後退(R)ポジションを検出することが含まれる。SW操作認識部3は、走行制御装置のスイッチ状態及びイグニッションスイッチ18のスイッチ状態を検出する。ステア角演算部41は、ステアリングセンサ10により検出されたステアリングの操舵角に対して、必要に応じてフィルタ処理を施す。加減速度演算部42は、加減速度センサ12により検出された自車1の加減速度に対して、必要に応じてフィルタ処理を施す。自車両情報出力部43は、自車1の車輪速、アクセル開度、ブレーキペダルの位置、シフト位置、走行制御装置のオン/オフ用のスイッチの状態、ステアリング操舵角及び加減速度を、自車両情報として、システム状態選択部23或いは制御判断情報演算部24へ転送する。自車速演算部40、ステア角演算部41、加減速度演算部42及び自車両情報出力部43は、図1の車両制御装置2の一部分として構成することができる。もちろん、車両制御装置2とは異なる演算処理装置を用意し、その演算処理装置内のCPUが予め格納されたコンピュータプログラムを実行することにより、自車速演算部40、ステア角演算部41、加減速度演算部42及び自車両情報出力部43の動作を実現しても構わない。 The wheel speed sensors 11a to 11d detect the rotational speeds of the wheels 20a to 20d of the vehicle 1 respectively. The own vehicle speed calculation unit 40 calculates the own vehicle speed (wheel speed) from the respective rotation speeds of the wheels 20a to 20d in consideration of the rotation radii of the wheels 20a to 20d. Further, the host vehicle speed calculation unit 40 calculates the travel distance by integrating the host vehicle speed. The brake pedal position detector 6 detects whether or not the driver is depressing the brake pedal and the amount of depression of the brake pedal. The shift position detector 9 detects the state of the shift position in order to detect the current state of the transmission. An example of detecting that the vehicle 1 is ready to move backward includes that the shift position detection unit 9 detects a reverse (R) position. The SW operation recognition unit 3 detects the switch state of the travel control device and the switch state of the ignition switch 18. The steering angle calculation unit 41 performs a filtering process on the steering angle of the steering detected by the steering sensor 10 as necessary. The acceleration / deceleration calculation unit 42 performs filter processing on the acceleration / deceleration of the host vehicle 1 detected by the acceleration / deceleration sensor 12 as necessary. The own vehicle information output unit 43 determines the vehicle speed of the own vehicle 1, the accelerator opening, the position of the brake pedal, the shift position, the state of the on / off switch of the travel control device, the steering angle and the acceleration / deceleration. The information is transferred to the system state selection unit 23 or the control determination information calculation unit 24. The own vehicle speed calculation unit 40, the steer angle calculation unit 41, the acceleration / deceleration calculation unit 42, and the own vehicle information output unit 43 can be configured as a part of the vehicle control device 2 of FIG. Of course, an arithmetic processing device different from the vehicle control device 2 is prepared, and the CPU in the arithmetic processing device executes a computer program stored in advance, so that the own vehicle speed calculation unit 40, the steering angle calculation unit 41, the acceleration / deceleration You may implement | achieve operation | movement of the calculating part 42 and the own vehicle information output part 43. FIG.
 図4を参照して、周辺情報取得部22の詳細な構成例を説明する。周辺情報取得部22は、周辺障害物検出センサ37として、図1に示した車両1の前部、後部、及び側方部に設置された前方障害物検出センサ13a~13d、19e、後方障害物検出センサ13e~13h、及び側方障害物検出センサ19a~19dを備える。相対距離算出部39は、周辺障害物検出センサ37が検出した障害物からの距離の値に対して必要に応じてフィルタ処理を施す。相対速度推定部38は、障害物との距離から障害物との相対速度を推定する。相対速度の符号は、障害物が自車1に近づく方向を正とし、遠ざかる方向を負とする。接近時間推定部46は、側方障害物検出センサ19a~19dが検出した障害物との距離、及び相対速度推定部38が推定した障害物との相対速度から、障害物が自車1に接近するまでに要する時間である接近時間を推定する。接近時間は、例えば、障害物との距離を相対速度で除算したTTC(衝突時間)であってもよい。障害物有無判断部44は、周辺障害物検出センサ37が障害物を検出したか否かを示す信号を出力する。周辺情報出力部45は、車両1の前方PD、後方、及び側方に存在する障害物の有無、障害物との距離及び相対速度、接近時間及び後述する障害物の検出方向或いは検出角度を、周辺情報として、システム状態選択部23或いは制御判断情報演算部24へ転送する。相対距離算出部39、相対速度推定部38、障害物有無判断部44、接近時間推定部46及び周辺情報出力部45は、図1の車両制御装置2の一部分として構成することができる。もちろん、車両制御装置2とは異なる演算処理装置を用意し、その演算処理装置内のCPUが予め格納されたコンピュータプログラムを実行することにより、相対距離算出部39、相対速度推定部38、障害物有無判断部44、接近時間推定部46及び周辺情報出力部45の動作を実現しても構わない。 A detailed configuration example of the peripheral information acquisition unit 22 will be described with reference to FIG. The peripheral information acquisition unit 22 is a front obstacle detection sensor 13a to 13d, 19e installed at the front, rear, and side portions of the vehicle 1 shown in FIG. Detection sensors 13e to 13h and side obstacle detection sensors 19a to 19d are provided. The relative distance calculation unit 39 performs a filtering process on the value of the distance from the obstacle detected by the surrounding obstacle detection sensor 37 as necessary. The relative speed estimation unit 38 estimates the relative speed with the obstacle from the distance to the obstacle. The sign of the relative speed is positive when the obstacle approaches the host vehicle 1 and negative when the obstacle moves away. The approach time estimation unit 46 approaches the vehicle 1 from the distance from the obstacles detected by the side obstacle detection sensors 19a to 19d and the relative speed from the obstacles estimated by the relative speed estimation unit 38. Estimate the approach time, which is the time it takes to complete. The approach time may be, for example, TTC (collision time) obtained by dividing the distance from the obstacle by the relative speed. The obstacle presence / absence determination unit 44 outputs a signal indicating whether or not the surrounding obstacle detection sensor 37 has detected an obstacle. The surrounding information output unit 45 includes the presence / absence of obstacles present in the front PD, the rear, and the side of the vehicle 1, the distance and relative speed with the obstacle, the approach time, and the obstacle detection direction or detection angle described below. The peripheral information is transferred to the system state selection unit 23 or the control determination information calculation unit 24. The relative distance calculation unit 39, the relative speed estimation unit 38, the obstacle presence / absence determination unit 44, the approach time estimation unit 46, and the surrounding information output unit 45 can be configured as a part of the vehicle control device 2 in FIG. Of course, an arithmetic processing device different from the vehicle control device 2 is prepared, and the CPU in the arithmetic processing device executes a computer program stored in advance, so that the relative distance calculation unit 39, the relative speed estimation unit 38, the obstacle You may implement | achieve operation | movement of the presence determination part 44, the approach time estimation part 46, and the periphery information output part 45. FIG.
 システム状態選択部23は、SW操作認識部3により検出された走行制御装置のオン/オフ用のスイッチの状態に基づいて、システム状態をオン状態とするかオフ状態とするかを決定する。 The system state selection unit 23 determines whether to turn the system state on or off based on the state of the on / off switch of the travel control device detected by the SW operation recognition unit 3.
 図6及び図8を参照して、側方障害物検出センサ19cを例に取り、側方検出領域について説明する。自車1の左後方側のリアフェンダに設置された側方障害物検出センサ19cは、自車1の側方を含み、側方障害物検出センサ19cを中心として自車1の側方から後方に向けて広がる所定角度の扇状領域(側方検出領域)に進入する障害物(例えば、車両61)を検出することができる。側方障害物検出センサ19cは、側方検出領域を複数の検出角度領域KR1~KR7に分割し、複数の検出角度領域KR1~KR7に進入する障害物及び障害物との距離を、検出角度領域KR1~KR7毎に検出することができる。例えば、電磁波を側方検出領域内において水平方向に走査することにより、障害物が検出された検出角度領域KR1~KR7を特定することができる。分割数は、7つに限定されるものではなく、より少なく又は更に多くの数に分割しても構わない。なお、その他の側方障害物検出センサ19a、19b、19dについても側方障害物検出センサ19cと同様である。なお、図8に示すように、自車1の側方とは、自車1の駐車方向(進行方向)PDに対して垂直な方向SBであって、図6及び図8における側方とは、左側の側方SBを例示している。自車1の後方とは、自車1の駐車方向PDに対して180°回転した方向である。図8に示すように、複数の検出角度領域KR1~KR7の後方側境界及び駐車方向側境界は、側方障害物検出センサ19cから駐車方向PDに伸びる直線MBよりも側方側に位置する。なお、図6及び図8において、自車1は、車線GL1、GL2、GL3、GL4により区画された車道に隣接して駐車され、他の駐車車両60a~60cは、自車1に対して斜めに隣接して駐車されている。 The side detection area will be described with reference to FIGS. 6 and 8 by taking the side obstacle detection sensor 19c as an example. The side obstacle detection sensor 19c installed on the rear fender on the left rear side of the host vehicle 1 includes the side of the host vehicle 1 and is rearward from the side of the host vehicle 1 with the side obstacle detection sensor 19c as a center. It is possible to detect an obstacle (for example, the vehicle 61) entering the fan-shaped area (side detection area) having a predetermined angle that spreads toward the front. The side obstacle detection sensor 19c divides the side detection region into a plurality of detection angle regions KR1 to KR7, and determines the distance between the obstacle and the obstacle entering the plurality of detection angle regions KR1 to KR7 as the detection angle region. It can be detected for each of KR1 to KR7. For example, the detection angle regions KR1 to KR7 where the obstacle is detected can be specified by scanning the electromagnetic wave in the horizontal direction within the side detection region. The number of divisions is not limited to seven, and it may be divided into fewer or more numbers. The other side obstacle detection sensors 19a, 19b, and 19d are the same as the side obstacle detection sensor 19c. In addition, as shown in FIG. 8, the side of the own vehicle 1 is a direction SB perpendicular to the parking direction (traveling direction) PD of the own vehicle 1, and the side in FIGS. The left side SB is illustrated. The rear of the host vehicle 1 is a direction rotated by 180 ° with respect to the parking direction PD of the host vehicle 1. As shown in FIG. 8, the rear boundary and the parking direction side boundary of the plurality of detection angle regions KR1 to KR7 are located on the side of the straight line MB extending from the side obstacle detection sensor 19c in the parking direction PD. 6 and 8, the own vehicle 1 is parked adjacent to the roadway divided by the lanes GL1, GL2, GL3, GL4, and the other parked vehicles 60a to 60c are oblique to the own vehicle 1. It is parked next to.
 図5を参照して、図2の制御判断情報演算部24の具体的な構成例を説明する。制御判断情報演算部24は、警告部による警告を抑制するか否かを判断する抑制判断部47(抑制部)と、警告の判断基準となる第1リスクを演算する第1リスク演算部48と、警告の判断基準となる第2リスクを演算する第2リスク演算部49とを備える。抑制判断部47の判断結果及び第1リスク演算部48及び第2リスク演算部49の演算結果は、制動制御判断部25、アクセルペダル操作反力判断部28、報知判断部31、及び駆動力制御判断部34へそれぞれ送信される。 Referring to FIG. 5, a specific configuration example of the control determination information calculation unit 24 in FIG. 2 will be described. The control determination information calculation unit 24 includes a suppression determination unit 47 (suppression unit) that determines whether or not to suppress a warning by the warning unit, and a first risk calculation unit 48 that calculates a first risk that serves as a warning determination criterion. And a second risk calculation unit 49 for calculating a second risk that is a criterion for warning. The determination result of the suppression determination unit 47 and the calculation results of the first risk calculation unit 48 and the second risk calculation unit 49 are the brake control determination unit 25, the accelerator pedal operation reaction force determination unit 28, the notification determination unit 31, and the driving force control. Each is transmitted to the determination unit 34.
 第1リスク演算部48は、先ず、第1リスクのベース値を算出する。第1リスクのベース値は、後方障害物検出センサ13e~13hにより検出される障害物との距離に基づく警告を行うか否かを判断する上での基準値となる。第1リスクのベース値は、自車速に応じて変化する距離である。例えば、自車速が速くなるほど、第1リスクのベース値は大きくなる。自車速が0の場合、所定の値を取るようにオフセットしてもよい。また、接近時間推定部46が推定した接近時間に応じて、第1リスクのベース値を変更してもよい。よって、例えば、第1リスク演算部48は、自車速と第1リスクのベース値との関係を示すデータ及び接近時間と第1リスクのベース値との関係を示すデータを参照して、自車速及び接近時間から第1リスクのベース値を演算してもよい。 The first risk calculation unit 48 first calculates a base value of the first risk. The base value of the first risk is a reference value for determining whether or not to issue a warning based on the distance from the obstacle detected by the rear obstacle detection sensors 13e to 13h. The base value of the first risk is a distance that changes according to the host vehicle speed. For example, the base value of the first risk increases as the host vehicle speed increases. When the host vehicle speed is 0, the vehicle speed may be offset to take a predetermined value. Further, the base value of the first risk may be changed according to the approach time estimated by the approach time estimation unit 46. Thus, for example, the first risk calculation unit 48 refers to the data indicating the relationship between the vehicle speed and the base value of the first risk and the data indicating the relationship between the approach time and the base value of the first risk. The base value of the first risk may be calculated from the approach time.
 そして、第1リスク演算部48は、第1リスクのベース値から、各警告制御に対応した係数を用いて各警告制御に対応する第1リスクを算出する。例えば、制動制御については、係数R1_K1をベース値に乗算し、アクセルペダル操作反力制御については、係数R1_K2をベース値に乗算し、報知制御については、係数R1_K3をベース値に乗算し、駆動力制御については、係数R1_K4をベース値に乗算することで、各警告制御について重みを変えて各々の第1リスクを算出することができる。例えば、各係数を0以上1以下の値とし、且つ、R1_K1 ≦ R1_K2 ≦ R1_K4 ≦ R1_K3 とする。これによって、報知、駆動力制御、アクセルペダル操作反力制御、制動制御の順番で作動するような重み付けが可能になる。 And the 1st risk calculating part 48 calculates the 1st risk corresponding to each warning control from the base value of the 1st risk using the coefficient corresponding to each warning control. For example, for braking control, the coefficient R1_K1 is multiplied by the base value, for accelerator pedal operation reaction force control, the coefficient R1_K2 is multiplied by the base value, for notification control, the coefficient R1_K3 is multiplied by the base value, and the driving force Regarding the control, by multiplying the base value by the coefficient R1_K4, the first risk can be calculated by changing the weight for each warning control. For example, each coefficient is set to a value between 0 and 1, and R1_K1 ≦ R1_K2 ≦ R1_K4 ≦ R1_K3. This enables weighting that operates in the order of notification, driving force control, accelerator pedal operation reaction force control, and braking control.
 第2リスク演算部49は、先ず、第2リスクのベース値を算出する。第2リスクのベース値には、第2リスク(距離)のベース値、及び、第2リスク(接近時間)のベース値が含まれる。第2リスク(距離)のベース値は、側方障害物検出センサ19a~19dにより検出される障害物との距離に基づく警告を行うか否かを判断する上で基準値となる。第2リスク(接近時間)のベース値は、接近時間推定部46により推定される接近時間に基づく警告を行うか否かを判断する上での基準値となる。第2リスク(距離)のベース値は、自車速に応じて変化する。具体的には、第1リスク(距離)と同様にして、自車速が速くなるほど、第2リスク(距離)のベース値は大きくなる。例えば、第2リスク演算部49は、自車速と第2リスク(距離)のベース値との関係を示すデータを参照して、自車速から第2リスク(距離)のベース値を演算すればよい。また、第2リスク(距離)のベース値は、第1リスクのベース値とは異なった値であってもよい。この場合、第2リスク(距離)のベース値は、第1リスクのベース値よりも大きい値であることが望ましい。自車速が0の場合、所定の値を取るようにオフセットしてもよい。また、相対速度推定部38が算出した接近時間に応じて、第2リスク(距離)のベース値を変更してもよい。 The second risk calculator 49 first calculates the base value of the second risk. The base value of the second risk includes the base value of the second risk (distance) and the base value of the second risk (approach time). The base value of the second risk (distance) is a reference value for determining whether or not to issue a warning based on the distance from the obstacle detected by the side obstacle detection sensors 19a to 19d. The base value of the second risk (approach time) is a reference value for determining whether or not to issue a warning based on the approach time estimated by the approach time estimation unit 46. The base value of the second risk (distance) changes according to the host vehicle speed. Specifically, similarly to the first risk (distance), the base value of the second risk (distance) increases as the host vehicle speed increases. For example, the second risk calculation unit 49 may calculate the base value of the second risk (distance) from the own vehicle speed with reference to data indicating the relationship between the own vehicle speed and the base value of the second risk (distance). . The base value of the second risk (distance) may be a value different from the base value of the first risk. In this case, the base value of the second risk (distance) is preferably larger than the base value of the first risk. When the host vehicle speed is 0, the vehicle speed may be offset to take a predetermined value. Further, the base value of the second risk (distance) may be changed according to the approach time calculated by the relative speed estimation unit 38.
 そして、第2リスク演算部49は、第2リスク(距離)のベース値及び第2リスク(接近時間)のベース値から、各警告制御に対応した係数を用いて各警告制御に対応する第2リスク(距離)及び第2リスク(接近時間)を算出する。例えば、制動制御については、係数R2_K1をベース値に乗算し、アクセルペダル操作反力については、係数R2_K2をベース値に乗算し、報知制御については、係数R2_K3をベース値に乗算し、駆動力制御については、係数R2_K4をベース値に乗算することで、各制御について重みを変えて各々の第2リスク(距離)及び第2リスク(接近時間)を算出する。例えば、各係数を0以上1以下の値とし、且つ、R2_K1 ≦ R2_K2 ≦ R2_K4 ≦ R2_K3 とする。これによって、報知、駆動力制御、アクセルペダル操作反力制御、制動制御の順番で作動するような重み付けが可能になる。 Then, the second risk calculation unit 49 uses the coefficient corresponding to each warning control from the base value of the second risk (distance) and the base value of the second risk (approach time). A risk (distance) and a second risk (approach time) are calculated. For example, for braking control, the coefficient R2_K1 is multiplied by the base value. For accelerator pedal reaction, the coefficient R2_K2 is multiplied by the base value. For notification control, the coefficient R2_K3 is multiplied by the base value. For, the coefficient R2_K4 is multiplied by the base value to change the weight for each control to calculate the second risk (distance) and the second risk (approach time). For example, each coefficient is set to a value between 0 and 1, and R2_K1 ≦ R2_K2 ≦ R2_K4 ≦ R2_K3. This enables weighting that operates in the order of notification, driving force control, accelerator pedal operation reaction force control, and braking control.
 抑制判断部47は、図8に示すように、駐車場からの後退時に距離が離れた状態で自車1に対して所定の角度範囲RDRにおいて自車1に向かいそのまま通過していく車両61を側方障害物検出センサ19a~19cが検出した場合、警告部による警告を抑制する。具体的には、抑制判断部47は、シフトポジション検出部9が後退ポジションを検出し、側方障害物検出センサ19a~19cが所定の検出角度領域KR3、KR4、KR5において、相対速度推定部38が推定した相対速度に基づいて定まる所定の接近状態にある障害物(車両61)を検出した場合(条件A-1)、且つ、側方障害物検出センサ19a~19cが検出した障害物との距離が遠方である(条件A-2)場合、警告部による警告を抑制する。「所定の検出角度領域」は、自車1の側方SBを含む所定の角度範囲RDRに位置する領域である。「所定の接近状態」とは、障害物(車両61)が自車1に対して接近している状態であり、換言すれば、相対速度推定部38が推定した相対速度が0以上である状態である。抑制判断部47は、条件A-1及び条件A-2を同時に満たす場合、警告部による警告を抑制する。 As shown in FIG. 8, the suppression determination unit 47 passes a vehicle 61 that passes through the vehicle 1 as it is toward the vehicle 1 in a predetermined angle range RDR with respect to the vehicle 1 in a state where the distance is large when the vehicle retreats from the parking lot. When the side obstacle detection sensors 19a to 19c detect, the warning by the warning unit is suppressed. Specifically, the suppression determination unit 47 detects the reverse position by the shift position detection unit 9, and the side obstacle detection sensors 19a to 19c detect the relative speed estimation unit 38 in the predetermined detection angle regions KR3, KR4, KR5. When an obstacle (vehicle 61) in a predetermined approach state determined based on the estimated relative speed is detected (condition A-1), and the obstacle detected by the side obstacle detection sensors 19a to 19c When the distance is far (Condition A-2), the warning by the warning unit is suppressed. The “predetermined detection angle region” is a region located in a predetermined angle range RDR including the side SB of the host vehicle 1. The “predetermined approach state” is a state in which an obstacle (vehicle 61) is approaching the host vehicle 1, in other words, a state in which the relative speed estimated by the relative speed estimation unit 38 is 0 or more. It is. The suppression determination unit 47 suppresses warning by the warning unit when the conditions A-1 and A-2 are satisfied at the same time.
 なお、警告部による警告を抑制することには、警告をしないこと、警告のタイミングを遅らせること、及び警告のレベル又は程度を小さく抑えることが含まれる。例えば、抑制判断部47は、第1リスクのベース値或いは第2リスクのベース値を0にする、或いは小さくすることにより、警告を行うことを止める、或いは、警告のタイミングを遅らせることができる。 It should be noted that suppressing warnings by the warning unit includes not warning, delaying the timing of warning, and reducing the level or degree of warning. For example, the suppression determination unit 47 can stop the warning or delay the warning timing by setting the base value of the first risk or the base value of the second risk to 0 or decreasing.
 図8に示すように、自車1の側方SBを含む所定の角度範囲RDRは、側方障害物検出センサ19cから自車1の側方に伸びる半直線SBから後方側に向けて後方角度α(例えば、30度)だけ広がる領域と、半直線SBから前方(駐車方向PD)側に向けて前方角度β(例えば、40度)だけ広がる領域とからなる。図8に示す例において、所定の角度範囲RDRには、検出角度領域KR3、KR4、KR5が位置している。 As shown in FIG. 8, the predetermined angle range RDR including the side SB of the host vehicle 1 is a rear angle from the half straight line SB extending from the side obstacle detection sensor 19c to the side of the host vehicle 1 toward the rear side. The region extends by α (for example, 30 degrees) and the region expands by a forward angle β (for example, 40 degrees) from the half line SB toward the front (parking direction PD) side. In the example shown in FIG. 8, the detection angle regions KR3, KR4, and KR5 are located in the predetermined angle range RDR.
 側方障害物検出センサ19a~19cが検出した障害物との距離が遠方である場合(条件A-2)には、側方障害物検出センサ19a~19cが検出した障害物との距離が第1距離しきい値以上である場合(条件A-2a)が含まれる。第1距離しきい値としては、10m以上14m以下が望ましく、より望ましく11m以上13m以下である。第1距離しきい値は、予め設定されていてもよいし、走行制御装置が制御してもよい。走行制御装置が制御する場合、例えば、障害物の相対速度が大きくなるにしたがって第1距離しきい値を大きくすればよい。相対速度が大きい障害物に対しては警告が抑制されにくくなり、適切な警告制御が可能となる。 When the distance from the obstacle detected by the side obstacle detection sensors 19a to 19c is far (condition A-2), the distance from the obstacle detected by the side obstacle detection sensors 19a to 19c is the first distance. A case where the distance is greater than or equal to the one-distance threshold (condition A-2a) is included. The first distance threshold is preferably 10 m or more and 14 m or less, and more preferably 11 m or more and 13 m or less. The first distance threshold value may be set in advance or may be controlled by the travel control device. When the travel control device controls, for example, the first distance threshold may be increased as the relative speed of the obstacle increases. Warnings are less likely to be suppressed for obstacles with a large relative speed, and appropriate warning control becomes possible.
 側方障害物検出センサ19a~19cが検出した障害物との距離が遠方である場合(条件A-2)には、接近時間推定部46により推定された接近時間が第1時間しきい値以上である場合(条件A-2b)が含まれる。第1時間しきい値としては、1秒以上5秒以下が望ましく、より望ましく2秒以上4秒以下である。第1時間しきい値は、予め設定されていてもよいし、走行制御装置が制御してもよい。 When the distance from the obstacle detected by the side obstacle detection sensors 19a to 19c is far (condition A-2), the approach time estimated by the approach time estimation unit 46 is equal to or greater than the first time threshold value. (Condition A-2b). The first time threshold is preferably 1 second or more and 5 seconds or less, more preferably 2 seconds or more and 4 seconds or less. The first time threshold value may be set in advance or may be controlled by the travel control device.
 なお、条件A-2を満たす場合とは、条件A-2a及び条件A-1bの少なくとも一方を満たしている場合、或いは、条件A-2a及び条件A-2bの両方を満たしている場合である。 The case where the condition A-2 is satisfied is a case where at least one of the condition A-2a and the condition A-1b is satisfied, or a case where both the condition A-2a and the condition A-2b are satisfied. .
 抑制判断部47は、一度、警告を抑制すると判断しても、その後に、一定の条件を満たした場合に、警告の抑制を解除してもよい。例えば、抑制判断部47は、側方障害物検出センサ19a~19dが検出した障害物との距離が、第1距離しきい値以下である第2距離しきい値よりも短い場合(条件B-1)、警告の抑制を解除する。障害物との距離が短くなれば、自車1から遠方を通り過ぎていく障害物とは言えない。よって、この場合、警告の抑制を解除して、適正な警告を発することができる。 Even if it is determined that the warning is suppressed once, the suppression determination unit 47 may cancel the suppression of the warning when a certain condition is satisfied thereafter. For example, when the distance from the obstacle detected by the side obstacle detection sensors 19a to 19d is shorter than the second distance threshold that is equal to or less than the first distance threshold (condition B- 1) Release the warning suppression. If the distance to the obstacle is shortened, it cannot be said that the obstacle travels far away from the vehicle 1. Therefore, in this case, the suppression of the warning can be canceled and an appropriate warning can be issued.
 第2距離しきい値は、接近時間に応じて変化させることができる。例えば、第2距離しきい値を、図9に示すように、接近時間が短いほど大きい値としてもよい。接近時間が短い障害物に対しては抑制が解除されにくくなり、適切な警告制御が可能となる。 The second distance threshold can be changed according to the approach time. For example, the second distance threshold may be set to a larger value as the approach time is shorter as shown in FIG. For obstacles with a short approach time, it is difficult to release the suppression, and appropriate warning control becomes possible.
 抑制判断部47は、警告を抑制し始めた時に障害物を検出していた検出角度領域KR3~KR5からその他の検出角度領域KR1~KR7へ障害物が移動した場合(条件B-2)、警告の抑制を解除してもよい。例えば、図10(a)、(c)に示すように、検出角度領域KR4で障害物が検出され始め(t1)、警告を抑制し始めた時(t4)に検出角度領域KR4で検出された障害物が、検出角度領域KR5でも検出されるようになった場合(t2)、検出角度領域KR5へ移動したと判断して、図10(c)の仕様パターン1に示すように、抑制を解除する。なお、図10(c)の仕様パターン2では、条件B-2に係わらず、条件B-1に基づき、障害物との距離が第2距離しきい値よりも短くなった時(t3)に抑制を解除している。 The suppression determination unit 47 warns when an obstacle moves from the detection angle regions KR3 to KR5 where the obstacle is detected when the warning starts to be suppressed to other detection angle regions KR1 to KR7 (condition B-2). This suppression may be released. For example, as shown in FIGS. 10A and 10C, an obstacle starts to be detected in the detection angle region KR4 (t1), and is detected in the detection angle region KR4 when the warning is started to be suppressed (t4). When the obstacle is detected in the detection angle region KR5 (t2), it is determined that the obstacle has moved to the detection angle region KR5, and the suppression is released as shown in the specification pattern 1 in FIG. To do. In the specification pattern 2 in FIG. 10C, when the distance to the obstacle is shorter than the second distance threshold based on the condition B-1 (t3) regardless of the condition B-2. The suppression is released.
 抑制判断部47は、接近時間推定部46が推定した接近時間が、第1時間しきい値以下である第2時間しきい値(例えば、3秒)よりも短い場合(条件B-3)、警告の抑制を解除してもよい。第2時間しきい値としては、1秒以上5秒以下が望ましく、より望ましく2秒以上4秒以下である。第2時間しきい値は、予め設定されていてもよいし、走行制御装置が制御してもよい。接近時間が短くなれば、遠方であっても早期に警告することが望ましい。よって、この場合、警告の抑制を解除して、適正な警告を発することができる。図10(b)には、時間の経過と共に接近時間が短くなっていく様子を示しているが、図10(b)には図示しないが、接近時間が第2時間しきい値以下となった場合に、警告抑制を解除すればよい。 When the approach time estimated by the approach time estimating unit 46 is shorter than a second time threshold value (for example, 3 seconds) that is equal to or less than the first time threshold value (condition B-3), The warning suppression may be released. The second time threshold is preferably 1 second to 5 seconds, more preferably 2 seconds to 4 seconds. The second time threshold may be set in advance or may be controlled by the travel control device. If the approach time is shortened, it is desirable to warn early even if it is far away. Therefore, in this case, the suppression of the warning can be canceled and an appropriate warning can be issued. FIG. 10 (b) shows how the approach time becomes shorter as time passes, but although not shown in FIG. 10 (b), the approach time is below the second time threshold value. In such a case, the warning suppression may be canceled.
 抑制判断部47は、障害物を検出し始めてから障害物が自車1へ接近した距離が接近しきい値以上である場合(条件B-4)、警告の抑制を解除してもよい。障害物を検出し始めてから障害物が自車1へ接近した距離は、例えば図11に示すように、側方障害物検出センサ19a~19cが障害物を検出し始めた時刻t5から、障害物が自車1へ向けて接近した距離を示す。障害物が自車1に近づいてきた場合、自車1から遠方を通り過ぎていく障害物とは言えない。よって、この場合、警告の抑制を解除して、適正な警告を発することができる。接近しきい値は、予め設定されていてもよいし、走行制御装置が制御してもよい。 The suppression determination unit 47 may cancel the suppression of the warning when the distance that the obstacle has approached the vehicle 1 is equal to or greater than the approach threshold after starting to detect the obstacle (Condition B-4). For example, as shown in FIG. 11, the distance that the obstacle has approached the host vehicle 1 since the start of the obstacle detection is determined from the time t5 when the side obstacle detection sensors 19a to 19c start to detect the obstacle. Indicates the distance approached toward the vehicle 1. When an obstacle approaches the own vehicle 1, it cannot be said that the obstacle passes far away from the own vehicle 1. Therefore, in this case, the suppression of the warning can be canceled and an appropriate warning can be issued. The approach threshold value may be set in advance or may be controlled by the travel control device.
 走行制御装置が接近しきい値を制御する場合、接近しきい値は、接近時間に応じて変化させることができる。例えば、図12に示すように、接近しきい値は、接近時間が短いほど小さい値とすることができる。接近時間が短ければ、警告の抑制を早期に解除することができるので、適正な警告を発することができる。 When the travel control device controls the approach threshold, the approach threshold can be changed according to the approach time. For example, as shown in FIG. 12, the approach threshold value can be made smaller as the approach time is shorter. If the approach time is short, suppression of the warning can be canceled at an early stage, so that an appropriate warning can be issued.
 抑制判断部47は、条件B-1、条件B-2、条件B-3及び条件B-4の少なくともいずれか1つを満たす場合に、警告の抑制を解除する。もちろん、条件B-1、条件B-2、条件B-3及び条件B-4のなかから任意に選んだ2以上の条件を同時に満たす場合に、警告の抑制を解除してもよい。 The suppression determination unit 47 releases the suppression of the warning when at least one of the condition B-1, the condition B-2, the condition B-3, and the condition B-4 is satisfied. Of course, the warning suppression may be canceled when two or more conditions arbitrarily selected from the conditions B-1, B-2, B-3, and B-4 are simultaneously satisfied.
 図2に戻り、制動力発生系(25~27)は、障害物接近の警告として制動力制御を行うか否かを判断する制動制御判断部25と、制動制御部26と、制動制御部26による制御にしたがって、障害物接近の警告として制動力制御を行う制動力発生装置27とを備える。アクセルペダル操作反力発生系(28~30)は、障害物接近の警告としてアクセルペダル操作反力制御を行うか否かを判断するアクセルペダル操作反力判断部28と、アクセルペダル操作反力制御部29と、アクセルペダル操作反力制御部29による制御にしたがって、障害物接近の警告としてアクセルペダル操作反力制御を行うアクセルペダル操作反力発生装置30とを備える。報知系(31~33)は、障害物接近の警告としてドライバへの警報を行うか否かを判断する報知判断部31と、報知制御部32と、報知制御部32による制御にしたがって、障害物接近の警告としてドライバへの警報を行う報知装置33とを備える。駆動力発生系(34~36)は、障害物接近の警告として駆動力制御を行うか否かを判断する駆動力制御判断部34と、駆動力制御部35と、駆動力制御部35による制御にしたがって、障害物接近の警告として駆動力制御を行う駆動力発生装置36とを備える。 Returning to FIG. 2, the braking force generation system (25 to 27) determines whether or not to perform braking force control as an obstacle approach warning, a braking control determination unit 25, a braking control unit 26, and a braking control unit 26. And a braking force generator 27 that performs braking force control as an obstacle approach warning. The accelerator pedal operation reaction force generation system (28 to 30) includes an accelerator pedal operation reaction force determination unit 28 that determines whether or not to perform an accelerator pedal operation reaction force control as an obstacle approach warning, and an accelerator pedal operation reaction force control. And an accelerator pedal operation reaction force generator 30 that performs accelerator pedal operation reaction force control as an obstacle approach warning in accordance with the control by the accelerator pedal operation reaction force control unit 29. The notification system (31 to 33) includes a notification determination unit 31, a notification control unit 32, and a notification control unit 32 that determine whether or not to issue a warning to the driver as an obstacle approach warning. And a notification device 33 that issues a warning to the driver as an approach warning. The driving force generation system (34 to 36) is controlled by the driving force control determination unit 34, the driving force control unit 35, and the driving force control unit 35 that determine whether or not to perform driving force control as an obstacle approach warning. And a driving force generator 36 that controls the driving force as an obstacle approach warning.
 算出された各々の第1リスク、第2リスク(距離)及び第2リスク(接近時間)は、制動制御判断部25、アクセルペダル操作反力判断部28、報知判断部31、駆動力制御判断部34へそれぞれ送信される。 Each of the calculated first risk, second risk (distance) and second risk (approach time) includes a braking control determination unit 25, an accelerator pedal operation reaction force determination unit 28, a notification determination unit 31, and a driving force control determination unit. 34 respectively.
 制動制御判断部25は、以下に示すA01~A03のいづれかの条件が成立した場合に障害物接近の警告として制動力を発生させると判断する。ただし、後方障害物検出センサ13e~13hにより検出された障害物との距離を「後方センサ検出距離」とし、側方障害物検出センサ19a~19dにより検出された障害物との距離を「側方センサ検出距離」とし、接近時間推定部46により推定された接近時間を「側方センサ接近時間」とする。制動制御用の係数R1_K1或いはR2_K1を乗算した第1リスク、第2リスク(距離値)及び第2リスク(接近時間)を、制動用第1リスク、制動用第2リスク(距離値)及び制動用第2リスク(接近時間)とする。 The braking control determination unit 25 determines that a braking force is generated as an obstacle approach warning when any of the following conditions A01 to A03 is satisfied. However, the distance from the obstacle detected by the rear obstacle detection sensors 13e to 13h is defined as “rear sensor detection distance”, and the distance from the obstacle detected by the side obstacle detection sensors 19a to 19d is defined as “side”. “Sensor detection distance”, and the approach time estimated by the approach time estimation unit 46 is referred to as “side sensor approach time”. The first risk, the second risk (distance value) and the second risk (approach time) multiplied by the coefficient R1_K1 or R2_K1 for braking control are used as the first risk for braking, the second risk for braking (distance value), and for braking. The second risk (approach time).
 A01  制動用第1リスク>後方センサ検出距離
 A02  制動用第2リスク(距離値)>側方センサ検出距離
 A03  制動用第2リスク(接近時間)>側方センサ接近時間
A01 1st risk for braking> rear sensor detection distance A02 2nd risk for braking (distance value)> side sensor detection distance A03 2nd risk for braking (approach time)> side sensor approach time
 制動制御部26は、制動制御判断部25が制動による警告を作動させると判断した場合、所定の変化率でブレーキ圧を増加させ、所定の目標ブレーキ圧に到達したら、その状態を維持する。保持する時間が所定時間(例えば0.8秒)に達した場合、若しくは、車速=0となってから所定時間経過した場合に、所定の変化率でブレーキ圧を0まで減少させる。なお、所定の変化率、所定の目標ブレーキ圧は、ともに自車速或いは障害物との距離に応じて変更してもよい。制動力発生装置27は、制動制御部26により演算された目標ブレーキ圧になるように各車輪20a~20dに対する実際のブレーキ圧を制御する。 The braking control unit 26 increases the brake pressure at a predetermined rate of change when the braking control determination unit 25 determines to activate a warning by braking, and maintains the state when a predetermined target brake pressure is reached. When the holding time reaches a predetermined time (for example, 0.8 seconds) or when a predetermined time has elapsed since the vehicle speed = 0, the brake pressure is reduced to 0 at a predetermined change rate. Note that both the predetermined rate of change and the predetermined target brake pressure may be changed according to the vehicle speed or the distance from the obstacle. The braking force generator 27 controls the actual brake pressure for each of the wheels 20a to 20d so that the target brake pressure calculated by the brake controller 26 is obtained.
 アクセルペダル操作反力判断部28は、以下に示すA04~A06のいづれかの条件が成立した場合に障害物接近の警告としてアクセルペダル操作反力を発生させると判断する。ただし、アクセルペダル操作反力用の係数R1_K2或いはR2_K2を乗算した第1リスク、第2リスク(距離値)及び第2リスク(接近時間)を、APD用第1リスク、APD用第2リスク(距離値)及びAPD用第2リスク(接近時間)とする。 The accelerator pedal operation reaction force determination unit 28 determines that the accelerator pedal operation reaction force is generated as an obstacle approach warning when any of the following conditions A04 to A06 is satisfied. However, the first risk, second risk (distance value) and second risk (approach time) multiplied by the coefficient R1_K2 or R2_K2 for accelerator pedal reaction force are the first risk for APD and the second risk (distance for APD). Value) and APD second risk (approach time).
 A04  APD用第1リスク>後方センサ検出距離
 A05  APD用第2リスク(距離値)>側方センサ検出距離
 A06  APD用第2リスク(接近時間)>側方センサ接近時間
A04 1st risk for APD> rear sensor detection distance A05 2nd risk for APD (distance value)> side sensor detection distance A06 2nd risk for APD (approach time)> side sensor approach time
 アクセルペダル操作反力制御部29は、アクセルペダル操作反力判断部28がアクセルペダル操作反力を発生させると判断した場合、所定の変化率で反力指令値を増加させ、所定の反力指令値に到達したら、その状態を維持する。保持する時間が所定時間(例えば0.8秒)に達した場合、所定の変化率で反力指令値を0まで減少させる。なお、所定の変化率、所定の反力指令値は、ともに自車速或いは障害物との距離に応じて変更してもよい。アクセルペダル操作反力発生装置30は、アクセルペダル操作反力制御部29により演算された反力指令値になるようにアクセルペダルの操作反力を制御する。 When the accelerator pedal operation reaction force control unit 29 determines that the accelerator pedal operation reaction force determination unit 28 generates an accelerator pedal operation reaction force, the accelerator pedal operation reaction force control unit 29 increases the reaction force command value at a predetermined rate of change, thereby increasing the predetermined reaction force command. When the value is reached, keep that state. When the holding time reaches a predetermined time (for example, 0.8 seconds), the reaction force command value is decreased to 0 at a predetermined change rate. Note that both the predetermined change rate and the predetermined reaction force command value may be changed according to the vehicle speed or the distance from the obstacle. The accelerator pedal operation reaction force generator 30 controls the operation reaction force of the accelerator pedal so that the reaction force command value calculated by the accelerator pedal operation reaction force control unit 29 is obtained.
 報知判断部31は、以下に示すA07~A09のいづれかの条件が成立した場合、障害物接近の警告として音声又はブザーなどによる警報を行うと判断する。ただし、警報用の係数R1_K3或いはR2_K3を乗算した第1リスク、第2リスク(距離値)及び第2リスク(接近時間)を、警報用第1リスク、警報用第2リスク(距離値)及び警報用第2リスク(接近時間)とする。 The notification determination unit 31 determines that a warning by a voice or a buzzer is given as an obstacle approach warning when any of the following conditions A07 to A09 is satisfied. However, the first risk, the second risk (distance value) and the second risk (approach time) multiplied by the alarm coefficient R1_K3 or R2_K3 are set as the first risk for warning, the second risk for warning (distance value), and the alarm. 2nd risk (approach time).
 A07  警報用第1リスク>後方センサ検出距離
 A08  警報用第2リスク(距離値)>側方センサ検出距離
 A09  警報用第2リスク(接近時間)>側方センサ接近時間
A07 Alarm first risk> Back sensor detection distance A08 Alarm second risk (distance value)> Side sensor detection distance A09 Alarm second risk (approach time)> Side sensor approach time
 報知制御部32は、報知判断部31が警報を行うと判断した場合、所定時間、ブザー駆動信号のオン及びオフを繰り返す。報知装置33は、報知制御部32で演算したブザー駆動信号に基づき、警報を行う。例えば、所定の音色「ピッ、ピッ」という音を繰り返し発生させる。若しくは、障害物を上記条件を満たしている間は、警報を鳴らし続けるようにしても構わない。更に、警報と同時に、メーター内に設置したインジケータなどの発光物を点灯、点滅するようにしてもよい。 The notification control unit 32 repeats turning on and off of the buzzer drive signal for a predetermined time when the notification determination unit 31 determines that an alarm is issued. The notification device 33 issues an alarm based on the buzzer drive signal calculated by the notification control unit 32. For example, a predetermined tone color “beep” is repeatedly generated. Alternatively, the alarm may continue to sound while the obstacle satisfies the above conditions. Further, simultaneously with the alarm, a light emitting object such as an indicator installed in the meter may be turned on or blinked.
 駆動力制御判断部34は、以下に示すA10~A12のいづれかの条件が成立した場合、障害物接近の警告として駆動力制御を行うと判断する。ただし、駆動力用の係数R1_K4或いはR2_K4を乗算した第1リスク、第2リスク(距離値)及び第2リスク(接近時間)を、駆動力用第1リスク、駆動力用第2リスク(距離値)及び駆動力用第2リスク(接近時間)とする。 The driving force control determination unit 34 determines that the driving force control is performed as an obstacle approach warning when any of the following conditions A10 to A12 is satisfied. However, the first risk, the second risk (distance value) and the second risk (approach time) multiplied by the coefficient R1_K4 or R2_K4 for driving force are the first risk for driving force and the second risk for driving force (distance value). ) And the second risk for driving force (approach time).
 A10  駆動力用第1リスク>後方センサ検出距離
 A11  駆動力用第2リスク(距離値)>側方センサ検出距離
 A12  駆動力用第2リスク(接近時間)>側方センサ接近時間
A10 first risk for driving force> rear sensor detection distance A11 second risk for driving force (distance value)> side sensor detection distance A12 second risk for driving force (approach time)> side sensor approach time
 駆動力制御部35は、駆動力制御判断部34が駆動力制御を行うと判断した場合、所定の変化率でアクセル開度の低減量を増加させる。アクセル開度の低減量が所定値に到達したら、その状態を維持する。所定時間その低減量を維持したら、アクセル開度の低減量を0まで減少させる。最終的なエンジンのスロットル開度は、ドライバ操作のアクセル開度から、駆動力制御部35により演算されたアクセル開度の低減量を減算した値となる。なお、所定の変化率、アクセル開度の低減量所定値は、ともに自車速或いは障害物との距離に応じて変更してもよい。駆動力発生装置36は、駆動力制御部35で演算した最終的なエンジンのスロットル開度に基づきエンジン出力を制御する。 When the driving force control determination unit 34 determines that the driving force control is to be performed, the driving force control unit 35 increases the reduction amount of the accelerator opening at a predetermined change rate. When the reduction amount of the accelerator opening reaches a predetermined value, the state is maintained. If the reduction amount is maintained for a predetermined time, the reduction amount of the accelerator opening is reduced to zero. The final throttle opening of the engine is a value obtained by subtracting the reduction amount of the accelerator opening calculated by the driving force control unit 35 from the accelerator opening of the driver operation. Note that both the predetermined change rate and the predetermined amount of reduction in the accelerator opening may be changed according to the vehicle speed or the distance from the obstacle. The driving force generator 36 controls the engine output based on the final engine throttle opening calculated by the driving force control unit 35.
 このように、障害物の接近時間に基づいて警告を判断することにより、後方障害物検出センサ13e~13h或いは側方障害物検出センサ19a~19dが検出する障害物との距離が遠方であっても、その障害物が高速で自車1に接近している場合には、その障害物に対して警告を実施することができる。これにより、障害物に対する潜在的な危険を認識でき、適切なタイミングで警告を実施することができる。 In this way, by determining the warning based on the approach time of the obstacle, the distance from the obstacle detected by the rear obstacle detection sensors 13e to 13h or the side obstacle detection sensors 19a to 19d is far. However, when the obstacle is approaching the host vehicle 1 at a high speed, a warning can be given to the obstacle. Thereby, the potential danger with respect to an obstacle can be recognized and a warning can be implemented at an appropriate timing.
 なお、図2に示す、システム状態選択部23、制御判断情報演算部24、制動制御判断部25、制動制御部26、アクセルペダル操作反力判断部28、アクセルペダル操作反力制御部29、報知判断部31、報知制御部32、駆動力制御判断部34及び駆動力制御部35は、図1の車両制御装置2の一部分として構成することができる。もちろん、車両制御装置2とは異なる演算処理装置を用意し、その演算処理装置内のCPUが予め格納されたコンピュータプログラムを実行する。これにより、システム状態選択部23、制御判断情報演算部24、制動制御判断部25、制動制御部26、アクセルペダル操作反力判断部28、アクセルペダル操作反力制御部29、報知判断部31、報知制御部32、駆動力制御判断部34及び駆動力制御部35の動作を実現しても構わない。 2, the system state selection unit 23, the control determination information calculation unit 24, the brake control determination unit 25, the brake control unit 26, the accelerator pedal operation reaction force determination unit 28, the accelerator pedal operation reaction force control unit 29, and a notification The determination unit 31, the notification control unit 32, the driving force control determination unit 34, and the driving force control unit 35 can be configured as a part of the vehicle control device 2 in FIG. Of course, an arithmetic processing device different from the vehicle control device 2 is prepared, and a CPU in the arithmetic processing device executes a computer program stored in advance. Accordingly, the system state selection unit 23, the control determination information calculation unit 24, the braking control determination unit 25, the braking control unit 26, the accelerator pedal operation reaction force determination unit 28, the accelerator pedal operation reaction force control unit 29, the notification determination unit 31, You may implement | achieve operation | movement of the alerting | reporting control part 32, the driving force control judgment part 34, and the driving force control part 35. FIG.
[走行制御処理]
 以上説明した構成を有する走行制御装置は、自車1が後退する際、以下に示す走行制御処理を実行することにより、側方障害物検出センサ19a~19dが検出した障害物について、適切な警告制御を行うことができる。以下、図7に示すフローチャートを参照して、走行制御処理を実行する際の走行制御装置の動作について説明する。なお、図7の例では、警告部による警告を抑制する場合として、警告をしない場合を例に取り説明する。
[Driving control processing]
The travel control device having the above-described configuration performs an appropriate warning for obstacles detected by the side obstacle detection sensors 19a to 19d by executing the following travel control process when the host vehicle 1 moves backward. Control can be performed. Hereinafter, with reference to the flowchart shown in FIG. 7, the operation of the travel control device when executing the travel control process will be described. In the example of FIG. 7, the case where no warning is given will be described as an example of the case where warning by the warning unit is suppressed.
 図7に示すフローチャートは、システム状態選択部23が走行制御装置のオン/オフ用のスイッチがオン状態であると判断し、且つ、シフトポジション検出部9が車両1のシフト位置がR(後退)ポジションに位置していると判定したタイミングで開始され、走行制御処理はステップS1の処理に進む。そして、この走行制御処理は、走行制御装置のオン/オフ用のスイッチがオン状態であり、且つ、車両1のシフト位置がRポジションに位置している限り、繰り返し実行される。また、走行制御処理を開始するタイミングは、上記条件に限定されることはなく、例えば上記条件に加えて車速が所定値以下、ステアリング操舵角が所定値以下等の条件を付加してもよい。 In the flowchart shown in FIG. 7, the system state selection unit 23 determines that the on / off switch of the travel control device is on, and the shift position detection unit 9 determines that the shift position of the vehicle 1 is R (reverse). The travel control process is started at the timing when it is determined that the vehicle is in the position, and the process proceeds to step S1. The traveling control process is repeatedly executed as long as the on / off switch of the traveling control device is in the on state and the shift position of the vehicle 1 is positioned at the R position. The timing for starting the travel control process is not limited to the above conditions. For example, in addition to the above conditions, conditions such as the vehicle speed being a predetermined value or less and the steering angle being a predetermined value or less may be added.
 ステップS1の処理では、第1リスク演算部48及び第2リスク演算部49が、第1リスク或いは第2リスクを、警告制御毎に求める。つまり、制動用第1リスク、制動用第2リスク(距離値)、制動用第2リスク(接近時間)、APD用第1リスク、APD用第2リスク(距離値)、APD用第2リスク(接近時間)、警報用第1リスク、警報用第2リスク(距離値)、警報用第2リスク(接近時間)、駆動力用第1リスク、駆動力用第2リスク(距離値)、及び駆動力用第2リスク(接近時間)を算出する。 In the process of step S1, the first risk calculation unit 48 and the second risk calculation unit 49 obtain the first risk or the second risk for each warning control. That is, the first risk for braking, the second risk for braking (distance value), the second risk for braking (approach time), the first risk for APD, the second risk for APD (distance value), the second risk for APD ( Approach time), alarm first risk, alarm second risk (distance value), alarm second risk (approach time), driving force first risk, driving force second risk (distance value), and driving The second risk for power (approach time) is calculated.
 ステップS2の処理では、制動制御判断部25、アクセルペダル操作反力判断部28、報知判断部31、及び駆動力制御判断部34の各々が、上記した条件A01~A12にしたがって障害物接近の警告を行うか否かを判断する。警告を行うと判断した場合(S2でYES)、ステップS3に進み、警告を行うと判断しない場合(S2でNO)、図7のフローは終了する。 In the process of step S2, each of the braking control determination unit 25, the accelerator pedal operation reaction force determination unit 28, the notification determination unit 31, and the driving force control determination unit 34 performs an obstacle approach warning according to the above-described conditions A01 to A12. It is determined whether or not to perform. If it is determined that a warning is to be performed (YES in S2), the process proceeds to step S3. If it is not determined that a warning is to be performed (NO in S2), the flow of FIG. 7 ends.
 ステップS3の処理では、抑制判断部47が、条件A-1、或いは条件A-2に基づいて、警告部による警告を抑制するか否かを判断する。本例では、警告部による警告を止めるか否かを判断する。具体的には、抑制判断部47は、シフトポジション検出部9が後退ポジションを検出し、側方障害物検出センサ19a~19dが所定の検出角度領域KR3~KR5において、相対速度推定部38が推定した相対速度に基づいて定まる所定の接近状態にある障害物を検出し(条件A-1)、且つ、側方障害物検出センサ19a~19dが検出した障害物との距離が遠方である場合(条件A-2)、警告部がその障害物について警告を行うことを止める(S3でYES)。側方障害物検出センサ19a~19dが所定の検出角度領域KR3~KR5において障害物を検出しない場合、或いは、側方障害物検出センサ19a~19dが検出した障害物との距離が遠方でない場合、警告部による警告を止めるとは判断しないで(S3でNO)、ステップS4に進み、警告部による警告を実施する。ステップS3でYESの場合、ステップS5へ進む。 In step S3, the suppression determination unit 47 determines whether or not to suppress the warning by the warning unit based on the condition A-1 or the condition A-2. In this example, it is determined whether or not to stop the warning by the warning unit. Specifically, in the suppression determination unit 47, the shift position detection unit 9 detects the reverse position, and the side obstacle detection sensors 19a to 19d are estimated by the relative speed estimation unit 38 in predetermined detection angle regions KR3 to KR5. When an obstacle in a predetermined approach state determined based on the relative velocity is detected (Condition A-1) and the distance from the obstacle detected by the side obstacle detection sensors 19a to 19d is far ( Condition A-2), the warning unit stops warning the obstacle (YES in S3). When the side obstacle detection sensors 19a to 19d do not detect obstacles in the predetermined detection angle regions KR3 to KR5, or when the distance from the obstacle detected by the side obstacle detection sensors 19a to 19d is not far, Without determining that the warning by the warning unit is to be stopped (NO in S3), the process proceeds to step S4, and the warning by the warning unit is performed. If YES in step S3, the process proceeds to step S5.
 ステップS5の処理では、抑制判断部47が、条件B-1、条件B-2、条件B-3、或いは条件B-4に基づいて、警告の抑制を解除するか否かを判断する。警告の抑制を解除する場合(S5でYES)、ステップS4に進み、警告の抑制を解除しない場合(S5でNO)、図7のフローは終了する。 In step S5, the suppression determination unit 47 determines whether to cancel the suppression of the warning based on the condition B-1, the condition B-2, the condition B-3, or the condition B-4. If the warning suppression is canceled (YES in S5), the process proceeds to step S4. If the warning suppression is not canceled (NO in S5), the flow of FIG. 7 ends.
 以上説明したように、駐車場から自車1を後退させる場合に、自車1に対して距離が離れた状態で自車1に向かい、自車1の後を通過せずに去っていく車両に対して、警告を抑制することができるので、警告の対象としたくない車両に対して警告を抑制することができ、ドライバに与える違和感を低減することができる。また、一度警告抑制と判断した後でも所定の条件に基づいて抑制を解除して通常の警報を実施できるようにしている。図13は、他車60a、60bに対して車幅方向に並んで自車1を前方から駐車した場合を示す。図13において自車1を後退させる場合、自車1の駐車方向PDに約垂直方向ADに走行する車両61に対しては、警告の抑制を解除して、適切な警告制御を実施することができる。 As described above, when the host vehicle 1 is moved backward from the parking lot, the vehicle heads toward the host vehicle 1 with a distance from the host vehicle 1 and leaves without passing behind the host vehicle 1. On the other hand, since the warning can be suppressed, the warning can be suppressed with respect to a vehicle that is not intended for the warning, and the uncomfortable feeling given to the driver can be reduced. Further, even after it is determined that the warning is once suppressed, the normal alarm can be performed by releasing the suppression based on a predetermined condition. FIG. 13 shows a case where the host vehicle 1 is parked from the front side by side in the vehicle width direction with respect to the other vehicles 60a and 60b. When the host vehicle 1 is moved backward in FIG. 13, warning suppression is canceled and appropriate warning control can be performed on the vehicle 61 traveling in the vertical direction AD with respect to the parking direction PD of the host vehicle 1. it can.
 以上説明したように、本発明の実施の形態によれば、以下の作用効果が得られる。 As described above, according to the embodiment of the present invention, the following operational effects can be obtained.
 シフトポジション検出部9が後退ポジションを検出し、側方障害物検出センサ19a~19dが所定の検出角度領域KR3~KR5において、相対速度推定部38が推定した相対速度に基づいて定まる所定の接近状態にある障害物を検出し(条件A-1)、且つ、側方障害物検出センサ19a~19dが検出した障害物との距離が遠方である場合(条件A-2)、抑制判断部47は、警告部による警告を抑制する。駐車場からの後退時に距離が離れた状態で自車1に対して所定の角度範囲RDRにおいて自車1に向かいそのまま通過していく車両61に対する警告を抑制することにより、ドライバが感じる違和感を低減することができる。 The shift position detection unit 9 detects the reverse position, and the side obstacle detection sensors 19a to 19d have predetermined approach states determined based on the relative speeds estimated by the relative speed estimation unit 38 in the predetermined detection angle regions KR3 to KR5. Is detected (condition A-1) and the distance from the obstacle detected by the side obstacle detection sensors 19a to 19d is far (condition A-2), the suppression determination unit 47 , Suppress warning by warning section. Reduces the driver's uncomfortable feeling by suppressing the warning to the vehicle 61 that passes through the vehicle 1 as it is toward the vehicle 1 in a predetermined angle range RDR with the distance away when the vehicle is retreating from the parking lot. can do.
 側方障害物検出センサ19a~19cが検出した障害物との距離が遠方である場合(条件A-2)には、側方障害物検出センサ19a~19cが検出した障害物との距離が第1距離しきい値以上である場合(条件A-2a)が含まれる。障害物との距離が長ければ、自車1から遠方を通り過ぎていく障害物と判断できるので、適正に警告を抑制してドライバが感じる違和感を低減することができる。 When the distance from the obstacle detected by the side obstacle detection sensors 19a to 19c is far (condition A-2), the distance from the obstacle detected by the side obstacle detection sensors 19a to 19c is the first distance. A case where the distance is greater than or equal to the one-distance threshold (condition A-2a) is included. If the distance from the obstacle is long, it can be determined that the obstacle passes far away from the host vehicle 1, so that the warning can be appropriately suppressed and the uncomfortable feeling felt by the driver can be reduced.
 側方障害物検出センサ19a~19cが検出した障害物との距離が遠方である場合(条件A-2)には、接近時間推定部46により推定された接近時間が第1時間しきい値以上である場合(条件A-2b)が含まれる。接近時間が長ければ、自車1から遠方を通り過ぎていく障害物と判断できるので、適正に警告を抑制してドライバが感じる違和感を低減することができる。 When the distance from the obstacle detected by the side obstacle detection sensors 19a to 19c is far (condition A-2), the approach time estimated by the approach time estimation unit 46 is equal to or greater than the first time threshold value. (Condition A-2b). If the approach time is long, it can be determined that the vehicle is an obstacle passing far away from the host vehicle 1, so that the warning can be appropriately suppressed and the uncomfortable feeling felt by the driver can be reduced.
 抑制判断部47は、側方障害物検出センサ19a~19dが検出した障害物との距離が、第1距離しきい値以下である第2距離しきい値よりも短い場合(条件B-1)、警告の抑制を解除する。障害物との距離が短くなれば、自車1から遠方を通り過ぎていく障害物とは言えない。よって、この場合、警告の抑制を解除して、適正な警告を発することができる。 When the distance from the obstacle detected by the side obstacle detection sensors 19a to 19d is shorter than the second distance threshold value that is equal to or less than the first distance threshold value (condition B-1) Release the warning suppression. If the distance to the obstacle is shortened, it cannot be said that the obstacle travels far away from the vehicle 1. Therefore, in this case, the suppression of the warning can be canceled and an appropriate warning can be issued.
 抑制判断部47は、警告を抑制し始めた時に障害物を検出していた検出角度領域KR3~KR5からその他の検出角度領域KR1~KR7へ障害物が移動した場合(条件B-2)、警告の抑制を解除してもよい。障害物が他の検出角度領域へ移動すれば、自車1から遠方を通り過ぎていく障害物とは言えない。よって、この場合、警告の抑制を解除して、適正な警告を発することができる。 The suppression determination unit 47 warns when an obstacle moves from the detection angle regions KR3 to KR5 where the obstacle is detected when the warning starts to be suppressed to other detection angle regions KR1 to KR7 (condition B-2). This suppression may be released. If the obstacle moves to another detection angle region, it cannot be said that the obstacle passes far away from the host vehicle 1. Therefore, in this case, the suppression of the warning can be canceled and an appropriate warning can be issued.
 抑制判断部47は、接近時間推定部46が推定した接近時間が、第1時間しきい値以下である第2時間しきい値(例えば、3秒)よりも短い場合(条件B-3)、警告の抑制を解除してもよい。接近時間が短くなれば、自車1から遠方を通り過ぎていく障害物とは言えない。よって、この場合、警告の抑制を解除して、適正な警告を発することができる。 When the approach time estimated by the approach time estimating unit 46 is shorter than a second time threshold value (for example, 3 seconds) that is equal to or less than the first time threshold value (condition B-3), The warning suppression may be released. If the approach time is shortened, it cannot be said that it is an obstacle passing far away from the vehicle 1. Therefore, in this case, the suppression of the warning can be canceled and an appropriate warning can be issued.
 抑制判断部47は、障害物を検出し始めてから障害物が自車1へ接近した距離が接近しきい値以上である場合(条件B-4)、警告の抑制を解除してもよい。障害物が自車1に近づいてきた場合、自車1から遠方を通り過ぎていく障害物とは言えない。よって、この場合、警告の抑制を解除して、適正な警告を発することができる。 The suppression determination unit 47 may cancel the suppression of the warning when the distance that the obstacle has approached the vehicle 1 is equal to or greater than the approach threshold after starting to detect the obstacle (Condition B-4). When an obstacle approaches the own vehicle 1, it cannot be said that the obstacle passes far away from the own vehicle 1. Therefore, in this case, the suppression of the warning can be canceled and an appropriate warning can be issued.
 第2距離しきい値を、図9に示すように、接近時間が短いほど大きい値としてもよい。接近時間が短い障害物に対しては抑制が解除されにくくなり、適切な警告制御が可能となる。 As shown in FIG. 9, the second distance threshold value may be set to a larger value as the approach time is shorter. For obstacles with a short approach time, it is difficult to release the suppression, and appropriate warning control becomes possible.
 接近しきい値を、図12に示すように、接近時間が短いほど小さい値としてもよい。接近時間が短ければ、警告の抑制を早期に解除することができるので、適正な警告を発することができる。 As shown in FIG. 12, the approach threshold value may be set to a smaller value as the approach time is shorter. If the approach time is short, suppression of the warning can be canceled at an early stage, so that an appropriate warning can be issued.
 自車1のシフトポジションが後退ポジションにある時に、自車1が後方へ移動する準備を検出したと判断してもよい。自車1が後方へ移動する準備を容易且つ正確に判断することができる。 When the shift position of the host vehicle 1 is in the reverse position, it may be determined that preparation for the host vehicle 1 to move backward is detected. It is possible to easily and accurately determine the preparation for moving the vehicle 1 backward.
 特願2012-026940号(出願日:2012年2月10日)の全内容は、ここに援用される。 The entire contents of Japanese Patent Application No. 2012-026940 (filing date: February 10, 2012) are incorporated herein by reference.
 以上、実施例に沿って本発明の内容を説明したが、本発明はこれらの記載に限定されるものではなく、種々の変形及び改良が可能であることは、当業者には自明である。 As mentioned above, although the content of the present invention has been described according to the embodiments, the present invention is not limited to these descriptions, and it is obvious to those skilled in the art that various modifications and improvements are possible.
 本実施形態に係わる走行制御装置及び走行制御方法によれば、後退時に距離が離れた状態で自車に対して所定の角度範囲において自車に向かいそのまま通過していく車両に対する警告を抑制することによりドライバが感じる違和感を低減することができる。よって、本発明は、産業上の利用可能性を有する。 According to the travel control device and the travel control method according to the present embodiment, it is possible to suppress a warning for a vehicle that passes directly toward the own vehicle in a predetermined angle range with respect to the own vehicle in a state in which the distance is long when the vehicle is moving backward. Therefore, the uncomfortable feeling felt by the driver can be reduced. Therefore, the present invention has industrial applicability.
 9…シフトポジション検出部(後方移動準備検出部)
 19a~19d…側方障害物検出センサ(側方障害物検出部)
 27…制動力発生装置(警告部)
 30…アクセルペダル操作反力発生装置(警告部)
 33…報知装置(警告部)
 36…駆動力発生装置(警告部)
 38…相対速度推定部
 46…接近時間推定部
 47…抑制判断部(抑制部)
 61…車両(障害物)
 KR1~KR7…検出角度領域
 KR3~KR5…所定の検出角度領域
9: Shift position detector (rear movement preparation detector)
19a to 19d: Side obstacle detection sensor (side obstacle detection unit)
27 ... Brake force generator (warning unit)
30 ... Accelerator pedal operation reaction force generator (warning part)
33 ... Notification device (warning unit)
36 ... Driving force generator (warning section)
38 ... Relative speed estimation part 46 ... Approach time estimation part 47 ... Inhibition judgment part (inhibition part)
61 ... Vehicle (obstacle)
KR1 to KR7: detection angle region KR3 to KR5: predetermined detection angle region

Claims (11)

  1.  自車の側方を含み且つ自車の後方に向けて広がる範囲を複数の検出角度領域に分割し、前記複数の検出角度領域に進入する障害物及び前記障害物との距離を、検出角度領域毎に検出する側方障害物検出部と、
     前記側方障害物検出部が検出した前記障害物との距離から前記障害物との相対速度を推定する相対速度推定部と、
     前記自車が後方へ移動する準備を検出する後方移動準備検出部と、
     前記側方障害物検出部が検出した障害物について警告を行う警告部と、
     前記自車が後方へ移動する準備を前記後方移動準備検出部が検出し、前記側方障害物検出部が所定の検出角度領域において、前記相対速度推定部が推定した相対速度に基づいて定まる所定の接近状態にある前記障害物を検出し、且つ、前記側方障害物検出部が検出した前記障害物との距離が遠方である場合、前記警告部による警告を抑制する抑制部と、
     を有することを特徴とする走行制御装置。
    A range including the side of the host vehicle and extending toward the rear of the host vehicle is divided into a plurality of detection angle regions, and an obstacle entering the plurality of detection angle regions and a distance from the obstacle are detected angle regions. A side obstacle detection unit to detect every time,
    A relative speed estimation unit for estimating a relative speed with the obstacle from a distance from the obstacle detected by the side obstacle detection unit;
    A backward movement preparation detection unit for detecting preparation for the vehicle to move backward;
    A warning unit that warns about an obstacle detected by the side obstacle detection unit;
    The preparation for moving the vehicle backward is detected by the backward movement preparation detection unit, and the side obstacle detection unit is determined based on the relative speed estimated by the relative speed estimation unit in a predetermined detection angle region. A detection unit that detects the obstacle in an approaching state and suppresses warning by the warning unit when the distance from the obstacle detected by the side obstacle detection unit is far away,
    A travel control device comprising:
  2.  前記側方障害物検出部が検出した前記障害物との距離が遠方である場合には、前記側方障害物検出部が検出した前記障害物との距離が第1距離しきい値以上である場合が含まれることを特徴とする請求項1に記載の走行制御装置。 When the distance from the obstacle detected by the side obstacle detection unit is far, the distance from the obstacle detected by the side obstacle detection unit is equal to or greater than a first distance threshold. The travel control apparatus according to claim 1, wherein a case is included.
  3.  前記側方障害物検出部が検出した前記障害物との距離、及び前記相対速度推定部が推定した前記障害物との相対速度から、前記障害物が自車に接近するまでに要する時間である接近時間を推定する接近時間推定部を更に有し、
     前記側方障害物検出部が検出した前記障害物との距離が遠方である場合には、前記接近時間が第1時間しきい値以上である場合が含まれる
     ことを特徴とする請求項1又は2のいずれか一項に記載の走行制御装置。
    The time required for the obstacle to approach the host vehicle from the distance to the obstacle detected by the side obstacle detection unit and the relative speed to the obstacle estimated by the relative speed estimation unit. It further has an approach time estimation unit for estimating the approach time,
    The case where the distance from the obstacle detected by the side obstacle detection unit is far is included when the approach time is equal to or greater than a first time threshold value. 3. The travel control device according to any one of 2.
  4.  前記側方障害物検出部が検出した前記障害物との距離が、前記第1距離しきい値以下である第2距離しきい値よりも短い場合、前記抑制部は、前記警告の抑制を解除することを特徴とする請求項2に記載の走行制御装置。 When the distance from the obstacle detected by the side obstacle detection unit is shorter than a second distance threshold value that is equal to or less than the first distance threshold value, the suppression unit cancels the suppression of the warning. The travel control device according to claim 2, wherein:
  5.  前記抑制部が前記警告を抑制し始めた時に前記障害物を検出していた検出角度領域からその他の検出角度領域へ前記障害物が移動した場合、前記抑制部は、前記警告の抑制を解除することを特徴とする請求項1~4のいずれか一項に記載の走行制御装置。 When the obstacle moves from a detection angle region where the obstacle is detected when the suppression unit starts to suppress the warning to another detection angle region, the suppression unit releases the suppression of the warning. The travel control device according to any one of claims 1 to 4, characterized in that:
  6.  前記接近時間推定部が推定した前記接近時間が、前記第1時間しきい値以下である第2時間しきい値よりも短い場合、前記抑制部は、前記警告の抑制を解除することを特徴とする請求項3に記載の走行制御装置。 When the approach time estimated by the approach time estimation unit is shorter than a second time threshold value that is equal to or less than the first time threshold value, the suppression unit releases the suppression of the warning. The travel control device according to claim 3.
  7.  前記障害物を検出し始めてから前記障害物が自車へ接近した距離が接近しきい値以上である場合、前記抑制部は、前記警告の抑制を解除することを特徴とする請求項1~6のいずれか一項に記載の走行制御装置。 The suppression unit cancels the suppression of the warning when the distance that the obstacle has approached the host vehicle after starting to detect the obstacle is equal to or greater than an approach threshold value. The travel control device according to any one of the above.
  8.  前記第2距離しきい値は、前記接近時間が短いほど大きい値であることを特徴とする請求項4に記載の走行制御装置。 The travel control device according to claim 4, wherein the second distance threshold value is larger as the approach time is shorter.
  9.  前記接近しきい値は、前記接近時間が短いほど小さい値であることを特徴とする請求項7に記載の走行制御装置。 The travel control device according to claim 7, wherein the approach threshold value is smaller as the approach time is shorter.
  10.  前記後方移動準備検出部は、自車のシフトポジションが後退ポジションにある時に、前記自車が後方へ移動する準備を検出することを特徴とする請求項1~9のいずれか一項に記載の走行制御装置。 10. The backward movement preparation detection unit detects preparation that the own vehicle moves backward when the shift position of the own vehicle is in a reverse position. Travel control device.
  11.  自車の側方を含み且つ自車の後方に向けて広がる範囲を複数の検出角度領域に分割し、前記複数の検出角度領域に進入する障害物及び前記障害物との距離を、検出角度領域毎に検出する側方障害物検出部と、前記側方障害物検出部が検出した前記障害物との距離から前記障害物との相対速度を推定する相対速度推定部と、前記自車が後方へ移動する準備を検出する後方移動準備検出部と、前記側方障害物検出部が検出した障害物について警告を行う警告部と、を有する走行制御装置を用いた走行制御方法であって、
     前記自車が後方へ移動する準備を前記後方移動準備検出部が検出し、前記側方障害物検出部が所定の検出角度領域において、前記相対速度推定部が推定した相対速度に基づいて定まる所定の接近状態にある前記障害物を検出し、且つ、前記側方障害物検出部が検出した前記障害物との距離が遠方である場合、前記警告部による警告を抑制する
     ことを特徴とする走行制御方法。
    A range including the side of the host vehicle and extending toward the rear of the host vehicle is divided into a plurality of detection angle regions, and an obstacle entering the plurality of detection angle regions and a distance from the obstacle are detected angle regions. A side obstacle detection unit that detects each time, a relative speed estimation unit that estimates a relative speed with respect to the obstacle from a distance between the obstacle detected by the side obstacle detection unit, and the vehicle is behind A travel control method using a travel control device having a backward movement preparation detection unit that detects preparation for moving to, and a warning unit that warns about an obstacle detected by the side obstacle detection unit,
    The preparation for moving the vehicle backward is detected by the backward movement preparation detection unit, and the side obstacle detection unit is determined based on the relative speed estimated by the relative speed estimation unit in a predetermined detection angle region. When the obstacle in the approaching state is detected and the distance from the obstacle detected by the side obstacle detecting unit is far, the warning by the warning unit is suppressed. Control method.
PCT/JP2013/052725 2012-02-10 2013-02-06 Travel control device and travel control method WO2013118772A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012026940 2012-02-10
JP2012-026940 2012-02-10

Publications (1)

Publication Number Publication Date
WO2013118772A1 true WO2013118772A1 (en) 2013-08-15

Family

ID=48947533

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/052725 WO2013118772A1 (en) 2012-02-10 2013-02-06 Travel control device and travel control method

Country Status (1)

Country Link
WO (1) WO2013118772A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016075818A (en) * 2014-10-07 2016-05-12 株式会社デンソー Information display device and information display method
CN106985780A (en) * 2016-01-21 2017-07-28 沃尔沃汽车公司 Vehicle safety accessory system
JP2021051546A (en) * 2019-09-25 2021-04-01 スズキ株式会社 Operation support device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11304919A (en) * 1998-04-16 1999-11-05 Mazda Motor Corp Apparatus and method for detection of obstacle
JPH11328595A (en) * 1998-02-14 1999-11-30 Daimler Chrysler Ag Vehicle having object detector
JP2001315602A (en) * 2000-05-10 2001-11-13 Matsushita Electric Works Ltd Obstacle detector for vehicle
JP2005035315A (en) * 2003-07-15 2005-02-10 Mitsubishi Motors Corp Parking support device
JP2010018167A (en) * 2008-07-10 2010-01-28 Toyota Motor Corp Parking support device
JP2011193137A (en) * 2010-03-12 2011-09-29 Aisin Seiki Co Ltd Parking support device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11328595A (en) * 1998-02-14 1999-11-30 Daimler Chrysler Ag Vehicle having object detector
JPH11304919A (en) * 1998-04-16 1999-11-05 Mazda Motor Corp Apparatus and method for detection of obstacle
JP2001315602A (en) * 2000-05-10 2001-11-13 Matsushita Electric Works Ltd Obstacle detector for vehicle
JP2005035315A (en) * 2003-07-15 2005-02-10 Mitsubishi Motors Corp Parking support device
JP2010018167A (en) * 2008-07-10 2010-01-28 Toyota Motor Corp Parking support device
JP2011193137A (en) * 2010-03-12 2011-09-29 Aisin Seiki Co Ltd Parking support device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016075818A (en) * 2014-10-07 2016-05-12 株式会社デンソー Information display device and information display method
CN106985780A (en) * 2016-01-21 2017-07-28 沃尔沃汽车公司 Vehicle safety accessory system
JP2021051546A (en) * 2019-09-25 2021-04-01 スズキ株式会社 Operation support device
JP7310488B2 (en) 2019-09-25 2023-07-19 スズキ株式会社 Driving support device

Similar Documents

Publication Publication Date Title
JP5928486B2 (en) Travel control device and travel control method
JP5794381B2 (en) Travel control device and travel control method
JP5928487B2 (en) Travel control device and travel control method
US9751562B2 (en) Park exit assist system
US20190001968A1 (en) Vehicle surrounding display apparatus
JP6090065B2 (en) Driving assistance device
JP5510254B2 (en) Driving support apparatus and method
JP5672310B2 (en) Driving support device, driving support method, and vehicle
JP5766308B2 (en) Travel control device and travel control method
JP5256911B2 (en) Vehicle control device
US10857999B2 (en) Vehicle device
JP5146288B2 (en) Vehicle control device
WO2013027259A1 (en) Vehicle-use alert device
JP2011018165A (en) Vehicle travel safety device
WO2013118772A1 (en) Travel control device and travel control method
JP5169587B2 (en) Vehicle control device
JP2003205764A (en) Travel controller for vehicle
JP2012232639A (en) Driving support device and method
TW202122292A (en) Leaning vehicle comprising FCW control device
JP2012221463A (en) Collision avoidance device
JP7505509B2 (en) Vehicle Driving Assistance Device
JP7498438B2 (en) Driving assistance device, vehicle, driving assistance method, and driving assistance program
JP7115381B2 (en) Pre-collision control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13747124

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13747124

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP