WO2013118624A1 - Polycarbonate resin composition - Google Patents

Polycarbonate resin composition Download PDF

Info

Publication number
WO2013118624A1
WO2013118624A1 PCT/JP2013/052099 JP2013052099W WO2013118624A1 WO 2013118624 A1 WO2013118624 A1 WO 2013118624A1 JP 2013052099 W JP2013052099 W JP 2013052099W WO 2013118624 A1 WO2013118624 A1 WO 2013118624A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
resin composition
polycarbonate resin
compound
composition according
Prior art date
Application number
PCT/JP2013/052099
Other languages
French (fr)
Japanese (ja)
Inventor
智子 阿部
中江 貢
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Priority to CN201380008665.0A priority Critical patent/CN104125985A/en
Priority to KR20147016704A priority patent/KR20140127208A/en
Publication of WO2013118624A1 publication Critical patent/WO2013118624A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/20General preparatory processes
    • C08G64/30General preparatory processes using carbonates
    • C08G64/307General preparatory processes using carbonates and phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/014Additives containing two or more different additives of the same subgroup in C08K

Definitions

  • the present invention relates to a polycarbonate resin composition having excellent heat resistance and good color tone.
  • Polycarbonate is an engineering plastic with excellent transparency, heat resistance, and impact resistance, and is currently widely used in the electrical / electronic field, automobile field, optical part field, and other industrial fields.
  • polycarbonate is produced by a method in which an aromatic dihydroxy compound and phosgene are directly reacted (interfacial polycondensation method), or a method in which an aromatic dihydroxy compound and a carbonic acid diester are transesterified in a molten state (melt polymerization method). )It has been known.
  • the interfacial polycondensation method requires the use of toxic phosgene, corrosion of production equipment by by-produced chlorine-containing compounds such as hydrogen chloride and sodium chloride, and chlorination mixed in the resin. There are various problems such as difficulty in separating impurities such as sodium which adversely affect the physical properties of the polymer.
  • the transesterification method (melt polymerization method) has the advantage that polycarbonate can be produced at a lower cost than the interfacial polycondensation method, but is usually used for a long time reaction at a high temperature of 280 to 310 ° C. , There is a great drawback that the polycarbonate obtained is inevitably colored.
  • An object of the present invention is to provide a polycarbonate resin composition having excellent heat resistance and good color tone using a polycarbonate produced by a transesterification reaction.
  • the present inventors have found that the above problem can be solved by mixing a specific organophosphorus compound with a polycarbonate obtained by a transesterification reaction using a specific polymerization catalyst. . That is, the present invention relates to the following 1 to 17.
  • the polycarbonate resin composition according to 1 above, wherein the contents of sodium, cesium, and potassium are each less than 0.1 ppm by mass as elements.
  • X 1 represents a halogen atom, a hydroxyl group, an alkyloxy group, an aryloxy group, an alkylcarbonyloxy group, an arylcarbonyloxy group, HCO 3 or BR 4 (R represents a hydrogen atom, an alkyl group or an aryl group, and four Rs are May be the same or different. ] 5.
  • R 2 represents an alkyl group, an aryl group or an alkylaryl group, but at least one of the four R 2 is an aryl group. Further, the four R 2 may be the same or different, and two R 2 may be bonded to form a ring structure.
  • X 2 represents a halogen atom, a hydroxyl group, an alkyloxy group, an aryloxy group, an alkylcarbonyloxy group, an arylcarbonyloxy group, HCO 3 or BR 4 (R represents a hydrogen atom, an alkyl group or an aryl group, and four Rs are May be the same or different. ] 6).
  • the polycarbonate resin composition according to any one of 1 to 5 above, wherein the raw materials for the transesterification reaction are (A) a dihydroxy compound and (B) a carbonic acid diester. 7).
  • the nitrogen-containing organic basic compound is tetramethylammonium hydroxide, and (b) the quaternary phosphonium salt containing an aryl group is tetraphenylphosphonium tetraphenylborate.
  • Polycarbonate resin composition 10.
  • the organophosphorus compound is tris (2,4-di-tert-butylphenyl) phosphite, bis (2,6-di-tert-butyl-4-methylphenyl) pentaerythritol diphosphite, 2,2′-methylenebis. Selected from (4,6-di-tert-butylphenyl) octyl phosphite, triphenyl phosphate, bisphenol A bis (diphenyl phosphate), and 1,3-phenylene-tetrakis (2,6-dimethylphenyl) phosphate
  • the polycarbonate resin composition according to any one of the above 1 to 9, which is at least one selected from the group consisting of: 11.
  • a polycarbonate was obtained by a transesterification reaction.
  • a method for producing a polycarbonate resin composition comprising mixing 0.001 to 0.5 parts by mass of at least one organic phosphorus compound selected from a phyto compound and a phosphate compound. 12 12. The method for producing a polycarbonate resin composition according to 11 above, wherein after completion of the transesterification reaction, the reaction product is heat-treated at a temperature equal to or higher than the decomposition temperature of the polymerization catalyst to obtain a polycarbonate. 13.
  • X 1 represents a halogen atom, a hydroxyl group, an alkyloxy group, an aryloxy group, an alkylcarbonyloxy group, an arylcarbonyloxy group, HCO 3 or BR 4 (R represents a hydrogen atom, an alkyl group or an aryl group, and four Rs are May be the same or different. ] 15.
  • R 2 represents an alkyl group, an aryl group or an alkylaryl group, but at least one of the four R 2 is an aryl group. Further, the four R 2 may be the same or different, and two R 2 may be bonded to form a ring structure.
  • X 2 represents a halogen atom, a hydroxyl group, an alkyloxy group, an aryloxy group, an alkylcarbonyloxy group, an arylcarbonyloxy group, HCO 3 or BR 4 (R represents a hydrogen atom, an alkyl group or an aryl group, and four Rs are May be the same or different. ] 16. 16.
  • a polycarbonate resin composition having excellent heat resistance and excellent color tone can be provided.
  • the polycarbonate resin composition of the present invention was obtained by using a combination of (a) a nitrogen-containing organic basic compound and (b) a quaternary phosphonium salt containing an aryl group as a polymerization catalyst to obtain a polycarbonate by a transesterification reaction. It is obtained by a production method in which 0.001 to 0.5 parts by mass of at least one organic phosphorus compound selected from phosphite compounds and phosphate compounds is mixed with 100 parts by mass of polycarbonate.
  • the polycarbonate contained in the polycarbonate resin composition of the present invention is obtained by a transesterification reaction using a specific polymerization catalyst, and there are no particular restrictions on the raw materials used in this transesterification method.
  • Various products used for production by the method are used, and for example, (A) dihydroxy compounds and (B) carbonic acid diesters are preferably used.
  • Examples of the (A) dihydroxy compound include an aromatic dihydroxy compound and an aliphatic dihydroxy compound, and are at least one compound selected from these.
  • Examples of the aromatic dihydroxy compound used as one of the components (A) include compounds represented by the following general formula (1).
  • R 4 and R 5 are each a halogen atom of fluorine, chlorine, bromine, iodine or an alkyl group having 1 to 20 carbon atoms, such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group. N-butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, hexyl group, cyclohexyl group, hebutyl group, octyl group and the like. R 4 and R 5 may be the same or different.
  • the plurality of R 4 if R 4 is more may be the same or different, a plurality of R 5 if R 5 there are a plurality may be the same or different.
  • m and n are each an integer of 0 to 4.
  • Z is a single bond, an alkylene group having 1 to 20 carbon atoms, an alkylidene group having 2 to 20 carbon atoms, a cycloalkylene group having 5 to 20 carbon atoms, a cycloalkylidene group having 5 to 20 carbon atoms, or —S—, A —SO—, —SO 2 —, —O—, —CO— bond or a bond represented by the following formulas (2) and (2 ′) is shown.
  • Examples of the alkylene group having 1 to 20 carbon atoms and the alkylidene group having 2 to 20 carbon atoms include a methylene group, an ethylene group, a propylene group, a butylene group, a pentylene group, a hexylene group, an ethylidene group, and an isopropylidene group.
  • Examples of the cycloalkylene group having 5 to 20 carbon atoms and the cycloalkylidene group having 5 to 20 carbon atoms include a cyclopentylene group, a cyclohexylene group, a cyclopentylidene group, and a cyclohexylidene group.
  • aromatic dihydroxy compound represented by the general formula (1) examples include bis (4-hydroxyphenyl) methane; bis (3-methyl-4-hydroxyphenyl) methane; bis (3-chloro-4-hydroxyphenyl). ) Methane; bis (3,5-dibromo-4-hydroxyphenyl) methane; 1,1-bis (4-hydroxyphenyl) ethane; 1,1-bis (2-tert-butyl-4-hydroxy-3-methyl) Phenyl) ethane; 1,1-bis (2-tert-butyl-4-hydroxy-3-methylphenyl) ethane; 1-phenyl-1,1-bis (3-fluoro-4-hydroxy-3-methylphenyl) Ethane; 2,2-bis (4-hydroxyphenyl) propane (commonly called bisphenol A); 2,2-bis (3-methyl-4-hydroxyphenyl) propyl 2,2-bis (2-methyl-4-hydroxyphenyl) propane; 2,2-bis (3,5-dimethyl-4-hydroxyphenyl) propane; 1,1-bis
  • aromatic dihydroxy compounds other than the general formula (1) include dihydroxybenzenes, halogen and alkyl-substituted dihydroxybenzenes.
  • resorcin 3-methyl resorcin, 3-ethyl resorcin, 3-propyl resorcin, 3-butyl resorcin, 3-t-butyl resorcin, 3-phenyl resorcin, 3-cumyl resorcin; 2,3,4,6- Tetrafluororesorcin; 2,3,4,6-tetrabromoresorcin; catechol, hydroquinone, 3-methylhydroquinone, 3-ethylhydroquinone, 3-propylhydroquinone, 3-butylhydroquinone, 3-t-butylhydroquinone, 3-phenyl Hydroquinone, 3-cumylhydroquinone; 2,5-dichlorohydroquinone; 2,3,5,6-te
  • Examples of the aliphatic dihydroxy compound used as one of the components (A) include butane-1,4-diol; 2,2-dimethylpropane-1,3-diol; hexane-1,6-diol; Diethylene glycol; triethylene glycol; tetraethylene glycol; octaethylene glycol; dipropylene glycol; N, N-methyldiethanolamine; cyclohexane-1,3-diol; cyclohexane-1,4-diol; 1,4-dimethylolcyclohexane P-xylylene glycol; 2,2-bis (4-hydroxycyclohexyl) -propane, isosorbide; adamantanediol; adamantanedimethanol; 1,4-cyclohexanedimethanol and the like.
  • dihydroxy compound of component (A) one or more of the above compounds are appropriately selected and used, and among these, bisphenol A, which is an aromatic dihydroxy compound, is preferably used.
  • the carbonic acid diester is at least one compound selected from a diaryl carbonate compound, a dialkyl carbonate compound or an alkylaryl carbonate compound.
  • the diaryl carbonate compound used as one of the component (B) has the following general formula (3): [wherein Ar 1 and Ar 2 each represent an aryl group, and they may be the same or different. Or a compound represented by the following general formula (4): wherein Ar 3 and Ar 4 each represents an aryl group, which may be the same or different, and D 1 represents the aromatic dihydroxy compound. The residue which remove
  • dialkyl carbonate compound has the following general formula (5): wherein R 6 and R 7 each represents an alkyl group having 1 to 20 carbon atoms or a cycloalkyl group having 4 to 20 carbon atoms, and they are identical to each other. But it can be different.
  • the alkylaryl carbonate compound is represented by the following general formula (7): wherein Ar 5 represents an aryl group, R 10 represents an alkyl group having 1 to 20 carbon atoms or a cycloalkyl group having 4 to 20 carbon atoms. Or a compound represented by the following general formula (8): wherein Ar 6 is an aryl group, R 11 is an alkyl group having 1 to 20 carbon atoms or a cycloalkyl group having 4 to 20 carbon atoms, and D 3 is the above-mentioned A residue obtained by removing two hydroxyl groups from an aromatic dihydroxy compound is shown. It is a compound represented by this.
  • examples of the diaryl carbonate compound include diphenyl carbonate, ditolyl carbonate, bis (chlorophenyl) carbonate, m-cresyl carbonate, dinaphthyl carbonate, bis (diphenyl) carbonate, bisphenol A bisphenyl carbonate, and the like.
  • examples of the dialkyl carbonate compound include diethyl carbonate, dimethyl carbonate, dibutyl carbonate, dicyclohexyl carbonate, bisphenol A bismethyl carbonate, and the like.
  • alkyl aryl carbonate compound examples include methyl phenyl carbonate, ethyl phenyl carbonate, butyl phenyl carbonate, cyclohexyl phenyl carbonate, and bisphenol A methyl phenyl carbonate.
  • the carbonic acid diester of the component (B) one or more of the above compounds are appropriately selected and used. Among these, diphenyl carbonate is preferably used.
  • raw materials other than the above (A) dihydroxy compound and (B) carbonic acid diester may be used.
  • diesters of dihydroxy compounds include bisphenol A diacetate, bisphenol A dipropionate, bisphenol A dibutyrate, and bisphenol A dibenzoate.
  • dicarbonates of dihydroxy compounds include bismethyl carbonate of bisphenol A, bisethyl carbonate of bisphenol A, and bisphenyl carbonate of bisphenol A.
  • monohydroxy esters of dihydroxy compounds include bisphenol A monomethyl carbonate, bisphenol A monoethyl carbonate, bisphenol A monopropyl carbonate, and bisphenol A monophenyl carbonate.
  • a terminal terminator can be used as necessary.
  • the terminal terminator include on-butylphenol; mn-butylphenol; pn-butylphenol; o-isobutylphenol; m-isobutylphenol; p-isobutylphenol; ot-butylphenol; tert-butylphenol; pt-butylphenol; on-pentylphenol; mn-pentylphenol; pn-pentylphenol; on-hexylphenol; mn-hexylphenol; pn-hexyl O-cyclohexylphenol; m-cyclohexylphenol; p-cyclohexylphenol; o-phenylphenol; m-phenylphenol; p-phenylphenol; on-nonylphenol; mn-nonylphenol; O-cumylphenol; m-cumylphenol; m-cumylphenol; m-
  • Examples thereof include monohydric phenols such as chroman derivatives represented by the following formula.
  • phenols although not particularly limited in the present invention, pt-butylphenol, p-cumylphenol, p-phenylphenol and the like are preferable. Moreover, the compound etc. which are represented by a following formula can also be used.
  • phloroglucin trimellitic acid; 1,1,1-tris (4-hydroxyphenyl) ethane; 1- [ ⁇ -methyl- ⁇ - (4′-hydroxyphenyl) ethyl] -4- [ ⁇ ′, ⁇ ′-bis (4 ′′ -hydroxyphenyl) ethyl] benzene; ⁇ , ⁇ ′, ⁇ ′′ -tris (4-hydroxyphenyl) -1,3,5-triisopropylbenzene; isatin bis ( o-cresol) and the like can also be used as a branching agent.
  • a specific polymerization catalyst in the transesterification reaction a combination of (a) a nitrogen-containing organic basic compound and (b) a quaternary phosphonium salt containing an aryl group is used.
  • a nitrogen-containing organic basic compound of (a) component There is no restriction
  • aliphatic tertiary amine compounds such as trimethylamine, triethylamine, tripropylamine, tributylamine, tripentylamine, trihexylamine, dimethylbenzylamine; aromatic tertiary amine compounds such as triphenylamine; N, N -Dimethyl-4-aminopyridine, 4-diethylaminopyridine, 4-pyrrolidinopyridine, 4-aminopyridine, 2-aminopyridine, 2-hydroxypyridine, 4-hydroxypyridine, 2-methoxypyridine, 4-methoxypyridine, imidazole , Nitrogen-containing heterocycles such as 2-methylimidazole, 4-methylimidazole, 2-dimethylaminoimidazole, 2-methoxyimidazole, 2-mercaptoimidazole, aminoquinoline, diazabicyclooctane (DABCO) Compounds, and the like.
  • DABCO diazabicyclooctane
  • examples of the nitrogen-containing organic basic compound of component (a) include quaternary ammonium salts represented by the following general formula (I).
  • (NR 1 4 ) + (X 1 ) ⁇ (I) R 1 is alkyl group, aryl group or alkyl group aryl, for example, methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, octyl group, cyclohexyl group, etc.
  • An aryl group having 6 to 20 carbon atoms or an alkylaryl group such as an alkyl group or cycloalkyl group having ⁇ 6, a phenyl group, a tolyl group, a xylyl group, a naphthyl group, a biphenyl group, or a benzyl group;
  • the four R 1 s may be the same or different, and two R 1 s may combine to form a ring structure.
  • X 1 represents a halogen atom, a hydroxyl group, an alkyloxy group, an aryloxy group, an alkylcarbonyloxy group, an arylcarbonyloxy group, HCO 3 or BR 4 (R represents a hydrogen atom, an alkyl group or an aryl group, and four R May be the same or different).
  • Examples of such quaternary ammonium salts include alkyl groups such as tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrabutylammonium hydroxide, and trimethylbenzylammonium hydroxide; ammonium hydroxides having an aryl group, an aryl group, and the like.
  • basic salts such as tetramethylammonium borohydride, tetrabutylammonium borohydride, tetrabutylammonium tetraphenylborate and tetramethylammonium tetraphenylborate.
  • nitrogen-containing organic basic compounds quaternary ammonium represented by the above general formula (I) from the viewpoints of high catalytic activity, easy thermal decomposition and hardly remaining in the polymer.
  • Salts specifically tetramethylammonium hydroxide, tetrabutylammonium hydroxide, tetramethylammonium borohydride and tetrabutylammonium borohydride are preferred, and tetramethylammonium hydroxide is particularly preferred.
  • One (a) nitrogen-containing organic basic compound may be used, or two or more may be used in combination.
  • examples of the quaternary phosphonium salt of the component (b) include compounds represented by the following general formula (II).
  • R 2 represents an alkyl group, an aryl group or an alkylaryl group, and these may be the same as those exemplified in the description of R 1 in the general formula (I).
  • At least one of the four R 2 is an aryl group. Further, the four R 2 s may be the same or different, and two R 2 may be bonded to form a ring structure.
  • X 2 represents a halogen atom, a hydroxyl group, an alkyloxy group, an aryloxy group, an alkylcarbonyloxy group, an arylcarbonyloxy group, HCO 3 or BR 4 (R represents a hydrogen atom, an alkyl group or an aryl group, and four Rs are May be the same or different.
  • quaternary phosphonium salts include tetraarylphosphonium hydroxides such as tetraphenylphosphonium hydroxide, tetranaphthylphosphonium hydroxide, tetra (chlorophenyl) phosphonium hydroxide, tetra (biphenyl) phosphonium hydroxide, and tetratolylphosphonium hydroxide.
  • tetraarylphosphonium hydroxides such as tetraphenylphosphonium hydroxide, tetranaphthylphosphonium hydroxide, tetra (chlorophenyl) phosphonium hydroxide, tetra (biphenyl) phosphonium hydroxide, and tetratolylphosphonium hydroxide.
  • Methyl triphenylphosphonium hydroxide ethyltriphenylphosphonium hydroxide, propyltriphenylphosphonium hydroxide, butyltriphenylphosphonium hydroxide, amyltriphenylphosphonium hydroxide, heptyltriphenylphosphonium hydroxide, hexyltriphenylphosphonium hydroxy Octyltriphenylphosphonium hydroxide, Radecyltriphenylphosphonium hydroxide, benzyltriphenylphosphonium hydroxide, ethoxybenzyltriphenylphosphonium hydroxide, methoxymethyltriphenylphosphonium hydroxide, acetoxymethyltriphenylphosphonium hydroxide, phenacyltriphenylphosphonium hydroxide, chloromethyltriphenyl Phenylphosphonium hydroxide, bromomethyltriphenylphosphonium hydroxide, biphenyltriphenylphosphon
  • Tetraarylphosphonium tetraphenyl such as tetraphenylphosphonium tetraphenylborate, tetranaphthylphosphonium tetraphenylborate, tetra (chlorophenyl) phosphonium tetraphenylborate, tetra (biphenyl) phosphonium tetraphenylborate, tetratolylphosphonium tetraphenylborate Borates: methyltriphenylphosphonium tetraphenylborate, ethyltriphenylphosphonium tetraphenylborate, propyltriphenylphosphonium tetraphenylborate, butyltriphenylphosphonium tetraphenylborate, octyltriphenylphosphonium tetraphenylborate, tetradecyltriphenyltriphenylphosphonium
  • aryloxy groups such as phenoxide; alkyloxy groups such as methoxide and ethoxide; alkylcarbonyloxy groups such as acetate; arylcarbonyloxy groups such as benzoate
  • a quaternary phosphonium salt using a halogen atom such as chloride or bromide.
  • R 3 represents an organic group, which may be the same or different, and X 3 represents a halogen atom, a hydroxyl group, an alkyloxy group, an aryloxy group, an alkylcarbonyloxy group, an aryl group.
  • a carbonyloxy group, HCO 3 or BR 4 (wherein R represents a hydrogen atom or a hydrocarbon group, four Rs may be the same or different from each other), and n represents an integer of 0 to 4.
  • quaternary phosphonium compounds include, for example, tetraphenylphosphonium hydroxide, biphenyltriphenylphosphonium hydroxide, methoxyphenyltriphenylphosphonium hydroxide, phenoxyphenyltriphenylphosphonium hydroxide, and naphthylphenyltriphenylphosphonium hydroxide.
  • quaternary phosphonium salts tetraarylphosphonium tetraphenylborate, tetraarylphosphonium phenoxide, monoaryltriphenylphosphonium borate from the viewpoint of the balance between the activity due to thermal stability during the reaction and the quality of the obtained polycarbonate.
  • monoaryltriphenylphosphonium phenoxide are preferable, and tetraphenylphosphonium tetraphenylborate is particularly preferable.
  • a quaternary phosphonium salt that does not contain an alkyl group is excellent in thermal stability, and is effective for increasing the molecular weight in the late reaction.
  • This (b) quaternary phosphonium salt may be used singly or in combination of two or more.
  • the (a) nitrogen-containing organic basic compound and (b) the quaternary phosphonium salt containing an aryl group preferably each have a metal impurity content of 50 ppm by mass or less, and an alkali metal and alkaline earth metal compound. Is more preferably 30 mass ppm or less, and particularly preferably 10 mass ppm or less. Furthermore, it is preferable that the total amount of each metal impurity in the component (a) and the component (b) is 50 mass ppm or less with respect to the total amount of the component (a) and the component (b).
  • the total content of alkali metal and alkaline earth metal compound in component (b) and component (b) is more preferably 30 ppm by mass or less, based on the total amount of component (a) and component (b), Particularly preferred is 10 ppm by mass or less.
  • the nitrogen-containing organic basic compound of the component (a) is 10 ⁇ 1 to 10 ⁇ 8 mol, preferably 10 ⁇ 2 to 10 ⁇ 7 mol, relative to the raw material such as a dihydroxy compound. Mol, more preferably 10 ⁇ 3 to 10 ⁇ 6 mol, and (b) the quaternary phosphonium salt containing the aryl group of 10 ⁇ 1 to 10 ⁇ 8 mol, preferably 10 ⁇ 2 to 10 ⁇ 7 mol, It is desirable to use 10 ⁇ 3 to 10 ⁇ 6 mol.
  • the amount of component (a) used is less than 10 ⁇ 8 mol, the catalytic activity at the initial stage of the reaction becomes insufficient, and if it exceeds 10 ⁇ 1 mol, the cost increases, which is not preferable.
  • the amount of component (b) used is less than 10 ⁇ 8 mol, the catalytic activity in the late stage of the reaction becomes insufficient, and if it exceeds 10 ⁇ 1 mol, the cost increases, which is not preferable.
  • the polymerization catalyst has a total amount of (a) component and (b) component of usually 2 ⁇ 10 ⁇ 1 to 2 ⁇ 10 ⁇ to 1 mol of the dihydroxy compound of component (A) as a raw material. 8 mol, preferably 2 ⁇ 10 ⁇ 2 to 2 ⁇ 10 ⁇ 7 mol, more preferably 2 ⁇ 10 ⁇ 3 to 2 ⁇ 10 ⁇ 6 mol. If the amount of the catalyst added is less than 2 ⁇ 10 ⁇ 8 mol, the catalytic effect may not be exhibited. Moreover, if it exceeds 2 ⁇ 10 ⁇ 1 mol, the physical properties of the final polycarbonate, especially heat resistance and hydrolysis resistance, may be reduced, and it will lead to cost increase, and it will be added beyond this.
  • the polymerization activity can be increased by using a combination of (a) a nitrogen-containing organic basic compound and (b) a quaternary phosphonium salt containing an aryl group as a polymerization catalyst.
  • a nitrogen-containing organic basic compound and (b) a quaternary phosphonium salt containing an aryl group as a polymerization catalyst.
  • the component (A) is a dihydroxy compound and the component (B) is a carbonic acid diester, and if necessary.
  • a transesterification reaction is performed using a terminal terminator or a branching agent to obtain a polycarbonate. Specifically, the reaction may proceed according to a known transesterification method. Below, the procedure and conditions of the preferable manufacturing method of this invention are shown concretely.
  • the (A) component dihydroxy compound and the (B) component carbonic acid diester are subjected to a transesterification reaction in such a ratio that the carbonic acid diester is 0.9 to 1.5 times the mole of the dihydroxy compound. Depending on the situation, 0.98 to 1.20 times mol is preferable.
  • the transesterification reaction it is obtained when the amount of the terminal terminator composed of the monohydric phenol or the like is in the range of 0.05 to 10 mol% with respect to the dihydroxy compound as the component (A). Since the hydroxyl end of the polycarbonate is sealed, a polycarbonate having excellent heat resistance and water resistance can be obtained.
  • Such a terminal terminator made of monohydric phenol or the like may be added to the reaction system in advance, or partly added to the reaction system in advance and the remainder added as the reaction proceeds. May be. Furthermore, depending on the case, after the transesterification reaction of the dihydroxy compound of the component (A) and the carbonic acid diester of the component (B) partially proceeds, the whole amount may be added to the reaction system.
  • the reaction temperature is not particularly limited and is usually selected in the range of 100 to 330 ° C., preferably in the range of 180 to 300 ° C. More preferably, the reaction temperature gradually becomes 180 to 300 as the reaction proceeds. A method of raising the temperature to °C is good. If the temperature of the transesterification reaction is less than 100 ° C., the reaction rate becomes slow. On the other hand, if it exceeds 330 ° C., side reactions occur or the resulting polycarbonate is colored, which is not preferable.
  • the reaction pressure is set according to the vapor pressure of the monomer used and the reaction temperature. This should just be set so that reaction may be performed efficiently, and is not limited.
  • an atmospheric pressure (normal pressure) or a pressurized state of 1 to 50 atm (760 to 38,000 torr) is set, and in the latter stage of the reaction, a reduced pressure state, preferably 0.01 is finally used. In many cases, it is set to ⁇ 100 torr.
  • the reaction time may be carried out until the target molecular weight is reached, and is usually about 0.2 to 10 hours.
  • the transesterification reaction is usually carried out in the absence of an inert solvent, but it may be carried out in the presence of 1 to 150% by mass of an inert solvent of the obtained polycarbonate, if necessary.
  • the inert solvent include aromatic compounds such as diphenyl ether, halogenated diphenyl ether, benzophenone, polyphenyl ether, dichlorobenzene, and methylnaphthalene; cycloalkanes such as tricyclo (5,2,10) decane, cyclooctane, and cyclodecane. Is mentioned. Further, it may be performed in an inert gas atmosphere as necessary.
  • the inert gas examples include gases such as argon, carbon dioxide, dinitrogen monoxide and nitrogen, alkanes such as chlorofluorohydrocarbon, ethane and propane. And various types of alkene such as ethylene and propylene.
  • the decomposition temperature of the catalyst in order to improve the quality (coloring) of the obtained polycarbonate after completion of the above-described transesterification reaction, it is at least the decomposition temperature of the catalyst, preferably around 300 ° C., more preferably at least 240 ° C. It is preferable that the reaction product is heat-treated at 350 ° C. or lower, more preferably 260 ° C. or higher and 330 ° C. or lower, particularly preferably 270 ° C. or higher and 310 ° C. or lower, to thermally decompose and remove the catalyst.
  • the organophosphorus compound contained in the polycarbonate resin composition of the present invention is at least one selected from phosphite compounds and phosphate compounds.
  • the inventors of the present invention analyzed that the active species of the polymerization catalyst (organic basic catalyst) used in the production of the polycarbonate described above remained in the obtained polycarbonate in a very small amount, and determined the active species as described above. It has been found that by neutralizing and deactivating with an organic phosphorus compound, a polycarbonate resin composition having an extremely good color tone can be obtained.
  • TPTB tetraphenylphosphonium tetraphenylborate
  • BPA bisphenol A
  • TPTB tetraphenylphosphonium phenoxide
  • sodium hydroxide which is a strong base
  • sodium phenoxide whose BPA has been activated by sodium hydroxide cannot be neutralized with the phosphite compound and phosphate compound. Therefore, it is considered that it works in polycarbonate as weakly basic, and the effect of improving the color tone of the resin composition cannot be exhibited.
  • phosphite compound examples include triphenyl phosphite, trisnonylphenyl phosphite, tris (2,4-di-tert-butylphenyl) phosphite, tridecyl phosphite, trioctyl phosphite, trioctadecyl phosphite, Didecyl monophenyl phosphite, dioctyl monophenyl phosphite, diisopropyl monophenyl phosphite, monobutyl diphenyl phosphite, monodecyl diphenyl phosphite, monooctyl diphenyl phosphite, distearyl pentaerythritol diphosphite, bis (2,6 -Di-tert-butyl-4-methylphenyl) pentaerythritol diphosphite
  • tris (2,4-di-tert-butylphenyl) phosphite, bis (2,6-di-tert-butyl-4-methylphenyl) pentaerythritol diphosphite, and 2,2′-methylenebis (4,6-Di-tert-butylphenyl) octyl phosphite is preferred.
  • One phosphite compound may be used, or two or more phosphite compounds may be used in combination.
  • phosphate compound examples include tributyl phosphate, trimethyl phosphate, trioctyl phosphate, octyl diphenyl phosphate, cresyl diphenyl phosphate, tricresyl phosphate, tri (2-ethylhexyl) phosphate, diisopropylphenyl phosphate, trixylenyl phosphate, triphenyl Phosphate, trichlorophenyl phosphate, triethyl phosphate, diphenyl cresyl phosphate, diphenyl monoorthoxenyl phosphate, tributoxyethyl phosphate, dibutyl phosphate, dioctyl phosphate, diisopropyl phosphate tris (isopropylphenyl) phosphate, trinaphthyl phosphate, bisphenol A bisphosphate Bisphenol A bis (diphenyl phosphate), hydroquino
  • triphenyl phosphate bisphenol A bis (diphenyl phosphate) and 1,3-phenylene-tetrakis (2,6-dimethylphenyl) phosphate are preferred.
  • a phosphate compound may be used alone or in combination of two or more.
  • the content of at least one organic phosphorus compound selected from a phosphite compound and a phosphate compound is 0.001 to 0.5 parts by mass with respect to 100 parts by mass of the polycarbonate, preferably Is 0.003 to 0.2 parts by mass, and more preferably 0.003 to 0.1 parts by mass.
  • the content is less than 0.001 part by mass, the effect of improving the color tone of the resin composition cannot be expressed, and when it exceeds 0.5 part by mass, the function deterioration such as inferior moisture resistance of the resin composition occurs.
  • a phosphite compound and a phosphate compound may each be used independently and may be used together, the said content at the time of using together represents the total amount of a phosphite compound and a phosphate compound.
  • the organophosphorus compound may be introduced into the reactor at the end of the transesterification reaction in the production of polycarbonate, or may be introduced into a twin screw extruder or the like during granulation of the polycarbonate and kneaded.
  • the polycarbonate resin composition of the present invention is blended with known additives such as plasticizers, pigments, lubricants, mold release agents, stabilizers, inorganic fillers, etc., in addition to the polycarbonate and the organic phosphorus compound. These can be blended and melt kneaded to obtain the polycarbonate resin composition of the present invention.
  • a method that is usually used for example, a method that uses a ribbon blender, a Henschel mixer, a Banbury mixer, a drum tumbler, a single screw extruder, a twin screw extruder, a kneader, a multi screw extruder, etc. Can be performed.
  • the heating temperature for melt kneading is usually selected in the range of 220 to 260 ° C.
  • the polycarbonate resin composition of the present invention uses the polymerization catalyst (organic basic catalyst) described above during the production of the polycarbonate, unlike the case of using an inorganic base catalyst, sodium and cesium that cause coloring of the resin composition. And the content of potassium can be less than 0.1 ppm by mass, respectively. Therefore, the polycarbonate resin composition of the present invention has excellent heat resistance and extremely good color tone.
  • the color tone was evaluated by the difference in absorbance before and after the thermal stability test ( ⁇ abs 420 ).
  • Mv viscosity average molecular weight
  • the temperature was raised to 270 ° C.
  • the degree of vacuum was raised to 2 mmHg
  • the reaction was performed for 30 minutes
  • the degree of vacuum was raised to 0.5 mmHg and the reaction was further continued for 30 minutes.
  • the polycarbonate was sampled and Mv (viscosity average molecular weight) was measured.
  • the organophosphorus compound in the amount shown in the table was made into a toluene solution, added to the reaction system, kneaded for 5 minutes to obtain a polycarbonate resin composition, and pelletized with an extruder.
  • Table 1 shows the metal amount, color tone, and Mv measured by the above method.
  • Example 1 It implemented like Example 1 except not adding an organophosphorus compound.
  • Table 1 shows the metal amount, color tone, and Mv measured by the above method.
  • the organophosphorus compound in the amount shown in the table was made into a toluene solution, added to the reaction system, kneaded for 5 minutes to obtain a polycarbonate resin composition, and pelletized with an extruder.
  • Table 1 shows the metal amount, color tone, and Mv measured by the above method.
  • the polycarbonate resin composition of the present invention is excellent in heat resistance and has a very good color tone, and thus is useful in the electrical / electronic field, the automotive field, the optical part field, and other wide industrial fields.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The present invention relates to a polycarbonate resin composition which contains 0.001-0.5 part by mass of at least one organic phosphorus compound that is selected from among phosphite compounds and phosphate compounds per 100 parts by mass of a polycarbonate that is obtained by a transesterification reaction which uses, as a polymerization catalyst, a combination of (a) a nitrogen-containing organic basic compound and (b) a quaternary phosphonium salt containing an aryl group.

Description

ポリカーボネート樹脂組成物Polycarbonate resin composition
 本発明は、耐熱性に優れ色調が良好なポリカーボネート樹脂組成物に関する。 The present invention relates to a polycarbonate resin composition having excellent heat resistance and good color tone.
 ポリカーボネートは、透明性、耐熱性あるいは耐衝撃性に優れたエンジニアリングプラスチックであって、現在、電気・電子分野、自動車分野、光学部品分野、その他工業分野で広く使用されている。一般に、ポリカーボネートの製造方法としては、芳香族ジヒドロキシ化合物とホスゲンとを直接反応させる方法(界面重縮合法)、あるいは芳香族ジヒドロキシ化合物と炭酸ジエステルとを溶融状態でエステル交換反応させる方法(溶融重合法)が知られている。このポリカーボネートの製造方法において、界面重縮合法は、有毒なホスゲンを用いなければならないこと、副生する塩化水素や塩化ナトリウムなどの含塩素化合物によって製造装置が腐蝕すること、樹脂中に混入する塩化ナトリウムなどポリマーの物性に悪影響を及ぼす不純物の分離が困難なことなどの諸問題がある。一方、エステル交換反応法(溶融重合法)は、界面重縮合法に比べて、ポリカーボネートを安価に製造しうるという利点を有するものの、通常280~310℃という高温下で長時間に反応させるために、得られるポリカーボネートが着色するのを免れないという大きな欠点がある。 Polycarbonate is an engineering plastic with excellent transparency, heat resistance, and impact resistance, and is currently widely used in the electrical / electronic field, automobile field, optical part field, and other industrial fields. In general, polycarbonate is produced by a method in which an aromatic dihydroxy compound and phosgene are directly reacted (interfacial polycondensation method), or a method in which an aromatic dihydroxy compound and a carbonic acid diester are transesterified in a molten state (melt polymerization method). )It has been known. In this polycarbonate production method, the interfacial polycondensation method requires the use of toxic phosgene, corrosion of production equipment by by-produced chlorine-containing compounds such as hydrogen chloride and sodium chloride, and chlorination mixed in the resin. There are various problems such as difficulty in separating impurities such as sodium which adversely affect the physical properties of the polymer. On the other hand, the transesterification method (melt polymerization method) has the advantage that polycarbonate can be produced at a lower cost than the interfacial polycondensation method, but is usually used for a long time reaction at a high temperature of 280 to 310 ° C. , There is a great drawback that the polycarbonate obtained is inevitably colored.
 ポリカーボネートの着色問題を解決する方法として、アルカリ金属やアルカリ土類金属の無機塩基触媒を、芳香族スルホン酸化合物である奪活剤で中和処理することが提案されている(例えば、特許文献1参照)。また、アルカリ金属やアルカリ土類金属の無機塩基触媒を、スルホン酸化合物などの奪活剤にて中和処理した上に、ホスファイト系リン系酸化防止剤を添加する方法が提案されている(例えば、特許文献2参照)。また、エステル交換触媒に有機系触媒として4級アンモニウム塩と4級ホスホニウム塩を使用し、奪活剤を必要とせずに、反応最終段階で該触媒を熱分解により除去する方法が提案されている(例えば、特許文献3参照)。 As a method for solving the coloring problem of polycarbonate, it has been proposed to neutralize an inorganic base catalyst of alkali metal or alkaline earth metal with a quenching agent which is an aromatic sulfonic acid compound (for example, Patent Document 1). reference). Further, a method has been proposed in which an inorganic base catalyst of an alkali metal or alkaline earth metal is neutralized with a deactivating agent such as a sulfonic acid compound, and then a phosphite phosphorus antioxidant is added ( For example, see Patent Document 2). In addition, a method has been proposed in which a quaternary ammonium salt and a quaternary phosphonium salt are used as an organic catalyst for the transesterification catalyst, and the catalyst is removed by thermal decomposition at the final stage of the reaction without the need for a quencher. (For example, refer to Patent Document 3).
特開平10-25409号公報Japanese Patent Laid-Open No. 10-25409 特開2002-241487号公報JP 2002-241487 A 特開平10-45896号公報Japanese Patent Laid-Open No. 10-45896
 特許文献1及び2で提案されている無機塩基触媒を奪活剤にて中和処理する方法では、着色を防止する効果は満足できるものではなく、一方特許文献3で提案されている有機塩触媒を用いる方法では、触媒を熱分解により除去できるので奪活剤不要である上に、品質に優れたポリカーボネートとすることができるが、さらなるポリカーボネートの色調の向上が望まれている。 In the method of neutralizing the inorganic base catalyst proposed in Patent Documents 1 and 2 with a deactivating agent, the effect of preventing coloration is not satisfactory, while the organic salt catalyst proposed in Patent Document 3 In the method using, since the catalyst can be removed by thermal decomposition, a deactivator is unnecessary and a polycarbonate having excellent quality can be obtained, but further improvement in the color tone of the polycarbonate is desired.
 本発明は、エステル交換反応により製造されるポリカーボネートを用いた、耐熱性に優れ色調が良好であるポリカーボネート樹脂組成物を提供することを目的とする。 An object of the present invention is to provide a polycarbonate resin composition having excellent heat resistance and good color tone using a polycarbonate produced by a transesterification reaction.
 本発明者らは、鋭意研究を重ねた結果、特定の重合触媒を用いたエステル交換反応により得られるポリカーボネートに、特定の有機リン化合物を混合することにより、上記課題を解決し得ることを見出した。
 すなわち、本発明は、下記1~17に関する。
As a result of intensive studies, the present inventors have found that the above problem can be solved by mixing a specific organophosphorus compound with a polycarbonate obtained by a transesterification reaction using a specific polymerization catalyst. .
That is, the present invention relates to the following 1 to 17.
1. 重合触媒として(a)含窒素有機塩基性化合物と(b)アリール基を含む4級ホスホニウム塩との組み合わせを用いたエステル交換反応により得られるポリカーボネート100質量部に対して、ホスファイト化合物及びホスフェート化合物から選ばれる少なくとも1種の有機リン化合物を0.001~0.5質量部含むポリカーボネート樹脂組成物。
2. ナトリウム、セシウム及びカリウムの含有量が元素として、それぞれ0.1質量ppm未満である上記1に記載のポリカーボネート樹脂組成物。
3. (a)含窒素有機塩基性化合物が、4級アンモニウム塩である上記1又は2に記載のポリカーボネート樹脂組成物。
4. (a)含窒素有機塩基性化合物が、下記一般式(I)で表される化合物である上記1又は2記載のポリカーボネート樹脂組成物。
  (NR1 4+(X1  ・・・  (I)
〔式中、R1はアルキル基、アリール基又はアルキルアリール基を示し、4つのR1はたがいに同一でも異なっていてもよく、また2つのR1が結合して環構造を形成していてもよい。X1はハロゲン原子、水酸基、アルキルオキシ基、アリールオキシ基、アルキルカルボニルオキシ基、アリールカルボニルオキシ基、HCO3又はBR4(Rは水素原子又はアルキル基又はアリール基を示し、4つのRはたがいに同一でも異なっていてもよい)を示す。〕
5. (b)アリール基を含む4級ホスホニウム塩が、下記一般式(II)で表される化合物である上記1~4のいずれかに記載のポリカーボネート樹脂組成物。
  (PR2 4+(X2  ・・・  (II)
〔式中、R2はアルキル基、アリール基又はアルキルアリール基を示すが、4つのR2のうち少なくとも一つはアリール基である。また4つのR2はたがいに同一でも異なっていてもよく、2つのR2が結合して環構造を形成していてもよい。X2はハロゲン原子、水酸基、アルキルオキシ基、アリールオキシ基、アルキルカルボニルオキシ基、アリールカルボニルオキシ基、HCO3又はBR4(Rは水素原子又はアルキル基又はアリール基を示し、4つのRはたがいに同一でも異なっていてもよい)を示す。〕
6. エステル交換反応の原料が、(A)ジヒドロキシ化合物及び(B)炭酸ジエステルである上記1~5のいずれかに記載のポリカーボネート樹脂組成物。
7. (A)ジヒドロキシ化合物が、2,2-ビス(4-ヒドロキシフェニル)プロパンである上記6に記載のポリカーボネート樹脂組成物。
8. (B)炭酸ジエステルが、ジフェニルカーボネートである上記6又は7に記載のポリカーボネート樹脂組成物。
9. (a)含窒素有機塩基性化合物が、テトラメチルアンモニウムヒドロキシドであり、(b)アリール基を含む4級ホスホニウム塩が、テトラフェニルホスホニウムテトラフェニルボレートである上記1~8のいずれかに記載のポリカーボネート樹脂組成物。
10. 有機リン化合物が、トリス(2,4-ジ-tert-ブチルフェニル)ホスファイト、ビス(2,6-ジ-tert-ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイト、2,2’-メチレンビス(4,6-ジ-tert-ブチルフェニル)オクチル-ホスファイト、トリフェニルホスフェート、ビスフェノールAビス(ジフェニルホスフェート)、及び1,3-フェニレン-テトラキス(2,6-ジメチルフェニル)リン酸エステルから選ばれる少なくとも1種である、上記1~9のいずれかに記載のポリカーボネート樹脂組成物。
11. 重合触媒として(a)含窒素有機塩基性化合物と(b)アリール基を含む4級ホスホニウム塩との組み合わせを用い、エステル交換反応によりポリカーボネートを得、得られたポリカーボネート100質量部に対して、ホスファイト化合物及びホスフェート化合物から選ばれる少なくとも1種の有機リン化合物を0.001~0.5質量部混合する、ポリカーボネート樹脂組成物の製造方法。
12. エステル交換反応終了後、重合触媒の分解温度以上で反応生成物を熱処理してポリカーボネートを得る、上記11に記載のポリカーボネート樹脂組成物の製造方法。
13. (a)含窒素有機塩基性化合物が、4級アンモニウム塩である上記11又は12に記載のポリカーボネート樹脂組成物の製造方法。
14. (a)含窒素有機塩基性化合物が、下記一般式(I)で表される化合物である上記11又は12記載のポリカーボネート樹脂組成物の製造方法。
  (NR1 4+(X1  ・・・  (I)
〔式中、R1はアルキル基、アリール基又はアルキルアリール基を示し、4つのR1はたがいに同一でも異なっていてもよく、また2つのR1が結合して環構造を形成していてもよい。X1はハロゲン原子、水酸基、アルキルオキシ基、アリールオキシ基、アルキルカルボニルオキシ基、アリールカルボニルオキシ基、HCO3又はBR4(Rは水素原子又はアルキル基又はアリール基を示し、4つのRはたがいに同一でも異なっていてもよい)を示す。〕
15. (b)アリール基を含む4級ホスホニウム塩が、下記一般式(II)で表される化合物である上記11~14のいずれかに記載のポリカーボネート樹脂組成物の製造方法。
  (PR2 4+(X2  ・・・  (II)
〔式中、R2はアルキル基、アリール基又はアルキルアリール基を示すが、4つのR2のうち少なくとも一つはアリール基である。また4つのR2はたがいに同一でも異なっていてもよく、2つのR2が結合して環構造を形成していてもよい。X2はハロゲン原子、水酸基、アルキルオキシ基、アリールオキシ基、アルキルカルボニルオキシ基、アリールカルボニルオキシ基、HCO3又はBR4(Rは水素原子又はアルキル基又はアリール基を示し、4つのRはたがいに同一でも異なっていてもよい)を示す。〕
16. 反応生成物を熱処理する温度が、240℃以上350℃以下である上記12~15のいずれかに記載のポリカーボネート樹脂組成物の製造方法。
17. 上記11~16のいずれかに記載のポリカーボネート樹脂組成物の製造方法により製造されたポリカーボネート樹脂組成物。
1. Phosphite compound and phosphate compound with respect to 100 parts by mass of a polycarbonate obtained by a transesterification reaction using a combination of (a) a nitrogen-containing organic basic compound and (b) a quaternary phosphonium salt containing an aryl group as a polymerization catalyst A polycarbonate resin composition containing 0.001 to 0.5 parts by mass of at least one organic phosphorus compound selected from the group consisting of:
2. 2. The polycarbonate resin composition according to 1 above, wherein the contents of sodium, cesium, and potassium are each less than 0.1 ppm by mass as elements.
3. (A) The polycarbonate resin composition according to 1 or 2 above, wherein the nitrogen-containing organic basic compound is a quaternary ammonium salt.
4). (A) The polycarbonate resin composition according to the above 1 or 2, wherein the nitrogen-containing organic basic compound is a compound represented by the following general formula (I).
(NR 1 4 ) + (X 1 ) (I)
Wherein, R 1 represents an alkyl group, an aryl group or an alkylaryl group, four R 1 may be the same with or different from each other, also form a two R 1 is bonded to the ring structure Also good. X 1 represents a halogen atom, a hydroxyl group, an alkyloxy group, an aryloxy group, an alkylcarbonyloxy group, an arylcarbonyloxy group, HCO 3 or BR 4 (R represents a hydrogen atom, an alkyl group or an aryl group, and four Rs are May be the same or different. ]
5. (B) The polycarbonate resin composition according to any one of the above 1 to 4, wherein the quaternary phosphonium salt containing an aryl group is a compound represented by the following general formula (II).
(PR 2 4 ) + (X 2 ) (II)
[Wherein R 2 represents an alkyl group, an aryl group or an alkylaryl group, but at least one of the four R 2 is an aryl group. Further, the four R 2 may be the same or different, and two R 2 may be bonded to form a ring structure. X 2 represents a halogen atom, a hydroxyl group, an alkyloxy group, an aryloxy group, an alkylcarbonyloxy group, an arylcarbonyloxy group, HCO 3 or BR 4 (R represents a hydrogen atom, an alkyl group or an aryl group, and four Rs are May be the same or different. ]
6). 6. The polycarbonate resin composition according to any one of 1 to 5 above, wherein the raw materials for the transesterification reaction are (A) a dihydroxy compound and (B) a carbonic acid diester.
7). (A) The polycarbonate resin composition as described in 6 above, wherein the dihydroxy compound is 2,2-bis (4-hydroxyphenyl) propane.
8). (B) The polycarbonate resin composition according to 6 or 7, wherein the carbonic acid diester is diphenyl carbonate.
9. (A) The nitrogen-containing organic basic compound is tetramethylammonium hydroxide, and (b) the quaternary phosphonium salt containing an aryl group is tetraphenylphosphonium tetraphenylborate. Polycarbonate resin composition.
10. The organophosphorus compound is tris (2,4-di-tert-butylphenyl) phosphite, bis (2,6-di-tert-butyl-4-methylphenyl) pentaerythritol diphosphite, 2,2′-methylenebis. Selected from (4,6-di-tert-butylphenyl) octyl phosphite, triphenyl phosphate, bisphenol A bis (diphenyl phosphate), and 1,3-phenylene-tetrakis (2,6-dimethylphenyl) phosphate The polycarbonate resin composition according to any one of the above 1 to 9, which is at least one selected from the group consisting of:
11. Using a combination of (a) a nitrogen-containing organic basic compound and (b) a quaternary phosphonium salt containing an aryl group as a polymerization catalyst, a polycarbonate was obtained by a transesterification reaction. A method for producing a polycarbonate resin composition, comprising mixing 0.001 to 0.5 parts by mass of at least one organic phosphorus compound selected from a phyto compound and a phosphate compound.
12 12. The method for producing a polycarbonate resin composition according to 11 above, wherein after completion of the transesterification reaction, the reaction product is heat-treated at a temperature equal to or higher than the decomposition temperature of the polymerization catalyst to obtain a polycarbonate.
13. (A) The method for producing a polycarbonate resin composition according to the above 11 or 12, wherein the nitrogen-containing organic basic compound is a quaternary ammonium salt.
14 (A) The method for producing a polycarbonate resin composition according to the above 11 or 12, wherein the nitrogen-containing organic basic compound is a compound represented by the following general formula (I).
(NR 1 4 ) + (X 1 ) (I)
Wherein, R 1 represents an alkyl group, an aryl group or an alkylaryl group, four R 1 may be the same with or different from each other, also form a two R 1 is bonded to the ring structure Also good. X 1 represents a halogen atom, a hydroxyl group, an alkyloxy group, an aryloxy group, an alkylcarbonyloxy group, an arylcarbonyloxy group, HCO 3 or BR 4 (R represents a hydrogen atom, an alkyl group or an aryl group, and four Rs are May be the same or different. ]
15. (B) The method for producing a polycarbonate resin composition according to any one of the above 11 to 14, wherein the quaternary phosphonium salt containing an aryl group is a compound represented by the following general formula (II).
(PR 2 4 ) + (X 2 ) (II)
[Wherein R 2 represents an alkyl group, an aryl group or an alkylaryl group, but at least one of the four R 2 is an aryl group. Further, the four R 2 may be the same or different, and two R 2 may be bonded to form a ring structure. X 2 represents a halogen atom, a hydroxyl group, an alkyloxy group, an aryloxy group, an alkylcarbonyloxy group, an arylcarbonyloxy group, HCO 3 or BR 4 (R represents a hydrogen atom, an alkyl group or an aryl group, and four Rs are May be the same or different. ]
16. 16. The method for producing a polycarbonate resin composition according to any one of 12 to 15 above, wherein the temperature at which the reaction product is heat-treated is 240 ° C. or higher and 350 ° C. or lower.
17. 17. A polycarbonate resin composition produced by the method for producing a polycarbonate resin composition according to any one of 11 to 16 above.
 本発明によれば、耐熱性に優れ極めて色調の良好なポリカーボネート樹脂組成物を提供することができる。 According to the present invention, a polycarbonate resin composition having excellent heat resistance and excellent color tone can be provided.
 本発明のポリカーボネート樹脂組成物は、重合触媒として(a)含窒素有機塩基性化合物と(b)アリール基を含む4級ホスホニウム塩との組み合わせを用い、エステル交換反応によりポリカーボネートを得、得られたポリカーボネート100質量部に対して、ホスファイト化合物及びホスフェート化合物から選ばれる少なくとも1種の有機リン化合物を0.001~0.5質量部混合する製造方法により得られる。 The polycarbonate resin composition of the present invention was obtained by using a combination of (a) a nitrogen-containing organic basic compound and (b) a quaternary phosphonium salt containing an aryl group as a polymerization catalyst to obtain a polycarbonate by a transesterification reaction. It is obtained by a production method in which 0.001 to 0.5 parts by mass of at least one organic phosphorus compound selected from phosphite compounds and phosphate compounds is mixed with 100 parts by mass of polycarbonate.
[ポリカーボネート]
 本発明のポリカーボネート樹脂組成物に含まれるポリカーボネートは、特定の重合触媒を用いたエステル交換反応により得られるものであり、このエステル交換法において用いられる原料については、特に制限はなく、通常のエステル交換法による製造に供される各種のものが用いられ、例えば(A)ジヒドロキシ化合物及び(B)炭酸ジエステルが好ましく用いられる。
[Polycarbonate]
The polycarbonate contained in the polycarbonate resin composition of the present invention is obtained by a transesterification reaction using a specific polymerization catalyst, and there are no particular restrictions on the raw materials used in this transesterification method. Various products used for production by the method are used, and for example, (A) dihydroxy compounds and (B) carbonic acid diesters are preferably used.
 (A)ジヒドロキシ化合物は、例えば、芳香族ジヒドロキシ化合物、脂肪族ジヒドロキシ化合物が挙げられ、これらから選択される少なくとも1種の化合物である。
 この(A)成分の一つとして用いられる芳香族ジヒドロキシ化合物は、下記一般式(1)で表される化合物を挙げることができる。
Examples of the (A) dihydroxy compound include an aromatic dihydroxy compound and an aliphatic dihydroxy compound, and are at least one compound selected from these.
Examples of the aromatic dihydroxy compound used as one of the components (A) include compounds represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 上記一般式(1)において、R4及びR5は、それぞれフッ素、塩素、臭素、ヨウ素のハロゲン原子又は炭素数1~20のアルキル基、例えばメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基,tert-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘブチル基、オクチル基などを示す。R4及びR5はたがいに同一であっても異なっていてもよい。またR4が複数ある場合は複数のR4は同一でも異なっていてもよく、R5が複数ある場合は複数のR5は同一でも異なっていてもよい。m及びnは、それぞれ0~4の整数である。そして、Zは単結合、炭素数1~20のアルキレン基、炭素数2~20のアルキリデン基、炭素数5~20のシクロアルキレン基、炭素数5~20のシクロアルキリデン基、又は-S-、-SO-、-SO2-、-O-、-CO-結合若しくは下記式(2)、(2’)で示される結合を示す。 In the general formula (1), R 4 and R 5 are each a halogen atom of fluorine, chlorine, bromine, iodine or an alkyl group having 1 to 20 carbon atoms, such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group. N-butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, hexyl group, cyclohexyl group, hebutyl group, octyl group and the like. R 4 and R 5 may be the same or different. The plurality of R 4 if R 4 is more may be the same or different, a plurality of R 5 if R 5 there are a plurality may be the same or different. m and n are each an integer of 0 to 4. Z is a single bond, an alkylene group having 1 to 20 carbon atoms, an alkylidene group having 2 to 20 carbon atoms, a cycloalkylene group having 5 to 20 carbon atoms, a cycloalkylidene group having 5 to 20 carbon atoms, or —S—, A —SO—, —SO 2 —, —O—, —CO— bond or a bond represented by the following formulas (2) and (2 ′) is shown.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 炭素数1~20のアルキレン基、炭素数2~20のアルキリデン基としては、例えばメチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基、エチリデン基、イソプロピリデン基などが挙げられ、炭素数5~20のシクロアルキレン基、炭素数5~20のシクロアルキリデン基としては、例えばシクロペンチレン基、シクロヘキシレン基、シクロペンチリデン基、シクロヘキシリデン基などが挙げられる。 Examples of the alkylene group having 1 to 20 carbon atoms and the alkylidene group having 2 to 20 carbon atoms include a methylene group, an ethylene group, a propylene group, a butylene group, a pentylene group, a hexylene group, an ethylidene group, and an isopropylidene group. Examples of the cycloalkylene group having 5 to 20 carbon atoms and the cycloalkylidene group having 5 to 20 carbon atoms include a cyclopentylene group, a cyclohexylene group, a cyclopentylidene group, and a cyclohexylidene group.
 上記一般式(1)で表される芳香族ジヒドロキシ化合物としては、例えばビス(4-ヒドロキシフェニル)メタン;ビス(3-メチル-4-ヒドロキシフェニル)メタン;ビス(3-クロロ-4-ヒドロキシフェニル)メタン;ビス(3,5-ジブロモ-4-ヒドロキシフェニル)メタン;1,1-ビス(4-ヒドロキシフェニル)エタン;1,1-ビス(2-t-ブチル-4-ヒドロキシ-3-メチルフェニル)エタン;1,1-ビス(2-t-ブチル-4-ヒドロキシ-3-メチルフェニル)エタン;1-フェニル-1,1-ビス(3-フルオロ-4-ヒドロキシ-3-メチルフェニル)エタン;2,2-ビス(4-ヒドロキシフェニル)プロパン(通称ビスフェノールA);2,2-ビス(3-メチル-4-ヒドロキシフェニル)プロパン;2,2-ビス(2-メチル-4-ヒドロキシフェニル)プロパン;2,2-ビス(3,5-ジメチル-4-ヒドロキシフェニル)プロパン;1,1-ビス(2-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロパン;2,2-ビス(3-クロロ-4-ヒドロキシフェニル)プロパン;2,2-ビス(3-フルオロ-4-ヒドロキシフェニル)プロパン;2,2-ビス(3-ブロモ-4-ヒドロキシフェニル)プロパン;2,2-ビス(3,5-ジフルオロ-4-ヒドロキシフェニル)プロパン;2,2-ビス(3,5-ジクロロ-4-ヒドロキシフェニル)プロパン;2,2-ビス(3,5-ジブロモ-4-ヒドロキシフェニル)プロパン;2,2-ビス(4-ヒドロキシフェニル)ブタン;2,2-ビス(4-ヒドロキシフェニル)オクタン;2,2-ビス(4-ヒドロキシフェニル)フェニルメタン;2,2-ビス(4-ヒドロキシ-1-メチルフェニル)プロパン;1,1-ビス(4-ヒドロキシ-t-ブチルフェニル)プロパン;2,2-ビス(4-ヒドロキシ-3-ブロモフェニル)プロパン;2,2-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)プロパン;2,2-ビス(4-ヒドロキシ-3-クロロフェニル)プロパン;2,2-ビス(4-ヒドロキシ-3,5-ジクロロフェニル)プロパン;2,2-ビス(4-ヒドロキシ-3,5-ジブロモフェニル)プロパン;2,2-ビス(3-ブロモ-4-ヒドロキシ-5-クロロフェニル)プロパン;2,2-ビス(3-フェニル-4-ヒドロキシフェニル)プロパン;2,2-ビス(4-ヒドロキシフェニル)ブタン;2,2-ビス(3-メチル-4-ヒドロキシフェニル)ブタン;1,1-ビス(2-ブチル-4-ヒドロキシ-5-メチルフェニル)ブタン;1,1-ビス(2-t-ブチル-4-ヒドロキシ-5-メチルフェニル)ブタン;1,1-ビス(2-t-ブチル-4-ヒドロキシ-5-メチルフェニル)イソブタン;1,1-ビス(2-t-アミル-4-ヒドロキシ-5-メチルフェニル)ブタン;2,2-ビス(3,5-ジクロロ-4-ヒドロキシフェニル)ブタン;2,2-ビス(3,5-ジブロモ-4-ヒドロキシフェニル)ブタン;4,4-ビス(4-ヒドロキシフェニル)ヘプタン;1,1-ビス(2-t-ブチル-4-ヒドロキシ-5-メチルフェニル)ヘプタン;2,2-ビス(4-ヒドロキシフェニル)オクタン;1,1-(4-ヒドロキシフェニル)エタンなどのビス(ヒドロキシアリール)アルカン類;1,1-ビス(4-ヒドロキシフェニル)シクロペンタン;1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン;1,1-ビス(3-メチル-4-ヒドロキシフェニル)シクロヘキサン;1,1-ビス(3-シクロヘキシル-4-ヒドロキシフェニル)シクロヘキサン;1,1-ビス(3-フェニル-4-ヒドロキシフェニル)シクロヘキサン;1,1-ビス(4-ヒドロキシフェニル)-3,5,5-トリメチルシクロヘキサンなどのビス(ヒドロキシアリール)シクロアルカン類;ビス(4-ヒドロキシフェニル)エーテル;ビス(4,-ヒドロキシ-3-メチルフェニル)エーテルなどのビス(ヒドロキシアリール)エーテル類;ビス(4-ヒドロキシフェニル)スルフィド;ビス(3-メチル-4-ヒドロキシフェニル)スルフィドなどのビス(ヒドロキシアリール)スルフィド類;ビス(4-ヒドロキシフェニル)スルホキシド;ビス(3-メチル-4-ヒドロキシフェニル)スルホキシド;ビス(3-フェニル-4-ヒドロキシフェニル)スルホキシドなどのビス(ヒドロキシアリール)スルホキシド類;ビス(4ヒドロキシフェニル)スルホン;ビス(3-メチル-4-ヒドロキシフェニル)スルホン;ビス(3-フェニル-4-ヒドロキシフェニル)スルホンなどのビス(ヒドロキシアリール)スルホン類、4,4’-ジヒドロキシビフェニル;4,4’-ジヒドロキシ-2、2’-ジメチルビフェニル;4,4’-ジヒドロキシ-3、3’-ジメチルビフェニル;4,4’-ジヒドロキシ-3、3’-ジシクロヘキシルビフェニル;3、3’-ジフルオロ-4,4’-ジヒドロキシビフェニルなどのジヒドロキシビフェニル類などが挙げられる。 Examples of the aromatic dihydroxy compound represented by the general formula (1) include bis (4-hydroxyphenyl) methane; bis (3-methyl-4-hydroxyphenyl) methane; bis (3-chloro-4-hydroxyphenyl). ) Methane; bis (3,5-dibromo-4-hydroxyphenyl) methane; 1,1-bis (4-hydroxyphenyl) ethane; 1,1-bis (2-tert-butyl-4-hydroxy-3-methyl) Phenyl) ethane; 1,1-bis (2-tert-butyl-4-hydroxy-3-methylphenyl) ethane; 1-phenyl-1,1-bis (3-fluoro-4-hydroxy-3-methylphenyl) Ethane; 2,2-bis (4-hydroxyphenyl) propane (commonly called bisphenol A); 2,2-bis (3-methyl-4-hydroxyphenyl) propyl 2,2-bis (2-methyl-4-hydroxyphenyl) propane; 2,2-bis (3,5-dimethyl-4-hydroxyphenyl) propane; 1,1-bis (2-t-butyl- 4-hydroxy-5-methylphenyl) propane; 2,2-bis (3-chloro-4-hydroxyphenyl) propane; 2,2-bis (3-fluoro-4-hydroxyphenyl) propane; 2,2-bis (3-bromo-4-hydroxyphenyl) propane; 2,2-bis (3,5-difluoro-4-hydroxyphenyl) propane; 2,2-bis (3,5-dichloro-4-hydroxyphenyl) propane; 2,2-bis (3,5-dibromo-4-hydroxyphenyl) propane; 2,2-bis (4-hydroxyphenyl) butane; 2,2-bis (4-hydroxy) Phenyl) octane; 2,2-bis (4-hydroxyphenyl) phenylmethane; 2,2-bis (4-hydroxy-1-methylphenyl) propane; 1,1-bis (4-hydroxy-t-butylphenyl) 2,2-bis (4-hydroxy-3-bromophenyl) propane; 2,2-bis (4-hydroxy-3,5-dimethylphenyl) propane; 2,2-bis (4-hydroxy-3-) 2,2-bis (4-hydroxy-3,5-dichlorophenyl) propane; 2,2-bis (4-hydroxy-3,5-dibromophenyl) propane; 2,2-bis (3-bromo) -4-hydroxy-5-chlorophenyl) propane; 2,2-bis (3-phenyl-4-hydroxyphenyl) propane; 2,2-bis (4-hydride) Loxyphenyl) butane; 2,2-bis (3-methyl-4-hydroxyphenyl) butane; 1,1-bis (2-butyl-4-hydroxy-5-methylphenyl) butane; 1,1-bis (2 -T-butyl-4-hydroxy-5-methylphenyl) butane; 1,1-bis (2-t-butyl-4-hydroxy-5-methylphenyl) isobutane; 1,1-bis (2-t-amyl) -4-hydroxy-5-methylphenyl) butane; 2,2-bis (3,5-dichloro-4-hydroxyphenyl) butane; 2,2-bis (3,5-dibromo-4-hydroxyphenyl) butane; 4,4-bis (4-hydroxyphenyl) heptane; 1,1-bis (2-tert-butyl-4-hydroxy-5-methylphenyl) heptane; 2,2-bis (4-hydroxyphenyl) Octane; bis (hydroxyaryl) alkanes such as 1,1- (4-hydroxyphenyl) ethane; 1,1-bis (4-hydroxyphenyl) cyclopentane; 1,1-bis (4-hydroxyphenyl) cyclohexane; 1,1-bis (3-methyl-4-hydroxyphenyl) cyclohexane; 1,1-bis (3-cyclohexyl-4-hydroxyphenyl) cyclohexane; 1,1-bis (3-phenyl-4-hydroxyphenyl) cyclohexane Bis (hydroxyaryl) cycloalkanes such as 1,1-bis (4-hydroxyphenyl) -3,5,5-trimethylcyclohexane; bis (4-hydroxyphenyl) ether; bis (4, -hydroxy-3- Bis (hydroxyaryl) A such as methylphenyl) ether Bis (4-hydroxyphenyl) sulfide; bis (hydroxyaryl) sulfides such as bis (3-methyl-4-hydroxyphenyl) sulfide; bis (4-hydroxyphenyl) sulfoxide; bis (3-methyl-4 -Hydroxyphenyl) sulfoxide; bis (hydroxyaryl) sulfoxides such as bis (3-phenyl-4-hydroxyphenyl) sulfoxide; bis (4hydroxyphenyl) sulfone; bis (3-methyl-4-hydroxyphenyl) sulfone; Bis (hydroxyaryl) sulfones such as (3-phenyl-4-hydroxyphenyl) sulfone, 4,4′-dihydroxybiphenyl; 4,4′-dihydroxy-2,2′-dimethylbiphenyl; 4,4′-dihydroxy -3,3'-dimethyl Biphenyl; 4,4'-dihydroxy-3, 3'-dicyclohexylbiphenyl; and dihydroxybiphenyls such as 3,3'-difluoro-4,4'-dihydroxybiphenyl.
 上記一般式(1)以外の芳香族ジヒドロキシ化合物としては、ジヒドロキシベンゼン類、ハロゲン及びアルキル置換ジヒドロキシベンゼン類などがある。
 例えば、レゾルシン、3-メチルレゾルシン、3-エチルレゾルシン、3-プロピルレゾルシン、3-ブチルレゾルシン、3-t-ブチルレゾルシン、3-フェニルレゾルシン、3-クミルレゾルシン;2,3,4,6-テトラフルオロレゾルシン;2,3,4,6-テトラブロモレゾルシン;カテコール、ハイドロキノン、3-メチルハイドロキノン、3-エチルハイドロキノン、3-プロピルハイドロキノン、3-ブチルハイドロキノン、3-t-ブチルハイドロキノン、3-フェニルハイドロキノン、3-クミルハイドロキノン;2,5-ジクロロハイドロキノン;2,3,5,6-テトラメチルハイドロキノン;2,3,4,6-テトラ-t-ブチルハイドロキノン;2,3,5,6-テトラフルオロハイドロキノン;2,3,5,6-テトラブロモハイドロキノン、及び二価アルコール又はフェノールのエトキシ化又はプロポキシ化生成物、例えばビス(オキシエチル)ビスフェノールA、ビス(オキシエチル)テトラクロロビスフェノールA又はビス(オキシエチル)テトラクロロヒドロキノンなどが挙げられる。
Examples of aromatic dihydroxy compounds other than the general formula (1) include dihydroxybenzenes, halogen and alkyl-substituted dihydroxybenzenes.
For example, resorcin, 3-methyl resorcin, 3-ethyl resorcin, 3-propyl resorcin, 3-butyl resorcin, 3-t-butyl resorcin, 3-phenyl resorcin, 3-cumyl resorcin; 2,3,4,6- Tetrafluororesorcin; 2,3,4,6-tetrabromoresorcin; catechol, hydroquinone, 3-methylhydroquinone, 3-ethylhydroquinone, 3-propylhydroquinone, 3-butylhydroquinone, 3-t-butylhydroquinone, 3-phenyl Hydroquinone, 3-cumylhydroquinone; 2,5-dichlorohydroquinone; 2,3,5,6-tetramethylhydroquinone; 2,3,4,6-tetra-t-butylhydroquinone; 2,3,5,6- Tetrafluorohydroquinone; 2, 3, 5, - tetrabromo hydroquinone, and dihydric alcohol or ethoxylated or propoxylated products of phenols, such as bis (oxyethyl) bisphenol A, and bis (oxyethyl) tetrachloro bisphenol A or bis (oxyethyl) tetrachlorohydroquinone the like.
 また、(A)成分の一つとして用いられる脂肪族ジヒドロキシ化合物としては、例えば、ブタン-1,4-ジオール;2,2-ジメチルプロパン-1,3-ジオール;ヘキサン-1,6-ジオール;ジエチレングリコール;トリエチレングリコール;テトラエチレングリコール;オクタエチレングリコール;ジプロピレングリコ-ル;N,N-メチルジエタノールアミン;シクロヘキサン-1,3-ジオール;シクロヘキサン-1,4-ジオール;1,4-ジメチロールシクロヘキサン;p-キシリレングリコール;2,2-ビス(4-ヒドロキシシクロヘキシル)-プロパン、イソソルビド;アダマンタンジオール;アダマンタンジメタノール;1,4-シクロヘキサンジメタノールなどが挙げられる。 Examples of the aliphatic dihydroxy compound used as one of the components (A) include butane-1,4-diol; 2,2-dimethylpropane-1,3-diol; hexane-1,6-diol; Diethylene glycol; triethylene glycol; tetraethylene glycol; octaethylene glycol; dipropylene glycol; N, N-methyldiethanolamine; cyclohexane-1,3-diol; cyclohexane-1,4-diol; 1,4-dimethylolcyclohexane P-xylylene glycol; 2,2-bis (4-hydroxycyclohexyl) -propane, isosorbide; adamantanediol; adamantanedimethanol; 1,4-cyclohexanedimethanol and the like.
 本発明において、(A)成分のジヒドロキシ化合物としては、上記の化合物一種又は二種以上を適宜選択して用いるが、これらの中では、芳香族ジヒドロキシ化合物であるビスフェノールAを用いるのが好ましい。 In the present invention, as the dihydroxy compound of component (A), one or more of the above compounds are appropriately selected and used, and among these, bisphenol A, which is an aromatic dihydroxy compound, is preferably used.
 (B)炭酸ジエステルは、炭酸ジアリール化合物、炭酸ジアルキル化合物又は炭酸アルキルアリール化合物から選択される少なくとも1種の化合物である。
 この(B)成分の一つとして用いられる炭酸ジアリール化合物は、下記一般式(3)〔式中、Ar1及びAr2はそれぞれアリール基を示し、それらはたがいに同一でも異なっていてもよい。〕で表される化合物、又は下記一般式(4)〔式中、Ar3及びAr4はそれぞれアリール基を示し、それらはたがいに同一でも異なっていてもよく、D1は前記芳香族ジヒドロキシ化合物から水酸基2個を除いた残基を示す。〕で表される化合物である。
(B) The carbonic acid diester is at least one compound selected from a diaryl carbonate compound, a dialkyl carbonate compound or an alkylaryl carbonate compound.
The diaryl carbonate compound used as one of the component (B) has the following general formula (3): [wherein Ar 1 and Ar 2 each represent an aryl group, and they may be the same or different. Or a compound represented by the following general formula (4): wherein Ar 3 and Ar 4 each represents an aryl group, which may be the same or different, and D 1 represents the aromatic dihydroxy compound. The residue which remove | excluded two hydroxyl groups from is shown. It is a compound represented by this.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 また、炭酸ジアルキル化合物は、下記一般式(5)〔式中、R6及びR7はそれぞれ炭素数1~20のアルキル基又は炭素数4~20のシクロアルキル基を示し、それらはたがいに同一でも異なっていてもよい。〕で表される化合物、又は下記一般式(6)〔式中、R8及びR9はそれぞれ炭素数1~20のアルキル基又は炭素数4~20のシクロアルキル基を示し、それらはたがいに同一でも異なっていてもよく、D2は前記芳香族ジヒドロキシ化合物から水酸基2個を除いた残基を示す。〕で表される化合物である。 Further, the dialkyl carbonate compound has the following general formula (5): wherein R 6 and R 7 each represents an alkyl group having 1 to 20 carbon atoms or a cycloalkyl group having 4 to 20 carbon atoms, and they are identical to each other. But it can be different. Or a compound represented by the following general formula (6): wherein R 8 and R 9 each represents an alkyl group having 1 to 20 carbon atoms or a cycloalkyl group having 4 to 20 carbon atoms, D 2 may be the same or different, and D 2 represents a residue obtained by removing two hydroxyl groups from the aromatic dihydroxy compound. It is a compound represented by this.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 そして、炭酸アルキルアリール化合物は、下記一般式(7)〔式中、Ar5はアリール基、R10は炭素数1~20のアルキル基又は炭素数4~20のシクロアルキル基を示す。〕で表される化合物、又は下記一般式(8)〔式中、Ar6はアリール基,R11は炭素数1~20のアルキル基又は炭素数4~20のシクロアルキル基、D3は前記芳香族ジヒドロキシ化合物から水酸基2個を除いた残基を示す。〕で表される化合物である。 The alkylaryl carbonate compound is represented by the following general formula (7): wherein Ar 5 represents an aryl group, R 10 represents an alkyl group having 1 to 20 carbon atoms or a cycloalkyl group having 4 to 20 carbon atoms. Or a compound represented by the following general formula (8): wherein Ar 6 is an aryl group, R 11 is an alkyl group having 1 to 20 carbon atoms or a cycloalkyl group having 4 to 20 carbon atoms, and D 3 is the above-mentioned A residue obtained by removing two hydroxyl groups from an aromatic dihydroxy compound is shown. It is a compound represented by this.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 ここで、炭酸ジアリール化合物としては、例えば、ジフェニルカーボネート、ジトリルカーボネート、ビス(クロロフェニル)カーボネート、m-クレジルカーボネート、ジナフチルカーボネート、ビス(ジフェニル)カーボネート、ビスフェノールAビスフェニルカーボネートなどが挙げられる。
 また、炭酸ジアルキル化合物としては、例えば、ジエチルカーボネート、ジメチルカーボネート、ジブチルカーボネート、ジシクロヘキシルカーボネート、ビスフェノールAビスメチルカーボネートなどが挙げられる。
 そして、炭酸アルキルアリール化合物としては、例えば、メチルフェニルカーボネート、エチルフェニルカーボネート、ブチルフェニルカーボネート、シクロヘキシルフェニルカーボネート、ビスフェノールAメチルフェニルカーボネートなどが挙げられる。
 本発明において、(B)成分の炭酸ジエステルとしては、上記の化合物一種又は二種以上を適宜選択して用いるが、これらの中では、ジフェニルカーボネートを用いるのが好ましい。
Here, examples of the diaryl carbonate compound include diphenyl carbonate, ditolyl carbonate, bis (chlorophenyl) carbonate, m-cresyl carbonate, dinaphthyl carbonate, bis (diphenyl) carbonate, bisphenol A bisphenyl carbonate, and the like.
Examples of the dialkyl carbonate compound include diethyl carbonate, dimethyl carbonate, dibutyl carbonate, dicyclohexyl carbonate, bisphenol A bismethyl carbonate, and the like.
Examples of the alkyl aryl carbonate compound include methyl phenyl carbonate, ethyl phenyl carbonate, butyl phenyl carbonate, cyclohexyl phenyl carbonate, and bisphenol A methyl phenyl carbonate.
In the present invention, as the carbonic acid diester of the component (B), one or more of the above compounds are appropriately selected and used. Among these, diphenyl carbonate is preferably used.
 また、本発明では、上記(A)ジヒドロキシ化合物及び(B)炭酸ジエステル以外の原料を用いてもよい。
 例えば、ジヒドロキシ化合物のジエステル類として、例えば、ビスフェノールAのジ酢酸エステル、ビスフェノールAのジプロピオン酸エステル、ビスフェノールAのジブチル酸エステル、ビスフェノールAのジ安息香酸エステルなどを挙げることができる。
 また、ジヒドロキシ化合物のジ炭酸エステル類として、例えば、ビスフェノールAのビスメチル炭酸エステル、ビスフェノールAのビスエチル炭酸エステル、ビスフェノールAのビスフェニル炭酸エステルなどを挙げることができる。
 そして、ジヒドロキシ化合物のモノ炭酸エステル類として、例えば、ビスフェノールAモノメチル炭酸エステル、ビスフェノールAモノエチル炭酸エステル、ビスフェノールAモノプロピル炭酸エステル、ビスフェノールAモノフェニル炭酸エステルなどを挙げることができる。
In the present invention, raw materials other than the above (A) dihydroxy compound and (B) carbonic acid diester may be used.
Examples of diesters of dihydroxy compounds include bisphenol A diacetate, bisphenol A dipropionate, bisphenol A dibutyrate, and bisphenol A dibenzoate.
Examples of dicarbonates of dihydroxy compounds include bismethyl carbonate of bisphenol A, bisethyl carbonate of bisphenol A, and bisphenyl carbonate of bisphenol A.
Examples of monohydroxy esters of dihydroxy compounds include bisphenol A monomethyl carbonate, bisphenol A monoethyl carbonate, bisphenol A monopropyl carbonate, and bisphenol A monophenyl carbonate.
 また、ポリカーボネートの製造においては、必要に応じて末端停止剤を用いることができる。この末端停止剤としては、例えば、o-n-ブチルフェノール;m-n-ブチルフェノール;p-n-ブチルフェノール;o-イソブチルフェノール;m-イソブチルフェノール;p-イソブチルフェノール;o-t-ブチルフェノール;m-t-ブチルフェノール;p-t-ブチルフェノール;o-n-ペンチルフェノール;m-n-ペンチルフェノール;p-n-ペンチルフェノール;o-n-ヘキシルフェノール;m-n-ヘキシルフェノール;p-n-ヘキシルフェノール;o-シクロヘキシルフェノール;m-シクロヘキシルフェノール;p-シクロヘキシルフェノール;o-フェニルフェノール;m-フェニルフェノール;p-フェニルフェノール;o-n-ノニルフェノール;m-n-ノニルフェノール;p-n-ノニルフェノール;o-クミルフェノール;m-クミルフェノール;p-クミルフェノール;o-ナフチルフェノール;m-ナフチルフェノール;p-ナフチルフェノール;2,6-ジ-t-ブチルフェノール;2,5-ジ-t-ブチルフェノール;2,4-ジ-t-ブチルフェノール;3,5-ジ-t-ブチルフェノール;2,5-ジクミルフェノール;3,5-ジクミルフェノール;下記式で表される化合物や、 Further, in the production of polycarbonate, a terminal terminator can be used as necessary. Examples of the terminal terminator include on-butylphenol; mn-butylphenol; pn-butylphenol; o-isobutylphenol; m-isobutylphenol; p-isobutylphenol; ot-butylphenol; tert-butylphenol; pt-butylphenol; on-pentylphenol; mn-pentylphenol; pn-pentylphenol; on-hexylphenol; mn-hexylphenol; pn-hexyl O-cyclohexylphenol; m-cyclohexylphenol; p-cyclohexylphenol; o-phenylphenol; m-phenylphenol; p-phenylphenol; on-nonylphenol; mn-nonylphenol; O-cumylphenol; m-cumylphenol; p-cumylphenol; o-naphthylphenol; m-naphthylphenol; p-naphthylphenol; 2,6-di-t-butylphenol; Di-t-butylphenol; 2,4-di-t-butylphenol; 3,5-di-t-butylphenol; 2,5-dicumylphenol; 3,5-dicumylphenol; ,
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
下記式で表されるクロマン誘導体などの一価フェノールが挙げられる。 Examples thereof include monohydric phenols such as chroman derivatives represented by the following formula.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 このようなフェノール類のうち、本発明では特に限定されないが、p-t-ブチルフェノール、p-クミルフェノール、p-フェニルフェノールなどが好ましい。
 また、下記式で表される化合物なども用いることができる。
Among these phenols, although not particularly limited in the present invention, pt-butylphenol, p-cumylphenol, p-phenylphenol and the like are preferable.
Moreover, the compound etc. which are represented by a following formula can also be used.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 さらに、本発明では、必要に応じて、フロログルシン;トリメリット酸;1,1,1-トリス(4-ヒドロキシフェニル)エタン;1-〔α-メチル-α-(4’-ヒドロキシフェニル)エチル〕-4-〔α’,α’-ビス(4”-ヒドロキシフェニル)エチル〕ベンゼン;α,α’,α”-トリス(4-ヒドロキシフェニル)-1,3,5-トリイソプロピルベンゼン;イサチンビス(o-クレゾール)などを分岐剤として用いることもできる。 Furthermore, in the present invention, as necessary, phloroglucin; trimellitic acid; 1,1,1-tris (4-hydroxyphenyl) ethane; 1- [α-methyl-α- (4′-hydroxyphenyl) ethyl] -4- [α ′, α′-bis (4 ″ -hydroxyphenyl) ethyl] benzene; α, α ′, α ″ -tris (4-hydroxyphenyl) -1,3,5-triisopropylbenzene; isatin bis ( o-cresol) and the like can also be used as a branching agent.
 エステル交換反応における特定の重合触媒としては、(a)含窒素有機塩基性化合物と(b)アリール基を含む4級ホスホニウム塩との組み合わせが用いられる。
 (a)成分の含窒素有機塩基性化合物としては、特に制限はなく、各種のものがある。例えば、トリメチルアミン、トリエチルアミン、トリプロピルアミン、トリブチルアミン、トリペンチルアミン、トリヘキシルアミン、ジメチルベンジルアミンなどの脂肪族第三級アミン化合物;トリフェニルアミンなどの芳香族第三級アミン化合物;N,N-ジメチル-4-アミノピリジン、4-ジエチルアミノピリジン、4-ピロリジノピリジン、4-アミノピリジン、2-アミノピリジン、2-ヒドロキシピリジン、4-ヒドロキシピリジン、2-メトキシピリジン、4-メトキシピリジン、イミダゾール、2-メチルイミダゾール、4-メチルイミダゾール、2-ジメチルアミノイミダゾール、2-メトキシイミダゾール、2-メルカプトイミダゾール、アミノキノリン、ジアザビシクロオクタン(DABCO)などの含窒素複素環化合物が挙げられる。
As a specific polymerization catalyst in the transesterification reaction, a combination of (a) a nitrogen-containing organic basic compound and (b) a quaternary phosphonium salt containing an aryl group is used.
There is no restriction | limiting in particular as a nitrogen-containing organic basic compound of (a) component, There exist various things. For example, aliphatic tertiary amine compounds such as trimethylamine, triethylamine, tripropylamine, tributylamine, tripentylamine, trihexylamine, dimethylbenzylamine; aromatic tertiary amine compounds such as triphenylamine; N, N -Dimethyl-4-aminopyridine, 4-diethylaminopyridine, 4-pyrrolidinopyridine, 4-aminopyridine, 2-aminopyridine, 2-hydroxypyridine, 4-hydroxypyridine, 2-methoxypyridine, 4-methoxypyridine, imidazole , Nitrogen-containing heterocycles such as 2-methylimidazole, 4-methylimidazole, 2-dimethylaminoimidazole, 2-methoxyimidazole, 2-mercaptoimidazole, aminoquinoline, diazabicyclooctane (DABCO) Compounds, and the like.
 さらに、(a)成分の含窒素有機塩基性化合物として下記一般式(I)で表される4級アンモニウム塩を挙げることができる。
  (NR1 4+(X1  ・・・  (I)
 上記一般式(I)中、R1はアルキル基、アリール基又はアルキル基アリール、例えばメチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、オクチル基、シクロヘキシル基などの炭素数1~6のアルキル基又はシクロアルキル基や、フェニル基、トリル基、キシリル基、ナフチル基、ビフェニル基、ベンジル基などの炭素数6~20のアリール基又はアルキルアリール基を示す。4つのR1はたがいに同一でも異なっていてもよく、また2つのR1が結合して環構造を形成していてもよい。
 また、X1はハロゲン原子、水酸基、アルキルオキシ基、アリールオキシ基、アルキルカルボニルオキシ基、アリールカルボニルオキシ基、HCO3又はBR4(Rは水素原子又はアルキル基又はアリール基を示し、4つのRはたがいに同一でも異なっていてもよい)を示す。
Furthermore, examples of the nitrogen-containing organic basic compound of component (a) include quaternary ammonium salts represented by the following general formula (I).
(NR 1 4 ) + (X 1 ) (I)
In the above general formula (I), R 1 is alkyl group, aryl group or alkyl group aryl, for example, methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, octyl group, cyclohexyl group, etc. An aryl group having 6 to 20 carbon atoms or an alkylaryl group, such as an alkyl group or cycloalkyl group having ˜6, a phenyl group, a tolyl group, a xylyl group, a naphthyl group, a biphenyl group, or a benzyl group; The four R 1 s may be the same or different, and two R 1 s may combine to form a ring structure.
X 1 represents a halogen atom, a hydroxyl group, an alkyloxy group, an aryloxy group, an alkylcarbonyloxy group, an arylcarbonyloxy group, HCO 3 or BR 4 (R represents a hydrogen atom, an alkyl group or an aryl group, and four R May be the same or different).
 このような4級アンモニウム塩としては、例えばテトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、トリメチルベンジルアンモニウムヒドロキシドなどのアルキル基;アリール基、アルアリール基などを有するアンモニウムヒドロキシド類;テトラメチルアンモニウムボロハイドライド、テトラブチルアンモニウムボロハイドライド、テトラブチルアンモニウムテトラフェニルボレート、テトラメチルアンモニウムテトラフェニルボレートなどの塩基性塩が挙げられる。 Examples of such quaternary ammonium salts include alkyl groups such as tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrabutylammonium hydroxide, and trimethylbenzylammonium hydroxide; ammonium hydroxides having an aryl group, an aryl group, and the like. And basic salts such as tetramethylammonium borohydride, tetrabutylammonium borohydride, tetrabutylammonium tetraphenylborate and tetramethylammonium tetraphenylborate.
 これらの(a)含窒素有機塩基性化合物の中で、触媒活性が高く、かつ熱分解が容易でポリマー中に残留しにくいなどの点から、上記一般式(I)で表される4級アンモニウム塩、具体的にはテトラメチルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、テトラメチルアンモニウムボロハイドライド、テトラブチルアンモニウムボロハイドライドが好ましく、特にテトラメチルアンモニウムヒドロキシドが好適である。この(a)含窒素有機塩基性化合物は、一種を用いても良く、二種以上を組み合わせて用いても良い。 Among these (a) nitrogen-containing organic basic compounds, quaternary ammonium represented by the above general formula (I) from the viewpoints of high catalytic activity, easy thermal decomposition and hardly remaining in the polymer. Salts, specifically tetramethylammonium hydroxide, tetrabutylammonium hydroxide, tetramethylammonium borohydride and tetrabutylammonium borohydride are preferred, and tetramethylammonium hydroxide is particularly preferred. One (a) nitrogen-containing organic basic compound may be used, or two or more may be used in combination.
 一方、(b)成分の4級ホスホニウム塩としては、例えは、下記一般式(II)で表される化合物が挙げられる。
  (PR2 4+(X2  ・・・  (II)
 上記一般式(II)中、R2はアルキル基、アリール基又はアルキルアリール基を示し、これらは上記一般式(I)におけるR1の説明において例示したものと同じものを挙げることができるが、4つのR2のうち少なくとも一つはアリール基である。また、4つのR2はたがいに同一でも異なっていてもよく、2つのR2が結合して環構造を形成していてもよい。
 X2はハロゲン原子、水酸基、アルキルオキシ基、アリールオキシ基、アルキルカルボニルオキシ基、アリールカルボニルオキシ基、HCO3又はBR4(Rは水素原子又はアルキル基又はアリール基を示し、4つのRはたがいに同一でも異なっていてもよい)を示す。
On the other hand, examples of the quaternary phosphonium salt of the component (b) include compounds represented by the following general formula (II).
(PR 2 4 ) + (X 2 ) (II)
In the general formula (II), R 2 represents an alkyl group, an aryl group or an alkylaryl group, and these may be the same as those exemplified in the description of R 1 in the general formula (I). At least one of the four R 2 is an aryl group. Further, the four R 2 s may be the same or different, and two R 2 may be bonded to form a ring structure.
X 2 represents a halogen atom, a hydroxyl group, an alkyloxy group, an aryloxy group, an alkylcarbonyloxy group, an arylcarbonyloxy group, HCO 3 or BR 4 (R represents a hydrogen atom, an alkyl group or an aryl group, and four Rs are May be the same or different.
 このような4級ホスホニウム塩としては、例えばテトラフェニルホスホニウムヒドロキシド、テトラナフチルホスホニウムヒドロキシド、テトラ(クロロフェニル)ホスホニウムヒドロキシド、テトラ(ビフェニル)ホスホニウムヒドロキシド、テトラトリルホスホニウムヒドロキシドなどのテトラアリールホスホニウムヒドロキシド類;メチルトリフェニルホスホニウムヒドロキシド、エチルトリフェニルホスホニウムヒドロキシド、プロピルトリフェニルホスホニウムヒドロキシド、ブチルトリフェニルホスホニウムヒドロキシド、アミルトリフェニルホスホニウムヒドロキシド、ヘプチルトリフェニルホスホニウムヒドロキシド、ヘキシルトリフェニルホスホニウムヒドロキシド、オクチルトリフェニルホスホニウムヒドロキシド、テトラデシルトリフェニルホスホニウムヒドロキシド、ベンジルトリフェニルホスホニウムヒドロキシド、エトキシベンジルトリフェニルホスホニウムヒドロキシド、メトキシメチルトリフェニルホスホニウムヒドロキシド、アセトキシメチルトリフェニルホスホニウムヒドロキシド、フェナシルトリフェニルホスホニウムヒドロキシド、クロロメチルトリフェニルホスホニウムヒドロキシド、ブロモメチルトリフェニルホスホニウムヒドロキシド、ビフェニルトリフェニルホスホニウムヒドロキシド、ナフチルトリフェニルホスホニウムヒドロキシド、クロロフェニルトリフェニルホスホニウムヒドロキシド、フェノキシフェニルトリフェニルホスホニウムヒドロキシド、メトキシフェニルトリフェニルホスホニウムヒドロキシド、アセトキシフェニルトリフェニルホスホニウムヒドロキシド、ナフチルフェニルトリフェニルホスホニウムヒドロキシドなどのモノ(アリール又はアルキル)トリフェニルホスホニウムヒドロキシド類;フェニルトリメチルホスホニウムヒドロキシド、ビフェニルトリメチルホスホニウムヒドロキシド、フェニルトリヘキシルホスホニウムヒドロキシド、ビフェニルトリフェキシルホスホニウムヒドロキシドなどのモノアリールトリアルキルホスホニウムヒドロキシド類;ジメチルジフェニルホスホニウムヒドロキシド、ジエチルジフェニルホスホニウムヒドロキシド、ジ(ナフチル)ジフェニルホスホニウムヒドロキシド、ジ(ビフェニル)ジフェニルホスホニウムヒドロキシドなどのジ(アリール又はアルキル)ジアリールホスホニウムヒドロキシド類;さらにはテトラフェニルホスホニウムテトラフェニルボレート、テトラナフチルホスホニウムテトラフェニルボレート、テトラ(クロロフェニル)ホスホニウムテトラフェニルボレート、テトラ(ビフェニル)ホスホニウムテトラフェニルボレート、テトラトリルホスホニウムテトラフェニルボレートなどのテトラアリールホスホニウムテトラフェニルボレート類;メチルトリフェニルホスホニウムテトラフェニルボレート、エチルトリフェニルホスホニウムテトラフェニルボレート、プロピルトリフェニルホスホニウムテトラフェニルボレート、ブチルトリフェニルホスホニウムテトラフェニルボレート、オクチルトリフェニルホスホニウムテトラフェニルボレート、テトラデシルトリフェニルホスホニウムテトラフェニルボレート、ベンジルトリフェニルホスホニウムテトラフェニルボレート、エトキシベンジルトリフェニルホスホニウムテトラフェニルボレート、メトキシメチルトリフェニルホスホニウムテトラフェニルボレート、アセトキシメチルトリフェニルホスホニウムテトラフェニルボレート、フェナシルトリフェニルホスホニウムテトラフェニルボレート、クロロメチルトリフェニルホスホニウムテトラフェニルボレート、ブロモメチルトリフェニルホスホニウムテトラフェニルボレート、ビフェニルトリフェニルホスホニウムテトラフェニルボレート、ナフチルトリフェニルホスホニウムテトラフェニルボレート、クロロフェニルトリフェニルホスホニウムテトラフェニルボレート、フェノキシフェニルトリフェニルホスホニウムテトラフェニルボレート、アセトキシフェニルトリフェニルホスホニウムテトラフェニルボレート、ナフチルフェニルトリフェニルホスホニウムテトラフェニルボレートなどのモノ(アリール又はアルキル)トリフェニルホスホニウムテトラフェニルボレート類;フェニルトリメチルホスホニウムテトラフェニルボレート、ビフェニルトリメチルホスホニウムテトラフェニルボレート、メチルトリヘキシルホスホニウムテトラフェニルボレート、エチルトリヘキシルホスホニウムテトラフェニルボレート、オクチルトリヘキシルホスホニウムテトラフェニルボレート、ステアリルトリヘキシルホスホニウムテトラフェニルボレート、フェニルトリヘキシルホスホニウムテトラフェニルボレート、ビフェニルトリヘキシルホスホニウムテトラフェニルボレートなどのモノアリールトリアルキルホスホニウムテトラフェニルボレート類;ジメチルジフェニルホスホニウムテトラフェニルボレート、ジエチルジフェニルホスホニウムテトラフェニルボレート、ジ(ナフチル)ジフェニルホスホニウムテトラフェニルボレート、ジ(ビフェニル)ジフェニルホスホニウムテトラフェニルボレートなどのジ(アリール又はアルキル)ジアリールホスホニウムテトラフェニルボレート類が挙げられる。
 また、上記の化合物以外に、アリルトリフェニルホスホニウムヒドロキシドやシナミルトリフェニルホスホニウムヒドロキシドなども挙げることができる。
Examples of such quaternary phosphonium salts include tetraarylphosphonium hydroxides such as tetraphenylphosphonium hydroxide, tetranaphthylphosphonium hydroxide, tetra (chlorophenyl) phosphonium hydroxide, tetra (biphenyl) phosphonium hydroxide, and tetratolylphosphonium hydroxide. Methyl triphenylphosphonium hydroxide, ethyltriphenylphosphonium hydroxide, propyltriphenylphosphonium hydroxide, butyltriphenylphosphonium hydroxide, amyltriphenylphosphonium hydroxide, heptyltriphenylphosphonium hydroxide, hexyltriphenylphosphonium hydroxy Octyltriphenylphosphonium hydroxide, Radecyltriphenylphosphonium hydroxide, benzyltriphenylphosphonium hydroxide, ethoxybenzyltriphenylphosphonium hydroxide, methoxymethyltriphenylphosphonium hydroxide, acetoxymethyltriphenylphosphonium hydroxide, phenacyltriphenylphosphonium hydroxide, chloromethyltriphenyl Phenylphosphonium hydroxide, bromomethyltriphenylphosphonium hydroxide, biphenyltriphenylphosphonium hydroxide, naphthyltriphenylphosphonium hydroxide, chlorophenyltriphenylphosphonium hydroxide, phenoxyphenyltriphenylphosphonium hydroxide, methoxyphenyltriphenylphosphonium hydroxide, Acetoki Mono (aryl or alkyl) triphenylphosphonium hydroxides such as phenyltriphenylphosphonium hydroxide, naphthylphenyltriphenylphosphonium hydroxide; phenyltrimethylphosphonium hydroxide, biphenyltrimethylphosphonium hydroxide, phenyltrihexylphosphonium hydroxide, biphenyltriphe Monoaryltrialkylphosphonium hydroxides such as xylphosphonium hydroxide; di (aryl or diphenylphosphonium hydroxide, di (naphthyl) diphenylphosphonium hydroxide, di (biphenyl) diphenylphosphonium hydroxide, etc. Alkyl) diarylphosphonium hydroxy Tetraarylphosphonium tetraphenyl such as tetraphenylphosphonium tetraphenylborate, tetranaphthylphosphonium tetraphenylborate, tetra (chlorophenyl) phosphonium tetraphenylborate, tetra (biphenyl) phosphonium tetraphenylborate, tetratolylphosphonium tetraphenylborate Borates: methyltriphenylphosphonium tetraphenylborate, ethyltriphenylphosphonium tetraphenylborate, propyltriphenylphosphonium tetraphenylborate, butyltriphenylphosphonium tetraphenylborate, octyltriphenylphosphonium tetraphenylborate, tetradecyltriphenylphosphonium tetraphenyl Borate Benzyltriphenylphosphonium tetraphenylborate, ethoxybenzyltriphenylphosphonium tetraphenylborate, methoxymethyltriphenylphosphonium tetraphenylborate, acetoxymethyltriphenylphosphonium tetraphenylborate, phenacyltriphenylphosphonium tetraphenylborate, chloromethyltriphenylphosphonium tetra Phenyl borate, bromomethyltriphenylphosphonium tetraphenylborate, biphenyltriphenylphosphonium tetraphenylborate, naphthyltriphenylphosphonium tetraphenylborate, chlorophenyltriphenylphosphonium tetraphenylborate, phenoxyphenyltriphenylphosphonium tetraphenylborate Mono (aryl or alkyl) triphenylphosphonium tetraphenylborates such as acetoxyphenyltriphenylphosphonium tetraphenylborate, naphthylphenyltriphenylphosphonium tetraphenylborate; phenyltrimethylphosphonium tetraphenylborate, biphenyltrimethylphosphonium tetraphenylborate, methyltrihexyl Mono, such as phosphonium tetraphenylborate, ethyltrihexylphosphonium tetraphenylborate, octyltrihexylphosphonium tetraphenylborate, stearyltrihexylphosphonium tetraphenylborate, phenyltrihexylphosphonium tetraphenylborate, biphenyltrihexylphosphonium tetraphenylborate Aryl trialkylphosphonium tetraphenylborate; Di (aryl or alkyl) such as dimethyldiphenylphosphonium tetraphenylborate, diethyldiphenylphosphonium tetraphenylborate, di (naphthyl) diphenylphosphonium tetraphenylborate, di (biphenyl) diphenylphosphonium tetraphenylborate And diarylphosphonium tetraphenylborate.
In addition to the above compounds, allyl triphenyl phosphonium hydroxide, cinamyl triphenyl phosphonium hydroxide, and the like can be given.
 さらに、対アニオンとして、上記のヒドロキシドやテトラフェニルボレート類の代わりに、フェノキシドなどのアリールオキシ基;メトキシド、エトキシドなどのアルキルオキシ基;アセテートなどのアルキルカルボニルオキシ基;ベンゾネートなどのアリールカルボニルオキシ基;クロライド、ブロマイドなどのハロゲン原子を用いた上記4級ホスホニウム塩が挙げられる。 Furthermore, as a counter anion, instead of the above hydroxides and tetraphenylborates, aryloxy groups such as phenoxide; alkyloxy groups such as methoxide and ethoxide; alkylcarbonyloxy groups such as acetate; arylcarbonyloxy groups such as benzoate A quaternary phosphonium salt using a halogen atom such as chloride or bromide.
 さらに好ましくは、ポリカーボネートの製造において、エステル交換反応の際に、重合触媒として、(a)含窒素有機塩基性化合物と、(b)アリール基を含む4級ホスホニウム塩として下記一般式(II-1)で表される化合物とを組み合わせて用いることが望ましい。 More preferably, in the production of polycarbonate, as a polymerization catalyst in the transesterification reaction, (a) a nitrogen-containing organic basic compound and (b) a quaternary phosphonium salt containing an aryl group represented by the following general formula (II-1) It is desirable to use in combination with a compound represented by
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 上記一般式(II-1)中、R3は有機基を示し、たがいに同一でも異なっていてもよく、X3はハロゲン原子、水酸基、アルキルオキシ基、アリールオキシ基、アルキルカルボニルオキシ基、アリールカルボニルオキシ基、HCO3又はBR4(Rは水素原子又は炭化水素基を示し、4つのRはたがいに同一でも異なっていてもよい)を示し、nは0~4の整数を示す。 In the general formula (II-1), R 3 represents an organic group, which may be the same or different, and X 3 represents a halogen atom, a hydroxyl group, an alkyloxy group, an aryloxy group, an alkylcarbonyloxy group, an aryl group. A carbonyloxy group, HCO 3 or BR 4 (wherein R represents a hydrogen atom or a hydrocarbon group, four Rs may be the same or different from each other), and n represents an integer of 0 to 4.
 このような4級ホスホニウム化合物の具体例としては、例えばテトラフェニルホスホニウムヒドロキシド、ビフェニルトリフェニルホスホニウムヒドロキシド、メトキシフェニルトリフェニルホスホニウムヒドロキシド、フェノキシフェニルトリフェニルホスホニウムヒドロキシド、ナフチルフェニルトリフェニルホスホニウムヒドロキシド、テトラフェニルホスホニウムテトラフェニルボレート、ビフェニルトリフェニルホスホニウムテトラフェニルボレート、メトキシフェニルトリフェニルホスホニウムテトラフェニルボレート、フェノキシフェニルトリフェニルホスホニウムテトラフェニルボレート、ナフチルフェニルトリフェニルホスホニウムテトラフェニルボレート、テトラフェニルホスホニウムフェノキシド、ビフェニルトリフェニルホスホニウムフェノキシド、メトキシフェニルトリフェニルホスホニウムフェノキシド、フェノキシフェニルトリフェニルホスホニウムフェノキシド、ナフチルフェニルトリフェニルホスホニウムフェノキシド、テトラフェニルホスホニウムクロライド、ビフェニルトリフェニルホスホニウムクロライド、メトキシフェニルトリフェニルホスホニウムクロライド、フェノキシフェニルトリフェニルホスホニウムクロライド、ナフチルフェニルトリフェニルホスホニウムクロライドなどが挙げられる。 Specific examples of such quaternary phosphonium compounds include, for example, tetraphenylphosphonium hydroxide, biphenyltriphenylphosphonium hydroxide, methoxyphenyltriphenylphosphonium hydroxide, phenoxyphenyltriphenylphosphonium hydroxide, and naphthylphenyltriphenylphosphonium hydroxide. , Tetraphenylphosphonium tetraphenylborate, biphenyltriphenylphosphonium tetraphenylborate, methoxyphenyltriphenylphosphonium tetraphenylborate, phenoxyphenyltriphenylphosphonium tetraphenylborate, naphthylphenyltriphenylphosphonium tetraphenylborate, tetraphenylphosphonium phenoxide, biphenyltri Phenylphosphonium phenoxide, methoxyphenyltriphenylphosphonium phenoxide, phenoxyphenyltriphenylphosphonium phenoxide, naphthylphenyltriphenylphosphonium phenoxide, tetraphenylphosphonium chloride, biphenyltriphenylphosphonium chloride, methoxyphenyltriphenylphosphonium chloride, phenoxyphenyltriphenylphosphonium chloride, Examples thereof include naphthylphenyltriphenylphosphonium chloride.
 上記(b)4級ホスホニウム塩の中では、反応時の熱安定性による活性と得られるポリカーボネートの品質のバランスの点から、テトラアリールホスホニウムテトラフェニルボレート、テトラアリールホスホニウムフェノキシド、モノアリールトリフェニルホスホニウムボレート及びモノアリールトリフェニルホスホニウムフェノキシドが好ましく、特にテトラフェニルホスホニウムテトラフェニルボレートが好適である。
 すなわち、(b)成分として、アルキル基を含まない4級ホスホニウム塩が熱安定性に優れ、反応後期の高分子量化に有効となる。この(b)4級ホスホニウム塩は、一種を用いてもよく、二種以上を組み合わせて用いてもよい。
Among the above (b) quaternary phosphonium salts, tetraarylphosphonium tetraphenylborate, tetraarylphosphonium phenoxide, monoaryltriphenylphosphonium borate from the viewpoint of the balance between the activity due to thermal stability during the reaction and the quality of the obtained polycarbonate. And monoaryltriphenylphosphonium phenoxide are preferable, and tetraphenylphosphonium tetraphenylborate is particularly preferable.
That is, as the component (b), a quaternary phosphonium salt that does not contain an alkyl group is excellent in thermal stability, and is effective for increasing the molecular weight in the late reaction. This (b) quaternary phosphonium salt may be used singly or in combination of two or more.
 また、(a)含窒素有機塩基性化合物及び(b)アリール基を含む4級ホスホニウム塩は、各々金属不純物の含有量が50質量ppm以下であることが好ましく、アルカリ金属及びアルカリ土類金属化合物の含有量が30質量ppm以下のものがより好ましく、特に10質量ppm以下のものが好ましい。
 さらに、(a)成分及び(b)成分中の各々の金属不純物の合計量が、(a)成分及び(b)成分の合計量に対して、50質量ppm以下であることが好ましく、(a)成分及び(b)成分中のアルカリ金属及びアルカリ土類金属化合物の含有量の合計が、(a)成分及び(b)成分の合計量に対して、30質量ppm以下のものがより好ましく、特に10質量ppm以下のものが好適である。
The (a) nitrogen-containing organic basic compound and (b) the quaternary phosphonium salt containing an aryl group preferably each have a metal impurity content of 50 ppm by mass or less, and an alkali metal and alkaline earth metal compound. Is more preferably 30 mass ppm or less, and particularly preferably 10 mass ppm or less.
Furthermore, it is preferable that the total amount of each metal impurity in the component (a) and the component (b) is 50 mass ppm or less with respect to the total amount of the component (a) and the component (b). The total content of alkali metal and alkaline earth metal compound in component (b) and component (b) is more preferably 30 ppm by mass or less, based on the total amount of component (a) and component (b), Particularly preferred is 10 ppm by mass or less.
 本発明において、重合触媒として、上記(a)成分の含窒素有機塩基性化合物を、原料である例えばジヒドロキシ化合物に対して、10-1~10-8モル、好ましくは10-2~10-7モル、さらに好ましくは10-3~10-6モル用い、(b)成分のアリール基を含む4級ホスホニウム塩を10-1~10-8モル、好ましくは10-2~10-7モル、さらに好ましくは10-3~10-6モル用いるのが望ましい。
 (a)成分の使用量が10-8モル未満では反応初期での触媒活性が不充分となり、また10-1モルを超えるとコストアップに繋がり好ましくない。一方、(b)成分の使用量が10-8モル未満では反応後期での触媒活性が不充分となり、また10-1モルを超えるとコストアップに繋がり好ましくない。
In the present invention, as the polymerization catalyst, the nitrogen-containing organic basic compound of the component (a) is 10 −1 to 10 −8 mol, preferably 10 −2 to 10 −7 mol, relative to the raw material such as a dihydroxy compound. Mol, more preferably 10 −3 to 10 −6 mol, and (b) the quaternary phosphonium salt containing the aryl group of 10 −1 to 10 −8 mol, preferably 10 −2 to 10 −7 mol, It is desirable to use 10 −3 to 10 −6 mol.
If the amount of component (a) used is less than 10 −8 mol, the catalytic activity at the initial stage of the reaction becomes insufficient, and if it exceeds 10 −1 mol, the cost increases, which is not preferable. On the other hand, if the amount of component (b) used is less than 10 −8 mol, the catalytic activity in the late stage of the reaction becomes insufficient, and if it exceeds 10 −1 mol, the cost increases, which is not preferable.
 また、この重合触媒は、原料であるたとえば(A)成分のジヒドロキシ化合物1モルに対して、(a)成分と(b)成分との合計量が、通常2×10-1~2×10-8モル、好ましくは2×10-2~2×10-7モル、さらに好ましくは2×10-3~2×10-6モルになるような割合で添加される。この触媒の添加量が2×10-8モル未満では、触媒効果が発現されないおそれがある。また、2×10-1モルを超えると、最終製品であるポリカーボネートの物性、特に、耐熱性、耐加水分解性の低下を招くおそれがあり、また、コストアップに繋がり、これを超えてまで添加することはない。
 また、ポリカーボネートの製造において、重合触媒として、(a)含窒素有機塩基性化合物と(b)アリール基を含む4級ホスホニウム塩との組合せを用いることにより、重合活性を高めることができ、重合系には、最終的に得られるポリカーボネート中で、耐加水分解性、着色性に悪影響を及ぼす金属類は極力少なくすることがよい。すなわち、本発明におけるポリカーボネートの製造では、(b)成分によって、反応後期に用いられてきた金属触媒の使用は、実質的に不要である。
In addition, the polymerization catalyst has a total amount of (a) component and (b) component of usually 2 × 10 −1 to 2 × 10 to 1 mol of the dihydroxy compound of component (A) as a raw material. 8 mol, preferably 2 × 10 −2 to 2 × 10 −7 mol, more preferably 2 × 10 −3 to 2 × 10 −6 mol. If the amount of the catalyst added is less than 2 × 10 −8 mol, the catalytic effect may not be exhibited. Moreover, if it exceeds 2 × 10 −1 mol, the physical properties of the final polycarbonate, especially heat resistance and hydrolysis resistance, may be reduced, and it will lead to cost increase, and it will be added beyond this. Never do.
In the production of polycarbonate, the polymerization activity can be increased by using a combination of (a) a nitrogen-containing organic basic compound and (b) a quaternary phosphonium salt containing an aryl group as a polymerization catalyst. In the final polycarbonate obtained, it is preferable to minimize the number of metals that adversely affect hydrolysis resistance and colorability. That is, in the production of the polycarbonate in the present invention, it is substantially unnecessary to use a metal catalyst that has been used in the late stage of the reaction due to component (b).
 本発明において、ポリカーボネートの製造では、通常のエステル交換法によるポリカーボネートの製造に供される原料が用いられるが、好ましくは(A)成分のジヒドロキシ化合物及び(B)成分の炭酸ジエステルと、必要に応じ末端停止剤あるいは分岐剤等を用いてエステル交換反応を行い、ポリカーボネートを得ることができる。具体的には、公知のエステル交換法に準じて反応を進行させればよい。以下に、本発明の好ましい製造方法の手順及び条件を具体的に示す。 In the present invention, in the production of the polycarbonate, raw materials used for the production of the polycarbonate by the ordinary transesterification method are used. Preferably, the component (A) is a dihydroxy compound and the component (B) is a carbonic acid diester, and if necessary. A transesterification reaction is performed using a terminal terminator or a branching agent to obtain a polycarbonate. Specifically, the reaction may proceed according to a known transesterification method. Below, the procedure and conditions of the preferable manufacturing method of this invention are shown concretely.
 まず、(A)成分のジヒドロキシ化合物と(B)成分の炭酸ジエステルとを、ジヒドロキシ化合物に対して炭酸ジエステルが0.9~1.5倍モルになるような比率でエステル交換反応する。なお、状況に応じて、0.98~1.20倍モルが好ましい。
 上記のエステル交換反応に当たって、前記の一価フェノールなどからなる末端停止剤の存在量が、(A)成分であるジヒドロキシ化合物に対して、0.05~10モル%の範囲にあると、得られるポリカーボネートの水酸基末端が封止されるため、耐熱性及び耐水性に充分優れたポリカーボネートが得られる。このような前記の一価フェノールなどからなる末端停止剤は、予め反応系に全量添加しておいてもよく、また予め反応系に一部添加しておき、反応の進行に伴って残部を添加してもよい。さらに場合によっては、前記(A)成分のジヒドロキシ化合物と(B)成分の炭酸ジエステルとのエステル交換反応が一部進行した後に、反応系に全量添加してもよい。
First, the (A) component dihydroxy compound and the (B) component carbonic acid diester are subjected to a transesterification reaction in such a ratio that the carbonic acid diester is 0.9 to 1.5 times the mole of the dihydroxy compound. Depending on the situation, 0.98 to 1.20 times mol is preferable.
In the transesterification reaction, it is obtained when the amount of the terminal terminator composed of the monohydric phenol or the like is in the range of 0.05 to 10 mol% with respect to the dihydroxy compound as the component (A). Since the hydroxyl end of the polycarbonate is sealed, a polycarbonate having excellent heat resistance and water resistance can be obtained. Such a terminal terminator made of monohydric phenol or the like may be added to the reaction system in advance, or partly added to the reaction system in advance and the remainder added as the reaction proceeds. May be. Furthermore, depending on the case, after the transesterification reaction of the dihydroxy compound of the component (A) and the carbonic acid diester of the component (B) partially proceeds, the whole amount may be added to the reaction system.
 エステル交換反応を行うに当たって反応温度は、特に制限はなく、通常100~330℃の範囲、好ましくは180~300℃の範囲で選ばれるが、より好ましくは、反応の進行に合わせて次第に180~300℃まで温度を上げていく方法がよい。このエステル交換反応の温度が100℃未満では反応速度が遅くなり、一方330℃を超えると副反応が生じたり、あるいは生成するポリカーボネートが着色するなどの問題が生じ、好ましくない。
 また、反応圧力は、使用するモノマーの蒸気圧や反応温度に応じて設定される。これは、反応が効率良く行われるように設定されればよく、限定されるものではない。通常、反応初期においては、1~50atm(760~38,000torr)までの大気圧(常圧)ないし加圧状態にしておき、反応後期においては、減圧状態、好ましくは最終的には0.01~100torrにする場合が多い。
 さらに、反応時間は、目標の分子量となるまで行えばよく、通常、0.2~10時間程度である。
In carrying out the transesterification reaction, the reaction temperature is not particularly limited and is usually selected in the range of 100 to 330 ° C., preferably in the range of 180 to 300 ° C. More preferably, the reaction temperature gradually becomes 180 to 300 as the reaction proceeds. A method of raising the temperature to ℃ is good. If the temperature of the transesterification reaction is less than 100 ° C., the reaction rate becomes slow. On the other hand, if it exceeds 330 ° C., side reactions occur or the resulting polycarbonate is colored, which is not preferable.
The reaction pressure is set according to the vapor pressure of the monomer used and the reaction temperature. This should just be set so that reaction may be performed efficiently, and is not limited. Usually, in the initial stage of the reaction, an atmospheric pressure (normal pressure) or a pressurized state of 1 to 50 atm (760 to 38,000 torr) is set, and in the latter stage of the reaction, a reduced pressure state, preferably 0.01 is finally used. In many cases, it is set to ~ 100 torr.
Furthermore, the reaction time may be carried out until the target molecular weight is reached, and is usually about 0.2 to 10 hours.
 そして、上記のエステル交換反応は、通常不活性溶剤の不存在下で行われるが、必要に応じて、得られるポリカーボネートの1~150質量%の不活性溶剤の存在下において行ってもよい。不活性溶剤としては、例えば、ジフェニルエーテル、ハロゲン化ジフェニルエーテル、ベンゾフェノン、ポリフェニルエーテル、ジクロロベンゼン、メチルナフタレンなどの芳香族化合物;トリシクロ(5,2,10)デカン、シクロオクタン、シクロデカンなどのシクロアルカンなどが挙げられる。
 また、必要に応じて不活性ガス雰囲気下で行ってもよく、不活性ガスとしては、例えばアルゴン、二酸化炭素、一酸化二窒素、窒素などのガス、クロロフルオロ炭化水素、エタンやプロパンなどのアルカン、エチレンやプロピレンなどのアルケンなど、各種のものが挙げられる。
The transesterification reaction is usually carried out in the absence of an inert solvent, but it may be carried out in the presence of 1 to 150% by mass of an inert solvent of the obtained polycarbonate, if necessary. Examples of the inert solvent include aromatic compounds such as diphenyl ether, halogenated diphenyl ether, benzophenone, polyphenyl ether, dichlorobenzene, and methylnaphthalene; cycloalkanes such as tricyclo (5,2,10) decane, cyclooctane, and cyclodecane. Is mentioned.
Further, it may be performed in an inert gas atmosphere as necessary. Examples of the inert gas include gases such as argon, carbon dioxide, dinitrogen monoxide and nitrogen, alkanes such as chlorofluorohydrocarbon, ethane and propane. And various types of alkene such as ethylene and propylene.
 また、ポリカーボネートの製造において、上述したエステル交換反応終了後、得られるポリカーボネートの品質(着色)を良好なものとするために、触媒の分解温度以上、好ましくは300℃前後、より好ましくは240℃以上350℃以下、さらに好ましくは260℃以上330℃以下、特に好ましくは270℃以上310℃以下、において反応物を熱処理して、触媒を熱分解除去することが好ましい。 Further, in the production of polycarbonate, in order to improve the quality (coloring) of the obtained polycarbonate after completion of the above-described transesterification reaction, it is at least the decomposition temperature of the catalyst, preferably around 300 ° C., more preferably at least 240 ° C. It is preferable that the reaction product is heat-treated at 350 ° C. or lower, more preferably 260 ° C. or higher and 330 ° C. or lower, particularly preferably 270 ° C. or higher and 310 ° C. or lower, to thermally decompose and remove the catalyst.
[有機リン化合物]
 本発明のポリカーボネート樹脂組成物に含まれる有機リン化合物は、ホスファイト化合物及びホスフェート化合物から選ばれる少なくとも1種である。
 本発明者らは、上述したポリカーボネートの製造において用いられる、重合触媒(有機塩基性触媒)の活性種が、得られたポリカーボネート中に極微量残留していることを分析し、該活性種を上記有機リン化合物で中和奪活することにより、極めて色調が良好なポリカーボネート樹脂組成物とすることを見出した。
[Organic phosphorus compounds]
The organophosphorus compound contained in the polycarbonate resin composition of the present invention is at least one selected from phosphite compounds and phosphate compounds.
The inventors of the present invention analyzed that the active species of the polymerization catalyst (organic basic catalyst) used in the production of the polycarbonate described above remained in the obtained polycarbonate in a very small amount, and determined the active species as described above. It has been found that by neutralizing and deactivating with an organic phosphorus compound, a polycarbonate resin composition having an extremely good color tone can be obtained.
 例えば、有機塩基性触媒としてテトラフェニルホスホニウムテトラフェニルボレート(TPTB)を使用した場合、TPTBによりビスフェノールA(BPA)が活性化されたテトラフェニルホスホニウムフェノキサイドが、ホスファイト化合物及びホスフェート化合物で中和奪活され、安定化すると考えられ、樹脂組成物の色調を極めて優れさせる効果を発現できる。一方で、無機塩基性触媒として強塩基である水酸化ナトリウムを使用した場合、水酸化ナトリウムによりBPAが活性化されたナトリウムフェノキサイドは、ホスファイト化合物及びホスフェート化合物では中和できず、リン酸ナトリウムのような形になるため、弱塩基性としてポリカーボネートの中で働くと考えられ、樹脂組成物の色調を優れさせる効果を発現することはできない。 For example, when tetraphenylphosphonium tetraphenylborate (TPTB) is used as an organic basic catalyst, tetraphenylphosphonium phenoxide, in which bisphenol A (BPA) is activated by TPTB, is neutralized with phosphite compounds and phosphate compounds. It is considered to be activated and stabilized, and the effect of making the color tone of the resin composition extremely excellent can be expressed. On the other hand, when sodium hydroxide, which is a strong base, is used as the inorganic basic catalyst, sodium phenoxide whose BPA has been activated by sodium hydroxide cannot be neutralized with the phosphite compound and phosphate compound. Therefore, it is considered that it works in polycarbonate as weakly basic, and the effect of improving the color tone of the resin composition cannot be exhibited.
 ホスファイト化合物としては、例えば、トリフェニルホスファイト、トリスノニルフェニルホスファイト、トリス(2,4-ジ-tert-ブチルフェニル)ホスファイト、トリデシルホスファイト、トリオクチルホスファイト、トリオクタデシルホスファイト、ジデシルモノフェニルホスファイト、ジオクチルモノフェニルホスファイト、ジイソプロピルモノフェニルホスファイト、モノブチルジフェニルホスファイト、モノデシルジフェニルホスファイト、モノオクチルジフェニルホスファイト、ジステアリルペンタエリスリトールジホスファイト、ビス(2,6-ジ-tert-ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイト、2,2’-メチレンビス(4,6-ジ-tert-ブチルフェニル)オクチルホスファイト、ビス(ノニルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4-ジ-tert-ブチルフェニル)ペンタエリスリトールジホスファイトなどが挙げられる。
 これらの中では、トリス(2,4-ジ-tert-ブチルフェニル)ホスファイト、ビス(2,6-ジ-tert-ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイト及び2,2’-メチレンビス(4,6-ジ-tert-ブチルフェニル)オクチルホスファイトが好ましい。ホスファイト化合物は、一種を用いても良く、二種以上を組み合わせて用いても良い。
Examples of the phosphite compound include triphenyl phosphite, trisnonylphenyl phosphite, tris (2,4-di-tert-butylphenyl) phosphite, tridecyl phosphite, trioctyl phosphite, trioctadecyl phosphite, Didecyl monophenyl phosphite, dioctyl monophenyl phosphite, diisopropyl monophenyl phosphite, monobutyl diphenyl phosphite, monodecyl diphenyl phosphite, monooctyl diphenyl phosphite, distearyl pentaerythritol diphosphite, bis (2,6 -Di-tert-butyl-4-methylphenyl) pentaerythritol diphosphite, 2,2'-methylenebis (4,6-di-tert-butylphenyl) octylphospha And bis (nonylphenyl) pentaerythritol diphosphite, bis (2,4-di-tert-butylphenyl) pentaerythritol diphosphite, and the like.
Among these, tris (2,4-di-tert-butylphenyl) phosphite, bis (2,6-di-tert-butyl-4-methylphenyl) pentaerythritol diphosphite, and 2,2′-methylenebis (4,6-Di-tert-butylphenyl) octyl phosphite is preferred. One phosphite compound may be used, or two or more phosphite compounds may be used in combination.
 ホスフェート化合物としては、例えば、トリブチルホスフェート、トリメチルホスフェート、トリオクチルホスフェート、オクチルジフェニルホスフェート、クレジルジフェニルホスフェート、トリクレジルホスフェート、トリ(2-エチルヘキシル)ホスフェート、ジイソプロピルフェニルホスフェート、トリキシレニルホスフェート、トリフェニルホスフェート、トリクロルフェニルホスフェート、トリエチルホスフェート、ジフェニルクレジルホスフェート、ジフェニルモノオルソキセニルホスフェート、トリブトキシエチルホスフェート、ジブチルホスフェート、ジオクチルホスフェート、ジイソプロピルホスフェートトリス(イソプロピルフェニル)ホスフェート、トリナフチルホスフェート、ビスフェノールAビスホスフェート、ビスフェノールAビス(ジフェニルホスフェート)、ヒドロキノンビスホスフェート、レゾルシンビスホスフェート、レゾルシノール-ジフェニルホスフェート、トリオキシベンゼントリホスフェート、1,3-フェニレン-テトラキス(2,6-ジメチルフェニル)リン酸エステルなどが挙げられる。
 これらの中では、トリフェニルホスフェート、ビスフェノールAビス(ジフェニルホスフェート)及び1,3-フェニレン-テトラキス(2,6-ジメチルフェニル)リン酸エステルが好ましい。ホスフェート化合物は、一種を用いても良く、二種以上を組み合わせて用いても良い。
Examples of the phosphate compound include tributyl phosphate, trimethyl phosphate, trioctyl phosphate, octyl diphenyl phosphate, cresyl diphenyl phosphate, tricresyl phosphate, tri (2-ethylhexyl) phosphate, diisopropylphenyl phosphate, trixylenyl phosphate, triphenyl Phosphate, trichlorophenyl phosphate, triethyl phosphate, diphenyl cresyl phosphate, diphenyl monoorthoxenyl phosphate, tributoxyethyl phosphate, dibutyl phosphate, dioctyl phosphate, diisopropyl phosphate tris (isopropylphenyl) phosphate, trinaphthyl phosphate, bisphenol A bisphosphate Bisphenol A bis (diphenyl phosphate), hydroquinone bisphosphate, resorcinol bisphosphate, resorcinol - diphenyl phosphate, trioxybenzene phosphate, 1,3-phenylene - tetrakis (2,6-dimethylphenyl) phosphoric acid ester.
Of these, triphenyl phosphate, bisphenol A bis (diphenyl phosphate) and 1,3-phenylene-tetrakis (2,6-dimethylphenyl) phosphate are preferred. A phosphate compound may be used alone or in combination of two or more.
 本発明のポリカーボネート樹脂組成物において、ホスファイト化合物及びホスフェート化合物から選ばれる少なくとも1種の有機リン化合物の含有量は、ポリカーボネート100質量部に対して0.001~0.5質量部であり、好ましくは0.003~0.2質量部であり、より好ましくは0.003~0.1質量部である。上記含有量が0.001質量部未満であると樹脂組成物の色調を優れさせる効果が発現できず、0.5質量部を超えると樹脂組成物の耐湿性が劣るなどの機能低下が生じる。
 また、ホスファイト化合物及びホスフェート化合物は、それぞれ単独で用いて良く、併用しても良いが、併用した場合の上記含有量は、ホスファイト化合物及びホスフェート化合物の合計量を表す。
In the polycarbonate resin composition of the present invention, the content of at least one organic phosphorus compound selected from a phosphite compound and a phosphate compound is 0.001 to 0.5 parts by mass with respect to 100 parts by mass of the polycarbonate, preferably Is 0.003 to 0.2 parts by mass, and more preferably 0.003 to 0.1 parts by mass. When the content is less than 0.001 part by mass, the effect of improving the color tone of the resin composition cannot be expressed, and when it exceeds 0.5 part by mass, the function deterioration such as inferior moisture resistance of the resin composition occurs.
Moreover, although a phosphite compound and a phosphate compound may each be used independently and may be used together, the said content at the time of using together represents the total amount of a phosphite compound and a phosphate compound.
[ポリカーボネート樹脂組成物]
 上記有機リン化合物は、ポリカーボネート製造におけるエステル交換反応終了時に反応器内に投入しても良く、またポリカーボネートの造粒時に二軸押出し機などに投入して混練しても良い。
 また、本発明のポリカーボネート樹脂組成物には、上記ポリカーボネート及び有機リン化合物の他に、可塑剤、顔料、潤滑剤、離型剤、安定剤、無機充填剤などのような周知の添加剤を配合することができ、これらを配合し、溶融混錬することによって本発明のポリカーボネート樹脂組成物とすることができる。
 配合及び混錬は、通常用いられている方法、例えば、リボンブレンダー、ヘンシェルミキサー、バンバリーミキサー、ドラムタンブラー、単軸スクリュー押出機、二軸スクリュー押出機、コニーダ、多軸スクリュー押出機等を用いる方法により行うことができる。なお、溶融混錬に際しての加熱温度は、通常220~260℃の範囲で選ばれる。
[Polycarbonate resin composition]
The organophosphorus compound may be introduced into the reactor at the end of the transesterification reaction in the production of polycarbonate, or may be introduced into a twin screw extruder or the like during granulation of the polycarbonate and kneaded.
The polycarbonate resin composition of the present invention is blended with known additives such as plasticizers, pigments, lubricants, mold release agents, stabilizers, inorganic fillers, etc., in addition to the polycarbonate and the organic phosphorus compound. These can be blended and melt kneaded to obtain the polycarbonate resin composition of the present invention.
For compounding and kneading, a method that is usually used, for example, a method that uses a ribbon blender, a Henschel mixer, a Banbury mixer, a drum tumbler, a single screw extruder, a twin screw extruder, a kneader, a multi screw extruder, etc. Can be performed. The heating temperature for melt kneading is usually selected in the range of 220 to 260 ° C.
 また、本発明のポリカーボネート樹脂組成物は、ポリカーボネートの製造時に上述した重合触媒(有機塩基性触媒)を使用するため、無機塩基触媒を用いる場合と異なり、樹脂組成物の着色要因となるナトリウム、セシウム及びカリウムの含有量を元素として、それぞれ0.1質量ppm未満とすることができる。
 したがって、本発明のポリカーボネート樹脂組成物は、耐熱性に優れ極めて色調の良好なものとなる。
In addition, since the polycarbonate resin composition of the present invention uses the polymerization catalyst (organic basic catalyst) described above during the production of the polycarbonate, unlike the case of using an inorganic base catalyst, sodium and cesium that cause coloring of the resin composition. And the content of potassium can be less than 0.1 ppm by mass, respectively.
Therefore, the polycarbonate resin composition of the present invention has excellent heat resistance and extremely good color tone.
 以下の実施例により、本発明を更に具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
 実施例および比較例における品質評価を、下記の方法により行った。
The following examples further illustrate the present invention, but the present invention is not limited to these examples.
Quality evaluation in the examples and comparative examples was performed by the following methods.
(1)金属量(Na、Cs及びK)の定量分析
 得られたポリカーボネートペレットを、N-メチルピロリドン(NMP)に溶解して1質量%溶液を調製し、それをAgilent製ICP-MS 7500csを用いてインジウム内標準法にて、Na、Cs及びKを定量した。
(2)色調(吸光度測定)
 得られたポリカーボネートペレットを用いて、360℃で1時間、窒素雰囲気下で熱安定性試験を実施し、得られたサンプルを、塩化メチレンに溶解して5質量%溶液を調製し、それを5cmの石英セルに溶液を入れ、島津製作所製UV-2450を用いて、420nmの波長の吸光度を測定した。熱安定性試験前後の吸光度の差(Δabs420)で色調を評価した。
(3)Mv(粘度平均分子量)
 ウベローデ型粘度計を用いて、20℃における塩化メチレン溶液の粘度を測定し、これより極限粘度[η]を求め、[η]=1.23×10-5Mv0.83の式により、粘度平均分子量(Mv)を算出した。
(1) Quantitative analysis of metal amount (Na, Cs and K) The obtained polycarbonate pellet was dissolved in N-methylpyrrolidone (NMP) to prepare a 1% by mass solution, and this was prepared using Agilent ICP-MS 7500cs. Then, Na, Cs and K were quantified by the indium internal standard method.
(2) Color tone (absorbance measurement)
Using the obtained polycarbonate pellets, a thermal stability test was performed at 360 ° C. for 1 hour under a nitrogen atmosphere, and the obtained sample was dissolved in methylene chloride to prepare a 5% by mass solution. The solution was put into a quartz cell of No. 4 and absorbance at a wavelength of 420 nm was measured using UV-2450 manufactured by Shimadzu Corporation. The color tone was evaluated by the difference in absorbance before and after the thermal stability test (Δabs 420 ).
(3) Mv (viscosity average molecular weight)
Using an Ubbelohde viscometer, the viscosity of the methylene chloride solution at 20 ° C. was measured, and the intrinsic viscosity [η] was determined from this, and the viscosity average molecular weight was calculated by the equation [η] = 1.23 × 10 −5 Mv 0.83 (Mv) was calculated.
[実施例1~6]
 内容積200mLのNi鋼製フラスコに、ビスフェノールA(BPA)を22.8g(0.10mol)、ジフェニルカーボネートを23.5g(0.11mol)、及び表1に示す種類と量の触媒を加え、N2置換を5回行ったあと、混合物を180℃に加熱し、常圧で30分間反応させた。次いで、温度を210℃に昇温し、真空度を100mmHgに上げて、30分間反応させた。次いで、温度を240℃に昇温し、真空度を10mmHgに上げて、30分間反応させた。次いで、温度を270℃に昇温し、真空度を2mmHgに上げて、30分間反応させた後、真空度を0.5mmHgまで上げてさらに30分間反応させた。この時点でポリカーボネートをサンプリングし、Mv(粘度平均分子量)を測定した。
 その後、表に示した量の有機リン化合物をトルエン溶液にして反応系内に添加し、5分間混練して、ポリカーボネート樹脂組成物とし、押出し機でペレット化した。上記方法により測定した金属量、色調及びMvを表1に示す。
[Examples 1 to 6]
To a 200 mL Ni steel flask with an internal volume of 22.8 g (0.10 mol) of bisphenol A (BPA), 23.5 g (0.11 mol) of diphenyl carbonate, and the type and amount of catalyst shown in Table 1, After 5 N 2 substitutions, the mixture was heated to 180 ° C. and reacted at normal pressure for 30 minutes. Next, the temperature was raised to 210 ° C., the degree of vacuum was raised to 100 mmHg, and the reaction was performed for 30 minutes. Next, the temperature was raised to 240 ° C., the degree of vacuum was raised to 10 mmHg, and the reaction was performed for 30 minutes. Next, the temperature was raised to 270 ° C., the degree of vacuum was raised to 2 mmHg, and the reaction was performed for 30 minutes, and then the degree of vacuum was raised to 0.5 mmHg and the reaction was further continued for 30 minutes. At this point, the polycarbonate was sampled and Mv (viscosity average molecular weight) was measured.
Thereafter, the organophosphorus compound in the amount shown in the table was made into a toluene solution, added to the reaction system, kneaded for 5 minutes to obtain a polycarbonate resin composition, and pelletized with an extruder. Table 1 shows the metal amount, color tone, and Mv measured by the above method.
[比較例1]
 有機リン化合物を添加しない以外は、実施例1と同様に実施した。上記方法により測定した金属量、色調及びMvを表1に示す。
[Comparative Example 1]
It implemented like Example 1 except not adding an organophosphorus compound. Table 1 shows the metal amount, color tone, and Mv measured by the above method.
[比較例2~5]
 実施例1で触媒として使用した(b)TPTBを、水酸化ナトリウム(NaOH)に代えた以外は、実施例1と同じ温度及び圧力で反応させ、得られたポリカーボネートをサンプリングしてMvを測定した。
 次に、表に示した量の奪活剤(p-TsOBu:p-トルエンスルホン酸ブチル)をトルエン溶液にして反応系内に添加し、15分間混練した。その後、表に示した量の有機リン化合物をトルエン溶液にして反応系内に添加し、5分間混練して、ポリカーボネート樹脂組成物とし、押出し機でペレット化した。上記方法により測定した金属量、色調及びMvを表1に示す。
[Comparative Examples 2 to 5]
(B) TPTB used as a catalyst in Example 1 was reacted with sodium hydroxide (NaOH) except that it was reacted at the same temperature and pressure as in Example 1, and the obtained polycarbonate was sampled to measure Mv. .
Next, a deactivation agent (p-TsOBu: p-toluenesulfonate butyl) in the amount shown in the table was added to the reaction system as a toluene solution and kneaded for 15 minutes. Thereafter, the organophosphorus compound in the amount shown in the table was made into a toluene solution, added to the reaction system, kneaded for 5 minutes to obtain a polycarbonate resin composition, and pelletized with an extruder. Table 1 shows the metal amount, color tone, and Mv measured by the above method.
[比較例6~8]
 比較例2で触媒として使用したNaOHを、炭酸セシウム(Cs2CO3)に代えて、表に示した量の奪活剤(p-TsOBu)と、有機リン化合物を添加したこと以外は、比較例2と同様に実施した。上記方法により測定した金属量、色調及びMvを表1に示す。
[Comparative Examples 6 to 8]
Comparison was made except that NaOH used as a catalyst in Comparative Example 2 was replaced with cesium carbonate (Cs 2 CO 3 ), and the amount of deactivating agent (p-TsOBu) shown in the table and an organic phosphorus compound were added. Performed as in Example 2. Table 1 shows the metal amount, color tone, and Mv measured by the above method.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010

 比較例2及び6から、NaOHやCs2CO3の無機塩基性触媒を用い、奪活剤を添加した場合、樹脂組成物の色調が実施例と比べ劣ることがわかり、比較例3~5、7及び8から、無機塩基性触媒と、ホスファイト及びホスフェート化合物である有機リン化合物とを組み合わせても、色調を向上させる効果が発現されないことがわかる。
 また、比較例1と実施例1~6との対比から、有機リン化合物を混合することにより、色調が飛躍的に向上する効果が発揮されることがわかる。
From Comparative Examples 2 and 6, it was found that when an inorganic basic catalyst such as NaOH or Cs 2 CO 3 was used and a deactivator was added, the color tone of the resin composition was inferior to that of Examples, Comparative Examples 3 to 5, From 7 and 8, it can be seen that the effect of improving the color tone is not exhibited even when an inorganic basic catalyst and an organic phosphorus compound which is a phosphite and a phosphate compound are combined.
Further, from the comparison between Comparative Example 1 and Examples 1 to 6, it can be seen that the effect of drastically improving the color tone is exhibited by mixing the organic phosphorus compound.
 本発明のポリカーボネート樹脂組成物は、耐熱性に優れ色調が極めて良好であることから、電気・電子分野、自動車分野、光学部品分野、その他広い工業分野で有用である。 The polycarbonate resin composition of the present invention is excellent in heat resistance and has a very good color tone, and thus is useful in the electrical / electronic field, the automotive field, the optical part field, and other wide industrial fields.

Claims (17)

  1.  重合触媒として(a)含窒素有機塩基性化合物と(b)アリール基を含む4級ホスホニウム塩との組み合わせを用いたエステル交換反応により得られるポリカーボネート100質量部に対して、ホスファイト化合物及びホスフェート化合物から選ばれる少なくとも1種の有機リン化合物を0.001~0.5質量部含むポリカーボネート樹脂組成物。 Phosphite compound and phosphate compound with respect to 100 parts by mass of a polycarbonate obtained by a transesterification reaction using a combination of (a) a nitrogen-containing organic basic compound and (b) a quaternary phosphonium salt containing an aryl group as a polymerization catalyst A polycarbonate resin composition containing 0.001 to 0.5 parts by mass of at least one organic phosphorus compound selected from the group consisting of:
  2.  ナトリウム、セシウム及びカリウムの含有量が元素として、それぞれ0.1質量ppm未満である請求項1に記載のポリカーボネート樹脂組成物。 The polycarbonate resin composition according to claim 1, wherein the contents of sodium, cesium, and potassium are each less than 0.1 ppm by mass as elements.
  3.  (a)含窒素有機塩基性化合物が、4級アンモニウム塩である請求項1又は2に記載のポリカーボネート樹脂組成物。 The polycarbonate resin composition according to claim 1 or 2, wherein (a) the nitrogen-containing organic basic compound is a quaternary ammonium salt.
  4.  (a)含窒素有機塩基性化合物が、下記一般式(I)で表される化合物である請求項1又は2記載のポリカーボネート樹脂組成物。
      (NR1 4+(X1  ・・・  (I)
    〔式中、R1はアルキル基、アリール基又はアルキルアリール基を示し、4つのR1はたがいに同一でも異なっていてもよく、また2つのR1が結合して環構造を形成していてもよい。X1はハロゲン原子、水酸基、アルキルオキシ基、アリールオキシ基、アルキルカルボニルオキシ基、アリールカルボニルオキシ基、HCO3又はBR4(Rは水素原子又はアルキル基又はアリール基を示し、4つのRはたがいに同一でも異なっていてもよい)を示す。〕
    (A) The polycarbonate resin composition according to claim 1 or 2, wherein the nitrogen-containing organic basic compound is a compound represented by the following general formula (I).
    (NR 1 4 ) + (X 1 ) (I)
    Wherein, R 1 represents an alkyl group, an aryl group or an alkylaryl group, four R 1 may be the same with or different from each other, also form a two R 1 is bonded to the ring structure Also good. X 1 represents a halogen atom, a hydroxyl group, an alkyloxy group, an aryloxy group, an alkylcarbonyloxy group, an arylcarbonyloxy group, HCO 3 or BR 4 (R represents a hydrogen atom, an alkyl group or an aryl group, and four Rs are May be the same or different. ]
  5.  (b)アリール基を含む4級ホスホニウム塩が、下記一般式(II)で表される化合物である請求項1~4のいずれかに記載のポリカーボネート樹脂組成物。
      (PR2 4+(X2  ・・・  (II)
    〔式中、R2はアルキル基、アリール基又はアルキルアリール基を示すが、4つのR2のうち少なくとも一つはアリール基である。また4つのR2はたがいに同一でも異なっていてもよく、2つのR2が結合して環構造を形成していてもよい。X2はハロゲン原子、水酸基、アルキルオキシ基、アリールオキシ基、アルキルカルボニルオキシ基、アリールカルボニルオキシ基、HCO3又はBR4(Rは水素原子又はアルキル基又はアリール基を示し、4つのRはたがいに同一でも異なっていてもよい)を示す。〕
    5. The polycarbonate resin composition according to claim 1, wherein (b) the quaternary phosphonium salt containing an aryl group is a compound represented by the following general formula (II).
    (PR 2 4 ) + (X 2 ) (II)
    [Wherein R 2 represents an alkyl group, an aryl group or an alkylaryl group, but at least one of the four R 2 is an aryl group. Further, the four R 2 may be the same or different, and two R 2 may be bonded to form a ring structure. X 2 represents a halogen atom, a hydroxyl group, an alkyloxy group, an aryloxy group, an alkylcarbonyloxy group, an arylcarbonyloxy group, HCO 3 or BR 4 (R represents a hydrogen atom, an alkyl group or an aryl group, and four Rs are May be the same or different. ]
  6.  エステル交換反応の原料が、(A)ジヒドロキシ化合物及び(B)炭酸ジエステルである請求項1~5のいずれかに記載のポリカーボネート樹脂組成物。 The polycarbonate resin composition according to any one of claims 1 to 5, wherein the raw materials for the transesterification reaction are (A) a dihydroxy compound and (B) a carbonic acid diester.
  7.  (A)ジヒドロキシ化合物が、2,2-ビス(4-ヒドロキシフェニル)プロパンである請求項6に記載のポリカーボネート樹脂組成物。 The polycarbonate resin composition according to claim 6, wherein the (A) dihydroxy compound is 2,2-bis (4-hydroxyphenyl) propane.
  8.  (B)炭酸ジエステルが、ジフェニルカーボネートである請求項6又は7に記載のポリカーボネート樹脂組成物。 (B) The polycarbonate resin composition according to claim 6 or 7, wherein the carbonic acid diester is diphenyl carbonate.
  9.  (a)含窒素有機塩基性化合物が、テトラメチルアンモニウムヒドロキシドであり、(b)アリール基を含む4級ホスホニウム塩が、テトラフェニルホスホニウムテトラフェニルボレートである請求項1~8のいずれかに記載のポリカーボネート樹脂組成物。 9. The method according to claim 1, wherein (a) the nitrogen-containing organic basic compound is tetramethylammonium hydroxide, and (b) the quaternary phosphonium salt containing an aryl group is tetraphenylphosphonium tetraphenylborate. Polycarbonate resin composition.
  10.  有機リン化合物が、トリス(2,4-ジ-tert-ブチルフェニル)ホスファイト、ビス(2,6-ジ-tert-ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイト、2,2’-メチレンビス(4,6-ジ-tert-ブチルフェニル)オクチル-ホスファイト、トリフェニルホスフェート、ビスフェノールAビス(ジフェニルホスフェート)、及び1,3-フェニレン-テトラキス(2,6-ジメチルフェニル)リン酸エステルから選ばれる少なくとも1種である、請求項1~9のいずれかに記載のポリカーボネート樹脂組成物。 The organophosphorus compound is tris (2,4-di-tert-butylphenyl) phosphite, bis (2,6-di-tert-butyl-4-methylphenyl) pentaerythritol diphosphite, 2,2′-methylenebis. Selected from (4,6-di-tert-butylphenyl) octyl phosphite, triphenyl phosphate, bisphenol A bis (diphenyl phosphate), and 1,3-phenylene-tetrakis (2,6-dimethylphenyl) phosphate The polycarbonate resin composition according to claim 1, wherein the polycarbonate resin composition is at least one selected from the group consisting of:
  11.  重合触媒として(a)含窒素有機塩基性化合物と(b)アリール基を含む4級ホスホニウム塩との組み合わせを用い、エステル交換反応によりポリカーボネートを得、得られたポリカーボネート100質量部に対して、ホスファイト化合物及びホスフェート化合物から選ばれる少なくとも1種の有機リン化合物を0.001~0.5質量部混合する、ポリカーボネート樹脂組成物の製造方法。 Using a combination of (a) a nitrogen-containing organic basic compound and (b) a quaternary phosphonium salt containing an aryl group as a polymerization catalyst, a polycarbonate was obtained by a transesterification reaction. A method for producing a polycarbonate resin composition, comprising mixing 0.001 to 0.5 parts by mass of at least one organic phosphorus compound selected from a phyto compound and a phosphate compound.
  12.  エステル交換反応終了後、重合触媒の分解温度以上で反応生成物を熱処理してポリカーボネートを得る、請求項11に記載のポリカーボネート樹脂組成物の製造方法。 The method for producing a polycarbonate resin composition according to claim 11, wherein after completion of the transesterification reaction, the reaction product is heat-treated at a temperature equal to or higher than the decomposition temperature of the polymerization catalyst to obtain a polycarbonate.
  13.  (a)含窒素有機塩基性化合物が、4級アンモニウム塩である請求項11又は12に記載のポリカーボネート樹脂組成物の製造方法。 (A) The method for producing a polycarbonate resin composition according to claim 11 or 12, wherein the nitrogen-containing organic basic compound is a quaternary ammonium salt.
  14.  (a)含窒素有機塩基性化合物が、下記一般式(I)で表される化合物である請求項11又は12記載のポリカーボネート樹脂組成物の製造方法。
      (NR1 4+(X1  ・・・  (I)
    〔式中、R1はアルキル基、アリール基又はアルキルアリール基を示し、4つのR1はたがいに同一でも異なっていてもよく、また2つのR1が結合して環構造を形成していてもよい。X1はハロゲン原子、水酸基、アルキルオキシ基、アリールオキシ基、アルキルカルボニルオキシ基、アリールカルボニルオキシ基、HCO3又はBR4(Rは水素原子又はアルキル基又はアリール基を示し、4つのRはたがいに同一でも異なっていてもよい)を示す。〕
    (A) The method for producing a polycarbonate resin composition according to claim 11 or 12, wherein the nitrogen-containing organic basic compound is a compound represented by the following general formula (I).
    (NR 1 4 ) + (X 1 ) (I)
    Wherein, R 1 represents an alkyl group, an aryl group or an alkylaryl group, four R 1 may be the same with or different from each other, also form a two R 1 is bonded to the ring structure Also good. X 1 represents a halogen atom, a hydroxyl group, an alkyloxy group, an aryloxy group, an alkylcarbonyloxy group, an arylcarbonyloxy group, HCO 3 or BR 4 (R represents a hydrogen atom, an alkyl group or an aryl group, and four Rs are May be the same or different. ]
  15.  (b)アリール基を含む4級ホスホニウム塩が、下記一般式(II)で表される化合物である請求項11~14のいずれかに記載のポリカーボネート樹脂組成物の製造方法。
      (PR2 4+(X2  ・・・  (II)
    〔式中、R2はアルキル基、アリール基又はアルキルアリール基を示すが、4つのR2のうち少なくとも一つはアリール基である。また4つのR2はたがいに同一でも異なっていてもよく、2つのR2が結合して環構造を形成していてもよい。X2はハロゲン原子、水酸基、アルキルオキシ基、アリールオキシ基、アルキルカルボニルオキシ基、アリールカルボニルオキシ基、HCO3又はBR4(Rは水素原子又はアルキル基又はアリール基を示し、4つのRはたがいに同一でも異なっていてもよい)を示す。〕
    The method for producing a polycarbonate resin composition according to any one of claims 11 to 14, wherein (b) the quaternary phosphonium salt containing an aryl group is a compound represented by the following general formula (II).
    (PR 2 4 ) + (X 2 ) (II)
    [Wherein R 2 represents an alkyl group, an aryl group or an alkylaryl group, but at least one of the four R 2 is an aryl group. Further, the four R 2 may be the same or different, and two R 2 may be bonded to form a ring structure. X 2 represents a halogen atom, a hydroxyl group, an alkyloxy group, an aryloxy group, an alkylcarbonyloxy group, an arylcarbonyloxy group, HCO 3 or BR 4 (R represents a hydrogen atom, an alkyl group or an aryl group, and four Rs are May be the same or different. ]
  16.  反応生成物を熱処理する温度が、240℃以上350℃以下である請求項12~15のいずれかに記載のポリカーボネート樹脂組成物の製造方法。 The method for producing a polycarbonate resin composition according to any one of claims 12 to 15, wherein a temperature at which the reaction product is heat-treated is 240 ° C or higher and 350 ° C or lower.
  17.  請求項11~16のいずれかに記載のポリカーボネート樹脂組成物の製造方法により製造されたポリカーボネート樹脂組成物。 A polycarbonate resin composition produced by the method for producing a polycarbonate resin composition according to any one of claims 11 to 16.
PCT/JP2013/052099 2012-02-08 2013-01-30 Polycarbonate resin composition WO2013118624A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380008665.0A CN104125985A (en) 2012-02-08 2013-01-30 Polycarbonate resin composition
KR20147016704A KR20140127208A (en) 2012-02-08 2013-01-30 Polycarbonate resin composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012025213A JP2013159755A (en) 2012-02-08 2012-02-08 Polycarbonate resin composition
JP2012-025213 2012-02-08

Publications (1)

Publication Number Publication Date
WO2013118624A1 true WO2013118624A1 (en) 2013-08-15

Family

ID=48947389

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/052099 WO2013118624A1 (en) 2012-02-08 2013-01-30 Polycarbonate resin composition

Country Status (5)

Country Link
JP (1) JP2013159755A (en)
KR (1) KR20140127208A (en)
CN (1) CN104125985A (en)
TW (1) TW201335227A (en)
WO (1) WO2013118624A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024070533A1 (en) * 2022-09-29 2024-04-04 三菱エンジニアリングプラスチックス株式会社 Polycarbonate resin composition

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018180366A1 (en) * 2017-03-31 2018-10-04 出光興産株式会社 Method for producing thermoplastic resin
US20220098384A1 (en) * 2019-01-17 2022-03-31 Basf Se Process for producing porous materials

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1045896A (en) * 1996-07-31 1998-02-17 Idemitsu Kosan Co Ltd Production of polycarbonate
JP2005325320A (en) * 2004-04-16 2005-11-24 Teijin Chem Ltd Polycarbonate resin composition and its molded article
JP2007284540A (en) * 2006-04-14 2007-11-01 Idemitsu Kosan Co Ltd Polycarbonate resin composition and its molded plate
JP2008127557A (en) * 2006-11-27 2008-06-05 Mitsubishi Engineering Plastics Corp Polycarbonate resin composition containing red dyestuff, and molded article made from the resin composition

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006049228A1 (en) * 2004-11-05 2006-05-11 Teijin Chemicals Ltd. Polycarbonate resin material for molding eyeglass lenses and optical elements

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1045896A (en) * 1996-07-31 1998-02-17 Idemitsu Kosan Co Ltd Production of polycarbonate
JP2005325320A (en) * 2004-04-16 2005-11-24 Teijin Chem Ltd Polycarbonate resin composition and its molded article
JP2007284540A (en) * 2006-04-14 2007-11-01 Idemitsu Kosan Co Ltd Polycarbonate resin composition and its molded plate
JP2008127557A (en) * 2006-11-27 2008-06-05 Mitsubishi Engineering Plastics Corp Polycarbonate resin composition containing red dyestuff, and molded article made from the resin composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024070533A1 (en) * 2022-09-29 2024-04-04 三菱エンジニアリングプラスチックス株式会社 Polycarbonate resin composition

Also Published As

Publication number Publication date
CN104125985A (en) 2014-10-29
KR20140127208A (en) 2014-11-03
JP2013159755A (en) 2013-08-19
TW201335227A (en) 2013-09-01

Similar Documents

Publication Publication Date Title
KR101538207B1 (en) A method for preparing polysiloxane based copolycarbonate
EP0807657B1 (en) Process for producing polycarbonate
JPH059285A (en) Manufacture of polycarbonate
JP3613355B2 (en) Polycarbonate and method for producing the same
JP4056645B2 (en) Optical polycarbonate resin composition
WO2011071165A1 (en) Polycarbonate resin composition and molded article
US6462165B1 (en) Polycarbonate and optical material
WO2013118624A1 (en) Polycarbonate resin composition
JPH11106630A (en) Aromatic polycarbonate resin composition
EP1809685B1 (en) Method of preparing polycarbonate resin
JP4455508B2 (en) Method for producing optical polycarbonate resin composition
JPH11106631A (en) Aromatic polycarbonate resin composition
JP3629827B2 (en) Method for producing polycarbonate
JP3017559B2 (en) Method for producing polycarbonate composition
JPH07242743A (en) Production of polycarbonate
JP3354777B2 (en) Method for producing polycarbonate
JP3591551B2 (en) Method for producing polycarbonate
US20040063825A1 (en) Aromatic-aliphatic copolycarbonate resin composition
JP3422130B2 (en) Polycarbonate and method for producing the same
JP3444380B2 (en) Polycarbonate composition and method for producing the same
JP3580326B2 (en) Method for producing polycarbonate
KR20040032195A (en) Method for preparing of polycarbonate resin
JPH09169838A (en) Polycarbonate for optical material
JP2833981B2 (en) Method for producing copolymerized polycarbonate
JPH11106634A (en) Aromatic polycarbonate resin composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13746472

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147016704

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13746472

Country of ref document: EP

Kind code of ref document: A1