WO2013118305A1 - Image generation device, image generation method, and computer-readable recording medium having image generation program recorded therein - Google Patents

Image generation device, image generation method, and computer-readable recording medium having image generation program recorded therein Download PDF

Info

Publication number
WO2013118305A1
WO2013118305A1 PCT/JP2012/053190 JP2012053190W WO2013118305A1 WO 2013118305 A1 WO2013118305 A1 WO 2013118305A1 JP 2012053190 W JP2012053190 W JP 2012053190W WO 2013118305 A1 WO2013118305 A1 WO 2013118305A1
Authority
WO
WIPO (PCT)
Prior art keywords
imaging
pixel
captured
resolution
image
Prior art date
Application number
PCT/JP2012/053190
Other languages
French (fr)
Japanese (ja)
Inventor
章太 植木
泰広 上田
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to PCT/JP2012/053190 priority Critical patent/WO2013118305A1/en
Publication of WO2013118305A1 publication Critical patent/WO2013118305A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T3/00Geometric image transformation in the plane of the image
    • G06T3/40Scaling the whole image or part thereof
    • G06T3/4053Super resolution, i.e. output image resolution higher than sensor resolution
    • G06T3/4069Super resolution, i.e. output image resolution higher than sensor resolution by subpixel displacement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/48Increasing resolution by shifting the sensor relative to the scene
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N2021/9513Liquid crystal panels

Definitions

  • the present invention relates to an image generation apparatus that generates an image having a higher resolution than a captured image based on the captured image, an image generation method, and a computer-readable recording medium that records the image generation program.
  • the imaging object is imaged at each position, and the pixel shifting method for combining the captured images at each position, or optical blurring.
  • High resolution techniques such as a super-resolution technique for generating a high resolution image in consideration of the above have been put into practical use.
  • a defect is likely to occur in an imaging pixel due to a local crystal defect of a semiconductor or the like.
  • imaging pixels with defects hereinafter referred to as “defective pixels”
  • a constant bias voltage is always added to the imaging output corresponding to the amount of incident light, and normal imaging output cannot be performed. Therefore, in the image data output by such a solid-state imaging device, the luminance value of the pixel corresponding to the defective pixel is higher or lower than the normal value.
  • FIG. 10 is a diagram illustrating an imaging region V by each imaging pixel when an imaging target is imaged by a solid-state imaging device having defective pixels.
  • nine rectangular imaging areas V correspond to areas on the imaging surface captured by 3 ⁇ 3 vertical and horizontal imaging pixels arranged in a matrix in the solid-state imaging device.
  • the imaging region v1 that is hatched corresponds to the region on the imaging target surface that is imaged by the defective pixel, and the imaging region v0 that is not hatched, that is, 8 around the imaging region v1.
  • the two imaging areas v0 correspond to areas on the imaging surface captured by normal imaging pixels.
  • a minute detection target generated on the imaging target is shown with a reference mark U. The same applies to FIGS. 11A to 11D described later.
  • FIG. 10 illustrates the case where the pixel shifting method is not performed
  • the pixel shifting method that has been used conventionally that is, the pixel shifting method that performs imaging while shifting the position by the minimum necessary distance is also employed.
  • a minute detection target generated on the imaging target may be missed.
  • a high-resolution image having a resolution twice that of the captured image is generated using a conventional pixel shifting method will be described as an example.
  • FIGS. 11A to 11D are diagrams showing an imaging region V by each imaging pixel when an imaging object is imaged by a solid-state imaging device in a conventional pixel shifting method.
  • the arrangement directions of the imaging pixels arranged in a matrix in the solid-state imaging device are denoted as an X direction and a Y direction
  • a total of four imaging operations are performed as shown in FIGS. 11A to 11D while shifting the solid-state imaging device by 1/2 of the size of the imaging pixel along the Y direction.
  • FIG. 11A shows the imaging region V by each imaging pixel when the relative positional relationship between the imaging object and the solid-state imaging device is in the initial state.
  • FIG. 11A shows an imaging region V by each imaging pixel when the solid-state imaging device is moved in the X direction by 1 ⁇ 2 of the imaging pixel size from the initial state shown in FIG. 11A.
  • FIG. 11C shows an imaging region V by each imaging pixel when the solid-state imaging device is moved in the Y direction by 1 ⁇ 2 of the imaging pixel size from the initial state shown in FIG. 11A.
  • FIG. 11D shows an imaging region V by each imaging pixel when the solid-state imaging device is moved in the X direction and the Y direction by 1 ⁇ 2 of the size of the imaging pixel from the state shown in FIG. 11A.
  • a reference point on the imaging surface is indicated by a reference symbol O.
  • the solid-state imaging device is moved only by the minimum necessary distance. Therefore, in all four times of imaging, the detection target is within the imaging area v1 of the defective pixel. U may be completely included. In such a case, since the defective pixel cannot perform normal imaging output, the correction for the defective pixel is performed based on the luminance value information captured and output by the normal imaging pixels around the defective pixel, as described above. Even if the process is performed, the detection target U cannot be detected because the detection target U is not included in the imaging region v0 of the normal imaging pixel.
  • FIG. 12 is a diagram showing a high-resolution image H generated by combining the captured images corresponding to FIGS. 11A to 11D.
  • the high resolution image H is generated by superimposing four captured images corresponding to FIGS. 11A to 11D with the reference point O coincident. Therefore, the luminance value information of each pixel E of the high resolution image H is generated based on the luminance value information of the pixel corresponding to the pixel E among the pixels in each captured image.
  • the pixel E of the high-resolution image H has four effective pixels e0 and an effective number of pixels e0.
  • a pixel e1 having three images, a pixel e2 having two effective images, and a pixel e3 having zero effective images are included.
  • the effective number of images corresponds to the number of effective luminance value information among the four luminance value information based on the four captured images for generating the pixel E.
  • the detection target U is completely within the area on the imaging surface corresponding to the pixel e3 whose effective imaging number is 0, in other words, the area where the imaging areas v1 due to the defective pixels overlap each other. If it is included, the detection object U cannot be detected as described above.
  • a pixel e2 with a small effective number of images appears in the vicinity of the pixel e3 with zero effective number of images.
  • the number of effective luminance value information decreases as the number of effective imaging images decreases, so that the pixel e2 is easily affected by noise due to a decrease in the S / N ratio.
  • the detection target U is included in the area on the imaging target surface corresponding to the pixel e2 having a small number of effective images, the detection is increased as the number of effective images is decreased. The detection accuracy of the object U is lowered.
  • An object of the present invention is to suppress a decrease in accuracy of a high-resolution image generated based on a captured image even when a defective pixel is included in a solid-state imaging device that captures an imaging object.
  • the present invention provides an imaging unit in which a plurality of imaging pixels are two-dimensionally arranged, and an imaging position changing unit that changes a relative position between the imaging object and the imaging unit in a direction in which the imaging pixels are arranged.
  • An image generation apparatus that generates a high-resolution image having a higher resolution than the low-resolution image from a plurality of low-resolution images when the imaging unit images the imaging object while shifting the relative position Because
  • An imaging position setting unit that sets the relative position when each low-resolution image is captured, so that imaging regions captured by the same imaging pixel do not overlap each other between a plurality of low-resolution images.
  • An imaging position setting unit for setting each imaging position;
  • An imaging control unit that controls the imaging unit and the imaging position changing unit so that the imaging object is imaged at each imaging position set by the imaging position setting unit;
  • An image generation apparatus comprising: a high-resolution image generation unit configured to generate a high-resolution image from a plurality of low-resolution images captured at each imaging position set by the imaging position setting unit.
  • the imaging position setting unit The magnifications for increasing the resolution in the first and second arrangement directions in which the image pickup pixels are arranged are Ax and Ay, respectively, and the sizes in the first and second arrangement directions of the image pickup regions picked up by one image pickup pixel are Wx,
  • the imaging areas captured by the same imaging pixel are separated in the second arrangement direction.
  • the present invention also relates to an imaging unit in which a plurality of imaging pixels are two-dimensionally arranged, and an imaging position change that changes a relative position between the imaging object and the imaging unit in the direction in which the imaging pixels are arranged.
  • Generating a high-resolution image having a higher resolution than the low-resolution image from a plurality of low-resolution images when the imaging unit images the imaging object while shifting the relative position A method, An imaging position setting step for setting the relative position when each low-resolution image is captured, so that imaging regions captured by the same imaging pixel do not overlap each other between a plurality of low-resolution images.
  • An imaging position setting step for setting each imaging position;
  • An imaging control step for controlling the imaging unit and the imaging position changing unit so that the imaging object is imaged at each imaging position set by the imaging position setting step;
  • a high-resolution image generation step of generating a high-resolution image from a plurality of low-resolution images captured at each imaging position set in the imaging position setting step.
  • the present invention is also a computer-readable recording medium on which an image generation program for causing a computer to execute the image generation method is recorded.
  • imaging of each low-resolution image is performed so that imaging regions captured by the same imaging pixel in the solid-state imaging device do not overlap each other between a plurality of low-resolution images for generating a high-resolution image.
  • the position is set.
  • 1 is a schematic diagram illustrating a schematic configuration of an image processing system according to an embodiment of the present invention.
  • 1 is a block diagram illustrating a configuration of an image processing system according to an embodiment of the present invention. It is a figure which shows the imaging area by each imaging pixel when an imaging target object is imaged in each imaging position set by the imaging position setting part in 1st Example. It is a figure which shows the imaging area by each imaging pixel when an imaging target object is imaged in each imaging position set by the imaging position setting part in 1st Example.
  • FIG. 4 is a diagram showing a high-resolution image generated by combining each captured image corresponding to FIGS. 3A to 3D. It is a figure which shows the imaging area by each imaging pixel when an imaging target object is imaged in each imaging position set by the imaging position setting part in 2nd Example. It is a figure which shows the imaging area by each imaging pixel when an imaging target object is imaged in each imaging position set by the imaging position setting part in 2nd Example.
  • FIG. 6 is a diagram illustrating a high-resolution image generated by combining the captured images corresponding to FIGS. 5A to 5D. It is a figure which shows the imaging area by each imaging pixel when an imaging target object is imaged in each imaging position set by the imaging position setting part in 3rd Example.
  • FIG. 8 is a diagram showing a high-resolution image generated by combining the captured images corresponding to FIGS. 7A to 7D. It is a flowchart which shows the procedure of the image generation process by the image processing system which concerns on embodiment of this invention.
  • FIG. 12 is a diagram showing a high-resolution image generated by combining the captured images corresponding to FIGS. 11A to 11D.
  • FIG. 1 is a schematic diagram showing a schematic configuration of an image processing system 100 according to an embodiment of the present invention.
  • FIG. 2 is a block diagram showing a configuration of the image processing system 100 according to the embodiment of the present invention.
  • An image processing system 100 that is an image generation device includes an imaging device 10, an actuator 20, a control device 30, and a display device 40 as illustrated.
  • the imaging device 10 is a device that includes the solid-state imaging element 12 in which a plurality of imaging pixels are two-dimensionally arranged, and performs imaging of the imaging target P in accordance with instructions from the control device 30.
  • the “imaging pixel” is a part that outputs information for one pixel in the captured image. That is, one pixel in the captured image corresponds to an imaging region captured by one imaging pixel in the solid-state imaging device 12.
  • the actuator 20 is a device that changes the relative position of the solid-state imaging device 12 and the imaging object P in the arrangement direction of the imaging pixels in the solid-state imaging device 12 in accordance with an instruction from the control device 30.
  • the control device 30 sets a relative position (hereinafter referred to as “imaging position”) between the solid-state imaging device 12 and the imaging object P when imaging the imaging object P.
  • imaging position a relative position between the solid-state imaging device 12 and the imaging object P when imaging the imaging object P.
  • a plurality of imaging positions are set by the control device 30 in order to generate a high resolution image based on a plurality of captured images by the pixel shifting method.
  • the captured image in the present embodiment corresponds to a low-resolution image.
  • control device 30 controls the operations of the imaging device 10 and the actuator 20 so that imaging is sequentially performed at each set imaging position. Further, the control device 30 is configured to generate an image of a high-resolution image based on image data of a captured image (hereinafter referred to as “captured image data”) when the solid-state imaging device 12 images the imaging target P at each imaging position. Data (hereinafter referred to as “high resolution image data”) is generated.
  • the display device 40 is a device for displaying a high-resolution image of the imaging target P based on the high-resolution image data generated by the control device 30.
  • the image processing system 100 adopts the pixel shifting method to provide the display device 40 with a high-resolution image of the imaging target P that has a higher resolution than the captured image acquired by the solid-state imaging device 12. It is configured to be displayed.
  • Such an image processing system 100 can be suitably used for an application that needs to detect a high-frequency component in a captured image of the imaging target P.
  • the imaging target P by using a silicon wafer as the imaging target P, it can be used for inspecting a detection target such as a flaw or a foreign matter on the silicon wafer.
  • FPDs such as liquid crystal displays (Liquid Crystal Display: abbreviated as “LCD”) and plasma display panels (Plasma Display Panel: abbreviated as “PDP”) as the imaging object P, in the FPD lighting inspection, the FPD in minute It can be used to detect an object to be detected.
  • LCD liquid crystal displays
  • PDP plasma display panels
  • the image processing system 100 is a high-resolution image generated by the pixel shifting method even when a plurality of imaging pixels constituting the solid-state imaging device 12 includes defective pixels. It is comprised so that the fall of the precision of can be suppressed.
  • a defect in which defective pixels are gathered in a plurality of units is referred to as a “cluster defect”, and a defect in which defective pixels exist alone is referred to as a “non-cluster defect”. Called.
  • the imaging device 10 the actuator 20, the control device 30, and the display device 40 that are components of the image processing system 100 will be described.
  • the imaging device 10 includes a lens 11 that is an optical imaging unit, a solid-state imaging device 12 that is an imaging unit, and a housing that houses the lens 11 and the solid-state imaging device 12. .
  • the imaging device 10 is installed inside the casing through a lens 11 that is installed facing the imaging target P and that reflects light reflected from the imaging target P inside the casing. It is configured to form an optical image on the imaging surface of the solid-state imaging device 12.
  • the solid-state imaging device 12 is configured by arranging a plurality of imaging pixels in a matrix on the imaging surface, and is provided in the casing so that the imaging surface is perpendicular to the optical axis of the lens 11. ing. In accordance with an instruction from the control device 30, the solid-state imaging device 12 spatially discretizes the image of the imaging target P that has been optically imaged on the imaging surface, and converts the image into an image signal. In this way, the imaging device 10 acquires the image of the imaging target P imaged on the imaging surface as captured image data, and outputs it to the control device 30.
  • the solid-state imaging device 12 is configured as an area sensor, and a CCD image sensor, a CMOS image sensor, or the like can be used.
  • the arrangement directions of the imaging pixels arranged in a matrix are referred to as an X direction and a Y direction, respectively. That is, the X direction and the Y direction are directions orthogonal to each other, and both directions are directions parallel to the imaging surface of the solid-state imaging device 12.
  • the actuator 20 is a device for changing the relative position between the imaging object P and the solid-state imaging device 12, and in the present embodiment, for the imaging object P placed on a stage (not shown), The position of the solid-state imaging device 12 is changed. That is, the actuator 20 is configured to move the solid-state imaging device 12 with respect to the imaging object P that is fixedly arranged.
  • the actuator 20 is fixedly provided on the inner wall of the housing of the imaging apparatus 10, and the solid-state imaging device 12 is supported by the actuator 20.
  • the actuator 20 is configured to displace the solid-state imaging device 12 along the X direction and the Y direction described above in accordance with an instruction from the control device 30.
  • the actuator 20 for example, a device such as a piezo actuator and a stepping motor can be used.
  • the actuator 20 is not particularly limited as long as the relative position between the imaging object P and the solid-state imaging device 12 can be changed, but a piezo actuator is used here.
  • the actuator 20 is configured to move the solid-state imaging device 12 with respect to the imaging target P, but is not limited to such a configuration, and the imaging target P is moved to the solid-state imaging device.
  • 12 may be configured to move two-dimensionally along a plane perpendicular to the optical axis of the lens 11 of the imaging device 10. Moreover, you may be comprised so that both the solid-state image sensor 12 and the imaging target object P may be moved.
  • the control device 30 includes an imaging position setting unit 31, an imaging condition storage unit 32, an imaging control unit 33, a captured image storage unit 36, and a high-resolution image generation unit 37. Is done. That is, the functions of the control device 30 as described above are realized by these configurations.
  • the control device 30 is constituted by, for example, a personal computer and a workstation.
  • the imaging position setting unit 31 reads the imaging conditions stored in advance in the imaging condition storage unit 32, and sets the imaging position of the solid-state imaging device 12 when imaging the imaging target P. Details of the setting of the imaging position will be described later.
  • the imaging condition storage unit 32 stores data of magnification A (hereinafter referred to as “high resolution magnification”) A when a high-resolution image is generated based on a captured image.
  • high resolution magnification data of magnification A
  • it is configured such that the resolution can be individually increased in the X direction that is the first arrangement direction of the imaging pixels and the Y direction that is the second arrangement direction. Therefore, the imaging condition storage unit 32 stores data of high resolution magnifications Ax and Ay (where Ax and Ay are integers of 2 or more) in the X direction and the Y direction.
  • the imaging condition storage unit 32 stores data of pixel pitches Dx and Dy regarding the X direction and the Y direction of the imaging pixels in the solid-state imaging device 12.
  • the pixel pitch Dx corresponds to the distance between the centers of the imaging pixels adjacent in the X direction in the solid-state imaging device 12.
  • the pixel pitch Dy corresponds to the distance between the centers of the imaging pixels adjacent in the Y direction in the solid-state imaging device 12. That is, the pixel pitches Dx and Dy are values determined according to the solid-state imaging device 12 mounted on the imaging device 10.
  • the imaging condition storage unit 32 stores data on the position and size of defects occurring in the solid-state imaging device 12.
  • the position of the defect corresponds to a position coordinate on the imaging surface of the defective pixel in the solid-state imaging device 12.
  • the defect size refers to the maximum number of pixels Cx in the X direction (where Cx is a natural number) and the Y direction in the defect having the largest size in the X direction with respect to one or a plurality of defects occurring in the solid-state imaging device 12. This corresponds to the maximum number of pixels Cy in the Y direction in the defect having the largest size (where Cy is a natural number).
  • the defect sizes Cx and Cy are determined according to the size of each cluster defect. At least one of Cx and Cy is 2 or more.
  • the data of such defect positions and sizes Cx and Cy are acquired by inspecting, for example, the solid-state imaging device 12 mounted on the imaging device 10 with a dedicated inspection device in advance.
  • the user uses the input device (not shown) to set the desired high-resolution magnifications Ax and Ay, and also sets each data related to the solid-state imaging device 12. Thereby, each of these data is stored in the imaging condition storage unit 32 as imaging conditions.
  • the imaging condition storage unit 32 has an exposure time (shutter speed), imaging sensitivity, an optical filter to be used, and an iris (aperture) when imaging the imaging object P at each imaging position.
  • Expo time shutter speed
  • imaging sensitivity an optical filter to be used
  • iris an aperture
  • Data relating to imaging conditions such as are set and stored by the user.
  • the imaging control unit 33 includes an actuator control unit 34 and an imaging timing control unit 35 as shown in FIG.
  • the actuator control unit 34 controls the driving of the actuator 20 based on the imaging position data set by the imaging position setting unit 31. Specifically, the actuator control unit 34 controls the drive start and stop timings of the actuator 20, the drive speed of the actuator 20, and the like. By such control of the actuator control unit 34, the actuator 20 can sequentially move the solid-state imaging device 12 to each imaging position set by the imaging position setting unit 31.
  • the imaging timing control unit 35 controls the timing of starting and stopping imaging by the solid-state imaging device 12. Specifically, the imaging timing control unit 35 controls the imaging time at each imaging position, that is, the exposure time, by sending a control signal to the imaging device 10 based on the imaging conditions stored in the imaging condition storage unit 32. To do.
  • the actuator control unit 34 and the imaging timing control unit 35 are configured to be synchronized with each other, and the imaging control unit 33 moves the solid-state imaging device 12 to the imaging position by driving the actuator 20. After that, the operations of the imaging device 10 and the actuator 20 are controlled so that the imaging by the solid-state imaging device 12 is performed.
  • the imaging device 10 when imaging is performed at a certain imaging position in accordance with an instruction from the imaging timing control unit 35, the imaging device 10 adds an identifier that can identify the captured image data to the captured image data acquired by imaging.
  • the captured image storage unit 36 of the control device 30 stores the captured image. Therefore, the captured image storage unit 36 stores a plurality of captured image data that can identify the imaging position.
  • the high-resolution image generation unit 37 performs pixel shift processing on the high-resolution image data that is Ax times in the X direction and Ay times in the Y direction based on the captured image data for each imaging position stored in the captured image storage unit 36. Generate by. At this time, the high resolution image generation unit 37 corrects the high resolution image data based on the position coordinate data of the defective pixel stored in the imaging condition storage unit 32. Specifically, correction is performed so that the luminance value information of the pixel corresponding to the defective pixel among the pixels in the captured image data is not reflected in the high-resolution image data.
  • the high-resolution image data generated in this way is stored in a storage area (not shown).
  • the display device 40 When the display device 40 receives the high-resolution image data generated by the control device 30, the display device 40 displays a high-resolution image of the imaging target P on the display unit.
  • the display device 40 is realized by, for example, a CRT (Cathode Ray Tube), LCD, or PDP.
  • the imaging position setting unit 31 sets each imaging position so that imaging areas V captured by the same imaging pixel do not overlap each other between a plurality of captured images.
  • the imaging position setting unit 31 captures an image at an imaging position adjacent to the X direction, where Wx is the size in the X direction of the imaging region V on the imaging surface captured by one imaging pixel in the solid-state imaging device 12.
  • the imaging positions adjacent to each other in the X direction are set so that the distance Lx between the imaging areas V captured by the same imaging pixel satisfies Lx ⁇ Wx.
  • the imaging position setting unit 31 captures an image at an imaging position adjacent to the Y direction when the size in the Y direction of the imaging region V on the imaging surface captured by one imaging pixel in the solid-state imaging device 12 is Wy.
  • the imaging positions adjacent to each other in the Y direction are set so that the distance Ly between the imaging regions V imaged by the same imaging pixel satisfies Ly ⁇ Wy between the captured images.
  • the imaging position setting unit 31 determines that the separation distances Lx and Ly in the X direction and the Y direction are based on the resolution enhancement magnifications Ax and Ay in the X direction and the Y direction stored in the imaging condition storage unit 32.
  • Each imaging position is set so as to satisfy the following formulas (1) and (2).
  • Lx (Nx + Mx / Ax) ⁇ Wx
  • Ly (Ny + My / Ay) ⁇ Wy (2)
  • Nx and Ny are both natural numbers, and are values determined based on the defect sizes Cx and Cy stored in the imaging condition storage unit 32, as will be described later.
  • Mx and My are arbitrary natural numbers that satisfy 1 ⁇ Mx ⁇ Ax and 1 ⁇ My ⁇ Ay, respectively. Therefore, in Expressions (1) and (2), since Nx + Mx / Ax> 1 and Ny + My / Ay> 1, the separation distances Lx and Ly are set so as to satisfy Lx> Wx and Ly> Wy.
  • the image processing system 100 is configured to move the solid-state imaging device 12 with respect to the imaging target P as described above. Therefore, the imaging position setting unit 31 is configured to set the imaging position by setting the amount of movement of the solid-state imaging device 12 so as to satisfy the mathematical expressions (1) and (2).
  • the movement amounts of the solid-state imaging device 12 between the imaging positions adjacent to each other in the X direction and the Y direction are Fx and Fy
  • the movement amounts Fx and Fy are stored in the imaging condition storage unit 32.
  • the following mathematical formulas (3) and (4) are set.
  • Fx (Nx + Mx / Ax) ⁇ Dx (3)
  • Fy (Ny + My / Ay) ⁇ Dy (4)
  • the mathematical formulas (1) and (2) describe the relationship between the imaging regions V captured by the same imaging pixel between the captured images captured at the adjacent imaging positions, whereas the mathematical formula ( 3) and (4) correspond to equations obtained by converting the relationship described in Equations (1) and (2) into the amount of movement of the solid-state imaging device 12.
  • the imaging position setting unit 31 sets the movement amounts Fx and Fy based on the equations (3) and (4), the imaging resolution setting magnifications Ax and Ay and the pixel pitches Dx and Dy are imaged as described above.
  • a numerical value is input based on the data stored in the condition storage unit 32.
  • Nx and Ny correspond to variables that define how many image pickup pixels need to be moved in the X direction and the Y direction, respectively. Yes.
  • the imaging position setting unit 31 is based on the defect sizes Cx and Cy stored in the imaging condition storage unit 32.
  • Nx and Ny are set according to the following equations (5) and (6).
  • the amount of movement is such that the solid-state imaging device 12 is moved by more than the maximum number of pixels Cx in the X direction in the defect having the largest size in the X direction.
  • Fx is set.
  • the movement amount Fy is set so that the solid-state imaging device 12 is moved by the maximum number of pixels Cy in the Y direction in the defect having the largest size in the Y direction. That is, by setting the movement amounts Fx and Fy so as to satisfy the expressions (5) and (6), the imaging position can be set so as to suppress the decrease in the effective imaging number to only one.
  • the imaging position setting unit 31 sets the resolution enhancement magnifications Ax, Ay, pixel pitches Dx, Dy, and defect sizes Cx, Cy stored in the imaging condition storage unit 32. Based on this, the movement amounts Fx and Fy are set so as to satisfy the following formulas (7) and (8).
  • Fx (Cx + 1 / Ax) ⁇ Dx (7)
  • Fy (Cy + 1 / Ay) ⁇ Dy (8)
  • the imaging position setting unit 31 performs imaging for the number of sheets determined based on the resolution enhancement magnifications Ax and Ay.
  • the imaging position setting unit 31 performs imaging for the number of sheets determined based on the resolution enhancement magnifications Ax and Ay.
  • a matrix shape of 3 (X direction) ⁇ 3 (Y direction) are set within a virtual plane including the imaging plane.
  • the coordinates in the X direction and the Y direction on the virtual plane are expressed as (x, y)
  • the coordinates of the reference imaging position are (0, 0)
  • the coordinates of the other imaging positions are As (Fx, 0), (2Fx, 0), (0, Fy), (Fx, Fy), (2Fx, Fy), (0,2Fy), (Fx, 2Fy), (2Fx, 2Fy), respectively. Is set.
  • the movement amounts Fx and Fy of the solid-state imaging device 12 are reduced. Since the imaging position is set, the influence due to the increase in the movement amounts Fx and Fy of the solid-state imaging device 12 compared to the conventional pixel shifting method, that is, the increase in the movement time between the imaging positions, the actuator 20 A decrease in accuracy with respect to the imaging position of the moved position and a decrease in the life of the actuator 20 can be suppressed.
  • the pixel shift method of this embodiment will be described in a plurality of examples, taking as an example the case of generating a high-resolution image in which the resolution of the captured image is doubled in the X direction and doubled in the Y direction. .
  • first example in the case where a defect occurring in the solid-state imaging device 12 does not include a cluster defect
  • (0, 0) represents the coordinates of the reference imaging position.
  • FIGS. 3A to 3D are diagrams showing the imaging region V by each imaging pixel when the imaging object P is imaged at each imaging position set by the imaging position setting unit 31 in the first embodiment.
  • nine rectangular imaging regions V correspond to regions on the imaging surface imaged by 3 ⁇ 3 vertical and horizontal imaging pixels arranged in a matrix in the solid-state imaging device 12. is doing.
  • the imaging region v1 that is hatched corresponds to the region on the imaging target surface that is imaged by the defective pixel, and the imaging region v0 that is not hatched, that is, 8 around the imaging region v1.
  • the two imaging areas v0 correspond to areas on the imaging surface captured by normal imaging pixels.
  • detection objects such as minute foreign matters and scratches generated on the imaging object P are indicated with a reference symbol U.
  • FIG. 3A shows an imaging region V by each imaging pixel when the imaging object P is imaged at the reference imaging position (0, 0).
  • FIG. 3B shows the imaging object P at the imaging position (3Dx / 2, 0) obtained by moving the solid-state imaging device 12 in the X direction by 3/2 of the pixel pitch Dx from the reference imaging position (0, 0).
  • the imaging region V by each imaging pixel when it imaged is shown.
  • FIG. 3C shows the imaging object P at the imaging position (0, 3Dy / 2) where the solid-state imaging device 12 is moved in the Y direction by 3/2 of the pixel pitch Dy from the reference imaging position (0, 0).
  • the imaging region V by each imaging pixel when it imaged is shown.
  • 3D shows the imaging positions (3Dx / 2, 3Dy / 3) in which the solid-state imaging device 12 is moved in the X and Y directions by 3/2 of the pixel pitches Dx and Dy from the reference imaging position (0, 0).
  • the imaging region V by each imaging pixel when the imaging target P is imaged in 2) is shown.
  • the reference point on the imaging surface is indicated by the reference symbol O.
  • the reference imaging position (0, 0) is the first imaging position, for example, (3Dx / 2, 0), (3Dx / 2, 3Dy / 2) and (0, 3Dy / 2) are moved in the order of (0, 3Dy / 2), so that the overall movement amount of the solid-state image sensor 12 can be reduced.
  • each imaging position is set so that the imaging areas v1 captured by the defective pixels do not overlap each other in each captured image. be able to.
  • FIG. 4 is a diagram illustrating a high-resolution image H1 generated by combining the captured images corresponding to FIGS. 3A to 3D.
  • the high resolution image H1 is generated by superimposing four captured images corresponding to FIGS. 3A to 3D with the reference point O coincident. Therefore, the luminance value information of each pixel E of the high-resolution image H1 is generated based on the luminance value information of the pixel corresponding to the pixel E among the pixels in each captured image.
  • the pixel E of the high-resolution image H1 has four effective captured images. e0 and a pixel e1 having three effective images are included.
  • the pixel E of the high resolution image H1 includes the pixel e0 having the same number of effective captured images as the number of captured images and the pixel e1 having an effective captured number of one less than the number of captured images. And the number of effective captured images is not two or fewer than the number of captured images.
  • the image processing system 100 even if the solid-state imaging device 12 includes a defective pixel, the number of effective captured images is reduced in each pixel E in the high-resolution image H1. Can be suppressed. Therefore, it is possible to suppress a decrease in accuracy of the high resolution image H1 generated based on the captured image.
  • an image processing system 100 for the purpose of detecting a detection object such as a minute foreign object or a flaw occurring on the imaging object P, the possibility that the detection object of the minute detection object is missed is reduced. be able to.
  • the high resolution image H1 according to the present embodiment, four islands formed by aggregating the pixels e1 having the effective number of images of three are mutually connected by one row and one column of the pixels E of the high resolution image H1. It exists apart.
  • the equations (3) and (4) for setting the movement amounts Fx and Fy as long as Nx and Ny are set so as to satisfy the equations (5) and (6), a high-resolution image is obtained.
  • H1 it is possible to avoid generation of pixels having an effective number of images of 2 or less, and the set values of Nx and Ny contribute to the interval between the four islands in the high resolution image H1.
  • Nx and Ny are set so as to reduce the movement amounts Fx and Fy of the solid-state imaging device 12.
  • a defect occurring in the solid-state imaging device 12 includes a cluster defect in which two defective pixels continue in the X direction as the maximum defect (hereinafter referred to as “second example”).
  • (0, 0) represents the coordinates of the reference imaging position.
  • FIGS. 5A to 5D are diagrams showing the imaging region V by each imaging pixel when the imaging object P is imaged at each imaging position set by the imaging position setting unit 31 in the second embodiment.
  • FIG. 5A shows an imaging region V by each imaging pixel when the imaging object P is imaged at the reference imaging position (0, 0).
  • FIG. 5B shows the imaging object P at the imaging position (5Dx / 2, 0) obtained by moving the solid-state imaging device 12 in the X direction by 5/2 of the pixel pitch Dx from the reference imaging position (0, 0).
  • the imaging region V by each imaging pixel when it imaged is shown.
  • FIG. 5C shows the imaging object P at the imaging position (0, 3Dy / 2) obtained by moving the solid-state imaging device 12 in the Y direction by 3/2 of the pixel pitch Dy from the reference imaging position (0, 0).
  • the imaging region V by each imaging pixel when it imaged is shown.
  • FIG. 5D shows imaging in which the solid-state imaging device 12 is moved from the reference imaging position (0, 0) in the X direction by 5/2 of the pixel pitch Dx and in the Y direction by 3/2 of the pixel pitch Dy.
  • the imaging region V by each imaging pixel when the imaging target P is imaged at the position (5Dx / 2, 3Dy / 2) is shown.
  • the reference point on the imaging surface is indicated by the reference symbol O.
  • each imaging position is set so that the imaging regions v1 captured by the defective pixels do not overlap each other in each captured image. be able to.
  • FIG. 6 is a diagram illustrating a high-resolution image H2 generated by combining the captured images corresponding to FIGS. 5A to 5D.
  • the high resolution image H2 is generated by superimposing four captured images corresponding to FIGS. 5A to 5D with the reference point O coincident.
  • the pixel E of the high-resolution image H2 according to the present embodiment includes a pixel e0 having four effective images and a pixel e1 having three effective images.
  • the pixel E of the high-resolution image H2 has the same number of pixels e0 as the number of effective captured images and the number of effective captured images of the captured images.
  • the number of pixels e1 is one less than the number of pixels, and the number of effective captured images is not two or more than the number of captured images.
  • the image processing system 100 even when the solid-state imaging device 12 includes a defective pixel, the effective number of images is reduced in each pixel E in the high-resolution image H2. Can be suppressed. Accordingly, it is possible to suppress a decrease in accuracy of the high resolution image H2 generated based on the captured image.
  • an image processing system 100 for the purpose of detecting a detection object such as a minute foreign object or a flaw occurring on the imaging object P, the possibility that the detection object of the minute detection object is missed is reduced. be able to.
  • the effect of increasing the movement amounts Fx and Fy of the solid-state imaging device 12 compared to the conventional pixel shifting method that is, the movement time between the imaging positions is increased, and the actuator 20 is moved. It is possible to suppress a decrease in accuracy with respect to the image pickup position and a decrease in the life of the actuator 20.
  • the conditions for setting the imaging position are further based on an increase in the movement time between the imaging positions, a decrease in accuracy with respect to the imaging position of the position moved by the actuator 20, a decrease in the life of the actuator 20, and the like.
  • An example in which the limit amounts Qx and Qy (that is, Fx ⁇ Qx, Fy ⁇ Qy) are set as the movement amounts Fx and Fy of the solid-state imaging device 12 (hereinafter, referred to as “third embodiment”). Will be described.
  • the imaging position is set based on the calculated movement amounts Fx and Fy. That's fine.
  • the imaging position is determined based on the limit amounts Qx and Qy. You only have to set it.
  • the defect occurring in the solid-state imaging device 12 includes a cluster defect in which two defective pixels are consecutive in the X direction as the maximum defect, and further, conditions for setting the imaging position
  • the imaging position setting unit 31 compares the set movement amounts Fx and Fy with preset limit amounts Qx and Qy.
  • the imaging position setting unit 31 sets the imaging position of the solid-state imaging device 12 to (0, 0), (3Dx / 2, 0), (0, 3Dy / 2), (3Dx / 2, 3Dy / 2). And set.
  • (0, 0) represents the coordinates of the reference imaging position.
  • FIGS. 7A to 7D are diagrams showing the imaging region V by each imaging pixel when the imaging object P is imaged at each imaging position set by the imaging position setting unit 31 in the third embodiment.
  • FIG. 7A shows an imaging region V by each imaging pixel when the imaging object P is imaged at the reference imaging position (0, 0).
  • FIG. 7B shows the imaging object P at the imaging position (3Dx / 2, 0) obtained by moving the solid-state imaging device 12 in the X direction by 3/2 of the pixel pitch Dx from the reference imaging position (0, 0).
  • the imaging region V by each imaging pixel when it imaged is shown.
  • FIG. 7C shows the imaging object P at the imaging position (0, 3Dy / 2) where the solid-state imaging device 12 is moved in the Y direction by 3/2 of the pixel pitch Dy from the reference imaging position (0, 0).
  • the imaging region V by each imaging pixel when it imaged is shown.
  • FIG. 7D shows an imaging position (3Dx / 2, 3Dy / 2) obtained by moving the solid-state imaging device 12 in the X direction and the Y direction by 3/2 of the pixel pitch Dx from the reference imaging position (0, 0).
  • the imaging area V by each imaging pixel when imaging object P is imaged is shown.
  • the reference point on the imaging surface is indicated by the reference symbol O.
  • the movement amounts Fx and Fy are not set so as to satisfy the expressions (5) and (6).
  • the imaging areas v1 imaged by the defective pixels overlap each other.
  • FIG. 8 is a diagram showing a high resolution image H3 generated by combining the captured images corresponding to FIGS. 7A to 7D.
  • the high resolution image H3 is generated by superimposing four captured images corresponding to FIGS. 7A to 7D with the reference point O coincident.
  • the pixel E of the high-resolution image H3 includes a pixel e0 having four effective images, a pixel e1 having three effective images, and a pixel e2 having two effective images. included.
  • the pixel E of the high resolution image H3 has the same number of pixels e0 as the number of captured images, and the number of effective captured images is the number of captured images.
  • the effective number of captured images includes two pixels e2 that are smaller than the number of captured images.
  • the third embodiment cannot suppress the decrease in the number of effective images as compared with the second embodiment, but the limit amounts Qx and Qy are set for the movement amounts Fx and Fy in this way. Even in this case, compared with the conventional pixel shifting method, it is possible to suppress a decrease in the effective number of images in each pixel E in the high resolution image H3.
  • the image processing system 100 it is possible to suppress a decrease in accuracy of the high resolution image H3 generated based on the captured image, as compared with the conventional pixel shifting method.
  • an image processing system 100 for the purpose of detecting a detection object such as a minute foreign object or a flaw occurring on the imaging object P, the possibility that the detection object of the minute detection object is missed is reduced. be able to.
  • FIG. 9 is a flowchart showing a procedure of image generation processing by the image processing system 100 according to the embodiment of the present invention.
  • the image generation process is started in a state where the imaging target P to be inspected is placed at a predetermined position on a stage (not shown).
  • step s1 the imaging position setting unit 31 reads the imaging condition data stored in advance in the imaging condition storage unit 32, and the amount of movement Fx of the solid-state imaging device 12 based on the equations (7) and (8). , Fy is calculated to set the imaging position by the solid-state imaging device 12.
  • the process proceeds to step s2.
  • step s2 the imaging control unit 33 controls the operations of the imaging device 10 and the actuator 20 so that imaging is performed at each imaging position set in step s1 according to a preset imaging sequence.
  • captured image data of the captured image captured at the imaging position is acquired.
  • the acquired captured image data is stored in the captured image storage unit 36 in the control device 30.
  • the process proceeds to step s3.
  • step s3 the imaging control unit 33 determines whether imaging has been performed at all the imaging positions set in step s1. If it is determined that imaging has been performed at all imaging positions, the process proceeds to step s4. If it is determined that imaging has not been performed at all imaging positions, the process returns to step s2.
  • step s4 the high resolution image generation unit 37 generates high resolution image data by synthesizing the captured image data of each imaging position stored in the captured image storage unit 36. Furthermore, the generated high-resolution image data is corrected so that the luminance value information of the pixel corresponding to the defective pixel is not reflected in the high-resolution image data in each captured image data.
  • the process proceeds to step s5.
  • step s5 the display device 40 reads the high-resolution image data acquired in step s4, and displays the high-resolution image of the imaging target P on the display unit.
  • the image generation process ends.
  • Each block included in the control device 30 of the computer may be configured by hardware logic, or may be realized by software using a CPU (Central Processing Unit) as follows.
  • CPU Central Processing Unit
  • the computer control device 30 stores a CPU that executes instructions of an image generation program that realizes each function, a ROM that stores the program, a RAM (Random Access Memory) that expands the program, the program, and various data.
  • a storage device such as a memory.
  • An object of the present invention is to supply a computer with a recording medium in which a program code (execution format program, intermediate code program, source program) of an image generation program, which is software that realizes the above-described functions, is recorded in a computer-readable manner. This can also be achieved by the computer reading and executing the program code recorded on the recording medium.
  • Examples of the recording medium include tapes such as magnetic tapes and cassette tapes, magnetic disks such as floppy (registered trademark) disks / hard disks, and disks including optical disks such as CD-ROM / MO / MD / DVD / CD-R.
  • Card system such as IC card, IC card (including memory card) / optical card, or semiconductor memory system such as mask ROM / EPROM / EEPROM / flash ROM.
  • the computer may be configured to be connectable to a communication network, and the program code may be supplied to the computer via the communication network.
  • the communication network is not particularly limited.
  • the Internet intranet, extranet, LAN, ISDN, VAN, CATV communication network, virtual private network (Virtual Private Network), telephone line network, mobile communication network, satellite communication. A net or the like is available.
  • the transmission medium constituting the communication network is not particularly limited.
  • infrared rays such as IrDA and remote control, Bluetooth ( (Registered trademark), 802.11 wireless, HDR, mobile phone network, satellite line, terrestrial digital network, and the like can also be used.
  • the present invention can also be realized in the form of a computer data signal embedded in a carrier wave in which the program code is embodied by electronic transmission.

Abstract

An image processing system (100) comprising: an imaging position setting unit (31) that sets the imaging position for each captured image; an imaging control unit (33) that controls an imaging device (10) and an actuator (20) such that an imaging subject (P) is captured at each imaging position set by the imaging position setting unit (31); and a high-resolution image generation unit (37) that generates a high resolution image from a plurality of captured images captured at each imaging position set by the imaging position setting unit (31). The imaging position setting unit (31) sets each imaging position such that the imaging areas captured by the same imaging pixel in a solid-state imaging element (12) are not duplicated between the plurality of captured images.

Description

画像生成装置、画像生成方法、および画像生成プログラムを記録したコンピュータ読取り可能な記録媒体Image generating apparatus, image generating method, and computer-readable recording medium recording image generating program
 本発明は、撮像画像に基づいて撮像画像よりも高解像度の画像を生成する画像生成装置、画像生成方法、および画像生成プログラムを記録したコンピュータ読取り可能な記録媒体に関する。 The present invention relates to an image generation apparatus that generates an image having a higher resolution than a captured image based on the captured image, an image generation method, and a computer-readable recording medium that records the image generation program.
 近年、CCD(Charge Coupled Device)イメージセンサおよびCMOS(Complementary Metal Oxide Semiconductor)イメージセンサなどの固体撮像素子を用いて、工業用途での測定および検査が広く行われている。特に、シリコンウェハの傷や異物の検査、フラットパネルディスプレイ(Flat Panel Display:略称「FPD」)の点灯検査における微小な検出対象物の検出などのように、高周波成分を検出する必要がある用途での測定および検査においては、その精度を向上させるために、検査(測定)対象物の画像を高解像度で取得することが求められている。また、民生用のカメラなどにおいても、最近では、被写体をより高精細に撮像したいという要望がある。 In recent years, measurements and inspections in industrial applications have been widely performed using solid-state imaging devices such as CCD (Charge Coupled Device) image sensors and CMOS (Complementary Metal Oxide Semiconductor) image sensors. Especially in applications where high frequency components need to be detected, such as inspection of scratches and foreign matter on silicon wafers, detection of minute detection objects in flat panel display (abbreviation "FPD") lighting inspection, etc. In this measurement and inspection, in order to improve the accuracy, it is required to obtain an image of an inspection (measurement) object with high resolution. Also, consumer cameras and the like have recently been requested to capture subjects with higher definition.
 このような要望に対し、従来から画素密度を増大させた固体撮像素子の開発が進められている。しかしながら、このようなハードウェア面でのアプローチには限界があり、さらに、画素密度を増大させるにつれて固体撮像素子自体が高価になってしまうという問題がある。そこで、最近では、固体撮像素子によって撮像された画像(以下、「撮像画像」と称する)よりも解像度の高い画像(以下、「高解像度画像」と称する)を、画像処理によって生成する技術が実用されている。 In response to such demands, development of solid-state imaging devices with increased pixel density has been underway. However, there is a limit to such a hardware approach, and there is a problem that the solid-state imaging device itself becomes more expensive as the pixel density is increased. Therefore, recently, a technique for generating an image (hereinafter, referred to as “high-resolution image”) having a higher resolution than an image captured by a solid-state imaging device (hereinafter, referred to as “captured image”) by image processing has been practically used. Has been.
 たとえば、撮像対象物に対して固体撮像素子またはカメラ全体の位置を微小量ずつずらしながら、それぞれの位置で撮像対象物を撮像し、各位置における撮像画像同士を合成する画素ずらし法や、光学ボケなどを考慮して高解像度画像を生成する超解像技術などの高解像度化技術が実用されている。 For example, while shifting the position of the solid-state imaging device or the entire camera with respect to the imaging object by a minute amount, the imaging object is imaged at each position, and the pixel shifting method for combining the captured images at each position, or optical blurring. High resolution techniques such as a super-resolution technique for generating a high resolution image in consideration of the above have been put into practical use.
 これらの高解像度化技術を用いる場合、撮像対象物と固体撮像素子との相対的な位置をずらしながら複数回撮像を行う必要があるが、撮像対象物または固体撮像素子の移動量が大きくなると、移動時間の増加、移動位置精度の低下、および移動用のアクチュエータの寿命低下などが問題となる。そのため、撮像対象物と固体撮像素子との相対的な位置をずらす場合には、従来から、最低限必要な距離ずつ位置をずらしながら撮像が行われている。 When using these high resolution technologies, it is necessary to perform imaging multiple times while shifting the relative position of the imaging object and the solid-state imaging device, but when the amount of movement of the imaging object or the solid-state imaging device increases, There are problems such as an increase in movement time, a decrease in movement position accuracy, and a decrease in the life of the actuator for movement. Therefore, when the relative position between the imaging object and the solid-state imaging device is shifted, imaging is conventionally performed while shifting the position by a minimum necessary distance.
 具体的には、撮像画素(すなわち、固体撮像素子における画素)がマトリクス状に配列されている固体撮像素子を用いて、撮像画像の3倍の解像度を有する高解像度画像を生成する場合、固体撮像素子を、撮像画素の各配列方向に沿って、撮像画素のサイズの1/3ずつ位置をずらしながら合計9回の撮像を行い、9枚の撮像画像を合成することによって高解像度画像が生成されている(たとえば、特許文献1参照)。 Specifically, when a high-resolution image having three times the resolution of a captured image is generated using a solid-state image sensor in which imaging pixels (that is, pixels in the solid-state image sensor) are arranged in a matrix, solid-state imaging The element is imaged a total of nine times while shifting the position by 1/3 of the size of the imaging pixel along each arrangement direction of the imaging pixels, and a high-resolution image is generated by synthesizing the nine captured images. (For example, refer to Patent Document 1).
特開2010-73035号公報JP 2010-73035 A
 ところで、固体撮像素子では、半導体の局部的な結晶欠陥などによって、撮像画素に欠陥が発生し易いことが知られている。たとえば数百万程度の撮像画素数を有する固体撮像素子では、欠陥が生じている撮像画素(以下、「欠陥画素」と称する)が、数画素程度発生する場合がある。このような欠陥画素では、入射光量に応じた撮像出力に、常に一定のバイアス電圧が加算されてしまい、正常な撮像出力を行うことができない。それ故、このような固体撮像素子によって出力される画像データでは、欠陥画素に対応する画素の輝度値が、正常な値よりも高輝度または低輝度の値となってしまう。 Incidentally, it is known that in a solid-state imaging device, a defect is likely to occur in an imaging pixel due to a local crystal defect of a semiconductor or the like. For example, in a solid-state imaging device having a number of imaging pixels of about several millions, imaging pixels with defects (hereinafter referred to as “defective pixels”) may occur in the order of several pixels. In such a defective pixel, a constant bias voltage is always added to the imaging output corresponding to the amount of incident light, and normal imaging output cannot be performed. Therefore, in the image data output by such a solid-state imaging device, the luminance value of the pixel corresponding to the defective pixel is higher or lower than the normal value.
 したがって、撮像対象物の撮像画像に基づいて微小な傷や異物などの検出対象物を検出する用途に、このような欠陥画素を有する固体撮像素子が用いられていると、微小な検出対象物を見逃してしまうおそれがある。 Therefore, if a solid-state imaging device having such defective pixels is used for detecting a detection target such as a minute scratch or a foreign object based on a captured image of the imaging target, There is a risk of overlooking.
 以下、この問題点について図面を用いて説明する。図10は、欠陥画素を有する固体撮像素子で撮像対象物を撮像したときの、各撮像画素による撮像領域Vを示す図である。図10において、矩形状の9つの撮像領域Vは、固体撮像素子においてマトリクス状に配列されている縦横3×3個の撮像画素によって撮像された被撮像面上での領域に対応している。特に、ハッチングが付されている撮像領域v1は、欠陥画素によって撮像された被撮像面上での領域に対応しており、ハッチングが付されていない撮像領域v0、すなわち撮像領域v1の周囲の8つの撮像領域v0は、正常な撮像画素によって撮像された被撮像面上での領域に対応している。また、図10において、撮像対象物に生じている微小な検出対象物を、参照符Uを付して示している。なお、後述する図11A~図11Dにおいても同様とする。 Hereinafter, this problem will be described with reference to the drawings. FIG. 10 is a diagram illustrating an imaging region V by each imaging pixel when an imaging target is imaged by a solid-state imaging device having defective pixels. In FIG. 10, nine rectangular imaging areas V correspond to areas on the imaging surface captured by 3 × 3 vertical and horizontal imaging pixels arranged in a matrix in the solid-state imaging device. In particular, the imaging region v1 that is hatched corresponds to the region on the imaging target surface that is imaged by the defective pixel, and the imaging region v0 that is not hatched, that is, 8 around the imaging region v1. The two imaging areas v0 correspond to areas on the imaging surface captured by normal imaging pixels. Further, in FIG. 10, a minute detection target generated on the imaging target is shown with a reference mark U. The same applies to FIGS. 11A to 11D described later.
 前述するように、欠陥画素では正常な撮像出力を行うことができないため、図10に示すように、欠陥画素の撮像領域v1内に検出対象物Uが完全に含まれてしまった場合には、検出対象物Uを検出することができなくなってしまう。また、この場合、欠陥画素の周囲の正常な撮像画素によって撮像出力される輝度値情報に基づいて、欠陥画素に対する補正処理を行ったとしても、正常な撮像画素の撮像領域v0には検出対象物Uが含まれていないため、やはり検出対象物Uを検出することはできない。 As described above, normal imaging output cannot be performed with defective pixels, and as shown in FIG. 10, when the detection target U is completely included in the imaging area v1 of the defective pixels, The detection target U cannot be detected. In this case, even if correction processing for the defective pixel is performed based on luminance value information captured and output by the normal imaging pixels around the defective pixel, the detection target object is present in the imaging region v0 of the normal imaging pixel. Since U is not included, the detection object U cannot be detected.
 図10では、画素ずらし法を行わない場合について説明したが、従来から用いられている画素ずらし法、すなわち、最低限必要な距離ずつ位置をずらしながら撮像を行う画素ずらし法を採用した場合においても、撮像対象物に生じている微小な検出対象物を見逃してしまうおそれがある。以下では、従来の画素ずらし法を用いて、撮像画像の解像度の2倍の解像度を有する高解像度画像を生成する場合を例に挙げて説明する。 Although FIG. 10 illustrates the case where the pixel shifting method is not performed, the pixel shifting method that has been used conventionally, that is, the pixel shifting method that performs imaging while shifting the position by the minimum necessary distance is also employed. There is a possibility that a minute detection target generated on the imaging target may be missed. Hereinafter, a case where a high-resolution image having a resolution twice that of the captured image is generated using a conventional pixel shifting method will be described as an example.
 図11A~図11Dは、従来の画素ずらし法において固体撮像素子で撮像対象物を撮像したときの、各撮像画素による撮像領域Vを示す図である。ここで、固体撮像素子においてマトリクス状に配列されている撮像画素の各配列方向を、X方向およびY方向と記すと、従来の画素ずらし法では、解像度を2倍にするために、X方向、Y方向に沿って、撮像画素のサイズの1/2ずつ固体撮像素子をずらしながら、図11A~図11Dに示すように、合計4回の撮像が行われる。 FIGS. 11A to 11D are diagrams showing an imaging region V by each imaging pixel when an imaging object is imaged by a solid-state imaging device in a conventional pixel shifting method. Here, when the arrangement directions of the imaging pixels arranged in a matrix in the solid-state imaging device are denoted as an X direction and a Y direction, in the conventional pixel shifting method, in order to double the resolution, A total of four imaging operations are performed as shown in FIGS. 11A to 11D while shifting the solid-state imaging device by 1/2 of the size of the imaging pixel along the Y direction.
 図11Aは、撮像対象物と固体撮像素子との相対的な位置関係が初期状態であるときの各撮像画素による撮像領域Vを示している。また、図11Aは、図11Aに示す初期状態から撮像画素のサイズの1/2だけX方向に固体撮像素子を移動させたときの各撮像画素による撮像領域Vを示している。また、図11Cは、図11Aに示す初期状態から撮像画素のサイズの1/2だけY方向に固体撮像素子を移動させたときの各撮像画素による撮像領域Vを示している。また、図11Dは、図11Aに示す状態から撮像画素のサイズの1/2だけX方向およびY方向に固体撮像素子を移動させたときの各撮像画素による撮像領域Vを示している。なお、図11A~図11Dにおいて、被撮像面における基準点を参照符Oで示している。 FIG. 11A shows the imaging region V by each imaging pixel when the relative positional relationship between the imaging object and the solid-state imaging device is in the initial state. FIG. 11A shows an imaging region V by each imaging pixel when the solid-state imaging device is moved in the X direction by ½ of the imaging pixel size from the initial state shown in FIG. 11A. FIG. 11C shows an imaging region V by each imaging pixel when the solid-state imaging device is moved in the Y direction by ½ of the imaging pixel size from the initial state shown in FIG. 11A. FIG. 11D shows an imaging region V by each imaging pixel when the solid-state imaging device is moved in the X direction and the Y direction by ½ of the size of the imaging pixel from the state shown in FIG. 11A. In FIG. 11A to FIG. 11D, a reference point on the imaging surface is indicated by a reference symbol O.
 図11A~図11Dに示すように、従来の画素ずらし法では、固体撮像素子を最低限必要な距離しか移動させないので、4回の撮像の全てにおいて、欠陥画素の撮像領域v1内に検出対象物Uが完全に含まれてしまうことがある。このような場合には、欠陥画素が正常な撮像出力を行えないことから、前記と同様に、欠陥画素の周囲の正常な撮像画素によって撮像出力される輝度値情報に基づいて、欠陥画素に対する補正処理を行ったとしても、正常な撮像画素の撮像領域v0には検出対象物Uが含まれていないため、検出対象物Uを検出することができなくなってしまう。 As shown in FIGS. 11A to 11D, in the conventional pixel shifting method, the solid-state imaging device is moved only by the minimum necessary distance. Therefore, in all four times of imaging, the detection target is within the imaging area v1 of the defective pixel. U may be completely included. In such a case, since the defective pixel cannot perform normal imaging output, the correction for the defective pixel is performed based on the luminance value information captured and output by the normal imaging pixels around the defective pixel, as described above. Even if the process is performed, the detection target U cannot be detected because the detection target U is not included in the imaging region v0 of the normal imaging pixel.
 図12は、図11A~図11Dに対応した各撮像画像を合成することによって生成された高解像度画像Hを示す図である。高解像度画像Hは、図11A~図11Dに対応した4枚の撮像画像を、基準点Oを一致させて重ね合わせることにより生成されるものである。したがって、高解像度画像Hの各画素Eの輝度値情報は、各撮像画像における画素のうち、当該画素Eに対応している画素の輝度値情報に基づいて生成される。 FIG. 12 is a diagram showing a high-resolution image H generated by combining the captured images corresponding to FIGS. 11A to 11D. The high resolution image H is generated by superimposing four captured images corresponding to FIGS. 11A to 11D with the reference point O coincident. Therefore, the luminance value information of each pixel E of the high resolution image H is generated based on the luminance value information of the pixel corresponding to the pixel E among the pixels in each captured image.
 ここで、撮像画像における各画素のうち、欠陥画素によって撮像出力された輝度値情報を無効なものとすると、高解像度画像Hの画素Eには、有効撮像枚数が4枚の画素e0と、有効撮像枚数が3枚の画素e1と、有効撮像枚数が2枚の画素e2と、有効撮像枚数が0枚の画素e3とが含まれる。ここで、有効撮像枚数とは、画素Eを生成するための4枚の撮像画像に基づく4つの輝度値情報のうち有効な輝度値情報の数に相当する。 Here, of the pixels in the captured image, if the luminance value information captured and output by the defective pixel is invalid, the pixel E of the high-resolution image H has four effective pixels e0 and an effective number of pixels e0. A pixel e1 having three images, a pixel e2 having two effective images, and a pixel e3 having zero effective images are included. Here, the effective number of images corresponds to the number of effective luminance value information among the four luminance value information based on the four captured images for generating the pixel E.
 したがって、有効撮像枚数が0枚の画素e3に対応する被撮像面上での領域、換言すれば、欠陥画素による各撮像領域v1が互いに重複している領域内に、検出対象物Uが完全に含まれている場合には、前記のように、検出対象物Uを検出することができなくなってしまう。 Therefore, the detection target U is completely within the area on the imaging surface corresponding to the pixel e3 whose effective imaging number is 0, in other words, the area where the imaging areas v1 due to the defective pixels overlap each other. If it is included, the detection object U cannot be detected as described above.
 また、従来の画素ずらし法では、有効撮像枚数が0枚の画素e3の近傍に、有効撮像枚数が少ない画素e2が現れてしまう。このような画素e2では、有効撮像枚数の数が少なくなるほど、有効な輝度値情報の数が減少してしまうため、S/N比の減少によってノイズの影響を受け易くなってしまう。このように有効撮像枚数の数が少ない画素e2に対応する被撮像面上での領域内に、検出対象物Uが含まれている場合には、有効撮像枚数の数の減少数が多いほど検出対象物Uの検出精度が低下してしまう。 Further, in the conventional pixel shifting method, a pixel e2 with a small effective number of images appears in the vicinity of the pixel e3 with zero effective number of images. In such a pixel e2, the number of effective luminance value information decreases as the number of effective imaging images decreases, so that the pixel e2 is easily affected by noise due to a decrease in the S / N ratio. As described above, when the detection target U is included in the area on the imaging target surface corresponding to the pixel e2 having a small number of effective images, the detection is increased as the number of effective images is decreased. The detection accuracy of the object U is lowered.
 本発明の目的は、撮像対象物を撮像する固体撮像素子に欠陥画素が含まれている場合であっても、撮像画像に基づいて生成される高解像度画像の精度の低下を抑制することができる画像生成装置、画像生成方法、および画像生成プログラムを記録したコンピュータ読取り可能な記録媒体を提供することである。 An object of the present invention is to suppress a decrease in accuracy of a high-resolution image generated based on a captured image even when a defective pixel is included in a solid-state imaging device that captures an imaging object. An image generation apparatus, an image generation method, and a computer-readable recording medium on which an image generation program is recorded.
 本発明は、複数の撮像画素が2次元的に配列されて成る撮像部と、前記撮像画素が配列される方向において、撮像対象物と撮像部との相対的な位置を変化させる撮像位置変化部とを備え、相対的な位置をずらしながら前記撮像部が前記撮像対象物を撮像したときの複数枚の低解像度画像から、該低解像度画像よりも解像度の高い高解像度画像を生成する画像生成装置であって、
 各低解像度画像を撮像するときの前記相対的な位置をそれぞれ設定する撮像位置設定部であって、複数枚の低解像度画像間で、同一の撮像画素が撮像する撮像領域同士が互いに重複しないように、各撮像位置を設定する撮像位置設定部と、
 前記撮像位置設定部によって設定された各撮像位置で前記撮像対象物が撮像されるように、前記撮像部および前記撮像位置変化部を制御する撮像制御部と、
 前記撮像位置設定部によって設定された各撮像位置で撮像された複数枚の低解像度画像から高解像度画像を生成する高解像度画像生成部とを備えることを特徴とする画像生成装置である。
The present invention provides an imaging unit in which a plurality of imaging pixels are two-dimensionally arranged, and an imaging position changing unit that changes a relative position between the imaging object and the imaging unit in a direction in which the imaging pixels are arranged. An image generation apparatus that generates a high-resolution image having a higher resolution than the low-resolution image from a plurality of low-resolution images when the imaging unit images the imaging object while shifting the relative position Because
An imaging position setting unit that sets the relative position when each low-resolution image is captured, so that imaging regions captured by the same imaging pixel do not overlap each other between a plurality of low-resolution images. An imaging position setting unit for setting each imaging position;
An imaging control unit that controls the imaging unit and the imaging position changing unit so that the imaging object is imaged at each imaging position set by the imaging position setting unit;
An image generation apparatus comprising: a high-resolution image generation unit configured to generate a high-resolution image from a plurality of low-resolution images captured at each imaging position set by the imaging position setting unit.
 また本発明において、前記撮像位置設定部は、
 撮像画素が配列される一配列方向に関して高解像度化する倍率をAとし、1撮像画素が撮像する撮像領域の該一配列方向に関するサイズをWとし、Nを自然数とするとき、
 前記一配列方向に隣接する撮像位置で撮像される2枚の低解像度画像において、同一の撮像画素が撮像する撮像領域同士の該一配列方向に関する離間距離Lが、
   L=(N+1/A)×W
の関係式を満足するように、各撮像位置を設定することが好ましい。
In the present invention, the imaging position setting unit
When the magnification for increasing the resolution in one arrangement direction in which the imaging pixels are arranged is A, the size of the imaging area taken by one imaging pixel in the one arrangement direction is W, and N is a natural number,
In two low-resolution images captured at imaging positions adjacent to each other in the one arrangement direction, a separation distance L in the one arrangement direction between the imaging regions captured by the same imaging pixel is
L = (N + 1 / A) × W
It is preferable to set each imaging position so that the following relational expression is satisfied.
 また本発明において、前記撮像位置設定部は、
 撮像画素が配列される第1および第2の配列方向に関して高解像度化する倍率をそれぞれAx,Ayとし、1撮像画素が撮像する撮像領域の前記第1および第2の配列方向に関するサイズをWx,Wyとし、Nx,Nyを自然数とするとき、
 前記第1の配列方向に隣接する撮像位置で撮像される2枚の低解像度画像において、同一の撮像画素が撮像する撮像領域同士の該第1の配列方向に関する離間距離Lxが、
   Lx=(Nx+1/Ax)×Wx
の関係式を満足し、かつ
 前記第2の配列方向に隣接する撮像位置で撮像される2枚の低解像度画像において、同一の撮像画素が撮像する撮像領域同士の該第2の配列方向に関する離間距離Lyが、
   Ly=(Ny+1/Ay)×Wy
の関係式を満足するように、各撮像位置を設定することが好ましい。
In the present invention, the imaging position setting unit
The magnifications for increasing the resolution in the first and second arrangement directions in which the image pickup pixels are arranged are Ax and Ay, respectively, and the sizes in the first and second arrangement directions of the image pickup regions picked up by one image pickup pixel are Wx, When Wy and Nx and Ny are natural numbers,
In two low-resolution images captured at imaging positions adjacent to each other in the first arrangement direction, the separation distance Lx in the first arrangement direction between the imaging regions captured by the same imaging pixel is
Lx = (Nx + 1 / Ax) × Wx
In the two low-resolution images captured at the imaging positions adjacent to each other in the second arrangement direction, the imaging areas captured by the same imaging pixel are separated in the second arrangement direction. The distance Ly is
Ly = (Ny + 1 / Ay) × Wy
It is preferable to set each imaging position so that the following relational expression is satisfied.
 また本発明は、複数の撮像画素が2次元的に配列されて成る撮像部と、前記撮像画素が配列される方向において、撮像対象物と撮像部との相対的な位置を変化させる撮像位置変化部とを備え、相対的な位置をずらしながら前記撮像部が前記撮像対象物を撮像したときの複数枚の低解像度画像から、該低解像度画像よりも解像度の高い高解像度画像を生成する画像生成方法であって、
 各低解像度画像を撮像するときの前記相対的な位置をそれぞれ設定する撮像位置設定ステップであって、複数枚の低解像度画像間で、同一の撮像画素が撮像する撮像領域同士が互いに重複しないように、各撮像位置を設定する撮像位置設定ステップと、
 前記撮像位置設定ステップによって設定された各撮像位置で前記撮像対象物が撮像されるように、前記撮像部および前記撮像位置変化部を制御する撮像制御ステップと、
 前記撮像位置設定ステップによって設定された各撮像位置で撮像された複数枚の低解像度画像から高解像度画像を生成する高解像度画像生成ステップとを含むことを特徴とする画像生成方法である。
The present invention also relates to an imaging unit in which a plurality of imaging pixels are two-dimensionally arranged, and an imaging position change that changes a relative position between the imaging object and the imaging unit in the direction in which the imaging pixels are arranged. Generating a high-resolution image having a higher resolution than the low-resolution image from a plurality of low-resolution images when the imaging unit images the imaging object while shifting the relative position A method,
An imaging position setting step for setting the relative position when each low-resolution image is captured, so that imaging regions captured by the same imaging pixel do not overlap each other between a plurality of low-resolution images. An imaging position setting step for setting each imaging position;
An imaging control step for controlling the imaging unit and the imaging position changing unit so that the imaging object is imaged at each imaging position set by the imaging position setting step;
And a high-resolution image generation step of generating a high-resolution image from a plurality of low-resolution images captured at each imaging position set in the imaging position setting step.
 また本発明は、前記画像生成方法をコンピュータに実行させるための画像生成プログラムを記録したコンピュータ読取り可能な記録媒体である。 The present invention is also a computer-readable recording medium on which an image generation program for causing a computer to execute the image generation method is recorded.
 本発明によれば、高解像度画像を生成するための複数枚の低解像度画像間で、固体撮像素子における同一の撮像画素が撮像する撮像領域同士が互いに重複しないように、各低解像度画像の撮像位置が設定される。これにより、固体撮像素子に欠陥画素が含まれている場合であっても、高解像度画像における各画素において、有効撮像枚数の低下を抑制することができる。したがって、低解像度画像に基づいて生成される高解像度画像の精度の低下を抑制することができる。 According to the present invention, imaging of each low-resolution image is performed so that imaging regions captured by the same imaging pixel in the solid-state imaging device do not overlap each other between a plurality of low-resolution images for generating a high-resolution image. The position is set. Thereby, even if it is a case where a defective pixel is contained in a solid-state image sensor, the fall of the effective imaging number can be suppressed in each pixel in a high resolution image. Accordingly, it is possible to suppress a decrease in accuracy of the high resolution image generated based on the low resolution image.
 本発明の目的、特色、および利点は、下記の詳細な説明と図面とからより明確になるであろう。
本発明の実施形態に係る画像処理システムの概略的な構成を示す模式図である。 本発明の実施形態に係る画像処理システムの構成を示すブロック図である。 第1実施例において撮像位置設定部によって設定された各撮像位置で撮像対象物を撮像したときの、各撮像画素による撮像領域を示す図である。 第1実施例において撮像位置設定部によって設定された各撮像位置で撮像対象物を撮像したときの、各撮像画素による撮像領域を示す図である。 第1実施例において撮像位置設定部によって設定された各撮像位置で撮像対象物を撮像したときの、各撮像画素による撮像領域を示す図である。 第1実施例において撮像位置設定部によって設定された各撮像位置で撮像対象物を撮像したときの、各撮像画素による撮像領域を示す図である。 図3A~図3Dに対応した各撮像画像を合成することによって生成された高解像度画像を示す図である。 第2実施例において撮像位置設定部によって設定された各撮像位置で撮像対象物を撮像したときの、各撮像画素による撮像領域を示す図である。 第2実施例において撮像位置設定部によって設定された各撮像位置で撮像対象物を撮像したときの、各撮像画素による撮像領域を示す図である。 第2実施例において撮像位置設定部によって設定された各撮像位置で撮像対象物を撮像したときの、各撮像画素による撮像領域を示す図である。 第2実施例において撮像位置設定部によって設定された各撮像位置で撮像対象物を撮像したときの、各撮像画素による撮像領域を示す図である。 図5A~図5Dに対応した各撮像画像を合成することによって生成された高解像度画像を示す図である。 第3実施例において撮像位置設定部によって設定された各撮像位置で撮像対象物を撮像したときの、各撮像画素による撮像領域を示す図である。 第3実施例において撮像位置設定部によって設定された各撮像位置で撮像対象物を撮像したときの、各撮像画素による撮像領域を示す図である。 第3実施例において撮像位置設定部によって設定された各撮像位置で撮像対象物を撮像したときの、各撮像画素による撮像領域を示す図である。 第3実施例において撮像位置設定部によって設定された各撮像位置で撮像対象物を撮像したときの、各撮像画素による撮像領域を示す図である。 図7A~図7Dに対応した各撮像画像を合成することによって生成された高解像度画像を示す図である。 本発明の実施形態に係る画像処理システムによる画像生成処理の手順を示すフローチャートである。 欠陥画素を有する固体撮像素子で撮像対象物を撮像したときの、各撮像画素による撮像領域Vを示す図である。 従来の画素ずらし法において固体撮像素子で撮像対象物を撮像したときの、各撮像画素による撮像領域を示す図である。 従来の画素ずらし法において固体撮像素子で撮像対象物を撮像したときの、各撮像画素による撮像領域を示す図である。 従来の画素ずらし法において固体撮像素子で撮像対象物を撮像したときの、各撮像画素による撮像領域を示す図である。 従来の画素ずらし法において固体撮像素子で撮像対象物を撮像したときの、各撮像画素による撮像領域を示す図である。 図11A~図11Dに対応した各撮像画像を合成することによって生成された高解像度画像を示す図である。
Objects, features, and advantages of the present invention will become more apparent from the following detailed description and drawings.
1 is a schematic diagram illustrating a schematic configuration of an image processing system according to an embodiment of the present invention. 1 is a block diagram illustrating a configuration of an image processing system according to an embodiment of the present invention. It is a figure which shows the imaging area by each imaging pixel when an imaging target object is imaged in each imaging position set by the imaging position setting part in 1st Example. It is a figure which shows the imaging area by each imaging pixel when an imaging target object is imaged in each imaging position set by the imaging position setting part in 1st Example. It is a figure which shows the imaging area by each imaging pixel when an imaging target object is imaged in each imaging position set by the imaging position setting part in 1st Example. It is a figure which shows the imaging area by each imaging pixel when an imaging target object is imaged in each imaging position set by the imaging position setting part in 1st Example. FIG. 4 is a diagram showing a high-resolution image generated by combining each captured image corresponding to FIGS. 3A to 3D. It is a figure which shows the imaging area by each imaging pixel when an imaging target object is imaged in each imaging position set by the imaging position setting part in 2nd Example. It is a figure which shows the imaging area by each imaging pixel when an imaging target object is imaged in each imaging position set by the imaging position setting part in 2nd Example. It is a figure which shows the imaging area by each imaging pixel when an imaging target object is imaged in each imaging position set by the imaging position setting part in 2nd Example. It is a figure which shows the imaging area by each imaging pixel when an imaging target object is imaged in each imaging position set by the imaging position setting part in 2nd Example. FIG. 6 is a diagram illustrating a high-resolution image generated by combining the captured images corresponding to FIGS. 5A to 5D. It is a figure which shows the imaging area by each imaging pixel when an imaging target object is imaged in each imaging position set by the imaging position setting part in 3rd Example. It is a figure which shows the imaging area by each imaging pixel when an imaging target object is imaged in each imaging position set by the imaging position setting part in 3rd Example. It is a figure which shows the imaging area by each imaging pixel when an imaging target object is imaged in each imaging position set by the imaging position setting part in 3rd Example. It is a figure which shows the imaging area by each imaging pixel when an imaging target object is imaged in each imaging position set by the imaging position setting part in 3rd Example. FIG. 8 is a diagram showing a high-resolution image generated by combining the captured images corresponding to FIGS. 7A to 7D. It is a flowchart which shows the procedure of the image generation process by the image processing system which concerns on embodiment of this invention. It is a figure which shows the imaging area V by each imaging pixel when an imaging target object is imaged with the solid-state image sensor which has a defective pixel. It is a figure which shows the imaging region by each imaging pixel when an imaging target object is imaged with the solid-state image sensor in the conventional pixel shift method. It is a figure which shows the imaging region by each imaging pixel when an imaging target object is imaged with the solid-state image sensor in the conventional pixel shift method. It is a figure which shows the imaging region by each imaging pixel when an imaging target object is imaged with the solid-state image sensor in the conventional pixel shift method. It is a figure which shows the imaging region by each imaging pixel when an imaging target object is imaged with the solid-state image sensor in the conventional pixel shift method. FIG. 12 is a diagram showing a high-resolution image generated by combining the captured images corresponding to FIGS. 11A to 11D.
 以下図面を参考にして本発明の好適な実施形態を詳細に説明する。
 図1は、本発明の実施形態に係る画像処理システム100の概略的な構成を示す模式図である。図2は、本発明の実施形態に係る画像処理システム100の構成を示すブロック図である。画像生成装置である画像処理システム100は、図示のように、撮像装置10と、アクチュエータ20と、制御装置30と、表示装置40とを含む構成である。
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a schematic diagram showing a schematic configuration of an image processing system 100 according to an embodiment of the present invention. FIG. 2 is a block diagram showing a configuration of the image processing system 100 according to the embodiment of the present invention. An image processing system 100 that is an image generation device includes an imaging device 10, an actuator 20, a control device 30, and a display device 40 as illustrated.
 撮像装置10は、複数の撮像画素が2次元的に配列されて成る固体撮像素子12を備え、制御装置30の指示に従って、撮像対象物Pの撮像を行う装置である。ここで、「撮像画素」とは、撮像画像における1画素分の情報を出力する部分であるものとする。つまり、撮像画像における1画素は、固体撮像素子12における1つの撮像画素によって撮像された撮像領域に対応している。 The imaging device 10 is a device that includes the solid-state imaging element 12 in which a plurality of imaging pixels are two-dimensionally arranged, and performs imaging of the imaging target P in accordance with instructions from the control device 30. Here, the “imaging pixel” is a part that outputs information for one pixel in the captured image. That is, one pixel in the captured image corresponds to an imaging region captured by one imaging pixel in the solid-state imaging device 12.
 アクチュエータ20は、制御装置30の指示に従って、固体撮像素子12と撮像対象物Pとの相対的な位置を、固体撮像素子12における撮像画素の配列方向に変化させる装置である。 The actuator 20 is a device that changes the relative position of the solid-state imaging device 12 and the imaging object P in the arrangement direction of the imaging pixels in the solid-state imaging device 12 in accordance with an instruction from the control device 30.
 制御装置30は、撮像対象物Pを撮像するときの固体撮像素子12と撮像対象物Pとの相対的な位置(以下、「撮像位置」と称する)を設定する。特に、本実施形態では、画素ずらし法によって、複数枚の撮像画像に基づいて高解像度画像を生成するため、複数の撮像位置が制御装置30によって設定される。なお、本実施形態における撮像画像が、低解像度画像に相当する。 The control device 30 sets a relative position (hereinafter referred to as “imaging position”) between the solid-state imaging device 12 and the imaging object P when imaging the imaging object P. In particular, in the present embodiment, a plurality of imaging positions are set by the control device 30 in order to generate a high resolution image based on a plurality of captured images by the pixel shifting method. Note that the captured image in the present embodiment corresponds to a low-resolution image.
 また、制御装置30は、設定した各撮像位置において撮像が順次行われるように、撮像装置10およびアクチュエータ20の動作を制御する。さらに、制御装置30は、固体撮像素子12が各撮像位置において撮像対象物Pを撮像したときの撮像画像の画像データ(以下、「撮像画像データ」と称する)に基づいて、高解像度画像の画像データ(以下、「高解像度画像データ」と称する)を生成する。 Also, the control device 30 controls the operations of the imaging device 10 and the actuator 20 so that imaging is sequentially performed at each set imaging position. Further, the control device 30 is configured to generate an image of a high-resolution image based on image data of a captured image (hereinafter referred to as “captured image data”) when the solid-state imaging device 12 images the imaging target P at each imaging position. Data (hereinafter referred to as “high resolution image data”) is generated.
 表示装置40は、制御装置30によって生成された高解像度画像データに基づいて、撮像対象物Pの高解像度画像を表示するための装置である。 The display device 40 is a device for displaying a high-resolution image of the imaging target P based on the high-resolution image data generated by the control device 30.
 画像処理システム100は、このように、画素ずらし法を採用することによって、固体撮像素子12によって取得される撮像画像よりも高解像度化した、撮像対象物Pの高解像度画像を、表示装置40に表示させるように構成されている。このような画像処理システム100は、撮像対象物Pの撮像画像における高周波成分を検出する必要がある用途に、好適に用いることができる。 In this way, the image processing system 100 adopts the pixel shifting method to provide the display device 40 with a high-resolution image of the imaging target P that has a higher resolution than the captured image acquired by the solid-state imaging device 12. It is configured to be displayed. Such an image processing system 100 can be suitably used for an application that needs to detect a high-frequency component in a captured image of the imaging target P.
 たとえば、シリコンウェハを撮像対象物Pとすることにより、シリコンウェハにおける傷および異物などの検出対象物を検査するために用いることができる。また、液晶ディスプレイ(Liquid Crystal Display:略称「LCD」)およびプラズマディスプレイパネル(Plasma Display Panel:略称「PDP」)などのFPDを撮像対象物Pとすることにより、FPDの点灯検査において、FPDにおける微小な検出対象物を検出するために用いることができる。 For example, by using a silicon wafer as the imaging target P, it can be used for inspecting a detection target such as a flaw or a foreign matter on the silicon wafer. In addition, by using FPDs such as liquid crystal displays (Liquid Crystal Display: abbreviated as “LCD”) and plasma display panels (Plasma Display Panel: abbreviated as “PDP”) as the imaging object P, in the FPD lighting inspection, the FPD in minute It can be used to detect an object to be detected.
 本実施形態に係る画像処理システム100は、特に、固体撮像素子12を構成している複数の撮像画素に欠陥画素が含まれている場合であっても、画素ずらし法によって生成される高解像度画像の精度の低下を抑制することができるように構成されている。 In particular, the image processing system 100 according to the present embodiment is a high-resolution image generated by the pixel shifting method even when a plurality of imaging pixels constituting the solid-state imaging device 12 includes defective pixels. It is comprised so that the fall of the precision of can be suppressed.
 以下の説明において、固体撮像素子12における欠陥のうち、欠陥画素が複数個単位で集合している欠陥を「クラスタ欠陥」と称し、欠陥画素が単独で存在している欠陥を「非クラスタ欠陥」と称する。 In the following description, of the defects in the solid-state imaging device 12, a defect in which defective pixels are gathered in a plurality of units is referred to as a “cluster defect”, and a defect in which defective pixels exist alone is referred to as a “non-cluster defect”. Called.
 以下、画像処理システム100の各構成である撮像装置10、アクチュエータ20、制御装置30および表示装置40の詳細について説明する。 Hereinafter, details of the imaging device 10, the actuator 20, the control device 30, and the display device 40 that are components of the image processing system 100 will be described.
 まず、撮像装置10について説明する。撮像装置10は、図2に示すように、光学的結像部であるレンズ11と、撮像部である固体撮像素子12と、レンズ11および固体撮像素子12を収容する筐体とを備えている。 First, the imaging device 10 will be described. As shown in FIG. 2, the imaging device 10 includes a lens 11 that is an optical imaging unit, a solid-state imaging device 12 that is an imaging unit, and a housing that houses the lens 11 and the solid-state imaging device 12. .
 撮像装置10は、撮像対象物Pに対向して設置され、撮像対象物Pから反射した光を、筐体の内部に固定して設けられるレンズ11を介して、該筐体の内部に設けられる固体撮像素子12の撮像面に、光学的に結像させるように構成されている。 The imaging device 10 is installed inside the casing through a lens 11 that is installed facing the imaging target P and that reflects light reflected from the imaging target P inside the casing. It is configured to form an optical image on the imaging surface of the solid-state imaging device 12.
 固体撮像素子12は、複数の撮像画素を前記撮像面においてマトリクス状に配列することによって構成されており、その撮像面がレンズ11の光軸に対して垂直となるように、筐体内に設けられている。固体撮像素子12は、制御装置30の指示に従って、該撮像面に光学的に結像した撮像対象物Pの像を、空間的に離散化させてサンプリングし、画像信号に変換する。撮像装置10は、このようにして、撮像面に結像した撮像対象物Pの像を、撮像画像データとして取得し、制御装置30へ出力する。固体撮像素子12は、エリアセンサとして構成されており、CCDイメージセンサおよびCMOSイメージセンサなどを用いることができる。 The solid-state imaging device 12 is configured by arranging a plurality of imaging pixels in a matrix on the imaging surface, and is provided in the casing so that the imaging surface is perpendicular to the optical axis of the lens 11. ing. In accordance with an instruction from the control device 30, the solid-state imaging device 12 spatially discretizes the image of the imaging target P that has been optically imaged on the imaging surface, and converts the image into an image signal. In this way, the imaging device 10 acquires the image of the imaging target P imaged on the imaging surface as captured image data, and outputs it to the control device 30. The solid-state imaging device 12 is configured as an area sensor, and a CCD image sensor, a CMOS image sensor, or the like can be used.
 以下の説明において、マトリクス状に配列される撮像画素の各配列方向を、それぞれX方向およびY方向と称する。すなわち、X方向およびY方向は、互いに直交する方向であり、いずれの方向も、固体撮像素子12の撮像面に平行な方向である。 In the following description, the arrangement directions of the imaging pixels arranged in a matrix are referred to as an X direction and a Y direction, respectively. That is, the X direction and the Y direction are directions orthogonal to each other, and both directions are directions parallel to the imaging surface of the solid-state imaging device 12.
 次に、撮像位置変化部であるアクチュエータ20について説明する。アクチュエータ20は、撮像対象物Pと固体撮像素子12との相対的な位置を変化させるための装置であり、本実施形態では、図示しないステージ上に載置される撮像対象物Pに対して、固体撮像素子12の位置を変化させるように構成されている。すなわち、アクチュエータ20は、固定的に配置される撮像対象物Pに対して、固体撮像素子12を移動させるように構成されている。 Next, the actuator 20 that is the imaging position changing unit will be described. The actuator 20 is a device for changing the relative position between the imaging object P and the solid-state imaging device 12, and in the present embodiment, for the imaging object P placed on a stage (not shown), The position of the solid-state imaging device 12 is changed. That is, the actuator 20 is configured to move the solid-state imaging device 12 with respect to the imaging object P that is fixedly arranged.
 アクチュエータ20は、撮像装置10の筐体の内壁に固定されて設けられ、固体撮像素子12は、このアクチュエータ20によって支持されている。アクチュエータ20は、制御装置30の指示に従って、固体撮像素子12を、前述するX方向およびY方向に沿って変位させるように構成されている。 The actuator 20 is fixedly provided on the inner wall of the housing of the imaging apparatus 10, and the solid-state imaging device 12 is supported by the actuator 20. The actuator 20 is configured to displace the solid-state imaging device 12 along the X direction and the Y direction described above in accordance with an instruction from the control device 30.
 アクチュエータ20としては、たとえばピエゾアクチュエータおよびステッピングモータなどの装置を使用することができる。アクチュエータ20としては、撮像対象物Pと固体撮像素子12との相対位置を変化させることができるように構成されていればよく、特に限定されないが、ここではピエゾアクチュエータを用いるものとする。 As the actuator 20, for example, a device such as a piezo actuator and a stepping motor can be used. The actuator 20 is not particularly limited as long as the relative position between the imaging object P and the solid-state imaging device 12 can be changed, but a piezo actuator is used here.
 また、本実施形態では、アクチュエータ20は、固体撮像素子12を撮像対象物Pに対して移動させるように構成されているが、このような構成に限定されず、撮像対象物Pを固体撮像素子12に対して、撮像装置10のレンズ11の光軸に垂直な平面に沿って2次元的に移動させるように構成されてもよい。また、固体撮像素子12および撮像対象物Pの両方を移動させるように構成されてもよい。 Further, in the present embodiment, the actuator 20 is configured to move the solid-state imaging device 12 with respect to the imaging target P, but is not limited to such a configuration, and the imaging target P is moved to the solid-state imaging device. 12 may be configured to move two-dimensionally along a plane perpendicular to the optical axis of the lens 11 of the imaging device 10. Moreover, you may be comprised so that both the solid-state image sensor 12 and the imaging target object P may be moved.
 次に、制御装置30について説明する。制御装置30は、図2に示すように、撮像位置設定部31と、撮像条件記憶部32と、撮像制御部33と、撮像画像記憶部36と、高解像度画像生成部37とを備えて構成される。すなわち、これらの構成により、前述するような制御装置30の機能が実現される。制御装置30は、たとえばパーソナルコンピュータおよびワークステーションなどによって構成される。 Next, the control device 30 will be described. As shown in FIG. 2, the control device 30 includes an imaging position setting unit 31, an imaging condition storage unit 32, an imaging control unit 33, a captured image storage unit 36, and a high-resolution image generation unit 37. Is done. That is, the functions of the control device 30 as described above are realized by these configurations. The control device 30 is constituted by, for example, a personal computer and a workstation.
 撮像位置設定部31は、撮像条件記憶部32に予め格納されている撮像条件を読み出して、撮像対象物Pを撮像するときの固体撮像素子12の撮像位置を設定する。撮像位置の設定についての詳細は後述する。 The imaging position setting unit 31 reads the imaging conditions stored in advance in the imaging condition storage unit 32, and sets the imaging position of the solid-state imaging device 12 when imaging the imaging target P. Details of the setting of the imaging position will be described later.
 撮像条件記憶部32には、撮像画像に基づいて高解像度画像を生成するときの倍率(以下、「高解像度化倍率」と称する)Aのデータが格納される。本実施形態では、撮像画素の第1の配列方向であるX方向と第2の配列方向であるY方向とに個別に高解像度化できるように構成されている。したがって、撮像条件記憶部32には、X方向およびY方向に関する高解像度化倍率Ax,Ay(但し、Ax,Ayは2以上の整数とする)のデータが格納される。 The imaging condition storage unit 32 stores data of magnification A (hereinafter referred to as “high resolution magnification”) A when a high-resolution image is generated based on a captured image. In the present embodiment, it is configured such that the resolution can be individually increased in the X direction that is the first arrangement direction of the imaging pixels and the Y direction that is the second arrangement direction. Therefore, the imaging condition storage unit 32 stores data of high resolution magnifications Ax and Ay (where Ax and Ay are integers of 2 or more) in the X direction and the Y direction.
 また、撮像条件記憶部32には、固体撮像素子12における撮像画素のX方向およびY方向に関する画素ピッチDx,Dyのデータが格納される。ここで、画素ピッチDxとは、固体撮像素子12において、X方向に隣接している各撮像画素の中心間の距離に相当する。同様に、画素ピッチDyとは、固体撮像素子12において、Y方向に隣接している各撮像画素の中心間の距離に相当する。すなわち、画素ピッチDx,Dyは、撮像装置10に搭載される固体撮像素子12に応じて決定される値である。 In addition, the imaging condition storage unit 32 stores data of pixel pitches Dx and Dy regarding the X direction and the Y direction of the imaging pixels in the solid-state imaging device 12. Here, the pixel pitch Dx corresponds to the distance between the centers of the imaging pixels adjacent in the X direction in the solid-state imaging device 12. Similarly, the pixel pitch Dy corresponds to the distance between the centers of the imaging pixels adjacent in the Y direction in the solid-state imaging device 12. That is, the pixel pitches Dx and Dy are values determined according to the solid-state imaging device 12 mounted on the imaging device 10.
 さらに、撮像条件記憶部32には、固体撮像素子12に生じている欠陥の位置およびサイズのデータが格納される。ここで、欠陥の位置とは、固体撮像素子12における欠陥画素の撮像面における位置座標に相当する。 Further, the imaging condition storage unit 32 stores data on the position and size of defects occurring in the solid-state imaging device 12. Here, the position of the defect corresponds to a position coordinate on the imaging surface of the defective pixel in the solid-state imaging device 12.
 また、欠陥のサイズとは、固体撮像素子12に生じている1または複数の欠陥に関して、X方向のサイズが最大の欠陥におけるX方向の最大画素数Cx(但し、Cxは自然数)と、Y方向のサイズが最大の欠陥におけるY方向の最大画素数Cy(但し、Cyは自然数)とに相当する。 The defect size refers to the maximum number of pixels Cx in the X direction (where Cx is a natural number) and the Y direction in the defect having the largest size in the X direction with respect to one or a plurality of defects occurring in the solid-state imaging device 12. This corresponds to the maximum number of pixels Cy in the Y direction in the defect having the largest size (where Cy is a natural number).
 つまり、固体撮像素子12に生じている欠陥にクラスタ欠陥が含まれていない場合(すなわち、非クラスタ欠陥のみである場合)、欠陥のサイズCx,Cyはいずれも1(すなわち、Cx=Cy=1)となる。また、固体撮像素子12に生じている欠陥にクラスタ欠陥が1または複数含まれている場合には、欠陥のサイズCx,Cyは、その各クラスタ欠陥のサイズに応じて決定されるものであり、少なくともCx,Cyのいずれかは、2以上となる。 That is, when the defects occurring in the solid-state imaging device 12 do not include cluster defects (that is, only non-cluster defects), the defect sizes Cx and Cy are both 1 (that is, Cx = Cy = 1). ) When one or a plurality of cluster defects are included in the defect occurring in the solid-state imaging device 12, the defect sizes Cx and Cy are determined according to the size of each cluster defect. At least one of Cx and Cy is 2 or more.
 このような欠陥の位置およびサイズCx,Cyのデータは、たとえば撮像装置10に搭載される固体撮像素子12を、予め専用の検査装置で検査することによって取得される。 The data of such defect positions and sizes Cx and Cy are acquired by inspecting, for example, the solid-state imaging device 12 mounted on the imaging device 10 with a dedicated inspection device in advance.
 ユーザは、図示しない入力装置を利用して、所望の高解像度化倍率Ax,Ayを設定するとともに、固体撮像素子12に関する前記の各データを設定する。これにより、撮像条件記憶部32には、撮像条件として、これらの各データが格納される。 The user uses the input device (not shown) to set the desired high-resolution magnifications Ax and Ay, and also sets each data related to the solid-state imaging device 12. Thereby, each of these data is stored in the imaging condition storage unit 32 as imaging conditions.
 また、撮像条件記憶部32には、これらの各データのほか、各撮像位置において撮像対象物Pを撮像するときの露光時間(シャッタスピード)、撮像感度、使用する光学フィルタ、およびアイリス(絞り)などの撮像条件に関するデータが、ユーザによって設定されて格納される。 In addition to these pieces of data, the imaging condition storage unit 32 has an exposure time (shutter speed), imaging sensitivity, an optical filter to be used, and an iris (aperture) when imaging the imaging object P at each imaging position. Data relating to imaging conditions such as are set and stored by the user.
 撮像制御部33は、図2に示すように、アクチュエータ制御部34と、撮像タイミング制御部35とを備えている。アクチュエータ制御部34は、撮像位置設定部31によって設定された撮像位置のデータに基づいて、アクチュエータ20の駆動を制御する。具体的には、アクチュエータ制御部34は、アクチュエータ20の駆動開始および駆動停止のタイミング、アクチュエータ20の駆動速度などを制御する。このようなアクチュエータ制御部34の制御によって、アクチュエータ20は、撮像位置設定部31によって設定された各撮像位置に、固体撮像素子12を順次移動させることができる。 The imaging control unit 33 includes an actuator control unit 34 and an imaging timing control unit 35 as shown in FIG. The actuator control unit 34 controls the driving of the actuator 20 based on the imaging position data set by the imaging position setting unit 31. Specifically, the actuator control unit 34 controls the drive start and stop timings of the actuator 20, the drive speed of the actuator 20, and the like. By such control of the actuator control unit 34, the actuator 20 can sequentially move the solid-state imaging device 12 to each imaging position set by the imaging position setting unit 31.
 撮像タイミング制御部35は、固体撮像素子12による撮像の開始および停止のタイミングを制御する。具体的には、撮像タイミング制御部35は、撮像条件記憶部32に格納されている撮像条件に基づいて撮像装置10へ制御信号を送ることにより、各撮像位置における撮像時間、すなわち露光時間を制御する。 The imaging timing control unit 35 controls the timing of starting and stopping imaging by the solid-state imaging device 12. Specifically, the imaging timing control unit 35 controls the imaging time at each imaging position, that is, the exposure time, by sending a control signal to the imaging device 10 based on the imaging conditions stored in the imaging condition storage unit 32. To do.
 撮像制御部33において、アクチュエータ制御部34と撮像タイミング制御部35とは、互いに同期がとれるように構成されており、撮像制御部33は、アクチュエータ20の駆動によって固体撮像素子12が撮像位置に移動された後に、固体撮像素子12による撮像が行われるように、撮像装置10およびアクチュエータ20の動作を制御する。 In the imaging control unit 33, the actuator control unit 34 and the imaging timing control unit 35 are configured to be synchronized with each other, and the imaging control unit 33 moves the solid-state imaging device 12 to the imaging position by driving the actuator 20. After that, the operations of the imaging device 10 and the actuator 20 are controlled so that the imaging by the solid-state imaging device 12 is performed.
 画像処理システム100では、撮像タイミング制御部35の指示によって、ある撮像位置において撮像が行なわれると、撮像装置10は、撮像によって取得された撮像画像データに、該撮像画像データを識別可能な識別子を付して、制御装置30の撮像画像記憶部36に格納する。したがって、撮像画像記憶部36には、撮像位置を識別可能な複数の撮像画像データが格納される。 In the image processing system 100, when imaging is performed at a certain imaging position in accordance with an instruction from the imaging timing control unit 35, the imaging device 10 adds an identifier that can identify the captured image data to the captured image data acquired by imaging. In addition, the captured image storage unit 36 of the control device 30 stores the captured image. Therefore, the captured image storage unit 36 stores a plurality of captured image data that can identify the imaging position.
 高解像度画像生成部37は、撮像画像記憶部36に格納されている撮像位置ごとの撮像画像データに基づいて、X方向にAx倍、Y方向にAy倍した高解像度画像データを、画素ずらし法によって生成する。このとき、高解像度画像生成部37は、撮像条件記憶部32に格納されている欠陥画素の位置座標のデータに基づいて、高解像度画像データの補正を行う。具体的には、撮像画像データにおける各画素のうち、この欠陥画素に対応する画素の輝度値情報が、高解像度画像データに反映されないように補正を行う。このようにして生成された高解像度画像データは、図示しない記憶領域に格納される。 The high-resolution image generation unit 37 performs pixel shift processing on the high-resolution image data that is Ax times in the X direction and Ay times in the Y direction based on the captured image data for each imaging position stored in the captured image storage unit 36. Generate by. At this time, the high resolution image generation unit 37 corrects the high resolution image data based on the position coordinate data of the defective pixel stored in the imaging condition storage unit 32. Specifically, correction is performed so that the luminance value information of the pixel corresponding to the defective pixel among the pixels in the captured image data is not reflected in the high-resolution image data. The high-resolution image data generated in this way is stored in a storage area (not shown).
 次に、表示装置40について説明する。表示装置40は、制御装置30によって生成された高解像度画像データを受け取ると、撮像対象物Pの高解像度画像を表示部に表示する。表示装置40は、たとえばCRT(Cathode Ray Tube)、LCDおよびPDPなどによって実現される。 Next, the display device 40 will be described. When the display device 40 receives the high-resolution image data generated by the control device 30, the display device 40 displays a high-resolution image of the imaging target P on the display unit. The display device 40 is realized by, for example, a CRT (Cathode Ray Tube), LCD, or PDP.
 以下では、撮像位置設定部31による撮像位置の設定方法について説明する。撮像位置設定部31は、複数の撮像画像間で、同一の撮像画素によって撮像される撮像領域V同士が互いに重複しないように、各撮像位置を設定する。 Hereinafter, a method for setting the imaging position by the imaging position setting unit 31 will be described. The imaging position setting unit 31 sets each imaging position so that imaging areas V captured by the same imaging pixel do not overlap each other between a plurality of captured images.
 つまり、撮像位置設定部31は、固体撮像素子12における1つの撮像画素が撮像する被撮像面での撮像領域VのX方向に関するサイズをWxとするとき、X方向に隣接する撮像位置で撮像される撮像画像間で、同一の撮像画素によって撮像される撮像領域V同士の離間する距離LxがLx≧Wxを満足するように、X方向に隣接する各撮像位置を設定する。 That is, the imaging position setting unit 31 captures an image at an imaging position adjacent to the X direction, where Wx is the size in the X direction of the imaging region V on the imaging surface captured by one imaging pixel in the solid-state imaging device 12. The imaging positions adjacent to each other in the X direction are set so that the distance Lx between the imaging areas V captured by the same imaging pixel satisfies Lx ≧ Wx.
 同様に、撮像位置設定部31は、固体撮像素子12における1つの撮像画素が撮像する被撮像面での撮像領域VのY方向に関するサイズをWyとするとき、Y方向に隣接する撮像位置で撮像される撮像画像間で、同一の撮像画素によって撮像される撮像領域V同士の離間する距離LyがLy≧Wyを満足するように、Y方向に隣接する各撮像位置を設定する。 Similarly, the imaging position setting unit 31 captures an image at an imaging position adjacent to the Y direction when the size in the Y direction of the imaging region V on the imaging surface captured by one imaging pixel in the solid-state imaging device 12 is Wy. The imaging positions adjacent to each other in the Y direction are set so that the distance Ly between the imaging regions V imaged by the same imaging pixel satisfies Ly ≧ Wy between the captured images.
 詳細には、撮像位置設定部31は、撮像条件記憶部32に格納されているX方向およびY方向に関する高解像度化倍率Ax,Ayに基づいて、X方向およびY方向に関する離間距離Lx,Lyが、下記の数式(1),(2)を満足するように、各撮像位置を設定する。
  Lx=(Nx+Mx/Ax)×Wx          …(1)
  Ly=(Ny+My/Ay)×Wy          …(2)
Specifically, the imaging position setting unit 31 determines that the separation distances Lx and Ly in the X direction and the Y direction are based on the resolution enhancement magnifications Ax and Ay in the X direction and the Y direction stored in the imaging condition storage unit 32. Each imaging position is set so as to satisfy the following formulas (1) and (2).
Lx = (Nx + Mx / Ax) × Wx (1)
Ly = (Ny + My / Ay) × Wy (2)
 ここで、Nx,Nyは、いずれも自然数であり、後述するように、撮像条件記憶部32に格納されている欠陥のサイズCx,Cyに基づいて定められる値である。また、Mx,Myは、1≦Mx<Axおよび1≦My<Ayをそれぞれ満足する任意の自然数である。したがって、数式(1),(2)において、Nx+Mx/Ax>1およびNy+My/Ay>1となるため、Lx>WxおよびLy>Wyを満足するように、離間距離Lx,Lyが設定される。 Here, Nx and Ny are both natural numbers, and are values determined based on the defect sizes Cx and Cy stored in the imaging condition storage unit 32, as will be described later. Mx and My are arbitrary natural numbers that satisfy 1 ≦ Mx <Ax and 1 ≦ My <Ay, respectively. Therefore, in Expressions (1) and (2), since Nx + Mx / Ax> 1 and Ny + My / Ay> 1, the separation distances Lx and Ly are set so as to satisfy Lx> Wx and Ly> Wy.
 本実施形態に係る画像処理システム100は、前記のように、撮像対象物Pに対して固体撮像素子12を移動させるように構成されている。したがって、撮像位置設定部31は、前記の数式(1),(2)を満足するように、固体撮像素子12の移動量を設定することによって、撮像位置を設定するように構成されている。 The image processing system 100 according to the present embodiment is configured to move the solid-state imaging device 12 with respect to the imaging target P as described above. Therefore, the imaging position setting unit 31 is configured to set the imaging position by setting the amount of movement of the solid-state imaging device 12 so as to satisfy the mathematical expressions (1) and (2).
 具体的には、X方向およびY方向に隣接する撮像位置間での固体撮像素子12の移動量をそれぞれFx,Fyとすると、移動量Fx,Fyは、撮像条件記憶部32に格納されている高解像度化倍率Ax,Ayおよび画素ピッチDx,Dyに基づいて、下記の数式(3),(4)を満足するように設定される。
  Fx=(Nx+Mx/Ax)×Dx          …(3)
  Fy=(Ny+My/Ay)×Dy          …(4)
Specifically, assuming that the movement amounts of the solid-state imaging device 12 between the imaging positions adjacent to each other in the X direction and the Y direction are Fx and Fy, the movement amounts Fx and Fy are stored in the imaging condition storage unit 32. Based on the resolution enhancement magnifications Ax and Ay and the pixel pitches Dx and Dy, the following mathematical formulas (3) and (4) are set.
Fx = (Nx + Mx / Ax) × Dx (3)
Fy = (Ny + My / Ay) × Dy (4)
 ここで、数式(1),(2)は、隣接する撮像位置で撮像される撮像画像間における同一の撮像画素が撮像する撮像領域V同士の関係を記述したものであるのに対し、数式(3),(4)は、数式(1),(2)に記述されている関係を、固体撮像素子12の移動量に換算した式に相当する。 Here, the mathematical formulas (1) and (2) describe the relationship between the imaging regions V captured by the same imaging pixel between the captured images captured at the adjacent imaging positions, whereas the mathematical formula ( 3) and (4) correspond to equations obtained by converting the relationship described in Equations (1) and (2) into the amount of movement of the solid-state imaging device 12.
 撮像位置設定部31は、数式(3),(4)に基づいて移動量Fx,Fyを設定するにあたり、高解像度化倍率Ax,Ayおよび画素ピッチDx,Dyについては、前記のように、撮像条件記憶部32に格納されているデータに基づいて数値を入力する。 When the imaging position setting unit 31 sets the movement amounts Fx and Fy based on the equations (3) and (4), the imaging resolution setting magnifications Ax and Ay and the pixel pitches Dx and Dy are imaged as described above. A numerical value is input based on the data stored in the condition storage unit 32.
 数式(3),(4)において、Nx,Nyは、固体撮像素子12を、X方向、Y方向に、少なくとも撮像画素の幾つ分移動させる必要があるかを規定している変数に相当している。従来の画素ずらし法によれば、固体撮像素子12の移動量Fx,Fyを低減するためにNx=Ny=0として移動量Fx,Fyが設定されていたが、本実施形態では、固体撮像素子12に生じている欠陥を考慮して、高解像度画像の各画素における有効撮像枚数の低下を1枚に抑えるために、すなわち、高解像度画像の各画素における有効撮像枚数が撮像画像の枚数(すなわち、撮像位置の数)に対して2枚以上低下してしまうことを回避するために、撮像位置設定部31は、撮像条件記憶部32に格納されている欠陥のサイズCx,Cyに基づいて、下記の数式(5),(6)に従って、Nx,Nyを設定する。
  Nx≧Cx                     …(5)
  Ny≧Cy                     …(6)
In Expressions (3) and (4), Nx and Ny correspond to variables that define how many image pickup pixels need to be moved in the X direction and the Y direction, respectively. Yes. According to the conventional pixel shifting method, the movement amounts Fx, Fy are set with Nx = Ny = 0 in order to reduce the movement amounts Fx, Fy of the solid-state imaging device 12, but in this embodiment, the solid-state imaging device. 12, in order to suppress the decrease in the number of effective images in each pixel of the high resolution image to one, that is, the number of effective images in each pixel of the high resolution image is equal to the number of captured images (that is, In order to avoid a decrease of two or more images with respect to the number of imaging positions), the imaging position setting unit 31 is based on the defect sizes Cx and Cy stored in the imaging condition storage unit 32. Nx and Ny are set according to the following equations (5) and (6).
Nx ≧ Cx (5)
Ny ≧ Cy (6)
 つまり、この数式(5),(6)に従えば、X方向に関しては、固体撮像素子12を、X方向のサイズが最大の欠陥におけるX方向の最大画素数Cx以上移動させるように、移動量Fxが設定される。また、Y方向に関しては、固体撮像素子12を、Y方向のサイズが最大の欠陥におけるY方向の最大画素数Cy以上移動させるように、移動量Fyが設定される。すなわち、数式(5),(6)を満足するように移動量Fx,Fyを設定することで、有効撮像枚数の低下を1枚だけに抑えるように撮像位置を設定することができる。 That is, according to Equations (5) and (6), with respect to the X direction, the amount of movement is such that the solid-state imaging device 12 is moved by more than the maximum number of pixels Cx in the X direction in the defect having the largest size in the X direction. Fx is set. For the Y direction, the movement amount Fy is set so that the solid-state imaging device 12 is moved by the maximum number of pixels Cy in the Y direction in the defect having the largest size in the Y direction. That is, by setting the movement amounts Fx and Fy so as to satisfy the expressions (5) and (6), the imaging position can be set so as to suppress the decrease in the effective imaging number to only one.
 ところで、数式(5),(6)に記載されている条件さえ満足すれば、Nx,Nyを如何なる数値に設定したとしても、有効撮像枚数の低下を1枚だけに抑えることができるという前記の効果は達成される。そこで、数式(5),(6)に記載の条件に加えて、さらに、固体撮像素子12の移動量Fx,Fyを低減するという条件に基づいて、Nx,Nyを設定するのが好ましい。すなわち、FxとNx、およびFyとNyとはそれぞれ比例関係にあることから、移動量Fx,Fyを低減するために、Nx=CxおよびNy=Cyと設定するのが好ましい。 By the way, as long as the conditions described in Equations (5) and (6) are satisfied, no matter what the numerical values Nx and Ny are set, the reduction in the effective number of images can be suppressed to only one. The effect is achieved. Therefore, it is preferable to set Nx and Ny based on the condition that the movement amounts Fx and Fy of the solid-state imaging device 12 are further reduced in addition to the conditions described in the mathematical expressions (5) and (6). That is, since Fx and Nx and Fy and Ny are proportional to each other, it is preferable to set Nx = Cx and Ny = Cy in order to reduce the movement amounts Fx and Fy.
 また、Mx,Myは、前記のように、1≦Mx<Axおよび1≦My<Ayをそれぞれ満足する任意の自然数であり、数式(3),(4)において、Mx/AxおよびMy/Ayは、1未満の正の値となる。したがって、前記と同様に、固体撮像素子12の移動量Fx,Fyを低減するという条件を考慮して、Mx=My=1と設定するのが好ましい。 Further, as described above, Mx and My are arbitrary natural numbers that satisfy 1 ≦ Mx <Ax and 1 ≦ My <Ay, respectively, and in equations (3) and (4), Mx / Ax and My / Ay Is a positive value less than 1. Therefore, similarly to the above, it is preferable to set Mx = My = 1 in consideration of the condition of reducing the movement amounts Fx and Fy of the solid-state imaging device 12.
 以上を考慮して、本実施形態では、撮像位置設定部31は、撮像条件記憶部32に格納されている高解像度化倍率Ax,Ay、画素ピッチDx,Dy、および欠陥のサイズCx,Cyに基づいて、移動量Fx,Fyを、下記の数式(7),(8)を満足するように設定する。
  Fx=(Cx+1/Ax)×Dx           …(7)
  Fy=(Cy+1/Ay)×Dy           …(8)
In consideration of the above, in this embodiment, the imaging position setting unit 31 sets the resolution enhancement magnifications Ax, Ay, pixel pitches Dx, Dy, and defect sizes Cx, Cy stored in the imaging condition storage unit 32. Based on this, the movement amounts Fx and Fy are set so as to satisfy the following formulas (7) and (8).
Fx = (Cx + 1 / Ax) × Dx (7)
Fy = (Cy + 1 / Ay) × Dy (8)
 撮像位置設定部31は、このようにして移動量Fx,Fyを設定すると、高解像度化倍率Ax,Ayに基づいて決定される枚数分の撮像を行うために、固体撮像素子12の各撮像位置を設定する。たとえば、撮像画像をX方向およびY方向にそれぞれ3倍(すなわち、Ax=Ay=3)に高解像度化した高解像度画像を生成する場合、3(X方向)×3(Y方向)のマトリクス状に並ぶ撮像位置が、撮像面を含む仮想平面内において設定される。 When the movement amounts Fx and Fy are set in this way, the imaging position setting unit 31 performs imaging for the number of sheets determined based on the resolution enhancement magnifications Ax and Ay. Set. For example, in the case of generating a high-resolution image obtained by increasing the resolution of the captured image three times in the X direction and the Y direction (that is, Ax = Ay = 3), a matrix shape of 3 (X direction) × 3 (Y direction) Are set within a virtual plane including the imaging plane.
 具体的には、該仮想平面におけるX方向およびY方向の座標を(x,y)として表すと、基準となる撮像位置の座標を(0,0)とするとき、他の撮像位置の座標はそれぞれ、(Fx,0)、(2Fx,0)、(0,Fy)、(Fx,Fy)、(2Fx,Fy)、(0,2Fy)、(Fx,2Fy)、(2Fx,2Fy)として設定される。 Specifically, when the coordinates in the X direction and the Y direction on the virtual plane are expressed as (x, y), when the coordinates of the reference imaging position are (0, 0), the coordinates of the other imaging positions are As (Fx, 0), (2Fx, 0), (0, Fy), (Fx, Fy), (2Fx, Fy), (0,2Fy), (Fx, 2Fy), (2Fx, 2Fy), respectively. Is set.
 このように、本実施形態では、有効撮像枚数の低下を1枚だけに抑えるための固体撮像素子12の撮像位置を設定する際に、固体撮像素子12の移動量Fx,Fyを低減するように撮像位置を設定しているので、従来の画素ずらし法に比べて固体撮像素子12の移動量Fx,Fyが増大してしまうことによる影響、すなわち、撮像位置間の移動時間の増加、アクチュエータ20によって移動された位置の撮像位置に対する精度の低下、およびアクチュエータ20の寿命低下を、抑制することができる。 Thus, in this embodiment, when setting the imaging position of the solid-state imaging device 12 for suppressing the decrease in the effective imaging number to only one, the movement amounts Fx and Fy of the solid-state imaging device 12 are reduced. Since the imaging position is set, the influence due to the increase in the movement amounts Fx and Fy of the solid-state imaging device 12 compared to the conventional pixel shifting method, that is, the increase in the movement time between the imaging positions, the actuator 20 A decrease in accuracy with respect to the imaging position of the moved position and a decrease in the life of the actuator 20 can be suppressed.
 ここで、撮像画像をX方向に2倍、Y方向に2倍に高解像度化した高解像度画像を生成する場合を例に挙げて、本実施形態の画素ずらし法を複数の実施例について説明する。 Here, the pixel shift method of this embodiment will be described in a plurality of examples, taking as an example the case of generating a high-resolution image in which the resolution of the captured image is doubled in the X direction and doubled in the Y direction. .
 まず、固体撮像素子12に生じている欠陥にクラスタ欠陥が含まれていない場合の実施例(以下、「第1実施例」と称する)について説明する。すなわち、この第1実施例においては、撮像条件記憶部32に格納されている高解像度化倍率Ax,Ayはそれぞれ2(すなわち、Ax=Ay=2)であり、また欠陥のサイズCx,Cyはそれぞれ1(すなわち、Cx=Cy=1)である。 First, an example (hereinafter referred to as “first example”) in the case where a defect occurring in the solid-state imaging device 12 does not include a cluster defect will be described. That is, in the first embodiment, the resolution enhancement magnifications Ax and Ay stored in the imaging condition storage unit 32 are 2 (that is, Ax = Ay = 2), and the defect sizes Cx and Cy are Each is 1 (ie, Cx = Cy = 1).
 したがって、撮像位置設定部31は、前記の数式(7),(8)に基づいて、固体撮像素子12の移動量Fx,Fyを、Fx=3Dx/2およびFy=3Dy/2と設定する。これにより、撮像位置設定部31は、固体撮像素子12の撮像位置を、(0,0)、(3Dx/2,0)、(0,3Dy/2)、(3Dx/2,3Dy/2)と設定する。ここで、(0,0)は、基準の撮像位置の座標を表しているものとする。 Therefore, the imaging position setting unit 31 sets the movement amounts Fx and Fy of the solid-state imaging device 12 as Fx = 3Dx / 2 and Fy = 3Dy / 2 based on the mathematical expressions (7) and (8). Thereby, the imaging position setting unit 31 sets the imaging position of the solid-state imaging device 12 to (0, 0), (3Dx / 2, 0), (0, 3Dy / 2), (3Dx / 2, 3Dy / 2). And set. Here, (0, 0) represents the coordinates of the reference imaging position.
 図3A~図3Dは、第1実施例において撮像位置設定部31によって設定された各撮像位置で撮像対象物Pを撮像したときの、各撮像画素による撮像領域Vを示す図である。図3A~図3Dにおいて、矩形状の9つの撮像領域Vは、固体撮像素子12においてマトリクス状に配列されている縦横3×3個の撮像画素によって撮像された被撮像面上での領域に対応している。特に、ハッチングが付されている撮像領域v1は、欠陥画素によって撮像された被撮像面上での領域に対応しており、ハッチングが付されていない撮像領域v0、すなわち撮像領域v1の周囲の8つの撮像領域v0は、正常な撮像画素によって撮像された被撮像面上での領域に対応している。また、図3A~図3Dにおいて、撮像対象物Pに生じている微小な異物や傷などの検出対象物を、参照符Uを付して示している。 3A to 3D are diagrams showing the imaging region V by each imaging pixel when the imaging object P is imaged at each imaging position set by the imaging position setting unit 31 in the first embodiment. In FIG. 3A to FIG. 3D, nine rectangular imaging regions V correspond to regions on the imaging surface imaged by 3 × 3 vertical and horizontal imaging pixels arranged in a matrix in the solid-state imaging device 12. is doing. In particular, the imaging region v1 that is hatched corresponds to the region on the imaging target surface that is imaged by the defective pixel, and the imaging region v0 that is not hatched, that is, 8 around the imaging region v1. The two imaging areas v0 correspond to areas on the imaging surface captured by normal imaging pixels. Further, in FIGS. 3A to 3D, detection objects such as minute foreign matters and scratches generated on the imaging object P are indicated with a reference symbol U.
 図3Aは、基準の撮像位置(0,0)で撮像対象物Pを撮像したときの、各撮像画素による撮像領域Vを示している。また、図3Bは、基準の撮像位置(0,0)から画素ピッチDxの3/2だけX方向に固体撮像素子12を移動させた撮像位置(3Dx/2,0)で撮像対象物Pを撮像したときの、各撮像画素による撮像領域Vを示している。 FIG. 3A shows an imaging region V by each imaging pixel when the imaging object P is imaged at the reference imaging position (0, 0). FIG. 3B shows the imaging object P at the imaging position (3Dx / 2, 0) obtained by moving the solid-state imaging device 12 in the X direction by 3/2 of the pixel pitch Dx from the reference imaging position (0, 0). The imaging region V by each imaging pixel when it imaged is shown.
 また、図3Cは、基準の撮像位置(0,0)から画素ピッチDyの3/2だけY方向に固体撮像素子12を移動させた撮像位置(0,3Dy/2)で撮像対象物Pを撮像したときの、各撮像画素による撮像領域Vを示している。また、図3Dは、基準の撮像位置(0,0)から画素ピッチDx,Dyの3/2だけX方向およびY方向に固体撮像素子12をそれぞれ移動させた撮像位置(3Dx/2,3Dy/2)で撮像対象物Pを撮像したときの、各撮像画素による撮像領域Vを示している。なお、図3A~図3Dにおいて、被撮像面における基準点を参照符Oで示している。 FIG. 3C shows the imaging object P at the imaging position (0, 3Dy / 2) where the solid-state imaging device 12 is moved in the Y direction by 3/2 of the pixel pitch Dy from the reference imaging position (0, 0). The imaging region V by each imaging pixel when it imaged is shown. 3D shows the imaging positions (3Dx / 2, 3Dy / 3) in which the solid-state imaging device 12 is moved in the X and Y directions by 3/2 of the pixel pitches Dx and Dy from the reference imaging position (0, 0). The imaging region V by each imaging pixel when the imaging target P is imaged in 2) is shown. In FIG. 3A to FIG. 3D, the reference point on the imaging surface is indicated by the reference symbol O.
 ここで、4回の撮像を行う場合の順序については、特に制限はないが、基準の撮像位置(0,0)を最初の撮像位置とすると、たとえば、(3Dx/2,0)、(3Dx/2,3Dy/2)、(0,3Dy/2)という順番で固体撮像素子12を移動させることにより、固体撮像素子12の全体的な移動量を小さくすることができる。 Here, there is no particular limitation on the order in the case of performing the imaging four times. If the reference imaging position (0, 0) is the first imaging position, for example, (3Dx / 2, 0), (3Dx / 2, 3Dy / 2) and (0, 3Dy / 2) are moved in the order of (0, 3Dy / 2), so that the overall movement amount of the solid-state image sensor 12 can be reduced.
 図3A~図3Dに示すように、第1実施例における画素ずらし法によれば、各撮像画像において、欠陥画素によって撮像される撮像領域v1同士が互いに重複しないように、各撮像位置を設定することができる。 As shown in FIGS. 3A to 3D, according to the pixel shifting method in the first embodiment, each imaging position is set so that the imaging areas v1 captured by the defective pixels do not overlap each other in each captured image. be able to.
 図4は、図3A~図3Dに対応した各撮像画像を合成することによって生成された高解像度画像H1を示す図である。高解像度画像H1は、図3A~図3Dに対応した4枚の撮像画像を、基準点Oを一致させて重ね合わせることにより生成されるものである。したがって、高解像度画像H1の各画素Eの輝度値情報は、各撮像画像における画素のうち、当該画素Eに対応している画素の輝度値情報に基づいて生成される。 FIG. 4 is a diagram illustrating a high-resolution image H1 generated by combining the captured images corresponding to FIGS. 3A to 3D. The high resolution image H1 is generated by superimposing four captured images corresponding to FIGS. 3A to 3D with the reference point O coincident. Therefore, the luminance value information of each pixel E of the high-resolution image H1 is generated based on the luminance value information of the pixel corresponding to the pixel E among the pixels in each captured image.
 ここで、撮像画像における各画素のうち、欠陥画素によって撮像出力された輝度値情報を無効なものとすると、本実施例による高解像度画像H1の画素Eには、有効撮像枚数が4枚の画素e0と、有効撮像枚数が3枚の画素e1とが含まれる。 Here, among the pixels in the captured image, if the luminance value information captured and output by the defective pixel is invalid, the pixel E of the high-resolution image H1 according to the present embodiment has four effective captured images. e0 and a pixel e1 having three effective images are included.
 すなわち、第1実施例によれば、高解像度画像H1の画素Eは、有効撮像枚数が撮像画像の枚数と同数の画素e0と、有効撮像枚数が撮像画像の枚数よりも1枚だけ少ない画素e1とによって構成され、有効撮像枚数が撮像画像の枚数よりも2枚以上少ない画素が含まれない。 That is, according to the first embodiment, the pixel E of the high resolution image H1 includes the pixel e0 having the same number of effective captured images as the number of captured images and the pixel e1 having an effective captured number of one less than the number of captured images. And the number of effective captured images is not two or fewer than the number of captured images.
 このように、本実施形態に係る画像処理システム100によれば、固体撮像素子12に欠陥画素が含まれている場合であっても、高解像度画像H1における各画素Eにおいて、有効撮像枚数の低下を抑制することができる。したがって、撮像画像に基づいて生成される高解像度画像H1の精度の低下を抑制することができる。このような画像処理システム100を、撮像対象物Pに生じている微小な異物や傷などの検出対象物を検出する用途に用いることにより、微小な検出対象物の見逃しが生じる可能性を低減することができる。 As described above, according to the image processing system 100 according to the present embodiment, even if the solid-state imaging device 12 includes a defective pixel, the number of effective captured images is reduced in each pixel E in the high-resolution image H1. Can be suppressed. Therefore, it is possible to suppress a decrease in accuracy of the high resolution image H1 generated based on the captured image. By using such an image processing system 100 for the purpose of detecting a detection object such as a minute foreign object or a flaw occurring on the imaging object P, the possibility that the detection object of the minute detection object is missed is reduced. be able to.
 また、本実施例による高解像度画像H1では、有効撮像枚数が3枚の画素e1が集合して形成される4つの島が、高解像度画像H1の画素Eの1行分および1列分だけ互いに離間して存在している。前述するように、移動量Fx,Fyを設定するための数式(3),(4)において、数式(5),(6)を満足するようにさえNx,Nyを設定すれば、高解像度画像H1において、有効撮像枚数が2枚以下の画素が生成されることを回避することができ、Nx,Nyの設定値は、高解像度画像H1における前記4つの島同士の間隔に寄与する。しかしながら、4つの島同士が互いに重複することのない限り、有効撮像枚数の低下を抑制する効果については、4つの島同士の間隔に依らず同等である。そこで、本実施形態では、前記のように、固体撮像素子12の移動量Fx,Fyを低減するように、Nx,Nyを設定している。 Further, in the high resolution image H1 according to the present embodiment, four islands formed by aggregating the pixels e1 having the effective number of images of three are mutually connected by one row and one column of the pixels E of the high resolution image H1. It exists apart. As described above, in the equations (3) and (4) for setting the movement amounts Fx and Fy, as long as Nx and Ny are set so as to satisfy the equations (5) and (6), a high-resolution image is obtained. In H1, it is possible to avoid generation of pixels having an effective number of images of 2 or less, and the set values of Nx and Ny contribute to the interval between the four islands in the high resolution image H1. However, as long as the four islands do not overlap with each other, the effect of suppressing the reduction in the number of effective images is the same regardless of the interval between the four islands. Therefore, in the present embodiment, as described above, Nx and Ny are set so as to reduce the movement amounts Fx and Fy of the solid-state imaging device 12.
 したがって、従来の画素ずらし法に比べて固体撮像素子12の移動量Fx,Fyが増大してしまうことによる影響、すなわち、撮像位置間の移動時間の増加、アクチュエータ20によって移動された位置の撮像位置に対する精度の低下、およびアクチュエータ20の寿命低下を、抑制することができる。 Therefore, the influence of the movement amounts Fx and Fy of the solid-state imaging device 12 increasing as compared with the conventional pixel shifting method, that is, the movement time between the imaging positions increases, and the imaging position of the position moved by the actuator 20 It is possible to suppress a decrease in accuracy and a decrease in the life of the actuator 20.
 次に、固体撮像素子12に生じている欠陥に、欠陥画素がX方向に2個連続したクラスタ欠陥が最大の欠陥として含まれている場合の実施例(以下、「第2実施例」と称する)について説明する。すなわち、この第2実施例においては、撮像条件記憶部32に格納されている高解像度化倍率Ax,Ayはそれぞれ2(すなわち、Ax=Ay=2)であり、また、欠陥のサイズCxが2,Cyが1(すなわち、Cx=2、Cy=1)である。 Next, an example in which a defect occurring in the solid-state imaging device 12 includes a cluster defect in which two defective pixels continue in the X direction as the maximum defect (hereinafter referred to as “second example”). ). That is, in the second embodiment, the resolution enhancement magnifications Ax and Ay stored in the imaging condition storage unit 32 are each 2 (that is, Ax = Ay = 2), and the defect size Cx is 2. , Cy is 1 (that is, Cx = 2, Cy = 1).
 したがって、撮像位置設定部31は、前記の数式(7),(8)に基づいて、固体撮像素子12の移動量Fx,Fyを、Fx=5Dx/2およびFy=3Dy/2と設定する。これにより、撮像位置設定部31は、固体撮像素子12の撮像位置を、(0,0)、(5Dx/2,0)、(0,3Dy/2)、(5Dx/2,3Dy/2)と設定する。ここで、(0,0)は、基準の撮像位置の座標を表しているものとする。 Therefore, the imaging position setting unit 31 sets the movement amounts Fx and Fy of the solid-state imaging device 12 as Fx = 5Dx / 2 and Fy = 3Dy / 2 based on the mathematical formulas (7) and (8). Thereby, the imaging position setting unit 31 sets the imaging position of the solid-state imaging device 12 to (0, 0), (5Dx / 2, 0), (0, 3Dy / 2), (5Dx / 2, 3Dy / 2). And set. Here, (0, 0) represents the coordinates of the reference imaging position.
 図5A~図5Dは、第2実施例において撮像位置設定部31によって設定された各撮像位置で撮像対象物Pを撮像したときの、各撮像画素による撮像領域Vを示す図である。図5Aは、基準の撮像位置(0,0)で撮像対象物Pを撮像したときの、各撮像画素による撮像領域Vを示している。また、図5Bは、基準の撮像位置(0,0)から画素ピッチDxの5/2だけX方向に固体撮像素子12を移動させた撮像位置(5Dx/2,0)で撮像対象物Pを撮像したときの、各撮像画素による撮像領域Vを示している。 FIGS. 5A to 5D are diagrams showing the imaging region V by each imaging pixel when the imaging object P is imaged at each imaging position set by the imaging position setting unit 31 in the second embodiment. FIG. 5A shows an imaging region V by each imaging pixel when the imaging object P is imaged at the reference imaging position (0, 0). FIG. 5B shows the imaging object P at the imaging position (5Dx / 2, 0) obtained by moving the solid-state imaging device 12 in the X direction by 5/2 of the pixel pitch Dx from the reference imaging position (0, 0). The imaging region V by each imaging pixel when it imaged is shown.
 また、図5Cは、基準の撮像位置(0,0)から画素ピッチDyの3/2だけY方向に固体撮像素子12を移動させた撮像位置(0,3Dy/2)で撮像対象物Pを撮像したときの、各撮像画素による撮像領域Vを示している。また、図5Dは、基準の撮像位置(0,0)から画素ピッチDxの5/2だけX方向に、かつ画素ピッチDyの3/2だけY方向に固体撮像素子12をそれぞれ移動させた撮像位置(5Dx/2,3Dy/2)で撮像対象物Pを撮像したときの、各撮像画素による撮像領域Vを示している。なお、図5A~図5Dにおいて、被撮像面における基準点を参照符Oで示している。 FIG. 5C shows the imaging object P at the imaging position (0, 3Dy / 2) obtained by moving the solid-state imaging device 12 in the Y direction by 3/2 of the pixel pitch Dy from the reference imaging position (0, 0). The imaging region V by each imaging pixel when it imaged is shown. Further, FIG. 5D shows imaging in which the solid-state imaging device 12 is moved from the reference imaging position (0, 0) in the X direction by 5/2 of the pixel pitch Dx and in the Y direction by 3/2 of the pixel pitch Dy. The imaging region V by each imaging pixel when the imaging target P is imaged at the position (5Dx / 2, 3Dy / 2) is shown. In FIG. 5A to FIG. 5D, the reference point on the imaging surface is indicated by the reference symbol O.
 図5A~図5Dに示すように、第2実施例における画素ずらし法によれば、各撮像画像において、欠陥画素によって撮像される撮像領域v1同士が互いに重複しないように、各撮像位置を設定することができる。 As shown in FIGS. 5A to 5D, according to the pixel shifting method in the second embodiment, each imaging position is set so that the imaging regions v1 captured by the defective pixels do not overlap each other in each captured image. be able to.
 図6は、図5A~図5Dに対応した各撮像画像を合成することによって生成された高解像度画像H2を示す図である。高解像度画像H2は、図5A~図5Dに対応した4枚の撮像画像を、基準点Oを一致させて重ね合わせることにより生成されるものである。図6に示すように、本実施例による高解像度画像H2の画素Eには、有効撮像枚数が4枚の画素e0と、有効撮像枚数が3枚の画素e1とが含まれる。 FIG. 6 is a diagram illustrating a high-resolution image H2 generated by combining the captured images corresponding to FIGS. 5A to 5D. The high resolution image H2 is generated by superimposing four captured images corresponding to FIGS. 5A to 5D with the reference point O coincident. As shown in FIG. 6, the pixel E of the high-resolution image H2 according to the present embodiment includes a pixel e0 having four effective images and a pixel e1 having three effective images.
 すなわち、第2実施例によれば、前記第1実施例と同様に、高解像度画像H2の画素Eは、有効撮像枚数が撮像画像の枚数と同数の画素e0と、有効撮像枚数が撮像画像の枚数よりも1枚だけ少ない画素e1によって構成され、有効撮像枚数が撮像画像の枚数よりも2枚以上少ない画素が含まれない。 That is, according to the second embodiment, as in the first embodiment, the pixel E of the high-resolution image H2 has the same number of pixels e0 as the number of effective captured images and the number of effective captured images of the captured images. The number of pixels e1 is one less than the number of pixels, and the number of effective captured images is not two or more than the number of captured images.
 このように、本実施形態に係る画像処理システム100によれば、固体撮像素子12に欠陥画素が含まれている場合であっても、高解像度画像H2における各画素Eにおいて、有効撮像枚数の低下を抑制することができる。したがって、撮像画像に基づいて生成される高解像度画像H2の精度の低下を抑制することができる。このような画像処理システム100を、撮像対象物Pに生じている微小な異物や傷などの検出対象物を検出する用途に用いることにより、微小な検出対象物の見逃しが生じる可能性を低減することができる。 As described above, according to the image processing system 100 according to the present embodiment, even when the solid-state imaging device 12 includes a defective pixel, the effective number of images is reduced in each pixel E in the high-resolution image H2. Can be suppressed. Accordingly, it is possible to suppress a decrease in accuracy of the high resolution image H2 generated based on the captured image. By using such an image processing system 100 for the purpose of detecting a detection object such as a minute foreign object or a flaw occurring on the imaging object P, the possibility that the detection object of the minute detection object is missed is reduced. be able to.
 また、前述するように、従来の画素ずらし法に比べて固体撮像素子12の移動量Fx,Fyが増大してしまうことによる影響、すなわち、撮像位置間の移動時間の増加、アクチュエータ20によって移動された位置の撮像位置に対する精度の低下、およびアクチュエータ20の寿命低下を、抑制することができる。 In addition, as described above, the effect of increasing the movement amounts Fx and Fy of the solid-state imaging device 12 compared to the conventional pixel shifting method, that is, the movement time between the imaging positions is increased, and the actuator 20 is moved. It is possible to suppress a decrease in accuracy with respect to the image pickup position and a decrease in the life of the actuator 20.
 次に、撮像位置を設定するための条件として、さらに、撮像位置間の移動時間の増加、アクチュエータ20によって移動された位置の撮像位置に対する精度の低下、およびアクチュエータ20の寿命の低下などに基づいて、固体撮像素子12の移動量Fx,Fyに、限界量Qx,Qy(すなわち、Fx≦Qx、Fy≦Qy)が設定されている場合の実施例(以下、「第3実施例」と称する)について説明する。 Next, the conditions for setting the imaging position are further based on an increase in the movement time between the imaging positions, a decrease in accuracy with respect to the imaging position of the position moved by the actuator 20, a decrease in the life of the actuator 20, and the like. An example in which the limit amounts Qx and Qy (that is, Fx ≦ Qx, Fy ≦ Qy) are set as the movement amounts Fx and Fy of the solid-state imaging device 12 (hereinafter, referred to as “third embodiment”). Will be described.
 前記の数式(7),(8)によって設定される移動量Fx,Fyがそれぞれ、限界量Qx,Qyよりも小さい場合には、算出された移動量Fx,Fyに基づいて撮像位置を設定すればよい。これに対し、数式(7),(8)によって設定される移動量Fx,Fyの少なくとも一方でも限界量Qx,Qyを超えてしまった場合には、限界量Qx,Qyに基づいて撮像位置を設定すればよい。 When the movement amounts Fx and Fy set by the mathematical expressions (7) and (8) are smaller than the limit amounts Qx and Qy, respectively, the imaging position is set based on the calculated movement amounts Fx and Fy. That's fine. On the other hand, if at least one of the movement amounts Fx and Fy set by the equations (7) and (8) exceeds the limit amounts Qx and Qy, the imaging position is determined based on the limit amounts Qx and Qy. You only have to set it.
 以下では、固体撮像素子12に生じている欠陥に、欠陥画素がX方向に2個連続したクラスタ欠陥が最大の欠陥として含まれている場合を想定し、さらに、撮像位置を設定するための条件として、X方向の限界量Qxが画素ピッチDxの2倍(すなわち、Qx=2Dx)、Y方向の限界量Qyが画素ピッチDyの2倍(すなわち、Qy=2Dy)に設定されている場合の実施例について説明する。 In the following, it is assumed that the defect occurring in the solid-state imaging device 12 includes a cluster defect in which two defective pixels are consecutive in the X direction as the maximum defect, and further, conditions for setting the imaging position When the limit amount Qx in the X direction is set to twice the pixel pitch Dx (ie, Qx = 2Dx), and the limit amount Qy in the Y direction is set to twice the pixel pitch Dy (ie, Qy = 2Dy). Examples will be described.
 この第3実施例においては、撮像条件記憶部32に格納されている高解像度化倍率Ax,Ayはそれぞれ2(すなわち、Ax=Ay=2)であり、また、欠陥のサイズCxが2,Cyが1(すなわち、Cx=2、Cy=1)である。 In the third embodiment, the resolution enhancement magnifications Ax and Ay stored in the imaging condition storage unit 32 are 2 (that is, Ax = Ay = 2), respectively, and the defect size Cx is 2 and Cy. Is 1 (ie, Cx = 2, Cy = 1).
 したがって、撮像位置設定部31は、前記の数式(7),(8)に基づいて、固体撮像素子12の移動量Fx,Fyを、Fx=5Dx/2およびFy=3Dy/2と設定する。ここで、撮像位置設定部31は、設定された移動量Fx,Fyと、予め設定されている限界量Qx,Qyとを比較する。 Therefore, the imaging position setting unit 31 sets the movement amounts Fx and Fy of the solid-state imaging device 12 as Fx = 5Dx / 2 and Fy = 3Dy / 2 based on the mathematical formulas (7) and (8). Here, the imaging position setting unit 31 compares the set movement amounts Fx and Fy with preset limit amounts Qx and Qy.
 本実施例では、設定された移動量Fx(=5Dx/2)が、限界量Qx(=2Dx)を超えているので、移動量Fxを再設定する必要がある。具体的には、Nx=Cxとして設定された数式(7)において、Nx=Cx-1として再設定することにより移動量Fxを再設定する。つまり、本実施例では、Fx=3Dx/2と再設定される。 In this embodiment, since the set movement amount Fx (= 5Dx / 2) exceeds the limit amount Qx (= 2Dx), it is necessary to reset the movement amount Fx. Specifically, the movement amount Fx is reset by resetting as Nx = Cx−1 in Equation (7) set as Nx = Cx. That is, in this embodiment, Fx = 3Dx / 2 is reset.
 これにより、撮像位置設定部31は、固体撮像素子12の撮像位置を、(0,0)、(3Dx/2,0)、(0,3Dy/2)、(3Dx/2,3Dy/2)と設定する。ここで、(0,0)は、基準の撮像位置の座標を表しているものとする。 Thereby, the imaging position setting unit 31 sets the imaging position of the solid-state imaging device 12 to (0, 0), (3Dx / 2, 0), (0, 3Dy / 2), (3Dx / 2, 3Dy / 2). And set. Here, (0, 0) represents the coordinates of the reference imaging position.
 図7A~図7Dは、第3実施例において撮像位置設定部31によって設定された各撮像位置で撮像対象物Pを撮像したときの、各撮像画素による撮像領域Vを示す図である。図7Aは、基準の撮像位置(0,0)で撮像対象物Pを撮像したときの、各撮像画素による撮像領域Vを示している。また、図7Bは、基準の撮像位置(0,0)から画素ピッチDxの3/2だけX方向に固体撮像素子12を移動させた撮像位置(3Dx/2,0)で撮像対象物Pを撮像したときの、各撮像画素による撮像領域Vを示している。 FIGS. 7A to 7D are diagrams showing the imaging region V by each imaging pixel when the imaging object P is imaged at each imaging position set by the imaging position setting unit 31 in the third embodiment. FIG. 7A shows an imaging region V by each imaging pixel when the imaging object P is imaged at the reference imaging position (0, 0). FIG. 7B shows the imaging object P at the imaging position (3Dx / 2, 0) obtained by moving the solid-state imaging device 12 in the X direction by 3/2 of the pixel pitch Dx from the reference imaging position (0, 0). The imaging region V by each imaging pixel when it imaged is shown.
 また、図7Cは、基準の撮像位置(0,0)から画素ピッチDyの3/2だけY方向に固体撮像素子12を移動させた撮像位置(0,3Dy/2)で撮像対象物Pを撮像したときの、各撮像画素による撮像領域Vを示している。また、図7Dは、基準の撮像位置(0,0)から画素ピッチDxの3/2だけX方向およびY方向に固体撮像素子12をそれぞれ移動させた撮像位置(3Dx/2,3Dy/2)で撮像対象物Pを撮像したときの、各撮像画素による撮像領域Vを示している。なお、図7A~図7Dにおいて、被撮像面における基準点を参照符Oで示している。 FIG. 7C shows the imaging object P at the imaging position (0, 3Dy / 2) where the solid-state imaging device 12 is moved in the Y direction by 3/2 of the pixel pitch Dy from the reference imaging position (0, 0). The imaging region V by each imaging pixel when it imaged is shown. FIG. 7D shows an imaging position (3Dx / 2, 3Dy / 2) obtained by moving the solid-state imaging device 12 in the X direction and the Y direction by 3/2 of the pixel pitch Dx from the reference imaging position (0, 0). The imaging area V by each imaging pixel when imaging object P is imaged is shown. In FIG. 7A to FIG. 7D, the reference point on the imaging surface is indicated by the reference symbol O.
 図7A~図7Dに示すように、第3実施例における画素ずらし法によれば、数式(5),(6)を満足するように移動量Fx,Fyが設定されていないので、各撮像画像において、欠陥画素によって撮像される撮像領域v1同士が互いに重複してしまうことになる。 As shown in FIGS. 7A to 7D, according to the pixel shifting method in the third embodiment, the movement amounts Fx and Fy are not set so as to satisfy the expressions (5) and (6). In this case, the imaging areas v1 imaged by the defective pixels overlap each other.
 図8は、図7A~図7Dに対応した各撮像画像を合成することによって生成された高解像度画像H3を示す図である。高解像度画像H3は、図7A~図7Dに対応した4枚の撮像画像を、基準点Oを一致させて重ね合わせることにより生成されるものである。図8に示すように、高解像度画像H3の画素Eには、有効撮像枚数が4枚の画素e0と、有効撮像枚数が3枚の画素e1と、有効撮像枚数が2枚の画素e2とが含まれる。 FIG. 8 is a diagram showing a high resolution image H3 generated by combining the captured images corresponding to FIGS. 7A to 7D. The high resolution image H3 is generated by superimposing four captured images corresponding to FIGS. 7A to 7D with the reference point O coincident. As shown in FIG. 8, the pixel E of the high-resolution image H3 includes a pixel e0 having four effective images, a pixel e1 having three effective images, and a pixel e2 having two effective images. included.
 すなわち、この第3実施例では、前記第2実施例とは異なり、高解像度画像H3の画素Eは、有効撮像枚数が撮像画像の枚数と同数の画素e0、および有効撮像枚数が撮像画像の枚数よりも1枚だけ少ない画素e1だけではなく、有効撮像枚数が撮像画像の枚数よりも2枚少ない画素e2を含んで構成される。 That is, in the third embodiment, unlike the second embodiment, the pixel E of the high resolution image H3 has the same number of pixels e0 as the number of captured images, and the number of effective captured images is the number of captured images. In addition to the pixel e1 that is one fewer than the number of pixels e1, the effective number of captured images includes two pixels e2 that are smaller than the number of captured images.
 したがって、第3の実施例は、前記の第2実施例に比べて有効撮像枚数の低下を抑制することはできないが、このように移動量Fx,Fyに限界量Qx,Qyが設定されている場合であっても、従来の画素ずらし法と比較すると、高解像度画像H3における各画素Eにおいて、有効撮像枚数の低下を抑制することができる。 Therefore, the third embodiment cannot suppress the decrease in the number of effective images as compared with the second embodiment, but the limit amounts Qx and Qy are set for the movement amounts Fx and Fy in this way. Even in this case, compared with the conventional pixel shifting method, it is possible to suppress a decrease in the effective number of images in each pixel E in the high resolution image H3.
 したがって、本実施形態に係る画像処理システム100によれば、従来の画素ずらし法に比べて、撮像画像に基づいて生成される高解像度画像H3の精度の低下を抑制することができる。このような画像処理システム100を、撮像対象物Pに生じている微小な異物や傷などの検出対象物を検出する用途に用いることにより、微小な検出対象物の見逃しが生じる可能性を低減することができる。 Therefore, according to the image processing system 100 according to the present embodiment, it is possible to suppress a decrease in accuracy of the high resolution image H3 generated based on the captured image, as compared with the conventional pixel shifting method. By using such an image processing system 100 for the purpose of detecting a detection object such as a minute foreign object or a flaw occurring on the imaging object P, the possibility that the detection object of the minute detection object is missed is reduced. be able to.
 図9は、本発明の実施形態に係る画像処理システム100による画像生成処理の手順を示すフローチャートである。検査対象の撮像対象物Pが、図示しないステージ上の所定の位置に載置された状態で、画像生成処理が開始される。 FIG. 9 is a flowchart showing a procedure of image generation processing by the image processing system 100 according to the embodiment of the present invention. The image generation process is started in a state where the imaging target P to be inspected is placed at a predetermined position on a stage (not shown).
 ステップs1では、撮像位置設定部31が、撮像条件記憶部32に予め格納されている撮像条件のデータを読み出し、前記の数式(7),(8)に基づいて固体撮像素子12の移動量Fx,Fyを算出することにより、固体撮像素子12による撮像位置を設定する。撮像位置が設定されると、ステップs2に進む。 In step s1, the imaging position setting unit 31 reads the imaging condition data stored in advance in the imaging condition storage unit 32, and the amount of movement Fx of the solid-state imaging device 12 based on the equations (7) and (8). , Fy is calculated to set the imaging position by the solid-state imaging device 12. When the imaging position is set, the process proceeds to step s2.
 ステップs2では、撮像制御部33が、予め設定された撮像の順序に従って、ステップs1で設定された各撮像位置で撮像が行われるように、撮像装置10およびアクチュエータ20の動作を制御する。これにより、当該撮像位置で撮像された撮像画像の撮像画像データが取得される。取得された撮像画像データは、制御装置30における撮像画像記憶部36に格納される。撮像画像データが撮像画像記憶部36に格納されると、ステップs3に進む。 In step s2, the imaging control unit 33 controls the operations of the imaging device 10 and the actuator 20 so that imaging is performed at each imaging position set in step s1 according to a preset imaging sequence. Thereby, captured image data of the captured image captured at the imaging position is acquired. The acquired captured image data is stored in the captured image storage unit 36 in the control device 30. When the captured image data is stored in the captured image storage unit 36, the process proceeds to step s3.
 ステップs3では、撮像制御部33が、ステップs1で設定された全ての撮像位置で撮像が行われたか否かを判定する。全ての撮像位置で撮像が行われたと判定されると、ステップs4に進み、全ての撮像位置で撮像が行われていないと判定されると、ステップs2に戻る。 In step s3, the imaging control unit 33 determines whether imaging has been performed at all the imaging positions set in step s1. If it is determined that imaging has been performed at all imaging positions, the process proceeds to step s4. If it is determined that imaging has not been performed at all imaging positions, the process returns to step s2.
 ステップs4では、高解像度画像生成部37が、撮像画像記憶部36に格納されている各撮像位置の撮像画像データを合成することにより、高解像度画像データを生成する。さらに、各撮像画像データにおいて欠陥画素に対応する画素の輝度値情報が高解像度画像データに反映されないように、生成された高解像度画像データを補正する。このようにして、高解像度画像データが取得されると、ステップs5に進む。 In step s4, the high resolution image generation unit 37 generates high resolution image data by synthesizing the captured image data of each imaging position stored in the captured image storage unit 36. Furthermore, the generated high-resolution image data is corrected so that the luminance value information of the pixel corresponding to the defective pixel is not reflected in the high-resolution image data in each captured image data. When the high-resolution image data is acquired in this way, the process proceeds to step s5.
 ステップs5では、表示装置40が、ステップs4で取得された高解像度画像データを読み出して、撮像対象物Pの高解像度画像を表示部に表示する。高解像度画像が表示部に表示されると、画像生成処理を終了する。 In step s5, the display device 40 reads the high-resolution image data acquired in step s4, and displays the high-resolution image of the imaging target P on the display unit. When the high-resolution image is displayed on the display unit, the image generation process ends.
 コンピュータの制御装置30に含まれる各ブロックは、ハードウェアロジックによって構成してもよいし、次のようにCPU(Central Processing Unit)を用いてソフトウェアによって実現してもよい。 Each block included in the control device 30 of the computer may be configured by hardware logic, or may be realized by software using a CPU (Central Processing Unit) as follows.
 すなわち、コンピュータの制御装置30は、各機能を実現する画像生成プログラムの命令を実行するCPU、上記プログラムを格納したROM、上記プログラムを展開するRAM(Random Access Memory)、上記プログラムおよび各種データを格納するメモリ等の記憶装置(記録媒体)などを備えている。そして、本発明の目的は、上述した機能を実現するソフトウェアである画像生成プログラムのプログラムコード(実行形式プログラム、中間コードプログラム、ソースプログラム)をコンピュータで読み取り可能に記録した記録媒体をコンピュータに供給し、コンピュータがその記録媒体に記録されているプログラムコードを読み出し実行することによっても達成可能である。 That is, the computer control device 30 stores a CPU that executes instructions of an image generation program that realizes each function, a ROM that stores the program, a RAM (Random Access Memory) that expands the program, the program, and various data. And a storage device (recording medium) such as a memory. An object of the present invention is to supply a computer with a recording medium in which a program code (execution format program, intermediate code program, source program) of an image generation program, which is software that realizes the above-described functions, is recorded in a computer-readable manner. This can also be achieved by the computer reading and executing the program code recorded on the recording medium.
 上記記録媒体としては、例えば、磁気テープやカセットテープ等のテープ系、フロッピー(登録商標)ディスク/ハードディスク等の磁気ディスクやCD-ROM/MO/MD/DVD/CD-R等の光ディスクを含むディスク系、ICカード(メモリカードを含む)/光カード等のカード系、あるいはマスクROM/EPROM/EEPROM/フラッシュROM等の半導体メモリ系などを用いることができる。 Examples of the recording medium include tapes such as magnetic tapes and cassette tapes, magnetic disks such as floppy (registered trademark) disks / hard disks, and disks including optical disks such as CD-ROM / MO / MD / DVD / CD-R. Card system such as IC card, IC card (including memory card) / optical card, or semiconductor memory system such as mask ROM / EPROM / EEPROM / flash ROM.
 また、コンピュータを通信ネットワークと接続可能に構成し、上記プログラムコードを通信ネットワークを介してコンピュータに供給するようにしてもよい。この通信ネットワークとしては、とくに限定されず、例えば、インターネット、イントラネット、エキストラネット、LAN、ISDN、VAN、CATV通信網、仮想専用網(Virtual Private Network)、電話回線網、移動体通信網、衛星通信網等が利用可能である。また、通信ネットワークを構成する伝送媒体としては、とくに限定されず、例えば、IEEE1394、USB、電力線搬送、ケーブルTV回線、電話線、ADSL回線等の有線でも、IrDAやリモコンのような赤外線、Bluetooth(登録商標)、802.11無線、HDR、携帯電話網、衛星回線、地上波デジタル網等の無線でも利用可能である。なお、本発明は、上記プログラムコードが電子的な伝送で具現化された、搬送波に埋め込まれたコンピュータデータ信号の形態でも実現され得る。 Further, the computer may be configured to be connectable to a communication network, and the program code may be supplied to the computer via the communication network. The communication network is not particularly limited. For example, the Internet, intranet, extranet, LAN, ISDN, VAN, CATV communication network, virtual private network (Virtual Private Network), telephone line network, mobile communication network, satellite communication. A net or the like is available. Further, the transmission medium constituting the communication network is not particularly limited. For example, even in the case of wired such as IEEE 1394, USB, power line carrier, cable TV line, telephone line, ADSL line, etc., infrared rays such as IrDA and remote control, Bluetooth ( (Registered trademark), 802.11 wireless, HDR, mobile phone network, satellite line, terrestrial digital network, and the like can also be used. The present invention can also be realized in the form of a computer data signal embedded in a carrier wave in which the program code is embodied by electronic transmission.
 本発明は、その精神または主要な特徴から逸脱することなく、他のいろいろな形態で実施できる。したがって、前述の実施形態はあらゆる点で単なる例示に過ぎず、本発明の範囲は特許請求の範囲に示すものであって、明細書本文には何ら拘束されない。さらに、特許請求の範囲に属する変形や変更は全て本発明の範囲内のものである。 The present invention can be implemented in various other forms without departing from the spirit or main features thereof. Therefore, the above-described embodiment is merely an example in all respects, and the scope of the present invention is shown in the claims, and is not restricted by the text of the specification. Further, all modifications and changes belonging to the scope of the claims are within the scope of the present invention.
 10 撮像装置
 12 固体撮像素子
 20 アクチュエータ
 30 制御装置
 31 撮像位置設定部
 32 撮像条件記憶部
 33 撮像制御部
 34 アクチュエータ制御部
 35 撮像タイミング制御部
 36 撮像画像記憶部
 37 高解像度画像生成部
 40 表示装置
 100 画像処理システム
 P 撮像対象物
 U 検出対象物
DESCRIPTION OF SYMBOLS 10 Imaging apparatus 12 Solid-state image sensor 20 Actuator 30 Control apparatus 31 Imaging position setting part 32 Imaging condition storage part 33 Imaging control part 34 Actuator control part 35 Imaging timing control part 36 Captured image storage part 37 High-resolution image generation part 40 Display apparatus 100 Image processing system P Imaging object U Detection object

Claims (5)

  1.  複数の撮像画素が2次元的に配列されて成る撮像部と、前記撮像画素が配列される方向において、撮像対象物と撮像部との相対的な位置を変化させる撮像位置変化部とを備え、相対的な位置をずらしながら前記撮像部が前記撮像対象物を撮像したときの複数枚の低解像度画像から、該低解像度画像よりも解像度の高い高解像度画像を生成する画像生成装置であって、
     各低解像度画像を撮像するときの前記相対的な位置をそれぞれ設定する撮像位置設定部であって、複数枚の低解像度画像間で、同一の撮像画素が撮像する撮像領域同士が互いに重複しないように、各撮像位置を設定する撮像位置設定部と、
     前記撮像位置設定部によって設定された各撮像位置で前記撮像対象物が撮像されるように、前記撮像部および前記撮像位置変化部を制御する撮像制御部と、
     前記撮像位置設定部によって設定された各撮像位置で撮像された複数枚の低解像度画像から高解像度画像を生成する高解像度画像生成部とを備えることを特徴とする画像生成装置。
    An imaging unit formed by two-dimensionally arranging a plurality of imaging pixels, and an imaging position changing unit that changes a relative position between the imaging object and the imaging unit in a direction in which the imaging pixels are arranged, An image generation device that generates a high-resolution image having a higher resolution than the low-resolution image from a plurality of low-resolution images when the imaging unit images the imaging object while shifting a relative position,
    An imaging position setting unit that sets the relative position when each low-resolution image is captured, so that imaging regions captured by the same imaging pixel do not overlap each other between a plurality of low-resolution images. An imaging position setting unit for setting each imaging position;
    An imaging control unit that controls the imaging unit and the imaging position changing unit so that the imaging object is imaged at each imaging position set by the imaging position setting unit;
    An image generation apparatus comprising: a high-resolution image generation unit configured to generate a high-resolution image from a plurality of low-resolution images captured at each imaging position set by the imaging position setting unit.
  2.  前記撮像位置設定部は、
     撮像画素が配列される一配列方向に関して高解像度化する倍率をAとし、1撮像画素が撮像する撮像領域の該一配列方向に関するサイズをWとし、Nを自然数とするとき、
     前記一配列方向に隣接する撮像位置で撮像される2枚の低解像度画像において、同一の撮像画素が撮像する撮像領域同士の該一配列方向に関する離間距離Lが、
       L=(N+1/A)×W
    の関係式を満足するように、各撮像位置を設定することを特徴とする請求項1に記載の画像生成装置。
    The imaging position setting unit
    When the magnification for increasing the resolution in one arrangement direction in which the imaging pixels are arranged is A, the size of the imaging area taken by one imaging pixel in the one arrangement direction is W, and N is a natural number,
    In two low-resolution images captured at imaging positions adjacent to each other in the one arrangement direction, a separation distance L in the one arrangement direction between the imaging regions captured by the same imaging pixel is
    L = (N + 1 / A) × W
    The image generation apparatus according to claim 1, wherein each imaging position is set so as to satisfy the relational expression:
  3.  前記撮像位置設定部は、
     撮像画素が配列される第1および第2の配列方向に関して高解像度化する倍率をそれぞれAx,Ayとし、1撮像画素が撮像する撮像領域の前記第1および第2の配列方向に関するサイズをWx,Wyとし、Nx,Nyを自然数とするとき、
     前記第1の配列方向に隣接する撮像位置で撮像される2枚の低解像度画像において、同一の撮像画素が撮像する撮像領域同士の該第1の配列方向に関する離間距離Lxが、
       Lx=(Nx+1/Ax)×Wx
    の関係式を満足し、かつ
     前記第2の配列方向に隣接する撮像位置で撮像される2枚の低解像度画像において、同一の撮像画素が撮像する撮像領域同士の該第2の配列方向に関する離間距離Lyが、
       Ly=(Ny+1/Ay)×Wy
    の関係式を満足するように、各撮像位置を設定することを特徴とする請求項1に記載の画像生成装置。
    The imaging position setting unit
    The magnifications for increasing the resolution in the first and second arrangement directions in which the image pickup pixels are arranged are Ax and Ay, respectively, and the sizes in the first and second arrangement directions of the image pickup regions picked up by one image pickup pixel are Wx, When Wy and Nx and Ny are natural numbers,
    In two low-resolution images captured at imaging positions adjacent to each other in the first arrangement direction, the separation distance Lx in the first arrangement direction between the imaging regions captured by the same imaging pixel is
    Lx = (Nx + 1 / Ax) × Wx
    In the two low-resolution images captured at the imaging positions adjacent to each other in the second arrangement direction, the imaging areas captured by the same imaging pixel are separated in the second arrangement direction. The distance Ly is
    Ly = (Ny + 1 / Ay) × Wy
    The image generation apparatus according to claim 1, wherein each imaging position is set so as to satisfy the relational expression:
  4.  複数の撮像画素が2次元的に配列されて成る撮像部と、前記撮像画素が配列される方向において、撮像対象物と撮像部との相対的な位置を変化させる撮像位置変化部とを備え、相対的な位置をずらしながら前記撮像部が前記撮像対象物を撮像したときの複数枚の低解像度画像から、該低解像度画像よりも解像度の高い高解像度画像を生成する画像生成方法であって、
     各低解像度画像を撮像するときの前記相対的な位置をそれぞれ設定する撮像位置設定ステップであって、複数枚の低解像度画像間で、同一の撮像画素が撮像する撮像領域同士が互いに重複しないように、各撮像位置を設定する撮像位置設定ステップと、
     前記撮像位置設定ステップによって設定された各撮像位置で前記撮像対象物が撮像されるように、前記撮像部および前記撮像位置変化部を制御する撮像制御ステップと、
     前記撮像位置設定ステップによって設定された各撮像位置で撮像された複数枚の低解像度画像から高解像度画像を生成する高解像度画像生成ステップとを含むことを特徴とする画像生成方法。
    An imaging unit formed by two-dimensionally arranging a plurality of imaging pixels, and an imaging position changing unit that changes a relative position between the imaging object and the imaging unit in a direction in which the imaging pixels are arranged, An image generation method for generating a high-resolution image having a higher resolution than the low-resolution image from a plurality of low-resolution images when the imaging unit images the imaging object while shifting a relative position,
    An imaging position setting step for setting the relative position when each low-resolution image is captured, so that imaging regions captured by the same imaging pixel do not overlap each other between a plurality of low-resolution images. An imaging position setting step for setting each imaging position;
    An imaging control step for controlling the imaging unit and the imaging position changing unit so that the imaging object is imaged at each imaging position set by the imaging position setting step;
    And a high-resolution image generation step of generating a high-resolution image from a plurality of low-resolution images captured at each imaging position set in the imaging position setting step.
  5.  請求項4に記載の画像生成方法をコンピュータに実行させるための画像生成プログラムを記録したコンピュータ読取り可能な記録媒体。 A computer-readable recording medium on which an image generation program for causing a computer to execute the image generation method according to claim 4 is recorded.
PCT/JP2012/053190 2012-02-10 2012-02-10 Image generation device, image generation method, and computer-readable recording medium having image generation program recorded therein WO2013118305A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/053190 WO2013118305A1 (en) 2012-02-10 2012-02-10 Image generation device, image generation method, and computer-readable recording medium having image generation program recorded therein

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/053190 WO2013118305A1 (en) 2012-02-10 2012-02-10 Image generation device, image generation method, and computer-readable recording medium having image generation program recorded therein

Publications (1)

Publication Number Publication Date
WO2013118305A1 true WO2013118305A1 (en) 2013-08-15

Family

ID=48947106

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/053190 WO2013118305A1 (en) 2012-02-10 2012-02-10 Image generation device, image generation method, and computer-readable recording medium having image generation program recorded therein

Country Status (1)

Country Link
WO (1) WO2013118305A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105203302A (en) * 2015-09-15 2015-12-30 歌尔声学股份有限公司 Resolution detecting method and resolution detecting device
CN106596060A (en) * 2016-11-24 2017-04-26 歌尔股份有限公司 Parallel test device and resolution power test method
JP2021015099A (en) * 2019-07-16 2021-02-12 株式会社テクムズ Method for detecting defect of inspection object, device therefor, and computer program therefor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05316434A (en) * 1992-05-12 1993-11-26 Olympus Optical Co Ltd High resolution image pickup device
JP2003283887A (en) * 2002-03-22 2003-10-03 Olympus Optical Co Ltd Image acquisition apparatus and image acquisition method
JP2005318511A (en) * 2004-02-13 2005-11-10 Matsushita Electric Ind Co Ltd Imaging method and apparatus
JP2010118818A (en) * 2008-11-12 2010-05-27 Sharp Corp Image capturing apparatus
JP2011239372A (en) * 2010-04-14 2011-11-24 Sharp Corp Imaging apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05316434A (en) * 1992-05-12 1993-11-26 Olympus Optical Co Ltd High resolution image pickup device
JP2003283887A (en) * 2002-03-22 2003-10-03 Olympus Optical Co Ltd Image acquisition apparatus and image acquisition method
JP2005318511A (en) * 2004-02-13 2005-11-10 Matsushita Electric Ind Co Ltd Imaging method and apparatus
JP2010118818A (en) * 2008-11-12 2010-05-27 Sharp Corp Image capturing apparatus
JP2011239372A (en) * 2010-04-14 2011-11-24 Sharp Corp Imaging apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105203302A (en) * 2015-09-15 2015-12-30 歌尔声学股份有限公司 Resolution detecting method and resolution detecting device
CN106596060A (en) * 2016-11-24 2017-04-26 歌尔股份有限公司 Parallel test device and resolution power test method
JP2021015099A (en) * 2019-07-16 2021-02-12 株式会社テクムズ Method for detecting defect of inspection object, device therefor, and computer program therefor

Similar Documents

Publication Publication Date Title
CN102907083B (en) Camera head, image processing apparatus and image processing method
JP5909540B2 (en) Image processing display device
JP4799329B2 (en) Unevenness inspection method, display panel manufacturing method, and unevenness inspection apparatus
JP2009205183A (en) Imaging device and optical axis control method
JP2010054247A (en) Defect detecting apparatus, defect detecting method, defect detecting program and computer-readable recording medium with the program recorded thereon
KR100837459B1 (en) Image pickup method of display panel and image pickup apparatus of display panel
US20150009345A1 (en) Image pickup apparatus and control method for same
US20170366747A1 (en) Generating high resolution images
WO2008050482A1 (en) Microscopic device and microscopic image analysis method
US8553097B2 (en) Reducing blur based on a kernel estimation of an imaging device
JPWO2011043051A1 (en) Imaging apparatus and solid-state imaging device
US11895403B2 (en) Imaging support device that performs registration control for setting a detected subject image position, imaging support system, imaging system, imaging support method, and program
WO2013118305A1 (en) Image generation device, image generation method, and computer-readable recording medium having image generation program recorded therein
JP7089906B2 (en) Board inspection equipment, board processing equipment and board inspection method
JP2015004883A (en) Image forming optical system, imaging system, and imaging method
JP6236908B2 (en) Imaging apparatus, imaging system, and imaging method
JP2008180602A (en) Inspection apparatus, testing method, inspection program, and computer readable medium
JP5269049B2 (en) Image generating apparatus, image generating method, image generating program, and recording medium
JP4405407B2 (en) Defect inspection equipment
JP2012002680A (en) Apparatus and method for correcting sensor output data
JP2011114537A (en) Image processing apparatus
JP4840313B2 (en) X-ray inspection equipment
JP2013130529A (en) Inspection device, inspection system, inspection method, program for making computer function as inspection device, program for making computer function as inspection system and computer readable non volatile data recording medium storing the programs
US20230289944A1 (en) Detection device, imaging apparatus, detection method, and program
TWI589155B (en) Camera, image sensor thereof, and driving method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12868027

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12868027

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP