WO2013118684A1 - Water supply pipe for steam generator - Google Patents

Water supply pipe for steam generator Download PDF

Info

Publication number
WO2013118684A1
WO2013118684A1 PCT/JP2013/052501 JP2013052501W WO2013118684A1 WO 2013118684 A1 WO2013118684 A1 WO 2013118684A1 JP 2013052501 W JP2013052501 W JP 2013052501W WO 2013118684 A1 WO2013118684 A1 WO 2013118684A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe
ring
shaped
pipe part
cooling water
Prior art date
Application number
PCT/JP2013/052501
Other languages
French (fr)
Japanese (ja)
Inventor
隆也 日下部
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to EP13746076.2A priority Critical patent/EP2814039B1/en
Priority to US14/376,591 priority patent/US20140360442A1/en
Publication of WO2013118684A1 publication Critical patent/WO2013118684A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D3/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium flows in a continuous film, or trickles freely, over the conduits
    • F28D3/04Distributing arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • F22B37/10Water tubes; Accessories therefor
    • F22B37/14Supply mains, e.g. rising mains, down-comers, in connection with water tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/023Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers with heating tubes, for nuclear reactors as far as they are not classified, according to a specified heating fluid, in another group
    • F22B1/025Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers with heating tubes, for nuclear reactors as far as they are not classified, according to a specified heating fluid, in another group with vertical U shaped tubes carried on a horizontal tube sheet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B21/00Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • F22B37/22Drums; Headers; Accessories therefor
    • F22B37/228Headers for distributing feedwater into steam generator vessels; Accessories therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/06Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits having a single U-bend
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/027Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of distribution pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/22Arrangements for directing heat-exchange media into successive compartments, e.g. arrangements of guide plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/007Auxiliary supports for elements
    • F28F9/013Auxiliary supports for elements for tubes or tube-assemblies
    • F28F9/0131Auxiliary supports for elements for tubes or tube-assemblies formed by plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/027Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of distribution pipes
    • F28F9/0273Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of distribution pipes with multiple holes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/027Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of distribution pipes
    • F28F9/0275Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of distribution pipes with multiple branch pipes
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21DNUCLEAR POWER PLANT
    • G21D1/00Details of nuclear power plant

Definitions

  • the present invention relates to a water supply pipe for a steam generator.
  • a water supply pipe for supplying cooling water into a steam generator such as a pressurized water reactor is known.
  • a thermal stratification phenomenon may occur due to the inflow of steam or hot internal water into the pipe.
  • the thermal stratification phenomenon is not preferable because it causes a stress of a fatigue source.
  • Patent Document 1 discloses a technique of a water supply pipe of a steam generator in which a cough is attached to an inner upper wall of a water supply pipe bent so as to lift a water supply ring.
  • the objective of this invention is providing the feed pipe for steam generators which can suppress thermal stratification in a pipe
  • the steam generator water supply pipe of the present invention is inserted into a through-hole penetrating the outer shell member of the steam generator, and is connected to the insertion pipe part extending in the horizontal direction, the insertion pipe part, and the steam generator.
  • An internal pipe part of the generator, the internal pipe part of the generator is formed in the axial direction of the internal pipe part of the generator, and the outside of the steam generator via the insertion pipe part A pipe through which the cooling water supplied from the pipe flows, and an outflow part through which the cooling water in the pipe flows out from the pipe to the space in the steam generator.
  • the lower end of the cross section of the pipe line orthogonal to the flow direction is the upper end of the inner wall surface of the insertion pipe part at the connection part between the insertion pipe part and the generator inner pipe part. It is characterized by being above the horizontal plane passing through the vertical direction.
  • this water supply pipe for a steam generator by suppressing the lowering of the water level of the insertion pipe part, thermal stratification due to the generation of steam in the insertion pipe part is suppressed.
  • cooling water having a different temperature flows into the cooling water in the insertion pipe part, the high-temperature cooling water flows out to the generator internal pipe part, thereby suppressing thermal stratification.
  • the section in which the first inclined part is formed in the generator inner pipe part preferably does not have the outflow part.
  • the generator inner pipe section includes a ring-shaped pipe section extending in a ring shape along an inner peripheral surface of the outer shell member, and a ring branched from the ring-shaped pipe section.
  • the pipe is formed on the both sides in the axial direction of the ring-shaped pipe part with the connection pipe part interposed therebetween.
  • the first inclined portion and the second inclined portion can be formed while suppressing interference with other structures in the steam generator.
  • a horizontal line that is the pipe line extending in the horizontal direction on the opposite side to the insertion pipe portion side than the second inclined portion in the flow direction.
  • a ring-shaped pipe line is formed, and an upper end of a cross section perpendicular to the flow direction in the horizontal ring-shaped pipe line is an inner part of the insertion pipe part at a connection part between the insertion pipe part and the generator internal pipe part. It is preferable that it exists in the vertical direction lower side than the horizontal surface which passes along the upper end of a wall surface.
  • the occurrence of steam accumulation in the horizontal ring pipe is suppressed by suppressing the ring-shaped pipe portion from being exposed when the cooling water level in the steam generator is lowered.
  • a horizontal line that is the pipe line extending in the horizontal direction on the opposite side to the insertion pipe portion side than the second inclined portion in the flow direction.
  • a ring-shaped pipe is formed, and the upper end of the cross section perpendicular to the flow direction in the horizontal ring-shaped pipe is vertically lower than the lower limit in the control target of the coolant level in the space in the steam generator. Preferably it is on the side.
  • thermal stratification in the pipe of the steam generator feed pipe can be suppressed.
  • FIG. 1 is a schematic diagram of a steam generator according to an embodiment.
  • Drawing 2 is a sectional view showing the feed pipe for steam generators concerning an embodiment.
  • FIG. 3 is a perspective view showing a water supply pipe for a steam generator according to the embodiment.
  • Drawing 4 is a perspective view showing the important section of the feed pipe for steam generators concerning an embodiment.
  • FIG. 5 is a cross-sectional view showing an example of a water supply pipe that can suppress thermal stratification in the insertion pipe portion.
  • FIG. 6 is a perspective view showing an example of a water supply pipe capable of suppressing thermal stratification in the insertion pipe part.
  • FIG. 1 is a schematic view of a steam generator according to the present embodiment
  • FIG. 2 is a cross-sectional view showing a water supply pipe for a steam generator according to the embodiment
  • FIG. 3 is a perspective view showing a water supply pipe for the steam generator according to the embodiment.
  • Drawing 4 is a perspective view showing the important section of the feed pipe for steam generators concerning an embodiment.
  • FIG. 2 shows a cross section of the water supply pipe for a steam generator as viewed horizontally in the direction I of FIG.
  • the steam generator 1 is used in, for example, a pressurized water reactor (PWR).
  • the pressurized water reactor uses light water as a reactor coolant and neutron moderator.
  • high-temperature and high-pressure light water that does not boil over the entire core is sent to the steam generator 1 as primary cooling water.
  • the steam generator 1 transmits the heat of the high-temperature and high-pressure primary cooling water to the secondary cooling water, and generates water vapor in the secondary cooling water. Then, the steam generator is rotated by this steam to generate electricity.
  • the steam generator 1 has a hollow cylindrical shape that extends in the vertical direction and is hermetically sealed, and has a body portion 2 in which the lower half is slightly smaller in diameter than the upper half.
  • the body 2 is an outer shell member of the steam generator 1.
  • a tube group outer cylinder 3 having a cylindrical shape is provided in the lower half portion of the trunk portion 2 and is arranged at a predetermined interval from the inner wall surface of the trunk portion 2.
  • the lower end portion of the tube group outer tube 3 extends to a position directly above the tube plate 4 disposed below the lower half of the body portion 2.
  • a heat transfer tube group 51 including a plurality of heat transfer tubes 5 having an inverted U shape is provided in the tube group outer cylinder 3.
  • Each of the heat transfer tubes 5 is arranged with a U-shaped arc portion facing upward, an end portion facing downward is supported by the tube plate 4, and an intermediate portion is supported by a plurality of tube support plates 6.
  • a large number of through holes are formed in the tube support plate 6, and the heat transfer tubes 5 are inserted and supported in the through holes.
  • a water chamber 7 is provided at the lower end of the body 2.
  • the water chamber 7 is divided into an entrance chamber 71 and an exit chamber 72 by a partition wall 8.
  • One end of each heat transfer tube 5 is connected to the entrance chamber 71, and the other end of each heat transfer tube 5 is connected to the exit chamber 72.
  • the entrance chamber 71 has an inlet nozzle 711 that communicates with the outside of the trunk portion 2
  • the exit chamber 72 has an exit nozzle 721 that communicates with the exterior of the trunk portion 2.
  • the inlet nozzle 711 is connected to a cooling water pipe (not shown) through which primary cooling water is sent from the pressurized water reactor, while the outlet nozzle 721 is supplied with the primary cooling water after heat exchange.
  • a cooling water pipe (not shown) to be sent to the type reactor is connected.
  • an air / water separator 9 that separates water vapor into steam and hot water
  • a moisture separator 10 that removes the moisture of the separated steam and makes it close to dry steam.
  • a steam generator water supply pipe 20 for supplying secondary cooling water into the body 2 from the outside.
  • a steam discharge port 12 is formed at the upper end portion of the body portion 2.
  • the secondary cooling water supplied from the water supply pipe 20 into the body portion 2 is caused to flow down between the body portion 2 and the tube group outer tube 3, and the tube plate 4.
  • the water supply path 13 is provided that is folded back and raised along the heat transfer tube group 51.
  • the steam outlet 12 is connected to a steam supply passage (not shown) for sending steam to the turbine, and the steam used in the turbine is cooled to the water supply pipe 20 by a condenser (not shown).
  • a cooling water pipe (not shown) for supplying secondary cooling water is connected.
  • the primary cooling water heated in the pressurized water reactor is sent to the entrance chamber 71 and reaches the exit chamber 72 through the numerous heat transfer tubes 5.
  • the secondary cooling water cooled by the condenser is sent to the water supply pipe 20 and supplied into the trunk portion 2 through the water supply pipe 20.
  • the secondary cooling water is also simply referred to as “cooling water”.
  • the cooling water supplied into the body portion 2 rises along the heat transfer tube group 51 through the water supply path 13. At this time, heat exchange is performed between the high-pressure and high-temperature primary cooling water and the secondary cooling water in the trunk portion 2. Then, the cooled primary cooling water is returned from the outlet chamber 72 to the pressurized water reactor.
  • the secondary cooling water subjected to heat exchange with the high-pressure and high-temperature primary cooling water rises in the body portion 2 and is separated into steam and hot water by the steam separator 9.
  • the separated steam is sent to the turbine after moisture is removed by the moisture separator 10.
  • the water supply pipe 20 includes a pipe through which cooling water supplied from the outside of the steam generator 1 flows, and an outflow pipe 25 through which the cooling water in the pipe flows out from the pipe to the space 40 in the steam generator 1 (FIG. 2). To FIG. 4).
  • the water supply pipe 20 is arranged so that the cooling water can flow out under the surface of the cooling water in the space 40 during operation of the steam generator 1. Thermal stratification occurs in the water supply pipe 20 when the supply of cooling water from the outside of the steam generator 1 is stopped or when the supply of cooling water is started, such as when the reactor plant is stopped or started. There are things to do.
  • thermal stratification occurs between the low-temperature cooling water and the high-temperature cooling water in the pipe, Thermal stratification may occur due to steam and cooling water. If thermal stratification occurs in the pipe, stress that becomes a fatigue source is generated, which is not preferable. It is preferable that thermal stratification in the pipe of the water supply pipe 20 can be suppressed, and in particular, thermal stratification can be suppressed in a portion inserted into the through-hole penetrating the trunk portion 2 in the water supply pipe 20.
  • the steam generator 1 includes a trunk portion in a generator inner pipe portion 22 disposed in the steam generator 1. 2 is connected to the connecting tube portion 24 (see, for example, FIG. 2) that is bent so as to be lifted from the insertion tube portion 21 that is inserted into the through-hole 112 that penetrates 2, and an inclined tube portion 233 that is bent so that its tip is further lowered.
  • the connecting tube portion 24 see, for example, FIG. 2
  • the thermal stratification phenomenon passes through the insertion pipe portion 21 in a short time, and the heat in the trunk portion 2 Generation of stress is suppressed.
  • the design flexibility in the arrangement of the water supply pipe 20 with other structures in the steam generator 1 The design freedom of the elevation with respect to the water level is secured.
  • the water supply pipe 20 includes an insertion pipe part 21 and a generator internal pipe part 22.
  • the insertion tube portion 21 and the generator internal tube portion 22 are both tubular members having a circular cross section.
  • Pipe lines are formed in the insertion pipe part 21 and the generator internal pipe part 22 in the axial direction, respectively. Cooling water supplied from the outside of the steam generator 1 flows into the pipe line of the generator internal pipe section 22 via the insertion pipe section 21. The cooling water flowing through the pipe line of the generator inner pipe part 22 flows out from the pipe line of the generator inner pipe part 22 into the space 40 in the steam generator 1 through an outlet pipe 25 described later.
  • the barrel 2 has a nozzle 11.
  • the nozzle 11 has a protruding portion 111 that protrudes outward in the radial direction of the body portion 2. Further, the nozzle 11 is formed with a through hole 112 that penetrates the nozzle 11 in the axial direction of the protruding portion 111.
  • the insertion tube portion 21 is fitted into the through hole 112 from the inside in the radial direction of the body portion 2.
  • the insertion tube portion 21 is fixed to the nozzle 11 by welding or the like with the outer peripheral surface of the insertion tube portion 21 and the inner peripheral surface of the protruding portion 111 facing each other. That is, the insertion tube portion 21 is inserted into the through hole 112 that penetrates the trunk portion 2 of the steam generator 1.
  • the center axis of the nozzle 11, that is, the center axis of the through hole 112 is horizontal, and the insertion tube portion 21 extends in the horizontal direction correspondingly. Further, the insertion tube portion 21 extends linearly, and the extending direction thereof is the radial direction of the body portion 2.
  • the generator internal pipe portion 22 is disposed inside the trunk portion 2, that is, inside the steam generator 1.
  • the generator internal tube portion 22 includes a ring-shaped tube portion 23 extending in a ring shape, a branch from the ring-shaped tube portion 23, and the ring-shaped tube portion 23 and the insertion tube portion 21. And a connecting pipe portion 24 for connecting the two.
  • the ring-shaped tube portion 23 extends in the circumferential direction of the body portion 2 along the inner wall surface 2a of the body portion 2 shown in FIG.
  • the ring-shaped tube portion 23 is disposed coaxially with the central axis 50 of the trunk portion 2, for example. As shown in FIG.
  • the ring-shaped tube portion 23 is supported by the inner wall surface 2 a of the trunk portion 2 via the stay 14.
  • the ring-shaped tube portion 23 includes a horizontal ring-shaped tube portion 231 and an upper ring-shaped tube portion 232 that is lifted upward in the vertical direction with respect to the horizontal ring-shaped tube portion 231.
  • the horizontal ring tube portion 231 extends in the horizontal direction. Further, as shown in FIG. 2, a horizontal ring-shaped pipe line 231a which is a pipe formed in the axial direction in the horizontal ring-shaped pipe portion 231 also extends in the horizontal direction. That is, in the horizontal ring-shaped pipeline 231a, the upper end 231b of the cross section orthogonal to the flow direction of the cooling water has the same vertical position in any cross section. Further, in the horizontal ring pipe 231a, the lower end 231c of the cross section orthogonal to the flow direction of the cooling water has the same vertical position in any cross section.
  • the horizontal ring-shaped conduit 231a is a conduit having a central axis extending on the same horizontal plane and a uniform diameter.
  • the horizontal ring-shaped pipe part 231 in which the horizontal ring-shaped pipe line 231a is formed is located on the opposite side of the ring-shaped pipe part 23 to the insertion pipe part 21 side with respect to the inclined pipe part 233 in the flow direction of the cooling water. That is, the horizontal ring-shaped pipe line 231a is downstream of the pipe line 233e of the inclined pipe part 233 in the flow direction of the cooling water when the cooling water is supplied from the outside of the steam generator 1.
  • the upper ring-shaped tube portion 232 has two inclined tube portions 233 and an upper horizontal tube portion 234.
  • the inclined pipe part 233 is connected to the insertion pipe part 21 via the upper horizontal pipe part 234 and the connection pipe part 24. That is, the inclined pipe portion 233 is located on the side where the distance from the insertion pipe portion 21 along the flow direction of the cooling water in the generator inner pipe portion 22 is larger than the connection pipe portion 24. In other words, the length of the flow path from the insertion pipe part 21 to the inclined pipe part 233 is larger than the length of the flow path from the insertion pipe part 21 to the connection pipe part 24.
  • the upper horizontal pipe portion 234 is a straight pipe portion extending in the horizontal direction.
  • the connecting pipe part 24 branches off from the upper horizontal pipe part 234.
  • the connecting pipe part 24 branches off from the lower part of the upper horizontal pipe part 234 toward the outer side in the radial direction of the body part 2.
  • the end of the connection pipe 24 opposite to the side connected to the upper horizontal pipe 234 is connected to the insertion pipe 21. That is, the connecting pipe part 24 branches from the ring-shaped pipe part 23 and connects the ring-shaped pipe part 23 and the insertion pipe part 21.
  • the connecting pipe part 24 has an inclination in which the side with the larger distance from the insertion pipe part 21 is located on the upper side in the vertical direction than the side with the smaller distance from the insertion pipe part 21 along the flow direction of the cooling water.
  • the connecting pipe part 24 has an inclination in which the end part 24b side connected to the upper horizontal pipe part 234 is located on the upper side in the vertical direction than the end part 24a side connected to the insertion pipe part 21.
  • the pipe path 24c formed in the connecting pipe part 24 is such that the side where the distance from the connecting pipe part 21 is larger than the side where the distance from the insertion pipe part 21 along the flow direction of the cooling water is small is vertical. It has a slope located above the direction.
  • the pipe line 24c formed in the connection pipe part 24 corresponds to the first inclined part. In the pipe line 24c, the gradient of the flow path increases from the side where the distance from the insertion pipe part 21 is small toward the side where the distance is large.
  • the inclined tube portion 233 is formed on both sides of the ring-shaped tube portion 23 in the axial direction with the connecting tube portion 24 interposed therebetween.
  • One inclined tube portion 233 connects one end of the upper horizontal tube portion 234 and one end of the horizontal ring tube portion 231, and the other inclined tube portion 233 is connected to the other end of the upper horizontal tube portion 234 and the horizontal ring tube portion 231.
  • the other end of the unit 231 is connected.
  • the inclined pipe part 233 has an inclination in which the side with the larger distance from the insertion pipe part 21 is located on the lower side in the vertical direction than the side with the smaller distance from the insertion pipe part 21 along the flow direction of the cooling water. . That is, as shown in FIG.
  • the inclined tube portion 233 has the end portion 233 b side connected to the horizontal ring-shaped tube portion 231 on the lower side in the vertical direction than the end portion 233 a side connected to the upper horizontal tube portion 234. It has a slope that is located.
  • the pipe line 233e formed in the inclined pipe part 233 is such that the side where the distance from the insertion pipe part 21 is larger than the side where the distance from the insertion pipe part 21 along the flow direction of the cooling water is small is vertical. It has a slope located below the direction. This pipe line 233e corresponds to the second inclined portion.
  • the inclined pipe part 233 of this embodiment has two elbow parts 233c and 233d connected in series.
  • One elbow part 233c heading upward in the vertical direction from the connection part 233g of both elbow parts is bent toward one side in the circumferential direction, and the other elbow part 233d going from the connection part 233g to the lower side in the vertical direction is circumferential. It is bent toward the other side.
  • the inclined tube portion 233 is bent so as to be lowered from the upper horizontal tube portion 234 and connected to the horizontal ring-shaped tube portion 231.
  • the inclined pipe portion 233 has an inclination in which the lower side in the vertical direction is directed outward in the radial direction of the body portion 2 from the upper side in the vertical direction.
  • the ring-shaped tube portion 23 is disposed so as to avoid interference with the structure. Can do.
  • the radial inclination in the inclined pipe part 233 is not limited to this.
  • the inclination direction of the inclined pipe portion 233 may be determined as appropriate so that interference between other structures and the ring-shaped pipe portion 23 can be avoided.
  • first inclined portion that is the raised portion of the pipe line is formed in the connecting pipe portion 24 as the pipe line 24c
  • the second inclined portion that is the lowered portion of the pipe line is formed in the ring-shaped pipe portion 23 as the pipe line 233e.
  • the generator internal pipe portion 22 of the present embodiment is branched from the connection pipe portion 24 to both sides in the circumferential direction to form a ring-shaped pipe portion 23.
  • the pipe line 233e as the second inclined portion is formed in the ring-shaped tube portion 23 branched from the connecting tube portion 24, it is easy to secure a space for forming the second inclined portion.
  • the second inclined portion can be extended in the circumferential direction. . That is, the second inclined portion can be formed while avoiding interference with the structure disposed on the radial center side in the body portion 2. Therefore, the freedom degree which arrange
  • the inclined pipe portion 233 it is possible to avoid the interference with other structures by inclining the lower side in the vertical direction toward the radially outer side of the trunk portion 2 than the upper side in the vertical direction. Become.
  • the tube diameters (inner diameters) of the insertion tube portion 21, the connection tube portion 24, and the ring-shaped tube portion 23 can be constant in each.
  • the tube diameter of the insertion tube portion 21 is equal to the tube diameter of the connection tube portion 24, and the tube diameter of the ring-shaped tube portion 23 is smaller than the tube diameter of the connection tube portion 24.
  • the ring-shaped tube portion 23 has an outflow tube 25.
  • the outflow pipe 25 functions as an outflow part through which cooling water in the pipe formed in the ring-shaped pipe part 23 flows out from the pipe into the space 40 in the steam generator 1.
  • the outflow pipe 25 is a hollow cylindrical member, and a plurality of outflow pipes 25 are arranged along the direction in which the ring-shaped pipe part 23 extends with respect to the ring-shaped pipe part 23. As shown in FIG. 4, the cylindrical portion of the outflow pipe 25 is formed with a plurality of through holes 25 a that penetrate the cylindrical portion of the outflow pipe 25 in the radial direction.
  • one end of the outflow pipe 25 in the axial direction is connected to a pipe line of the ring-shaped pipe portion 23 through a communication hole (not shown) formed in the ring-shaped pipe section 23.
  • This communication hole is formed at the top of the ring-shaped tube portion 23. That is, the outflow pipe 25 is connected to the upper end of the pipe line formed in the ring-shaped pipe portion 23 when viewed in the axial direction.
  • the end of the outflow pipe 25 on the upper side in the vertical direction, that is, the end opposite to the side connected to the ring-shaped pipe 23 is closed.
  • the cooling water When cooling water is supplied from the outside of the steam generator 1 to the ring-shaped pipe part 23 via the insertion pipe part 21, the cooling water flows into the outflow pipe 25 from the pipe line of the ring-shaped pipe part 23, and the through hole 25a. To the space 40 inside the steam generator 1.
  • the outflow pipe 25 a large number of through holes 25a are equally arranged in the circumferential direction and the axial direction. For this reason, the cooling water flows out uniformly from the outflow pipe 25 to the periphery.
  • the outflow pipe 25 is not provided in the section in which the 1st inclination part in the connection pipe part 24, ie, the generator internal pipe part 22, was formed.
  • the lower end 234b of the cross section in the pipe line 234a formed in the upper horizontal pipe part 234 is located vertically above the upper end 21a of the inner wall surface of the insertion pipe part 21. .
  • the lower end 234 b of the cross section orthogonal to the flow direction of the cooling water in the pipe 234 a formed in the upper horizontal pipe part 234 is the insertion pipe in the connection part between the insertion pipe part 21 and the connection pipe part 24. It is above the upper end 21 a of the inner wall surface of the portion 21 in the vertical direction.
  • the cross section orthogonal to the flow direction of the cooling water in the pipe line 234a does not intersect the horizontal plane 30 passing through the upper end 21a of the inner wall surface of the insertion pipe part 21 at the connection part between the insertion pipe part 21 and the connection pipe part 24.
  • the lower end 234b of the cross section is on the upper side in the vertical direction from the horizontal plane 30.
  • the connecting pipe portion 24 of this embodiment does not have the outflow pipe 25. Thereby, it is suppressed more reliably that the water level of cooling water falls rather than the lower end 234b of the pipe line 234a.
  • the insertion pipe part 21 and the ring-shaped pipe part 23 are horizontal without having a raised part such as the connecting pipe part 24 and a lowered part such as the inclined pipe part 233.
  • the entire water supply pipe is filled with the cooling water. It takes a certain amount of time.
  • the steam and the cooling water exist in a layered manner in the insertion pipe portion 21, so that stress of a fatigue source continues to be generated in the insertion pipe portion 21.
  • a water hammer phenomenon may occur. It is desirable to be able to suppress the occurrence of such thermal stress and water hammer phenomenon in the vicinity of the nozzle 11 as a boundary.
  • the insertion pipe portion 21 is first filled with cooling water, and the water level further rises. Cooling water is supplied from the connecting pipe part 24 to the horizontal ring-shaped pipe part 231 through the upper ring-shaped pipe part 232. Thereby, it becomes possible to shorten the time for which the steam layer and the cooling water layer are stratified in the insertion tube portion 21, thereby suppressing the generation of stress of the fatigue source in the insertion tube portion 21.
  • the thermal stratification in the insertion pipe part 21 is a short time compared with the case of the water supply pipe in which the insertion pipe part 21 and the ring-shaped pipe part 23 are extended flat in a horizontal direction. It will be resolved.
  • the pipe line 234a formed in the upper horizontal pipe part 234 corresponds to the pipe line between the first inclined part and the second inclined part.
  • the lower end 234b of the cross section orthogonal to the flow direction of the cooling water is on the upper side in the vertical direction with respect to the horizontal plane 30 in all sections of the pipe 234a.
  • the lower end 234 b of the cross section of the pipe line 234 a orthogonal to the cooling water flow direction may be located above the horizontal plane 30 in the vertical direction.
  • FIG. 5 is a cross-sectional view showing an example of a water supply pipe that can suppress thermal stratification in the insertion pipe portion.
  • FIG. 6 is a perspective view showing an example of a water supply pipe capable of suppressing thermal stratification in the insertion pipe part.
  • the ring-shaped pipe part 123 does not have the inclined pipe part 233 as in the present embodiment.
  • the position of the upper end 123 b of the cross section orthogonal to the flow direction of the cooling water is in the vertical direction regardless of the position in the flow direction of the cooling water.
  • the upper end 123b of the cross section orthogonal to the flow direction of the cooling water in the pipe line 123a is on the same horizontal plane regardless of the position in the flow direction of the cooling water.
  • the ring-shaped tube portion 123 has a tapered portion 123c.
  • the taper portion 123 c is formed in the vicinity of the connection portion of the ring-shaped tube portion 123 with the connection tube portion 124.
  • the tapered portion 123c is formed on both sides in the circumferential direction with respect to the connection portion with the connection tube portion 124 in the ring-shaped tube portion 123.
  • the tapered portion 123c has a tapered shape in which the side farther from the side closer to the connecting tube portion 124 in the cooling water flow direction of the ring-shaped tube portion 123 has a smaller diameter.
  • the flow path cross-sectional area of the pipe line 123a gradually decreases as the distance from the connection pipe part 124 increases.
  • the ring-side tube portion 123 has a diameter of the ring-side connection tube portion 123d, which is a portion closer to the connection tube portion 124 than the taper portion 123c. It is larger than the diameter of the part 123e on the opposite side to the connecting pipe part 124 side than 123c.
  • the connecting pipe part 124 is the same as the connecting pipe part 24 of the water supply pipe 20, and the distance from the insertion pipe part 21 is larger than the side where the distance from the insertion pipe part 21 along the flow direction of the cooling water is small.
  • the side has an inclination located on the upper side in the vertical direction.
  • the ring side connecting pipe portion 123d is a straight pipe portion having a constant diameter. As shown in FIG. 5, the lower end 123f of the cross section orthogonal to the flow direction of the cooling water in the ring side connecting pipe portion 123d is the inner wall surface of the inserting pipe portion 21 in the connecting portion between the inserting pipe portion 21 and the connecting pipe portion 124. It is above the upper end 21a in the vertical direction.
  • the generator internal pipe section 22 bent so as to be lifted at the connection pipe section 24 with respect to the insertion pipe section 21 is The bent tube portion 233 is bent so as to be lowered. Thereby, the position in the vertical direction of the horizontal ring-shaped tube portion 231 is lowered, and the horizontal ring-shaped tube portion 231 is suppressed from being exposed from the cooling water surface.
  • the upper end 231 b of the cross section orthogonal to the flow direction of the cooling water in the pipe line 231 a of the horizontal ring-shaped pipe part 231 is the insertion pipe part 21 in the connection part between the insertion pipe part 21 and the connection pipe part 24.
  • the position in the vertical direction of the pipe 231a formed in the horizontal ring-shaped pipe portion 231 is not limited to this and can be arbitrarily set.
  • the upper end 231 b of the cross section orthogonal to the flow direction of the cooling water in the pipe 231 a is located below the central axis X of the insertion pipe portion 21 in the vertical direction.
  • the position in the vertical direction of the pipe line 231a of the horizontal ring-shaped pipe part 231 is arbitrarily set while maintaining the effect of suppressing thermal stratification in the insertion pipe part 21. It becomes possible.
  • the upper horizontal pipe portion 234 is provided with an outflow pipe 251 (25).
  • an outflow pipe 251 25
  • the cooling water level in the steam generator 1 falls, it is suppressed that the cooling water in the insertion pipe part 21 is sucked out to the horizontal ring-shaped pipe part 231 side.
  • the outflow pipe 251 is not provided in the upper horizontal pipe section 234, the cooling water level is lowered until the horizontal ring-shaped pipe section 231 is exposed, and the supply of cooling water from the outside to the water supply pipe 20 is stopped. And the cooling water in the insertion pipe part 21 in a high position with respect to the horizontal ring-shaped pipe part 231 may be sucked out toward the horizontal ring-shaped pipe part 231 side.
  • the position in the vertical direction of the horizontal ring-shaped tube portion 231 may be set based on a predetermined control target of the coolant level in the space 40 in the steam generator 1.
  • the target water level of the cooling water is determined depending on the control parameters of the nuclear power plant having the steam generator 1. For example, when a lower limit is set for the control target water level, the upper end 231b of the cross section orthogonal to the flow direction of the cooling water in the pipe 231a is positioned below the vertical direction below the lower limit water level. Also good.
  • the pipeline 231a is under the surface of the cooling water, and the occurrence of steam accumulation in the pipeline 231a is suppressed. .
  • the position of the horizontal ring-shaped pipe portion 231 in the vertical direction is the same as when the cooling water is supplied at a low temperature and at a low flow rate, for example, when the plant is started and when the temperature is stopped. You may set so that the pipe line 231a of the horizontal ring-shaped pipe part 231 may be located below rather than the cooling water level in the space 40 in the steam generator 1.
  • the pipe part having the outflow pipe 25 is the ring-shaped pipe part 23 extending in a ring shape, but the shape of the pipe part having the outflow pipe 25 is not limited thereto.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Pipeline Systems (AREA)

Abstract

A water supply pipe for a steam generator is provided with an insertion pipe portion (21) inserted into a through-hole (112) of an outer shell member, and an in-generator pipe portion (22) connected to the insertion pipe portion. The in-generator pipe portion comprises a pipe line, and outflow pipes (25) through which cooling water in the pipe line flows out to a space (40) within the steam generator. The pipe line comprises a first inclined portion (24c) of which the side having a large distance from the insertion pipe portion along the flow direction is located on the higher side in the vertical direction than the side having a small distance therefrom, and a second inclined portion which is located on the side where the distance thereof from the insertion pipe portion is larger than that of the first inclined portion therefrom, and of which the side having a large distance from the insertion pipe portion along the flow direction is located on the lower side in the vertical direction than the side having a small distance therefrom. In a section of at least part in the flow direction of the pipe line (234a) between the first inclined portion and the second inclined portion, the lower end (234b) of the cross-section of the pipe line is located on the higher side in the vertical direction than a horizontal plane (30) passing through the upper end (21a) of the inner wall surface of the insertion pipe portion at a connection between the insertion pipe portion and the in-generator pipe portion.

Description

蒸気発生器用給水管Steam generator water pipe
 本発明は、蒸気発生器用給水管に関する。 The present invention relates to a water supply pipe for a steam generator.
 従来、加圧水型原子炉等の蒸気発生器内に冷却水を供給する給水管が知られている。給水管において、管内に蒸気又は高温の器内水が流入することなどにより、熱成層化現象が発生することがある。熱成層化現象は、疲労源の応力を発生させる原因ともなるため、好ましくない。 Conventionally, a water supply pipe for supplying cooling water into a steam generator such as a pressurized water reactor is known. In the water supply pipe, a thermal stratification phenomenon may occur due to the inflow of steam or hot internal water into the pipe. The thermal stratification phenomenon is not preferable because it causes a stress of a fatigue source.
 特許文献1には、給水リングを持ち上げるように折り曲げた給水管の内部上壁にせきを取り付けてなる蒸気発生器の給水管の技術が開示されている。 Patent Document 1 discloses a technique of a water supply pipe of a steam generator in which a cough is attached to an inner upper wall of a water supply pipe bent so as to lift a water supply ring.
実開昭61-121304号公報Japanese Utility Model Publication No. 61-121304
 給水管の管内における熱成層化を抑制することについて、なお検討の余地がある。本発明の目的は、管内における熱成層化を抑制することができる蒸気発生器用給水管を提供することである。 There is still room for study on the suppression of thermal stratification in the water pipe. The objective of this invention is providing the feed pipe for steam generators which can suppress thermal stratification in a pipe | tube.
 本発明の蒸気発生器用給水管は、蒸気発生器の外殻部材を貫通する貫通孔に挿入され、水平方向に延在する挿入管部と、前記挿入管部と接続され、かつ前記蒸気発生器の内部に配置された発生器内管部と、を備え、前記発生器内管部は、前記発生器内管部の軸方向に形成され、前記挿入管部を介して前記蒸気発生器の外部から供給される冷却水が流れる管路と、前記管路内の冷却水が前記管路から前記蒸気発生器内の空間に流出する流出部とを有するものであって、前記管路は、冷却水の流れ方向に沿った前記挿入管部からの距離が小さい側よりも大きい側が鉛直方向の上側に位置する傾斜を有する第一傾斜部と、前記第一傾斜部よりも前記流れ方向に沿った前記挿入管部からの距離が大きい側に位置し、前記流れ方向に沿った前記挿入管部からの距離が小さい側よりも大きい側が鉛直方向の下側に位置する傾斜を有する第二傾斜部とを有し、前記第一傾斜部と前記第二傾斜部との間の前記管路における前記流れ方向の少なくとも一部の区間において、前記流れ方向と直交する前記管路の断面の下端が、前記挿入管部と前記発生器内管部との接続部における前記挿入管部の内壁面の上端を通る水平面よりも鉛直方向上側にあることを特徴とする。 The steam generator water supply pipe of the present invention is inserted into a through-hole penetrating the outer shell member of the steam generator, and is connected to the insertion pipe part extending in the horizontal direction, the insertion pipe part, and the steam generator. An internal pipe part of the generator, the internal pipe part of the generator is formed in the axial direction of the internal pipe part of the generator, and the outside of the steam generator via the insertion pipe part A pipe through which the cooling water supplied from the pipe flows, and an outflow part through which the cooling water in the pipe flows out from the pipe to the space in the steam generator. A first inclined portion having an inclination in which a side larger than a side having a small distance from the insertion tube portion along the water flow direction is located on the upper side in the vertical direction, and along the flow direction more than the first inclined portion. The insertion tube that is located on the side having a larger distance from the insertion tube portion and extends in the flow direction A second inclined portion having an inclination that is located on the lower side in the vertical direction with a side that is larger than a side having a smaller distance from the side in the pipe line between the first inclined portion and the second inclined portion. In at least a part of the flow direction, the lower end of the cross section of the pipe line orthogonal to the flow direction is the upper end of the inner wall surface of the insertion pipe part at the connection part between the insertion pipe part and the generator inner pipe part. It is characterized by being above the horizontal plane passing through the vertical direction.
 この蒸気発生器用給水管によれば、挿入管部の水位の低下が抑制されることで、挿入管部に蒸気溜りが発生することによる熱成層化が抑制される。また、挿入管部の冷却水に対して温度の異なる冷却水が流入した場合、高温の冷却水が発生器内管部へ流出することで、熱成層化が抑制される。 According to this water supply pipe for a steam generator, by suppressing the lowering of the water level of the insertion pipe part, thermal stratification due to the generation of steam in the insertion pipe part is suppressed. In addition, when cooling water having a different temperature flows into the cooling water in the insertion pipe part, the high-temperature cooling water flows out to the generator internal pipe part, thereby suppressing thermal stratification.
 上記蒸気発生器用給水管において、前記発生器内管部において、前記第一傾斜部が形成された区間は、前記流出部を有していないことが好ましい。 In the steam generator feed pipe, the section in which the first inclined part is formed in the generator inner pipe part preferably does not have the outflow part.
 この蒸気発生器用給水管によれば、蒸気発生器内の冷却水位が低下した場合であっても挿入管部の水位の低下を抑制することができる。 According to this water supply pipe for a steam generator, even if the cooling water level in the steam generator is lowered, it is possible to suppress a drop in the water level of the insertion pipe portion.
 上記蒸気発生器用給水管において、前記発生器内管部は、前記外殻部材の内周面に沿ってリング状に延在するリング状管部と、前記リング状管部から分岐して前記リング状管部と前記挿入管部とを接続する接続管部とを有し、前記第一傾斜部は、前記接続管部に形成された前記管路であり、前記第二傾斜部は、前記リング状管部に形成された前記管路であって、前記接続管部を挟んで前記リング状管部の軸方向の両側に形成されていることが好ましい。 In the water supply pipe for a steam generator, the generator inner pipe section includes a ring-shaped pipe section extending in a ring shape along an inner peripheral surface of the outer shell member, and a ring branched from the ring-shaped pipe section. A connecting pipe part connecting the tubular pipe part and the insertion pipe part, wherein the first inclined part is the pipe line formed in the connecting pipe part, and the second inclined part is the ring It is preferable that the pipe is formed on the both sides in the axial direction of the ring-shaped pipe part with the connection pipe part interposed therebetween.
 この蒸気発生器用給水管によれば、蒸気発生器内の他の構造物との干渉を抑制して第一傾斜部および第二傾斜部を形成することができる。 According to the water supply pipe for the steam generator, the first inclined portion and the second inclined portion can be formed while suppressing interference with other structures in the steam generator.
 上記蒸気発生器用給水管において、前記リング状管部のうち、前記流れ方向において前記第二傾斜部よりも前記挿入管部側と反対側には、水平方向に延在する前記管路である水平リング状管路が形成されており、前記水平リング状管路における前記流れ方向と直交する断面の上端が、前記挿入管部と前記発生器内管部との接続部における前記挿入管部の内壁面の上端を通る水平面よりも鉛直方向下側にあることが好ましい。 In the steam generator feed pipe, in the ring-shaped pipe portion, a horizontal line that is the pipe line extending in the horizontal direction on the opposite side to the insertion pipe portion side than the second inclined portion in the flow direction. A ring-shaped pipe line is formed, and an upper end of a cross section perpendicular to the flow direction in the horizontal ring-shaped pipe line is an inner part of the insertion pipe part at a connection part between the insertion pipe part and the generator internal pipe part. It is preferable that it exists in the vertical direction lower side than the horizontal surface which passes along the upper end of a wall surface.
 この蒸気発生器用給水管によれば、蒸気発生器内の冷却水位が低下したときにリング状管部が露出することが抑制されることで、水平リング状管路における蒸気溜りの発生が抑制される。 According to this water supply pipe for a steam generator, the occurrence of steam accumulation in the horizontal ring pipe is suppressed by suppressing the ring-shaped pipe portion from being exposed when the cooling water level in the steam generator is lowered. The
 上記蒸気発生器用給水管において、前記リング状管部のうち、前記流れ方向において前記第二傾斜部よりも前記挿入管部側と反対側には、水平方向に延在する前記管路である水平リング状管路が形成されており、前記水平リング状管路における前記流れ方向と直交する断面の上端が、前記蒸気発生器内の空間における冷却水の水位の制御目標における下限よりも鉛直方向下側にあることが好ましい。 In the steam generator feed pipe, in the ring-shaped pipe portion, a horizontal line that is the pipe line extending in the horizontal direction on the opposite side to the insertion pipe portion side than the second inclined portion in the flow direction. A ring-shaped pipe is formed, and the upper end of the cross section perpendicular to the flow direction in the horizontal ring-shaped pipe is vertically lower than the lower limit in the control target of the coolant level in the space in the steam generator. Preferably it is on the side.
 この蒸気発生器用給水管によれば、蒸気発生器内の冷却水位が、水位の制御目標における下限まで低下したとしても、水平リング状管路における蒸気溜りの発生が抑制される。 According to this water supply pipe for a steam generator, even if the cooling water level in the steam generator is lowered to the lower limit in the control target of the water level, the occurrence of steam accumulation in the horizontal ring-shaped pipe line is suppressed.
 本発明によれば、蒸気発生器用給水管の管内における熱成層化を抑制することができる。 According to the present invention, thermal stratification in the pipe of the steam generator feed pipe can be suppressed.
図1は、実施形態にかかる蒸気発生器の概略図である。FIG. 1 is a schematic diagram of a steam generator according to an embodiment. 図2は、実施形態にかかる蒸気発生器用給水管を示す断面図である。 Drawing 2 is a sectional view showing the feed pipe for steam generators concerning an embodiment. 図3は、実施形態にかかる蒸気発生器用給水管を示す斜視図である。FIG. 3 is a perspective view showing a water supply pipe for a steam generator according to the embodiment. 図4は、実施形態にかかる蒸気発生器用給水管の要部を示す斜視図である。 Drawing 4 is a perspective view showing the important section of the feed pipe for steam generators concerning an embodiment. 図5は、挿入管部における熱成層の抑制を図ることができる給水管の一例を示す断面図である。FIG. 5 is a cross-sectional view showing an example of a water supply pipe that can suppress thermal stratification in the insertion pipe portion. 図6は、挿入管部における熱成層の抑制を図ることができる給水管の一例を示す斜視図である。FIG. 6 is a perspective view showing an example of a water supply pipe capable of suppressing thermal stratification in the insertion pipe part.
 以下に、本発明の実施形態にかかる蒸気発生器用給水管につき図面を参照しつつ詳細に説明する。なお、この実施形態によりこの発明が限定されるものではない。また、下記の実施形態における構成要素には、当業者が容易に想定できるものあるいは実質的に同一のものが含まれる。 Hereinafter, a water supply pipe for a steam generator according to an embodiment of the present invention will be described in detail with reference to the drawings. In addition, this invention is not limited by this embodiment. In addition, constituent elements in the following embodiments include those that can be easily assumed by those skilled in the art or those that are substantially the same.
(実施形態)
 図1から図6を参照して、実施形態について説明する。本実施形態は、蒸気発生器用給水管に関する。図1は、本実施形態にかかる蒸気発生器の概略図、図2は、実施形態にかかる蒸気発生器用給水管を示す断面図、図3は、実施形態にかかる蒸気発生器用給水管を示す斜視図、図4は、実施形態にかかる蒸気発生器用給水管の要部を示す斜視図である。なお、図2には、図3のI方向に水平視した蒸気発生器用給水管の断面が示されている。
(Embodiment)
The embodiment will be described with reference to FIGS. 1 to 6. The present embodiment relates to a water supply pipe for a steam generator. 1 is a schematic view of a steam generator according to the present embodiment, FIG. 2 is a cross-sectional view showing a water supply pipe for a steam generator according to the embodiment, and FIG. 3 is a perspective view showing a water supply pipe for the steam generator according to the embodiment. Drawing 4 is a perspective view showing the important section of the feed pipe for steam generators concerning an embodiment. In addition, FIG. 2 shows a cross section of the water supply pipe for a steam generator as viewed horizontally in the direction I of FIG.
 蒸気発生器1は、例えば、加圧水型原子炉(PWR:Pressurized Water Reactor)に用いられる。加圧水型原子炉は、原子炉冷却材および中性子減速材として軽水を使用している。加圧水型原子炉では、炉心全体にわたって沸騰しない高温高圧の軽水が一次冷却水として蒸気発生器1に送られる。蒸気発生器1は、高温高圧の一次冷却水の熱を二次冷却水に伝え、二次冷却水に水蒸気を発生させる。そして、この水蒸気によりタービン発電機が回されて発電する。 The steam generator 1 is used in, for example, a pressurized water reactor (PWR). The pressurized water reactor uses light water as a reactor coolant and neutron moderator. In a pressurized water reactor, high-temperature and high-pressure light water that does not boil over the entire core is sent to the steam generator 1 as primary cooling water. The steam generator 1 transmits the heat of the high-temperature and high-pressure primary cooling water to the secondary cooling water, and generates water vapor in the secondary cooling water. Then, the steam generator is rotated by this steam to generate electricity.
 蒸気発生器1は、上下方向に延在され、かつ密閉された中空円筒形状を成し、上半部に対して下半部が若干小径とされた胴部2を有している。胴部2は、蒸気発生器1の外殻部材である。胴部2の下半部内には、該胴部2の内壁面と所定間隔をもって配置された円筒形状を成す管群外筒3が設けられている。この管群外筒3は、その下端部が、胴部2の下半部内の下方に配置された管板4の直上まで延設されている。管群外筒3内には、逆U字形状をなす複数の伝熱管5からなる伝熱管群51が設けられている。各伝熱管5は、U字形状の円弧部を上方に向けて配置され、下方に向く端部が管板4に支持されると共に、中間部が複数の管支持板6により支持されている。管支持板6には、多数の貫通孔(図示せず)が形成されており、この貫通孔内に各伝熱管5が挿入して支持されている。 The steam generator 1 has a hollow cylindrical shape that extends in the vertical direction and is hermetically sealed, and has a body portion 2 in which the lower half is slightly smaller in diameter than the upper half. The body 2 is an outer shell member of the steam generator 1. A tube group outer cylinder 3 having a cylindrical shape is provided in the lower half portion of the trunk portion 2 and is arranged at a predetermined interval from the inner wall surface of the trunk portion 2. The lower end portion of the tube group outer tube 3 extends to a position directly above the tube plate 4 disposed below the lower half of the body portion 2. In the tube group outer cylinder 3, a heat transfer tube group 51 including a plurality of heat transfer tubes 5 having an inverted U shape is provided. Each of the heat transfer tubes 5 is arranged with a U-shaped arc portion facing upward, an end portion facing downward is supported by the tube plate 4, and an intermediate portion is supported by a plurality of tube support plates 6. A large number of through holes (not shown) are formed in the tube support plate 6, and the heat transfer tubes 5 are inserted and supported in the through holes.
 胴部2の下端部には、水室7が設けられている。水室7は、内部が隔壁8により入室71と出室72とに区画されている。入室71には、各伝熱管5の一端部が接続され、出室72には、各伝熱管5の他端部が接続されている。また、入室71は、胴部2の外部に通じる入口ノズル711を有し、出室72は、胴部2の外部に通じる出口ノズル721を有している。そして、入口ノズル711には、加圧水型原子炉から一次冷却水が送られる冷却水配管(図示せず)が連結される一方、出口ノズル721には、熱交換された後の一次冷却水を加圧水型原子炉に送る冷却水配管(図示せず)が連結される。 A water chamber 7 is provided at the lower end of the body 2. The water chamber 7 is divided into an entrance chamber 71 and an exit chamber 72 by a partition wall 8. One end of each heat transfer tube 5 is connected to the entrance chamber 71, and the other end of each heat transfer tube 5 is connected to the exit chamber 72. Further, the entrance chamber 71 has an inlet nozzle 711 that communicates with the outside of the trunk portion 2, and the exit chamber 72 has an exit nozzle 721 that communicates with the exterior of the trunk portion 2. The inlet nozzle 711 is connected to a cooling water pipe (not shown) through which primary cooling water is sent from the pressurized water reactor, while the outlet nozzle 721 is supplied with the primary cooling water after heat exchange. A cooling water pipe (not shown) to be sent to the type reactor is connected.
 胴部2の上半部には、水蒸気を蒸気と熱水とに分離する気水分離器9、および分離された蒸気の湿分を除去して乾き蒸気に近い状態とする湿分分離器10が設けられている。気水分離器9と伝熱管群51との間には、外部から胴部2内に二次冷却水の給水を行う蒸気発生器用給水管(以下、単に「給水管」と記載する。)20が挿入されている。さらに、胴部2の上端部には、蒸気排出口12が形成されている。また、胴部2の下半部内には、給水管20からこの胴部2内に給水された二次冷却水を、胴部2と管群外筒3との間を流下させて管板4にて折り返させ、伝熱管群51に沿って上昇させる給水路13が設けられている。なお、蒸気排出口12には、タービンに蒸気を送る蒸気供給通路(図示せず)が連結され、給水管20には、タービンで使用された蒸気が復水器(図示せず)で冷却された二次冷却水を供給するための冷却水配管(図示せず)が連結される。 In the upper half of the body portion 2, an air / water separator 9 that separates water vapor into steam and hot water, and a moisture separator 10 that removes the moisture of the separated steam and makes it close to dry steam. Is provided. Between the steam separator 9 and the heat transfer tube group 51, a steam generator water supply pipe (hereinafter simply referred to as “water supply pipe”) 20 for supplying secondary cooling water into the body 2 from the outside. Has been inserted. Further, a steam discharge port 12 is formed at the upper end portion of the body portion 2. Further, in the lower half portion of the body portion 2, the secondary cooling water supplied from the water supply pipe 20 into the body portion 2 is caused to flow down between the body portion 2 and the tube group outer tube 3, and the tube plate 4. The water supply path 13 is provided that is folded back and raised along the heat transfer tube group 51. The steam outlet 12 is connected to a steam supply passage (not shown) for sending steam to the turbine, and the steam used in the turbine is cooled to the water supply pipe 20 by a condenser (not shown). A cooling water pipe (not shown) for supplying secondary cooling water is connected.
 このような蒸気発生器1では、加圧水型原子炉で加熱された一次冷却水は、入室71に送られ、多数の伝熱管5内を通って出室72に至る。一方、復水器で冷却された二次冷却水は、給水管20に送られ、給水管20を介して胴部2内に供給される。本実施形態では、二次冷却水を単に「冷却水」とも記載する。胴部2内に供給された冷却水は、給水路13を通って伝熱管群51に沿って上昇する。このとき、胴部2内で、高圧高温の一次冷却水と二次冷却水との間で熱交換が行われる。そして、冷やされた一次冷却水は出室72から加圧水型原子炉に戻される。一方、高圧高温の一次冷却水と熱交換を行った二次冷却水は、胴部2内を上昇し、気水分離器9で蒸気と熱水とに分離される。そして、分離された蒸気は、湿分分離器10で湿分を除去されてからタービンに送られる。 In such a steam generator 1, the primary cooling water heated in the pressurized water reactor is sent to the entrance chamber 71 and reaches the exit chamber 72 through the numerous heat transfer tubes 5. On the other hand, the secondary cooling water cooled by the condenser is sent to the water supply pipe 20 and supplied into the trunk portion 2 through the water supply pipe 20. In the present embodiment, the secondary cooling water is also simply referred to as “cooling water”. The cooling water supplied into the body portion 2 rises along the heat transfer tube group 51 through the water supply path 13. At this time, heat exchange is performed between the high-pressure and high-temperature primary cooling water and the secondary cooling water in the trunk portion 2. Then, the cooled primary cooling water is returned from the outlet chamber 72 to the pressurized water reactor. On the other hand, the secondary cooling water subjected to heat exchange with the high-pressure and high-temperature primary cooling water rises in the body portion 2 and is separated into steam and hot water by the steam separator 9. The separated steam is sent to the turbine after moisture is removed by the moisture separator 10.
 給水管20は、蒸気発生器1の外部から供給される冷却水が流れる管路と、管路内の冷却水が管路から蒸気発生器1内の空間40に流出する流出管25(図2から図4参照)とを有している。給水管20は、蒸気発生器1の運転時に空間40内の冷却水の水面下において冷却水を流出させることができるように配置されている。原子炉プラントの停止時や起動時など、蒸気発生器1の外部からの冷却水の供給が停止される場合や冷却水の供給が開始されるときに給水管20の管内において熱成層化が発生することがある。例えば、管内に高温の冷却水や蒸気が存在する状態で給水管20に低温の冷却水が小流量で供給されると、管内において低温の冷却水と高温の冷却水による熱成層が生じたり、蒸気と冷却水による熱成層が生じたりする。管内において熱成層が発生すると、疲労源となる応力が生じるため好ましくない。給水管20の管内における熱成層を抑制できること、特に、給水管20における胴部2を貫通する貫通孔に挿入された部分において熱成層を抑制できることが好ましい。 The water supply pipe 20 includes a pipe through which cooling water supplied from the outside of the steam generator 1 flows, and an outflow pipe 25 through which the cooling water in the pipe flows out from the pipe to the space 40 in the steam generator 1 (FIG. 2). To FIG. 4). The water supply pipe 20 is arranged so that the cooling water can flow out under the surface of the cooling water in the space 40 during operation of the steam generator 1. Thermal stratification occurs in the water supply pipe 20 when the supply of cooling water from the outside of the steam generator 1 is stopped or when the supply of cooling water is started, such as when the reactor plant is stopped or started. There are things to do. For example, when low-temperature cooling water is supplied to the water supply pipe 20 at a small flow rate in a state where high-temperature cooling water or steam is present in the pipe, thermal stratification occurs between the low-temperature cooling water and the high-temperature cooling water in the pipe, Thermal stratification may occur due to steam and cooling water. If thermal stratification occurs in the pipe, stress that becomes a fatigue source is generated, which is not preferable. It is preferable that thermal stratification in the pipe of the water supply pipe 20 can be suppressed, and in particular, thermal stratification can be suppressed in a portion inserted into the through-hole penetrating the trunk portion 2 in the water supply pipe 20.
 本実施形態の給水管20では、以下に図2から図4を参照して説明するように、蒸気発生器1は、蒸気発生器1内に配置された発生器内管部22において、胴部2を貫通する貫通孔112に挿入された挿入管部21から持ち上げるように折り曲げられた接続管部24(例えば、図2参照)、更にその先が持ち下げるように折り曲げられた傾斜管部233(例えば、図2参照)を有している。外部から供給される冷却水の流れ方向における挿入管部21よりも下流側が持ち上げるように折り曲げられていることで、熱成層化現象が短時間で挿入管部21を通過し、胴部2における熱応力の発生が抑制される。また、一度持ち上げるように折り曲げた給水管20をその下流側において持ち下げるように折り曲げることで、給水管20において、蒸気発生器1内の他の構造物との配置における設計自由度や、器内水位に対するエレベーションの設計自由度が確保される。 In the water supply pipe 20 of the present embodiment, as will be described below with reference to FIGS. 2 to 4, the steam generator 1 includes a trunk portion in a generator inner pipe portion 22 disposed in the steam generator 1. 2 is connected to the connecting tube portion 24 (see, for example, FIG. 2) that is bent so as to be lifted from the insertion tube portion 21 that is inserted into the through-hole 112 that penetrates 2, and an inclined tube portion 233 that is bent so that its tip is further lowered. For example, see FIG. By being bent so that the downstream side of the insertion pipe portion 21 in the flow direction of the cooling water supplied from the outside is lifted, the thermal stratification phenomenon passes through the insertion pipe portion 21 in a short time, and the heat in the trunk portion 2 Generation of stress is suppressed. Further, by bending the water supply pipe 20 bent once so as to be lifted on the downstream side thereof, the design flexibility in the arrangement of the water supply pipe 20 with other structures in the steam generator 1, The design freedom of the elevation with respect to the water level is secured.
 図2に示すように、給水管20は、挿入管部21と発生器内管部22とを備える。挿入管部21および発生器内管部22は、いずれも断面円形の管状部材である。挿入管部21および発生器内管部22には、それぞれその軸方向に管路が形成されている。蒸気発生器1の外部から供給される冷却水は、挿入管部21を介して発生器内管部22の管路に流れる。発生器内管部22の管路を流れる冷却水は、後述する流出管25を介して発生器内管部22の管路から蒸気発生器1内の空間40に流出する。 As shown in FIG. 2, the water supply pipe 20 includes an insertion pipe part 21 and a generator internal pipe part 22. The insertion tube portion 21 and the generator internal tube portion 22 are both tubular members having a circular cross section. Pipe lines are formed in the insertion pipe part 21 and the generator internal pipe part 22 in the axial direction, respectively. Cooling water supplied from the outside of the steam generator 1 flows into the pipe line of the generator internal pipe section 22 via the insertion pipe section 21. The cooling water flowing through the pipe line of the generator inner pipe part 22 flows out from the pipe line of the generator inner pipe part 22 into the space 40 in the steam generator 1 through an outlet pipe 25 described later.
 胴部2は、管台11を有する。管台11は、胴部2の径方向外側に向けて突出する突出部111を有している。また、管台11には、管台11を突出部111の軸方向に貫通する貫通孔112が形成されている。挿入管部21は、この貫通孔112に対して胴部2の径方向内側から嵌合している。挿入管部21は、挿入管部21の外周面と突出部111の内周面とが互いに対向する状態で管台11に対して溶接等により固定されている。つまり、挿入管部21は、蒸気発生器1の胴部2を貫通する貫通孔112に挿入されている。管台11の中心軸線、すなわち貫通孔112の中心軸線は、水平であり、これに対応して挿入管部21は水平方向に延在している。また、挿入管部21は、直線状に延在しており、その延在方向は胴部2の径方向となっている。 The barrel 2 has a nozzle 11. The nozzle 11 has a protruding portion 111 that protrudes outward in the radial direction of the body portion 2. Further, the nozzle 11 is formed with a through hole 112 that penetrates the nozzle 11 in the axial direction of the protruding portion 111. The insertion tube portion 21 is fitted into the through hole 112 from the inside in the radial direction of the body portion 2. The insertion tube portion 21 is fixed to the nozzle 11 by welding or the like with the outer peripheral surface of the insertion tube portion 21 and the inner peripheral surface of the protruding portion 111 facing each other. That is, the insertion tube portion 21 is inserted into the through hole 112 that penetrates the trunk portion 2 of the steam generator 1. The center axis of the nozzle 11, that is, the center axis of the through hole 112 is horizontal, and the insertion tube portion 21 extends in the horizontal direction correspondingly. Further, the insertion tube portion 21 extends linearly, and the extending direction thereof is the radial direction of the body portion 2.
 発生器内管部22は、胴部2の内部、すなわち蒸気発生器1の内部に配置されている。図2および図3に示すように、発生器内管部22は、リング状に延在するリング状管部23と、リング状管部23から分岐してリング状管部23と挿入管部21とを接続する接続管部24とを有する。リング状管部23は、図2に示す胴部2の内壁面2aに沿って胴部2の周方向に延在するものである。リング状管部23は、例えば、胴部2の中心軸線50と同軸上に配置される。図2に示すように、リング状管部23は、ステー14を介して胴部2の内壁面2aによって支持されている。リング状管部23は、水平リング状管部231と、水平リング状管部231に対して鉛直方向上側に持ち上げられた上部リング状管部232とを有する。 The generator internal pipe portion 22 is disposed inside the trunk portion 2, that is, inside the steam generator 1. As shown in FIGS. 2 and 3, the generator internal tube portion 22 includes a ring-shaped tube portion 23 extending in a ring shape, a branch from the ring-shaped tube portion 23, and the ring-shaped tube portion 23 and the insertion tube portion 21. And a connecting pipe portion 24 for connecting the two. The ring-shaped tube portion 23 extends in the circumferential direction of the body portion 2 along the inner wall surface 2a of the body portion 2 shown in FIG. The ring-shaped tube portion 23 is disposed coaxially with the central axis 50 of the trunk portion 2, for example. As shown in FIG. 2, the ring-shaped tube portion 23 is supported by the inner wall surface 2 a of the trunk portion 2 via the stay 14. The ring-shaped tube portion 23 includes a horizontal ring-shaped tube portion 231 and an upper ring-shaped tube portion 232 that is lifted upward in the vertical direction with respect to the horizontal ring-shaped tube portion 231.
 水平リング状管部231は、水平方向に延在している。また、図2に示すように、水平リング状管部231内に軸方向に形成された管路である水平リング状管路231aも水平方向に延在している。すなわち、水平リング状管路231aでは、冷却水の流れ方向と直交する断面の上端231bは、どの断面においても鉛直方向の位置が等しい。また、水平リング状管路231aでは、冷却水の流れ方向と直交する断面の下端231cは、どの断面においても鉛直方向の位置が等しい。言い換えると、水平リング状管路231aは、中心軸線が同一の水平面上に延在しており、かつ径が一律な管路である。水平リング状管路231aが形成された水平リング状管部231は、リング状管部23のうち、冷却水の流れ方向において傾斜管部233よりも挿入管部21側と反対側にある。つまり、水平リング状管路231aは、蒸気発生器1の外部から冷却水が供給されるときの冷却水の流れ方向において傾斜管部233の管路233eよりも下流側にある。 The horizontal ring tube portion 231 extends in the horizontal direction. Further, as shown in FIG. 2, a horizontal ring-shaped pipe line 231a which is a pipe formed in the axial direction in the horizontal ring-shaped pipe portion 231 also extends in the horizontal direction. That is, in the horizontal ring-shaped pipeline 231a, the upper end 231b of the cross section orthogonal to the flow direction of the cooling water has the same vertical position in any cross section. Further, in the horizontal ring pipe 231a, the lower end 231c of the cross section orthogonal to the flow direction of the cooling water has the same vertical position in any cross section. In other words, the horizontal ring-shaped conduit 231a is a conduit having a central axis extending on the same horizontal plane and a uniform diameter. The horizontal ring-shaped pipe part 231 in which the horizontal ring-shaped pipe line 231a is formed is located on the opposite side of the ring-shaped pipe part 23 to the insertion pipe part 21 side with respect to the inclined pipe part 233 in the flow direction of the cooling water. That is, the horizontal ring-shaped pipe line 231a is downstream of the pipe line 233e of the inclined pipe part 233 in the flow direction of the cooling water when the cooling water is supplied from the outside of the steam generator 1.
 図3に示すように、上部リング状管部232は、二つの傾斜管部233および上部水平管部234を有する。傾斜管部233は、上部水平管部234および接続管部24を介して挿入管部21と接続されている。つまり、傾斜管部233は、接続管部24よりも、発生器内管部22の冷却水の流れ方向に沿った挿入管部21からの距離が大きい側に位置している。言い換えると、挿入管部21から傾斜管部233までの流路の長さは、挿入管部21から接続管部24までの流路の長さよりも大きい。 As shown in FIG. 3, the upper ring-shaped tube portion 232 has two inclined tube portions 233 and an upper horizontal tube portion 234. The inclined pipe part 233 is connected to the insertion pipe part 21 via the upper horizontal pipe part 234 and the connection pipe part 24. That is, the inclined pipe portion 233 is located on the side where the distance from the insertion pipe portion 21 along the flow direction of the cooling water in the generator inner pipe portion 22 is larger than the connection pipe portion 24. In other words, the length of the flow path from the insertion pipe part 21 to the inclined pipe part 233 is larger than the length of the flow path from the insertion pipe part 21 to the connection pipe part 24.
 上部水平管部234は、水平方向に延在する直線状の管部である。接続管部24は、上部水平管部234から分岐している。接続管部24は、上部水平管部234の下部から胴部2の径方向の外側に向けて分岐している。接続管部24における上部水平管部234と接続された側と反対側の端部は、挿入管部21と接続されている。つまり、接続管部24は、リング状管部23から分岐してリング状管部23と挿入管部21とを接続している。接続管部24は、冷却水の流れ方向に沿った挿入管部21からの距離が小さい側よりも挿入管部21からの距離が大きい側が鉛直方向の上側に位置する傾斜を有している。すなわち、接続管部24は、挿入管部21に接続される端部24a側よりも上部水平管部234に接続される端部24b側が鉛直方向の上側に位置する傾斜を有している。これに対応して、接続管部24に形成された管路24cは、冷却水の流れ方向に沿った挿入管部21からの距離が小さい側よりも接続管部21からの距離が大きい側が鉛直方向の上側に位置する傾斜を有している。接続管部24に形成された管路24cは、第一傾斜部に対応する。管路24cでは、挿入管部21からの距離が小さい側から当該距離が大きい側へ向かうほど流路の勾配が増加している。 The upper horizontal pipe portion 234 is a straight pipe portion extending in the horizontal direction. The connecting pipe part 24 branches off from the upper horizontal pipe part 234. The connecting pipe part 24 branches off from the lower part of the upper horizontal pipe part 234 toward the outer side in the radial direction of the body part 2. The end of the connection pipe 24 opposite to the side connected to the upper horizontal pipe 234 is connected to the insertion pipe 21. That is, the connecting pipe part 24 branches from the ring-shaped pipe part 23 and connects the ring-shaped pipe part 23 and the insertion pipe part 21. The connecting pipe part 24 has an inclination in which the side with the larger distance from the insertion pipe part 21 is located on the upper side in the vertical direction than the side with the smaller distance from the insertion pipe part 21 along the flow direction of the cooling water. That is, the connecting pipe part 24 has an inclination in which the end part 24b side connected to the upper horizontal pipe part 234 is located on the upper side in the vertical direction than the end part 24a side connected to the insertion pipe part 21. Correspondingly, the pipe path 24c formed in the connecting pipe part 24 is such that the side where the distance from the connecting pipe part 21 is larger than the side where the distance from the insertion pipe part 21 along the flow direction of the cooling water is small is vertical. It has a slope located above the direction. The pipe line 24c formed in the connection pipe part 24 corresponds to the first inclined part. In the pipe line 24c, the gradient of the flow path increases from the side where the distance from the insertion pipe part 21 is small toward the side where the distance is large.
 傾斜管部233は、接続管部24を挟んでリング状管部23の軸方向の両側に形成されている。一方の傾斜管部233は、上部水平管部234の一端と水平リング状管部231の一端とを接続し、他方の傾斜管部233は、上部水平管部234の他端と水平リング状管部231の他端とを接続する。傾斜管部233は、冷却水の流れ方向に沿った挿入管部21からの距離が小さい側よりも挿入管部21からの距離が大きい側が鉛直方向の下側に位置する傾斜を有している。すなわち、図4に示すように、傾斜管部233は、上部水平管部234と接続された端部233a側よりも水平リング状管部231と接続された端部233b側が鉛直方向の下側に位置する傾斜を有している。これに対応して、傾斜管部233に形成された管路233eは、冷却水の流れ方向に沿った挿入管部21からの距離が小さい側よりも挿入管部21からの距離が大きい側が鉛直方向の下側に位置する傾斜を有している。この管路233eは、第二傾斜部に対応する。 The inclined tube portion 233 is formed on both sides of the ring-shaped tube portion 23 in the axial direction with the connecting tube portion 24 interposed therebetween. One inclined tube portion 233 connects one end of the upper horizontal tube portion 234 and one end of the horizontal ring tube portion 231, and the other inclined tube portion 233 is connected to the other end of the upper horizontal tube portion 234 and the horizontal ring tube portion 231. The other end of the unit 231 is connected. The inclined pipe part 233 has an inclination in which the side with the larger distance from the insertion pipe part 21 is located on the lower side in the vertical direction than the side with the smaller distance from the insertion pipe part 21 along the flow direction of the cooling water. . That is, as shown in FIG. 4, the inclined tube portion 233 has the end portion 233 b side connected to the horizontal ring-shaped tube portion 231 on the lower side in the vertical direction than the end portion 233 a side connected to the upper horizontal tube portion 234. It has a slope that is located. Correspondingly, the pipe line 233e formed in the inclined pipe part 233 is such that the side where the distance from the insertion pipe part 21 is larger than the side where the distance from the insertion pipe part 21 along the flow direction of the cooling water is small is vertical. It has a slope located below the direction. This pipe line 233e corresponds to the second inclined portion.
 本実施形態の傾斜管部233は、直列に接続された2つのエルボー部233c,233dを有している。両エルボー部の接続箇所233gから鉛直方向の上側に向かう一方のエルボー部233cは周方向の一方側に向けて屈曲し、接続箇所233gから鉛直方向の下側に向かう他方のエルボー部233dは周方向の他方側に向けて屈曲している。このように、傾斜管部233は、上部水平管部234から持ち下げるように折り曲げられて水平リング状管部231に接続されている。また、図2に示すように、傾斜管部233は、鉛直方向下側が鉛直方向上側よりも胴部2の径方向外側に向かう傾斜を有している。つまり、傾斜管部233において、鉛直方向下側が鉛直方向上側よりも胴部2の内壁面2aに接近している。このようにすれば、胴部2の径方向内側の領域に他の構造物が配置されている場合であっても、その構造物との干渉を回避してリング状管部23を配置することができる。なお、傾斜管部233における径方向の傾斜はこれには限定されない。他の構造物とリング状管部23との干渉を回避できるように適宜傾斜管部233の傾斜方向が定められていればよい。 The inclined pipe part 233 of this embodiment has two elbow parts 233c and 233d connected in series. One elbow part 233c heading upward in the vertical direction from the connection part 233g of both elbow parts is bent toward one side in the circumferential direction, and the other elbow part 233d going from the connection part 233g to the lower side in the vertical direction is circumferential. It is bent toward the other side. As described above, the inclined tube portion 233 is bent so as to be lowered from the upper horizontal tube portion 234 and connected to the horizontal ring-shaped tube portion 231. Further, as shown in FIG. 2, the inclined pipe portion 233 has an inclination in which the lower side in the vertical direction is directed outward in the radial direction of the body portion 2 from the upper side in the vertical direction. That is, in the inclined pipe portion 233, the lower side in the vertical direction is closer to the inner wall surface 2a of the trunk portion 2 than the upper side in the vertical direction. In this way, even when another structure is disposed in the radially inner region of the body portion 2, the ring-shaped tube portion 23 is disposed so as to avoid interference with the structure. Can do. In addition, the radial inclination in the inclined pipe part 233 is not limited to this. The inclination direction of the inclined pipe portion 233 may be determined as appropriate so that interference between other structures and the ring-shaped pipe portion 23 can be avoided.
 また、管路の持ち上がり部分である第一傾斜部が管路24cとして接続管部24に形成され、管路の持ち下がり部分である第二傾斜部が管路233eとしてリング状管部23に形成されることで、管路の持ち上がり部分および持ち下がり部分を配置する自由度が高くなっている。本実施形態の発生器内管部22は、接続管部24から周方向両側に分岐してリング状管部23が形成されている。リング状管部23に分岐する前の接続管部24に持ち上がり部分である第一傾斜部および持ち下がり部分である第二傾斜部の両方を形成しようとすると、大きなスペースを必要とする。接続管部24に第一傾斜部および第二傾斜部の両方を形成しようとすると、U字形状やV字形状に接続管部24を屈曲させることとなり、接続管部24が胴部2の径方向の中心部に向けて大きく突出する。このため、接続管部24が他の構造物と干渉しやすくなる。 Further, the first inclined portion that is the raised portion of the pipe line is formed in the connecting pipe portion 24 as the pipe line 24c, and the second inclined portion that is the lowered portion of the pipe line is formed in the ring-shaped pipe portion 23 as the pipe line 233e. As a result, the degree of freedom of arranging the raised portion and the lowered portion of the pipe line is increased. The generator internal pipe portion 22 of the present embodiment is branched from the connection pipe portion 24 to both sides in the circumferential direction to form a ring-shaped pipe portion 23. When both the first inclined portion that is the lifted portion and the second inclined portion that is the lifted portion are formed in the connecting tube portion 24 before branching to the ring-shaped tube portion 23, a large space is required. If it is going to form both the 1st inclination part and the 2nd inclination part in the connecting pipe part 24, it will bend the connecting pipe part 24 in U shape or V shape, and the connecting pipe part 24 is the diameter of the trunk | drum 2. Projects greatly toward the center of the direction. For this reason, the connecting pipe portion 24 easily interferes with other structures.
 これに対して、接続管部24から分岐したリング状管部23に第二傾斜部としての管路233eが形成されることで、第二傾斜部を形成するスペースの確保が容易となっている。本実施形態のようにリング状管部23の一部を傾斜させることで第二傾斜部(管路233e)を形成する方法によれば、周方向に第二傾斜部を延在させることができる。つまり、胴部2内における径方向の中心側に配置された構造物との干渉を回避して第二傾斜部を形成することができる。よって、第二傾斜部を配置する自由度が高くなる。例えば、上記のように、傾斜管部233において、鉛直方向下側が鉛直方向上側よりも胴部2の径方向外側に向かうように傾斜させて他の構造物との干渉を回避することが可能となる。 On the other hand, since the pipe line 233e as the second inclined portion is formed in the ring-shaped tube portion 23 branched from the connecting tube portion 24, it is easy to secure a space for forming the second inclined portion. . According to the method of forming the second inclined portion (pipe 233e) by inclining a part of the ring-shaped tube portion 23 as in the present embodiment, the second inclined portion can be extended in the circumferential direction. . That is, the second inclined portion can be formed while avoiding interference with the structure disposed on the radial center side in the body portion 2. Therefore, the freedom degree which arrange | positions a 2nd inclination part becomes high. For example, as described above, in the inclined pipe portion 233, it is possible to avoid the interference with other structures by inclining the lower side in the vertical direction toward the radially outer side of the trunk portion 2 than the upper side in the vertical direction. Become.
 挿入管部21、接続管部24、およびリング状管部23の管径(内径)は、それぞれにおいて一定とすることができる。本実施形態では、挿入管部21の管径と接続管部24の管径とは等しく、リング状管部23の管径は、接続管部24の管径よりも小さい。 The tube diameters (inner diameters) of the insertion tube portion 21, the connection tube portion 24, and the ring-shaped tube portion 23 can be constant in each. In the present embodiment, the tube diameter of the insertion tube portion 21 is equal to the tube diameter of the connection tube portion 24, and the tube diameter of the ring-shaped tube portion 23 is smaller than the tube diameter of the connection tube portion 24.
 リング状管部23は、流出管25を有する。流出管25は、リング状管部23に形成された管路内の冷却水が管路から蒸気発生器1内の空間40に流出する流出部として機能する。流出管25は、中空円筒形状の部材であって、リング状管部23に対してリング状管部23の延在する方向に沿って複数配置されている。図4に示すように、流出管25の円筒部分には、流出管25の円筒部分を径方向に貫通する複数の貫通孔25aが形成されている。また、流出管25における軸方向の一端は、リング状管部23に形成された図示しない連通孔を介してリング状管部23の管路と接続されている。この連通孔は、リング状管部23の頂部に形成されるものである。つまり、流出管25は、リング状管部23に形成された管路の軸方向視における上端と接続されている。流出管25における鉛直方向上側の端部、すなわちリング状管部23と接続された側と反対側の端部は、閉塞されている。 The ring-shaped tube portion 23 has an outflow tube 25. The outflow pipe 25 functions as an outflow part through which cooling water in the pipe formed in the ring-shaped pipe part 23 flows out from the pipe into the space 40 in the steam generator 1. The outflow pipe 25 is a hollow cylindrical member, and a plurality of outflow pipes 25 are arranged along the direction in which the ring-shaped pipe part 23 extends with respect to the ring-shaped pipe part 23. As shown in FIG. 4, the cylindrical portion of the outflow pipe 25 is formed with a plurality of through holes 25 a that penetrate the cylindrical portion of the outflow pipe 25 in the radial direction. Further, one end of the outflow pipe 25 in the axial direction is connected to a pipe line of the ring-shaped pipe portion 23 through a communication hole (not shown) formed in the ring-shaped pipe section 23. This communication hole is formed at the top of the ring-shaped tube portion 23. That is, the outflow pipe 25 is connected to the upper end of the pipe line formed in the ring-shaped pipe portion 23 when viewed in the axial direction. The end of the outflow pipe 25 on the upper side in the vertical direction, that is, the end opposite to the side connected to the ring-shaped pipe 23 is closed.
 蒸気発生器1の外部から挿入管部21を介してリング状管部23に冷却水が供給されると、冷却水はリング状管部23の管路から流出管25に流入し、貫通孔25aを介して蒸気発生器1の内部の空間40に流出する。流出管25には、多数の貫通孔25aが周方向および軸方向において均等に配置されている。このため、流出管25から周辺に均等に冷却水が流出する。なお、接続管部24、すなわち発生器内管部22における第一傾斜部が形成された区間には、流出管25は設けられていない。 When cooling water is supplied from the outside of the steam generator 1 to the ring-shaped pipe part 23 via the insertion pipe part 21, the cooling water flows into the outflow pipe 25 from the pipe line of the ring-shaped pipe part 23, and the through hole 25a. To the space 40 inside the steam generator 1. In the outflow pipe 25, a large number of through holes 25a are equally arranged in the circumferential direction and the axial direction. For this reason, the cooling water flows out uniformly from the outflow pipe 25 to the periphery. In addition, the outflow pipe 25 is not provided in the section in which the 1st inclination part in the connection pipe part 24, ie, the generator internal pipe part 22, was formed.
 リング状管部23の管路と流出管25とを連通する連通孔がリング状管部23の尾根部に形成されていることで、リング状管部23が水面上に露出するまで蒸気発生器1内の冷却水の水位が低下した場合であっても、リング状管部23の管路内における冷却水の水位低下が抑制される。これにより、リング状管部23の管路内における蒸気溜りの発生が抑制される。 Since the communication hole that connects the pipe line of the ring-shaped pipe part 23 and the outflow pipe 25 is formed in the ridge part of the ring-shaped pipe part 23, the steam generator until the ring-shaped pipe part 23 is exposed on the water surface. Even if the water level of the cooling water in 1 falls, the water level fall in the pipe line of the ring-shaped pipe part 23 is suppressed. Thereby, generation | occurrence | production of the steam pool in the pipe line of the ring-shaped pipe part 23 is suppressed.
 また、本実施形態の給水管20では、挿入管部21の内壁面の上端21aよりも、上部水平管部234に形成された管路234aにおける断面の下端234bが鉛直方向上方に位置している。これにより、以下に説明するように、挿入管部21内に熱成層が生じることが抑制される。 Moreover, in the water supply pipe 20 of this embodiment, the lower end 234b of the cross section in the pipe line 234a formed in the upper horizontal pipe part 234 is located vertically above the upper end 21a of the inner wall surface of the insertion pipe part 21. . Thereby, as will be described below, the occurrence of thermal stratification in the insertion tube portion 21 is suppressed.
 図2に示すように、上部水平管部234に形成された管路234aにおける冷却水の流れ方向と直交する断面の下端234bは、挿入管部21と接続管部24との接続部における挿入管部21の内壁面の上端21aよりも鉛直方向上方にある。言い換えると、管路234aにおける冷却水の流れ方向と直交する断面は、挿入管部21と接続管部24との接続部における挿入管部21の内壁面の上端21aを通る水平面30と交差せず、かつその断面の下端234bは、水平面30よりも鉛直方向上側にある。これにより、蒸気発生器1内の冷却水の水位が低下したとしても、給水管20における上部水平管部234よりも挿入管部21側において管内の水位の低下が抑制される。具体的には、管路234aの下端234bよりも冷却水の水位が低下することが抑制され、挿入管部21に冷却水が満たされた状態を維持できる。よって、挿入管部21において、管内に蒸気溜りが発生することが抑制され、挿入管部21における熱成層の発生が抑制される。特に、本実施形態の接続管部24は、流出管25を有していない。これにより、管路234aの下端234bよりも冷却水の水位が低下することがより確実に抑制される。 As shown in FIG. 2, the lower end 234 b of the cross section orthogonal to the flow direction of the cooling water in the pipe 234 a formed in the upper horizontal pipe part 234 is the insertion pipe in the connection part between the insertion pipe part 21 and the connection pipe part 24. It is above the upper end 21 a of the inner wall surface of the portion 21 in the vertical direction. In other words, the cross section orthogonal to the flow direction of the cooling water in the pipe line 234a does not intersect the horizontal plane 30 passing through the upper end 21a of the inner wall surface of the insertion pipe part 21 at the connection part between the insertion pipe part 21 and the connection pipe part 24. The lower end 234b of the cross section is on the upper side in the vertical direction from the horizontal plane 30. Thereby, even if the water level of the cooling water in the steam generator 1 is lowered, the drop in the water level in the pipe is suppressed closer to the insertion pipe part 21 than the upper horizontal pipe part 234 in the water supply pipe 20. Specifically, it is possible to suppress the cooling water level from lowering than the lower end 234b of the pipe 234a, and to maintain the state where the insertion pipe portion 21 is filled with the cooling water. Therefore, in the insertion pipe part 21, generation | occurrence | production of a steam pool is suppressed in a pipe | tube, and generation | occurrence | production of the thermal stratification in the insertion pipe part 21 is suppressed. In particular, the connecting pipe portion 24 of this embodiment does not have the outflow pipe 25. Thereby, it is suppressed more reliably that the water level of cooling water falls rather than the lower end 234b of the pipe line 234a.
 本実施形態の給水管20とは異なり、接続管部24のような持ち上がり部分や傾斜管部233のような持ち下がり部分を有さず、挿入管部21とリング状管部23とが水平方向にフラットに延在する給水管では、蒸気発生器1の運転開始時など、給水管内の水位が低下した状態から冷却水の給水を開始するときに、給水管全体が冷却水で満たされるまでにある程度の時間を要する。給水管内の水位が上昇するまでの間、挿入管部21において蒸気と冷却水とが層状に分かれて存在することで、挿入管部21に疲労源の応力が発生し続けることとなる。また、蒸気に冷却水が触れることで、ウォーターハンマー現象が発生することがある。バウンダリーとしての管台11の近傍においてこうした熱応力やウォーターハンマー現象の発生を抑制できることが望ましい。 Unlike the water supply pipe 20 of the present embodiment, the insertion pipe part 21 and the ring-shaped pipe part 23 are horizontal without having a raised part such as the connecting pipe part 24 and a lowered part such as the inclined pipe part 233. In the water supply pipe extending flatly, when the cooling water supply is started from the state where the water level in the water supply pipe is lowered, such as when the operation of the steam generator 1 is started, the entire water supply pipe is filled with the cooling water. It takes a certain amount of time. Until the water level in the water supply pipe rises, the steam and the cooling water exist in a layered manner in the insertion pipe portion 21, so that stress of a fatigue source continues to be generated in the insertion pipe portion 21. Further, when the cooling water touches the steam, a water hammer phenomenon may occur. It is desirable to be able to suppress the occurrence of such thermal stress and water hammer phenomenon in the vicinity of the nozzle 11 as a boundary.
 本実施形態の給水管20によれば、給水管20内の水位が低下した状態から冷却水の供給が開始される場合、まず挿入管部21に冷却水が満たされ、さらに水位が上昇すると、接続管部24から上部リング状管部232を介して水平リング状管部231に冷却水が供給される。これにより、挿入管部21に蒸気層と冷却水層とが成層した状態となる時間の短縮が可能となることで、挿入管部21における疲労源の応力の発生が抑制される。 According to the water supply pipe 20 of the present embodiment, when the supply of cooling water is started from a state where the water level in the water supply pipe 20 is lowered, the insertion pipe portion 21 is first filled with cooling water, and the water level further rises. Cooling water is supplied from the connecting pipe part 24 to the horizontal ring-shaped pipe part 231 through the upper ring-shaped pipe part 232. Thereby, it becomes possible to shorten the time for which the steam layer and the cooling water layer are stratified in the insertion tube portion 21, thereby suppressing the generation of stress of the fatigue source in the insertion tube portion 21.
 また、本実施形態の給水管20によれば、以下に説明するように、挿入管部21において管内に温度の異なる冷却水が層状に分かれて存在する状態を回避しやすくなる。 In addition, according to the water supply pipe 20 of the present embodiment, as described below, it is easy to avoid a state in which cooling water having different temperatures exists in the pipe in the insertion pipe portion 21 in a layered manner.
 例えば、給水管20の管内に高温となった冷却水が残存している状態で蒸気発生器1の外部から低温の冷却水が小流量で供給される場合や、給水管20の外部の空間40から管内に高温の冷却水が流入した場合に、低温の冷却水と高温の冷却水とが層状に分かれて存在する熱成層が発生する。このときに、挿入管部21とリング状管部23とが水平方向にフラットに延在する給水管では、挿入管部21においてもこの熱成層が持続しやすい。 For example, when low-temperature cooling water is supplied at a low flow rate from the outside of the steam generator 1 in a state where high-temperature cooling water remains in the pipe of the water supply pipe 20, or the space 40 outside the water supply pipe 20. When high-temperature cooling water flows into the pipe from the bottom, thermal stratification occurs in which the low-temperature cooling water and the high-temperature cooling water are separated into layers. At this time, in the water supply pipe in which the insertion pipe part 21 and the ring-shaped pipe part 23 extend flat in the horizontal direction, this thermal stratification is also easily maintained in the insertion pipe part 21.
 本実施形態の給水管20によれば、給水管20の管内に高温となった冷却水が残存している状態で蒸気発生器1の外部から低温の冷却水が小流量で供給されると、外部から供給される冷却水によって速やかに挿入管部21内が満たされ、挿入管部21内の高温の冷却水は、接続管部24から上部リング状管部232および水平リング状管部231へ流出する。これにより、本実施形態の給水管20では、挿入管部21とリング状管部23とが水平方向にフラットに延在する給水管の場合よりも、挿入管部21における熱成層が短時間で解消される。 According to the water supply pipe 20 of the present embodiment, when low-temperature cooling water is supplied from the outside of the steam generator 1 with a small flow rate in a state where the high-temperature cooling water remains in the water supply pipe 20, The inside of the insertion tube portion 21 is quickly filled with the cooling water supplied from the outside, and the high-temperature cooling water in the insertion tube portion 21 is transferred from the connection tube portion 24 to the upper ring-shaped tube portion 232 and the horizontal ring-shaped tube portion 231. leak. Thereby, in the water supply pipe 20 of this embodiment, the thermal stratification in the insertion pipe part 21 is a short time compared with the case of the water supply pipe in which the insertion pipe part 21 and the ring-shaped pipe part 23 are extended flat in a horizontal direction. It will be resolved.
 本実施形態では、上部水平管部234に形成された管路234aが、第一傾斜部と第二傾斜部との間の管路に対応している。なお、本実施形態では、この管路234aの全ての区間において、冷却水の流れ方向と直交する断面の下端234bが水平面30よりも鉛直方向上側にあるが、これには限定されず、管路234aにおける冷却水の流れ方向の少なくとも一部の区間において、冷却水の流れ方向と直交する管路234aの断面の下端234bが、水平面30よりも鉛直方向上側にあればよい。 In this embodiment, the pipe line 234a formed in the upper horizontal pipe part 234 corresponds to the pipe line between the first inclined part and the second inclined part. In this embodiment, the lower end 234b of the cross section orthogonal to the flow direction of the cooling water is on the upper side in the vertical direction with respect to the horizontal plane 30 in all sections of the pipe 234a. In at least a part of the cooling water flow direction in 234 a, the lower end 234 b of the cross section of the pipe line 234 a orthogonal to the cooling water flow direction may be located above the horizontal plane 30 in the vertical direction.
 ここで、挿入管部21における熱成層を抑制できる給水管として、図5および図6に示すようにリング状管部123全体を挿入管部21に対して持ち上げた形状の給水管120が考えられる。図5は、挿入管部における熱成層の抑制を図ることができる給水管の一例を示す断面図である。図6は、挿入管部における熱成層の抑制を図ることができる給水管の一例を示す斜視図である。この給水管120において、リング状管部123は、本実施形態のような傾斜管部233を有していない。図5に示すように、リング状管部123に形成された管路123aにおいて、冷却水の流れ方向と直交する断面の上端123bの位置は、冷却水の流れ方向における位置によらず鉛直方向において同じ位置にある。つまり、管路123aにおける冷却水の流れ方向と直交する断面の上端123bは、冷却水の流れ方向の位置によらず同一の水平面上にある。 Here, as a water supply pipe capable of suppressing thermal stratification in the insertion pipe part 21, a water supply pipe 120 having a shape in which the entire ring-shaped pipe part 123 is lifted with respect to the insertion pipe part 21 as shown in FIGS. . FIG. 5 is a cross-sectional view showing an example of a water supply pipe that can suppress thermal stratification in the insertion pipe portion. FIG. 6 is a perspective view showing an example of a water supply pipe capable of suppressing thermal stratification in the insertion pipe part. In this water supply pipe 120, the ring-shaped pipe part 123 does not have the inclined pipe part 233 as in the present embodiment. As shown in FIG. 5, in the pipe 123 a formed in the ring-shaped pipe portion 123, the position of the upper end 123 b of the cross section orthogonal to the flow direction of the cooling water is in the vertical direction regardless of the position in the flow direction of the cooling water. In the same position. That is, the upper end 123b of the cross section orthogonal to the flow direction of the cooling water in the pipe line 123a is on the same horizontal plane regardless of the position in the flow direction of the cooling water.
 図6に示すように、リング状管部123は、テーパー部123cを有する。テーパー部123cは、リング状管部123における接続管部124との接続部の近傍に形成されている。テーパー部123cは、リング状管部123において接続管部124との接続部に対して周方向の両側に形成されている。テーパー部123cは、リング状管部123の冷却水の流れ方向における接続管部124に近い側よりも遠い側が小径となるテーパー形状を有している。このテーパー部123cでは、管路123aの流路断面積は、接続管部124から離間するにつれて漸減する。また、テーパー部123cの両端で径が異なることに対応して、リング状管部123において、テーパー部123cよりも接続管部124側の部分であるリング側接続管部123dの径は、テーパー部123cよりも接続管部124側と反対側の部分123eの径よりも大きい。接続管部124は、給水管20の接続管部24と同様のものであり、冷却水の流れ方向に沿った挿入管部21からの距離が小さい側よりも挿入管部21からの距離が大きい側が鉛直方向の上側に位置する傾斜を有している。 As shown in FIG. 6, the ring-shaped tube portion 123 has a tapered portion 123c. The taper portion 123 c is formed in the vicinity of the connection portion of the ring-shaped tube portion 123 with the connection tube portion 124. The tapered portion 123c is formed on both sides in the circumferential direction with respect to the connection portion with the connection tube portion 124 in the ring-shaped tube portion 123. The tapered portion 123c has a tapered shape in which the side farther from the side closer to the connecting tube portion 124 in the cooling water flow direction of the ring-shaped tube portion 123 has a smaller diameter. In the taper portion 123c, the flow path cross-sectional area of the pipe line 123a gradually decreases as the distance from the connection pipe part 124 increases. Corresponding to the difference in diameter at both ends of the taper portion 123c, the ring-side tube portion 123 has a diameter of the ring-side connection tube portion 123d, which is a portion closer to the connection tube portion 124 than the taper portion 123c. It is larger than the diameter of the part 123e on the opposite side to the connecting pipe part 124 side than 123c. The connecting pipe part 124 is the same as the connecting pipe part 24 of the water supply pipe 20, and the distance from the insertion pipe part 21 is larger than the side where the distance from the insertion pipe part 21 along the flow direction of the cooling water is small. The side has an inclination located on the upper side in the vertical direction.
 リング側接続管部123dは、径が一定でかつ直線状の管部である。図5に示すように、リング側接続管部123dにおける冷却水の流れ方向と直交する断面の下端123fは、挿入管部21と接続管部124との接続部における挿入管部21の内壁面の上端21aよりも鉛直方向上方にある。 The ring side connecting pipe portion 123d is a straight pipe portion having a constant diameter. As shown in FIG. 5, the lower end 123f of the cross section orthogonal to the flow direction of the cooling water in the ring side connecting pipe portion 123d is the inner wall surface of the inserting pipe portion 21 in the connecting portion between the inserting pipe portion 21 and the connecting pipe portion 124. It is above the upper end 21a in the vertical direction.
 このような給水管120によっても、挿入管部21内における熱成層の発生を抑制したり、熱成層を早期に解消したりすることで、疲労源となる熱応力の発生の抑制を図ることができる。しかしながら、リング状管部123の全体が挿入管部21に対して持ち上げられた場合、蒸気発生器1内の水位が低下したときにリング状管部123が気層に露出しやすくなる。 Even with such a water supply pipe 120, it is possible to suppress the generation of thermal stress that becomes a fatigue source by suppressing the occurrence of thermal stratification in the insertion pipe portion 21 or by eliminating the thermal stratification at an early stage. it can. However, when the entire ring-shaped tube portion 123 is lifted with respect to the insertion tube portion 21, the ring-shaped tube portion 123 is easily exposed to the air layer when the water level in the steam generator 1 is lowered.
 これに対して、本実施形態の給水管20では、図3および図4に示されるように、挿入管部21に対して接続管部24において持ち上げるように曲げられた発生器内管部22は、傾斜管部233において持ち下げるように折り曲げられている。これにより、水平リング状管部231の鉛直方向における位置が低下し、水平リング状管部231が冷却水面から露出することが抑制される。図2に示すように、水平リング状管部231の管路231aにおける冷却水の流れ方向と直交する断面の上端231bは、挿入管部21と接続管部24との接続部における挿入管部21の内壁面の上端21aを通る水平面30よりも鉛直方向の下側に位置している。これにより、挿入管部21が露出し始めるレベルまで蒸気発生器1内の冷却水位が低下したとしても、水平リング状管部231の管路231aは水面下にある。水平リング状管部231が冷却水から露出しにくくなることで、管路231aにおける蒸気溜りの発生が抑制される。 On the other hand, in the water supply pipe 20 of this embodiment, as shown in FIG. 3 and FIG. 4, the generator internal pipe section 22 bent so as to be lifted at the connection pipe section 24 with respect to the insertion pipe section 21 is The bent tube portion 233 is bent so as to be lowered. Thereby, the position in the vertical direction of the horizontal ring-shaped tube portion 231 is lowered, and the horizontal ring-shaped tube portion 231 is suppressed from being exposed from the cooling water surface. As shown in FIG. 2, the upper end 231 b of the cross section orthogonal to the flow direction of the cooling water in the pipe line 231 a of the horizontal ring-shaped pipe part 231 is the insertion pipe part 21 in the connection part between the insertion pipe part 21 and the connection pipe part 24. It is located on the lower side in the vertical direction than the horizontal plane 30 passing through the upper end 21a of the inner wall surface. Thereby, even if the cooling water level in the steam generator 1 is lowered to a level at which the insertion pipe part 21 starts to be exposed, the pipe 231a of the horizontal ring-shaped pipe part 231 is below the water surface. Since the horizontal ring-shaped pipe portion 231 becomes difficult to be exposed from the cooling water, the occurrence of steam accumulation in the pipe line 231a is suppressed.
 水平リング状管部231に形成された管路231aの鉛直方向における位置は、これに限らず、任意に設定可能である。例えば、本実施形態では、管路231aにおける冷却水の流れ方向と直交する断面の上端231bは、挿入管部21の中心軸線Xよりも鉛直方向の下側に位置している。このように、本実施形態の給水管20では、挿入管部21における熱成層を抑制する効果を維持したままで、水平リング状管部231の管路231aの鉛直方向における位置を任意に設定することが可能となる。 The position in the vertical direction of the pipe 231a formed in the horizontal ring-shaped pipe portion 231 is not limited to this and can be arbitrarily set. For example, in the present embodiment, the upper end 231 b of the cross section orthogonal to the flow direction of the cooling water in the pipe 231 a is located below the central axis X of the insertion pipe portion 21 in the vertical direction. Thus, in the water supply pipe 20 of this embodiment, the position in the vertical direction of the pipe line 231a of the horizontal ring-shaped pipe part 231 is arbitrarily set while maintaining the effect of suppressing thermal stratification in the insertion pipe part 21. It becomes possible.
 また、本実施形態では、上部水平管部234に流出管251(25)が設けられている。これにより、蒸気発生器1内の冷却水位が低下した場合に挿入管部21内の冷却水が水平リング状管部231側に吸い出されることが抑制される。例えば、上部水平管部234に流出管251が設けられない場合、水平リング状管部231が露出するまで冷却水位が低下し、かつ給水管20に対する外部からの冷却水の供給が停止されていると、水平リング状管部231に対して高い位置にある挿入管部21内の冷却水が水平リング状管部231側に向けて吸い出されることがある。本実施形態では、上部水平管部234に流出管251が設けられていることで、蒸気発生器1内の冷却水位が低下した場合に、流出管251が露出し、管路234aが開放される。これにより、挿入管部21内の冷却水が水平リング状管部231に向けて吸引されることが抑制される。 In this embodiment, the upper horizontal pipe portion 234 is provided with an outflow pipe 251 (25). Thereby, when the cooling water level in the steam generator 1 falls, it is suppressed that the cooling water in the insertion pipe part 21 is sucked out to the horizontal ring-shaped pipe part 231 side. For example, when the outflow pipe 251 is not provided in the upper horizontal pipe section 234, the cooling water level is lowered until the horizontal ring-shaped pipe section 231 is exposed, and the supply of cooling water from the outside to the water supply pipe 20 is stopped. And the cooling water in the insertion pipe part 21 in a high position with respect to the horizontal ring-shaped pipe part 231 may be sucked out toward the horizontal ring-shaped pipe part 231 side. In this embodiment, since the outflow pipe 251 is provided in the upper horizontal pipe section 234, the outflow pipe 251 is exposed and the pipe 234a is opened when the cooling water level in the steam generator 1 is lowered. . Thereby, it is suppressed that the cooling water in the insertion pipe part 21 is attracted | sucked toward the horizontal ring-shaped pipe part 231. FIG.
 なお、水平リング状管部231の鉛直方向における位置は、予め定められた蒸気発生器1内の空間40における冷却水の水位の制御目標に基づいて設定されてもよい。冷却水の目標水位は、蒸気発生器1を有する原子力プラントの制御パラメータに依存して決まるものである。例えば、制御目標の水位に下限が定められている場合に、その下限の水位よりも管路231aにおける冷却水の流れ方向と直交する断面の上端231bが鉛直方向下側に位置するようにされてもよい。このようにすれば、蒸気発生器1内の冷却水位が目標水位の下限以上であれば、管路231aが冷却水の水面下にある状態となり、管路231aにおける蒸気溜りの発生が抑制される。 In addition, the position in the vertical direction of the horizontal ring-shaped tube portion 231 may be set based on a predetermined control target of the coolant level in the space 40 in the steam generator 1. The target water level of the cooling water is determined depending on the control parameters of the nuclear power plant having the steam generator 1. For example, when a lower limit is set for the control target water level, the upper end 231b of the cross section orthogonal to the flow direction of the cooling water in the pipe 231a is positioned below the vertical direction below the lower limit water level. Also good. In this way, if the cooling water level in the steam generator 1 is equal to or higher than the lower limit of the target water level, the pipeline 231a is under the surface of the cooling water, and the occurrence of steam accumulation in the pipeline 231a is suppressed. .
 また、水平リング状管部231の鉛直方向における位置は、例えば、プラントの起動時および停止時における温態停止時のように低温で小流量の冷却水の供給が行われる場合にも、その時の蒸気発生器1内の空間40における冷却水位よりも水平リング状管部231の管路231aを下側に位置させるように設定されてもよい。 Further, the position of the horizontal ring-shaped pipe portion 231 in the vertical direction is the same as when the cooling water is supplied at a low temperature and at a low flow rate, for example, when the plant is started and when the temperature is stopped. You may set so that the pipe line 231a of the horizontal ring-shaped pipe part 231 may be located below rather than the cooling water level in the space 40 in the steam generator 1. FIG.
 本実施形態では、流出管25を有する管部が、リング状に延在するリング状管部23であったが、流出管25を有する管部の形状はこれには限定されない。 In this embodiment, the pipe part having the outflow pipe 25 is the ring-shaped pipe part 23 extending in a ring shape, but the shape of the pipe part having the outflow pipe 25 is not limited thereto.
 1 蒸気発生器
 2 胴部
 11 管台
 112 貫通孔
 20 給水管
 21 挿入管部
 22 発生器内管部
 23 リング状管部
 231 水平リング状管部
 232 上部リング状管部
 233 傾斜管部
 234 上部水平管部
 24 接続管部
 25 流出管
 30 水平面
DESCRIPTION OF SYMBOLS 1 Steam generator 2 Trunk part 11 Pipe stand 112 Through-hole 20 Water supply pipe 21 Insertion pipe part 22 Generator internal pipe part 23 Ring-shaped pipe part 231 Horizontal ring-shaped pipe part 232 Upper ring-shaped pipe part 233 Inclined pipe part 234 Upper horizontal part Pipe section 24 Connection pipe section 25 Outflow pipe 30 Horizontal plane

Claims (5)

  1.  蒸気発生器の外殻部材を貫通する貫通孔に挿入され、水平方向に延在する挿入管部と、
     前記挿入管部と接続され、かつ前記蒸気発生器の内部に配置された発生器内管部と、
     を備え、
     前記発生器内管部は、前記発生器内管部の軸方向に形成され、前記挿入管部を介して前記蒸気発生器の外部から供給される冷却水が流れる管路と、前記管路内の冷却水が前記管路から前記蒸気発生器内の空間に流出する流出部とを有するものであって、
     前記管路は、冷却水の流れ方向に沿った前記挿入管部からの距離が小さい側よりも大きい側が鉛直方向の上側に位置する傾斜を有する第一傾斜部と、前記第一傾斜部よりも前記流れ方向に沿った前記挿入管部からの距離が大きい側に位置し、前記流れ方向に沿った前記挿入管部からの距離が小さい側よりも大きい側が鉛直方向の下側に位置する傾斜を有する第二傾斜部とを有し、
     前記第一傾斜部と前記第二傾斜部との間の前記管路における前記流れ方向の少なくとも一部の区間において、前記流れ方向と直交する前記管路の断面の下端が、前記挿入管部と前記発生器内管部との接続部における前記挿入管部の内壁面の上端を通る水平面よりも鉛直方向上側にある
     ことを特徴とする蒸気発生器用給水管。
    An insertion pipe portion that is inserted into a through-hole penetrating the outer shell member of the steam generator and extends in a horizontal direction;
    A generator internal pipe connected to the insertion pipe and disposed inside the steam generator;
    With
    The generator inner pipe part is formed in the axial direction of the generator inner pipe part, and a pipe line through which cooling water supplied from the outside of the steam generator flows through the insertion pipe part; And an outflow part from which the cooling water flows out from the pipe into the space in the steam generator,
    The pipe has a first inclined part having an inclination in which a side larger than a side having a small distance from the insertion pipe part along the flow direction of the cooling water is located above the vertical direction, and the first inclined part. An inclination is located on the side where the distance from the insertion tube part along the flow direction is large, and the side where the distance from the insertion tube part along the flow direction is smaller than the side where the distance is small is located below the vertical direction A second inclined portion having
    In at least a part of the flow direction in the pipe line between the first inclined part and the second inclined part, a lower end of a cross section of the pipe line orthogonal to the flow direction is the insertion pipe part. The steam generator water supply pipe, which is above a horizontal plane passing through an upper end of an inner wall surface of the insertion pipe part in a connection part with the generator inner pipe part.
  2.  前記発生器内管部において、前記第一傾斜部が形成された区間は、前記流出部を有していない
     請求項1に記載の蒸気発生器用給水管。
    The water supply pipe for steam generators according to claim 1, wherein a section in which the first inclined portion is formed in the generator inner pipe portion does not have the outflow portion.
  3.  前記発生器内管部は、前記外殻部材の内周面に沿ってリング状に延在するリング状管部と、前記リング状管部から分岐して前記リング状管部と前記挿入管部とを接続する接続管部とを有し、
     前記第一傾斜部は、前記接続管部に形成された前記管路であり、
     前記第二傾斜部は、前記リング状管部に形成された前記管路であって、前記接続管部を挟んで前記リング状管部の軸方向の両側に形成されている
     請求項1に記載の蒸気発生器用給水管。
    The generator inner tube section includes a ring-shaped tube section extending in a ring shape along an inner peripheral surface of the outer shell member, and the ring-shaped tube section and the insertion tube section branched from the ring-shaped tube section. And a connecting pipe part for connecting
    The first inclined part is the pipe line formed in the connection pipe part,
    The said 2nd inclination part is the said pipe line formed in the said ring-shaped pipe part, Comprising: It forms in the both sides of the axial direction of the said ring-shaped pipe part on both sides of the said connection pipe part. Water supply pipe for steam generator.
  4.  前記リング状管部のうち、前記流れ方向において前記第二傾斜部よりも前記挿入管部側と反対側には、水平方向に延在する前記管路である水平リング状管路が形成されており、
     前記水平リング状管路における前記流れ方向と直交する断面の上端が、前記挿入管部と前記発生器内管部との接続部における前記挿入管部の内壁面の上端を通る水平面よりも鉛直方向下側にある
     請求項3に記載の蒸気発生器用給水管。
    Of the ring-shaped pipe part, a horizontal ring-shaped pipe line that is the pipe line extending in the horizontal direction is formed on the side opposite to the insertion pipe part side than the second inclined part in the flow direction. And
    The upper end of the cross section perpendicular to the flow direction in the horizontal ring-shaped pipe line is perpendicular to the horizontal plane passing through the upper end of the inner wall surface of the insertion pipe part at the connection part between the insertion pipe part and the generator inner pipe part. The water supply pipe for steam generators according to claim 3, which is on the lower side.
  5.  前記リング状管部のうち、前記流れ方向において前記第二傾斜部よりも前記挿入管部側と反対側には、水平方向に延在する前記管路である水平リング状管路が形成されており、
     前記水平リング状管路における前記流れ方向と直交する断面の上端が、前記蒸気発生器内の空間における冷却水の水位の制御目標における下限よりも鉛直方向下側にある
     請求項3に記載の蒸気発生器用給水管。
    Of the ring-shaped pipe part, a horizontal ring-shaped pipe line that is the pipe line extending in the horizontal direction is formed on the side opposite to the insertion pipe part side than the second inclined part in the flow direction. And
    The steam according to claim 3, wherein an upper end of a cross section perpendicular to the flow direction in the horizontal ring-shaped pipe line is below a lower limit in a control target of a coolant level in a space in the steam generator. Generator water supply pipe.
PCT/JP2013/052501 2012-02-07 2013-02-04 Water supply pipe for steam generator WO2013118684A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP13746076.2A EP2814039B1 (en) 2012-02-07 2013-02-04 Water supply pipe for steam generator
US14/376,591 US20140360442A1 (en) 2012-02-07 2013-02-04 Water supply tube for steam generator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012024525A JP2013160695A (en) 2012-02-07 2012-02-07 Water supply pipe for steam generator
JP2012-024525 2012-02-07

Publications (1)

Publication Number Publication Date
WO2013118684A1 true WO2013118684A1 (en) 2013-08-15

Family

ID=48947448

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/052501 WO2013118684A1 (en) 2012-02-07 2013-02-04 Water supply pipe for steam generator

Country Status (4)

Country Link
US (1) US20140360442A1 (en)
EP (1) EP2814039B1 (en)
JP (1) JP2013160695A (en)
WO (1) WO2013118684A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109798510A (en) * 2019-01-11 2019-05-24 中广核工程有限公司 A kind of main feed water pipe device for pressurized water reactor nuclear power station steam generator
FR3112189B1 (en) * 2020-07-03 2023-04-28 Framatome Sa System for repairing a food water torus and associated repair method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57150390U (en) * 1981-03-11 1982-09-21
JPS61121304U (en) 1985-01-10 1986-07-31
JPH01106710U (en) * 1988-01-05 1989-07-18
JP2003028977A (en) * 2001-05-11 2003-01-29 Mitsubishi Heavy Ind Ltd Moisture separator and steam generator

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US202535A (en) * 1878-04-16 Improvement in devices for supplying feed-water to boilers
BE791459A (en) * 1971-11-17 1973-03-16 Siemens Ag STEAM GENERATOR WITH ARRANGEMENT TO REDUCE THE STEAM CONTAINED IN THE CIRCULATING WATER
US3913531A (en) * 1974-06-20 1975-10-21 Combustion Eng Sediment blowdown arrangement for a shell and tube vapor generator
FR2477265A1 (en) * 1980-02-29 1981-09-04 Framatome Sa PRE-HEATING STEAM GENERATOR
EP0045034B1 (en) * 1980-07-21 1983-04-13 Kraftwerk Union Aktiengesellschaft Device to avoid the formation of fissures on the inner side of feedwater inlet nozzles of a pressure vessel
DE3128613A1 (en) * 1980-07-21 1982-04-29 Kraftwerk Union AG, 4330 Mülheim Arrangement for avoiding crack formation on the inner surfaces of feed-water pipe pieces opening into pressure vessels
US4426350A (en) * 1981-01-29 1984-01-17 Westinghouse Electric Corp. Valve support arrangement for pressurizer in a nuclear power plant
US4579088A (en) * 1984-04-09 1986-04-01 Westinghouse Electric Corp. Open channel steam generator feedwater system
US5213065A (en) * 1991-08-23 1993-05-25 Westinghouse Electric Corp. Steam generator feedwater distribution system
US7434546B2 (en) * 2006-11-28 2008-10-14 Westinghouse Electric Co. Llc Steam generator loose parts collector weir
US8695688B2 (en) * 2007-07-18 2014-04-15 Babcock & Wilcox Canada Ltd. Nubbed U-bend tube support

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57150390U (en) * 1981-03-11 1982-09-21
JPS61121304U (en) 1985-01-10 1986-07-31
JPH01106710U (en) * 1988-01-05 1989-07-18
JP2003028977A (en) * 2001-05-11 2003-01-29 Mitsubishi Heavy Ind Ltd Moisture separator and steam generator

Also Published As

Publication number Publication date
EP2814039A1 (en) 2014-12-17
JP2013160695A (en) 2013-08-19
US20140360442A1 (en) 2014-12-11
EP2814039B1 (en) 2017-06-28
EP2814039A4 (en) 2015-11-04

Similar Documents

Publication Publication Date Title
JP6657523B2 (en) Steam generator with inclined tube sheet
JP6063581B2 (en) Reactor with liquid metal coolant
US11031146B2 (en) Method for heating a primary coolant in a nuclear steam supply system
KR101710229B1 (en) Heat recovery steam generator and multidrum evaporator
TWI529350B (en) Once through evaporator
US8752510B2 (en) Helical coil steam generator
CN103177783B (en) Integrated steam generator of reactor
CN111664427A (en) Design scheme of ultra-high temperature and ultra-high pressure pore channel type heat exchanger/evaporator
WO2013118684A1 (en) Water supply pipe for steam generator
CN112071453A (en) Design scheme of direct-current countercurrent pore channel type heat exchanger/evaporator
JP6071298B2 (en) Method for additionally installing gap expansion jig for heat transfer tube and vibration suppressing member
CN104457335B (en) Coiled pipe heat exchanger
JP2009075001A (en) Nuclear reactor
WO2012137868A1 (en) Water supply pipe for vapor generator
CN106642040B (en) A kind of uniform compact steam generator of assignment of traffic
TWI507648B (en) Geothermal heat exchanging system and geothermal generator system and geothermal heat pump system using the same
CN204478877U (en) A kind of coil exchanger
CN210667819U (en) Reactor body structure suitable for double-layer sleeve structure nuclear steam supply system
JP2013124828A (en) Marine boiler
JP6581841B2 (en) Moisture separation unit and steam turbine plant
CN219264243U (en) Split type direct current steam generator suitable for high temperature gas cooled reactor nuclear power unit
RU2673974C2 (en) Long-life heat recovery steam generator device with use of internal stiffeners
KR101525041B1 (en) Intermediate Heat Exchanger of Very High Temperature Gas-cooled Reactor for Hydrogen Production
JP2007278814A (en) Reactor water supply nozzle
CN201251193Y (en) Steam-combustion energy-saving device of a warm air furnace

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13746076

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14376591

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2013746076

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013746076

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE